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able quantity. Only a limited number of previous works

[29, 34, 35] have investigated the question of how to

select a proper value of ǫ, but these approaches ei-

ther require complicated economic models or lack the

analysis of adversaries with arbitrary auxiliary informa-

tion (see Section 2.3 for more details). Our work is in-

spired by the interpretation of differential privacy via

hypothesis testing, initially introduced by Wasserman

and Zhou [27, 30, 60]. However, this interpretation has

not been systematically investigated before in the con-

text of our research objective, i.e., reasoning about the

choice of the privacy parameter ǫ (see Section 2.4 for

more details).

We consider hypothesis testing [2, 45, 61] as the tool

used by the adversary to infer sensitive information of

an individual record (e.g., the presence or absence of

a record in the database for unbounded DP) from the

outputs of privacy mechanisms. In particular, we employ

the precision-recall (PR) relation from the perspective

of hypothesis testing by the adversary as the measur-

able quantity of interest. The PR relation considers the

trade-off between the precision (the fraction of exam-

ples classified as input records that are truly existing in

the input data for unbounded DP) and the recall (the

fraction of truly existing input records that are correctly

detected for unbounded DP) from the adversary’s per-

spective.

With this context of hypothesis testing, we con-

sider three research questions in this work: how do we

set the value of ǫ, how does auxiliary information af-

fect the choice of ǫ, and can hypothesis testing be used

to systematically compare across heterogeneous privacy

frameworks? We introduce our concrete approach to ad-

dress these questions below.

Investigating Differential Privacy. To explore the

choice of an appropriate value of ǫ, we consider an ad-

versary who tries to infer the existence of a record di

in the database D from the output of a differentially

private mechanism A(D). Our threat model is an ad-

versary who uses hypothesis testing with the Neyman-

Pearson criterion [47], which is one of the most powerful

criteria in hypothesis testing, on the noisy query results

obtained by DP mechanisms. We focus on using the

Neyman-Pearson criterion for the Laplace perturbation

mechanism [17] in order to perform a concrete analysis.

We also show how to generalize our approach to other

mechanisms such as the Gaussian perturbation mecha-

nism. Particularly, we leverage the PR-relation and the

corresponding Fβscore (the weighted harmonic average

of precision and recall [56]) as effective metrics to quan-

tify the performance of adversaries’ hypothesis testing,

which can provide a natural and interpretable guide-

line for selecting proper privacy parameters by system

designers and researchers. Furthermore, we extend our

analysis on unbounded DP to bounded DP and the ap-

proximate (ǫ, δ)-DP.

Impact of Auxiliary Information. The conjecture

that auxiliary information can influence the design of

DP mechanisms has been made in prior work [8, 28, 32,

33, 39, 65]. We therefore investigate the adversary’s ca-

pability based on hypothesis testing under three types

of auxiliary information: the prior distribution of the in-

put record, the correlation across records, and the corre-

lation across time. Our analysis demonstrates that the

auxiliary information indeed influences the appropriate

selection of ǫ. The results suggest that, when possible

and available, the practitioners of DP should explicitly

incorporate adversary’s auxiliary information into the

parameter design of their privacy frameworks. Hence,

our results provide a rigorous and systematic answer

to the important question posted by Dwork and Smith

[20].

Comparison of Statistical Privacy Frameworks. In

addition to the two primary questions regarding dif-

ferential privacy, we also extend our hypothesis testing

analysis to a comparative study of a range of state-of-

the-art privacy-preserving frameworks [10, 24, 28, 33,

38, 39]. Some of these frameworks [8, 28, 32, 33, 65] have

considered adversaries with auxiliary knowledge in their

definitions, but no prior work has applied a common

technique to compare and understand their relationship

among each other and with differential privacy.

Overall, our work makes the following contributions.

• We investigate differential privacy from the perspec-

tive of hypothesis testing by the adversary who ob-

serves the differentially private outputs. We com-

prehensively analyze (i) the unbounded and (ii)

bounded scenarios of DP, and (iii) (ǫ, δ)-DP.

• We theoretically derive the PR-relation and the cor-

responding Fβscore as criteria for selecting the value

of ǫ that would limit (to the desired extent) the ad-

versary’s success in identifying a particular record,

in an interpretable and quantitative manner.

• We analyze the effect of three types of auxiliary in-

formation, namely, the prior distribution of the in-

put record, the correlation across records, and the

correlation across time, on the appropriate choice of

ǫ via the hypothesis testing by the adversary.

• Furthermore, we systematically compare the state-

of-the-art statistical privacy notions from the per-

spective of the adversary’s hypothesis testing, in-

cluding Pufferfish privacy [33], Blowfish privacy [28],
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dependent differential privacy [39], membership

privacy [38], inferential privacy [24] and mutual-

information based differential privacy [10].

2 Background and Related Work

In this section, we briefly discuss the frameworks of dif-

ferential privacy and hypothesis testing, as well as re-

lated works regarding these two topics.

2.1 Differential Privacy

Differential privacy is a rigorous mathematical frame-

work aimed at protecting the privacy of the user’s record

in a statistical database [13–15, 17, 20]. The goal of DP

is to randomize the query results to ensure that the

risk to the user’s privacy does not increase substantially

(bounded by a function of ǫ) as a result of participating

in the statistical database. The notion of ǫ-differential

privacy is formally defined as follows.

Definition 1. (ǫ-differential privacy [13]) A random-

ized algorithm A provides ǫ-differential privacy if for

any two neighboring databases D and D′ such that D

and D′ differ by adding/removing a record, and for any

subset of outputs S ⊆ S, maxD,D′
P (A(D)∈S)
P (A(D′)∈S) ≤ exp(ǫ),

where A(D) (resp. A(D′)) is the output of A on input

D (resp. D′) and ǫ is the privacy budget.

It is worth noting that the smaller the privacy bud-

get ǫ, the higher the privacy level. This privacy defini-

tion is also known as unbounded DP as the database

size is unknown. When the database size is known, D

and D′ are neighbors if D can be obtained from D′ by

replacing one record in D′ with another record. Def-

inition 1 based on this notion of neighbors is known

as bounded DP [32]. Approximate DP is another vari-

ant of DP, also named (ǫ, δ)-DP [16], and is defined as

P (A(D) ∈ S) ≤ P (A(D′) ∈ S) exp(ǫ) + δ, which relaxes

DP by ignoring noisy outputs with a certain probability

controlled by the parameter δ. In Section 4, we will ana-

lyze mechanisms that satisfy these DP guarantees from

the adversary’s perspective of hypothesis testing.

The Laplace perturbation mechanism (LPM) [17]

is a classic and popular mechanism that achieves ǫ-DP,

which makes use of the concept of global sensitivity.

Definition 2. (Global sensitivity) [17] The global sen-

sitivity of a query Q : D → R
q is the maximum differ-

ence between the values of the function when one input

changes, i.e. ∆Q = maxD,D′ ‖Q(D) − Q(D′)‖1.

Theorem 1. (Laplace Perturbation Mechanism) [17]

For any query Q : D → R
q, the Laplace perturbation

mechanism, denoted by A, and any database D ∈ D ,

A(D) = Q(D) + (η1, . . . , ηq) achieves ǫ-differential pri-

vacy, where ηi are i.i.d random variables drawn from

the Laplace distribution with a parameter ζ = ∆Q/ǫ, de-

noted by Lap(ζ), that is Pr[ηi = z] ∝ ǫ
2∆Q exp

(

− ǫ|z|
∆Q

)

.

In order to perform a concrete analysis, our work mainly

focuses on the Laplace perturbation mechanism. How-

ever, our approach also generalizes to other mechanisms

such as the Gaussian perturbation mechanism (as dis-

cussed in Section 4.3).

In the literature, several statistical privacy frame-

works have also been proposed as important general-

ization of DP, such as Pufferfish privacy [33], Blow-

fish privacy [28], dependent differential privacy [39],

membership privacy [38], inferential privacy [24] and

mutual-information based differential privacy [10].

These privacy frameworks are important statistical pri-

vacy frameworks for releasing aggregate information of

databases while ensuring provable guarantees, similar

to DP. We will systematically compare them with DP

from the adversary’s perspective of hypothesis testing

in Section 6.

2.2 Hypothesis Testing

Hypothesis testing [2, 45, 61] is the use of statistics on

the observed data to determine the probability that a

given hypothesis is true. The common process of hy-

pothesis testing consists of four steps: 1) state the hy-

potheses; 2) set the criterion for a decision; 3) compute

the test statistic; 4) make a decision. The binary hypoth-

esis testing problem1 decides between a null hypothesis

H = h0 and an alternative hypothesis H = h1 based on

observation of a random variable O [2, 45]. Under hy-

pothesis h0, O follows the probability distribution P0,

while under h1, O follows distribution P1. A decision

rule Ĥ is a criterion that maps every possible observa-

tion O = o to either h0 or h1.

The most popularly used criteria for decision are

maximum likelihood [50], maximum posterior probabil-

ity [25], minimum cost [43] and the Neyman-Pearson

criterion [47].

1 We consider the binary hypothesis testing problem since the

adversary aims to distinguish two neighboring databases in DP.
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Definition 3. The Neyman-Pearson criterion aims to

maximize the true detection rate (the probability of cor-

rectly accepting the alternative hypothesis) subject to a

maximum false alarm rate (the probability of mistakenly

accepting the alternative hypothesis) [47, 61], i.e.,

max PT D s.t., PF A ≤ α (1)

where PT D and PF A denote the true detection rate and

the false alarm rate, respectively.

The Neyman-Pearson criterion has the highest statis-

tical power [37] since it maximizes the true detection

rate under a given requirement of the false alarm rate

(as defined above). According to the Neyman-Pearson

Lemma [46], an efficient way to solve Eq. 1 is to im-

plement the likelihood ratio test [49, 57]. In practice,

the likelihood ratio, or equivalently its logarithm, can

be used directly to construct test statistics to compare

the goodness of fit of the two hypotheses. Other criteria

such as maximum likelihood [50], maximum posterior

probability [25] and minimum cost [43] cannot guaran-

tee the highest statistical power in general, and they are

based on a fixed threshold on the likelihood ratio that

cannot incorporate α. In contrast, the Neyman-Pearson

criterion treats the testing performance as a function

of the threshold for the likelihood ratio controlled by

α ([1], pp. 67). Therefore, the Neyman-Pearson crite-

rion can provide more flexibility to optimize a range of

evaluation metrics by setting different values of α [37].

2.3 Setting the Privacy Budget ǫ

Setting the privacy budget ǫ in DP is a challenging task.

Prior work [29, 34–36] attempted to address this prob-

lem, but has several limitations. Hsu et al. [29] proposed

an economic method to express the balance between the

accuracy of a DP release and the strength of privacy

guarantee in terms of a cost function when bad events

happen. However, this work involves complicated eco-

nomic models consisting of bad events and their cor-

responding cost functions. It is difficult to quantify the

cost of a bad event for general applications. Krehbiel [34]

takes each data owner’s privacy preference into consider-

ation and aims to select a proper privacy parameter for

achieving a good tradeoff between utility and privacy.

This mechanism focuses more on an economic perspec-

tive for collecting and distributing payments under a

chosen level of privacy parameter and their privacy def-

inition is not the standard DP.

Other related works by Lee and Clifton [35, 36] de-

termine ǫ for LPM based on the posterior probability

that the adversary can infer the value of a record. The

Neyman-Pearson criterion adopted in our approach has

an advantage over the maximum posterior probability

analysis [25]. As stated in Section 2.2, the Neyman-

Pearson criterion in our work can be used to optimize a

range of evaluation metrics by selecting a proper value

of the false alarm rate while maximizing the true detec-

tion rate. In addition, their analysis [35] only assumes

uniform distribution of the input data (equivalent to the

scenarios without any prior distribution) in both their

experiments and theoretical derivations.

Finally, these previous works are noticeably differ-

ent from our approach as they do not utilize the statis-

tical tool of hypothesis testing (especially the Neyman-

Pearson criterion) by the adversary. Furthermore, our

work is not limited to the selection of the ǫ value, but is

also extended to the analysis on the impact of the aux-

iliary information possessed by the adversary and the

comparison across the state-of-the-art statistical privacy

frameworks, which has not been studied before.

2.4 Hypothesis Testing in DP

Previous work in [21, 48, 58] has investigated how to ac-

curately compute the test statistics in hypothesis test-

ing while using DP to protect data. Ding et al. de-

signed an algorithm to detect privacy violations of DP

mechanisms from a hypothesis testing perspective [12].

Wasserman and Zhou [60], Hall et al. [27], and Kairouz

et al. [30] are our inspiration for using hypothesis test-

ing on DP. These works propose a view of DP from the

perspective of hypothesis testing by the adversary who

observes the differentially private outputs. Specifically,

the observation is first made by Wasserman and Zhou

[60] for bounding the probability for the adversary to

correctly reject a false hypothesis of the input database.

Hall et al. [27] later extend such analysis to (ǫ, δ)-DP.

Kairouz et al. [30] then apply this concept in their proof

of composition of DP. However, these prior works have

not applied hypothesis testing to our objectives of de-

termining the appropriate value of ǫ.

In contrast, our work extensively analyzes the ad-

versary’s capability of implementing hypothesis testing

using Neyman-Pearson’s criterion [47] on outputs of DP

mechanisms, such as LPM and the Gaussian perturba-

tion mechanism. We apply it to the problem of deter-

mining ǫ, the analysis of the effect of auxiliary informa-

tion on the choice of ǫ, and the comparative analysis
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From Eq. 3, we know that precision is the probabil-

ity that hypothesis h1, which the adversary’s hypothe-

sis testing says is true, is indeed true; and recall is the

probability that hypothesis h1, which is indeed true, is

detected as true by the adversary’s hypothesis testing.

Note that the randomness in the process of comput-

ing precision and recall comes from the statistical noise

added in DP mechanisms. Therefore, our analysis aims

to quantify the capability of the adversary that lever-

ages the hypothesis testing technique in identifying any

specific record from DP outputs.

PR-relation quantifies the actual detection accuracy

of the adversary, which has a one-to-one correspondence

with the false alarm rate PF A and the missed detection

rate 1−PT D [30]. Different from Kairouz et al. [30] that

quantifies the relative relationship between PF A and

1 − PT D, we obtain explicit expression of the precision

and recall of the adversary that exploits the Neyman-

Pearson criterion (in Sections 4.1.3, 5.1, 5.2, 5.3). It

is also interesting to note that there exists a one-to-

one correspondence between PR-relation and the re-

ceiver operating characteristic (ROC) [11]. Therefore,

our analysis in the domain of PR-relation can be di-

rectly transferred to the domain of ROC.

Furthermore, we theoretically prove that the ad-

versary that implements Neyman-Pearson criterion

achieves the optimal PR-relation (in Theorem 2) and

this optimality is generally applicable for correlated

records (in Corollary 1). The corresponding proofs are

deferred to the appendix.

Theorem 2. The Neyman-Pearson criterion charac-

terizes the optimal adversary that can achieve the best

PR-relation.

Corollary 1. The optimality of Neyman-Pearson cri-

terion given in Theorem 2 holds for correlated records

in the database.

In addition, we leverage Fβscore (weighted harmonic av-

erage of precision and recall), to further quantify the

relationship between the adversary’s hypothesis testing

and the privacy parameter ǫ, which also provides an

interpretable guideline to practitioners and researchers

for selecting ǫ. Fβscore = 1
1

(1+β2)precision
+ β2

(1+β2)recall

(for

any real number β > 0) is an example for quantifying

the PR-relation in order to understand the adversary’s

power in a more convenient manner, since it combines

the two metrics, precision and recall, into a single met-

ric. However, this combination has the potential of infor-

mation loss of the PR-relation which broadly covers the

adversary’s hypothesis testing in the entire space (more

discussions in Section 4.1.4). Note that every step of our

analysis in Figure 1 is accurate in quantifying the ad-

versary’s hypothesis testing under the Neyman-Pearson

criterion using the metrics of PR-relation and Fβscore.

Generalizing to Other Privacy Mechanisms and

Practical Adversaries: We further generalize our

analysis of the conventional ǫ-DP to its variants such as

(ǫ, δ)-DP (adopting the Gaussian perturbation mecha-

nism), more advanced privacy notions, and also adver-

saries with auxiliary information. Our analysis shows

that the adversary’s auxiliary information in the form

of prior distribution of the input database, the correla-

tion across records and time can affect the relationship

between the two posterior probabilities (corresponding

to the two hypotheses made by the adversary), thus im-

pacting the proper value of privacy parameter ǫ.

4 Quantification of DP from the

Adversary’s Hypothesis Testing

In this section, we theoretically analyze the capability

of the adversary’s hypothesis testing for inferring sen-

sitive information of a particular record from DP out-

puts. Specifically, we implement our analysis on the un-

bounded and bounded scenarios of DP and (ǫ, δ)-DP.

4.1 Quantification of Unbounded DP

4.1.1 Hypothesis Testing Problem

Recall that the Neyman-Pearson criterion [47] aims to

maximize the true detection rate of the hypothesis test

given a constrained false alarm rate (Definition 3). Fol-

lowing our threat model and methodology in Section 3,

the adversary would assume the following two hypothe-

ses, corresponding to the presence or the absence of a

record di:

H =

{

h0 : di does not exists in D, i.e., D = D′

h1 : di exists in D, i.e., D = D
(4)

This is clearly the unbounded DP setting (we will ana-

lyze the bounded DP setting and other DP variations in

the next subsections.). After observing the noisy query

result A(D) = o, the adversary tries to distinguish the

two events D = D and D = D′ by analyzing the cor-

responding posterior probabilities of P (D = D|A(D) =



Investigating Statistical Privacy Frameworks from the Perspective of Hypothesis Testing 239

o, d−i) and P (D = D′|A(D) = o, d−i). Following the

Bayes’ rule of

P (D = D|A(D) = o, d−i) =
P (A(D) = o|d−i, D = D)P (D = D)

P (A(D) = o|d−i)

=
P (A(D) = o)P (D = D)

P (A(D) = o|d−i)
,

(5)

we know that distinguishing the two posterior probabil-

ities is equivalent to differentiating the two conditional

probabilities of P (A(D) = o) and P (A(D′) = o),2 for

adversaries that have no access to the prior distribution

of the input database and thus assume a uniform prior,

i.e., P (D = D) = P (D = D′).

4.1.2 Decision Rule

Adversary’s Hypothesis Testing for Scalar

Query: We first consider the situation where the query

output is a scalar and then generalize our analysis to

vector output. It is worth noting that DP is defined in

terms of probability measures but likelihood is defined

in terms of probability densities. However, we use them

interchangeably in this paper (we can change the prob-

ability densities to the probability measures through

quantizing over the query output for instance). With-

out loss of generality, we assume Q(D) ≥ Q(D′). Then,

we have the following theorem.

Theorem 3. Applying Neyman-Pearson criterion of

maximizing the true detection rate under a given re-

quirement of false alarm rate α in Definition 3 is equiv-

alent to the following hypothesis testing which is of a

simpler formulation: setting a threshold

θ =







− ∆Q log 2α

ǫ
+ Q(D′), α ∈ [0, 0.5]

∆Q log 2(1 − α)

ǫ
+ Q(D′), α ∈ (0.5, 1]

(6)

for the output of LPM-based DP mechanisms A(D) =

o, then the decision rule of the adversary’s hypothesis

testing is o
h1

≷
h0

θ.3

Proof. Following the Neyman-Pearson Lemma [46], we

utilize the likelihood ratio test [49, 57] to realize the

Neyman-Pearson criterion. Therefore, we first compute

the likelihood ratio Λ(o) of the two hypotheses and set

a threshold λ on this ratio for the adversary’s decision.

2 P (A(D) = o) represents the same conditional probability as

P (A(D) = o|D = D).

3 The decision rule is o
h0

≷
h1

θ if Q(D) ≤ Q(D′).

Under a given requirement of the false alarm rate α,

we can uniquely determine the threshold θ of the noisy

output. Then, we can compute λ from θ. Next, let us

discuss each step of this proof in detail.

Construct Likelihood Ratio Test: Given the noisy

scalar output o = A(D) = Q(D) + Lap(ζ) = Q(D) +

Lap(∆Q/ǫ) from the LPM, we can compute the like-

lihood ratio Λ(o) corresponding to the two hypotheses

defined in Eq. 4 as

Λ(o) =
P (A(D) = o)

P (A(D′) = o)
=

ǫ
2∆Q

exp
(

−
ǫ|o−Q(D)|

∆Q

)

ǫ
2∆Q

exp
(

−
ǫ|o−Q(D′)|

∆Q

)

=











exp(ǫ) if o > Q(D)

exp

(

2o − Q(D) − Q(D′)

∆Q
ǫ

)

if o ∈ [Q(D
′
), Q(D)]

exp(−ǫ) if o < Q(D
′
)

(7)

Assume the decision threshold for the likelihood ratio

is λ, then the corresponding decision rule in Neyman-

Pearson criterion is Λ(o)
h1

≷
h0

λ.

Uniquely Determine θ from α: Under a threshold

θ on the noisy output o, PF A can be computed as

1 −
∫ ∞

θ
P (A(D′) = o)do = 1 −

∫ ∞

θ
ǫ

2∆Q e−
ǫ|x−Q(D′)|

∆Q dx,

which is 1 − 1
2 e−

(θ−Q(D′))ǫ

∆Q if θ < Q(D′), or 1
2 e

(θ−Q(D′))ǫ

∆Q

if θ ≥ Q(D′). Therefore, for a given requirement of the

false alarm rate α, we can obtain Eq. 6.

Compute λ from θ: Based on Eq. 7, we know that

exp(−ǫ) ≤ Λ(o) = P (A(D)=o)
P (A(D′)=o) ≤ exp(ǫ). Therefore, it is

sufficient to choose λ such that exp(−ǫ) ≤ λ ≤ exp(ǫ).

Then, the decision rule becomes e
2o−Q(D)−Q(D′)

∆Q
ǫ

h1

≷
h0

λ =⇒ o
h1

≷
h0

log λ∆Q
2ǫ + Q(D)+Q(D′)

2 . 4 Therefore, the

threshold λ for the likelihood ratio Λ(o) can be com-

puted from the threshold θ for the noisy output o as

λ = e
2θ−Q(D)−Q(D′)

∆Q
ǫ (8)

Based on the analysis above, we know that there ex-

ists a one-to-one correspondence between the false alarm

rate α and the threshold of the noisy output θ. This

uniquely determined θ satisfies the existence and suffi-

cient conditions for achieving Neyman-Pearson Lemma

(see Theorem 3.2.1 in [37]). Therefore, the Neyman-

Pearson criterion in our setting is equivalent to making

a decision rule of o
h1

≷
h0

θ by setting a threshold θ to the

noisy output o, which is of a simpler formulation.

4 We consider the natural base for logarithm in this paper.
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Fig. 3. (a) PR-relation and (b) the highest Fβscore of detect-

ing a particular record under unbounded DP.

4.1.4 Choosing Proper ǫ

The privacy parameter ǫ can relatively measure the pri-

vacy guarantees of DP mechanisms. However, choosing

appropriate values for ǫ is non-trivial since its impact on

the privacy risks of the input data in practice are not

well understood. Our method of choosing ǫ considers

the capability of the adversary’s hypothesis testing to

identify any particular record as being in the database.

Specifically, we provide guidelines for selecting proper

values of ǫ using PR-relation and Fβscore, respectively.

Guidelines under PR-relation: Our analysis by

leveraging PR-relation generally covers the adversary’s

trade-offs between precision and recall in the entire

space. Figure 3(a) demonstrates that, with sufficiently

low privacy budget ǫ, an adversary’s ability to identify

an individual record in the database is indeed limited.

Under a given requirement of trade-offs between preci-

sion and recall of the adversary’s hypothesis testing, the

privacy mechanism designer can refer to the PR-relation

obtained in Eqs. 9, 10, 11 and Figure 3(a) to choose an

appropriate privacy budget ǫ.

Guidelines under Fβscore: Besides the PR-relation,

we also leverage the Fβscore, which is a weighted har-

monic average of precision and recall, as another appro-

priate metric for quantifying the effectiveness of the ad-

versary’s hypothesis testing. Furthermore, we can theo-

retically derive the highest Fβscore (by selecting a proper

threshold θ) that the adversary can achieve for arbitrary

real number β > 0 as

F ∗

βscore = max
θ

1

1
(1+β2)precision

+ β2

(1+β2)recall

=















1 + β2

2 + β2
, ǫ < log(1 + β2)

(1 + β2)(
√

1 + 4β2eǫ − 1)

(1 + β2)
√

1 + 4β2eǫ − 1 + β2
, ǫ ≥ log(1 + β2)

(12)

and the detailed proof is deferred to the Appendix.

Next, we show F ∗
βscore with varying privacy param-

eter ǫ in Figure 3(b). Our results in Eq. 12 and Fig-

Table 1. The Maximal ǫ under a Required Bound of Fβscore.

Fβscore 0.55 0.58 0.62 0.67 0.76 0.83 0.9 0.95

β = 0.5 0.22 0.34 0.55 0.82 1.42 2.04 3 4.29

β = 0.6 — 0.33 0.54 0.83 1.45 2.11 3.11 4.43

β = 0.8 — — 0.49 0.8 1.46 2.16 3.21 4.58

β = 1 — — — 0.71 1.4 2.12 3.2 4.6

β = 1.5 — — — — 1.17 1.88 2.99 4.41

β = 2 — — — — — 1.61 2.69 4.12

ure 3(b) are accurate quantification of the adversary’s

hypothesis testing from the perspective of Fβscore, from

which we observe that the adversary’s capability of in-

ferring the existence of an individual record is generally

enhanced with an increasing value of ǫ.

Fβscore can be interpreted as a summary statistic for

the PR-relation, which provides a more convenient way

of quantifying the relationship between the adversary’

hypothesis testing and the privacy parameter ǫ. Under a

desired bound of F ∗
βscore that the adversary’s hypothesis

testing can achieve, the privacy mechanism practition-

ers can refer to Eq. 12 and Figure 3(b) to choose an

appropriate value of ǫ. Furthermore, we provide numer-

ical bounds of ǫ under different requirements of Fβscore

for commonly-used weights of β ∈ [0.5, 2] in Table 1, as

an easier way to look up for privacy practitioners.

When the summary statistics of the precision and

recall are used (as opposed to using the full PR-relation

information), such as the use of the Fβscore, there is

potential for information loss, especially in the regime

corresponding to smaller values of ǫ (Eq. 12 and Fig-

ure 3(b)). It is interesting to note that F ∗
βscore keeps

the same for ǫ < log(1 + β2), and then monotonically

increases with ǫ for ǫ ≥ log(1 + β2). This turning point

ǫ = log(1+β2) approaches 0 for smaller values of β, mak-

ing F ∗
βscore closer to be monotonically increasing with ǫ

thus capturing the privacy benefits of smaller values of

ǫ (as shown Figure 3(b)).

Finally, we emphasize that the alternative approach

of using the entire PR-relation to guide the selection of ǫ

does not suffer from the limitations discussed above, and

also shows privacy benefits of using smaller ǫ (smaller

precision for a given recall as shown in Figure 3(a)).

4.1.5 Plausible Deniability Property

There are multiple ways to interpret semantics of DP

guarantees such as hypothesis testing [27, 30, 60] and

plausible deniability (Page 9 in Dwork [13], Page 2 in

Dwork and Smith [20], Definition 1 in Dwork, McSherry,
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Nissim and Smith [17], Section 2 in Kasiviswanathan

and Smith [31], Section 4 in Li et al. [38]). The poten-

tial of randomness providing plausible deniability was

first recognized by Warner [59]. Bindschaedler et al. pro-

vide a formal definition of plausible deniability for data

synthesis, compared to which DP is a stronger privacy

guarantee [5].

Definition 4. (Plausible Deniability) [5] For any

database D with |D| > k (|D| is the number of records in

D), and any record y generated by a perturbation mecha-

nism M such that y = M(d1) for d1 ∈ D, we state that y

is releasable with (k, γ)-plausible deniability, if there ex-

ist at least k −1 distinct records d2, · · · , dk ∈ D \d1 such

that γ−1 ≤ P (M(di)=y)
P (M(dj)=y) ≤ γ for any i, j ∈ {1, 2, · · · , k}.

We interpret DP as hypothesis testing — how well

an adversary in DP can infer the existence of an indi-

vidual record (unbounded DP) or the exact value of

a record (bounded DP) in binary hypothesis testing

problem involving two neighboring databases (Dwork

[13], Dwork, McSherry, Nissim and Smith [17], Kifer

and Machanavajjhala [32]). Theorem 3 demonstrates

that the adversary implements the likelihood ratio test

Λ(o) = P (A(D)=o)
P (A(D′)=o) to satisfy the Neyman-Pearson cri-

terion and the decision rule in Eq. 6 is equivalent to

Λ(o)
h1

≷
h0

λ. Combining Eq. 6 and Eq. 8, we know that

λ = e−ǫ

4α2 if α ∈ [0, 0.5], or e−ǫ

4(1−α)2 if α ∈ (0.5, 1]. Accord-

ing to Definition 4, the plausible deniability also quan-

tifies the likelihood ratio between two data (although it

only considers the scenario of privacy-preserving data

synthesis [5]). Therefore, our analysis of using hypoth-

esis testing to guide selection of proper privacy param-

eters in DP has implicitly incorporated the plausible

deniability of any individual records in the database

(controlled by the maximum false alarm rate α in the

Neyman-Person criterion). Furthermore, α determines

a trade-off between the false alarm rate PF A and the

true detection rate PT D (Definition 3). Therefore, our

analysis of using PR-relation (which has a one-to-one

correspondence with PF A, PT D) and Fβscore (summary

statistics of precision and recall) generated by varying

α quantifies the randomness and the plausible deniabil-

ity [59] [5] of any individual records in the database.

4.2 Quantification of Bounded DP

Bounded DP corresponds to the setting where the neigh-

boring databases differ in one (record’s) value and their

size is the same. For simplicity, we first discuss a scenario

where the i-th record of the input data di can only take

binary values di1, di2. Note that the hypothesis testing

by the adversary in the bounded scenario is different

from the unbounded scenario in that the adversary is

no longer aiming to distinguish the absence/presence of

a record, but to estimate the true value of a record.

Thus, the adversary’s hypothesis testing now becomes:

H =

{

h0 : di = di1

h1 : di = di2

(13)

Comparing Eq. 4 and Eq. 13, we know that the two hy-

potheses for unbounded and bounded cases are different.

However, according to Theorem 5, their corresponding

PR-relation (and Fβscore) are the same. This means,

the hypothesis testing implemented by the adversary

for bounded DP with binary records is the same as that

for unbounded DP.

Next, we consider a more general scenario where di

takes multiple values di1, di2, · · · , dik. Without loss of

generality, we assume Q(di1) ≤ Q(di2) ≤ · · · ≤ Q(dik).

Therefore, the distance between any two query results

computed over two different values of di is smaller than

the sensitivity of the query ∆Q = max ‖Q(dik)−Q(di1)‖.

Since the inserted noise for satisfying DP is calculated

based on ∆Q (i.e., Lap( ∆Q
ǫ )), we know that the hypoth-

esis testing achieved by the adversary in distinguishing

any two values of di is not worse than distinguishing

di1 and dik. We thus conclude that the best hypothesis

testing of the adversary for the bounded scenario is the

same as that for the unbounded scenario.

4.3 Quantification of (ǫ, δ)-DP

Approximate DP, also named (ǫ, δ)-DP [16] is defined as

P (A(D) ∈ S) ≤ exp(ǫ)P (A(D′) ∈ S) + δ for any neigh-

boring databases D, D′. One of the most popular mecha-

nisms to achieve (ǫ, δ)-DP is the Gaussian perturbation

mechanism, where a Gaussian noise with zero mean and

standard variant σ =
√

2 log(1.25/δ)∆Q/ǫ is added to

the query output [16, 18].

Similar to Section 4.1, we first derive the mechanism

for the adversary’s hypothesis testing that satisfies the

Neyman-Pearson criterion based on the following theo-

rem (detailed proof is deferred to the Appendix).

Theorem 6. Applying Neyman-Pearson criterion in

Definition 3 is equivalent to the following hypothesis

testing which is of a simpler formulation: setting a

threshold θ = Φ−1(1−α)σ +Q(D′) (where α is the max-
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Fig. 4. PR-relation of detecting a particular record from

(ǫ, δ)-DP results with varying (a) ǫ and (b) δ, respectively.

imum PF A and Φ(·) is the cumulative distribution func-

tion of the standard normal distribution) for the output

of the Gaussian perturbation mechanism o, the decision

for the adversary’s hypothesis testing is o
h1

≷
h0

θ.

According to Theorem 6 and Eq. 11, we can theoreti-

cally derive precision and recall of the adversary’s hy-

pothesis testing for the Gaussian mechanism as

precision =
1 − Φ

(

θ−Q(D)
σ

)

2 − Φ
(

θ−Q(D)
σ

)

− Φ
(

θ−Q(D′)
σ

)

recall = 1 − Φ

(

θ − Q(D)

σ

)

(14)

We further show the corresponding PR-relation of the

adversary’s hypothesis testing in Figure 4(a) and Fig-

ure 4(b) with varying ǫ and δ, respectively. We observe

that the adversary’s performance of hypothesis testing

is enhanced with an increasing value of ǫ and δ. Com-

paring Figure 3(a) and Figure 4, we know that different

mechanisms vary in their power of defending against

adversaries’ hypothesis testing since their output dis-

tributions are different. Note that our approach can be

generally applied to any DP mechanism (Figure 1), al-

though we focus on LPM and GPM.

Next, the highest Fβscore of the adversary’s hypoth-

esis testing under different values of privacy parameters

ǫ, δ can be directly derived from Eq. 14 as

F ∗

βscore = max
θ

(1 + β2)
(

1 − Φ
(

θ−Q(D)
σ

))

2 + β2 − Φ
(

θ−Q(D)
σ

)

− Φ
(

θ−Q(D′)
σ

)
(15)

Balle and Wang [4] developed the analytic Gaussian

mechanism whose variance is calibrated using the Gaus-

sian cumulative density function instead of a tail bound

approximation. Other recent works also proposed tight

lower bounds for the variance of the added Gaussian

noise while satisfying (ǫ, δ)-DP [23, 51]. How to adapt

our analysis for the classical Gaussian mechanism in

Theorem 6 and Eqs. 14, 15 to these improved Gaussian

mechanisms [4, 23, 51] is an interesting future direction.

5 Quantification of DP under

Auxiliary Information from the

Adversary’s Hypothesis Testing

We now demonstrate how to control the adversary’s suc-

cess rate in identifying of a particular record with several

important variations of the adversary’s belief including

the input data’s prior distribution, record correlation

and temporal correlation.

5.1 Quantification of DP under Prior
Distribution

Let us first consider an adversary with known prior dis-

tribution of the input data. Although such an adversary

is not explicitly considered in conventional DP frame-

works5, we still analyze this adversary’s inference for

sensitive information in a particular record as an inter-

esting and practical case study. In some scenarios, the

adversary’s prior is non-uniform, which will result in a

different decision rule. Similar to our analysis in Sec-

tion 4.2, we still consider a binary hypothesis testing

problem where the adversary aims to distinguish the

two neighboring databases in Eq. 13.

Next, we quantify the hypothesis testing of the ad-

versary to distinguish the two posterior distributions

of P (di = di1|A(D) = o, d−i), P (di = di2|A(D) =

o, d−i). According to Bayes’ rule, we have P (di =

di1|A(D) = o, d−i) =
P (A(D)=o|d−i,di=di1)P (di=di1)

P (A(D)=o|d−i) =
P (A(D)=o)P (di=di1)

P (A(D)=o|d−i) . Then, we get

P (di = di1|A(D) = o, d−i)

P (d = di2|A(D) = o, d−i)
=

P (A(D) = o)P (di = di1)

P (A(D′) = o)P (di = di2)
(16)

Based on Eq. 16, we know that the adversary’s hy-

pothesis testing under prior distribution is equivalent

to distinguishing the two probabilities of P (A(D) =

o)P (di = di1) and P (A(D′) = o)P (di = di2). Figure 5(a)

shows the hypothesis testing procedure of the adversary,

where θ is the decision threshold on the noisy query

outputs and the adversary’s decision rule is o
di1

≷
di2

θ. We

further define the coefficient of prior distribution ρp as

ρp = 1 − mindi1,di2

P (di=di1)
P (di=di2) , where ρp ∈ [0, 1]. ρp = 0

corresponds to the scenario where the adversary has no

knowledge about the prior distribution and thus makes

the assumption of uniform distribution (the same as in

Section 4.1). Combining Eq. 11 with Eq. 16, we can de-

5 DP guarantees are not influenced by the prior distribution of

the input data.
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Fig. 8. The highest Fβscore achieved by the adversary under

different auxiliary information (setting β = 1, i.e., F 1score).

recall for this adversary’s hypothesis testing as

precision =
P t

i1RSR

P t
i1RSR + P t

i2GSR

=
1

1 + (1 − ρp − (2 − ρp)(ρc + ρt(1 − ρc))) GSR
RSR

,

recall = RSR.

(23)

Eq. 23 holds since max
P t

i1

P t
i2

= max
P t

i1

1−P t
i1

=
1

1−ρp
(1+ 1

1−ρp
)(1−ρc)(1−ρt)

1− 1
1−ρp

(1+ 1
1−ρp

)(1−ρc)(1−ρt)
= 1

(2−ρp)(1−ρc)(1−ρt)−1 =

1
1−ρp−(2−ρp)(ρc+ρt(1−ρc)) . From Eq. 23, we know that

precision is increased under the same level of recall

when the adversary has access to the temporal correla-

tion of the input data, resulting in a better PR-relation

compared to the static scenario. We show the enhanced

PR-relation in Figure 7(b) by setting ρp = 0.2, ρc =

0.1, ρt = 0.1 for example. Furthermore, we theoretically

compute the highest Fβscore under given values of pri-

vacy budget ǫ, coefficient of prior distribution ρp, coeffi-

cient of record correlation ρc and coefficient of temporal

correlation ρt as

F
∗

βscore

=















1 + β2

2 + β2 − ρp − (2 − ρp)(ρc + ρt(1 − ρc))
, ǫ < ǫ(ρp, ρc, ρt)

(1 + β2)(

√

1 +
4β2 eǫ

1−ρp −(2−ρp )(ρc +ρt (1−ρc ))
− 1)

(1 + β2)

√

1 +
4β2 eǫ

1−ρp −(2−ρp )(ρc +ρt (1−ρc ))
− 1 + β2

, ǫ ≥ ǫ(ρp, ρc, ρt)

(24)

where ǫ(ρp, ρc, ρt) = log(1 + β2

1−ρp−(2−ρp)(ρc+ρt(1−ρc)) )

and the corresponding proof is deferred to the Ap-

pendix. From Eq. 24, we know that the temporal cor-

relation can benefit the adversary’s hypothesis testing

to achieve an enhanced F ∗
βscore. Therefore, the correla-

tion of the input data across time should be considered

in selecting appropriate privacy parameters of privacy

preserving mechanisms.

Summary for the Quantification of DP under

Auxiliary Information: Figure 8 shows the highest

Fβscore (setting β = 1) varying with ǫ under different

auxiliary information. We can observe that the adver-

sary can infer more information of the input data with

more auxiliary information (higher values of ρp, ρc, ρt).

This property can also be explained by using condition-

ing always reduces entropy (uncertainty) in information

theory [9]. Therefore, choosing a proper privacy bud-

get ǫ needs more careful consideration when designing

privacy-preserving mechanisms against adversaries who

have access to these auxiliary information.

5.3.1 Relating PR-relation to DP Guarantees

Since the computation of PR-relation involves a spe-

cific adversary model, the connection between the PR-

relation and privacy guarantees (DP) depend on what

assumptions we make for the adversaries.

Optimal Adversary: considering an optimal ad-

versary that implements the Neyman-Pearson criterion

and with full access to the possible auxiliary informa-

tion of the data, under a specific mechanism, the PR-

relation achieved by the adversary would be fixed (since

every step of our analysis in Figure 1 is exact) as shown

in Eqs. 9, 10, 11 for Laplacian mechanism, Eq. 14 for

Gaussian mechanism, and Eqs. 17, 20, 23 under aux-

iliary information. For a given PR-relation that follows

this fixed pattern (named as PRoptimal), we thus can in-

fer the values of privacy parameters in DP guarantees by

computing them directly from the corresponding equa-

tions (Eqs. 9, 10, 11, 14, 17, 20, 23) of PR-relation or

the corresponding Figures 3(a), 4, 5(b), 6(b), 7(b).

Realistic Adversary: considering a realistic ad-

versary that may not have access to the full auxiliary

information, the PR-relation (named as PRrealistic)

may be different. Nevertheless, we can still obtain a

lower bound for the corresponding privacy parameters,

by finding a lower bound of PRrealistic, denoted as

PRoptimalLow, within all possible PRoptimal relations

(corresponding to different privacy parameters). Since

the best PR-relation achieved by the optimal adversary

under this mechanism should be better than PRrealistic,

we know that the values of privacy parameters cor-

responding to the given PRrealistic should be larger

than the privacy parameters corresponding to the lower-

bound optimal PR-relation PRoptimalLow.

6 Quantification of Other Privacy

Notions from the Adversary’s

Hypothesis Testing

In this section, we systematically compare several exist-

ing statistical privacy frameworks from the perspective
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PR-relation that can be achieved by the adversary. A

privacy notion with a smaller ǫ in Theorem 7 is weaker

in restricting an adversary’s capability of performing hy-

pothesis testing to infer an individual record. Combining

the qualitative analysis in Section 6.1 and the quantita-

tive comparison shown in Theorem 7, we know that un-

der the same level of PR-relation, a larger value of ǫ can

be selected for a privacy notion with less restrictions in

the definition of neighboring databases. Based on The-

orem 7, we further compare these privacy notions under

two special data distributions: 1) independent records

and 2) independent and uniform records, as shown in

the following propositions.

Proposition 1. Privacy Comparison under Inde-

pendent Records: If the individual records in the

database are independent of each other, we have

ǫBP (ht) = ǫDDP (ht) = ǫIP (ht) = ǫDP (ht)

ǫDDP (ht) ≤ 2ǫMP (ht)

ǫMIDP (ht) ≤ ǫMP (ht)

Proposition 2. Privacy Comparison under Inde-

pendent and Uniform Records: If the individual

records in the database are independent of each other,

and each record is uniformly distributed, we have

ǫBP (ht) = ǫDDP (ht) = ǫIP (ht) = ǫDP (ht)

ǫDDP (ht) ≤ 2ǫMP (ht)

ǫMIDP (ht) ≤ ǫMP (ht)

7 Discussions, Limitations and

Future Works

Differential privacy provides a stability condition to the

perturbation mechanism towards changes to the input,

and there are ways to interpret its semantic privacy

guarantee, such as hypothesis testing [27, 30, 60] and

plausible deniability [59][5]. In our work, we focus on

leveraging hypothesis testing to provide a privacy in-

terpretation for DP mechanisms, which has implicitly

taken the plausible deniability of any individual records

in the database into consideration (recall Section 3).

Our analysis focuses on the popular LPM-based DP

mechanisms, based on which we illustrate how hypoth-

esis testing can be used for the selection of privacy pa-

rameters. We have shown the generality of our approach

by applying it to the Gaussian perturbation mechanism

in Section 4.3. Investigating how to generalize our anal-

ysis to a broader range of privacy mechanisms and met-

rics such as the exponential mechanism, randomized re-

sponse, local DP and geo-indistinguishability [3] could

be interesting future directions.

In our work, we consider the adversary who aims

to infer the presence/absence of any particular record

(for unbounded DP) or the true value of a record (for

bounded DP), which is the standard adversary consid-

ered in DP framework. In practice, the adversary may

be more interested in some aggregate statistics of the

record, for instance, whether the value of the record di

is higher than a given value γ. Under this scenario, the

two hypotheses of the adversary can be constructed as

h0 : di > γ, h1 : di ≤ γ and then similar analysis in

Sections 4, 5 can be conducted for implementing hy-

pothesis testing. We will study the hypothesis testing of

these adversaries in the future.

Our analysis considers adversaries with accurate

auxiliary information of the prior distribution and cor-

relation across records/time of the input database. In

practice, it can be challenging for defenders to have an

accurate estimate of the adversary’s auxiliary informa-

tion. Therefore, investigating the capability of adver-

sary’s hypothesis testing with approximate auxiliary in-

formation could be another interesting future work.

Motivated by composition properties of DP [22, 30,

41], it is interesting to investigate the composability of

our analysis across different privacy mechanisms and

explore tighter composition properties under specific

mechanisms similar to [30] in the future.

8 Conclusion

In this paper, we investigate the state-of-the-art statis-

tical privacy frameworks (focusing on DP) from the per-

spective of hypothesis testing of the adversary. We rigor-

ously analyze the capability of an adversary for inferring

a particular record of the input data using hypothesis

testing. Our analysis provides a useful and interpretable

guideline for how to select the privacy parameter ǫ in

DP, which is an important question for practitioners and

researchers in the community. Our findings show that

an adversary’s auxiliary information – in the form of

prior distribution of the database, and correlation across

records and time – indeed influences the proper choice

of ǫ. Finally, our work systematically compares several

state-of-the-art privacy notions from the perspective of

adversary’s hypothesis testing and showcases their rela-

tionship with each other and with DP.
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10 Appendix
10.1 Proof for Theorem 2

Proof. Achieve the minimal PF A under a given

level of PT D: For a given false alarm rate PF A, the

maximal true detection rate PT D can be achieved ac-

cording to the Neyman-Pearson criterion (Definition 3).

Furthermore, note that the maximal PT D is not decreas-

ing with the increasing of PF A. Thus, under a given level

of the true detection rate PT D = P (D̂ = D|D = D) =

P (D̂ = D, D = D)/P (D = D), the adversary imple-

menting the Neyman-Pearson criterion can achieve the

minimal false alarm rate PF A = P (D̂ = D|D = D′) =

P (D̂ = D, D = D′)/P (D = D′). As a direct result of

this, we obtain a minimal P (D̂ = D, D = D′) under a

fixed P (D̂ = D, D = D).

Achieve the maximal precision under a given

level of recall: Since both PT D and recall correspond

to P (D̂ = D|D = D), we know that a given level of

recall is equivalent to the same level of PT D. Therefore,

under a given level of recall (i.e., PT D), the precision

can be computed as P (D = D|D̂ = D) = P (D̂ = D, D =

D)/
(

P (D̂ = D, D = D) + P (D̂ = D, D = D′)
)

, which is

maximized under the Neyman-Pearson criterion (with

a minimal P (D̂ = D, D = D′) under a fixed P (D̂ =

D, D = D)).

Therefore, the Neyman-Pearson criterion can

achieve the maximal precision under any given level of

recall, thus characterizing the optimal adversary that

can achieve the best PR-relation.

10.2 Proof for Corollary 1

Proof. This optimality is generally applicable for ad-

versaries implementing the Neyman-Pearson criterion,

under any distribution of the input data. This is be-

cause the proof in Theorem 2 demonstrates the inher-

ent relationship among these quantification metrics (i.e.,

the maximization of PT D under a given level of PF A is

equivalent to maximizing precision under a given level of

recall), regardless of the distribution of the data. There-

fore, the optimality of Neyman-Pearson criterion (max-

imizing PT D under a given level of PF A) to achieve the

best PR-relation holds for correlated records. where the

correlation relationships are naturally incorporated in

the likelihood ratio detection process of the Neyman-

Pearson criterion.

10.3 F ∗

βscore
for Unbounded DP

According to the definition of Fβscore, we know

that maximizing Fβscore is equivalent to minimizing
GSR+β2

RSR since Fβscore = 1
1

(1+β2)precision
+ β2

(1+β2)recall

=

1+β2

1+ GSR+β2

RSR

. Then, we define f = GSR+β2

RSR and ana-

lyze f by considering three different intervals of θ in

(−∞, Q(D′)], (Q(D′), Q(D)), [Q(D), +∞), respectively.

1) For the first interval of (−∞, Q(D′)], we have

f = GSR+β2

RSR = 1+β2−0.5e
θ−Q(D′)

∆Q
ǫ

1−0.5e
θ−Q(D)

∆Q
ǫ

. Then, we take the

derivative of f with respect to θ as

∂f

∂θ
=

− 0.5ǫ
∆Q

e
θ−Q(D′)

∆Q
ǫ
(1 − 0.5e

θ−Q(D)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

+

0.5ǫ
∆Q

e
θ−Q(D)

∆Q
ǫ
(1 + β2 − 0.5e

θ−Q(D′)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

=

0.5ǫ
∆Q

e
θ−Q(D′)

∆Q
ǫ
((1 + β2)e−ǫ − 1)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

(26)

Therefore, we have ∂f
∂θ θ=Q(D′)

> 0, i.e., the function

f increases monotonically with θ ∈ (−∞, Q(D′)], if ǫ <

log(1 + β2). Otherwise, it decreases monotonically.

2) For the second interval of (Q(D′), Q(D)), we have

f = GSR+β2

RSR = 0.5e
−

θ−Q(D′)
∆Q

ǫ
+β2

1−0.5e
θ−Q(D)

∆Q
ǫ

. We then compute the
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derivative of f with respect to θ as

∂f

∂θ
=

− 0.5ǫ
∆Q

e
−

θ−Q(D′)
∆Q

ǫ
(1 − 0.5e

θ−Q(D)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

+

0.5ǫ
∆Q

e
θ−Q(D)

∆Q
ǫ
(0.5e

−
θ−Q(D′)

∆Q
ǫ

+ β2)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

=

0.5ǫ
∆Q

(e−ǫ − e
−

θ−Q(D′)
∆Q

ǫ
+ β2e

θ−Q(D)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

(27)

When θ = Q(D), we have ∂f
∂θ θ=Q(D)

= 0.5ǫ
∆Q (e−ǫ −

e−ǫ + β2) > 0. When θ = Q(D′), we have
∂f
∂θ θ=Q(D′)

= 0.5ǫ
∆Q ((1 + β2)e−ǫ − 1). Therefore, we know

that ∂f
∂θ θ=Q(D′)

> 0. i.e., the function f increases mono-

tonically with ǫ ∈ [Q(D′), Q(D)], if ǫ < log(1 + β2).

Otherwise, it decreases and then increases thus there is

a mininum within this interval. To solve for this min-

inum, we set the derivative to 0, i.e., e−ǫ − e−
θ−Q(D′)

∆Q
ǫ +

β2e
θ−Q(D)

∆Q
ǫ = 0 to obtain θ = ∆Q

ǫ log
−1+

√
1+4β2eǫ

2β2 +

Q(D′). The corresponding minimum value for Fβscore

can be computed as
(1+β2)(1+4β2eǫ−

√
1+4β2eǫ)

(1+β2)(1+4β2eǫ)−(1−β2)
√

1+4β2eǫ
.

3) For the third interval [Q(D), +∞), we have f =

GSR+β2

RSR = 0.5e
−(θ−Q(D′)ǫ)

∆Q +β2

0.5e
−(θ−Q(D)ǫ)

∆Q

. We then take the deriva-

tive of f with respect to θ as

∂f

∂θ
=

− 0.25ǫ2

∆Q
e

−
θ−Q(D′)

∆Q
ǫ
e

−
θ−Q(D)

∆Q
ǫ

(0.5e
−

θ−Q(D)
∆Q

ǫ
)2

+

0.5ǫ
∆Q

e
−

θ−Q(D)
∆Q

ǫ
(0.5e

−
θ−Q(D′)

∆Q
ǫ

+ β2)

(0.5e
−

θ−Q(D)
∆Q

ǫ
)2

=

0.5β2ǫ
∆Q

e
−

θ−Q(D)
∆Q

ǫ

(0.5e
−

θ−Q(D)
∆Q

ǫ
)2

(28)

Therefore, we know that f increases monotonically with

θ ∈ [Q(D), +∞). Combining all the three intervals 1)-3),

we obtain the highest Fβscore as in Eq. 12.

10.4 Proof for Theorem 6

Proof. According to the Neyman-Pearson Lemma [46],

the likelihood ratio test [49, 57] can be utilized to

achieve the Neyman-Pearson criterion. For an adver-

sary with access to the noisy scalar output o = A(D) =

Q(D)+N (2 log(1.25/δ)∆Q/ǫ), we can compute the likeli-

hood ratio corresponding to the two hypotheses defined

in Eq. 4 as

Λ(o) =
L(o|h1)

L(o|h0)
=

P(A(D) = o)

P(A(D′) = o)

=

1√
2 log(1.25/δ)∆Q/ǫ

exp

(

− (o−Q(D))2

4 log(1.25/δ)∆Q/ǫ

)

1√
2 log(1.25/δ)∆Q/ǫ

exp

(

− (o−Q(D′))2

4 log(1.25/δ)∆Q/ǫ

)

= exp

(

∆Q(2o − Q(D) − Q(D′))

4 log(1.25/δ)∆Q/ǫ

)

(29)

Then, we can compute the false alarm rate

α according to 1 −
∫ ∞

θ
P(A(D′) = o)do = 1 −

∫ ∞

θ
1√

2 log(1.25/δ)∆Q/ǫ
1 − exp

(

− (o−Q(D′))2

4 log(1.25/δ)∆Q/ǫ

)

do,

which is 1 − Φ( θ−Q(D′)√
2 log(1.25/δ)∆Q/ǫ

), i.e., θ = Φ−1(1 −
α)

√

2 log(1.25/δ)∆Q/ǫ + Q(D′), where Φ(·) is the

cumulative distribution probability (CDF) of the

standard normal distribution. Then, the thresh-

old λ for the likelihood ratio can be computed

as exp
(

∆Q(2θ−Q(D)−Q(D′))
4 log(1.25/δ)∆Q/ǫ

)

and the true detection

rate can be computed according to PT D = 1 −
∫ ∞

θ
P(A(D) = o)do = 1 − Φ( θ−Q(D)√

2 log(1.25/δ)∆Q/ǫ
).

For a given false alarm rate α, we can uniquely

determine the threshold of the likelihood ratio λ, the

threshold of the output θ and the true detection rate

PT D. Since θ can be any possible value of the private

query result, we know that the Neyman-Pearson crite-

rion is equivalent to setting a threshold θ for the Gaus-

sian mechanism which is of a simpler formulation.

10.5 F ∗

βscore
under Auxiliary Information

10.5.1 F ∗

βscore under Prior Distribution

Consider an adversary with access to the prior dis-

tribution of the input database. Since Fβscore =
1

1
(1+β2)precision

+ β2

(1+β2)recall

= 1+β2

1+
(1−ρp)GSR+β2

RSR

, we know

that maximizing Fβscore is equivalent to minimizing
(1−ρp)GSR+β2

RSR . Next, we define f =
(1−ρp)GSR+β2

RSR and

analyze its property under three intervals.

1) For the first interval of (−∞, Q(D′)], we have f =

(1−ρp)GSR+β2

RSR =
1−ρp+β2−0.5(1−ρp)e

θ−Q(D′)
∆Q

ǫ

1−0.5e
θ−Q(D)

∆Q
ǫ

. Next, we
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take the derivative of f as

∂f

∂θ
=

− 0.5(1−ρp)ǫ

∆Q
e

θ−Q(D′)
∆Q

ǫ
(1 − 0.5e

θ−Q(D)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

+

0.5ǫ
∆Q

e
θ−Q(D)

∆Q
ǫ
(1 − ρp + β2 − 0.5(1 − ρp)e

θ−Q(D′)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

=

0.5ǫ
∆Q

e
θ−Q(D′)

∆Q
ǫ
((1 − ρp + β2)e−ǫ − (1 − ρp))

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

(30)

Therefore, we have ∂f
∂θ θ=Q(D′)

> 0, i.e., the function

f increases monotonically for θ ∈ (−∞, Q(D′)], if ǫ <

log(1 + β2

1−ρp
). Otherwise, it decreases monotonically.

2) For the second interval of (Q(D′), Q(D)), we have

f =
(1−ρp)GSR+β2

RSR =
0.5(1−ρp)e

−
θ−Q(D′)

∆Q
ǫ
+β2

1−0.5e
θ−Q(D)

∆Q
ǫ

. Next, we

take the derivative of f as

∂f

∂θ
=

− 0.5(1−ρp)ǫ

∆Q
e

−
θ−Q(D′)

∆Q
ǫ
(1 − 0.5e

θ−Q(D)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

+

0.5ǫ
∆Q

e
θ−Q(D)

∆Q
ǫ
(0.5(1 − ρp)e

−
θ−Q(D′)

∆Q
ǫ

+ β2)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

=

0.5(1−ρp)ǫ

∆Q
(e−ǫ − e

−
θ−Q(D′)

∆Q
ǫ

+ β2

1−ρp
e

θ−Q(D)
∆Q

ǫ
)

(1 − 0.5e
θ−Q(D)

∆Q
ǫ
)2

(31)

For θ = Q(D), we have ∂f
∂θ θ=Q(D)

=
0.5(1−ρp)ǫ

∆Q (e−ǫ−
e−ǫ + β2

1−ρp
) > 0. For θ = Q(D′), we have ∂f

∂θ θ=Q(D′)
=

0.5(1−ρp)ǫ
∆Q ((1 + β2

1−ρp
)e−ǫ − 1). Therefore, we have

∂f
∂θ θ=Q(D′)

> 0, i.e., the function f increases mono-

tonically for ǫ ∈ (Q(D′), Q(D)), if ǫ < log(1 +
β2

1−ρp
). Otherwise, it decreases and then increases thus

there is a mininum within this interval. To solve for

the mininum, we set the derivative to 0, i.e., e−ǫ −
e−

θ−Q(D′)
∆Q

ǫ + β2

1−ρp
· e

θ−Q(D)
∆Q

ǫ = 0 to obtain θ =

∆Q
ǫ log(

1−ρp

2β2 (
√

1 + 4β2eǫ

1−ρp
−1))+Q(D′). The correspond-

ing Fβscore =
(1+β2)(

√

1+ 4β2eǫ

1−ρp
−1)

(1+β2)

√

1+ 4β2eǫ

1−ρp
−1+β2

.

3) For the third interval of [Q(D′), +∞, we have f =

(1−ρp)GSR+β2

RSR =
0.5(1−ρp)e

−(θ−Q(D′)ǫ)
∆Q +β2

0.5e
−(θ−Q(D)ǫ)

∆Q

. Then, we

take the derivative of f as

∂f

∂θ
=

− 0.25(1−ρp)ǫ2

∆Q
e

−
θ−Q(D′)

∆Q
ǫ
e

−
θ−Q(D)

∆Q
ǫ

(0.5e
−

θ−Q(D)
∆Q

ǫ
)2

+

0.5ǫ
∆Q

e
−

θ−Q(D)
∆Q

ǫ
(0.5(1 − ρp)e

−
θ−Q(D′)

∆Q
ǫ

+ β2)

(0.5e
−

θ−Q(D)
∆Q

ǫ
)2

=

0.5β2ǫ
∆Q

e
−

θ−Q(D)
∆Q

ǫ

(0.5e
−

θ−Q(D)
∆Q

ǫ
)2

(32)

Therefore, f increases monotonically for θ ∈
(−∞, Q(D′)]. Combining the analysis for all the three

intervals, we can achieve F ∗
βscore as in Eq. 12.

10.5.2 F ∗

βscore under Record Correlation

The computation of the highest Fβscore for adversaries

under record correlation is similar to that of adver-

saries with prior distribution. By comparing Eq. 17 and

Eq. 20, we can also simply replace ρp in Eq. 18 with

ρp + ρc(2 − ρp) to obtain Eq. 21.

10.5.3 F ∗

βscore under Temporal Correlation

The computation of the highest Fβscore for adversaries

under temporal correlation is similar to that of adver-

saries with prior distribution and record correlation. By

comparing Eq. 17 with Eq. 23, we can also simply re-

place ρp in Eq. 18 with ρp + (2 − ρp)(ρc + ρt(1 − ρc)) to

obtain Eq. 24.

10.6 Proof for Theorem 7

Proof. The Blowfish framework [28], which is a sub-

class of the Pufferfish framework, allows user to specify

adversarial knowledge about the database in the form

of deterministic policy constraints. In the presence of

general deterministic constraints, pairs of neighboring

databases can differ in any number of tuples. The neigh-

boring databases of dependent differential privacy differ

in L tuples caused by one direct modification of one tu-

ple. Therefore, under the same performance achieved by

the adversary’s hypothesis testing (the same amount of

perturbation), we know that ǫDDP (ht) ≤ ǫBP (ht).

From the definition of inferential privacy, we

have maxD,D′
P (D=D|A(D)=o)
P (D=D′|A(D)=o) ≤ eǫ P (D=D)

P (D=D′) ⇐⇒
maxD,D′

P (D=D|A(D)=o)
P (D=D) ≤ eǫ P (D=D′|A(D)=o)

P (D=D′) ⇐⇒
maxD,D′

P (D=D,A(D)=o)
A(D)=o),P (D=D) ≤ eǫ P (D=D′,A(D)=o)

A(D)=o),P (D=D′) ⇐⇒
maxD,D′ P (A(D) = o) ≤ eǫP (A(D′) = o), which is
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equivalent to dependent differential privacy that re-

quires maxD,D′
P (A(D)=o)
P (A(D′)=o) ≤ eǫ. Therefore, we have

ǫDDP (ht) = ǫIP (ht) under the same hypothesis testing

performance achieved by the adversary.

Since the neighboring databases in DP only differ

in one tuple, we know that ǫDP (ht) ≤ ǫDDP (ht) under

the same hypothesis testing achieved by the adversary.

Next, we consider membership privacy whose math-

ematical form is different from other privacy metrics.

Membership privacy does not consider two neighbor-

ing databases, but only bounds the ratio between the

posterior probability and the prior probability for any

data record. Based on the definition of membership pri-

vacy and inferential privacy, we know that the mem-

bership privacy satisfying exp(−ǫ) ≤ P (D=D|A(D)=o)
P (D=D) ≤

exp(ǫ) would lead to maxdi1,di2

P (Di=di1|A(D)=o)
P (Di=di2|A(D)=o) ≤

exp(2ǫ) P (Di=di1)
P (Di=di2) in inferential privacy (and thus depen-

dent differential privacy). That is to say, ǫ-membership

privacy would lead to 2ǫ-dependent differential privacy.

Therefore, we have ǫDDP (ht) ≤ 2ǫMP (ht) under the

same performance of the adversary’s hypothesis testing.

Furthermore, membership privacy considers the

worst-case difference between posterior probability and

prior probability, and the mutual information based dif-

ferential privacy considers the average difference be-

tween posterior probability and prior probability. There-

fore, we have that ǫ-membership privacy would lead to ǫ-

mutual information based differential privacy. Under the

same performance of the adversary’s hypothesis testing,

we have ǫMIDP (ht) ≤ ǫMP (ht).
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