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document edits. This protocol is sufficient if the set of

participants in a collaboration group is fixed.

1.1 Adding a new collaborator

Further challenges arise if new collaborators may be in-

vited to join the editing session for an existing docu-

ment. In this case, the new collaborator must be given

a copy of the document at the time she is invited, and

then be sent any subsequent edits to the document. We

identify three approaches to inviting new collaborators:

1. If the existing collaborators keep a log of all editing

operations that have occurred since the creation of

the document, they can send a copy of that log to

the new collaborator, who can then reconstruct the

current state of the document from the edits. The

new collaborator can also use the hashes and signa-

tures on the operations to verify the integrity of the

edit log. This approach is used by the protocol in

§4, but it has significant disadvantages. In partic-

ular, storing, transmitting, replaying, and checking

the integrity of the edit log incurs substantial costs

in storage, network bandwidth, and processing time;

and the edit log contains all past versions of the doc-

ument, including any text that has been deleted in

the current version.

2. To reduce the cost and improve the privacy prop-

erties of the first approach, the new collaborator

could be sent only a snapshot of the current state of

the document, not including its past editing history.

To ensure consistency, each existing participant can

be asked to confirm the validity of the snapshot.

However, if any existing participants are offline, the

new participant must either wait (potentially indef-

initely) until they are next online, or go ahead and

accept the risk that its snapshot is inconsistent with

other participants’ view of the document.

3. To overcome the downsides of the first two ap-

proaches, we develop a new protocol in §5. In this

protocol, new collaborators are only sent a snapshot

of the current state of the document, plus a crypto-

graphic proof of the integrity of the snapshot. The

new collaborator can then use this proof to verify

the integrity of the snapshot, without having to wait

for any communication with other participants.

1.2 Contributions of this paper

The contributions of this paper are as follows:

– We propose a scheme for cryptographically verifying

the consistency of a shared text document between

collaborators without relying on a trusted server.

Furthermore, the scheme allows devices to be in-

vited to a group of collaborators by sending new de-

vices a snapshot of the shared document; this snap-

shot does not contain any deleted text or the editing

history, and therefore has better privacy and scala-

bility properties than a naive solution.

– In §5 we propose a scalable implementation of the

scheme based on RSA accumulators and Merkle

trees, and we prove (in the appendix) that our pro-

posed protocol satisfies the required security and

consistency properties.

– We evaluate the practicality of a prototype imple-

mentation using the editing history of Wikipedia ar-

ticles. In our experiments, 99% of insert operations

were processed within 11.0 milliseconds, and within

64.9 milliseconds for delete operations. We further

achieved a median 84% reduction in the amount of

data that needs to be transferred to a new collab-

orator by using authenticated snapshots (§5) com-

pared to a basic protocol (§4) that transfers the full

editing history.

– We propose a number of optimizations to reduce the

constant factor overhead of both computation and

communication in our prototype implementation.

2 Background

2.1 Conflict-free Replicated Data Types

We make use of operation-based Conflict-free Repli-

cated Data Types (CRDTs) [33] in order to ensure that

concurrent edits to a document can be merged by user

devices without conflicts. We have chosen CRDTs be-

cause they do not need a central server – data can flow

directly between devices. CRDTs do not need conflict

resolution or transformation of operations, because op-

erations are designed such that concurrent operations

can be applied conflict-free in any order. In the context

of CRDTs we call each device a replica, since it has a

copy of the shared document. Updates at a replica are

applied locally immediately without any synchroniza-

tion, and are broadcast asynchronously to other repli-

cas. All replicas converge to the same state provided
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Fig. 1. Possible tree representation of the string “abcde” as used

in Treedoc.

that they receive all updates eventually, a consistency

model known as strong eventual consistency [33]. Unlike

consensus protocols, CRDTs remain available under ar-

bitrary network partitions (in the sense of the CAP the-

orem [3, 14]), so they are able to support offline editing.

Treedoc

Treedoc [28] is an example of an operation-based CRDT

for collaborative editing of text documents. The proto-

cols we present in §4 and §5 use Treedoc for its simplic-

ity, but would also work with other CRDTs.

Treedoc models a shared document as a sequence

of atoms. An atom is the smallest unit of content sup-

ported by the editor, e.g. a character of text. The basic

idea of Treedoc is to assign a unique position identifier

pos to every atom. Position identifiers are totally or-

dered, such that the total order is consistent with the

order of the atoms in the document. Additionally, the

space of position identifiers is dense, i.e. for any position

identifiers pos1 and pos2, one can create a new position

identifier posnew with the property pos1 < posnew < pos2.

Treedoc allows two operations:

– insert(pos, atom): Inserts the new atom atom into the

document at position pos.

– delete(pos): Removes the atom at position pos. For

the operation to be valid, such an atom must exist in

the state of the device that initiates the operation.

In Treedoc, position identifiers are defined to be

paths in a binary tree. For example, Figure 1 shows a

possible representation of the string “abcde”, in which

the path for character ‘e’ is “11”. The order of atoms

in the document is given by an infix-order depth-first

traversal of the tree. When inserting a new atom, a new

position identifier is generated by creating a suitable de-

scendant of the node to the left or right of the desired

insertion position. However, this alone is not enough to

guarantee uniqueness of the identifier, since more than

one user can perform insertions concurrently. To solve

this, Treedoc attaches a disambiguator to each node. We

define disambiguators to be (ctr , replicaID) pairs, where

replicaID is the unique identifier of a replica, and ctr is

a per-replica counter.

2.2 RSA Accumulators

A cryptographic accumulator allows a finite set X to be

accumulated and represented by a single, constant-sized

value, accX . For every element s ∈ X , one can efficiently

compute a witness ws∈X that can be presented to prove

the membership of s with regards to accX , i.e. proving

that s is part of the set accumulated in accX . However,

it is computationally infeasible to compute a witness for

an element x /∈ X (collision-freedom).

RSA accumulators [1, 2] are based on the hardness

of the RSA problem. An RSA accumulator requires an

RSA secret key consisting of two safe primes p and q,

and a base value x that is drawn randomly from the

cyclic group of quadratic residues modulo N , where N =

pq is the RSA modulus [9]. In the elementary form of

the accumulator, the accumulator value is calculated as:

accX = x

∏

a∈X
a

mod N. (1)

Due to the multiplications in the exponent, the elements

to be accumulated are restricted to prime numbers for

collision-freedom.

To remove the restriction to prime numbers, Barić

and Pfitzmann proposed a variant of the accumula-

tor that uses prime representatives [1]. They construct

prime representatives as follows. The prime represen-

tative h(a) for an element a is computed as h(a) =

2lΩ(a) + d, where Ω(a) is a random oracle (in prac-

tice replaced by a secure hash function), l is suitably

large, and d is an l-bit number chosen such that h(a) is

a prime. In other words, one appends l low-order bits

to Ω(a) such that the result becomes prime. A suitable

d can be found by using a standard primality test [29]

and trying all odd d starting from 1.

To show that an element b ∈ X is accumulated in

accX , one presents a witness wb∈X computed as:

wb∈X = x

∏

a∈X −b
a

mod N. (2)

Thus, a witness for an element is equal to the accumu-

lator value for all the remaining accumulated elements.

To verify the correctness of the witness, one checks:

wb
b∈X = accX mod N. (3)

In addition to memberships proofs for individual ele-

ments, RSA accumulators allow us to prove a subset
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relationship S ⊆ X with a single witness. This witness

is computed by accumulating all remaining elements,

and verification works accordingly:

wS⊆X = x

∏

a∈X \S
a

mod N, (4)

w

∏

a∈S
a

S⊆X = accX mod N. (5)

Note that computing a witness does not require

knowledge of the secret key; it requires only x, N , and

the accumulated set X .

3 System architecture

We envision a collaborative document editing system

with an arbitrary number of users, each of whom may

own one or more devices. Document editing software is

installed on each device, allowing the user to create a

new document, invite others to collaborate on a docu-

ment, and join an existing document. The software al-

lows users to edit any document regardless of whether

they are currently connected to a network or not; if no

network connection is available, then document changes

are applied locally and sent to peers when network con-

nectivity returns. Modelling typical mobile devices, we

assume that devices may frequently be offline, and that

devices may suffer a permanent failure without warning,

e.g. if dropped in water.

3.1 Threat model and design goals

We assume the adversary is able to control network com-

munication and can read, modify and delay any traffic,

including partitioning the network for arbitrary periods

of time. Further, we assume the adversary can create an

arbitrary number of fake users with devices that may

participate in group collaboration; these devices may

deviate arbitrarily from the protocol.

We assume that an existing key exchange and en-

cryption protocol protects the confidentiality of mes-

sages sent via the network. In addition, we assume a

public key infrastructure through which collaborators

are able to find each others’ public keys. The adver-

sary cannot compromise the public-key infrastructure

and does not have access to secret keys of honest partic-

ipants; therefore, the adversary cannot forge messages

or signatures created by honest participants.

On top of this infrastructure, our protocol provides

the following properties in the face of the adversary:

Edit integrity. The shared document can only be

modified by a group member.

Attributability. All edits are attributable to the hon-

est device that made the modification. Group mem-

bers can identify who added a certain part of a doc-

ument, even if it was added before they joined.

Consistency. Devices have consistent views of the doc-

ument. When an honest device processes an edit

operation, it must have previously processed exactly

those edits that happened before this operation, and

possibly some concurrent edits.

Snapshot consistency. On joining a group, a new

member can check the integrity of the document,

i.e. they can verify that the state is consistent with

states seen by other collaborators. In particular,

they can verify that all modifications made or seen

by collaborators up to a certain point are repre-

sented in the snapshot, and that no modifications

were falsely attributed to a collaborator.

Edit history privacy. A new group member cannot

see edits made before she joined the group, other

than what can be inferred from the document state

when she joins; in particular, she cannot see parts of

the document that were deleted before she joined.

Convergence. When honest group members commu-

nicate, their local copies of the shared data converge

towards a consistent state, even if arbitrarily many

group members are malicious.

Availability. Any two participants can collaborate on

a document, even if all other collaborators are off-

line; in particular, the protocol does not require any

quorum of devices to be reachable.

Scalability. Assuming a bounded number of collabo-

rators, protocol messages add only a constant size

overhead compared to a simple protocol that does

not allow authenticated snapshots; communication

and computational overhead for inviting a new

member, sending and processing a snapshot is prac-

tically linear in the number of atoms in the docu-

ment at the time of the snapshot.

We prove in the appendix that the protocol de-

scribed in §5 satisfies these properties. The properties

protect against different kinds of attacks an adversary

might attempt. For example, an estate agent selling a

house could try to present different views of a contract

to different parties, showing different sale prices and

keeping the difference. In a collaborative code editor,

an attacker may want to insert malicious code and at-

tribute it to someone else.
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Edit history privacy allows, for example, lawyers to

collaborate on a contract and later share it with a third

party, while ensuring that the third party is unable to

see potentially sensitive contents of any previous ver-

sions of the contract. Edit history privacy is also useful

when researchers working on a paper want to share a

draft with a colleague, but would prefer not to reveal

previous unpolished versions of the paper.

4 Basic protocol

In this section, we propose a basic protocol for collabo-

rative editing of a text document that relies on all col-

laborators having a copy of the full editing history of the

document. In §5 we will show how to improve the proto-

col’s privacy properties so that new collaborators can be

given a snapshot containing only the current document

state, and not the past editing history.

The document is initially created on one particular

device, and any existing device can add a new collab-

orating device using an addDevice operation (see §4.3).

We assume that each device is identified by a unique

device identifier, deviceID, which may for example be a

hash of its public key.

Following the Treedoc algorithm [28], we represent a

collaboratively editable text document by a set of atoms.

Each atom represents an editable unit of text, for exam-

ple, a character, a word, a line, or a sentence, and the

metadata associated with it. The granularity of atoms

can be chosen depending on the application, and does

not affect the operation of the protocol.

An atom is a 4-tuple (pos, src, ctr , txt):

– pos is a variable-length bit string that identifies a

position in the document as in Treedoc (§2.1).

– src is the deviceID of the source (the device on which

the atom was originally created).

– ctr is a sequence number that is incremented by the

sender as described in §4.1.

– txt is a text fragment (character, word, or line).

Note that an atom can be uniquely identified both by

its position identifier, and by the tuple (src, ctr).

The text of the document is obtained by sorting the

set of atoms in lexicographical order of the position iden-

tifier, and concatenating the associated text fragments

in that order. We allow the text to be edited through

two types of operation: inserting an atom, and deleting

an atom. Replacement of text is expressed as deletion

and subsequent insertion.

4.1 Sending messages

Collaborators communicate by sending and receiving

messages. Each collaborator maintains a set of messages

it has sent and received; for example, msgsA is the set

of messages sent or received by A.

Each message is a 5-tuple (src, ctr , op, deps, sig),

constructed as follows:

– src is the deviceID of the source (the device that

created the message).

– ctr is a sequence number that is 1 for the first mes-

sage sent by a particular src, and incremented for

each subsequent message from src.

– op is an operation: either insert(pos, text) to repre-

sent the insertion of a new atom, or delete(src′, ctr ′)

to represent the deletion of an existing atom, or

addDevice(deviceID, publicKey) to announce the ad-

dition of a collaborator device, or noop if the docu-

ment has not been changed. The noop operation is

useful so a device can acknowledge that it has seen

a certain state without performing any changes.

– deps is the set of dependencies of this message, that

is, a reference to the most recent prior message from

each device; more precisely it is a set of triples con-

sisting of the source deviceID, the sequence number

of the most recent message seen from that source,

and the hash of that message:1

deps =
{

(s, c, h(m)) | (6)

m ∈ msgssrc ∧ m = (s, c, , , ) ∧

∄ c′. ((s, c′, , , ) ∈ msgssrc ∧ c < c′)
}

.

The hash h(m) of message m = (src, ctr , op, deps, ),

is computed as a cryptographic hash of the message

contents (excluding the signature), and is used to

check that all collaborators have received the same

message contents:

h(m) = H(src ‖ ctr ‖ op ‖ deps). (7)

H(· · · ) can be any secure hash function, such as

SHA-256. Note that this creates a directed acyclic

1 We use the underscore as placeholder for a fresh, existen-

tially quantified variable. For example, (x, , ) ∈ A is short-

hand for ∃ y, z. (x, y, z) ∈ A, and ∄ (x, , ) ∈ A is shorthand for

∄ y, z. (x, y, z) ∈ A.



Snapdoc: Authenticated snapshots with history privacy in peer-to-peer collaborative editing 215

graph of hashes, where each message references the

previous message from the same device and any

messages received from other devices. This hash-

DAG is similar to the commit history in the Git

version control system.

– sig is a digital signature of the preceding elements

of the message tuple, using the private key of the

sender src:

sig = signsrc(docID ‖ src ‖ ctr ‖ op ‖ deps), (8)

where docID is a document identifier that uniquely

identifies the document. We assume that the doc-

ument identifier is known to all participants, e.g.

through the messaging protocol.

When the source device src sends a message m, it

adds the message to its message set:

msgs′
src = msgssrc ∪ {m}. (9)

m is sent to the other collaborators using a secure mes-

saging protocol, which we elide in this description. Any

protocol that protects the confidentiality and integrity

of the message against network attackers can be used.

4.2 Receiving messages

When a message m = (src, ctr , op, deps, sig) is received

by a destination device dst, the destination device per-

forms the following checks:

1. There is no existing message from the same src with

a counter value greater than or equal to the incom-

ing message:

∀c. (src, c, , , ) ∈ msgsdst =⇒ c < ctr . (10)

2. The dependencies are satisfied:

deps ⊆
{

(s, c, h(m′)) | m′ ∈ msgsdst ∧ (11)

m′ = (s, c, , , )
}

If msgsdst does not contain the dependencies be-

cause they have not yet been delivered, the message

m can be buffered locally, and the destination device

can request retransmission of the missing messages.

Then the delivery of m can be retried after other

messages have arrived. However, if the check fails

because the hashes are mismatched, m must be re-

jected.

3. sig is a valid signature of docID ‖ src ‖ ctr ‖ op ‖ deps,

checked with src’s public key.

If all of these checks succeed, m is added to the desti-

nation device’s message set:

msgs′
dst = msgsdst ∪ {m}. (12)

Assuming second preimage resistance of the hash func-

tion and unforgeability of the signatures, the destination

device knows that msgsdst ⊇ msgssrc if the above checks

succeed, since the hashes in deps transitively include all

messages in msgssrc at the time the message was sent.

Finally, on any device A, the set of atoms S(msgsA)

that make up the document is the set of atoms that

have been inserted but not deleted:

S(msgs) =
{

(pos, src, ctr , txt) | (13)

(src, ctr , insert(pos, txt), , ) ∈ msgs ∧

∄ ( , , delete(src, ctr), , ) ∈ msgs
}

The text of the document is obtained by sorting this set

of atoms as described in §2.1.

4.3 Adding a new collaborator

When an existing collaborator wants to add a new de-

vice as a collaborator, it first broadcasts a message con-

taining an addDevice(deviceID, publicKey) operation to

announce to other devices that a certain device has been

added. Moreover, the device A that invites the new col-

laborator must send the entire set msgsA to the new

device. The new device can then check the integrity of

these messages by performing the same checks as in §4.2.

If A is malicious, it may try to make the new device’s

document diverge from the rest of the group. However,

A is limited to two attacks: it can give the new device an

old version of the document (corresponding to a subset

of msgsA), and it can give the new device a document

containing edits that have not yet been sent to other

collaborators. In either case, when the new collabora-

tor communicates with other group members, they will

exchange the missing operations.

5 Privacy-enhanced protocol

The protocol described in §4 has the problem that the

full editing history, including any deleted past content

of the document, is exposed to a new collaborator when

she joins. In this section we present a revised protocol

that avoids this problem.

Specifically, we want to be able to send a new col-

laborator a snapshot containing only the current set of
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Variable Description §

docID Unique identifier of shared document 4.1

src Unique deviceID of source device 4.1

ctr Per-device message sequence number 4.1

op Operation 4.1

pos Position identifier 2.1

txt Atomic text fragment 4

deps List of dependencies of a message 4.1

sig Signature of message signed by source 4.1

h(m) Hash of message m 4.1

S(msgs) Atoms inserted but not deleted in msgs 4.2

r Per-message random nonce 5.1

acc Accumulator value of current set of atoms 5.1

Tsrc Merkle tree of messages from device src 5.1

Tsrc[c] Tsrc up to message with ctr = c 5.1

mh Hash of Merkle tree roots for all devices 5.1

msgsd Set of messages processed by device d 4.1

Sd Set of atoms in device d’s document view 5.1

sdesc Set of state descriptors for all devices 5.3.1

mproofs Merkle consistency proofs 5.3

mnodes Merkle tree nodes sent to new device 5.3

wit Witness for atoms present in device’s view 5.3.1

Table 1. Variables used in the description of the privacy-enhanced

protocol.

atoms, rather than the full set of operations that led

to it. However, simply changing the protocol of §4.3 to

send S(msgsA) instead of msgsA removes any ability for

the new collaborator to check the integrity and consis-

tency of the document, since she cannot use the checks

in §4.2. Thus, a malicious device could send the new

collaborator an arbitrarily corrupted set of atoms.

To allow the new collaborator to verify that the

snapshot is consistent with the sets of atoms on other

devices, we use RSA accumulators [1, 2] as described in

§2.2. Each device generates an RSA key N = pq and

makes the modulus N public. The accumulator base x

can be fixed.

Devices use those accumulators to attest to their

current state (set of atoms) with every message they

send. When a new device is added, the device sending

the invitation provides a snapshot of the document con-

taining the latest signed accumulator from each device,

and cryptographic proofs that the accumulated sets of

atoms are consistent with each other. To ensure that the

signed accumulators from different devices correspond

to states in a consistent edit history, the snapshot also

includes a set of appropriate Merkle tree consistency

proofs. Each message additionally contains a hash over

all messages processed by the sender so far. The re-

mainder of this section will explain these constructions

in more detail.

Since the following protocol description contains a

considerable number of variables, for reference, Table 1

contains a list of the variables used, with a short de-

scription and the section where the variable is defined.

5.1 Sending messages

We update the definition of a message in §4.1 by adding

three additional elements: a nonce r , an accumulator

acc, and a hash mh. In our revised definition, a message

is an 8-tuple (src, ctr , op, deps, r , acc, mh, sig):

– src, ctr , op, and deps are defined as in §4.1.

– r is a 128-bit random prime.

– acc is the value of an RSA accumulator over the

current set of atoms Ssrc = S(msgssrc), which is

derived from msgssrc as shown in (13), and r :

acc(Ssrc, r) = x
P (Ssrc)r
src mod Nsrc, (14)

where P (S) =
∏

a∈S

prime(a). (15)

The function prime(a) is a hash function that re-

turns only prime numbers, as described in §2.2. We

accumulate r in addition to the set of atoms to

make the accumulator indistinguishable, i.e. to pre-

vent a new collaborator guessing the accumulated

set based on the accumulator value and therefore

learning about deleted atoms [9]. The nonce is sent

to current collaborators, since it is required for the

witness calculation in (22), but it is omitted from

snapshots sent to new collaborators, as described

in §5.3. The accumulator can be maintained incre-

mentally, so it does not need to be recalculated from

scratch for every message sent.

– mh is the hash of a set of Merkle trees, defined as

follows. Let Ts be a Merkle tree [23] containing all

message hashes received from device s in order of

their sequence number (including the current mes-

sage if s is the sending device src), and let MTH(Ts)

be the Merkle Tree Hash of Ts. Then

mh = H
(

{

MTH(Ts) | s is a deviceID
}

)

. (16)

In §5.3.3 we use this construction to prove that the

sequence of messages from a particular sending de-

vice is an append-only sequence, following the ap-

proach of Certificate Transparency [10, 20]. To en-

sure that mh is unique, the elements of the set are

hashed in a fixed order, e.g. in lexicographic order

of deviceIDs.
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– sig is extended to also cover the accumulator and

the Merkle Tree Hash. Moreover, instead of op, we

include h(m) in the data to be signed:

sig = signsrc(docID ‖src ‖ctr ‖h(m)‖deps ‖acc ‖mh).

(17)

This construction allows a new collaborator to ver-

ify the signature of a partial message without neces-

sarily knowing the operation contained in the mes-

sage. The hash of the message, h(m), is extended by

the nonce and accumulator:

h(m) = H(src ‖ ctr ‖ op ‖ deps ‖ r ‖ acc),

where m = (src, ctr , op, deps, r , acc, ).
(18)

5.2 Receiving messages

When a message m = (src, ctr , op, deps, r , acc, mh, sig)

is received by a device dst, it first performs the same

checks as in §4.2.

Next, to validate the accumulator acc, dst computes

the set of atoms that existed on the source device src

at the time m was sent. To this end, we first find the

subset of messages in msgsdst that are referenced in the

message dependencies deps:

msgsIn(deps) =
{

(s, c, , , , , , ) ∈ msgsdst | (19)

∃ c′. (s, c′, ) ∈ deps ∧ c ≤ c′
}

As defined in (13), the set of atoms at the time m

was sent is the set of atoms that were inserted but not

deleted in the set of messages msgsIn(deps)∪{m}. Thus,

dst can check that the accumulator satisfies:

acc
?
= x

P (S(msgsIn(deps) ∪ {m}))r
src mod Nsrc. (20)

If dst has already verified the message hash h(m),

this check is redundant and only serves to verify that

src has calculated acc correctly. However, dst can only

verify the hash if it can compute the hashes of all depen-

dencies, which may not be the case if it does not know

the full operation history because it has joined from a

snapshot (as described in §5.3). If any dependencies of

a message predate (or happened concurrently to) the

snapshot from which dst was initialised, verifying the

accumulator allows dst to check that the sender’s state

is consistent with its own.

If dst has already verified an earlier accumulator

accold (with corresponding nonce rold) from src, it can

compute the new accumulator incrementally.

Lastly, the destination device verifies that mh has

been computed correctly by recomputing the value

based on its own operation hash trees.

5.3 Adding a new collaborator

Similarly to the process in §4.3, the device sending

the invitation first broadcasts a message containing an

addDevice(deviceID, publicKey) operation to the exist-

ing collaborators, where the public key now also con-

tains the accumulator RSA modulus of the device. Next,

the collaborator A who invites the new device sends a

snapshot to the new device. The snapshot is a 4-tuple

(SA, sdesc, mproofs, mnodes), where SA = S(msgsA) is

A’s current set of atoms, as defined in (13). We show in

§5.3.1 how sdesc is constructed and checked, and we dis-

cuss mproofs and mnodes in §5.3.3. Using the snapshot,

a new device B can start collaborating from the current

state, but does not learn contents that were added to

the document earlier but deleted since then. Note that

to ensure this privacy property, devices must not for-

ward a message to devices that were added later (in the

dependency graph) than the message. After B has re-

ceived a snapshot, it immediately broadcasts a message

containing a noop operation. The accumulator value of

this message allows other devices to verify that B has

received a set of atoms consistent with their own. Be-

cause B cannot verify the hashes of dependent messages

that happened before or concurrently to a snapshot, it

must only accept messages that happened after its noop

message. If any messages happened concurrently to the

snapshot, B must request a new snapshot that also con-

tains the effects of these concurrent messages. Whether

a message was created logically before, after, or concur-

rently to another message, can be determined straight-

forwardly based on the sequence numbers in the message

and its dependencies.

5.3.1 State descriptors

sdesc is the set of state descriptors, one for each of

the existing collaborators. A state descriptor is an

8-tuple (src, ctr , hash, deps, acc, mh, sig, wit), where the

first seven elements are taken from the most recent mes-

sage sent by src:

sdesc =
{

(src, ctr , h(m), deps, acc, mh, sig, wit) | (21)

m ∈ msgsA ∧

m = (src, ctr , op, deps, r , acc, mh, sig) ∧

wit = witness(S(msgsIn(deps) ∪ {m}), r) ∧

∄ c′. ctr < c′ ∧ (src, c′, , , , , , ) ∈ msgsA

}

The last element, wit, is a witness that cryptographi-

cally proves the relationship between acc (the accumu-
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lator from src) and SA (the current set of atoms):

witness(Ssrc, r) = x
P (Ssrc−SA)·r
src mod Nsrc (22)

Using (19), let Ssrc = S(msgsIn(deps) ∪ {m}) be the

set of atoms in the document at the time when m, the

most recent message from src, was sent. Ssrc may reflect

the state of the document at some point arbitrarily far

in the past, depending on the time when src was last

active. If A knows the full message history, Ssrc is known

to A. We will consider the case where A has only seen a

partial history in §5.3.2. The newly invited collaborator,

however, does not know Ssrc for any src 6= A, since the

snapshot contains only SA, the current set of atoms on

device A.

In the intervening time between state Ssrc and the

current state SA, atoms may have been added or re-

moved. The set Ssrc − SA in the exponent of (22) con-

tains exactly those atoms that have been removed.

When device B receives a snapshot from device A,

it performs the following steps to verify SA and sdesc:

1. For each atom (pos, src, ctr , txt) ∈ SA, verify that:

(a) The pair (src, ctr) is unique:

∀p, t. (p, src, ctr , t) ∈ SA =⇒ p = pos ∧ t = txt.

(23)

(b) The atom’s ctr is contained in the state descrip-

tor for device src:

∃ c′. (src, c′, , , , , , ) ∈ sdesc ∧ ctr ≤ c′.

(24)

(c) The atom’s ctr is contained in deps in A’s own

state descriptor:

∀deps. (A, , , deps, , , ) ∈ sdesc =⇒

∃ c′. (src, c′, ) ∈ deps ∧ ctr ≤ c′. (25)

2. For each state descriptor tuple in the set sdesc, i.e.

for (src, ctr , hash, deps, acc, mh, sig, wit) ∈ sdesc:

(a) Verify that sig is a valid signature of docID ‖

src ‖ ctr ‖ hash ‖ deps ‖ acc ‖ mh, checked with

src’s public key.

(b) Find the subset of atoms in SA that already ex-

isted in Ssrc. Although the set Ssrc is not known

to the newly invited device B, the intersection

Ssrc ∩ SA can be computed from src’s state de-

scriptor:

Ssrc ∩ SA =
{

(p, s, c, t) ∈ SA | (26)

(s = src ∧ c ≤ ctr) ∨

(s 6= src ∧ ∃ c′. (s, c′, ) ∈ deps ∧ c ≤ c′)
}

We can then use wit to verify that the computed

set Ssrc ∩ SA is indeed a subset of Ssrc:

witP (Ssrc ∩ SA) ?
= acc mod Nsrc. (27)

If the snapshot is correct, the exponent from

(22), P (Ssrc−SA)·r , is multiplied with the expo-

nent P (Ssrc ∩ SA) from (27), yielding P (Ssrc) ·r

as in the accumulator definition (14).

(c) Check that ctr is the most recent sequence num-

ber seen from src:

∀d. ( , , , d, , , ) ∈ sdesc =⇒ (28)

∀c. (src, c, ) ∈ d =⇒ c ≤ ctr .

(d) Ensure that there is a state descriptor for every

device in deps:

∀s. (s, , ) ∈ deps =⇒ (s, , , , , , ) ∈ sdesc.

(29)

If any of the above checks fail, the snapshot must be

rejected.

5.3.2 Computing witnesses incrementally

The above discussion, especially (21) and (22), assumes

that the device A that sends the snapshot has access to

the full message history since the creation of the doc-

ument. In general, this may not be the case, since A

might itself be a device that was invited by snapshot.

However, the approach above easily generalises to

the case where A starts from a snapshot. In particu-

lar, the witness computation in (22) can be performed

incrementally without knowledge of Ssrc. Due to space

constraints we omit a detailed discussion of the iterative

witness computation.

5.3.3 Merkle tree consistency proofs

The third element of the snapshot, mproofs, serves as a

cryptographic proof that there has not been a fork in

the editing history of the document. A fork occurs if

a device presents different and contradictory edits with

the same sequence number to its collaborators.

In the basic protocol of §4, the message hashes in

deps serve the purpose of detecting forks. In the privacy-

enhanced protocol of §5, the full message history is not

available to a newly invited collaborator, so we instead

use Merkle trees to prove that there is no fork among

the state descriptors in sdesc.
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As described in §5.1, each device keeps track of the

sequence of messages it has received from each other de-

vice – an append-only log per source device. Following

the approach of Certificate Transparency [7, 20], we en-

code that log in a Merkle tree. If no fork has occurred,

each device will see the same sequence of messages from

each source device. However, since devices may be off-

line, some devices may have an incomplete view of other

devices’ message logs. In those cases, we expect the mes-

sage log on one device to be a prefix of the corresponding

logs on other devices.

We use Merkle consistency proofs to show that the

per-source message sequence on one device is a prefix of

the corresponding message sequence on another device,

without revealing the actual messages. For each origi-

nating device src, mproofs contains a set of Merkle con-

sistency proofs as follows. Let Tsrc[c] be the Merkle tree

containing the first c messages from src. Let cd be the

sequence number of the last message from src seen by

d at the time of the message corresponding to d’s state

descriptor. Then Tsrc[cd] contains exactly the messages

from src received at device d at that time.

Now consider the Merkle trees Tsrc[cd] for all de-

vices d, sorted in increasing order by cd, and omitting

duplicate cd. For each adjacent pair of Merkle trees in

this set, mproofs contains a consistency proof showing

that the larger tree is the same as the smaller one with

some additional leaves appended. By transitivity, those

proofs show the consistency of all trees for each origi-

nating device.

To check the consistency proofs, we proceed as fol-

lows. From each state descriptor, extract the sequence

number of the last received message from each device

src. Group the sequence numbers by originating device

src and sort them in increasing order, omitting dupli-

cates. Now, for each two adjacent sequence numbers

c1, c2 in this list, check that mproofs contains a valid con-

sistency proof between Merkle trees Tsrc[c1] and Tsrc[c2],

i.e. a proof that Tsrc[c1] is a prefix of Tsrc[c2]. The Merkle

tree roots do not need to be included with the proofs

if they can be computed from a matching consistency

proof. Compute the Merkle tree roots of the trees Tsrc[c]

for each counter c, and using those, verify the hash over

the Merkle tree roots mh within each state descriptor.

Lastly, mnodes contains a partial Merkle tree for

each device, containing all nodes of the latest tree Tsrc

that are required for the newly invited device to be able

to extend the tree by appending leaves. For this it is

sufficient to include the root of every maximal complete

subtree.

6 Evaluation

In this section, we evaluate the costs of the privacy-

enhanced protocol described in §5. Significant costs

arise for the creation and processing of messages, for

inviting a new collaborator, and for joining as a col-

laborator. We consider the computational costs of these

actions, the communication costs for different types of

messages, and the memory and storage requirements.

The security and consistency properties are discussed

in the appendix.

We implemented a prototype of the privacy-

enhanced protocol in Java based on the Treedoc CRDT

with unique disambiguators [28], without optimizations.

The instrumented prototype simulates all devices within

a single thread of execution and measures execution

times of relevant operations as well as the volume of

network communication. We use a 2048-bit RSA modu-

lus, and SHA-256 as the secure hash function. We calcu-

late prime representatives as described in §2.2. We use

SHA-256 as an approximation of a random oracle, and

the Miller-Rabin primality test [29] with 50 iterations.

We further chose t = 16, since assuming Firoozbakht’s

conjecture [30, p. 185] (which implies that the gap be-

tween primes pk and pk+1 is less than ln2 pk − ln pk for

all k > 4), this should always allow a suitable d to be

found.

To evaluate the costs of the scheme based on realis-

tic data, we replayed edits from Wikipedia editing histo-

ries. We randomly2 selected 300 pages from Wikipedia.

We excluded seven pages with only a single edit, and

to ensure a reasonable emulation time, we excluded 23

pages which had either more than 250 edits, or more

than 25,000 characters in the latest version; our results

in this section demonstrate clear trends which will not

significantly change for larger edit histories or pages.

For the sake of estimating the communication costs,

we assumed that deviceIDs are 128-bit random num-

bers (to achieve uniqueness with high probability in a

decentralized setting). For simplicity, we assume that all

devices are always online, devices do not batch multi-

ple operations together into a single message, and that

devices only send messages when they edit the docu-

ment. When replaying the editing history, we assumed

that a Wikipedia user or IP address corresponds to a

device, and that new collaborators get invited by and

receive a snapshot of the document from the last person

2 Using https://en.wikipedia.org/wiki/Special:Random
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who edited the document before them. We assume each

line is represented as an atom, as commonly done in the

evaluation of CRDT algorithms [24, 36, 37] (the original

Treedoc paper used paragraph granularity [28]).

We did not consider the time taken for encrypting

or decrypting messages, since the choice of the encryp-

tion scheme is independent of our protocol, and modern

encryption algorithms are fast compared to the RSA ac-

cumulator operations. For signing, we used ECDSA and

the NIST P-256 curve.

We measured execution times on a 2013 desktop-

class 3.20GHz i5-4570 CPU with 32 GiB RAM running

Oracle JRE 1.8.0_172 with a heap size of 8 GiB. We

chose a 8 GiB heap size to reduce the number of garbage

collection cycles and their impact on the measurements,

and because we simulated all devices within a single pro-

cess. The heap size of 8 GiB was enough to comfortably

simulate up to 141 devices, therefore a single device can

run the protocol with substantially less memory.

Discussion of simplifying assumptions

In a practical implementation, devices may want to

batch edits, and periodically broadcast noop messages to

other clients to confirm the latest seen document state.

Devices may also be offline temporarily or permanently,

delaying message delivery and processing until such de-

vices comes back online again, but this merely defers

when costs are incurred.

Periodically broadcasting noop messages would

cause additional network traffic and devices would need

to process additional messages. The dominant cost for

processing noop messages is the verification of the accu-

mulator of the sending device (see §6.1.1). This cost

grows linearly with the number of atoms added and

deleted since the last message from the device. There-

fore, processing noop messages would reduce the com-

putational cost for the accumulator verification for in-

dividual operations, however it is likely to increase the

cumulative cost if a large number of atoms are added,

and the same ones deleted, between edit operations from

a device. Some additional costs may also be caused by

devices that regularly send noop messages, but do not

make any (more) edits. On the other hand, for devices

that regularly send noop messages, other devices can

skip the iterative witness computation, as the witness

is simply the accumulator base if a device is up-to-date.

Since we do not have reliable data on the network sta-

tus of devices editing Wikipedia, we defer evaluation of

these trade-offs to future work.

6.1 Computation costs

6.1.1 Basic editing operations

Processing any message requires checking the correct-

ness of the hashes and the accumulator. Of those, veri-

fying the accumulator tends to be the most costly, as it

requires a modular exponentiation for every atom added

or deleted since the last message from the source device.

In addition to the above, the dominant costs for

inserting an atom are calculating a prime representa-

tive, and updating the device’s accumulator, which re-

quires one modular exponentiation. The median pro-

cessing time for a message containing an insert opera-

tion from another device in our experiments was 5.6 ms,

and 99% were processed within 11.0 ms. We observed

outliers of up to 1.0 seconds, which were caused by the

cost for verification of the accumulator when a relatively

large number of changes have happened since the last

message from the device that created the insert opera-

tion. Note that these numbers are only for insert oper-

ations created on a different device. Processing locally

generated operations is faster, since they do not require

the source device’s accumulator to be verified.

For a delete operation, the additional costs are dom-

inated by the cost of updating the device’s accumulator,

which requires a modular k-th root computation, and by

the cost for the iterative witness computation. Figure 2

shows the time it took to process delete operations from

other devices, with iterative witness computation en-

abled after every operation. Overall, the median cost for

processing a delete operation was 12.4 ms, and 99% were

processed within 64.9 ms. Outliers take up to 1.19 sec-

onds and were due to the accumulator verification. As

for the insert operation above, these numbers do not con-

sider delete operations that were created on the same

device, which are faster to process.

6.1.2 Adding a new collaborator

Adding a new collaborator requires four steps:

1. generating a snapshot on the inviting device,

2. verifying the snapshot and the new device,

3. initialising the local state on the new device, and

4. verifying the first message from every other device

on the new device, and vice versa.

Let c be the current number of collaborating de-

vices, and n be the current number of atoms in the doc-
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Fig. 2. Measured processing times for a delete operation from

another device. The worst case execution time generally grows

with the number of devices, as with every delete operation, we

incrementally update the witnesses for all other devices, unless

the deleted atom has been inserted after the last message from a

device. Therefore, costs vary depending on the editing behaviour

of users, and how often they communicate. Roughly speaking,

deleting older parts of a document is more expensive, and more

frequent synchronisation between devices also makes deletions

more expensive. The boxes show the first, second, and third quar-

tile. The whiskers show the range containing 99% of data points.

We omit data for more than 80 devices where we have limited

data. Overall, the median processing time is 12.4 ms, and the

99th percentile is 64.9 ms.

ument. Then creating a snapshot requires O(n+c) oper-

ations, computing O(c2) Merkle consistency proofs, plus

computing a witness per device. Computing the consis-

tency proofs is fast for a moderate number of devices.

Computing the witness for a device requires a modu-

lar exponentiation for every atom that has been deleted

since the last accumulator seen from that device (but

was already present then). However, we iteratively com-

pute witnesses with every message to minimize snapshot

generation time, as described in §5.3.2. Therefore, the

time taken to generate a snapshot is negligible compared

to other costs such as its verification.

Verifying the Merkle consistency proofs can take

Θ(c2 log m) time, where m is the total number of dis-

tinct messages broadcast since the document was cre-

ated. However, in practice, the cost for verifying a snap-

shot is dominated by the costs for verifying that the set

of atoms matches the accumulators, unless the number

of collaborators becomes large compared to the number

of atoms in the document, and many of them have sent

their last message at different points in the history. For

each device, this requires one modular exponentiation

per atom that is present both in the latest document
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Fig. 3. Measured snapshot verification times. Verification time

is at most linear in the product of the number of devices and

atoms, however it can be significantly lower if many atoms have

been added since the last message from collaborating devices.

and in the accumulator from the device. Thus, for mod-

erately large groups of collaborators, the worst case cost

is O(c · n). The actual cost is significantly smaller if a

large number of atoms have been added since the last

message from other devices. Figure 3 shows how long

each snapshot verification took in our experiments, and

its relationship to the product of the number of atoms

and devices.

After a snapshot is verified, the remaining cost for

initialising a new device is dominated by the cost for

calculating the device’s current accumulator value based

on the current set of atoms. The cost is n − 1 modular

multiplications and a single modular exponentiation.

When a device receives the first message from an-

other device, it needs to compute the current set of

atoms at that device based on the counters within the

message and the operation history, and based on that

verify the accumulator value by re-computing it. This

requires O(n) modular exponentiations. We empirically

verified this linear relationship; we observed a verifica-

tion time of about 0.65 milliseconds per atom.

6.2 Communication costs

Table 3 compares the amount of data transferred for

different message types for the basic and the privacy-

enhanced protocols. The privacy-enhanced protocol re-

quires additional data for individual messages (for nonce

and accumulator), but snapshot sizes are smaller if the

number of users is small compared to the number of
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Empirical values

Variable Description Typical value min median max

d Number of collaborating devices variable 2 16 141

sdevID Size of device identifier 16 B

shash Size of hash 32 B

ssig Size of signature 72 B

snonce Size of nonce 16 B

sRSA Size of accumulator 256 B

spos Size of position identifier variable 1 B 3 B 117 B

scontent Size of atom text fragment variable 1 B 34 B 5.0 KiB

spubkey Size of public key (accumulator + signing) 256+32 B

shistory Size of message history (excl. signatures) variable 4.9 KiB 123 KiB 7.2 MiB

sdoc Size of document including metadata variable 699 B 4.8 KiB 77 KiB

Table 2. Description of different variables used in Table 3, and typical values. For the ones where typical values are highly variable,

minimum, median, and maximum values from our simulations with Wikipedia edit histories are included.

Basic protocol Privacy-enhanced protocol

Message sdevID + d(sdevID + shash) + ssig+ Op Basic + snonce + sRSA + shash

Op_insert Message + spos + scontent Basic

Op_delete Message + sdevID Basic

Op_noop Message Basic

Op_addDevice Message + sdevID Basic + spubkey

Snapshot shistory + d · ssig sdoc + d · (sdevID + shash + 2sRSA + O(d · log shistory) + ssig)

Table 3. Communication costs for different types of messages and operations. Small constants are omitted. Note that in the basic

protocol, for a snapshot it is sufficient to include the most recent signature from each device.

atoms, since deleted atoms do not need to be trans-

ferred. Using the Wikipedia data, we looked at the

amount of data that would need to be transferred to

invite the user that has most recently made her first con-

tribution. Figure 4 shows a comparison of the amount

of data transferred in the basic scheme and the privacy-

enhanced scheme. We observed a median 84% reduc-

tion in data transferred for the privacy-enhanced scheme

compared to the basic scheme. The reduction was al-

ways more than 30%, and 98.2% in the best case.

6.3 Storage and memory requirements

A device needs to keep the atoms currently in the docu-

ment in memory. In addition it must store, for each col-

laborator, the most recent message, the current witness,

and additional metadata. The device needs to store the

message history to be able to relay messages to other

devices, and to calculate earlier states of the document

which can be needed to verify an accumulator or to cal-

culate a witness. The memory requirements for storing

current atoms in a document corresponds to the y-axis

in Figure 4, and the past history corresponds to the x-

axis. Therefore, the overall memory and storage require-

ments are typically less than 10 MiB. A device may also

keep an in-memory or disk cache of the prime represen-

tatives of all atoms (34 bytes per atom in our prototype)

as computing those is costly. If memory/storage is scarce

and the prime representative generator described in §2.2

is used, it can also memorize only the last 2 bytes, and

recompute the remaining ones when needed.

7 Discussion

The privacy-preserving variant of our protocol has

a significant computational and metadata overhead.

The costs seem reasonable for text editing with line-

granularity atoms, especially since most of the expensive

operations can be parallelized and typically can be run

in the background without interrupting the editing pro-

cess. However, for character-level granularity or similar,

the costs seem prohibitive, in particular if the document

is large and collaborators get added frequently, or when

edits are performed at a high frequency. The protocol

may be well suited for other types of collaborative ap-

plications such as shared calendars or to-do lists [18].

While the protocol has a relatively large overhead,

it scales well with the size of the document. Assuming a

bounded number of devices and not considering costs for
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Fig. 4. Amount of data transferred to a new collaborator when

invited by another device, for the most recently added collab-

orator in each of the pages from the Wikipedia dataset for the

privacy-enhanced protocol in comparison to the basic protocol.

The plot is log-log scale. A point below the black diagonal line

indicates that the privacy-enhanced protocol transfers less data

than the basic protocol. The privacy-enhanced scheme needs to

transfer less data because it does not transfer deleted atoms.

the CRDT metadata, communication and computation

costs for editing operations are constant or amortized

constant, except when a new collaborator is added, in

which case the cost is (practically) linear in the number

of atoms.

However, communication costs also grow with the

number of operations due to the CRDT metadata. We

used the Treedoc CRDT without optimizations, which

generates a relatively large communication overhead for

CRDT metadata because the tree is not balanced and

every tree node stores a device identifier. To counter

this, one can use a CRDT more optimized for the appli-

cation, e.g. LSEQ [24] for text editing, and introduce

device identifier compression. Furthermore, metadata

overhead can be reduced by allowing a list of operations

to be sent within a message instead of only a single op-

eration per message.

To reduce the cost for insert operations and snapshot

verification, if the prime representative is generated as

described in §2.2, the device inserting the atom can in-

clude the last 2 bytes of the prime representative with

the atom metadata. Other devices only need to verify

its validity, but do not need to recompute it. Note that

in this case it is not necessary that the smallest d is

chosen, as long as the result is a prime and every device

uses the same d.

Some information about the history can still be in-

ferred from the metadata found in the privacy-enhanced

scheme, in particular how many operations have been

performed on each device, and the position identifiers

and counters may allow some inferences about the posi-

tions where text fragments were deleted and how much

was deleted. On the other hand, it may be desirable

to know at which positions parts of the document have

been deleted, as the device creating a snapshot can omit

arbitrary atoms and therefore potentially completely

change the meaning of the content. Metadata does not,

in general, allow someone in possession of only a snap-

shot to infer positions where atoms have been deleted.

Our protocol relies on CRDTs where atoms have

totally ordered position identifiers. More research is

needed to add support for other operation-based CRDTs

that do not have this property, such as RGA [31].

Lastly, while our protocol detects any forks that

may arise (as discussed in §5.3.3), a fork-resolution pro-

tocol is required to resolve forks caused by misbehaving

devices. Such a protocol is out of scope of this paper.

8 Related work

Traditional collaborative editing applications rely on

Operational Transformation (OT) algorithms [11, 26]

to synchronize changes between devices. OT algorithms

work by transforming concurrent operations so they can

be applied in a different order. They tend to be rela-

tively complex, as evidenced by the fact that several

peer-reviewed OT algorithms have later been proved

to be incorrect [15, 16, 27]. To the best of our knowl-

edge, all widely deployed OT algorithms rely on a cen-

tral server to totally order operations. For example,

Google/Apache Wave is based on the Jupiter algo-

rithm [26], which requires such a total ordering and

needs to be able to perform server-side transformations

on operations. It is therefore neither suited for peer-to-

peer communication, nor for end-to-end encryption, as

the server needs access to the plaintext.

More recently, (operation-based) Conflict-free

Replicated Data Types (CRDTs) [32, 33] have been

proposed to ensure convergence without requiring con-

sensus between devices, providing strong eventual con-

sistency. In contrast to OT, updates do not require any

synchronization and all concurrent operations are de-

signed to be commutative. At the time of writing, there

are a number of projects actively working on collabo-

rative editors or libraries based on CRDTs that allow

devices to communicate peer-to-peer (using WebRTC),

including Teletype for Atom, Conclave, and Automerge.
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Several server-based collaborative editing systems

with end-to-end encryption have been proposed, includ-

ing SPORC [12], SECRET [13], and Capsule [19]. How-

ever, to the best of our knowledge, our protocol is the

first one that provides authenticated snapshots and al-

lows devices to verify that their view is consistent with

other devices, even when other devices are offline.

Version control systems such as Git, Mercurial,

or Subversion are another popular kind of tool for col-

laboration. They are not designed for real-time editing

and require manual merging if a possible conflict is de-

tected. Authenticated snapshots could also be imple-

mented for version control systems; however we are not

aware of any existing system that supports them.

Cryptographic accumulators have been pro-

posed based on RSA [1, 2], bilinear maps [5, 25], Merkle

trees [4], and vector commitments [6]. Variants of our

protocol could also be designed based on other accumu-

lator schemes with different trade-offs. For example, it

seems possible to use Merkle trees instead of RSA accu-

mulators to substantially reduce the constant factor of

the computational overhead. However, Merkle trees do

not support batch membership proofs, therefore sub-

stantially increasing the communication overhead for

sending a snapshot. We chose to use RSA accumula-

tors because they provide constant-size public keys, wit-

nesses, and batch membership proofs.

In a three-party authenticated data structure

(ADS) [35], a source replicates some data to one or more

servers, and the servers answer queries on the data from

clients, including a proof that allows clients to verify the

authenticity of the response using a digest provided by

the source (e.g. a hash). Our proposed scheme can be

seen as an ADS for CRDTs, where the collaborators are

sources, the inviter is the server, and a newly invited

device is the client.

A redactable signature scheme [17, 34] allows

a third party without knowledge of the secret signing

key to remove parts of a signed message while still re-

taining a valid signature. Our protocol essentially uses

redactable signatures – the signature within a message

signs the current set of atoms, and the state descrip-

tors within a snapshots contain a signature of a possibly

redacted state of that set.

9 Conclusions and future work

We propose a protocol for peer-to-peer collaborative

editing that allows new devices to be added as collab-

orators by sending a snapshot that only contains the

latest state of a document. Such a snapshot reduces the

amount of data that needs to be transferred to a new

device and additionally hides the editing history of the

document, while still allowing the new device to verify

its integrity. This is achieved without requiring a con-

sensus between collaborating devices and is therefore

also suitable for devices that are frequently offline.

We evaluated the performance of the protocol based

on editing histories of 270 Wikipedia pages, and showed

that while it has a significant computational overhead

due to the use of RSA accumulators, its performance

is reasonable if applied to small documents or using a

coarse granularity (e.g. line-based instead of character-

based). 99% of insert operations were processed within

11.0 ms, and 99% of delete operations within 64.9 ms.

We also measured a median 84% reduction in the data

transferred to a new collaborator by using authenticated

snapshots compared to a basic protocol that transfers

the full editing history. Therefore it may be well suited

for applications such as shared calendars and to-do lists,

where users tend to make relatively few edits, and a

coarser granularity of edits may be acceptable. Further

research is needed to make the protocol more practical

for real-time editing with character-level granularity.

Future research might also look at protocols that

preserve information about the positions where text

fragments have been deleted, or alternatively, com-

pletely hide this information. Another interesting re-

search direction is developing CRDTs specifically de-

signed for authenticated snapshots and history privacy,

with a reduced overhead. It would also be interesting to

design a protocol that does not only hide deleted parts

from a new user, but also hides the author of a piece of

text, either from new users or from all collaborators.
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Appendix

We show that the privacy-enhanced protocol described

in §5 satisfies the properties from §3.1.

Edit integrity and attributability

Cryptographic signatures attached to each message en-

sure that only group members can modify the docu-

ment. For the basic protocol of §4, the signatures also

provide attributability of all modifications. When using

the privacy-enhanced protocol of §5, a device can simi-

larly use the signatures to attribute any changes made

to the document after it joined. Parts of the document

that were added earlier – before or concurrently to when

a device joined – cannot be attributed directly using the

signatures of the messages containing the insert opera-

tions, since the new collaborator does not receive those

messages. However, attributability in this case is en-

sured by the signed accumulators from each collabora-

tor that are part of each snapshot, since the set of atoms

certified by each device in this way must also contain all

atoms inserted by the device itself.

Edit history privacy

A new device, when joining, only receives the current

set of atoms, the set of devices collaborating, several

sequence numbers and cryptographic hashes, and a set

of RSA accumulators. Assuming preimage resistance of

the hash function and due to including a 128-bit ran-

dom nonce into every message, it is infeasible to in-

fer anything about previous contents from the hashes.

RSA accumulator and witness values each contain an

accumulated 128-bit random nonce; since the new de-

vice never learns this nonce, the accumulators are cfw-

indistinguishable [9], making it infeasible to infer con-

tents from the accumulator values. For efficiency rea-

sons, we use the same nonces to calculate message

hashes and accumulators to improve efficiency; we be-

lieve this does not introduce any weaknesses.

While the scheme hides the contents of all text

deleted before a device joins, it does not perfectly hide

the editing history. Since a snapshot also includes meta-

data such as position identifiers and sequence numbers,

a new device can infer some information about the his-

tory, such as the number of messages sent by each de-

vice. Moreover, gaps between position identifiers can

leak the fact that atoms have been deleted at a certain

position (but not the values of those atoms).

Consistency and snapshot consistency

We show that our protocol satisfies a variant of fork-

join-causal consistency, as introduced by Mahajan et al.

[21, 22]. Stated informally, this consistency model re-

quires that honest3 devices always observe the system in

a state that is consistent with a global execution graph,

and that this execution graph correctly reflects the de-

pendencies and operations performed by devices.

To prove that our protocol satisfies this consistency

model, we first show how to construct the happens-before

graph G (representing the global execution). For each

honest device n we also define a graph Gn representing

n’s view of the execution. We then prove that G and

Gn are consistent with each other: that is, reading the

document at any vertex of Gn returns the same result

as reading it at the corresponding vertex of G.

3 We use the word “honest” to refer to devices that correctly

follow the protocol (in the distributed systems literature, the

term “correct” is more common). A device that does not cor-

rectly follow the protocol, regardless whether by accident or by

malice, is called “faulty”.
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Definition 1. Let G be a directed acyclic graph. We

then define the partial order ≺G to be equal to the tran-

sitive closure of the graph. That is, for vertices a and

b in G, we have a ≺G b if there is an edge a → b in

G, or if there exists a vertex c such that a ≺G c and

c ≺G b. Similarly, the partial order ≺Gn
is defined as

the transitive closure of the graph Gn.

Definition 2. An operation message is a message con-

taining an operation (insert, delete, noop, or addDevice,

but not a snapshot) sent as part of the protocol.

Definition 3. For any vertex m in the graph G we de-

fine read(G, m) to be the set of atoms in the document

at the time immediately after m has been processed, i.e.

the set of atoms a such that there exists a vertex mI,a

containing an insert operation for a, with mI,a �G m,

and there exists no vertex mD,a containing a delete op-

eration for a with mD,a �G m:

read(G, m) = S({m′ | m′ �G m}), (30)

where the function S(. . . ) is defined in (13).

We can now formally define the fork-join-causal consis-

tency model as follows.

Definition 4. An execution is fork-join-causally con-

sistent if there exists a directed acyclic graph G (the

happens-before graph) that satisfies the following three

properties:

FJC0. G contains a vertex for every operation message

sent by an honest device, and also a vertex for every

operation message that is sent by a faulty device and

processed by at least one honest device.

FJC1. The operations of an honest device are totally

ordered in G. This total ordering must be consistent

with the actual execution order of the operations at

that device. Specifically, if v and v′ are operations

by n, then v.startTime < v′.startTime ⇐⇒ v ≺G v′.

FJC2. For each honest device n there exists a directed

acyclic graph Gn in which there is a vertex for every

operation message sent or received by n, and edges

corresponding to the dependencies between those

messages. By FJC0, for each vertex m in Gn there is

a corresponding vertex m in G. We then require that

for each vertex m in Gn, the document state is the

same as the document state at the corresponding

vertex in G: read(Gn, m) = read(G, m).

noop

“ab”

A

B

C

ins(‘a’)

“a”

ins(‘b’)

“ab”

ins(‘c’)

“ac”

noop

“abc”

(a) Happens-before graph of execution (G)

A

B

C

ins(‘a’)

“a”

ins(‘c’)

“ac”

(b) Happens-before graph of C’s view of the execution (GC)

Fig. 5. Happens-before graphs for an execution with three devices

where devices B and C perform concurrent inserts.

Basic protocol

For the basic protocol described in §4, G can simply be

defined as follows: G contains a vertex for each message

m sent or observed by an honest device, and a directed

edge a → b between vertices a and b if a is one of the

dependencies of b.

Figure 5a shows an example of a happens-before

graph for an execution where device A inserts the atom

‘a’, followed by devices B and C concurrently adding

atoms ‘b’ and ‘c’, respectively. Device A then performs

noop operations in order to acknowledge the receipt of

the edits from B and C. Figure 5b shows device C’s

view of the execution. For clarity, we omit addDevice

operations.

This definition of G trivially satisfies property

FJC0. Moreover, from the protocol definition it is rela-

tively easy to see that property FJC1 is also satisfied.

Every honest device increments its sequence number

with every message it sends, and an honest device would

not process a message from a device a that depends on

a message from a with a higher or equal sequence num-

ber. Hence, the messages sent by an honest device are

totally ordered in G.

For the basic protocol, it is also easy to see that

property FJC2 is fulfilled. If a device n processes a mes-

sage m, it needs to have processed all messages that hap-

pened before m in Gn. The use of cryptographic hashes

within the message dependencies ensures that the set of

messages preceding m in Gn is the same as the set of

messages preceding m in G.
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ins(‘b’)

noop

ins(‘a’)

“a”

A

B

C

del(‘a’) addDev(C) Snapshot

“ab” “b” “b” “b”

“b”

Fig. 6. Happens-before graph of an execution where device B

adds device C by sending it a snapshot of the current state.

Privacy-enhanced protocol

In the privacy-enhanced protocol of §5, the above argu-

ment no longer works, since it relies on devices having

received all messages that happened before a message m

before processing m, which is not necessarily the case:

devices do not receive messages that happened before

they were added as a collaborator.

We illustrate the challenge by giving an example be-

fore proceeding to the formalisation. Consider the exe-

cution visualised in Figure 6.

Suppose that honest device A fails permanently af-

ter sending the insert operation for ‘a’, and therefore it

never receives the later operations. Further assume that

device B is faulty. Thus, there is no honest device that

has observed the insert operation for ‘b’ or the delete op-

eration for ‘a’. The FJC0 property only requires that G

contains operations observed by honest devices. There-

fore it is not immediately clear how FJC2 can still be

preserved for the noop operation by C (and any later

operations).

One option would be to add a vertex containing an

insert operation for each atom that C receives as part of

the snapshot. However, this would allow too many exe-

cutions. We only want to allow executions where snap-

shots are consistent with earlier messages seen by honest

devices.

Since the messages containing the insertion of ‘b’

and the deletion of ‘c’ have not been observed by any

honest device, it is not relevant for G whether they

actually happened. It is only important whether it is

possible to add a set of edit operations by faulty de-

vices directly before the message adding a new device

(or sending an updated snapshot) such that FJC1 and

FJC2 are preserved. Thus we adapt the definition of G

to allow the addition of vertices containing insert and

delete operations by faulty devices between the vertices

corresponding to messages observed by honest devices,

and the vertex corresponding to the addDevice message

for a new device, or a message containing an updated

snapshot.

For each honest device n, Definition 5 describes the

graph Gn that represents n’s view of the execution. In

summary, it contains insert operations for all atoms re-

ceived by n in its initial snapshot, all messages processed

by n, and edges for the dependencies between them. A

device may receive more than one snapshot if another

device performed operations concurrently to the first

snapshot (as described in §5.3); if this is the case, n

also contains insert and/or delete operations for atoms

that were added/removed in subsequent snapshots.

Definition 5. For the privacy-enhanced protocol, we

define Gn such that it contains:

1. A vertex for each operation message sent or pro-

cessed by n.

2. An edge a → b between two messages processed by

n if a is a dependency of b.

3. For each snapshot processed by n, a vertex ri (i =

1, ..., k). If n has sent any messages after the snap-

shot, add an edge ri → ti to the vertex ti corre-

sponding to the first such message.

4. If n joined as a collaborator from a snapshot, for

each atom a that was part of this first snapshot, a

vertex ua with an operation insert(a),

5. For each subsequent snapshot received by n, a ver-

tex ua with an operation insert(a) for each atom

present in the snapshot if there is no previous vertex

with an insert operation for a in Gn. In this context,

previous means preceding a vertex ti corresponding

to a vertex corresponding to n’s first message after

the snapshot.

6. Similarly for each subsequent snapshot received by

n, a vertex wa containing an operation delete(a)

for any atom a with an insert operation, but no

delete operation, previously present in Gn that is

not present in the snapshot.

7. For each such vertex ua or wa, an edge to the vertex

ri corresponding to the snapshot.

Proof overview

We construct a suitable happens-before graph G for an

arbitrary execution, showing that G is a directed acyclic

graph (Lemma 1), and hence that FJC0 and FJC1 are

satisfied. Next, we show that deleted atoms cannot be

re-added (Corollary 2.1), a property that is useful for

Lemma 3, which shows that FJC2 holds for every mes-

sage m, as long as it holds for every preceding snapshot.

Finally, Lemma 4 shows that it holds for every snapshot,

from which Corollary 4.1 deduces that FJC2 holds for G.

We therefore conclude that the privacy-enhanced proto-

col is fork-join-causally consistent.
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Definition 6. Let v(m) be the version vector for a

message m = (src, ctr , op, deps, r , acc, mh, sig), contain-

ing the set of pairs (srcv, ctrv) with the counter from

the latest message from each device included in m, i.e.

ctrv = ctr for srcv = src, and otherwise ctrv is the

counter of the entry for srcv in deps. The version vec-

tor of a snapshot is defined equivalently using the state

descriptor of the creator of the snapshot.

Definition 7. We construct the happens-before graph

G for an execution as follows.

1. Add a vertex for each operation message sent or

processed by at least one honest device.

2. Add a directed edge a → b if a is a dependency of b

and at least one honest device has sent or processed

both a and b.

3. For each snapshot received by an honest device n,

add a vertex r that represents the read of the snap-

shot by n. If n has sent any messages after the snap-

shot, add an edge r → t to the vertex t correspond-

ing to the first such message.

4. For each snapshot received by an honest device n

that was created by an honest device n′, add an edge

ms → r, where ms is the message by n′ defining the

document state contained in the snapshot.

5. For each snapshot s received by an honest device n

that was created by a faulty device, we add insert

and delete operations by faulty devices as required

to make the graph consistent as follows.

Let src be the deviceID of the device that created

the snapshot s = (As, sdesc, , ).

Let (src, , , deps, , , , ) ∈ sdesc be the state de-

scriptor for src in s.

For every honest device n′ let (n′, ctrn′ , ) ∈ deps be

the snapshot’s dependency on n′, and deps,n′ be the

vertex in Gn′ corresponding to the message from n′

with sequence number ctrn′ .

For each device n′ we now find the set of opera-

tion messages that n′ has observed by the time it

produced deps,n′ , and define the union of all these

messages to be ops(s):

ops(s) =
⋃

n′

{m′ | m′ �Gn′ deps,n′} (31)

Let S(msgs) be the set of atoms that have been

inserted but not deleted within a set of operation

messages msgs, as defined in (13).

Let As be the set of atoms received as part of the

snapshot.

Mn = {( , srca, , ) ∈ As \ S(ops(s)) |

srca is faulty} is defined to be the set of atoms by

faulty devices that are part of the snapshot but have

not been seen by any honest device before the snap-

shot.

Now for each such snapshot s, do the following:

(a) For each message deps,n′ from an honest device

referred to in deps, add an edge deps,n′ → r,

where r is the snapshot read vertex added in

point 3.

(b) For each atom a ∈ Mn , add a vertex ia with

an operation insert(a), an edge deps,n′ → ia for

each honest device n′, and an edge ia → r.

(c) For each atom a ∈ S(ops(s)) \ As, add a ver-

tex da with an operation delete(a), an edge

deps,n′ → da for each honest device n′, and an

edge da → r.

Lemma 1. G is a directed acyclic graph.

Proof. First observe that for any edge a → b where a

is a dependency of b, a’s version vector must be smaller

than b’s. For a snapshot created by an honest device,

point 4 of the construction of G (Definition 7) adds a

path between vertex ms and the corresponding vertex r.

For a snapshot created by a faulty device, point 5 adds

a number of paths between vertices for dependencies

deps,n′ , and r. Since each r does not have outgoing edges

except to the corresponding t (as defined in point 3), and

v(ms) < v(t) and v(deps,n′) < v(t), the invariant v(a) <

v(b) is preserved for all edges a → b between actual

messages, and additional edges do not add cycles.

Since two consecutive messages mi, mi+1 sent by the

same honest device always have a dependency relation

between them, and v(mi) < v(mi+1), from the above

proof it also follows that G is consistent with their real-

time ordering. Thus, the FJC1 property holds for G.

Lemma 2. Let n be an honest device, let m be a vertex

corresponding to a message in Gn, and let mD,a be a

vertex containing a delete operation for an atom a. If

mD,a �G m, and if n has processed m, then all insert

operations for a processed by n precede m in Gn.

Proof. Let (srca, ctra) be the source and counter of a,

and let ca be the entry for srca in the version vector of

m. Since the insertion of a must have happened before

mD,a and therefore also before m, ctra < ca. Due to

the checks performed on sequence numbers, n does not

accept an insert operation with a ctr less than or equal

to the ctr of the latest message from srca included in

n’s state. Thus, if n has already processed m, it will not
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accept an insert operation for a that happened either

after or concurrent to m.

Corollary 2.1. If mD,a �G m, m ∈ Gn, and a /∈

read(Gn, m), then for any vertex m′ that succeeds m

in Gn (m ≺Gn
m′), a /∈ read(Gn, m′).

Lemma 3. Let m be a vertex in G corresponding to a

message, and let n be an honest device such that m ∈

Gn. Assume that for every honest device ñ and every

vertex rn corresponding to a snapshot received by ñ,

read(G, rñ) = read(Gñ, rñ) (note that this assumption

will be proved in Lemma 4). Then for every such vertex

m we have read(G, m) = read(Gn, m).

Proof. By well-founded induction on m using the order

relation ≺G. That is, for any vertex m in G we assume

the inductive hypothesis:

∀m′. m′ ≺G m =⇒ read(G, m′) = read(Gn, m′) (32)

and hence prove read(G, m) = read(Gn, m). We break

this down into two subgoals, read(Gn, m) ⊆ read(G, m)

and read(G, m) ⊆ read(Gn, m).

read(Gn, m) ⊆ read(G, m):

Let a be an atom in read(Gn, m). We start by show-

ing that there must be an insert operation for a at or

before m in G. Let mI,a be the message containing

the insert operation for a observed by n. If mI,a = m,

mI,a �G m is trivially true. Otherwise, there exists at

least one edge d → m in Gn such that mI,a �Gn
d,

and there is no delete operation for a that precedes

m in Gn. Thus, a ∈ read(Gn, d). If d corresponds to

an actual message, by the induction hypothesis, a ∈

read(Gn, d) = read(G, d). Otherwise, d must be a ver-

tex corresponding to a snapshot received by n, and we

can apply the assumption read(G, rñ) = read(Gñ, rñ) to

conclude a ∈ read(Gn, d) = read(G, d). Therefore, there

must be an insert operation for a in G that precedes d,

m′
I,a �G d ≺G m.

To show that a ∈ read(G, m), it remains to be shown

that there is no delete operation for a at or before m

in G. Suppose there was a vertex mD,a ∈ G containing

such a delete operation for a, with mD,a �G m. We show

that this contradicts a ∈ read(Gn, m). If mD,a = m, this

directly contradicts a ∈ read(Gn, m). Otherwise, at least

one vertex d with a edge d → m must contain or succeed

the delete operation in G, mD,a �G d. Let d1, d2, ..., dk

be all such vertices. We consider two cases, whether any

such di is in Gn, or not.

Case di ∈ Gn for some i. Let d be any such di. Since

mD,a �G d, a /∈ read(G, d). We now show that

d → m also exists in Gn and that a /∈ read(Gn, d).

If d is an actual message, d must be a depen-

dency of m, and by definition of Gn, d → m must

be present in Gn. By the induction hypothesis,

a /∈ read(G, d) = read(Gn, d). Otherwise, d must

be a vertex corresponding to a snapshot received

by n. Since in this case, d does not exist in any

other device’s view, the edge d → m can only ex-

ist in G if it exists in Gn. Thus, d ≺Gn
m. By

the assumption read(G, rñ) = read(Gñ, rñ) we have

a /∈ read(G, d) = read(Gn, d).

Since mD,a �G d, and we can apply Corollary 2.1,

which implies that a /∈ read(Gn, m).

Case di /∈ Gn for all i. Let d be any such di. We con-

sider two cases: whether d corresponds to an actual

message, or whether it is a vertex added in our con-

struction of G (Definition 7).

Consider first the case where d corresponds to an ac-

tual message received by an honest device n′. Since

d → m ∈ G, d must correspond to one of m’s de-

pendencies. Thus, n must have processed d before

processing m, unless m is the first message by n af-

ter a snapshot. Since d /∈ Gn, the latter must be

true. Since a /∈ read(G, d), by the induction hypoth-

esis, a /∈ read(Gn′ , d). Since mD,a �G d, by Corol-

lary 2.1, in n′’s view, the document does not contain

a at message m, i.e. a /∈ read(Gn′ , m). Since m was

created by an honest device, and both n and n′ have

processed it and compared the accumulator value to

its view of the set of atoms, they agree on the set of

atoms at m. Thus, a /∈ read(Gn′ , m) = read(Gn, m).

Now consider the other case, where d is one of the

vertices we added when constructing G. Since m is

an actual message, and there exists an edge d → m

in G, and d /∈ Gn, d must be a vertex added for

a snapshot processed by a different device n′, and

m must be the first message by n′ after that snap-

shot. Since mD,a �G d, by the construction of G,

mD,a must either be included in one of the state

descriptors for an honest device n̄ contained in the

snapshot (i.e. mD,a �G sn̄, where sn̄ is the mes-

sage corresponding to n̄’s state descriptor), or mD,a

must be an additional vertex added to G in our con-

struction (Definition 7, point 5(c)). In both cases,

a is not part of the snapshot received by n′, and

the insert operation for a must have happened be-

fore the snapshot. Let (srca, ctra) be the source and

counter of a, and let ca be the entry for srca in the

version vector associated with the snapshot. Again
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in both cases, ctra ≤ ca, and therefore, n′ would not

accept an insert operation for a since its ctr would

conflict with the snapshot it has received. There-

fore, in n′’s view, the document does not contain a

at message m, i.e. a /∈ read(Gn′ , m). Since m was

created by an honest device, both n and n′ have

processed m, and both devices behave correctly, m’s

accumulator value must match the set of atoms at

both devices, i.e. read(Gn′ , m) = read(Gn, m). Thus,

a /∈ read(Gn, m).

read(G, m) ⊆ read(Gn, m):

Let a ∈ read(G, m). Thus, there exists a vertex mI,a

with an insert operation for a such that mI,a �G m, and

no delete operation before or within m. If mI,a = m,

since a delete operation cannot have happened before

the insertion, a ∈ read(Gn, m). Otherwise, there exists

at least one edge d → m such that mI,a �G d, and thus

a ∈ read(G, d). We consider two cases, whether d ∈ Gn,

or not.

Case d ∈ Gn. Depending on whether d corresponds to

an actual message or to a snapshot, we can apply the

induction hypothesis or the assumption for snapshot

vertices (read(G, rñ) = read(Gñ, rñ)), to conclude

that a ∈ read(Gn, d). Hence, there exists an insert

operation for a in Gn preceding m.

Next we show that there is no delete operation for a

before m in Gn. Assume, for the sake of contradic-

tion that there was a message mD,a ≺Gn
m contain-

ing a delete operation for a. We show that this con-

tradicts a ∈ read(G, m). We first consider the case

that there exists a set of vertices m1, m2, ..., mk cor-

responding to actual messages such that mD,a →

m1 → ... → mk → m. By construction of G, the

same set of messages and edges has to exist in G

too, contradicting a ∈ read(G, m). Otherwise, if no

such set of vertices exist, mD,a must be a vertex of

the type added for a snapshot in point 6 of the con-

struction of Gn (Definition 5). Let ri be the vertex

corresponding to the snapshot directly after mD,a.

The existence of the delete vertex implies that a is

not part of the set of atoms in the snapshot corre-

sponding to ri, but there is a vertex m̃ correspond-

ing to n’s entry in the dependencies of the snapshot

in Gn, where a was still present: a ∈ read(Gn, m̃).

Thus, there is an edge m̃ ≺G ri in G. Since m has

happened after ri, it must have also happened af-

ter the first message mn,i by n after ri, and we get

m̃ ≺Gn
ri ≺Gn

mn,i �Gn
m. Furthermore, since

mn,i �Gn
m, there is a path of vertices correspond-

ing to messages by n, mdev,i → m̂1 → ... → m̂l

in Gn such that m̂1 is a dependency of m. Since

the vertices correspond to messages processed by

an honest device, the same path has to exist in G,

and we get ri ≺G mn,i �G m. By the assumption

read(G, rñ) = read(Gñ, rñ), a /∈ read(Gn, ri) implies

that a /∈ read(G, ri), and since a ∈ read(Gn, m̃)
IH
=

read(G, m̃) and m̃ ≺G ri ≺G m, there must be an

insert operation for a preceding ri in G. Because

m̃ ≺G ri and a /∈ read(G, ri), there must be a delete

operation for a preceding ri in G. Since ri ≺G m,

a /∈ read(G, m), reaching the desired contradiction.

Therefore, there is no delete operation for a before

or at m in Gn, and since the edge d → m is present

in Gn by construction, a must still be present at m

in n’s view. Thus, a ∈ read(Gn, m).

Case d /∈ Gn. As before, there are two cases. Either m

is the first message by n after a snapshot (since n

must have received all direct dependencies of any

other message before processing it), or m is the first

message by another honest device n̂, and d is the

vertex corresponding to the snapshot received by n̂.

In the first case, since d ∈ G and d → m ∈ G,

there must be at least one honest device n′ that

has processed d and m. By the induction hypoth-

esis, read(Gn, d) = read(Gn′ , d), and therefore a ∈

read(Gn′ , d). For the same reasons as above, there

cannot be a delete operation for a before or within

m in Gn, and therefore a must still be present at

m in n′’s view. Since both n and n′ are honest de-

vices, and n′ must have verified the accumulator of

m, they must have seen the same set of atoms at m,

a ∈ read(Gn′ , m) = read(Gn, m).

In the latter case, by assumption, a ∈ read(Gn̂, d),

implying that mI,a �Gn̂
d. Again, there cannot be a

delete operation for a before or at m in G, and thus

a must still be present in n̂’s view at m. Therefore,

a ∈ read(Gn̂, m), and since n has agreed on the ac-

cumulator value of m and thus on the set of atoms,

a ∈ read(G, m).

Lemma 4. Let rn be a vertex associated with a snap-

shot s received by n. Then the read corresponding to

this vertex (which returns the atoms that were part of

the snapshot) fulfils property FJC2 with regard to G,

i.e. read(Gn, rn) = read(G, rn).

Proof. By well-founded induction on rn (using the

happened-before ordering induced by G).

If n has created the document, the statement is

trivially true. Otherwise, let An = read(Gn, rn), and
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A = read(G, rn). Let n̂ be the device creating the snap-

shot. If n̂ behaves correctly, this implies that the snap-

shot corresponds to a message ms created by n̂. By in-

duction and Lemma 3, read(Gn̂, ms) = read(G, ms), and

since the only incoming edge for rn in both G and Gn is

from ms, read(Gn, rn) = read(Gn̂, ms) = read(G, ms) =

read(G, rn).

If n̂ is faulty, we first show that An ⊆ A. Let a =

(src, ctra, , ) ∈ An. Thus, a was part of the set of atoms

presented as part of the snapshot. We define sh to be

the message by honest device h corresponding to the h’s

state descriptor. We consider three cases:

src is an honest device.

Let (src, ctrsrc, , , acc, mh, sig, wit) be the state de-

scriptor for src presented in the snapshot, let msrc

be the corresponding message from src with se-

quence number ctrsrc, and let mI,a be the mes-

sage containing the insert operation for a. The

snapshot is only accepted by n if ctra < ctrsrc.

Using sig, acc, and wit, n has verified that

a ∈ read(Gsrc, msrc)
IH, Lemma 3

= read(G, msrc), and

mI,a ≺G msrc ≺G m. It remains to be shown that

there is no delete operation for a in G before m.

For each honest device h that was part of the snap-

shot where sh happened after mI,a, n has verified

using the Merkle consistency proofs that mI,a ≺Gh

sh, and it has verified using h’s witness that a ∈

read(Gh, sh)
IH, Lemma 3

= read(G, sh), and thus there

exists no delete operation for a before any sh. Lastly,

since a is part of the snapshot, no delete operation

for a is added in point 5 of the construction of G

(Definition 7).

src is faulty. We further consider two sub-cases:

whether at least on one honest device h has observed

an insert operation for a before ssrc.

If yes, based on the dependencies in h’s state de-

scriptor, n can infer that the insertion has happened

before sh. Again this means that n has verified us-

ing h’s witness that a ∈ read(Gh, mh). The rest of

the argument is as in the previous case.

If not, since a is part of the snapshot, the construc-

tion of G, in particular point 5, ensures that there

exists an insert operation for a before rn, and no

delete operation.

Now we show that A ⊆ An. Let a ∈ A. For the sake

of contradiction, assume a /∈ An. We consider two cases:

a ∈ S(ops(s)) (as defined in Definition 7). This

implies that in G, an operation delete(a) was added

before rn, contradicting a ∈ A.

a /∈ S(ops(s)). This implies that either no honest device

has seen an insert operation for a before rn, or at

least one has seen a delete operation for a. Either

way, a /∈ A.

Corollary 4.1. For a device n and a message m ∈ Gn,

n’s view of the document at m is equal to the state

according to G, read(G, m) = read(Gn, m). Thus, the

privacy-enhanced protocol preserves FJC2.

Convergence and availability

For the basic protocol, convergence and availability di-

rectly follow from the properties of the CRDT and from

the use of cryptographic hashes for dependencies. How-

ever, a fork-resolution protocol is required to resolve

forks caused by misbehaving devices. Such a protocol

is out of scope of this paper.

For the privacy-enhanced protocol, fork-join-causal

consistency ensures that the views of honest group mem-

bers converge to a consistent state. This again requires

a fork-resolution protocol in case a misbehaving devices

causes the views of honest devices to be forked. Any two

participants can generally communicate even if other

collaborators are offline; however, if multiple devices

join concurrently, they require the help of an existing

collaborator to reach a state where they can collabo-

rate directly, since neither of them has seen all required

dependencies of the others at the time of joining.
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