
Proceedings on Privacy Enhancing Technologies ; 2019 (2):187–208

Ágnes Kiss*, Masoud Naderpour, Jian Liu, N. Asokan, and Thomas Schneider

SoK: Modular and Efficient Private Decision
Tree Evaluation
Abstract: Decision trees and random forests are widely
used classifiers in machine learning. Service providers
often host classification models in a cloud service and
provide an interface for clients to use the model remotely.
While the model is sensitive information of the server,
the input query and prediction results are sensitive infor-
mation of the client. This motivates the need for private
decision tree evaluation, where the service provider does
not learn the client’s input and the client does not learn
the model except for its size and the result.
In this work, we identify the three phases of pri-
vate decision tree evaluation protocols: feature selec-
tion, comparison, and path evaluation. We systematize
constant-round protocols for each of these phases to
identify the best available instantiations using the two
main paradigms for secure computation: garbling tech-
niques and homomorphic encryption. There is a natural
tradeoff between runtime and communication consider-
ing these two paradigms: garbling techniques use fast
symmetric-key operations but require a large amount of
communication, while homomorphic encryption is com-
putationally heavy but requires little communication.
Our contributions are as follows: Firstly, we systemat-
ically review and analyse state-of-the-art protocols for
the three phases of private decision tree evaluation. Our
methodology allows us to identify novel combinations
of these protocols that provide better tradeoffs than ex-
isting protocols. Thereafter, we empirically evaluate all
combinations of these protocols by providing communi-
cation and runtime measures, and provide recommenda-
tions based on the identified concrete tradeoffs.

Keywords: Privacy-preserving protocols, secure compu-
tation, garbling techniques, homomorphic encryption,
decision tree evaluation, machine learning

DOI 10.2478/popets-2019-0026
Received 2018-08-31; revised 2018-12-15; accepted 2018-12-16.

*Corresponding Author: Ágnes Kiss: TU Darmstadt,
E-mail: kiss@encrypto.cs.tu-darmstadt.de
Masoud Naderpour: University of Helsinki, E-mail: ma-
soud.naderpour@helsinki.fi
Jian Liu: University of California, Berkeley, E-mail:
liu.jian@berkeley.edu (This work was done when the author
was in Aalto University)

1 Introduction
Machine learning is pervasively being applied in various
real-world scenarios. All major IT companies, including
Amazon, Apple, Google, Facebook and Microsoft, are
working on and use machine learning technologies. First,
a training phase takes place where a model is trained on
a large dataset so that later it can make predictions on
an input, which happens in the evaluation phase. One
of the most commonly used predictive models are deci-
sion trees, whose extension to random forests – sets of
smaller decision trees trained on different random sub-
sets of features – is considered to be among the most
accurate classification models [DCBA14].

In many scenarios, predictive models such as deci-
sion trees and neural networks are trained or queried
on sensitive data and should be handled in a pri-
vate manner [WGC18]. Solutions for private training
of decision trees exist that have been heavily opti-
mized [LP00, LP02, VC05, VCKP08, BS09, FW12].

In this work, we focus on the private evaluation of
decision trees with security against passive adversaries.
In this scenario, the server holds a decision tree and
offers its evaluation as a service to its client with sen-
sitive input to the decision tree. Moreover, the model
may leak information about the training data used for
its generation, which is a valuable asset of the server.
The server’s goal is to offer the service without compro-
mising the client’s input, or the client learning anything
about the decision tree (beyond its size and the result).

Note that recent works [TZJ+16, PMG+17, SSSS17,
JSD+18] have shown that it is possible for an attacker
who has only blackbox oracle access to prediction APIs
of machine learning models to succeed in learning model
parameters by repeated adaptive queries to the API.
Defending against such attacks is an active area of
research and several proposals have already appeared,
e.g., [TZJ+16, KMAM18, JSD+18]. We deem dealing
with blackbox attacks out of scope for this paper.

N. Asokan: Aalto University, E-mail: asokan@acm.org
Thomas Schneider: TU Darmstadt, E-mail:
schneider@encrypto.cs.tu-darmstadt.de

SoK: Modular and Efficient Private Decision Tree Evaluation 188

1.1 Applications

Cloud-hosted evaluation of machine learning models is
a widely used service that companies such as Amazon,
Google or IBM provide to their customers. While doing
so [Bar15], AmazonWeb Services (AWS) recognizes that
their clients care about the privacy of their data [Ser18].
These services can be enhanced by using private evalu-
ation of machine learning models to allow for providing
a service while violating the privacy of neither the re-
sulting model nor the customers’ input features. Most
machine learning APIs such as BigML [Big18], ML-
JAR [MLJ17], Wise.io [Wis18], or Azure Machine Learn-
ing Studio [Mic18] support decision tree or random for-
est classifiers. Decision tree evaluation has a tremendous
amount of applications, and is being used by companies
such as Facebook [IK17] and Microsoft [RG16].

Private decision tree evaluation can provide a so-
lution for private medical diagnosis [TASF09], such
as electrocardiogram classification [BFK+09, BFL+11],
where the medical history and genomic data of the pa-
tient are sensitive information. Decision trees and ran-
dom forests can be applied for malware [AM18], and
text classification [RMD18]. Moreover, decision trees
and random forests have been successfully used for de-
tecting insider threat [MAAG15] and multimedia pro-
tocol tunneling [BSR18], as well as spam campaign-
ers [GKG+18], and predicting the interruptability in-
tensity of mobile users [YGL17], data hotspots in cellu-
lar networks [NIZ+16], and even private interactions in
underground forums [OTGM18]. Private evaluation of
decision trees and random forests can enhance the pri-
vacy that these techniques provide, while protecting the
sensitive business information of the service provider.
Recently, secure evaluation of branching programs, an
extension of decision trees, has also been utilized in a
protocol for private set intersection [CO18].

1.2 Outline and Our Contributions

There exist two main paradigms for secure computation:
homomorphic encryption, which often has little commu-
nication but high computation complexity, and garbling
techniques, which require more communication, but uti-
lize efficient symmetric-key primitives. In this work,
we systematically analyze the state-of-the-art constant-
round protocols for private decision tree evaluation that
make use of these paradigms. We explore the tradeoffs
and combinations of the identified sub-protocols, com-
pare the performance of all combinations and identify

Sub-protocol PathH PathG
SelH + CompG HGH §4.1 HGG [BFK+09]
SelG + CompG GGH §4.1 GGG [BFK+09]
SelH + CompH HHH [TMZC17] HHG §4.1
SelG + CompH × ×

Table 1. Combinations of sub-protocols for private decision tree
evaluation ABC = SelA + CompB + PathC. SelH/SelG denotes
oblivious feature selection, CompH/CompG oblivious comparison,
and PathH/PathG oblivious path evaluation with homomorphic
encryption (H) and garbling techniques (G).

the most efficient constant-round private decision tree
evaluation protocols to date.

In more details, our contributions are as follows:
Systematization and analysis of existing tech-

niques (§3). Private decision tree evaluation consists
of three sub-protocols: The first is private selection of
features that are to be compared with in each of the
decision nodes, the second is private comparison, and
the third is private evaluation of the path correspond-
ing to the given input in the decision tree. We analyze
the state-of-the-art techniques for these sub-protocols
that use additively homomorphic encryption (H) as
well as those using garbling techniques (G). We de-
note the different approaches for oblivious selection,
comparison, and path evaluation by SelH/SelG (§3.1),
CompH/CompG (§3.2), and PathH/PathG (§3.3), re-
spectively, and describe their efficient instantiations.

Protocols for private decision tree evalua-
tion (§4). We show that different sub-protocols can
be combined efficiently, resulting in the six protocols
shown in Tab. 1. We adapt all resulting protocols to
an offline-online setting, where all operations indepen-
dent of the input features are precomputed in an offline
phase, which results in a more efficient online phase
(§4.1). Thereafter, we present protocol extensions for
some of our protocols (§4.2).

Empirical evaluation (§5). We evaluate the per-
formance of the resulting private decision tree evalua-
tion protocols and study the tradeoff between runtime
and communication on example real-world datasets. We
show the competitive performance of general-purpose se-
cure two-party computation protocols for sub-protocols
of private decision tree evaluation that has been claimed
to be inefficient in [WFNL16, TMZC17].

Improvements and recommendations (§6).
We show that our identified hybrid protocols that com-
bine homomorphic encryption with garbling techniques
achieve an order of magnitude runtime improvement

SoK: Modular and Efficient Private Decision Tree Evaluation 189

S Server (holds decision tree)
C Client (holds input features)
T Decision tree
n Dimension of feature vector
t Bitlength of a feature
m Number of decision nodes
m′ Number of depth-padded decision nodes
m Number of possibly depth-padded decision

nodes, i.e., m or m′, depending on the un-
derlying protocol

d Depth of decision tree
x = {x1, . . . , xn} Client’s feature vector
y = {y1, . . . , ym} Server’s thresholds for (padded) decision nodes

κ Symmetric security parameter (= 128)
s Statistical security parameter (= 40)

τsym Size of symmetric ciphertext (= 128)
τElGamal Size of ciphertext in lifted ElGamal (= 514)
τPaillier Size of ciphertext in Paillier (= 4096)
τDGK Size of ciphertext in DGK encryption (= 2048)

Table 2. Notations used throughout the paper.

over state-of-the-art protocols. We provide recommen-
dations for different settings based on our findings.

Related work (§7) and open questions. Fi-
nally, we discuss our results in relation to related work.
The protocol based solely on garbling techniques can
easily be extended to security against malicious clients
(cf. §4.1). Tai et al. [TMZC17] propose the same (more
costly) extension using zero-knowledge proofs for the
protocol based solely on homomorphic encryption. As
interesting future work, one could study and extend the
security of hybrid protocols against malicious clients.

2 Preliminaries
In this section, we detail necessary preliminaries to our
work. The notations we use are summarized in Tab. 2.

2.1 Decision Trees

A decision tree is a binary tree T with m internal
nodes called decision nodes, as shown in the exam-
ple in Fig. 1a. Every leaf node is called a classifica-
tion node and is associated with a classification value
v = {v1, . . . , vm+1}. A decision tree has a threshold vec-
tor y = {y1, . . . , ym} and receives an n-dimensional fea-
ture vector x = {x1, . . . , xn} as input. At the jth deci-
sion node (j ∈ {1, . . . ,m}), a comparison between an xi
and yj takes place (i ∈ {1, . . . , n}), where σ : m → n

denotes the mapping for input selection. Decision tree

evaluation T (x) means evaluating the comparisons at
each decision node of a path, the result of which defines
the branch taken next. When a leaf node is reached on
the path, the corresponding classification is outputted.
The depth d of the decision tree is the length of the
longest path between the root and any leaf.

Additionally, we define depth-padding, where
dummy decision nodes are introduced at every leaf un-
til depth d is reached in order for each path to have
the same depth. A dummy node has one outgoing edge,
i.e., independently from the comparison result it leads
to the same node as shown in Fig. 1b. The number of
these dummy nodes, which depends on the structure of
the tree, is at most

∑m−1
i=1 i, i.e., the number of decision

nodes in the depth-padded tree is m ≤ m′ ≤ 1
2m(m+ 1).

From here on, we use m whenever both m or m′ can be
used in a protocol.

Real-world datasets. In this paper, we use the
real-world datasets summarized in Tab. 3 for which we
trained decision trees using scikit-learn [sld17]. These
datasets are taken mostly from the UCI machine learn-
ing repository [Lic18]: the classical iris dataset for pat-
tern recognition of the iris flower, the wine and (breast)
cancer datasets for classification based on the chem-
ical analysis of wines and the characteristics of a di-
agnostic image, resp., as well as the boston dataset
that includes house prices, the digits dataset that con-
tains images of hand-written digits, which has been used
by NIST [GBC+97], and the diabetes dataset that in-
cludes automatic and paper records of diabetes patient
glucose measurements for classification. The linnerud
dataset has been used in [Ten98] for regression and in-
cludes physiological measurements. The decision trees
are of varying sizes and depths which allows us to study
the behaviour of our identified protocol combinations.
In Tab. 3, we show the values of n (number of input
features), d (depth), m (number of decision nodes), and
m′ (number of depth-padded decision nodes).

2.2 Cryptographic Techniques

Private decision tree evaluation protocols can be con-
structed based on both paradigms for secure computa-
tion: homomorphic encryption and garbling techniques.
We detail the techniques used in this work.

Oblivious transfer. 1-out-of-2 oblivious trans-
fer (OT) allows a sender to obliviously send one of
two messages m0,m1 to a receiver according to the re-
ceiver’s selection bit b, without the receiver learning any-
thing about m1−b or the sender learning b. OT generally

SoK: Modular and Efficient Private Decision Tree Evaluation 190

x2
?
< y1

x1
?
< y2

0 1

0 1

v1

v2 v3

(a) Decision tree with m = 2.

x2
?
< y1

x1
?
< y2

0 1

0 110

v1 v2 v3

(b) Depth-padded decision tree with
m′ = 3.

Fig. 1. Decision trees with depth d = 2.

Dataset n d m m′ Source
iris 3 5 8 19 UCI [Lic18]
wine 7 5 11 26 UCI [Lic18]
linnerud 3 6 19 47 [Ten98]
(breast) cancer 12 7 21 66 UCI [Lic18]
digits 47 15 168 1,161 UCI [Lic18]
diabetes 10 28 393 6,432 UCI [Lic18]
boston 13 30 425 6,768 UCI [Lic18]

Table 3. Example decision trees of varying sizes with n input
features, m decision nodes, m′ padded decision nodes, and d
depth for real-world datasets, trained using scikit-learn [sld17]
which contains a library with these datasets.

requires expensive public-key operations [IR89]. How-
ever, a small (symmetric security parameter κ) number
of base OTs can be extended to any polynomial num-
ber of OTs efficiently using only symmetric-key oper-
ations [IKNP03]. Improvements to such OT extension
protocols have been presented with security against pas-
sive [ALSZ13] and active adversaries [ALSZ15, KOS15].
OTs can be efficiently precomputed [Bea95], which is
suited for an offline-online scenario, where the parties
can precompute parts of the protocol before providing
their inputs to the computation: During precomputa-
tion in the offline phase, it is possible to run random
OTs on random inputs, which are then used to mask
the actual messages and choice bits. To retrieve the out-
put of the OT in the online phase, the parties blind
their messages using inexpensive XOR operations, and
require |m0|+ |m1|+ 1 bits of communication, whereas
all cryptographic operations are shifted to the offline
phase, which requires τsym bits of communication per
random OT [ALSZ13].

Yao’s garbled circuit protocol. Secure two-
party computation allows two parties to compute an
arbitrary functionality on their private inputs without
learning anything about the other party’s input (be-
yond the output). Yao’s garbled circuit (GC) proto-

col [Yao82, Yao86] is one of the most widely used solu-
tions for secure two-party computation. Yao’s protocol
works as follows: one of the parties acts as the garbler,
who garbles the circuit, i.e., assigns two random keys cor-
responding to 0 and 1 to each of its wires and encrypts
the gates using these keys. The garbler sends this gar-
bled circuit GC to the other party, the evaluator, who
evaluates it after having obliviously received the keys
corresponding to its input bits from the garbler through
OTs. The protocol therefore relies on OTs linear in the
input length of the evaluator and symmetric-key oper-
ations linear in the size of the Boolean circuit describ-
ing the function. Various optimizations exist including
point-and-permute [BMR90], free-XOR [KS08a], fixed-
key AES garbling [BHKR13], and half-gates [ZRE15],
while at the implementation level Single Instructions
Multiple Data (SIMD) operations can be used [BJL12].
All these state-of-the-art optimizations are implemented
in the ABY framework [DSZ15], which we use in our im-
plementation. With all these optimizations, each AND
gate of the circuit needs 2τsym bits of communication.

Additionally, we use the point-and-permute tech-
nique in our protocols [BMR90]. In the classic garbling
scheme, each wire i has two labels (k0

i for 0 and k1
i for 1)

associated with it. In order to hide the truth values of
these wires with minimal overhead, a color bit can be
appended to each label (opposite color bits for 0 and 1).
The relation of the color bits and the truth values are
known only to the garbler, while the evaluator holds one
label from each wire, the color bit of which it can use to
proceed with evaluation. In the end of the protocol, the
evaluator possesses the wire labels for the output value,
which have the color bits appended to them.

We use the following notations for the garbling
scheme: (GC, out0, out1)← Garble(C, in0, in1) denotes
the garbling method that returns the garbled circuitGC,
including the output wire keys (out0, out1) for both
the 0 and 1 values, respectively. It gets as input circuit C
and input wire key pairs (in0, in1) for the evaluator’s in-
put wires. (GC, color) ← Garble’(C, in0, in1) denotes
the same garbling method but returns the color bits
along with GC. out← Eval(GC, in) denotes GC evalu-
ation where the evaluator inputs his input wire keys in
(received via OTs from the garbler), and receives the out-
put wire keys out corresponding to the output bits. The
actual output remains oblivious to the evaluator, since
he does not learn the values the wire keys correspond to.
out’← Eval’(GC, in) denotes a similar method, where
the evaluator receives blinded output bits out’, i.e., the
color bits of the outputs.

SoK: Modular and Efficient Private Decision Tree Evaluation 191

Homomorphic encryption. Additively homomor-
phic encryption allows anyone holding the public key pk
to calculate [x1 + x2] = [x1] � [x2], given two cipher-
texts [x1] := Encpk(x1) and [x2] := Encpk(x2). Multiply-
ing [c ·x] = c� [x] with constant c is supported since this
is equal to adding [x] with itself c times, which can be
efficiently computed using the double-and-add method.

We use semantically secure additively homomorphic
encryption schemes. More specifically, we use Paillier
encryption with packing [Pai99, DJ01], DGK encryp-
tion [DGK08], and Lifted ElGamal encryption [ElG85].
With a plaintext space of ZN , the ciphertext space of
Paillier and DGK encryption are Z∗N2 and Z∗N , respec-
tively, where N is an RSA modulus. Paillier encryp-
tion allows for packing of plaintexts and ciphertexts
when the encrypted values are smaller than the plaintext
space. We use ciphertext packing since the ciphertext [x]
in our case is much larger than the plaintext x. Thus,
we can pack n ciphertexts [x1], ..., [xn] into a single one:
[X] = [xn||xn−1||...||x1], and reduce the communication
from n · τPaillier to n · τPaillier/|xi|.

Lifted ElGamal encryption is similar to the classical
ElGamal scheme, with the exception that the plaintext
message is in the exponent, i.e., m is replaced by gm,
where g is the group generator. This allows for additive
homomorphism but makes decryption more difficult due
to the discrete logarithm that needs to be solved. Lifted
ElGamal can be instantiated using elliptic curve (EC)
cryptography, where the ciphertext is represented by
two EC points. This scheme is thus very efficient but
can only be used when the encrypted plaintext values
are in a known small subset of the plaintext space.

3 Protocol Building Blocks
Private decision tree evaluation is run between two par-
ties: a server S holding a classification tree T (with
threshold vector y, input selection σ and classification
values v) and a client C providing its input feature vec-
tor x. After the protocol evaluation, C obtains the classi-
fication result, without learning any information about
the tree beyond its size and the output, and S learns
nothing about C’s input features. The corresponding
ideal functionality FPDTE is depicted in Fig. 2.

In this section, we recapitulate the state-of-the-art
sub-protocols for private decision tree evaluation with
security against semi-honest adversaries. We describe
each protocol and refer to the original publications for
specific details on each construction. In §3.1, we detail

Ideal functionality FPDTE.

1. Private input of S: decision tree T .
2. Private input of C: inputs x = {x1, . . . , xn}.
3. Compute: evaluate v = T (x).
4. Output of C: classification result v.

Fig. 2. FPDTE – Ideal functionality for private decision tree evalu-
ation (PDTE). A decision tree T is defined by its topology, input
selection σ : m → n, thresholds y = {y1, . . . , ym} and classifica-
tion values v = {v1, . . . , vm+1}.

Ideal functionality FSel, given a secret sharing
scheme S1.

1. Private input of S: selection σ : m→ n.
2. Private input of C: inputs x = {x1, . . . , xn}.
3. Compute: z = {xσ(1), . . . , xσ(m)}, i.e., select

m values from the n inputs with selection σ.
4. Output of S, C: secret S1 shares of z.

Fig. 3. FSel – Ideal functionality for obliviously selecting m ele-
ments from n ≤ m elements.

two protocols for privately selecting features from n in-
put features that are assigned to a decision node to be
compared at (selection phase). In §3.2, we recapitulate
two sub-protocols for private comparison (comparison
phase): one based on garbled circuits and another one
based on additively homomorphic encryption. There-
after in §3.3, we provide protocols for obliviously eval-
uating the path to the classification leaf based on the
results of the previous phase (path evaluation phase).

In all sub-protocols presented in this section, the
number of decision nodes in decision tree T is ei-
ther m or the number of decision nodes m′ after depth-
padding (cf. §2.1). This is according to the approach cho-
sen for path evaluation (§3.3). We use m decision nodes
in our description, where possibly m = m or m = m′.

For completeness, we give in §A the communication
of all sub-protocols in Tab. 5 and their asymptotic com-
putation complexities in Tab. 6.

SoK: Modular and Efficient Private Decision Tree Evaluation 192

Ideal functionality FComp, given two secret sharing
schemes S1, S2.

1. Private inputs of S, C: secret S1 shares of the
selection xσ(1) . . . , xσ(m).

2. Private input of S: y = {y1, . . . , ym}.
3. Compute: for i ∈ {1, . . . ,m}: ci = 1 if

xσ(i) < yi, else ci = 0.
4. Output of S, C: secret S2 shares of c1, . . . , cm.

Fig. 4. FComp – Ideal functionality for obliviously comparing m
pairs of elements.

Ideal functionality FPath, given secret sharing
scheme S2.

1. Private inputs of S, C: secret S2 shares of the
comparison results {c1, . . . , cm}.

2. Private input of S: decision tree T .
3. Compute: evaluation of the decision tree path

using the comparison results resulting in leaf v.
4. Output of S: classification result v.

Fig. 5. FPath – Ideal functionality for oblivious path evaluation.

3.1 Selection Phase

The selection phase obliviously selects from the n fea-
tures of the client C a value for each of the m decision
nodes (where they are to be compared to thresholds) ac-
cording to the selection σ : m→ n of the server S. The
ideal functionality FSel that describes this selection is
shown in Fig. 3. We identify two ways to instantiate it,
one based on additively homomorphic encryption (SelH),
and another one based on the secure evaluation of a
Boolean selection network using garbled circuits (SelG).
In both protocols, the outputs of the parties are secret
shares of the result: none of the parties learns any infor-
mation about the output, but they are able to continue
secure computation with it.

Selection using additively homomorphic en-
cryption (SelH, Fig. 6). Additively homomorphic en-
cryption has been used to perform oblivious selection
in [BPSW07, BFK+09]. In the protocol, the client C
encrypts its inputs, and sends the ciphertexts to the
server S. S then selects the values according to selec-
tion σ and homomorphically blinds these with statis-

tical blinding using fresh randomness (pads are longer
than the plaintext value by s bits, where s is the sta-
tistical security parameter). S then sends these to C,
who decrypts them, retrieving a blinded selection of its
inputs. In this sub-protocol, we use either Paillier en-
cryption with ciphertext packing for the m ciphertexts
to reduce the communication to (n+m/(t+ s)) · τPaillier
bits (cf. §2.2), or DGK encryption with smaller cipher-
texts and (n+m) · τDGK bits of communication.

Selection using a garbled selection net-
work (SelG, Fig. 7). An alternative for obliviously
selecting the features is evaluating a selection net-
work [KS08b, BFK+09], which is based on Waksman’s
permutation network [Wak68]. Firstly, S sends the GC
corresponding to the selection network to C. They then
perform nt OTs for each bit of the client’s input. In
most cases, n ≤ m, since features are used more than
once. The size of a selection network that maps n ≤ m

t-bit elements to m elements is t · Snm≥n = t · (0.5(n +
m) log(n) +m log(m)− n+ 1) [KS16, Appendix C]. The
communication of this protocol is (n + 2Snm≥n)t · τsym
bits offline and nt(2τsym + 1) bits online.

3.2 Comparison Phase

This section details two oblivious comparison protocols,
the ideal functionality FComp of which is given in Fig. 4.
The outputs of S, C are secret shares of the result. The
first uses homomorphic encryption (instantiating both
SelH and CompH), the second uses Yao’s GC (CompG).

Comparison (including selection) using addi-
tively homomorphic encryption (SelH +CompH,
Fig. 8). This comparison protocol, often referred
to as the DGK comparison protocol, was proposed
in [DGK07, DGK08, DGK09] and used for private deci-
sion tree evaluation in [WFNL16, TMZC17]. Since the
comparison protocol is performed using homomorphi-
cally encrypted bits of the client’s input and known
thresholds, the selection phase SelH can be realized
within this protocol without additional overhead. Thus,
it already includes the oblivious selection protocol
of §3.1 for free (cf. Tab. 1). It is observed in [DGK07]
that x < y is true if and only if ∃i ∈ {1, . . . , t} such
that fi(x, y) = xi − yi + 1 + 3

∑
j<i(xj ⊕ yj) = 0. C en-

crypts each bit of its input with an additively homo-
morphic encryption scheme (cf. §2.2), and sends the
ciphertexts to S, who chooses the appropriate feature
to compare with at each decision node and generates
a random bit ak for each comparison (k ∈ {1, . . . ,m}).

SoK: Modular and Efficient Private Decision Tree Evaluation 193

Server S Client C
Input: m, selection σ, public key pk Input: x = (x1, . . . , xn), key pair pk, sk
Output: r1, . . . , rm random Output: z1, . . . , zm blinded values

Generate r1, . . . , rm random (t+ s)-bit values

O
ffl
ine

[x1], . . . , [xn] For l ∈ {1, . . . , n} : [xl]← Encpk(xl)

O
nline

For i ∈ {1, . . . ,m} ←−−−−−−−−−−−−
[zi]← [xσ(i) + ri] [z1], . . . , [zm] For i ∈ {1, . . . ,m} :

−−−−−−−−−−−−→ zi ← Decsk([zi])
Return r1, . . . , rm Return z1, . . . , zm

Fig. 6. SelH – Oblivious selection using additively homomorphic encryption.

Server S Client C
Input: m, selection σ Input: x = (x1, . . . , xn)
Output: K0 = (K0

1,1, . . . ,K
0
m,t

),K1 = (K1
1,1, . . . ,K

1
m,t

) Output: K = (K1, . . . ,Km,t) keys

Generate circuit C of selection network realizing σ : m→ n O
ffl
ine

(GC, (K0
1,1, . . . ,K

0
m,t

), (K1
1,1, . . . ,K

1
m,t

))← GC

Garble(C, (s0
1,1, . . . , s

0
n,t), (s1

1,1, . . . , s
1
n,t)) −−−−−−−−−−−−→

For i ∈ {1, . . . , n} For i ∈ {1, . . . , n}

O
nline

For j ∈ {1, . . . , t} For j ∈ {1, . . . , t}
s0
i,j , s

1
i,j −−−−−−−−−→ OT ←−−−−−−−−− xi,j

−−−−−−−−−→ s
xi,j

i,j

Return K0 = (K0
1,1, . . . ,K

0
m,t

),K1 = (K1
1,1, . . . ,K

1
m,t

) Return (K1,1, . . . ,Km,t)← Eval(GC, (sx1,1
1,1 , . . . , s

xn,t

n,t))

Fig. 7. SelG – Oblivious selection using a garbled selection network.

Then, the above comparison is performed that outputs
a blinded ciphertext [ri · fi(x, y)] for each bit of each
feature. If any of these ciphertexts decrypts to zero,
then xi < yi. The comparison bit is not revealed to the
client in clear, but is secret shared between the parties
(S holds random bit ak, C holds the result blinded by ak,
i.e., bk = ak ⊕ [xσ,k < yk]). The efficient lifted ElGamal
encryption scheme can be used here (cf. §2.2), since the
client needs only to check if the result is g0 or not. The
communication in this variant is (n+m)t · τElGamal bits.

Joye and Salehi [JS18] present an optimization of
the DGK comparison protocol that improves the com-
munication roughly by factor two when comparing two
values with each other. However, as opposed to the DGK
comparison protocol presented in Fig. 8, it does not al-
low for including the selection step when more values
are compared. This incurs an overhead when the client
encrypts its elements, i.e., it now needs to encrypt m
instead of n elements. However, Joye and Salehi also
propose a private decision tree evaluation protocol that
uses their protocol such that only d comparisons be-

tween two values are performed as in plain decision tree
evaluation. We compare with this protocol in §4.2.

Comparison using garbled circuits (CompG,
Fig. 9). All oblivious comparisons can also be per-
formed with generic secure two-party computation pro-
tocols. This method has been used for comparison
in [BPSW07, BFK+09]. Yao’s garbled circuit is partic-
ularly efficient for private comparison, and requires t
AND gates per t-bit comparisons [KSS09]. Therefore, m
comparisons require 2mt·τsym bits communication. Vari-
ant (a) of this comparison protocol outputs the Boolean
shares of the output of the comparisons, i.e., the color
bits in Yao’s GC protocol (cf. §2.2). Variant (b) out-
puts the keys that correspond to the output wires: the
server holds key pairs for both 0 and 1, while the client
holds the keys for the output wires (without knowing
the values they correspond to).

SoK: Modular and Efficient Private Decision Tree Evaluation 194

Server S Client C
Input: y = (y1, . . . , ym), selection σ, public key pk Input: x = (x1, . . . , xn), key pair pk, sk
Output: a1, . . . , am share Output: b1, . . . , bm share

Generate a1, . . . , am random bits For i ∈ {1, . . . , n}

O
nline

For j ∈ {1, . . . , t}
[x1,1], . . . , [xn,t] [xi,j] = Encpk(xi,j)

For k ∈ {1, . . . ,m} ←−−−−−−−−−−−−
For i ∈ {1, . . . , t}
rk,i ← Z∗p, [ck,i] = [rk,i · (fk,i(xσ , y)− 2ak)] [c1,1], . . . , [cm,t] For k ∈ {1, . . . ,m}

Return (a1, . . . , am) −−−−−−−−−−−−→ If ∃i ∈ {1, . . . , t} : Decsk([ck,i]) = 0 then bk = 1
else bk = 0

Return (b1, . . . , bm)

Fig. 8. SelH+CompH – Oblivious selection and comparison using additively homomorphic encryption from [WFNL16, TMZC17].

Server S Client C
Input: y = (y1, . . . , ym), K0,K1 Input: K = (K1,1, . . . ,Km,t) keys
Output: (a) a = (a1, . . . , am) share Output:(a) b = (b1, . . . , bm) share
Output: (b) k0 = (k0

1 , . . . , k
0
m

),k1 = (k1
1 , . . . , k

1
m

) keys Output: (b) k = (k1, . . . , km) keys

Generate C of m t-bit comparisons with y thresholds O
ffl
ine

(a) (GC, (a1, . . . , am))← Garble’(C,K0,K1) GC

(b) (GC, (k0
1 , . . . , k

0
m

), (k1
1 , . . . , k

1
m

))← Garble(C,K0,K1) −−−−−−−−−−−−→

Return (a) color bits a = (a1, . . . , am), Return (a) b = (b1, . . . , bm)← Eval’(GC,K)

O
nlineReturn (b) k0 = (k0

1 , . . . , k
0
m

), k1 = (k1
1 , . . . , k

1
m

) Return (b) k = (k1, . . . , km)← Eval(GC,K)

Fig. 9. CompG – Oblivious comparison using garbled circuits.

3.3 Path Evaluation Phase

This section describes two path evaluation protocols, the
first using homomorphic encryption (PathH) and the
second using a garbled decision tree (PathG). The ideal
functionality FPath is given in Fig. 5.

Path evaluation using additively homomor-
phic encryption (PathH, Fig. 10). The path eval-
uation protocol of [TMZC17] is highly optimized and
depends only on the number of decision nodes m. The
client C encrypts his share of the comparison bit for each
decision node, and sends it to the server. The server S
homomorphically computes the encryption of the actual
comparison bit (by removing the blinding), which is the
edge cost of the edge from the decision node that corre-
sponds to 0 (left). The other edge, corresponding to 1
(right), gets the opposite of this bit as its edge cost. For
each leaf node its path cost is computed by summing
up the edge costs along its path from the root. This re-
quires O(m) operations since intermediate values can be
reused. These and the classification labels on each leaf
node are then blinded by S using fresh randomness, and
sent to the client C. If the path cost decrypts to zero, C

can decrypt the classification label. This path evaluation
protocol has (3m+ 2) · τElGamal bits of communication.

Path evaluation using a garbled decision
tree (PathG, Fig. 11). The method for garbled deci-
sion tree (GDT) evaluation is analogous to Yao’s gar-
bled circuit technique [Yao86] described in §2.2, but
Eval(GDT, in) returns the output classification in the
clear. Our description is similar to that of [BPSW07]
that has been improved in [Sch08, BFK+09, BFL+11].
It relies on the idea of encrypting two keys at each de-
cision node, one to the left and one to the right child
nodes, along with their node indices, such that the eval-
uator C cannot deviate from the path corresponding to
the comparison results with his input vector x. We in-
troduce dummy decision nodes for hiding the length
of the path to the classification node. Revealing this
length would reveal information about the topology of
the tree, especially when multiple protocol runs with
the same model are possible. Alternatively, one can use
full decision trees [BPSW07], but then the overhead is
exponential in the depth d. This is much higher for
large trees than using depth-padding with m′ decision
nodes (cf. §2.1) as shown in Fig. 12. Moreover, we re-

SoK: Modular and Efficient Private Decision Tree Evaluation 195

Server S Client C
Input: a = (a1, . . . , am), public key pk Input: b = (b1, . . . , bm), key pair pk, sk
Output: ⊥ Output: classification v

For j ∈ {1, . . . ,m+ 1} : rj ←R Z∗p, r′j ←R Z∗p

O
ffl
ine

[bi] For i ∈ {1, . . . ,m} : [bi]← Enc(bi)

O
nline

For i ∈ {1, . . . ,m} ←−−−−−−−−−−−−
[Bi]← [bi ⊕ ai], [eci,0]← [Bi], [eci,1]← [1−Bi]

For j ∈ {1, . . . ,m+ 1}
[pcj]← [

∑
ej,k∈P

ecj,k], [pcj]← [rj ·pcj], [vj]← [r′j ·pcj+vj] Permuted [pcj], [vj] For j ∈ {1, . . . ,m+ 1}
−−−−−−−−−−−−→ If Decsk([pcj]) = 0 then

Return v ← Decsk([vj])

Fig. 10. PathH – Oblivious path evaluation using additively homomorphic encryption from [TMZC17].

Server S Client C
Input: k0 = (k0

1 , . . . , k
0
m′),k1 = (k1

1 , . . . , k
1
m′) Input: k = (k1, . . . , km′)

Output: ⊥ Output: classification v

DT ← DepthPad(DT), GDT ← Garble(DT,k0,k1) GDT

O
ffl
ine−−−−−−−−−−−−→

Return v ← Eval(GDT,k)

O
nline

Fig. 11. PathG – Oblivious path evaluation using a garbled decision tree.

veal only the depth-padded number of decision nodesm′,
and nothing about m since both of them would reveal
information about the tree topology.

The server randomly permutes the nodes and gar-
bles the decision tree so that each node has an index i
and an encryption key ki corresponding to it. At each
node, the keys and indices of the child nodes are stored
in an encrypted manner using the key of the node and
keys k0

i or k1
i depending on the comparison result. This

means that at node i, Encki,k0
i
(kl||l) and Encki,k1

i
(kr||r)

are stored, where l is the index of the node on the left
and r is the index of the node on the right. The order of
the two ciphertexts is permuted according to the color
bits of k0

i and k1
i . The server sends GDT to the client,

who can evaluate it by decrypting one path leading to
the leaf node storing the classification. The communi-
cation in this protocol is sending the GDT , each node
of which stores two τsym-bit values and two indices, i.e.,
2m′ · (τsym + log2(m′ + 1)). An extension of this proto-
col presented in §4.2 reduces the client’s computation
to O(dt) symmetric key operations.

4 Protocols for Private Decision
Tree Evaluation

In this section, we discuss all possible combinations of
the sub-protocols from §3 that result in private deci-
sion tree evaluation protocols. We assess these in Tab. 4,
which is an extended version of Tab. 1. In addition to
the sub-protocols, we recapitulate the number of online
rounds and the leakage about the model. In private de-
cision tree evaluation, the client only learns the result
and some information about the size of the server’s deci-
sion tree: either the number of decision nodes m or the
number of padded decision nodes m′ and potentially
the depth d. We adapt all resulting protocols with secu-
rity against passive adversaries to an offline-online set-
ting. We note that it is possible to precompute parts
of the protocols even if not shown in the respective fig-
ures. In sub-protocols based on homomorphic encryp-
tion, we can precompute encryptions independent from
the client’s input, while in sub-protocols based on gar-
bling techniques, we can perform the base OTs and pre-
compute OTs (cf. §2.2).

SoK: Modular and Efficient Private Decision Tree Evaluation 196

Protocol m Selection Interface Comparison Interface Path evaluation Online rounds Leakage
(Sel∗) (Comp∗) (Eval∗)

[BPSW07] m H G G 4 m, dpath
[WFNL16] m H (Fig. 8) H (Fig. 8) H 6 m

HGG [BFK+09] m′ H (Fig. 6) G (Fig. 13) G (Fig. 9) G (Fig. 11) 4 m′, d

GGG [BFK+09] m′ G (Fig. 7) G (Fig. 9) G (Fig. 11) 2 m′, d

HHH [TMZC17] m H (Fig. 8) H (Fig. 8) H (Fig. 10) 4 m

HHG m′ H (Fig. 8) H (Fig. 8) G (Fig. 14) G (Fig. 11) 4 m′, d

HGH m H (Fig. 6) G (Fig. 13) G (Fig. 9) H (Fig. 10) 6 m

GGH m G (Fig. 7) G (Fig. 9) H (Fig. 10) 4 m

Table 4. Concrete protocols based on the presented sub-protocols for selection, comparison and path evaluation, where m denotes
either the number of decision nodes m or padded decision nodes m′ in the protocols. Round complexity and leakage of different
private decision tree evaluation protocols based on homomorphic encryption H and garbling techniques G.

100

101

102

103

104

105

106

107

108

109

1010

iris wi
ne

lin
ne
rud

can
cer

dig
its

dia
be
tes

bo
sto
n

2d (Wu et al. [WFNL16])
m′ (depth-padded)
m (Tai et al. [TMZC17])

Fig. 12. Number of decision nodes in the different protocols for
the decision trees trained on real-world datasets from Tab. 3.
Note that the y-axis is in logarithmic scale.

Security guarantees. We combine sub-protocols se-
cure against passive adversaries with secret shared
output between the two parties. The outputs of our
primitives for selection (SelH and SelG) and compari-
son (CompH and CompG) as well as the inputs for com-
parison and path evaluation (PathH and PathG) are se-
cret shared as indicated in Figs. 3-5, i.e., the parties
do not learn any information by themselves. The secret
sharing technique is either XOR-sharing, additive blind-
ing or garbled inputs/outputs with the corresponding
key(s). Therefore, our sequentially composed protocols
remain secure against passive adversaries.

Selection and Comparison Strategy. For oblivi-
ous selection and comparison, the state-of-the-art pro-
tocols use additively homomorphic encryption SelH
(Fig. 6) [BFK+09] and CompH (Fig. 8) [TMZC17]. This
strategy is beneficial when it comes to communication
and storage, but implies an increased runtime compared

to garbling techniques. Garbling techniques have been
used for oblivious selection SelG (Fig. 7) [BFK+09]
and comparison CompG (Fig. 9) [BFK+09]. Thereafter,
these techniques have been claimed to be inefficient
in [WFNL16, TMZC17]. However, our experiments in §5
show that they have a very efficient online phase, and
perform better than the method based only on homo-
morphic encryption [TMZC17] with respect to total run-
time in most cases as well.

Path Evaluation Strategy. As discussed in §3.3, the
path evaluation sub-protocol of [TMZC17] using homo-
morphic encryption via PathH (Fig. 10) depends only
on the number of decision nodes m and is therefore es-
pecially efficient with sparse and large decision trees.
When this sub-protocol is used, m = m in all preceding
sub-protocols. This has been a tremendous improvement
for real-world decision trees over the path evaluation
method of Wu et al. [WFNL16], which depends expo-
nentially on the depth d of the tree, due to expanding
the tree to a full decision tree.

As opposed to this, in PathG (Fig. 11) the paths
need to have the same length in order to hide the tree
topology. Therefore, the tree is depth-padded tom = m′

decision nodes. m′ depends on the topology of the deci-
sion tree, i.e., the level of all leaves (cf. §2.1).

We depict in Fig. 12 the different numbers of de-
cision nodes that are used in state-of-the-art proto-
cols and our depth-padded approach, i.e., the orig-
inal number of decision nodes m (PathH, Fig. 10,
Tai et al. [TMZC17]), the depth-padded number of de-
cision nodes m′ (PathG, Fig. 11), and the number of
decision nodes in a full tree 2d (Wu et al. [WFNL16]).

SoK: Modular and Efficient Private Decision Tree Evaluation 197

4.1 Protocol Combinations

In this section, we describe all protocols resulting from
valid combinations of sub-protocols presented in §3, and
adapt them to the offline-online setting. Here, all oper-
ations that depend only on the input of the server S’s
decision tree are performed in the offline phase, whereas
all operations that depend on the client C’s input are per-
formed in the online phase. Protocols that are efficient
in the online phase are especially important in appli-
cations where the client uses a computationally weak
device. Most of the computation can be done offline,
when the device is idle, and the query itself triggers
the online phase, which is performed more efficiently.
We show that protocols based on garbling techniques
are especially efficient in this setting, whereas the sub-
protocols based on homomorphic encryption require the
input directly at the start and therefore only few of the
computationally intense tasks can be performed offline.
ABC denotes the protocol that uses SelA for selection,
CompB for comparison and PathC for path evaluation.

HHH: SelH +CompH +PathH [TMZC17].
The state-of-the-art protocol using only homomorphic
encryption for all three sub-protocols was presented
in [TMZC17], the comparison protocol of which was first
used for private decision tree evaluation in [WFNL16].
We recapitulate it here as a combination of the ho-
momorphic sub-protocol SelH +CompH (Fig. 8) with
PathH (Fig. 10). The advantage of this protocol is that
very low communication is necessary between the two
parties and the selection happens along with the com-
parison. However, most computationally expensive cryp-
tographic operations must be computed online, since the
computation depends on the client’s input.

HGH: SelH +CompG +PathH. An oblivious
comparison protocol that can be used to output shares
of the comparison bits is Yao’s GC protocol is shown in
CompG (Fig. 9). Here, m garbled comparison circuits
can be precomputed in an offline phase. Thereafter, the
client evaluates these in the online phase (using SIMD
in parallel as described in §2.2) to retrieve the com-
parison color bits that are shares of the output bits.
However, this comparison protocol requires a selection
sub-protocol to choose m inputs to the m comparisons
from the client’s n ≤ m inputs. In this protocol, we use
SelH with Paillier or DGK encryption (cf. Fig. 6) in or-
der to achieve linear complexity. When combining these
approaches, the result of SelH is not the same as the
input of CompG, so the interface described below and
depicted in Fig. 13 is inserted to obliviously unblind

the output. After the comparison, the path evaluation
PathH of [TMZC17] can be used as before (cf. Fig. 10).

Combining homomorphic selection and garbled com-
parison (SelH→CompG, Fig. 13). The result of SelH
in Fig. 6 is a set of blinded (t+ s)-bit values for the
client C, and the blinding s-bit values for the server S.
In order to perform the comparison on t-bit values, S
and C must unblind the result using a GC for subtract-
ing each random value obliviously [BFK+09]. The sub-
tractions are performed on t-bit values, since the most
significant s bits of the blinded values can be dropped.
The keys corresponding to the result are used in CompG
(cf. Fig. 9). Overall, the m garbled subtraction circuits
require 2mt · τsym bits offline communication, mt · τsym
bits for precomputing random OTs, and mt(2τsym + 1)
bits online communication for the OTs.

GGH: SelG +CompG +PathH. Instead of in-
stantiating the selection with homomorphic encryption,
one can use SelG, a selection network (with O(mt logm)
complexity) using garbled circuits (cf. Fig. 7). Here,
most of the selection phase can be computed offline
due to precomputed OTs and the independence of the
GC from the client’s inputs. Then, CompG (Fig. 9)
can be directly performed, and the path evaluation sub-
protocol PathH of [TMZC17] (Fig. 10) is used as before.
The advantage of this protocol is that though the offline
communication is higher than in the previous protocols
due to the selection network with superlinear complex-
ity, it performs well in the online phase and due to the
path evaluation phase, it depends only on the number of
decision nodes m, since depth-padding is not required.

HGG: SelH +CompG +PathG [BFK+09]. Ho-
momorphic selection SelH (Fig. 6) and garbled compari-
son CompG (Fig. 9) (with the interface from Fig. 13 be-
tween) can also be combined with the path evaluation
technique PathG (Fig. 11). This induces overhead in the
number of decision nodes, since the depth-padded deci-
sion tree has a larger number of internal nodes m′ ≥ m
(cf. Fig. 12). However, this path evaluation protocol can
more efficiently be transformed to an offline-online set-
ting, since the GCs for comparison and the garbled de-
cision tree can be sent offline.

GGG: SelG +CompG +PathG [BFK+09].
This protocol consists exclusively of sub-protocols that
use garbling techniques: selection SelG (Fig. 7) and
comparison CompG (Fig. 9) with garbled circuits, and
garbled path evaluation PathG (Fig. 11). It has the
highest communication, though most data can be sent
in the offline phase.

Another advantage of this protocol is that it can
be easily extended to provide security against a mali-

SoK: Modular and Efficient Private Decision Tree Evaluation 198

Server S Client C
Input: r1, . . . , rm Input: z1,1, . . . , zm,t blinded values (truncated)
Output: K0 = (K0

1,1, . . . ,K
0
m,t

),K1 = (K1
1,1, . . . ,K

1
m,t

) Output: K = (K1,1, . . . ,Km,t) keys

Generate circuit C for m t-bit subtractions of r1, . . . , rm

O
ffl
ine

(GC, (K0
1,1, . . . ,K

0
m,t

), (K1
1,1, . . . ,K

1
m,t

))← GC

Garble(C, (s0
1,1, . . . , s

0
m,t

), (s1
1,1, . . . , s

1
m,t

)) −−−−−−−−−−−−→

For i ∈ {1, . . . ,m} For i ∈ {1, . . . ,m}

O
nline

For j ∈ {1, . . . , t} For j ∈ {1, . . . , t}
s0
i,j , s

1
i,j −−−−−−−−−−−−→ OT ←−−−−−−−−−−−− zi,j

−−−−−−−−−−−−→ s
zi,j

i,j

Return K0 = (K0
1,1, . . . ,K

0
m,t

),K1 = (K1
1,1, . . . ,K

1
m,t

) Return K = (K1,1, . . . ,Km,t) = Eval(GC, (szi,j

1,1))

Fig. 13. SelH→CompG – Interface between the instantiation for SelH (Fig. 6) and CompG (Fig. 9).

Server S Client C
Input: a1, . . . , am′ share Input: b1, . . . , bm′ share
Output: k0 = (k0

1 , . . . , k
0
m),k1 = (k1

1 , , . . . , k
1
m′) Output: k = (k1, . . . , km′) keys

For i ∈ {1, . . . ,m′} For i ∈ {1, . . . ,m′} O
nlineC-OT ←−−−−−−−−−−−− bi

k
ai
i , k

1⊕ai
i ←−−−−−−−−−−−− −−−−−−−−−−−−→ k

ai⊕bi
i

Return k0 = (k0
1 , . . . , k

0
m),k1 = (k1

1 , , . . . , k
1
m′) Return k = (k1, . . . , km′) keys

Fig. 14. CompH→PathG – Interface between the instantiation for CompH (Fig. 8) and PathG (Fig. 11).

cious client: Since the only messages sent by the client
are in the OTs, one can use OT extension with secu-
rity against malicious clients, e.g., [ALSZ15, KOS15,
ALSZ17], which are only slightly less efficient than OT
extension with passive security. This adds little over-
head, whereas securing the other solutions against ma-
licious clients needs more expensive conditional OTs or
zero-knowledge proofs, e.g., as for HHH [TMZC17].

HHG: SelH +CompH +PathG. Due to the
worse efficiency of the homomorphic selection and com-
parison SelH +CompH (Fig. 8) and the high number
of decision nodes m′ for the garbled path evaluation
method PathG (Fig. 11), this protocol combination is
the least efficient. Moreover, it requires an interface of
OTs described below and depicted in Fig. 14.

Combining homomorphic comparison and garbled
path evaluation (CompH→PathG, Fig. 14). The result
of SelH +CompH (Fig. 8) is for both parties a share of
the comparison bit ci = ai ⊕ bi for all i ∈ {1, . . . ,m′},
while the input to PathG (Fig. 11) is a key for all com-
parison bits for the client C and two keys for both possi-
ble bits for the server S. After S generates these keys, C
and S engage in a 1-out-of-2 OT protocol for each com-
parison bit (cf. §2.2). This conversion requires m′τsym
bit offline and m′(τsym + 1) bit online communication,

since we can use the correlated OT (C-OT) extension
optimization of [ALSZ13].

4.2 Protocol Extensions

In this section, we describe protocol extensions, includ-
ing a natural modification of the HGG and GGG pro-
tocols, which allows the client to perform less computa-
tion and evaluate the decision tree in a similar manner
as in plain evaluation with only O(dt) cryptographic
operations. We compare this method with the protocol
of [JS18] that has the same asymptotic complexity.

Path evaluation with computationally re-
stricted client. A natural extension of HGG and GGG
is to perform only the required d comparisons during the
path evaluation phase as in the case of plain evaluation,
instead of doing all m′ comparisons in advance. This
improves computation, though we cannot use SIMD op-
erations for the comparisons anymore, since the GCs are
evaluated sequentially along the evaluation path. Simi-
larly, the client can decrypt only d (instead of m′) homo-
morphically encrypted blinded values in HGG in SelH
(cf. Fig. 6) before these comparisons. However, the com-
munication remains unchanged, since the actual evalua-
tion path taken needs to remain oblivious to the server.

SoK: Modular and Efficient Private Decision Tree Evaluation 199

Joye and Salehi present a similar protocol in [JS18].
In their protocol, full decision trees are utilized to hide
the topology of the tree, and a 1-out-of-2i OT is per-
formed at the ith level (i ∈ {1, . . . , d}). However, the
full tree can be replaced with the depth-padded tree
described in §2.1, in which case 1-out-of-m′ OTs are suf-
ficient for levels where m′ < 2i. Though the communica-
tion of this protocol (O(n+d(t+m′))) is better than that
of HGG (O(n+m′t)) for small decision trees, its depen-
dency on the depth makes it worse for larger examples
such as the boston dataset (cf. §2.1). Moreover, it has
O(d) online rounds instead of the constant number of 4
rounds provided by HGG. Therefore, we conclude that
our HGG protocol is more efficient in most scenarios.

Other extensions. In §B.1, we describe modifica-
tions for categorical variables, and in §B.2 for securely
evaluating random forests. Classification confidence val-
ues (correctness probabilities), can be appended to the
classification labels in a straightforward manner.

5 Performance Evaluation
In this section, we compare the runtime and communica-
tion of all resulting protocols from §4. In our implemen-
tation, we instantiate primitives corresponding to secu-
rity level κ = 128 (and κ = 112 for public-key primitives)
as recommended by NIST for use until 2030 [BBB+16],
and statistical security parameter s = 40, and as in prior
work, we set the bitlength to t = 64. τ∗ denotes the ci-
phertext sizes: τsym = 128 for symmetric-key encryption,
τPaillier = 4096 for Paillier encryption, τDGK = 2048 for
DGK encryption, and τElGamal = 514 for ElGamal en-
cryption with elliptic curves and point compression.

The underlying frameworks for our open-source im-
plementation available at https://encrypto.de/code/
PDTE are the ABY secure two-party computation frame-
work [DSZ15]1 and the mcl library2 that includes a
highly optimized lifted ElGamal implementation. ABY
implements the state-of-the-art optimizations of Yao’s
garbled circuit protocol described in §2.2. In addition,
we implement an analogues technique to that of point-
and-permute in order to avoid trial decryption of gar-
bled nodes in oblivious path evaluation PathG [Sch08].
We precompute OTs and homomorphic encryption when
possible (i.e., Figs. 6, 7, 8, 10, 14). We give further de-

1 https://github.com/encryptogroup/ABY
2 https://github.com/herumi/mcl

tails on our implementation in §C. We show the perfor-
mance of the protocols for the datasets from Tab. 3 as
well as for a full tree full(13) with d = n = 13 for a
comparison for dense trees.

Communication. The offline, online, and total
communication of the protocols is given in Fig. 15a,
Fig. 15b, and Fig. 15c, resp. We observe that gar-
bling techniques allow for precomputation and offline
communication, but require more communication in to-
tal. Homomorphic encryption-based methods have less
communication, however, almost all expensive compu-
tation and all communication happen in the online
phase. Methods using PathH (i.e., GGH, HGH and
HHH [TMZC17]) have a clear advantage for large sparse
trees, which is lost in case extremely dense trees are con-
sidered (such as our example full tree full(13)). For
these kind of trees, Wu et al.’s protocol [WFNL16] has
lower communication as discussed in §7.

Runtime. For our benchmarks we use two ma-
chines equipped with an Intel Core i7-4790 CPU @
3.6 GHz and 32 GB of RAM that support Intel’s AES-NI
for fast AES operations. Our benchmarks are run in a
LAN setting with 1 Gbit/s and 0.5 ms latency. Run-
times are reported from an average of 10 executions. In
our experiments, we neglect the costs for the base OTs
and for generating the keypair for additively homomor-
phic encryption, since they are a one-time expense that
can be re-used over multiple protocol executions. We
also neglect the cost for trial decryption of the classifi-
cation value in PathH, and note that for a 16-bit value
it is around 40 ms on average.

The offline runtimes are given in Fig. 16a, the on-
line runtimes are given in Fig. 16b, while the total run-
times are depicted in Fig. 16c. We can see that homo-
morphic encryption-based methods (SelH andCompH)
perform an order of magnitude worse than their gar-
bling technique-based alternatives (SelG and CompG).
However, we observe the advantage of the homomorphic
encryption-based path evaluation technique (PathH),
where the number of decision nodes m is unchanged,
whereas in the path evaluation method using a garbled
decision tree (PathG) depth-padding increases the num-
ber of decision nodes tom ≤ m′ ≤ 1

2m(m+1), which can
be significantly larger than m (cf. Fig. 12 and Tab. 3).
Our protocol GGH has the fastest total and online run-
time of below 1 second for our largest real-world exam-
ple boston. For extremely dense decision trees such as
our example full tree full(13), this advantage is lost
(since no padding is necessary) and the runtime of pro-
tocols based on garbling techniques is an order of mag-

https://encrypto.de/code/PDTE
https://encrypto.de/code/PDTE
https://github.com/encryptogroup/ABY
https://github.com/herumi/mcl

SoK: Modular and Efficient Private Decision Tree Evaluation 200

100

101

102

103

104

105

106

iris wine

lin
ne

rud
can

cer
dig

its

dia
be

tes

bo
sto

n

ful
l(1

3)

GGG [BFK+09]
HGG [BFK+09]
GGH
HGH
HHG

(a) Offline communication in KBytes.

100

101

102

103

104

105

106

iris wine

lin
ne

rud
can

cer
dig

its

dia
be

tes

bo
sto

n

ful
l(1

3)

HHG
HGG [BFK+09]
HHH [TMZC17]
HGH
GGH
GGG [BFK+09]

(b) Online communication in KBytes.

100

101

102

103

104

105

106

iris wine

lin
ne

rud
can

cer
dig

its

dia
be

tes

bo
sto

n

ful
l(1

3)

GGG [BFK+09]
HGG [BFK+09]
HHG
GGH
HGH
HHH [TMZC17]

(c) Total communication in KBytes.

Fig. 15. Communication of protocols using the example datasets from Tab. 3. Note that the y-axis is in logarithmic scale.

100

101

102

103

104

105

iris wine

lin
ne

rud
bre

ast
dig

its

dia
be

tes

bo
sto

n

ful
l(1

3)

HGG [BFK+09]
GGG [BFK+09]
HGH
GGH
(HHG)
HHH [TMZC17]

(a) Offline runtime in milliseconds.

100

101

102

103

104

105

iris wine

lin
ne

rud
bre

ast
dig

its

dia
be

tes

bo
sto

n

ful
l(1

3)

(HHG)
HGG [BFK+09]
HHH [TMZC17]
HGH
GGG [BFK+09]
GGH

(b) Online runtime in milliseconds.

100

101

102

103

104

105

iris wine

lin
ne

rud
bre

ast
dig

its

dia
be

tes

bo
sto

n

ful
l(1

3)

(HHG)
HGG [BFK+09]
HHH [TMZC17]
GGG [BFK+09]
HGH
GGH

(c) Total runtime in milliseconds.

Fig. 16. Runtime of protocols using the example datasets from Tab. 3. Note that the y-axis is in logarithmic scale.

nitude lower than that of the protocols based on homo-
morphic encryption in the LAN setting.

Tradeoff. In order to show the communication
(x-axis) vs. computation (y-axis) tradeoff of all resulting
protocols, we give figures for decision trees trained on
two example real-world datasets: a small dataset wine,
and our largest dataset boston.

While the number of input features n is rela-
tively small for all datasets, the number of (poten-
tially padded) decision nodes significantly affects the
efficiency of our sub-protocols. We depict in Fig. 17a
and Fig. 17b the tradeoff between offline and online run-
time and communication for all protocols for the wine
and boston datasets, respectively, while Fig. 18a and
Fig. 18b depict the corresponding total complexities.

The larger the dataset, the more dummy nodes
are introduced during depth-padding (cf. §2.1) when
PathGis used for path evaluation. Moreover, the selec-
tion network in SelG has superlinear size O(m logm),
which implies a significant overhead in offline commu-
nication. This gap can be observed on the figures: the

protocols using garbling techniques for path evaluation
lose their performance advantage with growing num-
ber of dummy nodes, and the protocols using garbling
techniques for selection become less practical due to
the largely increased amount of offline communication
for transmitting the selection network (which implies
storage requirements as well). For instance, our largest
decision tree trained on the boston dataset requires
around 1.8 MBytes of total communication with HHH,
3 MBytes with HGH, 9 MBytes with GGH, and more
than 200 MBytes with GGG. The designer of an applica-
tion using private decision tree evaluation can consider
these tradeoffs and choose the best suited protocol.

6 Concrete Improvements and
Recommendations

We investigate the concrete tradeoffs between our iden-
tified hybrid protocols GGH and HGH from §4.1 and

SoK: Modular and Efficient Private Decision Tree Evaluation 201

100

101

102

103

0 10
0

10
1

10
2

10
3

R
un

tim
e

in
m

s

Communication in KBytes

GGG [BFK+09]

GGG [BFK+09]
HHH [TMZC17]

HHH [TMZC17]

HGG [BFK+09]

HGG [BFK+09]

GGHGGH HGH

HGH

(HHG)

(HHG)

(a) Tradeoff for small dataset wine.

101

102

103

104

105

0 10
1

10
2

10
3

10
4

10
5

10
6

R
un

tim
e

in
m

s

Communication in KBytes

GGG [BFK+09]GGG [BFK+09]

HHH [TMZC17]

HHH [TMZC17]
HGG [BFK+09]

HGG [BFK+09]

GGH
GGH HGH

HGH

(HHG)

(HHG)

(b) Tradeoff for large dataset boston.

Fig. 17. Tradeoff between communication (x-axis) and runtime (y-axis). The figures show the offline (unfilled squares) and online
(filled squares) complexities (connected with a line). Note that both axes are in logarithmic scale, with an additional 0 on the x axis
for depicting the offline communication of the HHH protocol. Pareto points, i.e., protocols where one property (computation or com-
munication) cannot be improved without the other property becoming worse, for online complexities are marked in bold.

100

101

102

103

0 10
0

10
1

10
2

10
3

To
ta

lr
un

tim
e

in
m

s

Total communication in KBytes

GGG [BFK+09]

HHH [TMZC17]
HGG [BFK+09]

GGH

(HHG)

HGH

(a) Tradeoff for small dataset wine.

101

102

103

104

105

0 10
1

10
2

10
3

10
4

10
5

10
6

To
ta

lr
un

tim
e

in
m

s

Total communication in KBytes

GGG [BFK+09]HHH [TMZC17]

HGG [BFK+09]

GGH

(HHG)

HGH

(b) Tradeoff for large dataset boston.

Fig. 18. Tradeoff between total communication (x-axis) and runtime (y-axis). Note that both axes are in logarithmic scale, with an
additional 0 on the x axis for depicting the offline communication of the HHH protocol. Pareto points are marked in bold.

the state-of-the-art protocols HHH of [TMZC17] opti-
mized for communication and GGG of [BFK+09] opti-
mized for online computation. We show that the state-
of-the-art protocols that exclusively use one of the two
paradigms HHH with additively homomorphic encryp-
tion or GGG with garbling techniques can be replaced
by our hybrid protocols HGH and GGH that provide a
more reasonable tradeoff for larger decision trees.

In Figs. 17 and 18, we mark in bold pareto points for
online and total tradeoffs, respectively, i.e., we bold the
protocols where there is no possibility to improve one
property without the other property becoming worse.

Tradeoff with HHH [TMZC17]. The improvement in
total and online runtime of GGH over HHH is more than
an order of magnitude for our examples with increased
total communication by 2-5x. HGH improves over HHH

in total and online runtime by 2-5x with only slightly
increased total communication. The online communica-
tion is better for both GGH and HGH than for HHH.

Tradeoff with GGG [BFK+09]. GGH improves over
GGG for large datasets by an order of magnitude in
all complexities due to the fact that it does not need
any padding for the decision nodes. For small datasets,
GGG is better than GGH in online runtime and com-
munication by up to a factor of 2, but is worse in both
total complexities. HGH improves even more (by 5-73x)
for our datasets over the communication of GGG due to
the difference in the number of decision nodes. The on-
line runtimes of HGH are larger by 2-18x for real-world
datasets, and the total runtimes are also larger by a fac-
tor of 5 for small datasets. However, it gets better with

SoK: Modular and Efficient Private Decision Tree Evaluation 202

larger (sparse) datasets due to the increasing number of
decision nodes in the depth-padded tree.

Recommendations. We identify the following as-
pects to take into consideration when deciding which
protocol to use for an application: the dataset size, and
the boundaries on communication and computational
power (e.g., network throughput and client storage ca-
pacity). When the client has high storage capacity, pro-
tocols GGG [BFK+09] or GGH from §4.1 provide the
best online performance, depending on the dataset size.
The former may have a slightly more efficient online
phase, but higher communication due to its selection
protocol (cf. §3.1). When the client is computationally
bounded and has little storage capacity, our protocols
HGH and GGH from §4.1 provide the best solutions.

The state-of-the-art protocol HHH of [TMZC17] has
the lowest total communication, but uses computation-
ally heavy public-key operations that depend almost
entirely on the client’s input and hence do not allow
for much offline precomputation. Our protocols HGH
or GGH from §4.1 that combine its path evaluation with
garbling techniques yield an order of magnitude faster
runtimes while slightly increasing communication.

7 Related Work
Private decision tree evaluation was firstly considered
in [BPSW07], with application to private evaluation
of remote diagnostic programs. A protocol based on
homomorphic encryption where the server evaluates
a branching program on the client’s encrypted in-
put was proposed in [IP07]. This has been improved
in [BFK+09, BFL+11] where a protocol based on mainly
symmetric-key operations was proposed. Bost et al. use
additively homomorphic encryption to evaluate the de-
cision tree expressed as a polynomial [BPTG15]. Re-
cently, Wu et al. [WFNL16], Tai et al. [TMZC17] and
Joye and Salehi [JS18] improved the state-of-the-art of
private decision tree evaluation protocols. These works
rely on additively homomorphic encryption using the
Diffie-Hellman assumption and present protocols that
achieve security against semi-honest adversaries or ma-
licious clients. Tai et al. [TMZC17] eliminate the expo-
nential dependency on the depth of the tree that was
present in [WFNL16] by representing decision trees as
linear functions. This implies enormous improvement
when large decision trees are considered. These, in prac-
tice, are usually not very dense, and therefore, we use
this protocol to instantiate HHH. Wu et al.’s proto-

col [WFNL16] would perform better than HHH for cir-
cuits with m ∼ 2d [TMZC17]. However, already for a
very dense tree with m = 2d−2, HHH has about half
the communication compared to [WFNL16], whereas
the necessary computation is around the same.

The protocols of [WFNL16] and [TMZC17] use the
DGK comparison protocol [DGK07]. Joye and Salehi
present an optimization on the DGK protocol and a pri-
vate decision tree evaluation protocol with O(d) rounds
in [JS18] (cf. §3.2). For private decision tree evaluation
with constant rounds, their optimization on the DGK
protocol is not applicable. The alternative solution to
the DGK protocol of [LZS18] uses fully homomorphic
encryption and performs well for small bitlengths t of
the features and inputs.

A different solution for evaluating full private deci-
sion trees using the so-called commodity-based model
was proposed in [CDH+17], where correlated random-
ness is distributed by a trusted authority to the com-
puting parties or pre-computed during the offline phase,
which are used in the online phase.

In concurrent and independent related work
Tueno et al. [TKK19] represent the decision tree as an
array, and implement oblivious array indexing. For this,
they use either garbled circuits, oblivious transfer or
oblivious RAM (ORAM), the latter of which results in
a protocol with sub-linear complexity in the size of the
decision tree. Their protocols require dt comparisons as
that of [JS18] and our protocol extension for GGG and
HGG §4.2, but require at least O(d) rounds of commu-
nication [TKK19, Tab. 2].

Alternatively, private decision tree evaluation can
be solved using generic private function evalua-
tion (PFE) protocols such as [KM11, MS13, MSS14].
However, these solutions utilize Boolean circuits as the
underlying representation of the functionality. Trans-
forming the decision tree into a Boolean circuit would
imply additional unnecessary overhead on the size of
the function (i.e., O(tm logm) gates for the selection
of inputs as in SelG in §3.1). Secure evaluation of
universal circuits (UCs) is an equivalent solution for
PFE [Val76, KS08b, KS16, GKS17]. UC- and OT-
based PFE protocols [KS08b, MS13, KS16, GKS17]
need O((tm logm) log(tm logm)), and HE-based proto-
cols [KM11, MS13, MSS14] need O(tm logm) computa-
tion and communication. These complexities are larger
than that of protocols designed specifically for DTs.

There are alternative approaches for classification
based on machine learning, such as deep neural net-
works, that can be evaluated in a private manner [SS08,
BFL+11, LJLA17, MZ17, RWT+18, JVC18, BFR+18,

SoK: Modular and Efficient Private Decision Tree Evaluation 203

BDK+18]. Private evaluation of machine learning mod-
els incur a natural overhead, but they can perform clas-
sifications of real-world datasets in the order of seconds.

Acknowledgements
We thank the anonymous reviewers for their valuable
feedback on the paper. This work was supported by the
German Federal Ministry of Education and Research
(BMBF) and the Hessen State Ministry for Higher Edu-
cation, Research and the Arts (HMWK) within CRISP,
by the DFG as part of project E4 within the CRC 1119
CROSSING, by the Intel Collaborative Research Insti-
tute for Collaborative Autonomous & Resilient Systems
(ICRI-CARS), and by Business Finland (CloSer project,
3881/31/2016).

References
[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider,

and Michael Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In ACM
Computer and Communications Security (CCS’13),
pages 535–548. ACM, 2013.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider,
and Michael Zohner. More efficient oblivious transfer
extensions with security for malicious adversaries. In
Advances in Cryptology – EUROCRYPT’15, volume
9056 of LNCS, pages 673–701. Springer, 2015.

[ALSZ17] Gilad Asharov, Yehuda Lindell, Thomas Schneider,
and Michael Zohner. More efficient oblivious transfer
extensions. J. Cryptology, 30(3):805–858, 2017.

[AM18] Bushra A. AlAhmadi and Ivan Martinovic. Malclassi-
fier: Malware family classification using network flow
sequence behaviour. In 2018 APWG Symposium on
Electronic Crime Research (eCrime’18), pages 1–13.
IEEE, 2018.

[Bar15] Jeff Barr. Amazon machine learning – make data-
driven decisions at scale. aws.amazon.com/blogs/
aws/amazon-machine-learning-make-data-driven-
decisions-at-scale, 2015. Accessed: 2018-08-19.

[BBB+16] Elaine B. Barker, William C. Barker, William E.
Burr, W. Timothy Polk, and Miles E. Smid. Sp 800-
57. recommendation for key management, part 1:
General (revised). Technical report, Gaithersburg, MD,
United States, 2016.

[BDK+18] Niklas Büscher, Daniel Demmler, Stefan Katzen-
beisser, David Kretzmer, and Thomas Schneider.
HyCC: Compilation of hybrid protocols for practical
secure computation. In ACM Computer and Commu-
nications Security (CCS’18), pages 847–861. ACM,
2018.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In
Advances in Cryptology – CRYPTO’95, volume 963
of LNCS, pages 97–109. Springer, 1995.

[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov,
Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Secure evaluation of private linear
branching programs with medical applications. In
European Symposium on Research in Computer Se-
curity (ESORICS’09), volume 5789 of LNCS, pages
424–439. Springer, 2009.

[BFL+11] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti,
Ahmad-Reza Sadeghi, and Thomas Schneider.
Privacy-preserving ECG classification with branch-
ing programs and neural networks. IEEE Transactions
on Information Forensics and Security, 6(2):452–468,
2011.

[BFR+18] Ferdinand Brasser, Tommaso Frassetto, Korbinian
Riedhammer, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and Christian Weinert. Voiceguard: Secure and
private speech processing. In Annual Conference of
the International Speech Communication Association
(INTERSPEECH’18), pages 1303–1307. ISCA, 2018.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi,
and Phillip Rogaway. Efficient garbling from a fixed-

aws.amazon.com/blogs/aws/amazon-machine-learning-make-data-driven-decisions-at-scale
aws.amazon.com/blogs/aws/amazon-machine-learning-make-data-driven-decisions-at-scale
aws.amazon.com/blogs/aws/amazon-machine-learning-make-data-driven-decisions-at-scale

SoK: Modular and Efficient Private Decision Tree Evaluation 204

key blockcipher. In IEEE Symposium on Security and
Privacy (S&P’13), pages 478–492. IEEE, 2013.

[Big18] Inc. BigML. Machine learning made easy, beautiful
and understandable. https://bigml.com/, 2018.
Accessed: 2018-08-24.

[BJL12] Dan Bogdanov, Roman Jagomägis, and Sven Laur. A
universal toolkit for cryptographically secure privacy-
preserving data mining. In Pacific Asia Workshop
on Intelligence and Security Informatics (PAISI’12),
volume 7299 of LNCS, pages 112–126. Springer,
2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway.
The round complexity of secure protocols (extended
abstract). In ACM Symposium on Theory of Comput-
ing (STOC’90), pages 503–513. ACM, 1990.

[BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov,
and Emmett Witchel. Privacy-preserving remote
diagnostics. In ACM Computer and Communications
Security (CCS’07), pages 498–507. ACM, 2007.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and
Shafi Goldwasser. Machine learning classification
over encrypted data. In Network and Distributed Sys-
tem Security Symposium (NDSS’15). The Internet
Society, 2015.

[BS09] Justin Brickell and Vitaly Shmatikov. Privacy-
preserving classifier learning. In Financial Cryp-
tography and Data Security (FC’09), volume 5628 of
LNCS, pages 128–147. Springer, 2009.

[BSR18] Diogo Barradas, Nuno Santos, and Luís Rodrigues.
Effective detection of multimedia protocol tunnel-
ing using machine learning. In USENIX Security
Symposium’18, pages 169–185. USENIX, 2018.

[CDH+17] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj
Katti, Anderson C. A. Nascimento, Wing-Sea Poon,
and Stacey C. Truex. Efficient and private scoring of
decision trees, support vector machines and logistic
regression models based on pre-computation. IEEE
Transactions on Dependable and Secure Computing,
To appear., 2017.

[CO18] Michele Ciampi and Claudio Orlandi. Combining
private set-intersection with secure two-party compu-
tation. In Security and Cryptography for Networks
(SCN’18), volume 11035 of Lecture Notes in Com-
puter Science, pages 464–482. Springer, 2018.

[DCBA14] Manuel Fernández Delgado, Eva Cernadas, Senén
Barro, and Dinani Gomes Amorim. Do we need hun-
dreds of classifiers to solve real world classification
problems? Journal of Machine Learning Research,
15(1):3133–3181, 2014.

[DGK07] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard.
Efficient and secure comparison for on-line auctions.
In Australasian Conference on Information Security
and Privacy (ACISP’07), volume 4586 of LNCS,
pages 416–430. Springer, 2007.

[DGK08] Ivan Damgård, Martin Geisler, and Mikkel Krøi-
gaard. Homomorphic encryption and secure compar-
ison. International Journal of Applied Cryptography,
1(1):22–31, 2008.

[DGK09] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard.
A correction to ’Efficient and secure comparison for

on-line auctions’. International Journal of Advanced
Computer Technology (IJACT), 1(4):323–324, 2009.

[DJ01] Ivan Damgård and Mads Jurik. A generalisation,
a simplification and some applications of Paillier’s
probabilistic public-key system. In Public Key Cryp-
tography (PKC’01), volume 1992 of LNCS, pages
119–136. Springer, 2001.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael
Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In Net-
work and Distributed System Security Symposium
(NDSS’15). The Internet Society, 2015.

[ElG85] Taher ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
Advances in Cryptology – CRYPTO’85, volume 196
of LNCS, pages 10–18. Springer, 1985.

[FW12] Pui Kuen Fong and Jens H. Weber-Jahnke. Privacy
preserving decision tree learning using unrealized
data sets. IEEE Transactions on Knowledge and Data
Engineering, 24(2):353–364, 2012.

[GBC+97] Michael D. Garris, James L. Blue, Gerald T. Candela,
Patrick J. Grother, Stanley Janet, and Charles L.
Wilson. NIST form-based handprint recognition
system (release 2.0). Interagency/Internal Report
(NISTIR) - 5959, 1997.

[GKG+18] Srishti Gupta, Abhinav Khattar, Arpit Gogia, Pon-
nurangam Kumaraguru, and Tanmoy Chakraborty.
Collective classification of spam campaigners on
Twitter: A hierarchical meta-path based approach. In
World Wide Web Conference on World Wide Web
(WWW’18), pages 529–538. ACM, 2018.

[GKS17] Daniel Günther, Ágnes Kiss, and Thomas Schneider.
More efficient universal circuit constructions. In
Advances in Cryptology – ASIACRYPT’17, volume
10625 of LNCS, pages 443–470. Springer, 2017.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Pri-
vate set intersection: Are garbled circuits better than
custom protocols? In Network and Distributed Sys-
tem Security Symposium (NDSS’12). The Internet
Society, 2012.

[IK17] Aleksandar Ilic and Oleksandr Kuvshynov. Evaluating
boosted decision trees for billions of users. https:
//code.facebook.com/posts/975025089299409/
evaluating-boosted-decision-trees-for-billions-of-
users, 2017. Accessed: 2018-08-19.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez
Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology – CRYPTO’03, volume 2729
of LNCS, pages 145–161. Springer, 2003.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching
programs on encrypted data. In Theory of Cryptog-
raphy Conference (TCC’07), volume 4392 of LNCS,
pages 575–594. Springer, 2007.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on
the provable consequences of one-way permuta-
tions. In ACM Symposium on Theory of Computing
(STOC’89), pages 44–61. ACM, 1989.

[JS18] Marc Joye and Fariborz Salehi. Private yet efficient
decision tree evaluation. In Data and Applications
Security and Privacy (DBSec’18), volume 10980 of

https://bigml.com/
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users

SoK: Modular and Efficient Private Decision Tree Evaluation 205

LNCS, pages 243–259. Springer, 2018.
[JSD+18] Mika Juuti, Sebastian Szyller, Alexey Dmitrenko,

Samuel Marchal, and N. Asokan. PRADA: protect-
ing against DNN model stealing attacks. CoRR,
abs/1805.02628, 2018.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anan-
tha Chandrakasan. GAZELLE: A low latency frame-
work for secure neural network inference. In USENIX
Security Symposium’18, pages 1651–1669. USENIX,
2018.

[KM11] Jonathan Katz and Lior Malka. Constant-round
private function evaluation with linear complexity. In
Advances in Cryptology – ASIACRYPT’11, volume
7073 of LNCS, pages 556–571. Springer, 2011.

[KMAM18] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya,
and Sameep Mehta. Model extraction warning in
mlaas paradigm. In Annual Computer Security
Applications Conference (ACSAC’18), pages 371–380.
ACM, 2018.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl.
Actively secure OT extension with optimal overhead.
In Advances in Cryptology – CRYPTO’15, volume
9215 of LNCS, pages 724–741. Springer, 2015.

[KS08a] Vladimir Kolesnikov and Thomas Schneider. Im-
proved garbled circuit: Free XOR gates and appli-
cations. In International Colloquium on Automata,
Languages and Programming (ICALP’08), volume
5126 of LNCS, pages 486–498. Springer, 2008.

[KS08b] Vladimir Kolesnikov and Thomas Schneider. A
practical universal circuit construction and secure
evaluation of private functions. In Financial Cryp-
tography and Data Security (FC’08), volume 5143 of
LNCS, pages 83–97. Springer, 2008.

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal
circuit is practical. In Advances in Cryptology –
EUROCRYPT’16, volume 9665 of LNCS, pages
699–728. Springer, 2016.

[KSS09] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider. Improved garbled circuit building
blocks and applications to auctions and comput-
ing minima. In Cryptology and Network Security
(CANS’09), volume 5888 of LNCS, pages 1–20.
Springer, 2009.

[Lic18] Moshe Lichman. UCI machine learning repository.
https://archive.ics.uci.edu/ml. Irvine, CA: University
of California, School of Information and Computer
Science, 2018. Accessed: 2018-08-24.

[LJLA17] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Obliv-
ious neural network predictions via MiniONN trans-
formations. In ACM Computer and Communications
Security (CCS’17), pages 619–631. ACM, 2017.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy pre-
serving data mining. In Advances in Cryptology –
CRYPTO’00, volume 1880 of LNCS, pages 36–54.
Springer, 2000.

[LP02] Yehuda Lindell and Benny Pinkas. Privacy preserving
data mining. Journal of Cryptology, 15(3):177–206,
2002.

[LZS18] Wenjie Lu, Jun-Jie Zhou, and Jun Sakuma. Non-
interactive and output expressive private comparison

from homomorphic encryption. In ACM Asia Con-
ference on Computer and Communications Security
(AsiaCCS’18), pages 67–74. ACM, 2018.

[MAAG15] Michael J. Mayhew, Michael Atighetchi, Aaron Adler,
and Rachel Greenstadt. Use of machine learning in
big data analytics for insider threat detection. In IEEE
Military Communications Conference (MILCOM’15),
pages 915–922. IEEE, 2015.

[Mic18] Microsoft. Azure machine learning studio. https:
//azure.microsoft.com/, 2018. Accessed: 2018-08-24.

[MLJ17] Inc. MLJAR. MLJAR: Machine learning for all.
https://mljar.com/, 2016-2017. Accessed: 2018-08-
24.

[MS13] Payman Mohassel and Seyed Saeed Sadeghian. How
to hide circuits in MPC an efficient framework for
private function evaluation. In Advances in Cryptology
– EUROCRYPT’13, volume 7881 of LNCS, pages
557–574. Springer, 2013.

[MSS14] Payman Mohassel, Seyed Saeed Sadeghian, and
Nigel P. Smart. Actively secure private function evalu-
ation. In Advances in Cryptology – ASIACRYPT’14,
volume 8874 of LNCS, pages 486–505. Springer,
2014.

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML:
A system for scalable privacy-preserving machine
learning. In IEEE Symposium on Security and Privacy
(S&P’17), pages 19–38. IEEE, 2017.

[NIZ+16] Ana Nika, Asad Ismail, Ben Y. Zhao, Sabrina Gaito,
Gian Paolo Rossi, and Haitao Zheng. Understand-
ing and predicting data hotspots in cellular net-
works. Mobile Networks and Applications (MONET),
21(3):402–413, 2016.

[OTGM18] Rebekah Overdorf, Carmela Troncoso, Rachel Green-
stadt, and Damon McCoy. Under the underground:
Predicting private interactions in underground fo-
rums. CoRR, abs/1805.04494, 2018.

[Pai99] Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Advances
in Cryptology – EUROCRYPT’99, volume 1592 of
LNCS, pages 223–238. Springer, 1999.

[PMG+17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Good-
fellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine
learning. In ACM Asia Conference on Computer and
Communications Security (AsiaCCS’17), 2017, pages
506–519. ACM, 2017.

[RG16] Carl Rabeler and Craig Guyer. Microsoft decision
trees algorithm. https://docs.microsoft.com/en-
us/sql/analysis-services/data-mining/microsoft-
decision-trees-algorithm, 2016. Accessed: 2018-08-19.

[RMD18] Alejandro Rago, Claudia Marcos, and J. Andres
Diaz-Pace. Using semantic roles to improve text
classification in the requirements domain. Language
Resources and Evaluation, 52(3):801–837, 2018.

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr
Tkachenko, Ebrahim M. Songhori, Thomas Schnei-
der, and Farinaz Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning
applications. In ACM Asia Conference on Computer
and Communications Security (AsiaCCS’18), pages

https://archive.ics.uci.edu/ml
https://azure.microsoft.com/
https://azure.microsoft.com/
https://mljar.com/
https://docs.microsoft.com/en-us/sql/analysis-services/data-mining/microsoft-decision-trees-algorithm
https://docs.microsoft.com/en-us/sql/analysis-services/data-mining/microsoft-decision-trees-algorithm
https://docs.microsoft.com/en-us/sql/analysis-services/data-mining/microsoft-decision-trees-algorithm

SoK: Modular and Efficient Private Decision Tree Evaluation 206

707–721. ACM, 2018.
[Sch08] Thomas Schneider. Practical secure function evalua-

tion. Master’s thesis, Friedrich-Alexander University
Erlangen-Nürnberg, Germany, February 27, 2008.

[Ser18] Amazon Web Services. Data privacy. https://aws.
amazon.com/compliance/data-privacy-faq, 2018.
Accessed: 2018-08-19.

[sld17] scikit-learn developers. scikit-learn – machine learning
in python. http://scikit-learn.org/stable/modules/tree.
html, 2017. Accessed: 2018-08-22.

[SS08] Ahmad-Reza Sadeghi and Thomas Schneider. General-
ized universal circuits for secure evaluation of private
functions with application to data classification. In
Information Security and Cryptology (ICISC’08), vol-
ume 5461 of LNCS, pages 336–353. Springer, 2008.

[SSSS17] Reza Shokri, Marco Stronati, Congzheng Song, and
Vitaly Shmatikov. Membership inference attacks
against machine learning models. In IEEE Symposium
on Security and Privacy (S&P’17), pages 3–18. IEEE,
2017.

[TASF09] Ajay Kumar Tanwani, M. Jamal Afridi, M. Zubair
Shafiq, and Muddassar Farooq. Guidelines to se-
lect machine learning scheme for classification of
biomedical datasets. In Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics
(EvoBIO’09), volume 5483 of LNCS, pages 128–139.
Springer, 2009.

[Ten98] Michel Tenenhaus. La régression PLS: théorie et
pratique. Editions technip, 1998.

[TKK19] Anselme Tueno, Florian Kerschbaum, and Stefan
Katzenbeisser. Private evaluation of decision trees us-
ing sublinear cost. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2019(1):266–286, 2019.

[TMZC17] Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao,
and Sherman S. M. Chow. Privacy-preserving decision
trees evaluation via linear functions. In European
Symposium on Research in Computer Security (ES-
ORICS’17), volume 10493 of LNCS, pages 494–512.
Springer, 2017.

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K.
Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction APIs. In USENIX
Security Symposium’16, pages 601–618. USENIX,
2016.

[Val76] Leslie G. Valiant. Universal circuits (preliminary
report). In ACM Symposium on Theory of Computing
(STOC’76), pages 196–203. ACM, 1976.

[VC05] Jaideep Vaidya and Chris Clifton. Privacy-preserving
decision trees over vertically partitioned data. In Data
and Applications Security (DBSec’05), volume 3654
of LNCS, pages 139–152. Springer, 2005.

[VCKP08] Jaideep Vaidya, Chris Clifton, Murat Kantarcioglu,
and A. Scott Patterson. Privacy-preserving decision
trees over vertically partitioned data. ACM Transac-
tions on Knowledge Discovery from Data (TKDD),
2(3):14:1–14:27, 2008.

[Wak68] Abraham Waksman. A permutation network. Journal
of the ACM, 15(1):159–163, 1968.

[WFNL16] David J. Wu, Tony Feng, Michael Naehrig, and
Kristin E. Lauter. Privately evaluating decision

trees and random forests. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2016(4):335–355,
2016.

[WGC18] Sameer Wagh, Divya Gupta, and Nishanth Chan-
dran. SecureNN: Efficient and private neural network
training. Cryptology ePrint Archive, 2018/442, 2018.

[Wis18] Wise.io. Machine learning for the industrial internet of
things. wise.io, 2018. Accessed: 2018-08-24.

[Yao82] Andrew C.-C. Yao. Protocols for secure computations
(extended abstract). In Foundations of Computer
Science (FOCS’82), pages 160–164. IEEE, 1982.

[Yao86] Andrew C.-C. Yao. How to generate and exchange
secrets (extended abstract). In Foundations of
Computer Science (FOCS’86), pages 162–167. IEEE,
1986.

[YGL17] Fengpeng Yuan, Xianyi Gao, and Janne Lindqvist.
How busy are you?: Predicting the interruptibility
intensity of mobile users. In Conference on Human
Factors in Computing Systems (CHI’17), pages
5346–5360. ACM, 2017.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two
halves make a whole - reducing data transfer in
garbled circuits using half gates. In Advances in
Cryptology – EUROCRYPT’15, volume 9057 of
LNCS, pages 220–250. Springer, 2015.

A Complexities of Sub-protocols
In this section, we describe the complexities of all sub-
protocols described in §3. Note that oblivious transfers
and homomorphic encryptions are precomputed in the
offline phase when possible.

Communication. The communication of each sub-
protocol is presented in Tab. 5. For all phases we observe
a direct tradeoff: The homomorphic encryption-based
methods have lower communication, while in case of gar-
bling techniques, most communication can be shifted of-
fline, so these achieve the lowest online communication.

Computation. The asymptotic computational
complexity of each sub-protocol is shown in Tab. 6. We
observe that most computationally intense tasks can
be shifted offline for the protocols based on garbling
techniques, while almost all operations are performed
online when using homomorphic encryption. Unfortu-
nately, even when using garbling techniques, the client
needs to perform most cryptographic operations online,
since he plays the role of the evaluator (cf. §2.2). In
these techniques, however, the client requires less com-
putational power than using homomorphic encryption.

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
wise.io

SoK: Modular and Efficient Private Decision Tree Evaluation 207

Sub-protocol Fig. Offline Online
SelH Paillier Fig. 6 - (n+ m

t+s) · τPaillier
SelH DGK Fig. 6 - (n+m) · τDGK
SelG Fig. 7) (n+ 2Sn

m≥n)t · τsym nt(2τsym + 1)
SelH +CompH Fig. 8 - (n+m)t · τElGamal
CompG Fig. 9 2mt · τsym -
PathH Fig. 10 - (3m+ 2) · τElGamal
PathG Fig. 11 2m′ · (τsym + log2(m′ + 1)) -
SelH→CompG Fig. 13 3mt · τsym mt(2τsym + 1)
CompH→PathG Fig. 14 m′ · τsym m′(τsym + 1)

Table 5. Offline and online communication of all sub-protocols, where n, t, m, m′ and m denote the number input features, the
bitlength of the features and thresholds, the number of decision nodes, padded decision nodes and either of the former two, respec-
tively. Sn

m≥n denotes the size of the selection network that selects m bits from n bits. τsym, τDGK, τPaillier and τElGamal denote the size
of the ciphertexts in the respective encryption schemes. Note that m ≤ m′ ≤ 1

2m(m+ 1).

Sub-protocol Fig. Offline Server Offline Client Online Server Online Client
SelH Paillier Fig. 6 O(m)νPaillier - O(m)νPaillier O(n+m)νPaillier
SelH DGK Fig. 6 O(m)νDGK - O(m)νDGK O(n+m)νDGK
SelG Fig. 7) O(t(m logm+ n))νsym O(nt)νsym - O(tm logm)νsym
SelH +CompH Fig. 8 - O(nt)νElGamal(off) O(tm)νElGamal O(mt)νElGamal + O(nt)νElGamal(on)
CompG Fig. 9 O(mt)νsym - - O(mt)νsym
PathH Fig. 10 - O(m)νElGamal(off) O(md)νElGamal O(m)νElGamal + O(m)νElGamal(on)
PathG Fig. 11 O(m′)νsym - - O(m′)νsym
SelH→CompG Fig. 13 O(mt)νsym O(mt)νsym - O(mt)νsym
CompH→PathG Fig. 14 O(m′)νsym O(m′)νsym - -

Table 6. The number of cryptographic operations in the offline and online phases of all sub-protocols, with notations as in Tab. 5.
νsym, νDGK, νPaillier and νElGamal denote the cost of an operation (i.e., encryption, decryption or addition) in symmetric, DGK, Paillier
and lifted ElGamal encryption, respectively. νElGamal(off/on) denote the offline/online costs of precomputed ElGamal encryption.

B Extensions
In this section, we present extensions to CompG and
PathG presented in §3, which directly apply to the re-
sulting protocols that use those as sub-protocols in §4.

B.1 Categorical Variables

Since not every member of a feature vector is a nu-
merical variable, we discuss the useful extension of the
comparison phase in order to add support for categor-
ical variables. In fact, a considerable portion of real
datasets are a mixture of numerical and categorical
variables. We measured the ratio of datasets contain-
ing categorical variables in the UCI machine learning
repository [Lic18], and found that 33% of datasets con-
tain categorical variables. For instance, a feature vector
for the breast cancer dataset has the feature breast
quadrant that specifies the position of the tumor in the
patient’s breast, i.e. it takes one of the following five
values: left-up, right-up, left-low, right-low or

central. At the end of the protocol, the patient’s profile
is classified as no-recurrence-event or recurrence-event
that determines the possibility of cancer recurrence.

Given categorical variable xj ∈ U = {u1, . . . , u|U |},
the decision criteria is a set membership test of the form
xj ∈ U ′, for some U ′ ⊂ U (j ∈ {1, . . . , n}). Wu et al.
supply the SelH +CompH subprotocol with the exten-
sion to handle categorical variables in [WFNL16]. We
briefly describe a private approach to evaluate the deci-
sion nodes that operate over categorical variables when
using CompG. We notice that for testing the set inclu-
sion, the server can create the |U |-bit masking value
Mask based on U ′ such that Maski = 1 if ui ∈ U ′,
and 0 otherwise. This representation was used for pri-
vate set intersection (PSI) in [HEK12]. Accordingly, for
xj = ui, the client inputs the transformed |U |-bit vari-
able x′j which has only one set bit at position i. Then
the original decision criteria xj ∈ U ′ can be evaluated by
the Boolean circuit which implements x′j ∧Mask = x′j .

SoK: Modular and Efficient Private Decision Tree Evaluation 208

B.2 Random Forests

Random forests improve the accuracy of decision trees
by aggregating the result of n ≥ 2 decision trees trained
on different random subsets of features. Before evaluat-
ing the n decision trees, in order to hide all information
about the subset of features, all decision tree evalua-
tions need to look the same from the client’s point of
view. Therefore, dummy comparisons are necessary to
pad the decision trees to the maximal m or m′ value.

Additionally, the aggregation step depending on
the aggregation function has to be implemented.
Wu et al. [WFNL16] provide a method that allows for
any affine function of the results using additive secret
sharing, which can be generalized to PathH (cf. Fig. 10)
of [TMZC17]. For PathG (cf. Fig. 11) [BFK+09], instead
of returning the results to the client, he can obtain keys
corresponding to these. These can then be used to se-
curely evaluate the GC corresponding to the aggrega-
tion function if the server uses these keys to generate it.
The complexity depends on the aggregation function.

C Implementation Choices
We describe our implementation choices used in §5.

SelH (Fig. 6). The ABY framework includes an
implementation for both Paillier and DGK encryp-
tions (cf. §2.2). The ciphertext lengths are τPaillier =
4096 and τDGK = 2048. However, Paillier encryption al-
lows for ciphertext packing which reduces the number
of ciphertexts and decryptions. We utilize ABY to build
two versions of SelH, and conclude the advantage of the
Paillier encryption both in runtime and communication.

SelG (Fig. 7). We implement the garbled selection
network introduced in [KS08a] in ABY.

SelH +CompH (Fig. 8). We use the mcl library
to implement protocols using lifted ElGamal encryption
over elliptic curve (EC) secp256k1 with 256-bit key as
Tai et al. [TMZC17]. This library has a highly opti-
mized lifted EC-ElGamal implementation and supports
point compression, i.e., an elliptic curve point can be
expressed in 256 + 1 bits. Since an ElGamal ciphertext
consists of two EC points, τElGamal = 514. Our baseline
implementation is that of [LZS18].

CompG (Fig. 9). We use comparison circuits in
ABY using SIMD operations to enhance the perfor-
mance of this sub-protocol.

PathH (Fig. 10). We implement the path evalua-
tion phase using lifted EC-ElGamal encryption over the
same curve and library as for SelH +CompH.

PathG (Fig. 11). We implement garbled decision
tree path evaluation in the ABY framework using two
AES encryptions with AES-NI per decision node.

	SoK: Modular and Efficient Private Decision Tree Evaluation
	1 Introduction
	1.1 Applications
	1.2 Outline and Our Contributions

	2 Preliminaries
	2.1 Decision Trees
	2.2 Cryptographic Techniques

	3 Protocol Building Blocks
	3.1 Selection Phase
	3.2 Comparison Phase
	3.3 Path Evaluation Phase

	4 Protocols for Private Decision Tree Evaluation
	4.1 Protocol Combinations
	4.2 Protocol Extensions

	5 Performance Evaluation
	6 Concrete Improvements and Recommendations
	7 Related Work
	A Complexities of Sub-protocols
	B Extensions
	B.1 Categorical Variables
	B.2 Random Forests

	C Implementation Choices

