$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2019 (3):128-148

Noah Apthorpe*, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and Nick Feamster
Keeping the Smart Home Private with
Smart(er) loT Traffic Shaping

Abstract: The proliferation of smart home Internet of
things (IoT) devices presents unprecedented challenges
for preserving privacy within the home. In this paper,
we demonstrate that a passive network observer (e.g., an
Internet service provider) can infer private in-home ac-
tivities by analyzing Internet traffic from commercially
available smart home devices even when the devices
use end-to-end transport-layer encryption. We evaluate
common approaches for defending against these types of
traffic analysis attacks, including firewalls, virtual pri-
vate networks, and independent link padding, and find
that none sufficiently conceal user activities with reason-
able data overhead. We develop a new defense, “stochas-
tic traffic padding” (STP), that makes it difficult for a
passive network adversary to reliably distinguish gen-
uine user activities from generated traffic patterns de-
signed to look like user interactions. Our analysis pro-
vides a theoretical bound on an adversary’s ability to
accurately detect genuine user activities as a function
of the amount of additional cover traffic generated by
the defense technique.
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1 Introduction

Internet-connected consumer devices (“Internet of

things,” “IoT,” or “smart home” devices) have rapidly
increased in popularity and availability over the past
several years. Many smart home devices have always-on
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Fig. 1. Traffic rate to and from a Sense sleep monitor over a 12-
hour period. User activities are clearly visible as traffic spikes.

sensors that (1) capture users’ offline activities in their
living spaces and (2) transmit information about these
activities outside of the home, typically to cloud services
run by device manufacturers. Such communication in-
troduces privacy concerns, not only because of the data
that these devices collect and send to third parties, but
also because the very existence of traffic at all can reveal
sensitive and private information about the activities of
a home’s occupants.

In this paper, we demonstrate that despite broad
adoption of transport layer encryption, smart home traf-
fic metadata—specifically, traffic volumes—is sufficient
for a passive network adversary to infer users’ sensi-
tive in-home activities (Figure 1). As with phone meta-
data [29], it is possible to learn a great deal about
devices and users from Internet metadata alone. We
present an attack on user privacy using metadata from
smart home devices that is effective even when de-
vices use encryption (Section 4). The attack involves
inferring times and types of user activities from device
traffic patterns.

We demonstrate this attack on commercially avail-
able smart home devices. For example, traffic rates from
a Sense sleep monitor reveal consumer sleep patterns,
traffic rates from a Belkin Wemo switch reveal when
a physical appliance in a smart home is turned on or
off, and traffic rates from a Nest Cam Indoor security
camera reveal when a user is actively monitoring the
camera feed or when the camera detects motion in a
user’s home.
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The effectiveness of this attack across smart home
device types and manufacturers motivates the devel-
opment of general, easy-to-deploy techniques for pro-
tecting user privacy in smart homes. Conventional ap-
proaches, such as firewalls, virtual private networks
(VPN), and independent link padding (ILP), may break
device functionality, allow user activity inference in cer-
tain scenarios, or unacceptably increase data usage (Sec-
tion 5). Although any Internet metadata protection
technique will involve some overhead, there is a need
for low-cost tunable methods that allow users to trade
off how much they are willing to spend for a guaranteed
degree of privacy.

We therefore present a new traffic shaping algo-
rithm, “stochastic traffic padding (STP)” (Section 6).
STP performs traffic shaping during user activities and
selectively injects cover traffic during other time pe-
riods. This makes it difficult for an adversary to dis-
tinguish traffic corresponding to genuine user activities
from cover traffic mimicking user activities. With STP,
an adversary’s confidence in detecting a genuine user
activity is inversely proportional to the bandwidth over-
head that results from the injected traffic. We demon-
strate this relationship both in theory and empirically
by performing STP on traffic traces from real smart
home devices.

We also present an implementation of STP that
can run on Linux-based network middleboxes, including
smart home hubs, Wi-Fi access points, and home gate-
way routers (Section 7). This implementation demon-
strates that a small amount of additional traffic padding
can significantly reduce adversary confidence, suggest-
ing that STP may be practical for a wide range of de-
ployment cases, including as a module that could run
on a home network’s gateway router.

In summary, this work makes the following contri-
butions:

1. We demonstrate that in-home user activities can be
inferred from smart home Internet traffic volumes
alone, even when the traffic is protected with end-
to-end encryption.

2. We evaluate conventional defenses against traffic
analysis attacks in terms of privacy protection, net-
work delay, and traffic overhead.

3. We present stochastic traffic padding (STP), which
provides tunable protection against user activity in-
ference with considerably less bandwidth overhead
than existing approaches.

4. We analyze the performance of STP using traffic
traces from real devices and develop an implemen-
tation that could be used in real smart homes.

2 Threat Model

We are concerned with the ability of a passive network
observer to infer users’ in-home activities from smart
home Internet traffic metadata. Traffic rates, network
protocols, source and destination addresses, interpacket
intervals, and packet sizes are accessible to many en-
tities. These potential adversaries may be incentivized
to discover user behaviors, in opposition to the pref-
erences of privacy-conscious device owners. We divide
our threat model into two distinct classes of adversaries
with differing visibility into the home network:

Local adversaries. Local adversaries are enti-
ties that can view traffic within the smart home lo-
cal area network (LAN). Example local adversaries in-
clude malicious smart home devices, compromised or
ISP-controlled home routers, and Wi-Fi eavesdroppers
such as neighbors and wardrivers. All local adversaries
can view MAC addresses, send times, and sizes of Wi-Fi
packets. Local adversaries that are unable to associate
with the smart home Wi-Fi network (e.g., neighbors
without the WPA2 key) cannot access other packet in-
formation. Local adversaries associated with the smart
home network (e.g., malicious devices) can also view IP
headers and transport layer headers of all packets as
well as the contents of non-encrypted DNS packets.

External adversaries. External adversaries are
entities that can view smart home traffic only after it
has left the home LAN. External adversaries can ob-
tain the times, sizes, IP headers, and transport layer
headers of all packets leaving the smart home gate-
way router. External adversaries cannot view local Wi-
Fi traffic within the home and therefore cannot ac-
cess device MAC addresses for identification purposes.
Since most home gateway routers act as network address
translators (NAT), we assume that all smart home traf-
fic obtained by an external adversary has had source IP
addresses rewritten to the single public IP of the smart
home. Example external adversaries include ISPs, gov-
ernment intelligence agencies, and other on-path net-
work observers.

Restrictions on both adversaries. We assume
that packet contents are encrypted and inaccessible to
the adversary. In fact, most smart home devices we
tested use TLS/SSL when communicating with cloud
servers. Given the increasing focus on security in the
IoT community, encrypted communications will likely
become standard for smart home devices. By ignoring
traffic contents, our user activity inference attack (Sec-
tion 4) indicates that sensitive information about user
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behaviors is still at risk even when industry best prac-
tices for data encryption are in place.

We assume that the adversary can obtain and in-
dependently evaluate smart home devices. This allows
the adversary to observe device traffic patterns under
various use cases. The adversary can also continuously
monitor smart home traffic if it improves activity infer-
ences. However, the adversary is not active and does not
manipulate traffic to or from the smart home.

Adversary prior knowledge. We assume that
the adversary may have a priori knowledge about the
characteristics of some kinds of in-home activities (e.g.,
when people generally leave for work or go to bed) be-
yond what can be observed from network traffic. Ad-
versary prior knowledge limits both the usefulness of
traffic rate analysis and the maximum effectiveness of
traffic shaping defense techniques for particular adver-
saries. For example, a general adversary may know that
it is more likely for a smart home occupant to go to
work in the morning than in the evening. This means
that smart home device traffic patterns indicating that
a home occupant leaves for work in the morning are, all
else being equal, more likely to be genuine than those in
the evening. However, if a specific adversary, such as a
neighbor, physically sees a smart home occupant leaving
for work in the evening, no amount of traffic analysis
or defensive traffic shaping will affect this knowledge.
Nevertheless, defensive traffic shaping may still prevent
other adversaries without this prior knowledge from in-
ferring when the occupant leaves for work.

Network delays. Some external adversaries may
not see smart home traffic until it has traveled several
hops from the home gateway router. Network delays due
to congestion or other quality of service (QoS) queue-
ing could therefore have perturbed packet timings. We
disregard these perturbations because they will be in-
significant relative to the timescale of user activities.

3 Experiment Setup

We set up a laboratory smart home environment with
several commercially available IoT devices as a testbed
for performing our activity inference attack and evalu-
ating privacy protection strategies.

We configured a Raspberry Pi 3 Model B as
an 802.11n wireless access point.! The Raspberry

1 We followed these instructions to set up the Raspberry Pi Wi-
Fi access point: https://wwu.raspberrypi.org/documentation/
configuration/wireless/access-point.md

Pi configuration code is publicly available for re-
search use at https://github.com/NoahApthorpe/iot-
inspector. Wi-Fi compatible smart home devices were
connected directly to the Raspberry Pi Wi-Fi network.
The remaining devices were connected via Bluetooth
to an Android smartphone running the latest version
of the devices’ corresponding mobile applications. This
smartphone was itself connected to the Raspberry Pi
Wi-Fi network. This setup allowed us to record all net-
work traffic to and from the smart home devices. We
recorded traffic from the Wi-Fi interface of the Rasp-
berry Pi to model a local adversary and from the wired
interface to model an external adversary.

The commercially-available IoT devices included in
our laboratory smart home are listed in Appendix Ta-
ble 2. These devices are by no means exhaustive of the
wide range of available IoT smart home products. How-
ever, they encompass a variety of device types, manu-
facturers, and privacy concerns. Given the effectiveness
of user activity inference on traffic from all tested de-
vices (Section 4), we believe that smart home owners
should be concerned about traffic rate metadata across
all types of smart home products.

4 User Activity Inference Attack

We present an attack by which a passive network ob-
server can infer in-home user behaviors from smart
home device Internet traffic metadata. The attack is
applicable to most currently available smart home de-
vices and will remain an issue for new devices released
in upcoming years. Without changes in developer prac-
tices or adoption of privacy protection techniques, smart
home occupants will risk network observers learning
about their in-home activities. Early versions of this at-
tack [2, 3] have received press attention [9, 10, 40] for
their relevance to modern IoT home devices.

4.1 General Attack Technique

As a preliminary step, the adversary identifies de-
vices in the smart home and separates traffic meta-
data by device. Banner grabbing [1, 13, 15], fingerprint-
ing [7, 36, 37], and acquisitional rule-based engines [17],
have all been proposed as methods of operating system
and device identification. Building on these methods,
we note that external adversaries and local adversaries
with network access can use DNS queries and destina-
tion TP addresses to uniquely fingerprint smart home
devices, even when the devices are behind a NAT (Sec-
tion 4.2.1). Local adversaries without network access
can use the first three bytes of device MAC addresses
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(the organizational unique identifier) to identify device
manufacturers, followed by specific device identification
based on traffic rate characteristics [2].

The adversary then observes changes in traffic rates
to determine the timing of user activities. Most user in-
teractions with smart home devices occur at discrete
time points or over short periods surrounded by ex-
tended periods of no interaction. For example, turn-
ing on a lightbulb, falling asleep, querying a personal
assistant, and measuring blood pressure do not occur
continuously. User activities generally cause noticeable
changes in device traffic rates while or shortly after
they occur. These changes can be brief “spikes,” longer
“hills”, or sometimes “depressions” visible on bandwidth
graphs and detectable by automated threshold methods
based on standard deviations from mean traffic rates or
more sophisticated machine learning methods.

Finally, the adversary infers the types of activities
that cause observed traffic rate changes. The limited-
purpose nature of most smart home IoT devices makes
this possible. Users interact with traditional computing
devices, such as PCs and smartphones, for a variety of
purposes, making it difficult to associate any particular
change in network traffic rate with a specific activity.
In comparison, once an attacker has identified the iden-
tity of a particular smart home device, it is often trivial
to associate specific traffic rate changes with user ac-
tivities. For example, smart outlets generally have only
two functions (turning on and off) and send very little
background traffic. Spikes in traffic rate at a particular
time therefore clearly imply that the outlet was turned
on or off at that time. Many IoT devices also exhibit
very regular traffic patterns, making it easy to correlate
user interactions of particular types with traffic patterns
from test devices operated by an adversary.

4.2 Attack on Real Devices

We have demonstrated the effectiveness of user activ-
ity inference on fourteen commercially available smart
home devices as follows.

4.2.1 Device Fingerprinting & Traffic Demultiplexing

External adversaries can separate individual traffic flows
and assign them to specific devices based on destination
IP addresses, even if source IP addresses and ports are
rewritten by a smart home gateway NAT. All devices we
tested send traffic to unique and mostly nonoverlapping
sets of destination IP addresses and make corresponding
sets of DNS requests (Appendix Figure 6). Additionally,
many devices queried individual domains that uniquely

identify the device or manufacturer without requiring
the use of a set-based fingerprint (Appendix Table 2).
For example, if an attacker sees a long-running flow to
the IP address corresponding to “dropcam.com,” that
flow is definitely from a Nest camera, and the traffic
pattern of this flow can be used for activity inference.
This ability to fingerprint based on destination IP ad-
dresses is specific to the IoT setting. Unlike web brows-
ing or other general-purpose Internet traffic, [oT devices
typically communicate with only a few servers operated
by their manufacturer, and only one flow is typically
needed to perform activity inference. Destination IP
address fingerprinting is also effective even if multiple
device signals overlap in time or frequency, because in-
dividual packets and corresponding IP headers can still
be demultiplexed. We do not consider the potential of
background traffic from non-IoT devices to disrupt this
fingerprinting process, because we wish to consider a
worst case scenario for the defender, and because most
web browsing traffic will not involve IoT device cloud
servers.

Local adversaries with network access can also iden-
tify devices and demultiplex traffic using MAC ad-
dresses and other LAN-available information with a sys-
tem such as Fingerbank [24] or IoT Sentinel [30] in ad-
dition to destination IP address fingerprints.

If DNS requests or destination IP addresses are ob-
fuscated, such as for an external adversary outside a
VPN, for a local adversary without Wi-Fi network ac-
cess, or through DNS over TLS (DoT) [23], DNS over
HTTPS (DoH) [22], or Oblivious DNS (ODNS) [35],
then device fingerprinting would have to be performed
using traffic rate characteristics [2, 36]. Our STP algo-
rithm (Section 6) protects against user activity inference
from traffic rates independent of the device identifica-
tion technique employed by the adversary.

4.2.2 Activity Inference from Traffic Rates

Once traffic flows have been associated with their origi-
nating devices, the next step in the attack is to use traf-
fic rate changes to infer user activities. We have found
that activity inference is effective for all tested devices,
but in the interest of space, we provide representative
case studies from six devices covering a range of smart
home device types:

Sense sleep monitor. Figure 1 shows send/receive
rates from the Sense over a 12 hour period from 10:40pm
to 10:40am. Notably, the send/receive rate peaked at
times corresponding with user activity. The user shut
off the light in the laboratory smart home and went to
bed at 12:30am, temporarily got out of bed at 6:30am,
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and got out of bed in the morning at 9:15am. A network
observer could already guess when users sleep based on
decreases in smartphone or PC web traffic; however,
this assumes that smartphone and PC use only stops
due to sleep, that everyone in the home sleeps at the
same time and does not share devices, and that users
do not leave smartphones and PCs to perform network-
intensive tasks while they sleep. The single-purpose na-
ture of the IoT sleep monitor makes none of these as-
sumptions necessary to infer users’ sleeping patterns.

Nest security camera. The Nest Cam Indoor has
at least two modes of operation: a live streaming mode
and a motion detection mode. In live streaming mode,
the camera uploads live video to the cloud for storage
and/or real-time viewing on the Nest web or mobile ap-
plication. In motion detection mode, the camera mon-
itors the video feed locally for movement but does not
upload video to the cloud. If movement is observed, the
camera uploads a snapshot of the video and alerts the
user.

Figure 2(a) shows send/receive rates from the Nest
camera alternating between live streaming and motion
detection mode every 2 minutes. The traffic rate is or-
ders of magnitude higher in live streaming mode (and
a short time afterward until the camera is notified that
the user has stopped viewing the stream), allowing an
adversary to easily determine whether or not the cam-
era’s live feed is being actively viewed or recorded.

Figure 2(b) shows that an adversary could easily
determine when a Nest camera detects movement while
in motion detection mode. The camera was pointed at a
white screen with a black square that changed location
every two minutes. These simulated motion events trig-
gered clearly observable spikes in network traffic. This
predictable variability in network send/receive rates
would allow a network observer to infer the presence
and frequency of motion inside a smart home.

These issues are significant privacy vulnerabilities
and physical security risks. It should not be possible
for a third party to determine when a security camera
detects movement or is being actively monitored.

Amazon Echo. We tested the Echo by asking a se-
ries of 3 questions (“what is the weather?,” “what time
is it?,” and “what is the distance to Paris?”) repeated 3
times, one question every 2 minutes. Figure 2(c) shows
the send/receive rates of SSL traffic between the Echo
and a single amazon.com IP address during the experi-
ment. Although the Echo sent and received other TCP
traffic to different domains during this time, we were
able to identify the stream that correlated with the ques-
tions. An adversary could also identify this stream and

use the SSL traffic spikes to infer when user interactions
occurred.

Belkin Wemo switch. The Wemo switch only has
two states, on and off, and its network send /receive rates
reflect this duality. Figure 2(d) shows Wemo network
behavior when the switch is turned alternatively on and
off every 2 minutes using the Wemo smartphone app and
the physical button on the device (both cases result in
traffic to the Wemo cloud server). The spike in traffic
every time the switch changes state clearly reveals user
interactions with the device.

Geeni lightbulb. The Geeni lightbulb also has
only on and off states, and these states are reflected
in network send/receive rates. Figure 2(e) shows Geeni
lightbulb network behavior when the bulb was turned
on and off 4 times over a 37 minute period. The state
changes are clearly observable as spikes in traffic rate,
which could indicate when someone in a smart home
turns the lights on and off. This information could in
turn correlate with sleep patterns or home occupancy.

Google Home. The Google Home is able to make
hands-free VoIP calls. We tested the Home by plac-
ing 5 calls to different entities over an approximately
13 minute period. Figure 2(f) shows the send/receive
rates of traffic from the Google Home to a single
*.telephony.goog domain during the testing period.
Spikes in traffic to this domain occurred only during the
start of each phone call, making detection of voice calls
from the Google Home trivial for any adversary able to
identify traffic to this domain, either by observing DNS
requests or matching IP addresses.

5 Evaluating Existing Defenses

In this section, we evaluate three existing techniques
known to prevent traffic analysis attacks in other con-
texts. We use two metrics, adversary confidence and
bandwidth overhead, to compare the techniques. Ulti-
mately, the ratio of adversary confidence to bandwidth
overhead determines the effectiveness of the defense
technique. Some techniques have a fixed ratio, but oth-
ers are tunable to users’ preferences for privacy versus
data usage.

Adversary confidence is the expected ratio of
correct activity inferences to attempted activity infer-
ences by an adversary with no prior knowledge when
traffic rate metadata is defended by a particular tech-
nique. Lower adversary confidence means that the tech-
nique is more effective at protecting user privacy. We
define ¢, as the lowest possible adversary confidence,
equivalent to the fraction of time that the user activ-
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Fig. 2. Network traffic send/receive rates of selected flows from five commercially-available smart home devices during controlled ex-

periments. Clearly visible changes in traffic rates directly correspond with user activities. A passive network observer aware of this be-
havior could easily correlate smart home traffic rates with device states and infer user activities.

ity occurs. An adversary guessing that activities occur
at random times will be correct this fraction of guesses.
With no defense, adversary confidence /1 for all devices
we tested in Section 4.

Defining adversary confidence assuming no prior
knowledge makes the metric generally applicable, be-
cause it only incorporates in-band information from net-
work traffic. Adversaries with out-of-band prior proba-
bilities that particular user activities occur at particular
times will simply combine these priors with information
from traffic analysis to obtain individualized inference
confidences. However, since in-band techniques will not
affect these prior probabilities, the adversary confidence
metric as defined captures the general effectiveness of
in-band defenses for comparison.

Adversary confidence also does not rely on the com-
putational capabilities of the attacker. This improves

the generality of the metric; however, other metrics
involving the cost of performing inference in different
settings and for different inference algorithms may be
worth exploring in future work.

Bandwidth overhead is the ratio of network data
sent with and without a given defense technique. For
example, a bandwidth overhead of 4 means that apply-
ing the technique results in 4 times as much traffic (e.g.,
in bytes) sent on the network than would be sent if the
traffic were unprotected. A lower bandwidth overhead is
preferable because extra traffic contributes to network
congestion and can consume user data caps.

5.1 Firewalling Traffic

The simplest technique for preventing activity inference
is to prevent an adversary from collecting smart home
network traffic in the first place. Configuring a firewall
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to block smart home device traffic is straightforward and
would protect devices from user activity inference by
external adversaries. However, smart home devices are
generally not made to work without an Internet con-
nection, so removing WAN connectivity makes many
devices useless. Even some devices with features that
users might expect to involve only local communica-
tions, such as turning on an IoT outlet using a smart-
phone on the LAN, do not function without connec-
tions to cloud servers (Appendix Table 3). Additionally,
a firewall on the home gateway router would not protect
against user activity inference by local adversaries.

Adversary confidence. Firewalling traffic results
in an adversary confidence of ¢, if the adversary is
outside the firewall and an adversary confidence of ~1
if the adversary is inside the firewall.

Bandwidth overhead. Firewalling traffic has a
bandwidth overhead < 1, because traffic which would
otherwise be sent is prevented from leaving the home.

5.2 Virtual Private Networks (VPNs)

Another technique for preventing activity inference is to
tunnel all smart home traffic through a virtual private
network. A VPN wraps all traffic from an endpoint in
an additional transport layer, aggregating it into a sin-
gle flow with the source and destination IP addresses of
the VPN endpoints. This aggregation could make it dif-
ficult to determine which variations in the overall traffic
rate observed from outside the VPN correspond to user
interactions with individual devices.

However, the effectiveness of a VPN depends on the
number of devices behind the VPN, as well as the loca-
tion of the adversary and the VPN endpoints. If more
devices are behind the VPN, including PCs and smart-
phones in addition to IoT devices, there may be more
total traffic through the VPN tunnel. This may make
it more difficult to de-multiplex traffic from individ-
ual devices, but the additional protection is inconsis-
tent and difficult to quantify. Individual devices may
still have sparse communications and distinctive traffic
patterns. Furthermore, if one VPN endpoint is on the
home gateway router, then the VPN provides no pro-
tection against local adversaries. If the other VPN end-
point is visible to an external adversary (e.g., a server
on an ISP’s network), then the VPN also provides no
protection, because the adversary can simply perform
activity inference on traffic after it leaves the VPN.

We have identified three specific cases where an ad-
versary can infer user activity even if the VPN is opti-

mally located. In each of these cases, an adversary can
fingerprint devices using VPN traffic rates alone:

1. Single device. If a smart home has only one
device, the VPN traffic rate will match that from the
device, and the attack can proceed as before.

2. Sparse activity. If there are multiple devices
that send traffic at different times, time periods con-
taining traffic from only a single device would still al-
low activity inference. For example, a smart door lock
and smart sleep monitor are less likely to be record-
ing user activities simultaneously. Traffic observations
from particular times of day are likely to contain non-
background traffic from only one of these devices. This
would allow an adversary to identify the active device
within a time period and perform activity inference as
before. Additionally, previous work on Tor website fin-
gerprinting indicates that machine learning techniques
could potentially allow adversaries to differentiate traf-
fic from multiple devices active simultaneously [44].

3. Dominating device. An adversary could also
perform activity inference on the device that sends the
most traffic if it significantly overshadows traffic from
other devices. For example, traffic from a security cam-
era uploading live video will dominate traffic from less
network-intensive devices, such as smart outlets, mak-
ing patterns in the camera traffic clearly observable.

Adversary confidence. As these three cases indi-
cate, the adversary confidence provided by a VPN can
range from ¢, to 1 depending on the specific set of
devices in the smart home and patterns of individual
user’s behavior. This adversary confidence variability
motivates traffic shaping defense techniques that can
guarantee certain levels of privacy protection.

Bandwidth overhead. VPNs have a bandwidth
overhead of ~1. A small amount of additional traffic is
necessary for the creation and maintenance of the VPN
tunnel, but this is negligible compared to the amount of
traffic from smart home devices.

5.3 Independent Link Padding (ILP)

Independent link padding involves shaping upload and
download traffic rates to match predetermined rates or
schedules, thereby exposing no information about device
behavior or user activities to an adversary [14, 18, 41].
Constant rate padding to enforce fixed-size packets with
constant interpacket intervals is the simplest form of
ILP. An alternative method is to draw packet sizes and
interpacket intervals from probability distributions in-
dependent of user behavior. Performing ILP between
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Defense Adversary Confidence

Bandwidth Overhead

Firewalling Traffic

Virtual Private Network (VPN)
Independent Link Padding (ILP)
Stochastic Traffic Padding (STP)

Cmin

= 1 inside firewall, ¢, outside firewall
Varies from c,,,;,, to 1 depending on devices & user behaviors

Tunable from = 1 to c,nin with O(q—1)

<1
~1
RILP/Rnormal
Varies with O(q)

Table 1. Comparison of defenses against in-home activity inference from smart home device traffic rate metadata. Adversary confi-
dence and bandwidth overhead are defined in Section 5. ¢, is the baseline adversary confidence with no defense and is equivalent
to the frequency of user activities. Ry p and Ry orma; are the mean traffic rates with and without ILP padding, respectively. ¢ is a

parameter of STP that determines the frequency of padding independent of user activities.

individual devices and cloud servers results in the fol-
lowing adversary confidence and bandwidth overhead.

Adversary confidence. ILP provides an optimal
adversary confidence of ¢,,;,. No information about user
activities is contained in traffic rates after ILP.

Bandwidth overhead. If the mean traffic rate
without ILP is R,ormai, the max traffic rate without
ILP is Ry az, and traffic is shaped using ILP to a mean
rate Rypp, the expected bandwidth overhead will be
Rrrp/Ruormal- However, if Rypp < Rpaz, the device
will experience network latency due to packet buffering
when it attempts to send traffic faster than Ryyp. This
latency may affect device usability, especially since de-
vices typically require the highest send rate during user
interactions.

Due to this tradeoff between bandwidth overhead
and network latency, ILP can efficiently protect two spe-
cific classes of smart home devices: 1) devices with rela-
tively constant traffic rates and 2) devices that can tol-
erate long network latencies. Previous work by Datta, et
al. has demonstrated the effectiveness of ILP padding on
smart home devices with these properties [12]. The exis-
tence of these devices is notable, because ILP padding is
usually viewed as too expensive for real-world use [14].

However, many types of smart home devices have
both low latency tolerance and traffic rates that spike
only during user activities (Figure 2), resulting in
Ryormal << Rmaz and either a high bandwidth over-
head or high latency when using ILP. To verify this, we
tested the performance of ILP shaping on several de-
vices in our laboratory smart home. We found that per-
forming constant rate ILP on the home gateway router
required approximately 40KB/s of overhead traffic in or-
der to provide low enough latency to preserve minimal
device functionality [4]. This would result in approxi-
mately 104GB of overhead data per month—excessive
for smart homes with all but the highest data caps. This
amount of extra traffic would also place considerable
burden on ISPs if ILP achieved widespread use.

I Device Traffic STP Traffic
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Fig. 3. Example of STP applied to smart outlet traffic. An ad-
versary could not distinguish which periods of padding mask real
device traffic corresponding to user activities.

6 Stochastic Traffic Padding

We introduce stochastic traffic padding (STP), a traffic
shaping algorithm to defend against user activity infer-
ence from traffic rate metadata. STP provides an eas-
ily tunable tradeoff between adversary confidence and
bandwidth overhead (defined in Section 5). STP also
imposes no additional network latency and can achieve
low adversary confidence for relatively little bandwidth
overhead. Table 1 compares STP to the techniques dis-
cussed in Section 5. STP can be succinctly described as
follows:

1. Upload and download traffic during user activities
is shaped equivalently, so an adversary cannot dif-
ferentiate different types of user activities (Figure 3,
traffic periods 1-3).

2. Additional periods of equivalent shaping are in-
jected randomly into upload and download traffic
(Figure 3, traffic periods 0 & 4-5). An adversary
cannot distinguish these periods from real user ac-
tivities, reducing confidence in activity inferences.

In the following sections, we present the STP algorithm

and formalize its adversary confidence and bandwidth

overhead (Section 6.1), describe how STP relates to
categorical metadata protection (Section 6.2), evaluate

STP using traffic traces from real devices (Section 6.3),

and discuss how STP can adapt to complicated real-

world user behavior (Section 6.4).
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Algorithm 1: Stochastic Traffic Padding
(STP)

1 padStart <+ 0
2 padEnd < 0

3 Function STP(¢, q, T, R):

/* Arguments: current time ¢, non-activity
padding probability ¢, time period
length T, padding rate R */

4 if t mod T'= 0 and decisionFn(q, ...) then

/* decisionFn() draws a random Boolean
from a model parameterized on g and
(optionally) previous user activity.

*/

5 padOffset < uniformRandom(0, T")
6 if t + padOffset > padEnd then
7 padStart < t + padOffset

8 padEnd < padStart + T

9 else

10 | padEnd « padEnd + T

11 if padStart <t < padEnd then

12 ‘ padTraffic(R)

13 else if userActivityOccurring(¢) then
14 padStart < ¢

15 padEnd < t+ T

16 padTraffic(R)

6.1 Algorithm and Analysis

Algorithm 1 presents pseudocode for STP. In the fol-
lowing discussion, we refer to traffic corresponding to a
privacy sensitive user activity as “user activity traffic.”

STP begins by choosing a fixed traffic pattern with
mean rate R and duration T' (Appendix Table 4 pro-
vides a quick reference for variable definitions used in
this section). The shape of the traffic pattern is arbi-
trary, as long as the instantaneous traffic rate across
the pattern is high enough that shaping user activity
traffic to match the pattern does not impose a latency
overhead and the duration of the pattern is longer than
the duration of user activity traffic, although this sec-
ond criterion can be relaxed for a more sophisticated
version of the algorithm (Section 6.4). R can be fixed at
the outset if the maximum rate of user activity traffic
is known a priori or started at a high value and period-
ically decreased as device traffic is observed. We use a
constant rate traffic pattern for our presentation of STP
in order to simplify visualizations, but implementations
could also choose a pre-recorded traffic flow scaled to
mean rate R or any other predetermined traffic shape.

STP divides time into discrete periods of length T'.
All user activity traffic (detected by traffic rate thresh-
old or machine learning methods) is padded to match

the preselected traffic pattern, preventing an adver-
sary from differentiating activity types based on traffic
rate metadata. However, padding user activity traffic
alone is insufficient. An adversary would still know that
each instance of the fixed traffic pattern corresponds to
some user activity, allowing for activity inference from
limited-purpose smart home devices (Section 4.1). STP
therefore also performs traffic padding when no user ac-
tivities occur.
At the beginning of each period t (such that
t mod T'=0), STP uses a decision function to decide
whether to shape traffic during that period. If yes, a
start time during the period is selected uniformly at
random such that ¢ < tgqr+ < t+ T. Traffic is then
shaped from tstqrt t0 tstqrt +1 to match the fixed traffic
pattern. If shaping is already occurring at tgsq.¢, either
due to user activity traffic or padding started during the
previous time period, the fixed traffic pattern is simply
repeated once the current iteration concludes. This en-
sures that the total duration of non-interrupted shaping
is a multiple of T" and that no more than one instance
of the fixed traffic pattern starts in each time period.
The following analysis assumes that the decision
function performs a random draw from a fixed Bernoulli
distribution and that individual user activities occur in-
dependently. This provides an intuition for the behav-
ior of STP and simplifies derivations of adversary confi-
dence and bandwidth overhead. Sections 6.4 & 8 discuss
ways of extending the decision function and user activ-
ity model to handle more complex real-world behavior.
Bidirectional traffic. Most smart home devices
use bidirectional protocols, especially TCP and HTTP,
to communicate with cloud servers. This means that
user activities may be reflected in the patterns of both
upload and download traffic. STP must therefore pad
traffic in both upload and download directions during
user activity or during non-activity periods selected by
the decision function. Provided that T is long enough
to cover complete bidirectional communications (re-
quests and responses) corresponding to user activities,
all shaped periods will be indistinguishable in both di-
rections. For example, suppose a device sends a request
and receives a response in a single TCP connection with
the SYN packet at tgy ny and FIN packet at tpyy. Bidi-
rectional STP traffic shaping will start at tgsyy and
continue for T, such that tp;ny — tsyny < T. For DNS
and other known UDP protocols, T' should be made
long enough to overlap the request and response packets
given the latency and bandwidth of the network.
Shaping bidirectional traffic with STP involves two
additional considerations. First, one direction may have
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a considerably higher volume of traffic, such as short
HTTP GET requests versus longer HT'TP responses. In
this case, using the same fixed traffic pattern in both
directions would be wasteful, as one direction requires
substantially less cover traffic to mask user activities. In-
stead, STP can use separate fixed traffic patterns with
mean rates R, and Ry for the upload and download di-
rections, respectively. Choosing R,, and R4 can be per-
formed as described for R above. For the following anal-
yses, we define R = R, + Ry to reason about the total
overhead of STP shaping in both directions.

Second, STP shaping must be applied to upload and
download traffic at different locations in the network.
Upload traffic could be shaped on the devices them-
selves or by a middlebox in the smart home, such as an
IoT hub or gateway router. Download traffic could be
shaped on the cloud servers or by a middlebox in the
network, such as a VPN end point. These locations must
communicate to synchronize periods of padding. This
communication could occur through the contents of en-
crypted cover traffic, but is implementation dependent.
Deciding where to deploy STP determines whether it
protects against both internal and external adversaries
or external adversaries only (Section 7). The following
analysis assumes that the adversary can only see traffic
shaped by STP.

Adversary confidence. The adversary’s goal is to
decide which time periods correspond to user activities.
We can calculate adversary confidence and bandwidth
overhead based on the frequency of user activities and
the probability of non-activity padding.

We define a probability p that user activity oc-
curs independently during any time period of dura-
tion T'. This probability can be estimated empirically as
the fraction of time periods with traffic corresponding
to user activities during a representative packet cap-
ture. We also define a probability ¢ that the decision
function chooses to start non-activity padding indepen-
dently during any time period.

Over any given set of n time periods, the expected
number with user activities is np. However, the expected
number of padded periods after STP is np + n(1 — p)q.
Since the adversary cannot tell these periods apart, the
expected adversary confidence c is

-1
c_”p_(uﬂlf“) 1)

np +n(l —p)g P

This is a simple power law that intuitively matches
the behavior of STP. An adversary continuously per-
forming inference attacks (e.g., an ISP with a permanent
tap on a smart home’s WAN traffic) will learn which

time periods do mot contain user activity, but will be
unable to determine which of the ¢ fraction of padded
periods do contain user activity. If user activity occurs
more frequently (higher p), any particular padded time
period is more likely to correspond to a user activity. If
non-activity padding occurs more frequently (higher ¢),
any particular padded time period is less likely to cor-
respond to a user activity.

Bandwidth overhead. In order to quantify band-
width overhead, we define two additional quantities, D 4
and D_ 4, the average amount of bidirectional data sent
during periods of user activity and periods of back-
ground traffic without user activity, respectively, be-
fore STP. The expected average bandwidth overhead b
of STP is

_ pRT+ (1—p)gRT + (1 —p)(1 —q)D-2a
pDs+ (1—p)D-a

b (2)

The values of p, D, D- 4, and to some extent R
are determined by users and device developers, but the
STP algorithm can adjust ¢ to trade off adversary confi-
dence and bandwidth overhead. Considering the limits,
q = 0 means that only periods of real user activities are
subject to padding, so the adversary can be certain that
user activity occurred during these periods. ¢ = 0 also
has the lowest bandwidth overhead, because no cover
traffic is sent during periods of no activity. In compari-
son, ¢ = 1 is equivalent to ILP as described in Section 5.
q = 1 has the highest bandwidth overhead because it re-
quires constant cover traffic.

Privacy and overhead tradeoff. By increasing ¢,
adversary confidence decreases according to a power law
while bandwidth overhead increases linearly. The ratio
of adversary confidence to bandwidth overhead is also a
power law:

;=0 (3)

To visualize how ¢ and b change as we vary p and ¢, we
plot Figure 4(a) based on Equations 1 and 2. The hor-
izontal axis shows the bandwidth overhead, b, and the
vertical axis shows the adversary confidence, ¢. There
are two curves, presented in two different colors, which
correspond to p = 0.01 and p = 0.1, respectively. Each
curve has exactly 101 data points. The leftmost point
corresponds to ¢ = 0. The rightmost point corresponds
toqg=1 Weset R’ =1, Dy = 0.9, and D_4, = 0.
These values mean that there is no background traffic,
0.9 units of data are sent per period with user activity,
and 1 unit of data is sent per period of padding.
Regardless of p, both curves follow a typical power
law shape. As ¢ increases from 0, the decrease in c is
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initially drastic but flattens as q approaches 1. This sug-
gests that STP with even a small bandwidth overhead
can significantly reduce adversary confidence and im-
prove privacy. However, when ¢ approaches 1, signifi-
cantly more cover traffic is needed to reduce adversary
confidence by the same amount.

It is informative to consider the extreme points
on the curves in Figure 4(a). The leftmost end where
qg =
curs during real user activities, allowing an adversary

0 represents the case where padding only oc-

to trivially infer when real user activities take place
(¢ = 100%). In contrast, the rightmost end where ¢ = 1
and ¢ = ¢yin = p represents the case where padding oc-
curs constantly and STP effectively becomes ILP. Useful
settings of ¢ for STP occur between these extremes.

6.2 Obfuscating Categorical Metadata

STP is focused on protecting traffic rate metadata
(packet times and sizes) from user activity inference.
However, network traffic flows also contain categorical
metadata, such as protocols, DNS hostnames, and IP
addresses, that could leak information about user ac-
tivities. For example, we were able to use DNS host-
names to identify smart home devices (Section 4.2.1).
DNS queries to specific third-party services (e.g., from
an Amazon Echo to a music streaming platform [3])
could also directly indicate user activities.

In order to completely protect a smart home from
activity inference, STP must be combined with a
method to remove or obfuscate categorical metadata re-
lated to user activities. Fortunately, methods to protect
categorical metadata of network traffic are widely avail-
able. The cleanest method is to tunnel all STP traffic
through a VPN, which groups all smart home traffic
(including DNS traffic) into a single flow with a sin-
gle protocol and packet header information uncorrelated
with user behaviors. Our middlebox STP implementa-
tion (Section 7.1) uses this approach. While requiring
a VPN raises threshold for adoption, personal VPN us-
age is becoming more common due to increased privacy
awareness [19] and availability of non-enterprise VPN
services, such as home routers with built-in VPN [34]
and Google’s Project Fi VPN [26]. Alternatively, specific
categorical metadata could also be protected by existing
protocols, such as obfuscating DNS via DNS over TLS
(DoT) [23], DNS over HTTPS (DoH) [22], or Oblivious
DNS (ODNS) [35]. DoT, DoH, and ODNS traffic may
still need to be shaped separately from non-DNS traffic
to prevent web domain inference from packet lengths
and other rate characteristics [23]. STP would then be

applied to all traffic to prevent user activity inference.
Because sensitive categorical data can be removed from
smart home traffic by existing methods, we focus solely
on traffic rate metadata for our presentation of STP.

6.3 Evaluation with Device Traffic

The duration and bandwidth of user activity traffic
varies across smart home devices and activity types
(Figure 2). We follow a trace-driven approach to evalu-
ate how adversary confidence ¢ and bandwidth overhead
b vary with p and ¢ for STP applied to real device traffic.

Specifically, we implement device traffic generators
that replay traffic recordings from devices in our labo-
ratory smart home. These generators allow us to create
realistic traffic traces with varying probabilities p of user
activities at different times. We then apply STP to the
generated traces at different values of q. We find that
the relationship between ¢ and b for varying p and ¢
matches the expected power law (Equation 3) with con-
stant factor variations across devices.

Generating user activity traffic. We first ana-
lyze traffic recordings from three smart home devices
(Section 4.2) and extract periods corresponding to user
activities. These periods include 7 Wemo switch user ac-
tivities, 9 Amazon Echo activities, and 7 Nest security
camera activities. Wemo switch activities last an aver-
age of 1 second, Echo activities last 2 to 5 seconds, and
Nest camera activities last 8 to 15 seconds.

We then create one generator for each device. At
time ¢, each generator makes a binary decision whether
or not to replay an activity with probability p. If yes, the
generator randomly chooses a period of recorded user
activity traffic and replays it in the generated trace. If
the replayed traffic lasts ¢’ seconds, the generator will
not decide whether to replay another activity until time
t +t'. This creates a generated trace with realistic traf-
fic patterns that occur according to a Bernoulli process
with tunable probability p. For simplicity, we assume
there is no background traffic (D-4 = 0).

Applying STP. We next apply STP to the gener-
ated traffic traces as described in Algorithm 1. We set R
and T set higher than the maximum bandwidth and du-
ration of any replayed traffic period. Figure 3 shows an
example result from the Wemo switch traffic trace with
p = 0.001 and g = 0.01. For this particular example,
adversary confidence ¢ = 2/6 = 33.3% and bandwidth
overhead b = 6.8.

Visualizing STP trade-offs. Figure 4(b—d) shows
the trade-offs between ¢ and b for the three device gen-
erators with varying p and ¢. For each device, we vary
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Fig. 4. STP tradeoff between bandwidth overhead and adversary confidence for different devices and user activity frequencies p. Each

point corresponds to a probability of non-activity padding ¢ ranging from 0 (highest adversary confidence) to 1 (highest bandwidth

overhead) in steps of 0.01. Note the inverse square relationship, which allows STP to achieve low adversary confidence for relatively

little bandwidth overhead.

p from 0.01 to 0.1 and increase ¢ from 0 to 1 at incre-
ments of 0.01. We run the generators to create traffic
traces of over 10,000 seconds. We create 50 traces per
device and plot the mean values of ¢ and b. Similar to
the theoretical result in Figure 4(a), all three curves fol-
low the typical power law shape, which shows increasing
bandwidth overhead to achieve the same reduction in
adversary confidence as ¢ increases. However, there are
three notable differences across devices.

Bandwidth overhead at ¢ = 0. Even at ¢ = 0 (no
non-activity padding), there is still bandwidth overhead
due to padding during user activities. For the Wemo
switch and the Nest camera, the overhead at ¢ = 0 and
p = 0.011is 2.0 and 2.6 respectively, while the overhead is
6.4 for the Amazon Echo. This difference is due to the
variations in user activity traffic rates across devices.
The recorded user activities from the Wemo switch have
a standard deviation in traffic rate that is 4.7% of the
mean. This is compared to 28.7% for Nest camera activ-
ities and 59.2% for Amazon Echo activities. As R and T
are set based on the maximum duration and bandwidth
of traffic during user activities for each device, the band-
width overhead when padding is higher when there are
more variations in traffic rates during user activities.

Curve slope. The bandwidth overhead required to
reduce adversary confidence by the same amount is dif-
ferent across devices. For the Wemo switch, increasing
q from 0 to 0.01 raises the bandwidth overhead from 2.0
to 4.0 and reduces adversary confidence from 100.0% to
51.1%. Effectively, 0.04 average bandwidth overhead is
needed per percentage point decrease in adversary con-
fidence. In contrast, 0.05 and 0.12 average bandwidth
overhead is needed for the Nest camera and Amazon
Echo, respectively. The bandwidth overhead per unit
adversary confidence decrease is highest for the Ama-
zon Echo because its traffic during user activities has

the most variations and requires the most cover traffic
for constant-rate padding.

Adversary confidence and bandwidth overhead at
q = 1. Adversary confidence is highest at ¢ = 1 for the
Nest camera (¢min = 14.2%). This is because the camera
has longer duration user activities that take up a larger
fraction of the total time, resulting in less available time
for non-activity padding. Bandwidth overhead at ¢ =1
(when STP effectively becomes ILP) is correspondingly
lowest for the Nest camera (b = 18.2) because traffic
during user activities is fairly steady and there is less
time to fill with non-activity padding.

Summary. Using a trace-driven approach, we con-
structed three traffic generators for the Wemo switch,
the Nest camera, and Amazon Echo. We showed that
STP bandwidth overhead has an inverse-square rela-
tion with adversary confidence for the p and ¢ values
we tested. Moreover, we demonstrated that the exact
trade-offs between overhead and adversary confidence
differ across devices. Other devices with similar traffic
during user activities as these devices are likely to ex-
hibit similar trade-offs.

6.4 Adapting to Real-World User Behavior

Real-world user behaviors are often more complicated
than the simple Bernoulli model assumed in Section 6.1.
While this assumption simplifies activity confidence and
bandwidth overhead derivations, it does not limit the
generality of STP. Instead, it highlights where the algo-
rithm could be extended to handle more nuanced user
activity patterns that occur in practice.

Activity correlations. Our derivations of ad-
versary confidence and bandwidth overhead assume
that user activities are independent and Bernoulli dis-
tributed. This prevents an attacker from using inter-
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activity intervals, the amount of time between padded
periods, to help distinguish user activities. For many
smart home devices, this assumption holds. Just be-
cause a user turns on a lightbulb at a particular time
doesn’t provide any information a priori about when the
lightbulb will be turned off. Users may query a personal
assistant frequently or infrequently with no apparent
pattern. However, other devices, such as a washer with
distinct cycles, may have priors on the temporal spacing
of user activities that could help an adversary distin-
guish activity and non-activity shaping. Packets from
unknown bidirectional UDP protocols may also exhibit
long-term temporal correlations unknown a priori.

However, STP is still effective even if user activities
exhibit temporal patterns. The decision function can use
a temporal or causal model instead of a Bernoulli distri-
bution to choose when to trigger non-activity padding.
We have found that hidden Markov models can be
trained to mimic the patterns of real user activities
(Appendix Figure 7). Such models could be used to
dictate realistic timings of non-activity padding peri-
ods. An STP implementation could initially perform
ILP (e.g., constant rate padding) while collecting train-
ing data from user activity patterns and then switch to
STP once a better model has been trained. This model
could then be refined online as more user data is ob-
served. Of course, even the best models could be fooled
by long-term recordings and/or external information, as
real user behaviors are driven by variables unavailable to
an on-path network device. Ultimately, STP represents
a tradeoff between privacy and overhead traffic volume.

Long user activities. Some devices may involve
user activities of widely variable or unbounded length.
For example, a user watching a live video feed from a
security camera may check the feed for a few seconds
from a smartphone or may leave the feed open in a
browser for an entire afternoon. STP still works in such
cases, but we have to relax the assumption that all user
activities fit into one time period. Instead, user activi-
ties may span multiple time periods, all padded. Non-
activity padding must also be allowed to span multi-
ple time periods. The durations of non-activity padding
must then be chosen to be statistically indistinguishable
from the distribution of real user activity traffic dura-
tions. This could be performed by fitting a model to the
distribution of user activity traffic durations and using
the model to generate non-activity padding durations.
This model could be continuously refined as more user
data is observed.

Cross-device correlations. The presented STP
algorithm also assumes that there are no correlations be-

tween user activities across different devices. Such cor-
relations would not be present for non-activity padding
periods, making it possible for an adversary to distin-
guish the times of user activities. For example, consider
a home with a smart washer and a smart dryer. It is
unlikely that the dryer will be run before the washer.
Even if washer and dryer activities separately meet all
of the above assumptions, an attacker would still be
able to identify some non-activity padding periods by
comparing across devices.

Information leakage to external adversaries from
cross-device correlations could be prevented by perform-
ing STP at the level of an entire smart home instead in-
dividually for each device. Traffic from all devices would
be merged into a single flow (e.g. over a VPN from a
home gateway router) and then STP could be performed
treating the entire home as a single “device.”

7 STP Implementation

In this section, we describe two ways to implement STP:
on middleboxes (e.g., home routers) and on IoT devices.

7.1 Implemented on Middleboxes

We have created a service that enables STP on any
Linux-based network middlebox, such as a smart home
hub, Wi-Fi access point, or home gateway router. The
service has been tested on the Raspberry Pi Wi-Fi ac-
cess point in our laboratory smart home and consists of
two components: a Python script that performs traffic
shaping and a custom VPN endpoint.

Traffic shaping. The traffic shaping script con-
tains logic to decide when to perform periods of constant
rate padding for STP. The padding itself is implemented
using the Linux kernel’s traffic control system, config-
urable via the tc tool, combined with a user-space pro-
gram that generates cover packets (Appendix Figure 8).
The script applies STP to each device behind the mid-
dlebox (although MAC address filters can be specified
to exclude PCs, smartphones, or other non-IoT devices).
The script logic otherwise matches the STP algorithm
presented in Section 6.1. Default threshold-based activ-
ity detectors and Bernoulli decision functions can be
parameterized or replaced if desired.

VPN. The traffic shaping script automatically con-
nects to an OpenVPN instance hosted on Amazon EC2.
Both VPN endpoints communicate to pad traffic in the
upload and download direction, protecting bidirectional
protocols as described in Section 6.1. Both VPN end-
points also automatically drop cover packets to prevent
them from confusing devices or cloud servers. Cover
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packets are identified as having a destination IP ad-
dress of the VPN endpoint after exiting the VPN tun-
nel, while non-cover packets have other destination IP
addresses (typically the device, cloud server, or DNS
resolver). In future implementations, any unique flag in
cover packet headers or contents could be used to dis-
tinguish cover traffic at VPN endpoints. This flag would
be encrypted inside the VPN tunnel and indetectable by
an adversary with access to the tunneled traffic.
Protection. Performing STP on a middlebox, such
as a home gateway router, protects against activity in-
ference by external adversaries but not from local ad-
versaries with access to device Wi-Fi traffic.
Empirical bandwidth overhead. We replayed

2 in our

12 hours of Internet traffic from three devices
laboratory smart home through the STP middlebox
(Appendix Figure 9). The traffic was collected during
normal use by the smart home inhabitant and contained
traffic from 2-3 user interactions per device plus typical
background traffic (603KB to 2859KB per device total).
Normal device use will vary from home to home, but this
analysis demonstrates that the theoretical performance
of STP (Section 6) is observed with real-world device
usage patterns.

We varied the probability of injecting periods of
cover traffic not during user activities, ¢, from 0 to 1 to
see the tradeoff between bandwidth overhead and ad-
versary confidence (Figure 5). Running STP to protect
a smart home with these devices and similar usage pat-
terns would require only tens of megabytes of extra data
per month, a tiny fraction of the tens to hundreds of
gigabytes that would be required by constant rate ILP
(Section 5.3). The observed STP bandwidth overhead is
also comparable to state-of-the-art padding algorithms
from other contexts? (Section 9).

7.2 Implemented On Devices and Servers

Device developers could alternatively include STP as
a feature of their devices, either as custom code or
a third-party library. STP shaping of upload traffic
would occur on devices, while shaping of download traf-
fic would occur on cloud servers. A unique flag in en-
crypted packet contents (not unencrypted packet head-

2 Amazon Echo, Sense sleep monitor, Belkin Wemo switch

3 At 50% adversary confidence, adaptive padding [38], Tama-
raw (8], and WTF-PAD [25] have reported bandwidth overheads
of ~2.3, 1.7, and ~1.2, respectively. However, these algorithms
do not prevent the user activity inference attack we demonstrate
in this paper (Section 9).
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50% Adversary Confidence

Bandwidth Average Absolute

Overhead Overhead
Amazon Echo 1.63 3.2 bytes/sec
Sleep Monitor 1.07 0.42 bytes/sec
Wemo Switch 1.68 0.80 bytes/sec

10% Adversary Confidence

Bandwidth Average Absolute

Overhead Overhead
Amazon Echo 4.72 19 bytes/sec
Sleep Monitor 1.44 2.4 bytes/sec
Wemo Switch 6.17 6.0 bytes/sec

Fig. 5. STP tradeoff between bandwidth overhead and adversary
confidence during 12 hours of real-world use. For all 3 devices,
50% adversary confidence can be achieved with a bandwidth
overhead of 1.7 or less, and 10% adversary confidence can be
achieved with a bandwidth overhead of 6.2 or less.

ers) would covertly identify cover traffic that should be
ignored by devices and cloud servers. This implemen-
tation approach would require the least user effort. It
would also allow developers to specify distributions of
activity lengths or inter-activity intervals for STP based
on device implementation details or the space of possi-
ble user interactions with their devices.

Performing traffic shaping on devices would protect
first-hop Wi-Fi traffic, preventing both local and ex-
ternal adversaries from performing activity inference.
This is important because many users may be more con-
cerned about details of their in-home behaviors leaking
to nearby adversaries (nosy neighbors, potential bur-
glers, etc.) than to their ISP. However, the cover traffic
required by STP will place increased burden on device
manufacturers’ cloud infrastructure. Although this over-
head is far less than would be required for ILP shap-
ing, device developers will likely be unincentivized to
include STP on devices without a considerable increase
in consumer concern about metadata privacy risks. In
the meantime, traffic shaping at network middleboxes
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remains the most viable option for privacy conscious

smart home device owners.

8 Future Work

Future research efforts could further explore the threat
of activity inference attacks and continue to improve
STP and related defense techniques.

Fine-grained and higher-order user activity
inference. The attack we describe involves mostly bi-
nary inferences (device state changes) from traffic rate
metadata. We are next interested in whether combining
traffic rate metadata with physical layer metadata (e.g.,
Wi-Fi radio signal strengths) can reveal finer-grained
user interactions, such as what smart TV channel a user
is watching. We are also interested in whether combining
metadata from multiple devices could allow an adver-
sary to infer higher-order user behaviors, such as “host-
ing a party” or “late night working.” Fine-grained and
higher-order activity inferences may both constitute pri-
vacy violations, and it would be beneficial if researchers
could warn consumers about these risks.

Individualized adversaries. Section 2 discusses
the threat posed by adversaries with prior knowledge
about user behaviors. We assume a low-prior model for
this work; however, future research could explore pri-
vacy risks of traffic rate metadata against stronger ad-
versaries. Specifically, it would be beneficial to formalize
the space of prior knowledge of user activities (rang-
ing from from no prior knowledge to constant physical
surveillance) and how the effectiveness of STP and other
traffic shaping algorithms vary along this continuum.

Active adversaries. Future work could also con-
sider user activity inference by active attackers. Un-
like undetectable passive surveillance, active adversaries
could interrupt traffic flows and drop packets during pe-
riods of padding. If this is followed by an unusually high
frequency of padded time periods, it may reveal that
the dropped packets contained user activity traffic as
the device tries to troubleshoot the loss of connectivity.

Improved user interaction models. Our use of
hidden Markov models to simulate device behavior (Sec-
tion 6.4) only scratches the surface of future research
to improve user activity timing models. Such improved
models will be necessary to prevent higher-order cor-
relations from revealing which traffic rate changes in
STP indicate real user activities. However, a strength
of STP is that different user interaction models can be
easily incorporated to determine the timings of shaped
traffic periods. While the specific formulas for adversary
confidence and bandwidth overhead will change, the un-

derlying reasoning about the tradeoff between privacy
and data use provided by STP will still hold.

Reducing STP bandwidth overhead. STP
shapes traffic to fixed patterns chosen to cover all pos-
sible user activity traffic flows. This means that rela-
tively low-volume flows from user activities could re-
quire large amounts of cover traffic to match these fixed
patterns. Future work could further reduce the band-
width overhead of STP by allowing more fine-tuning
of shaped traffic to account for low bandwidth “mice”
and high-bandwidth “elephant” flows. Rather than R,
and R4, STP implementations could have more options
for shaped traffic patterns with mean rates [Rp, R1,. .. ].
Time periods with real user activity would be padded
to the pattern with the minimum R, that still cov-
ers the device traffic. This is reminiscent of defenses
against website fingerprinting proposed by Nithyanand
et al. [32] and Wang et al. [43], which shape finite length
traffic flows to match supersequences over anonymity
sets of packet sequences.

However, care would have to be taken when choos-
ing which patterns to use for time periods without user
activity. The frequency and timing of each pattern could
create a new channel that leaks information about the
likelihood of these periods containing only cover traf-
fic. Combining multiple shaped traffic patterns with
the real-world considerations discussed in Section 6.4
would introduce additional multi-variable relationships
to STP, complicating adversary confidence and band-
width overhead derivations into a topic for future work.

9 Related Work

This paper draws on a rich history of related research
on traffic analysis attacks and prevention techniques.
The attack we describe is similar in spirit to the Finger-
print and Timing-based Snooping (FATS) attack pre-
sented by Srinivasan et al. in 2008 [39]. The FATS at-
tack involves activity detection, room classification, sen-
sor classification, and activity recognition from Wi-Fi
traffic metadata from a sensor network deployed in the
home, the precursor to today’s smart home IoT devices.
In contrast to our attack, FATS relies on radio finger-
printing and signal attenuation measurements that are
not available to external adversaries.

Other research has demonstrated traffic analysis at-
tacks on specific IoT devices [2, 3, 21]. Copos et al. [11]
used metadata to detect transitions between Home and
Auto Away modes of Nest Thermostat and Nest Pro-
tect devices. Our work re-emphasizes metadata privacy
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concerns demonstrated by these projects for a broader
range of modern smart home devices.

Our attack also draws from side-channel privacy at-
tacks using network traffic metadata on anonymity net-
works [5, 31], Internet browsing patterns [16, 20], and
user/device fingerprinting [6, 27, 42].

Similarly, our development of STP was motivated
by existing work on traffic shaping for privacy. Park et

’ a technique re-

al. have described “activity cloaking,’
lated to STP which is designed to protect against the
FATS attack [33]. Activity cloaking involves some de-
vices generating fake data to mimic actual private ac-
tivities. This is similar in motivation to STP, but has
several important distinctions. Activity cloaking doesn’t
shape traffic from real activities, requires participation
of many devices (and corresponding adoption by many
devices/companies), and is focused on Wi-Fi eavesdrop-
pers rather than WAN observers.

Liu et al. have described a community-based differ-
ential privacy framework to protect smart homes against
traffic analysis [28]. Their approach involves sending
traffic between the gateway routers of multiple cooper-
ating smart homes before forwarding it to the Internet.
This obfuscates the originating home of the traffic with
minimal bandwidth overhead. However, this approach
could result in long network latencies if the homes are
not geographically proximal, and the requirement that
multiple homes cooperate raises the bar for adoption.

Finally, STP was motivated by research on traf-
fic shaping to prevent website fingerprinting and flow
correlation in anonymity networks, primarily Tor. This
includes independent link padding algorithms [18, 41],
such as BuFLO [14], which force traffic to match a pre-
defined schedule or distribution independent of the un-
shaped traffic, and dependent link padding algorithms,
in which unshaped traffic patterns affect the shaped out-
put. Independent link padding algorithms are effective
at preventing user activity inference (Section 5.3). How-
ever, most recent dependent link padding algorithms
cannot protect against user activity inference.

Dependent link padding algorithms include adap-
tive padding, proposed by Shmatikov and Wang, which
forces inter-packet intervals of short-lived web commu-
nications through an anonymity network node to match
a pre-specified probability distribution [38]. Wang et al.
also designed an algorithm that uses matched packet
schedules to prevent an observer of an anonymity net-
work mix node from pairing incoming flows with out-
going flows [46]. In 2016, Juarez et al. applied adaptive
padding to prevent Tor website fingerprinting (WTF-
PAD) [25]. Cai et al. also presented a defense against

Tor website fingerprinting (Tamaraw) that shapes web-
site downloads to multiples of a padding parameter L
packets [8]. Wang and Goldberg have also proposed a
defense against website fingerprinting (Walkie-Talkie)
that uses half-duplex communication to limit the infor-
mation available to the adversary [45].

These dependent link padding techniques allow pe-
riods of higher or lower traffic rates to be preserved in
the shaped output as long as the traffic is smoothed
to be indistinguishable from traces from other websites.
However, unlike STP, none of these techniques introduce
periods of high traffic rates during device (or browser)
quiescence to confuse adversaries about when user ac-
tivities occur. Applying these techniques to smart home
traffic would still allow an adversary to perform user
activity inference, because fluctuations in shaped traffic
rates would still be likely correlated with user activities.

Ultimately, we cannot use one of these existing tech-
niques instead of STP, because defending against web-
site fingerprinting is a fundamentally different problem
than user activity inference with quite different assump-
tions and goals. Website fingerprinting involves compar-
isons between traffic traces (e.g. “Is this trace similar
to previous traces known to be from fetching a par-
ticular website?”) while user activity inference involves
analysis of patterns within a single trace (e.g., “Is this
traffic spike substantively higher than the background,
suggesting a user interaction has occurred?”). In other
words, website fingerprinting asks “which website is be-
ing fetched?” while user activity inference need merely
ask “is any website being fetched?” Any use of a single-
purpose smart home device may indicate a behavior
that a user considers private.

10 Conclusion

The privacy threat from Internet traffic metadata will
continue to grow along with the market for IoT smart
home devices. In this paper, we show that a passive net-
work adversary can infer private in-home user activities
from smart home traffic rates even when devices use
encryption. We introduce “stochastic traffic padding”
(STP), a traffic shaping algorithm which uses intermit-
tent periods of traffic padding to limit the information
revealed about user activities through traffic rate meta-
data. STP provides a tunable tradeoff between adver-
sary confidence and bandwidth overhead, allowing suf-
ficient privacy protection without significantly decreas-
ing network performance or consuming data caps. We
demonstrate the effectiveness of STP on traffic traces
from real smart home devices and present an imple-
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mentation for smart home hubs, Wi-Fi access points,
and gateway routers.
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loT Device Identifying DNS Query
Amcrest Security Camera dh.amcrestsecurity.com
Amazon Echo device-metrics-us.amazon.com
Belkin Wemo Switch prodl-fs-xbcs-net-1101221371
D-Link Wi-Fi Camera signal.auto.mydlink.com

Geeni Lux lightbulb a.gw.tuyaus.com

Google Home clientsl.google.com

Nest Cam Indoor nexus.dropcam.com

Orvibo Smart Socket wiwo.orvibo.com

Phillips Hue Starter Set diagnostics.meethue.com
Samsung SmartCam Xmpp.samsungsmartcam.com
Samsung SmartThings Hub  dc.connect.smartthings.com
Sense Sleep Monitor sense-in.hello.is

TP-Link Smart Plug devs.tplinkcloud.com

Wink Hub agent-vl-production.wink.com

Table 2. DNS queries from smart home devices during a representative packet capture that are easily attributable to a specific device

or manufacturer.
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Fig. 6. All tested loT devices send DNS requests for unique and mostly non-overlapping sets of domains. This allows the destination IP

addresses of packets from these devices to serve as fingerprints for device identification.

Device

Functionality

Description

Amazon Echo limited Can use as a bluetooth speaker with previously paired smartphone
Echo recognizes “Alexa" keyword but does not provide any voice-control features
Belkin Wemo Switch limited Can turn switch on/off with physical button on device
Cannot use smartphone app to control device even when phone on local network
Orvibo Smart Socket limited Can turn switch on/off with physical button on device or smartphone app on local network
TP-Link Smart Plug limited Can turn switch on/off with physical button on device or smartphone app on local network
Nest Security Camera none Unable to view video feed or receive detected motion notifications
Amcrest Security Camera none Unable to view video feed or control camera direction
Sense Sleep Monitor none Monitor does not record sleep data

Light-based Ul does not reflect local sensor readings
Cannot use smartphone app to control device or access current data

Table 3. Tested commercially-available loT devices had limited or no functionality when firewalled to prevent communication outside

of the smart home LAN.


dh.amcrestsecurity.com
device-metrics-us.amazon.com
prod1-fs-xbcs-net-1101221371
signal.auto.mydlink.com
a.gw.tuyaus.com
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xmpp.samsungsmartcam.com
dc.connect.smartthings.com
sense-in.hello.is
devs.tplinkcloud.com
agent-v1-production.wink.com
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Variable Definition

c Adversary confidence
Cmin Minimum adversary confidence
b Bandwidth overhead
p Probability of user activity during any time period
q Probability of padding during time periods indepen-
dent of user activity
R Mean rate of all padded traffic (R, + Rq4)
R, Mean rate of padded traffic in upload direction
Ry Mean rate of padded traffic in download direction
T Time period length
t Time
Dy Mean traffic (data) volume during time periods

with user activity
D_ 45 Mean background traffic volume during time peri-
ods without user activity

Table 4. Variables used in STP presentation and evaluation. Adversary confidence (c) and bandwidth overhead (b) are described in
Section 5. All other variables are described in Section 6.1.
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Fig. 7. The start times of spikes in smart home device traffic traces simulated by hidden Markov models could be used to dictate real-
istic timings of non-activity padding periods in STP.
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Fig. 8. lllustration of our traffic shaping implementation for periods of constant rate padding during STP, including cover traffic gen-

eration and traffic control in the kernel. Device packets in the high priority queue are always sent before cover packets in the low prior-
ity queue. Cover packets are generated faster than the shaped rate, ensuring that cover packets are always present in the low priority
queue. The token bucket shaper has a buffer size of 1 token. The rate of token arrival is set to the shaped traffic rate.
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Fig. 9. 12-hour traffic traces from three smart home devices during normal use before and after STP. STP is applied in both the in-
bound and outbound directions, with shaped traffic rates R and time period lengths T' chosen to cover user activities in each direction.
Traffic rate thresholds for triggering padding during user activities are labeled with “Cutoff” lines. For these examples, the probability
of injecting periods of cover traffic independent of user activities ¢ was set to 0.05. As intended, STP adds additional traffic spikes for
all devices, reducing adversary confidence in which spikes correspond to real user activities.
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