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Relay Selection Algorithm for Tor
Abstract: Recent work has shown that Tor is vulner-
able to attacks that manipulate inter-domain routing
to compromise user privacy. Proposed solutions such
as Counter-RAPTOR [29] attempt to ameliorate this
issue by favoring Tor entry relays that have high re-
silience to these attacks. However, because these de-
fenses bias Tor path selection on the identity of the
client, they invariably leak probabilistic information
about client identities. In this work, we make the fol-
lowing contributions. First, we identify a novel means to
quantify privacy leakage in guard selection algorithms
using the metric of Max-Divergence. Max-Divergence
ensures that probabilistic privacy loss is within strict
bounds while also providing composability over time.
Second, we utilize Max-Divergence and multiple no-
tions of entropy to understand privacy loss in the
worst-case for Counter-RAPTOR. Our worst-case anal-
ysis provides a fresh perspective to the field, as prior
work such as Counter-RAPTOR only analyzed aver-
age case-privacy loss. Third, we propose modifications
to Counter-RAPTOR that incorporate worst-case Max-
Divergence in its design. Specifically, we utilize the
exponential mechanism (a mechanism for differential
privacy) to guarantee a worst-case bound on Max-
Divergence/privacy loss. For the quality function used
in the exponential mechanism, we show that a Monte-
Carlo sampling-based method for stochastic optimiza-
tion can be used to improve multi-dimensional trade-offs
between security, privacy, and performance. Finally, we
demonstrate that compared to Counter-RAPTOR, our
approach achieves an 83% decrease in Max-Divergence
after one guard selection and a 245% increase in worst-
case Shannon entropy after 5 guard selections. Notably,
experimental evaluations using the Shadow emulator
shows that our approach provides these privacy bene-
fits with minimal impact on system performance.
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1 Introduction
Tor is an infrastructure for enabling anonymous com-
munication. Tor is used by citizens, journalists, whistle-
blowers, businesses, and intelligence agencies through-
out the world to protect privacy [9]. However, Tor’s
widespread use make it a high priority target. With over
7,000 relays transporting terabytes of traffic every day,
Tor is a common target for attackers seeking to com-
promise clients’ privacy anonymity[33].

Recently, researchers have found that Tor is partic-
ularly vulnerable to network-level adversaries [22, 30].
Network operators of Autonomous Systems (AS) can
observe user traffic between clients and servers and use
these observations to facilitate traffic analysis attacks
against Tor users. While previous work on deanonymiz-
ing Tor clients has investigated threat models of passive
network adversaries [15, 22], the recent work of Sun
et al. [30] has shown that Tor clients are also highly
vulnerable to active adversaries that manipulate inter-
domain routing via Border Gateway Protocol (BGP) hi-
jack attacks. An adversary AS can announce an equally-
specific prefix to hijack client traffic causing a victim AS
to be deceived into sending traffic to the adversary’s AS.
By announcing false Internet prefixes between ASes and
by intercepting traffic from Tor clients, network opera-
tors can then deanonymize Tor clients. The 2014 Indosat
attack showed the real-world possibility of these type of
attacks; among the victims within the attacked AS were
44 Tor relays [17].

In Counter-RAPTOR [29], Sun et al. proposed a
defense to equally-specific prefix BGP hijack attacks
by directly favoring Tor guard relays with high re-
silience to these attacks. Certain Tor relays have high
resilience to BGP attacks due to their position in the
network relative to the client. Counter-RAPTOR’s ap-
proach achieved an average resilience increase of 32%
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to BGP hijack attacks while maintaining similar per-
formance to the currently deployed version of Tor with
default settings (Vanilla Tor). The Counter-RAPTOR
algorithm equally weights the relay’s resilience to hijack
attacks and the relay bandwidth. However, this results
in a decrease in guard relay randomness, which in turn
leaks probabilistic information about client origin ASes.
A major drawback of their approach is thus a signifi-
cant decrease in the Shannon entropy of client source
ASes over time, allowing client ASes to be statistically
fingerprinted [26, 36]. These fingerprinting attacks al-
low adversaries to link a client to her source AS. Ad-
versaries capable of learning this information can more
easily deanonymize clients (refer Section 3.1).
After 5 guard relay observations, the Shannon en-
tropy for possible source ASes can decrease by as
much as 61.6%. For adversaries interested in long-term
deanonymization techniques, this opens another av-
enue to exploit Tor’s vulnerabilities. Further, it can
be relatively easy for an adversary to observe multi-
ple guards in a shorter amount of time than ostensi-
bly required (see Section 3). Understanding worst-case
scenarios is thus imperative for practical deployments
that utilize a client’s location like Counter-RAPTOR.
In this work, we show that using the Max-Divergence
metric, we can gain a more holistic understanding of
worst-case scenario behavior in Counter-RAPTOR and
other proposals that utilize clients’ locations. We fur-
ther show that incorporating this differential privacy
related metric into Counter-RAPTOR can ameliorate
long-term deanonymization issues while also keeping
Counter-RAPTOR’s security properties.

Our contributions: In this work, we propose:
1. A way to quantify worst-case privacy loss in guard

relay selection algorithms like Counter-RAPTOR.
We utilize Max-Divergence (based on Differential
Privacy) as our metric, which ensures that proba-
bilistic privacy loss is within strict bounds while also
providing composability over time.

2. A new guard relay selection algorithm, DPSelect,
that outperforms Counter-RAPTOR by (a) reduc-
ing client vulnerability to fingerprinting attacks
while (b) achieving similar resilience to BGP hi-
jack attacks. We utilize the exponential mechanism
(See Appendix A) to guarantee a worst-case bound
on Max-Divergence/privacy loss. For the quality
function used in the exponential mechanism, we
show that a Monte-Carlo sampling-based method
for stochastic optimization can be used to improve
multi-dimensional trade-offs between security, pri-
vacy, and performance.

3. A quantification of information leaks (including
temporal aspects) in Counter-RAPTOR’s and DPS-
elect’s guard selection algorithms using the metrics
of Shannon Entropy, min-entropy, guessing entropy,
and Max-Divergence from a worst-case perspective.

4. A comparative analysis of the security, privacy, and
performance our new guard relay selection algo-
rithm to Counter-RAPTOR and Vanilla Tor. Our
approach achieves an 83% decrease in worst-case
Max-Divergence and a 245% increase in worst-case
Shannon entropy after 5 guard observations com-
pared to Counter-RAPTOR for the month of Octo-
ber 2017.

Our approach to using ε-differential privacy for guard
relay selection in Counter-RAPTOR can be applied to
many different aspects of Tor. Any Tor path selection al-
gorithm dependent on the client’s location can utilize the
foundational aspects of our approach. By selecting paths
using differentially private mechanisms, the privacy loss
of users can be rigorously quantified over time.

2 Background
We begin this section by giving a quick primer on
Tor. We then describe Counter-RAPTOR’s proposal
for ameliorating Tor’s weakness to BGP hijack attacks.
Last, we review differential privacy and differentially
private mechanisms.

2.1 Tor Overview
Tor is one of the most popular anonymous communi-
cation systems that protect users’ privacy from other
Internet users, service providers, and from network ob-
servers [9]. Around 7,000 volunteer-run relays called
Onion Routers (OR) form the backbone of Tor and
provide bandwidth and network connectivity for anony-
mous communications [33]. Tor clients select three re-
lays viz., entry (guard), middle and exit relays to con-
struct a circuit for accessing content.

Tor clients bias the selection of Tor relays by their
individual bandwidths. Higher bandwidth relays have a
higher probability of being selected while lower band-
width relays have a lower probability. The Tor protocol
also considers additional weights to these bandwidths in
order to prevent congestion in the network [35].

Of particular importance is Tor client’s guard relay
since it is directly connected to the client. The guard
selection protocol in the Tor network has evolved signif-
icantly from Tor’s conception in 2004. Initially, because
Tor clients pick relays according to their bandwidth for
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each new circuit, a well-resourced adversary that partic-
ipates in the Tor network could eventually deanonymize
users by correlating traffic from the entry and exit nodes
[4]. Tor first introduced guards in 2006 to counteract this
threat. With this update, Tor clients only chose their
guard/entry relay occasionally (order of months) rather
than with each circuit [14]. Guard relay selection was re-
vised again in 2015 to reduce information leakage caused
by many guard selections in short periods of time due
to changing network conditions [16, 34]. This update
sought to balance resistance to active attacks that ac-
celerated guard selection while trading off against other
attacks. Simultaneously, it sought to maintain the per-
formance and reliability of Tor network communication.
As of November 2018, Tor clients select one guard from
a set of three possible primary guards which have high
availability [34]. This single guard is used for an average
lifetime of 120 days and for a maximum of nine months
[34]. Despite the changes made to guard selection, the
threat of routing attacks, illustrated by RAPTOR [30],
still persist.

2.2 Counter-RAPTOR
In this work, we build upon Counter-RAPTOR by Sun
et. al. [29]. Counter-RAPTOR seeks to increase re-
silience to inter-domain routing attacks between Tor
clients and their guard relays. Counter-RAPTOR in-
creases overall resilience by selecting guards using the
weighting function:

W (i) = α ·R(i) + (1− α) ·B(i) (1)

where R(i) is a guard’s resilience to BGP hijack at-
tacks and B(i) is the guard’s bandwidth. In Counter-
RAPTOR, α determines how heavily bandwidth and
resilience are weighted. In the recommended implemen-
tation of Counter-RAPTOR α = 0.5.

Resilience Metric: If an adversary announces an
equally-specific BGP prefix corresponding to the client’s
Tor guard, the client traffic could be routed to the ad-
versary’s AS. Consequently, the adversary could receive
the traffic instead of the true origin AS [29]. The re-
silience R(i) of a guard relay is the probability that a
Tor client will not succumb to such a routing prefix at-
tack if it is chosen as the guard relay. For more details
on Counter-RAPTOR, refer to Sun et al. [29].

2.3 Differential Privacy
First proposed in 2006, differential privacy is a way of
guaranteeing the privacy of individual members of a sta-
tistical database [11]. The main idea behind differential

privacy is guaranteeing that any single database mem-
ber’s inclusion in a database does not change the output
of any analysis in a significant way.

In differential privacy’s model of computation, it is
assumed that there exists some database D, comprised
of n rows. A query is a function that is applied to the
database to release information about the entries con-
tained in the database D. A privacy mechanism M is
an algorithm that takes the database D, a universe X of
the possible data in D, and a set of queries as input and
produces an output O. If a privacy mechanism M can
guarantee that the change in its output O due to the in-
clusion or removal of any single entry’s data is bounded
for any query, then it provides differential privacy.

Definition 1. (Differential Privacy): A randomized
mechanism M with domain N |X | is ε-differentially pri-
vate if for all O ∈ Range(M) and for all D1, D2 ∈ N |X |

such that D1 and D2 differ by at most one row, the fol-
lowing is true:

Pr[M(D1) = O]
Pr[M(D2) = O] ≤ e

ε (2)

The insight behind this formulation is that the ratio
Pr[M (D1) = O]/Pr[M (D2) = O] captures the privacy
loss. Hence, a bound on this ratio can be used to quan-
tify the privacy offered by a mechanism M. If this bound
holds for all possible outputs O, then the mechanism is
ε-differentially private.

2.3.1 Max-Divergence:
Another metric which is equivalent to differential pri-
vacy that is more instructive in this paper is Max-
Divergence.

Definition 2. (Max-Divergence): The Max-
Divergence between two variables Y and Z taking values
from the same domain N |X | is defined as:

D∞(Y ‖ Z) = max
S⊆Range(Y )

[
ln Pr[Y ∈ S]
Pr[Z ∈ S]

]
(3)

Note that a mechanism M is ε-differentially private
if and only if on every two neighboring databases x and y
that differ in at most one element,D∞(M (x) ‖M (y)) ≤
ε and D∞(M (y) ‖M (x)) ≤ ε. See Dwork [12] for a full
proof. Differential privacy can therefore be defined using
Equation 3. Throughout this work, we utilize the Max-
Divergence to quantify the privacy offered by various
algorithms.
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3 Vulnerabilities in
Counter-RAPTOR

In this section, we present our adversary model and an-
alyze worst-case information leakage in the guard se-
lection algorithm of Counter-RAPTOR. Even though
Counter-RAPTOR considered the effect of entropy
degradation in their guard relay selection algorithm,
they only looked at the average case. We thus perform
a thorough analysis of worst-case statistical attacks on
Counter-RAPTOR using several well-established met-
rics and most notably Max-Divergence. Furthermore,
we show that due to Tor network churn and active at-
tacks the number of guard relay selections required for a
statistical attack can occur in a shorter amount of time
than ostensibly required.

For this analysis, we look at the top 93 most pop-
ular Tor client ASes [22]. These are the ASes where
a large portion of Tor clients are located. We use Tor
consensus data from October 21, 2017 [32] and October
network topology data from the Center for Applied In-
ternet Data Analysis (CAIDA) [5]. We also perform ad-
ditional analysis using Tor consensus and CAIDA data
from the entirety of 2017 to ascertain the sensitivity of
our approach across time.

3.1 Adversary Model
In this work, we consider two different types of ad-
versaries. We firstly consider a weak passive adversary
that is interested in performing long-term deanonymiza-
tion attacks. These deanonymization attacks make use
of client guard selections that take place over a scale
of months or years. The bulk of our analysis will fo-
cus on protecting against this passive adversary. We
secondly consider an active adversary (BGP hijacker)
capable of performing equally-specific IP prefix hijack
attacks. This is the adversary that Counter-RAPTOR
considered [29] and we also consider this adversary in
our analysis of resilience to BGP hijack attacks (Sec-
tion 5.1.4).

As noted, our analyses focus primarily on attacks
on the anonymity of the client AS, the deanonymiza-
tion of which we refer to as a fingerprinting attack.
Fingerprinting attacks stem from location-based path
selection approaches that leak probabilistic information
about a client’s source AS. Even though a single AS
could serve thousands of Tor clients, identification of a
Tor client’s AS can be dangerous. As noted by Wails
et al. [36], knowledge of a client’s AS is problematic
for three unique reasons: (1) The client AS can be tar-

geted to divulge a user’s real identity; (2) the diversity
of a client’s attributes (e.g. physical location) is much
lower in a single AS and could be combined with aux-
iliary information to perform deanonymization; (3) the
client AS can be used to link connections and profile
Tor clients.

In this work, we focus on the most vulnerable users
against whom fingerprinting attacks are the most suc-
cessful. Given that users must trust the Tor network
in order to use it regularly, even if a minority of Tor
users can be reliably targeted and deanonymized, the
attacks pose a risk to all Tor users. Thus, in this work,
we highlight risks that the most vulnerable Tor users
would have to endure.

3.2 Information Leakage in
Counter-RAPTOR

Counter-RAPTOR and other location-based path se-
lection algorithms leak information about clients’ loca-
tion. Here we examine information leakage in Counter-
RAPTOR using Shannon entropy, min-entropy, guess-
ing entropy, and most notably Max-Divergence.

Shannon Entropy: We first use Shannon entropy
to evaluate information leakage in Counter-RAPTOR.
Shannon entropy is a well-established metric for captur-
ing the randomness of a system. Here, Shannon entropy
considers the distribution of potential origin ASes for
Tor clients after a guard selection. It corresponds to an
uncertainty among 2H possible choices where H is the
Shannon entropy. As a result, a Shannon entropy of 6.54
bits implies that a client’s origin AS is uniformly dis-
tributed among 93 source ASes [22]. Likewise, a Shan-
non entropy of 0 bits implies that a client’s origin AS
is uniquely identifiable. The Shannon entropy [6] of the
client AS for a given guard relay selection is given by:

H(I) = −
∑
i

pi log2 pi (4)

where pi is the probability that for a given relay, client
i’s AS is the initiator of the connection. The calculation
of probability pi is the same throughout Section 3.

In order to measure the decrease in Shannon en-
tropy over multiple guard relay selections, we run 1000
simulations of multiple guard selections. In each simula-
tion, we pick 50 different guards in succession using the
probability distribution given by Counter-RAPTOR for
AS5432.

Counter-RAPTOR’s vulnerability increases over
time as more guard relays are chosen. As seen in Fig. 1,
as more guard relays are chosen, the average entropy de-
creases significantly from 6.54 bits. This is particularly
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Fig. 1. Distribution of Shannon Entropy of Counter-RAPTOR
clients in AS5432 over multiple guard observations in 1000 differ-
ent simulations.

stark in the worst-case. After 5 guard relay selections,
the worst-case Shannon entropy is near 2.51, a decrease
of 61.6%. After 10 guard relay selections, the worst-case
Shannon entropy is near 1-bit, an 81.8% decrease. This
decrease means that an adversary can narrow the po-
tential source to only 2 ASes (from the original 93).

Min-Entropy: We additionally look at min-
entropy - a conservative metric to evaluate the privacy
loss [26]. Like Shannon entropy, it also considers the
distribution over possible source ASes and quantifies the
effectiveness of a maximum likelihood estimator on the
source AS of a Tor client. It is given by:

HMin(I) = − log2 max
i
pi (5)

Fig. 2. Distribution of Min-Entropy of Counter-RAPTOR clients
in AS5432 client AS over multiple guard observations in 1000
different simulations.

As seen in Fig. 2, the worst-case min-entropy nears
1-bit after 5 guard selection and goes near 0-bits after
only 10 guard relay selections.

Guessing Entropy: We also evaluate the effec-
tiveness of fingerprinting attacks using guessing en-
tropy [26]. The guessing entropy corresponds to the av-
erage number of guesses with an optimum strategy re-
quired to determine the source AS of a client I. The
guessing entropy is computed by rearranging the possi-

ble ASes in decreasing order of probability pi and cal-
culating:

HGuessing(I) =
∑
i

i · pi (6)

Fig. 3. Number of Guesses to determine client source AS of
Counter-RAPTOR clients in AS5432 over multiple guard observa-
tions in 1000 different simulations.

As seen in Fig. 3, in the worst-case the guessing
entropy decreases from 46 to under 10 after only 5 guard
relay selections and to under 5 after 15 selections.

Max-Divergence/η-value: As stated before, we
propose using the Max-Divergence of guard relays to
understand the worst-case privacy loss from guard relay
selection. Due to its composability property, the worst-
case Max-Divergence for multiple selections is the sum
of the Max-Divergence of each guard selection (see Def-
inition 5). Hence, Max-Divergence is a more insight-
ful metric to quantity the vulnerability of Counter-
RAPTOR clients to statistical attacks over time. For
purposes explained in Section 3, we refer to Max-
Divergence as the η-value.

Fig. 4. Max-Divergence value across all possible Counter-
RAPTOR Tor guard relays in the Top 93 Client ASes for the
month of October 2017.

Using the Max-Divergence definition from Sec-
tion 2.3.1, we can define the Max-Divergence/η-value
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for any guard relay choice G. The Max-Divergence is
calculated by taking the natural logarithm of the ratio of
the highest probability of any client choosing a particular
relay and the lowest probability of any client choosing a
particular relay.

In Fig. 4, even though the average Max-Divergence
is 1.3, we see a divergent worst-case behavior. The
largest Max-Divergence value exceeds 7 (for guard
192.241.187.237). This tells us that 192.241.187.237 in
particular has a very skewed probability distribution
amongst all the potential Tor client ASes.

Sensitivity of Information Leakage: Counter-
RAPTOR makes use of the CAIDA network topology
(changes monthly) and Tor consensus data (Changes
hourly), which can invariably affect the information
leakage over time. Thus, our analysis is dependent on
changes in the Tor consensus data as well as the underly-
ing Internet topology. As noted, these results depend on

Fig. 5. Shannon-Entropy of Counter-RAPTOR clients in AS5432
client AS after 5 guard observations throughout 2017 in 1000
simulations.

the churn of Internet topology (this changes relatively
slowly) and the change in AS distribution of guard re-
lays (which also is low). In Fig. 5, we see that while
there are changes in the distribution of leakage over a
given month, the median entropy loss is similar. This
shows that gradual changes to the network do not lead
to significantly dissimilar results. However, Fig. 5 does
indicate that over particular months, complex combina-
tions of a particular network topology and Tor consen-
sus data can lead to more unfavorable worst-case sce-
narios. This is further confirmed in the Max-Divergence
analysis presented in Fig. 6. The Max-Divergence for
each month is shown to be relatively consistent over
time with only worst-behavior being variable. Max-
Divergence elicits additional information about the vul-
nerability of users, which is not immediately available
from entropy evaluations. For example, the worst case-
scenario Max-Divergence/privacy-loss in the month of

November at nearly 7 cannot be gleaned from the Shan-
non entropy analysis in Fig. 5.

Fig. 6. Distribution of the Max-Divergence ratio across actives
Tor guards in each month of 2017.

Summary of Vulnerability: As seen, various metrics
show the vulnerability of Counter-RAPTOR to statisti-
cal client AS fingerprinting. The entropy metrics high-
light the effectiveness of probabilistic statistical attacks.
They show that even after 5 guard relay selections,
Counter-RAPTOR, in the worst-case scenario, can di-
vulge a great deal of client information. We also show
that this vulnerability is persistent over the scope of a
year and even peaks to worse values (than in our pri-
mary month of October 2017). The amount of informa-
tion revealed by each selection can be seen most easily
in the Max-Divergence analysis.

Although we focus on long-term attacks by global
adversaries, because a new guard is only chosen peri-
odically, these attacks appears challenging to mount at
first glance. As of November 2018, from Tor specifica-
tions, guard lifetimes are 120 days [34]. Despite this,
for a small percentage of users these attacks remain a
glaring problem. Even though 5-10 guards can take a
substantial amount of time to pick, long-term attacks
remain feasible. We now discuss this issue in more de-
tail.

3.3 Frequency of Guard Selection
Although Tor guard lifetimes are 120 days and Tor
clients use all guards in their primary guard set before
selecting a new one, the number of Tor guards used
by a client over a given period of time can increase
due to several passive and active factors [34]. For ex-
ample, guards that are removed from the network or
lose their guard flag can increase the number of guards
selected. Active attacks include: (1) hibernation attacks
that force guards to expend their bandwidth quota [22],
and (2) DDoS attacks can force clients to select multi-
ple guards over shorter time space. We briefly describe
these issues below:
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Guard Removal: The roster of Tor guards often
changes as volunteers decide to remove their nodes from
the network. As shown in Fig. 7, many guards are not
available over long period of time. On average, only 60%
of the guard relays are still available after 3.5 months.
In the worst-case, clients must reselect a primary guard.
Even for guards in the 99th percentile of bandwidth
(which are known to be stable), almost 20% are offline
within 2 months.

Fig. 7. Probability that guard a client picked on 01/01/17 is still
in the network.

Active Attacks: Active attacks can also force Tor
guard relays to go offline. Once offline these guards are
labeled as unreachable (this status only lasts for a given
amount of time before the guard is retried). This can
cause clients to make use of another guard relay. To
force a brand-new guard to be chosen an attacker would
need to perform an active attack on all guards that a
client currently had in their guard list.

Hibernation attacks cause client guards to go of-
fline by downloading large files, expending their quota
specified in its consensus. Network adversaries can also
easily induce congestion or cause resource exhaustion.
DDoS (Distributed Denial of Service) attacks targeted
at specific Tor guards can increase the number of guards
observed in a relatively short amount of time. As seen in
Fig. 8, the amount of bandwidth required to simultane-
ously DDoS a series of Tor guards is within a reasonable
range both for average and for the highest bandwidth
Tor guards [32, 33].

Summary of Attack: We have shown that Counter-
RAPTOR is vulnerable to fingerprinting after multi-
ple guard selections. Further, we have shown that the
amount of churn in the Tor network and active attacks
reduce the time required for an adversary’s observation
of multiple client guards. At the same time, Tor clients
often must re-select guards due to congestion, Out of
Memory (OOM) errors [20], or guard failure. Ensuring
worst-case bounds on information leakage in new guard

Fig. 8. Average and Top Cumulative Bandwidth of Tor guards
after 10 guard selections

relay selection algorithms (such as Counter-RAPTOR)
is thus a high priority.

4 DPSelect: Differentially Private
Tor Guard Relay Selection

We show in Section 3 that client location-dependent
guard selection algorithms like Counter-RAPTOR are
vulnerable to statistical fingerprinting attacks over time.
In this section, we propose a new guard selection algo-
rithm, DPSelect, that makes use of the Max-Divergence
metric in combination with relay resilience and relay
bandwidth to improve client privacy.

The following are the design goals of DPSelect:
1. Protect against fingerprinting of Tor clients even

in the worst-case over time. DPSelect provides rig-
orous mathematical bounds on the privacy loss of
guard selection choices and provides a guarantee on
worst-case behavior against client fingerprinting at-
tacks.

2. Maintain Counter-RAPTOR’s benefits of mitigat-
ing BGP hijack attacks on Tor. DPSelect continues
incorporating resilience into guard relay selection to
protect clients from BGP hijack attacks.

3. Provide comparable performance to Vanilla Tor.
DPSelect considers relay bandwidth to avoid caus-
ing excessive traffic congestion.

We now give an overview of the DPSelect algorithm and
the details of our approach and its implementation.

4.1 DPSelect Algorithm
Tor relay selection algorithms generally assign a weight
to each candidate guard relay and then probabilistically
select a relay based on that weight. Our DPSelect al-
gorithm incorporates the Max-Divergence metric based
on ε-differential privacy into the weight function. We
show that our algorithm provides a worst-case Max-
Divergence/privacy-loss that can be set below any ar-
bitrary threshold. Given that we use Max-Divergence
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instead of conventional differential privacy to character-
ize the privacy, we use η instead of ε to avoid notational
confusion.

Let Y be a random variable that determines which
guard a given client in the network chooses, and Z be an-
other random variable that determines which guard an-
other client picks. The Max-Divergence of a given guard
selection is defined as:

D∞(Y ‖ Z) = max
G∈Range(Y )

[
ln Pr[Y = G]
Pr[Z = G]

]
where G is any possible Tor guard relay. To find the
above maximum, we need to determine which potential
Tor client (which location) has the largest probability of
choosing the given Tor guard G and which client (which
location) has the least probability of choosing the given
Tor guard G.

The largest D∞(Y ‖ Z) represents the worst-case
η-value for any choice that a Tor client can make. To
bound this value, we require a mechanism M that pro-
vides a worst-case max-divergence of η for every Tor
guard relay choice across all possible Tor clients. We use
the exponential mechanism (see Appendix A) to provide
such a bound on the η-value/Max-Divergence.

Let x be the Tor client location in the network, i
be the Tor guard relay being considered, and ε be a
variable determining how private the selection should
be. The exponential mechanism

εεq(x, i) := eεq(x,i) (7)

where q is the quality function, provides a guarantee
that the η-value is bounded by 2ε∆q . The sensitivity of
the quality function ∆q is defined as:
∆q = maxr∈Rmaxx,y∈N |X |

‖x−y‖=1
| q(x, r) − q(y, r) |. See Ap-

pendix A for more details.
To choose a guard we define a weighting function,

which is proportional to the probability that a given
Tor guard is selected. The weight function using the
exponential mechanism for each candidate guard relay
i for a given client x is then defined as:

W (i) = eεq(x,i) (8)

4.2 DPSelect: Quality Function
Optimization using Monte-Carlo
Based Sampling

A naïve way to choose the quality function q(x, i) in the
exponential mechanism for a given client x and a candi-
date guard relay i is to use q(x, i) = α·R(i)+(1−α)·B(i),

where R(i) is the resilience of relay i as defined in
Counter-RAPTOR, and B(i) is the normalized band-
width of relay i. Using the exponential mechanism, the
weight function then becomes:

W (i) = eε·(α·R(i)x1 +(1−α)·B(i)x2 ) (9)

where x1 = 1 and x2 = 1. However, DPSelect should
to seek to maintain high average bandwidths and re-
siliences. We thus seek to optimize this naïve quality
function

First, we utilize a Monte-Carlo sampling-based
method to stochastically optimize our results compared
to the naive approach. The variables that are subject to
change in the simulation are the α value, the resilience
exponent (currently 1), and the bandwidth exponent
(currently 1). In the Monte-Carlo simulation for the op-
timization function, we equally weigh the change in re-
silience and the change in bandwidth as shown below:

O(i) = 0.5 ·∆R(i) + 0.5 ·∆B(i) (10)

We further need to specify the allowable privacy loss
since this can be directly controlled with the exponential
mechanism. We choose ηDPSelect = 1.25 to mirror the
average η-value of Counter-RAPTOR (ηCR = 1.3).

4.2.1 Resilience Exponent and Bandwidth Exponent
We run a Monte-Carlo simulation for 2000 iterations
(convergence) using the given optimization function
(Equation 10).

Fig. 9. Average unweighted bandwidth of Tor guard relays for top
93 Tor client ASes using consensus data from October 2017.

Here we show graphs illustrating the optimization
that we performed and confirming its correctness. Fig. 9
shows the average unweighted bandwidth of guard re-
lay selections with varying resilience exponents and
bandwidth exponents. We can see that the average
unweighted bandwidth reaches a maximum when the
bandwidth exponent is 0.75, while the resilience expo-
nent does not have a significant effect on the bandwidth.
Thus, we use 0.75 as the optimal bandwidth exponent.
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Fig. 10. Average resilience of top 93 Tor ASes to BGP hijack
attacks vs the resilience exponent in weighting function for Tor
guard relay using consensus data from October 2017.

Fig. 10 shows the average resilience of guard relay
selections with varying resilience exponents and band-
width exponents for top 93 Tor client ASes [22]. We can
see that the average resilience reaches maximum when
the resilience exponent is 2.0, while the bandwidth ex-
ponent does not have a significant effect. Thus, we use
2.0 as the optimal resilience exponent.

Overall, we find that the resilience exponent of 2.0
and the bandwidth exponent of 0.75 provide the optimal
solution. The weight function then becomes:

W (i) = eε·(α·R(i)2+(1−α)·B(i)0.75) (11)

In addition to these exponents, we saw that when α >

0.175, there is a significant decrease in the average band-
width of guard relay selections. As such, we choose α
value to be 0.175 to ensure sufficient resilience to hijack
attacks while not sacrificing too much bandwidth. The
final recommended weighting function for DPSelect is
then:

W (i) = eε·(0.175·R(i)2+0.825·B(i)0.75) (12)

We have published the Python code that we for stochas-
tic optimization online for reproducibility [10].

4.2.2 ε-value based on worst-case η-value
As discussed in Appendix A on the exponential mecha-
nism, the Max-Divergence of any selection is 2∆qε. Here,
our quality function q(x, i) = α ·R(i)2 +(1−α) ·B(i)0.75

for a given client x and a candidate relay i. Note that
the bandwidth B(i) of a relay does not change regard-
less of client locations and the ∆q thus only depends
on α and R(i). Since R(i) is in the interval [0, 1], the
∆q is bounded by α. Thus, the exponential mechanism
provides 2εα-differential privacy.

With the recommended α = 0.175 and our de-
sired Max-Divergence bound ηDPSelect = 1.25, we have
ε = 3.57. This guarantees a worst-case η-value (Max-
Divergence) of 1.25 for each guard relay selection. Note
that ηDPSelect-value can be adjusted for the desired

amount of privacy loss. For more details on the choice
of the ηDPSelect-value, please see Appendix B.

4.3 DPSelect Implementation
DPSelect makes use of the same resilience metric used
Counter-RAPTOR (see Sec. 2) which calculates re-
silience utilizing the Maxmind GeoIP database [24] and
the CAIDA [5] to perform standard AS-path inference.
Like Counter-RAPTOR, DPSelect assumes that clients
are able to map IPs to ASN locally by using the Max-
mind GeoIP database [24]. This database is already in-
cluded in the Tor package and is used by Vanilla Tor.
Our approach assumes that the CAIDA AS network
topology for calculating AS paths for resilience is re-
liable and can be incorporated into the Tor browser
[6]. The detailed steps of our Tor implementation are
as follows (the initial steps are the same as Counter-
RAPTOR [29]):
1. If the Maxmind ASN file and AS topology file have

not been downloaded, the Tor client will download
the two files from Maxmind and CAIDA, respec-
tively, and save them in the local data directory.
Otherwise, the Tor client will check if the local AS
topology file is up to date (updated monthly), and
if not, then download the latest version.

2. The Tor client will perform IP to ASN mapping,
and compute the AS resilience R(i) of all candidate
guard relays from the client AS the source AS.

3. The Tor client will compute a weight for each can-
didate relay using the current weighting function.

4. If the AS topology file was updated, the client
will perform stochastic optimization to update the
weighting function.

5. The Tor client will proceed with the guard selec-
tion. The remaining part of the circuit construc-
tion process stays the same as it is in Tor.

Because we use the same resilience metric as Counter-
RAPTOR and do the stochastic optimization offline,
DPSelect’s computational overhead is nearly identical
to Counter-RAPTOR. CAIDA updates the AS topology
database monthly so the overhead of downloading the
most recent file is low (< 700KB compressed). In our
evaluation of 1000 randomly-selected client ASes, 90%
finish the calculation in 0.6 seconds and all finish within
1 second.

5 Security and Performance
Evaluations

In this section, we analyze the DPSelect algorithm and
compare it with other guard selection algorithms. We
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perform comprehensive (1) security and privacy evalua-
tions and (2) performance evaluations. In the former, we
quantify the privacy benefits of DPSelect while in the
latter we analyze the performance overhead of DPSelect.
In both, we comparatively analyze three different selec-
tion algorithms: Vanilla Tor, Counter-RAPTOR (with
the recommended configuration α = 0.5), and DPSelect.

5.1 Security and Privacy Evaluation
Here we evaluate the security and privacy of Tor guard
relay selection algorithms from four perspectives:
1. Entropy degradation: Vulnerability of Tor clients

to fingerprinting attacks using Shannon entropy,
Min-entropy and Guessing entropy in the worst-case
and over multiple guard selections.

2. Max-Divergence:Vulnerability of Tor clients to
fingerprinting attacks using calculated η-values
across all possible Tor guard relays.

3. Client Anonymity: Anonymity bounds for Tor
clients using MATor [2].

4. Resilience against BGP Hijack attacks: Prob-
ability of Tor client ASes being resilient to a BGP
hijack attack.

To calculate resilience and the probability distributions
for each relay, we use Tor consensus data from October
21, 2017 [32] and the CAIDA network topology for Oc-
tober 2017 [5]. We also perform additional analysis us-
ing Tor consensus and CAIDA data from the entirety of
2017 to ascertain the sensitivity of our approach across
time.

5.1.1 Vulnerability to Fingerprinting attacks
We first evaluate each algorithm’s vulnerability to fin-
gerprinting attacks. As noted, there is a trade-off be-
tween vulnerability to prefix hijack attacks and vul-
nerability to fingerprinting attacks. Note that Vanilla
Tor is perfectly resilient to statistical fingerprinting
based on guard selection (though it is vulnerable to hi-
jack attacks). However, DPSelect algorithm, like many
other client location-dependent relay selection algo-
rithms such as Counter-RAPTOR, selects guard relays
based on the client’s location in the network. As a re-
sult, DPSelect is also vulnerable to client fingerprinting
to some degree.

We presented and evaluated fingerprinting attacks
using Shannon entropy, min-entropy, and guessing en-
tropy on Counter-RAPTOR in Section 3. Here, we also
evaluate the attack on DPSelect using these entropies
and compare the results comparison with Counter-
RAPTOR in terms of vulnerability. Similar to Section 3,

we consider the top 93 Tor client ASes [22] as potential
client locations.

Shannon Entropy: As noted in Section 3, Shan-
non entropy considers the distribution of potential
source ASes of Tor connections (as computed by the
attacker). The Shannon entropy [6] is calculated using
Equation 4: H(I) = −

∑
i pi log2 pi where pi is the prob-

ability that for a given relay, client i’s AS is the initiator
of the connection. The calculation of probability pi is the
same throughout Section 5.

We run 1000 simulations where we pick 50 different
guards in succession using the probability distribution
created by DPSelect and Counter-RAPTOR for clients
in AS5432 (one of the top 93 Tor ASes) [22]. We thus
see the approximate distribution of Shannon entropy
degradation for Tor clients in AS5432.

Fig. 11. Minimum Shannon Entropy of Counter-RAPTOR and
DPSelect after multiple guard relay selections in 1000 simulations
for clients in AS5432.

Fig. 11 shows the Shannon entropy degradation for
both DPSelect and Counter-RAPTOR. We can see that
in the worst-case, DPSelect provides better guarantees.
After 6 guard choices, Counter-RAPTOR nears a worst-
case Shannon entropy of 2 bits, while DPSelect main-
tains a worst-case Shannon entropy above 5 bits. DPS-
elect thus provides a better worst-case entropy for the
attack proposed in Section 3. As noted in the Section 3,
5 guard choices can occur more quickly than ostensi-
bly required. Due to guard removal, and active attacks,
multiple guards can be selected over a shorter period of
time.

Min-Entropy: To further evaluate DPSelect com-
pared to Counter-RAPTOR, we consider min-entropy.
As noted in Section 3, min-entropy is a more conserva-
tive metric for quantifying privacy loss than Shannon
entropy [26]. To calculate min-entropy we used Equa-
tion 5: HMin(I) = − log2 max pi.

Fig. 12 shows the result. We can see that DPSe-
lect’s worst-case min-entropy remains above 4 bits after
5 guard selections. This means that even after 5 relay
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Fig. 12. Lowest Min-Entropy of Counter-RAPTOR and DPSelect
after multiple guard relay selections in 1000 simulations for clients
in AS5432.

Fig. 13. Minimum Number of Guesses Entropy of Counter-
RAPTOR and DPSelect after multiple guard relay selections over
1000 simulations for clients in AS5432.

selections, no adversary could trace the client source AS
with greater than 6.25% confidence amongst the top 93
Tor ASes. In contrast, Counter-RAPTOR deteriorates
rapidly. By 15 guard relays selections, the min-entropy is
nearly 0. This means that an observing adversary could
say with a high degree of confidence which AS initiated
a particular connection.

Guessing Entropy: Guessing entropy quantifies
the average number of guesses required for an adversary
to identify the source AS of a client. The guessing en-
tropy is calculated using the Equation 6:HGuessing(I) =∑
i i · pi. We can see in Fig. 13 that DPSelect’s guess-

ing entropy remains above 20 guesses after 150 guard
selections. In contrast, Counter-RAPTOR’s number of
guesses goes below 5 guesses after 5 guard observations.

Summary: From the above evaluations, we can
clearly see that DPSelect provides better worst-case
guarantees against client fingerprinting attacks. Table
1 shows the complete results of Vanilla Tor, Counter-
RAPTOR and DPSelect for all three entropies after 5
guard selections.

5.1.2 Max-Divergence (η-Value)
We assess the η-values (Max-Divergence) across all pos-
sible Tor guard relays for the three different guard

Algorithm Shannon Min Guessing
H(·) % Dec. H(·) % Dec. H(·) % Dec.

Vanilla Tor 6.54 0 6.54 0 6.54 0
Counter-RAPTOR 2.51 61.6 0.80 87.8 1.38 97.0
DPSelect 6.14 6.11 4.09 37.5 29.3 37.0

Table 1. Worst-case entropies for Vanilla Tor, Counter-RAPTOR,
and DPSelect after 5 guard relay selections.

Fig. 14. η-values across all possible Tor guard relays for the
month of October 2017 for DPSelect.

relay selection algorithms. Unlike the entropies, Max-
Divergence can quantify the privacy loss caused by pick-
ing a particular relay across all 93 possible Tor ASes
succinctly. The Max-Divergence is calculated by taking
the natural log of the ratio of the highest probability of
choosing a particular relay to the lowest probability of
choosing a particular relay.

Vanilla Tor: In Vanilla Tor, each Tor client se-
lects Tor guard relays with the same probability distri-
bution. Vanilla Tor biases solely on the bandwidth of the
given relay. Each client thus has the same probability of
choosing each guard relay, regardless of the location of
the client. Thus, for all possible guard relays G where
X and Y are random variables specifying the guard re-
lay choice for any two Tor clients, Pr[X=G]

Pr[Y=G] = 1. As a
result, max ln Pr[X=G]

Pr[Y=G] = 0. The η-value for any choice
is therefore 0 across all Tor ASes and for all Tor guard
relay choices in Vanilla Tor.

Counter-RAPTOR: As discussed in Section 3,
the worst-case η-value exceeds 7 for the month of Oc-
tober. Furthermore, because Counter-RAPTOR deter-
mines resilience values based on the network topology,
even the maximum value of 7 is not an upper bound.

DPSelect: Similar to Counter-RAPTOR, each Tor
client has a different probability of choosing each guard
relay based on their AS location in DPSelect.

Fig. 14 shows the η-value across all possible Tor
guard relays for DPSelect in October 2017. The aver-
age η-value is only 0.67, which is a 48% improvement
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(decrease) from the average η-value (1.3) in Counter-
RAPTOR. Furthermore, while 1.25 is the theoretical
bound for worst-case η-value, the actual value is 1.05 in
this case. Overall, DPSelect achieves an 83% decrease in
the worst-case and a 48% decrease in the average-case
η-value.

Note that in addition to the decrease in the η-
value (Max-Divergence), DPSelect provides a worst-case
guarantee on the η-value. The exponential mechanism
ensures that the η-value (Max-Divergence) never ex-
ceeds 1.25. The properties of the exponential mecha-
nism imply that this is true across all Tor client ASes
and for all possible guard relay selections, in contrast
to Counter-RAPTOR which provides no worst-case η-
value.

η-Value Summary: Among the client location-
dependent Tor relay selection algorithms, DPSelect pro-
vides vastly stronger guarantees. The worst-case η-value
in the DPSelect approaches is dependent only on the
chosen η-value and is independent of the Tor network
topology. However, for Counter-RAPTOR, the worst-
case η-value is dependent on the underlying network
topology and thus can vary widely. Specific choices have
a high amount of variance between even the top 93
ASes for Counter-RAPTOR resulting in a large Max-
Divergence.

5.1.3 Sensitivity of Information Leakage
Like Counter-RAPTOR, DPSelect makes use of the
CAIDA network topology and Tor consensus data. As
a result, the entropy and Max-Divergence analysis per-
formed above is sensitive to the time period in which
it is conducted. We now consider the sensitivity of our
analysis to changing network conditions by considering
data over the course of 2017. Fig. 15 shows the distribu-
tion of Shannon-Entropy of DPSelect clients throughout
2017. We see that there are only minimal changes in the
distribution of leakage, where worst-case entropy is con-
sistently above 6 bits after 5 guard relay selections. Sim-
ilarly, we can see consistent worst-case scenario behav-
ior for Max-Divergence over time in Fig. 16 throughout
2017, where the worst-case Max-Divergence never ex-
ceeds 1.05. We thus see that our results are robust to
changing network conditions.

5.1.4 Client Anonymity
We assess the anonymity of Tor clients of Vanilla
Tor, Counter-RAPTOR, and DPSelect using MATor,
a framework for evaluating the degree of anonymity in
Tor with rigorously proved bounds [2]. MATor consid-
ers a given client and measures anonymity with refer-
ence to the different relays that may be chosen. MA-

Fig. 15. Distribution of Shannon-Entropy of DPSelect clients in
AS5432 client AS after 5 guard observations throughout 2017 in
1000 simulations.

Fig. 16. Distribution of Max-Divergence for Tor guards through-
out 2017.

Tor evaluates three anonymity notions: sender, recipi-
ent and relationship anonymity. For DPSelect, the re-
cipient anonymity never changes because it does not al-
ter exit relay selection. Thus, we do not show recipient
anonymity in our evaluation.

We pick the top Tor client location AS6128 as
the client AS and use MATor’s default configuration
with a multiplicative factor ε = 1.3, ports setting of
HTTPS+IRC vs. HTTPS, and 0.5% of total relay (33
of the 6600 available nodes) as compromised nodes (re-
fer [2] for more details). We use Tor consensus files from
10/1/2017-10/5/2017 with server descriptors from Oc-
tober 2017 for our evaluation.

Fig. 17. MATor Anonymity Bound 10/1/2017 - 10/5/2017

The results in Fig. 17 show tighter bounds for the
sender and relationship anonymity for both the DPS-
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elect and Counter-RAPTOR selection algorithms com-
pared to Vanilla Tor. This is due to both algorithms’
additional dependence on relay resilience which skews
the distribution away from placing trust in a smaller
set of high-bandwidth nodes.

For DPSelect, we additionally see marginally bet-
ter anonymity bounds compared to Counter-RAPTOR.
This shows that DPSelect further redistributes and in-
creases the set of relays in which trust is placed, provid-
ing better MATor anonymity guarantee.

5.1.5 Resilience against BGP Hijack attacks
The main goal of Counter-RAPTOR is to improve re-
silience of Tor clients to BGP hijack attacks. DPSe-
lect seeks to provide similar improvements in resilience.
Specifically, we evaluate and compare the average re-
silience for each of the top 93 Tor client ASes [22] for
DPSelect and Counter-RAPTOR. Assuming G denotes
the set of all guard relays, we calculate the resilience as:

Resilience =
∑
i∈G

Ppick(i) ·R(i) (13)

Fig. 18 shows the probability of being resilient to
hijack attacks for the top 93 Tor client ASes. We can
see that Counter-RAPTOR and DPSelect provide sim-
ilar improvements in resilience to BGP hijack attacks.
While DPSelect does not provide as large an increase
as Counter-RAPTOR, the difference is not significant.
Our use of a Monte-Carlo simulation to optimize the

Fig. 18. CDF of the probability of being resilient to BGP hijack
attacks for three different guard relay selection algorithms in Oc-
tober 2017 across the top 93 Tor client ASes.

resilience provided by DPSelect thus succeeded in en-
suring that we maintained a high average resilience.

5.2 Performance Evaluation
A major shortcoming of many guard relay selection al-
gorithms that provide additional security or privacy is
a decrease in performance. We evaluate and compare

Fig. 19. Average bandwidth of guard relay selection choice for
Counter-RAPTOR and DPSelect over the months of July, Au-
gust, September, and October 2017.

the performance of Vanilla Tor, Counter-RAPTOR and
DPSelect from three aspects:
1. Bandwidth: The average bandwidth of a selected

guard relay across the top 93 Tor client ASes.
2. Load Balancing: Load balancing amongst guards.
3. Shadow Emulation: Performance evaluation us-

ing Shadow Tor emulator [18].

5.2.1 Bandwidth
We first compute the average bandwidth of guard relay
selections for the top 93 Tor client ASes [22]. Let A
denote the Top 93 Tor ASes and G denote the set of all
guard relays. We calculate the average bandwidth as:

Average Bandwidth = 1
93
∑
a∈A

∑
i∈G

Pa,pick(i) ·B(i) (14)

Fig. 19 shows the average bandwidth as a percent-
age of Vanilla Tor’s average bandwidth for Counter-
RAPTOR and DPSelect from July to October 2017.
Since both DPSelect and Counter-RAPTOR bias the
guard selections with bandwidth and resilience, they
both have lower average bandwidths compared to
Vanilla Tor. However, we see that DPSelect maintains
approximately the same average bandwidth over time
as Counter-RAPTOR (at around 75% utilization com-
pared to Vanilla Tor) while outperforming it each month
(with the exception of August).

Our use of a Monte-Carlo simulation to optimize
the bandwidth provided by DPSelect thus succeeded in
ensuring that we maintained a high average bandwidth.

5.2.2 Load Balancing
DPSelect should ensure that it is not overloading any
particular relay and is correctly load-balancing traffic
amongst all possible Tor guard relays. Fig. 20 shows
the bandwidth distribution of guard relay selections by
Vanilla Tor, Counter-RAPTOR and DPSelect. DPSe-
lect and Counter-RAPTOR have nearly the same load-
balancing results. Both algorithms tend to bias slightly
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Fig. 20. Distribution of bandwidths of guard relays selected by
Vanilla Tor, Counter-RAPTOR, and DPSelect for the October 21,
2017 Consensus.

more Tor traffic towards lower-bandwidth relays than
Vanilla Tor due to the consideration of relay resilience.

5.2.3 Shadow Emulation
In order to validate DPSelect’s ability to sustain a
large throughput in an actual Tor network (large scale
and whole system network performance), we analyze
the performance of DPSelect using the Shadow emula-
tor [18]. We implemented DPSelect in C based on Tor’s
original source code. We use the default network config-
uration in Shadow Tor as in Table 2.

Type Number

Web Client 360
Bulk Client 40
Web Server 100
Guard Relay 14
Exit Relay 10
Guard/Exit Relay 5
Middle Relay 66

Table 2. Tor network configuration in Shadow emulator
Because both Counter-RAPTOR and DPSelect al-

gorithm are client location-dependent, we need to assign
meaningful IP addresses to all the client nodes. We use
the IP addresses in the default Shadow configuration file
for Tor relays and we uniformly chose IP addresses from
the top 93 Tor client ASes [22] for the 400 Tor clients
in the simulation.

Figs. 21– 24 show the network performance of
Vanilla Tor, Counter-RAPTOR, and DPSelect. As can
be seen, the performance for all three is comparable
throughout the simulation. Figs. 21 and 22 in par-
ticular show the 60 second average receiver and sender
throughput for all Tor nodes. Counter-RAPTOR and
DPSelect have similar performance. However, in both
graphs from ticks 2500-3000, DPSelect slightly outper-
forms Counter-RAPTOR.

As seen in the download times for the 320KB data
in Fig. 23, Vanilla, Counter-RAPTOR, and DPSelect
have nearly identical performances. For the 5MB down-
load times in Fig. 24, DPSelect has slightly worse perfor-
mance than Counter-RAPTOR and Vanilla Tor. How-
ever, the difference is not significant.

5.3 Summary of Results:
The DPSelect algorithm:
1. Improves significantly the worst-case Shannon en-

tropy, min-entropy, and guessing entropy after 5
guard relay selections, thus defending against the
fingerprinting attack outlined in Section 3.

2. Provides a worst-case guarantee on the η-value
using the definition of Max-Divergence (whereas
Counter-RAPTOR has no guarantee).

3. Provides comparable but slightly less resilience
to BGP hijack attacks compared to Counter-
RAPTOR.

4. Achieves comparable bandwidth and load-
balancing results to Counter-RAPTOR and sim-
ilar Shadow simulated performance to Counter-
RAPTOR and Vanilla Tor.

6 Related Work
Here we discuss past works on defenses to network-level
adversaries on the Tor network and recent attacks on
these various proposed defenses.

Defenses against Network-level Adversaries.
Network-level adversaries on the Tor network are a stud-
ied topic [13, 15, 22, 27, 30]. Previous works have pro-
posed various Tor relay selection algorithms to defend
against such network-level adversaries.

Akhoondi et al. proposed LASTor [1], which takes
into account AS-level path and relay locations in se-
lecting Tor relays to avoid having the same AS appear
on both sides of the circuit. Johnson et al. proposed
TAPS [21] which uses clustering around representative
ASes that are hubs of Tor traffic before guard selection.
Barton et al. [3] proposed DeNASA, which avoids a list
of suspect ASes when constructing circuits in advance.
Lastly, Nithyanand et al. proposed Astoria [28], which
considers relay capacity, asymmetric routing, and col-
luding ASes in path selection. Astoria leverages recent
developments in network measurement to perform path
prediction and intelligent relay selection, while load bal-
ancing across the Tor network to prevent relay over-
load. Unlike our approach which seeks to protect against
active BGP attacks while also preventing information
leakage, Astoria focuses primarily on protecting against
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Fig. 21. 60 second average receiving throughput for all nodes. Fig. 22. 60 second average throughput for all nodes.

Fig. 23. Download time for 320KB data. Fig. 24. Download time for 5MB data.

correlation attacks by AS-level adversaries [28]. How-
ever, unlike Vanilla Tor, (but like DPSelect) all these
proposed relay selection algorithms are client location-
dependent, which expose them to fingerprinting attacks
from adversaries who can observe the clients’ guard re-
lay selections over time.

In contrast to the above approaches, Tan et al. [31]
make use of data-plane defenses to detect routing inter-
ception attacks. Their approach utilizes several statis-
tical invariants within the Tor network as well as pe-
riodic AS-neighbor discovery to detect routing attacks.
By alerting clients of which guards are not under attack
using a SafeGuard flag, Tan et al. [31] seeks to ensure
that clients do not use compromised circuits. This is in
contrast to Counter-RAPTOR [29] and DPSelect which
seek to disable adversaries from being able to perform
BGP hijack attacks at all.

Temporal Attacks on Tor. Recent research has
also begun to look at anonymity degradation over time.
Wails et al. [36] proposed Tempest attacks and showed
how client mobility, usage patterns, and changes in the

network topology over time affect the privacy of Tor
users. In particular, Tempest makes use of mean Shan-
non entropy degradation over time to evaluate the vul-
nerability of Counter-RAPTOR to client fingerprinting
attacks. This is in contrast to our approach which fo-
cuses on the worst-case scenario by utilizing a compre-
hensive set of entropy metrics. Other attacks on the Tor
network also examine user behavior over time. Intersec-
tion attacks like those proposed by Danezis and Ser-
jantov [7] make use of statistical disclosures when users
send messages into mix networks. Danzeis and Tron-
sosco [8] have also shown how to use Bayesian inference
to deanonymize persistent communications.

Differential Privacy in Tor. Jansen et al. [19]
proposed to use differential privacy in order to safely
measure Tor user behavior and to calibrate user pa-
rameters. They used differential privacy to prevent
deanonymization of specific users given the output of
their data collection. However, our work is the first to
incorporate differential privacy into Tor relay selection
to protect users from fingerprinting attacks.



DPSelect 181

7 Future Work and Limitations
We outline several directions for future work and the
limitations of our approach here.
7.1 Future Work
Other differentially-private mechanisms. In our
work, we adopt the exponential mechanism to provide
the worst-case guarantee for DPSelect. However, there
are other mechanisms which are yet to be explored. Use
of the Laplace Mechanism and the Gauss Mechanism to
add noise to the probability distribution of guard choices
is an obvious future step. R-fold approximate differential
privacy (ADP) also offers an alternative well-established
framework and mechanism for characterizing privacy
loss after r observations [25]. It will be interesting to
compare different mechanisms in terms trade-offs be-
tween resilience to hijack attacks, client privacy, and
performance.

Other differentially-private composition
methods. In our work, we only consider linear worst-
case composition. Advanced composition methods could
be used to obtain a more graceful privacy decay [12].
By assuming a normal noise distribution, the moment
accountant method discussed by Abadi et al. [23] could
be used to track privacy loss. Meiser et al. have also
shown that the bounds of privacy loss in ADP can be
improved by making use of a numerical method called
privacy buckets to capture privacy loss [25].

Evaluation on other client location-
dependent relay selection algorithms. We primar-
ily focus on demonstrating our entropy-based metrics
for Counter-RAPTOR in Section 3. These metrics are
generalizable and can be used to evaluate the informa-
tion leakage for other client location-dependent relay
selection algorithms as well, such as LasTor [1], Asto-
ria [28], TAPS [21] and DeNASA [3]. We leave these
evaluations for future work.
7.2 Limitations
Our use of Counter-RAPTOR’s resilience metric in our
quality function leads to several limitations that we now
address.

As noted in Section 2, the resilience metric is av-
eraged over each potential adversary AS. An equally-
specific BGP prefix attack from a well-chosen location
could be more effective than the resilience indicates. We
leave the development of more refined metrics as an in-
teresting direction of future work.

Counter-RAPTOR’s resilience metric only takes
into account the probability of being resistant to
equally-specific BGP hijack attacks. Sub-prefix hijack

attacks are ostensibly still an issue. However, sub-prefix
hijack attacks generally affect the whole Internet, and
thus they are less stealthy and can be more easily de-
tected. One approach to proactively mitigate sub-prefix
attacks is to move Tor relays into /24 prefix blocks [29].

8 Conclusion
Since the discovery of Tor’s vulnerability to BGP hijack
attacks, several defenses that choose guard relays non-
uniformly have been proposed. Counter-RAPTOR [29]
fixed this issue by weighting guard relay selection based
on resilience to BGP hijack attacks as well as band-
width. However, while Counter-RAPTOR is less vul-
nerable to BGP hijack attacks, it is more vulnerable to
statistical fingerprinting attacks. We motivate our work
by showing that adversaries can utilize passive attacks
to identify client ASes. We then demonstrate that in the
worst-case, after 5 guard relay selections, the Shannon
entropy of the potential origin AS among the top 93 Tor
ASes [22] can reduce to as low as 2.5 bits.

Our work demonstrates the benefits of using a dif-
ferentially private approach to guard relay selection in
Tor. Our approach shows that choosing a guard re-
lay based upon client location, while providing rigorous
bounds on information leakage and reasoning about pri-
vacy loss over time is feasible. By utilizing the DPSelect
guard selection algorithm for η = 1.25, we record better
security and privacy compared to Counter-RAPTOR.
Specifically, we achieve an 83% decrease in worst-case
Max-Divergence, and 245% improvement in worst-case
Shannon entropy after 5 guard relay selections. Simul-
taneously, we achieve similar increases in resilience to
BGP hijack attacks as Counter-RAPTOR.

To summarize, we show that differential privacy can
be used to provide robust security and privacy guar-
antees to non-uniform guard relay selection algorithms
while preserving performance and allowing added secu-
rity such as resilience to BGP hijack attacks. We hope
that our work can open up new lines of research that
will allow a better understanding of the privacy of future
guard relay selection algorithms.

9 Acknowledgements
We would like to thank the anonymous reviewers for
helpful feedback on earlier versions of this paper. This
work was supported by the National Science Foundation
under the grants CNS-1704105, CNS-1553437, CNS-
1617286, and the Army Research Office Young Inves-
tigator Program (ARO YIP) award.



DPSelect 182

References
[1] Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha.

LASTor: A low-latency AS-aware Tor client. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages 476–490.
IEEE, 2012.

[2] Michael Backes, Aniket Kate, Sebastian Meiser, and Esfan-
diar Mohammadi. (nothing else) MATor (s): Monitoring the
anonymity of Tor’s path selection. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 513–524. ACM, 2014.

[3] Armon Barton and Matthew Wright. DeNASA: Destination-
Naive AS-Awareness in Anonymous Communications. Pro-
ceedings on Privacy Enhancing Technologies, 2016(4):356–
372, 2016.

[4] Alexand Biryukov, Ivan Pustogarov, and Ralf-Philipp Wein-
mann. Trawling for tor hidden services: Detection, measure-
ment, deanonymization. In Security and Privacy, 2013 IEEE
Symposium on, pages 80–94. IEEE, 2013.

[5] CAIDA Internet topology map. https://www.caida.org/
research/topology/.

[6] Ronald R Coifman and M Victor Wickerhauser. Entropy-
based algorithms for best basis selection. IEEE Transactions
on information theory, 38(2):713–718, 1992.

[7] George Danezis and Andrei Serjantov. Statistical disclosure
or intersection attacks on anonymity systems. In Interna-
tional Workshop on Information Hiding, pages 293–308.
Springer, 2004.

[8] George Danezis and Carmela Troncoso. You cannot hide for
long: De-anonymization of real-world dynamic behaviour.
In Proceedings of the 12th ACM workshop on Workshop on
privacy in the electronic society, pages 49–60. ACM, 2013.

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The second-generation onion router. Proceedings of the
13th USENIX Security Symposium, 2004.

[10] DPSelect Code. https://github.com/DPSelectro/DPSelect.
[11] Cynthia Dwork. Differential privacy: A survey of results.

In International Conference on Theory and Applications of
Models of Computation, pages 1–19. Springer, 2008.

[12] Cynthia Dwork, Aaron Roth, et al. The Algorithmic Foun-
dations of Differential Privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[13] Matthew Edman and Paul Syverson. AS-Awareness in Tor
path selection. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 380–389.
ACM, 2009.

[14] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingle-
dine, and Ian Goldberg. Changing of the guards: A frame-
work for understanding and improving entry guard selection
in Tor. In Proceedings of the 2012 ACM Workshop on Pri-
vacy in the Electronic Society, pages 43–54. ACM, 2012.

[15] Nick Feamster and Roger Dingledine. Location diversity
in Anonymity Networks. In Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, pages 66–76.
ACM, 2004.

[16] Jamie Hayes and George Danezis. Guard Sets for Onion
Routing. Proceedings on Privacy Enhancing Technologies,
2015(2):1–16, 2015.

[17] Hijack event today by Indosat. http://www.bgpmon.net/
hijack-event-today-by-indosat/.

[18] Rob Jansen and Nicholas Hooper. Shadow: Running Tor in a
box for accurate and efficient experimentation. Network and
Distributed System Security Symposium, 2012.

[19] Rob Jansen and Aaron Johnson. Safely measuring Tor.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1553–1567.
ACM, 2016.

[20] Rob Jasen, Florian Tschorsch, Aaaron Johnson, and
Bjorn Scheuermann. The Sniper Attack: Anonymously
Deanonymizing and Disabling the Tor Network. In The
Network and Distributed System Security Symposium, 2014.

[21] Aaron Johnson, Rob Jansen, Aaron D Jaggard, Joan Feigen-
baum, and Paul Syverson. Avoiding The Man on the Wire:
Improving Tor’s Security with Trust-Aware Path Selection.
Network and Distributed System Security Symposium, 2017.

[22] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr,
and Paul Syverson. Users get routed: Traffic correlation
on Tor by realistic adversaries. In Proceedings of the 2013
ACM SIGSAC conference on Computer & Communications
security, pages 337–348. ACM, 2013.

[23] Abadi Martin, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
Learning with Differential Privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 308–318. ACM, 2016.

[24] Maxmind GeoLite ASN database. http://dev.maxmind.com/
geoip/legacy/geolite/.

[25] Sebastian Meiser and Esfandiar Mohammadi. Tight on bud-
get? tight bounds for r-fold approximate differential privacy.
In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 247–264.
ACM, 2018.

[26] Prateek Mittal and Nikita Borisov. Information leaks in
structured peer-to-peer anonymous communication sys-
tems. ACM Transactions on Information and System Secu-
rity (TISSEC), 15(1):5, 2012.

[27] Steven J Murdoch and Piotr Zieliński. Sampled traffic anal-
ysis by internet-exchange-level adversaries. In International
Workshop on Privacy Enhancing Technologies, pages 167–
183. Springer, 2007.

[28] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill,
and Michael Schapira. Measuring and mitigating AS-level
adversaries against Tor. Network and Distributed System
Security Symposium, 2016.

[29] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang,
and Prateek Mittal. Counter-RAPTOR: Safeguarding Tor
Against Active Routing Attacks. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 977–992. IEEE,
2017.

[30] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li,
Jennifer Rexford, Mung Chiang, and Prateek Mittal. RAP-
TOR: Routing Attacks on Privacy in Tor. In USENIX Secu-
rity Symposium, pages 271–286, 2015.

[31] Henry Tan, Micah Sherr, and Wenchao Zhou. Data-plane
Defenses against Routing Attacks on Tor. In 9th Workshop
on Hot Topics in Privacy Enhancing Technologies (HotPETs
2016), 2016.

[32] Tor consensus. https://collector.torproject.org/recent/relay-
descriptors/consensuses/.

[33] Tor metrics. https://metrics.torproject.org/.

https://www.caida.org/research/topology/
https://www.caida.org/research/topology/
https://github.com/DPSelectro/DPSelect
http://www.bgpmon.net/hijack-event-today-by-indosat/
http://www.bgpmon.net/hijack-event-today-by-indosat/
http://dev.maxmind.com/geoip/ legacy/geolite/
http://dev.maxmind.com/geoip/ legacy/geolite/
https://collector.torproject.org/recent/relay-descriptors/consensuses/
https://collector.torproject.org/recent/relay-descriptors/consensuses/
https://metrics.torproject.org/


DPSelect 183

[34] Tor Guard Specification. https://gitweb.torproject.org/
torspec.git/tree/guard-spec.txt.

[35] Tor Protocol Specification. https://gitweb.torproject.org/
torspec.git/tree/tor-spec.txt.

[36] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and
Prateek Mittal. Tempest: Temporal Dynamics in Anonymity
Systems. Proceedings on Privacy Enhancing Technologies ;
2018 (3):22–42, 2018.

A Differential Privacy
Here we present several differential privacy concepts
that are used extensively throughout this work.

A.1 The Exponential Mechanism:
Particular randomized mechanisms M can provide ε-
differential privacy. The exponential mechanism, specif-
ically, is an ε-differentially private way of selecting one
element from a set. Instead of adding noise directly to
a database, it provides a way of returning randomized
query results to maximize utility and to minimize the
privacy loss. The exponential mechanism was designed
for situations where the “best” response is desired.

Definition 3. (Exponential Mechanism): Given
some range R, the exponential mechanism is defined
with respect to a quality function q : N |X | × R, which
maps database/output pairs to quality scores. q(x, r)
measures how desirable an outcome r would be on the
database x. Given a quality score q : N |X |×R → IR, the
exponential mechanism is defined as:

εεq(x, r) := eεq(x,r) (15)

The exponential mechanism is thus exponentially
more likely to pick higher quality outcomes. The proba-
bility that r is selected thus increases exponentially with
the value of q(x, r).

Definition 4. (Sensitivity): The sensitivity ∆q of the
quality function determines the privacy loss guaranteed
by the exponential mechanism. The sensitivity of the
quality function q : N |X | ×R → IR is defined as:

∆q = max
r∈R

max
x,y∈N |X |

‖x−y‖=1

| q(x, r)− q(y, r) | (16)

Note that this sensitivity ∆q is measured only with
respect to the different database entered. Because the
probability that r ∈ R is chosen increases exponentially
eq(x,r), the intuition is that the privacy loss is bounded
in the following way:

ln
(
eεq(x,r)

eεq(y,r)

)
= ε[q(x, r)− q(y, r)] ≤ ε∆q (17)

By this definition (taking into account an addition nor-
malization term), the exponential mechanism ensures
2ε∆q-differential privacy where ∆q is the range over
which q(x, r) varies. For a full proof refer to Dwork
[12].

A.1.1 Composition
Definition 5. (Composition): Let M1 : N |X | → R1
be an ε1-differentially private algorithm and let M2 :
N |X | → R2 be an ε2-differentially private algorithm.
Then their combination defined as M1,2 : N |X | →
R1 × R2 by the mapping: M1,2(x) = (M1(x),M2(x))
is ε1 + ε2-differentially private.

See Dwork [12] for more details.

B Varying η-Value in DPSelect
Algorithm

The choice of the η-value (Max-Divergence) used in
DPSelect is a societal choice. In Section 5, we chose
η = 1.25 to compare closely with Counter-RAPTOR
where the average η-value for was 1.3. Varying the η-
value leads to multi-dimensional trade-offs in terms of
privacy, security, and performance and thus needs to be
chosen carefully. We conduct both the (1) security and
privacy evaluation and (2) performance evaluation for
different η-values.
B.1 Varying η-Value: Security and Privacy

Evaluation
Here we evaluate the security and privacy of DPSe-
lect for different η-values. We look at security and pri-
vacy from three different perspectives. Note that we
do not discuss Max-Divergence in this section because
we only change the η-value which directly corresponds
to Max-Divergence, thereby rendering a discussion on
Max-Divergence redundant.
1. Vulnerability to Fingerprinting attacks: Vul-

nerability of Tor clients to fingerprinting attacks us-
ing Shannon entropy, min-entropy and guessing en-
tropy in the worst-case and over multiple guard se-
lections.

2. Client Anonymity: Anonymity bounds for Tor
clients using MATor [2].

3. Resilience against BGP Hijack attacks: Prob-
ability of Tor Client ASes being resilient to a BGP
attack.

B.1.1 Vulnerability to Fingerprinting attacks
As in Section 5, to measure the decrease in the dif-
ferent entropy over multiple guard relay selections, we

https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
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run 1000 simulations for each DPSelect configuration
in which we pick 50 different guards in succession. As
in Section 5, we use the probability distribution for
AS5432.

Shannon Entropy: The Shannon entropy [6] of
a client I is calculated using Equation 4: H(I) =
−
∑
i pi log2 pi where pi is the probability that for a

given relay and client I is the initiator of the connection.
The calculation of probability pi is the same throughout
Appendix B.

Fig. 25. η-value vs Minimum Shannon entropy of DPSelect after
multiple guard relay selections in 100 simulations for clients in
AS5432.

As seen from Fig. 25, the Shannon entropy for client
AS5432 decreases over multiple guard relay selections
as the η-value increases. Despite this, the Shannon en-
tropy remains relatively high across all configurations.
For instance, when η = 1.75 even after 50 guard relay
selections, the worst-case Shannon entropy is still above
1-bit.

Min-Entropy: The min-entropy of a client I is cal-
culated using Equation 5: HMin(I) = − log2 max pi. We
see the same relationship for min-entropy as we saw for
Shannon entropy. As the η-value increases in Fig. 26, the
lowest min-entropy observed decreases as well. However,
only after 25 guard selections does any configuration
reach 1-bit in the worst-case.

Fig. 26. η-value vs Lowest min-entropy of DPSelect after multiple
guard relay selections in 100 simulations for clients in AS5432.

Guessing Entropy: The guessing entropy for a
client I is calculated using Equation 6: HGuessing(I) =∑
i i · pi. As with the for min-entropy and guessing

entropy, all potential η-DPSelect algorithms do better
than Counter-RAPTOR. However, in Fig. 27, we see
sharp degradation of the smallest guessing entropy as
the number of observed guards increases.

Fig. 27. η-value vs Minimum Guessing entropy of DPSelect after
multiple guard relay selections in 100 simulations for clients in
AS5432.

B.1.2 Client Anonymity
For the anonymity bounds [2], we see similar results to
the anonymity results in Fig. 17 in Section 5. Increasing
the value of η does not severely loosen the anonymity
bounds. In Fig. 28 even though the anonymity bounds
increase as the η-value increase, the sender anonymity
never exceeds Vanilla Tor’s sender anonymity of 0.1 (see
Fig. 17). This still follows intuition because DPSelect
redistributes guard relay selection choices amongst re-
lays that both high bandwidth and those that have high
resilience.

Fig. 28. MATor Anonymity Bound 10/1/2017-10/5/2017

B.1.3 Resilience to BGP Hijack Attacks
For BGP hijack attacks, increasing the η-value results
in an increase in the overall resilience as seen in Fig. 29.
Increasing the η-value causes the higher resilient guard
relays to have a larger weight in the quality function.
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Fig. 29. CDF of the probability of being resilient to BGP hijack
attacks for the Updated DP algorithm for different η-values.

B.2 Varying η-Value: Performance
Evaluation

Here we evaluate and compare the performance of DPS-
elect for different η-values. We look at performance from
three different perspectives:

1. Bandwidth: The average bandwidth of a selected
guard relay across the top 93 Tor client ASes.

2. Load Balancing: Load balancing amongst guard re-
lays.

3. Shadow Emulation: Performance evaluation using
Shadow Tor emulator [18].

Fig. 30. Average bandwidth of guard relay choice for the Updated
DPSelect algorithm for different η-values.

B.2.1 Bandwidth:
In terms of average bandwidth, as the η-value increases,
the average bandwidth also increases. We see that when
η = 1.75, the average bandwidth of a guard exceeds the
average bandwidth of Vanilla Tor. This means that a
larger share of higher bandwidth relays would receive
traffic.

B.2.2 Load Balancing:
Choosing a high η-value restricts the set amongst which
Tor clients choose their guards. As the η-value increases,
the load is shifted more to the high bandwidth relays as
seen in Fig. 30. For the η-values that we are examining,
the load is still more balanced amongst low-bandwidth

Fig. 31. CDF of the probability of being resilient to BGP hijack
attacks for the Updated DP algorithm for different η-values.

relays, but after η = 1.5, DPSelect begins to shift more
drastically to higher bandwidth relays.

B.2.3 Shadow Emulation:
In order to do a more thorough investigation of how
η-value affects performance, we run the implemented
version of DPSelect with η-values from 1.25 to 1.75 in
Shadow (the η = 1.0 gave us similar results to these
values so we choose not to show it here). As in Section 5,
we use the default Shadow configurations [18]. We also
show η = 5.0 to illustrate how large η-values can degrade
performance.

As can be seen in Figs. 29-32, as the η-value in-
creases, the performance continues to degrade in the
generated Tor network. In terms of average throughput
in sending and receiving across all nodes in the net-
work, we can see a downward trend in as the eta value
increases. However, this decrease is only slight and only
for η = 5.0 do we see a large decrease in performance.

Figs. 29-32 confirm our intuition of the higher band-
width relays becoming congested as more Tor clients
have a higher probability of selecting them. Thus, even
though higher η-value result in better resilience to BGP
hijack attacks, they do lead to worse performance. How-
ever, the decrease in performance in the generated net-
work, while noticeable, is not large. Further, η = 1.75-
DPSelect had a slightly better download time that ei-
ther η = 1.50-DPSelect and η = 1.25-DPSelect.

B.3 Summary of Varying η-value
We have shown that when η-value increases, we ob-
serve different the security and privacy characteristics
for DPSelect. Across Shannon entropy, min-entropy and
guessing entropy, we see worse behavior as η-value in-
creases.

However, increasing the η-value would allow the av-
erage resilience to increase and the average bandwidth
to be closer to with Vanilla Tor, however. Given the
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Fig. 32. 60 second average receiving throughput for all
nodes. Fig. 33. 60 second average throughput for all nodes.

Fig. 34. Download time for 320KB data. Fig. 35. Download time for 5MB data.

trade-offs picking an η-value in the range of 1.00 to 1.75
depends on the timescale of the attack against which
we are protecting. More analysis needs to be done in
order to determine realistic timescales for the amount
of guards a particular Tor client observes.
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