$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2019 (3):255-266

Erik Sy*, Christian Burkert, Hannes Federrath, and Mathias Fischer

A QUIC Look at Web Tracking

Abstract: QUIC has been developed by Google to im-
prove the transport performance of HTTPS traffic. It
currently accounts for approx. 7% of the global Inter-
net traffic. In this work, we investigate the feasibil-
ity of user tracking via QUIC from the perspective of
an online service. Our analysis reveals that the proto-
col design contains violations of privacy best practices
through which a tracker can passively and uniquely
identify clients across several connections. This track-
ing mechanisms can achieve reduced delays and band-
width requirements compared to conventional browser
fingerprinting or HTTP cookies. This allows them to
be applied in resource- or time-constrained scenarios
such as real-time biddings in online advertising. To vali-
date this finding, we investigated browsers which enable
QUIC by default, e.g., Google Chrome. Our results sug-
gest that the analyzed browsers do not provide protec-
tive measures against tracking via QUIC. However, the
introduced mechanisms reset during a browser restart,
which clears the cached connection data and thus limits
achievable tracking periods. To mitigate the identified
privacy issues, we propose changes to QUIC’s protocol
design, the operation of QUIC-enabled web servers, and

browser implementations.

Keywords: QUIC Transport Protocol, Network Security,
Protocol Design, Privacy Protections, Browser Measure-
ments

DOI 10.2478/popets-2019-0046
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

1 Introduction

The QUIC protocol is designed with the aim to provide
privacy assurances comparable to TLS [35]. To achieve
this goal, QUIC traffic is mostly encrypted with the

*Corresponding Author: Erik Sy: University of Hamburg,
E-mail: sy@informatik.uni-hamburg.de

Christian Burkert: University of Hamburg, E-mail:
burkert@informatik.uni-hamburg.de

Hannes Federrath: University of Hamburg, E-mail:
federrath@informatik.uni-hamburg.de

Mathias Fischer: University of Hamburg, E-mail:
mfischer@informatik.uni-hamburg.de

exception of a few early handshake messages. Further-
more, QUIC switches potential client identifiers such as
the source-address token frequently to limit the possi-
bility for network-based attackers, e.g., internet service
providers or intelligence services, to track users across
several connections.

In the light of mass surveillance, network-based at-
tackers represent a legitimate concern. However, online
tracking for advertising or web analytics poses a sim-
ilar threat to users’ privacy. Therefore, browsers are
required to protect their users’ privacy against track-
ing through web servers that is not conducted in mu-
tual agreement. Nonetheless, there is a trade-off between
performance and privacy for browsers, in which reduced
user privacy can yield a higher browser performance. For
example, the usage of TLS session resumption mecha-
nisms accelerates connection establishment, but can be
used for user tracking at the same time [34]. Browsers
such as Google Chrome or Opera balance this privacy
versus performance trade-off by limiting the time frame
of TLS session resumption [34]. QUIC allows to estab-
lish secure connections with a zero round-trip time (0-
RTT) handshake. The widespread TCP/TLS 1.2 alter-
native requires at least three round-trips [18].

In this work we investigate the impact of QUIC’s
performance enhancements on user privacy. We find
that QUIC’s source-address token and QUIC’s server
config can be used by a server to identify a user across
several connections. These tracking approaches exploit
that a client stores data from the server for reuse in a
subsequent connection. Both mechanisms allow a user
identification based on the first message that a client
sends to establish a connection with 0-RTT.

Compared to common online tracking practices such
as HTTP cookies [10] or browser fingerprinting [1],
the presented tracking mechanisms can provide per-
formance advantages. They do not require an tracker
to actively request information from a user’s browser.
This saves additional delays and bandwidth consump-
tion, which otherwise restricts the practical applicabil-
ity of such tracking methods [2]. For example, a third-
party tracker hosting popular web fonts would directly
affect the page load time of a website by performing
browser fingerprinting and consequently impair the user
experience [15]. Furthermore, the additional delay is a
disadvantage for the highly time-constrained practice of

[®) ov-ne-np |

real-time bidding in online advertising [22]. QUIC-based

tracking does not come with these drawbacks.

To the best of our knowledge, we are the first to re-
port on user tracking via the QUIC protocol. The main
contributions of our paper are:

— We describe tracking via QUIC’s source-address to-
ken, which allows online services to link several web-
site visits to the same user. Furthermore, we present
tracking via QUIC’s server config, which enables
online services and also network-based attackers to
track users across multiple sessions.

— We investigate the configuration of browsers that
support QUIC connections by default. Our results
indicate that the investigated browser configura-
tions do not restrict the presented tracking mech-
anism. Furthermore, the tested browsers do not
prevent third-parties from exploiting the presented
mechanisms to track users across different visited
websites.

— We propose countermeasures that mitigate the pre-
sented tracking mechanisms. We address tracking
via the server config by ensuring that users at-
tempt 0-RTT handshakes only if they observe the
same server config during a website visit. To miti-
gate tracking via the source-address token we pro-
vide an action list for browser vendors to improve
user privacy. Subsequently, we review an alternative
design for QUIC’s connection establishment aiming
for better privacy protections.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the background on the QUIC protocol
handshake. Section 3 reviews QUIC’s tracking mecha-
nisms and their resulting privacy problems. Section 4
summarizes our major results on tracking via the QUIC
protocol, before we discuss the practical impact of our
results and possible countermeasures in Section 5. Re-
lated work is reviewed in Section 6, and Section 7 con-
cludes the paper.

2 Background on QUIC’s
handshake

To set up a secure transport connection, the QUIC pro-
tocol incorporates some functionality of TCP, TLS, and
HTTP/2. QUIC’s design allows to concurrently conduct
the cryptographic and the transport handshake, which

provides performance improvements. In this section, we

A QUIC Look at Web Tracking = 256

describe the cryptographic handshake of the QUIC pro-
tocol.

QUIC provides two modes for the connection setup:
The zero round-trip time (0-RTT) and the one round-
trip time (1-RTT) full handshake, as shown in Figure 1.
The full handshake is required for the initial connection
between the client and the server. Subsequent hand-
shakes can use the abbreviated 0-RTT mode utilizing
cached information from previous connections between
the respective client-server pair. This behavior is in-
dicated by reusing the server config identifier SCID_1
and source-address token Token 2 from the connection
shown in Figure 1a) in the subsequent handshake (see
Figure 1b). The SCID describes a 16-byte identifier that
allows the peers to reference a specific server config,
whereas the token describes an encrypted and authen-
ticated block which is opaque to the client. The token
contains the client’s publicly visible IP address and a
timestamp as seen by the server.

The initial handshake starts with the client sending
an inchoate client hello (CHLO) message, as shown in
Figure 1a). This message contains a randomly gener-
ated connection identifier (ConnID), which is used by
both parties to refer to this connection. The ConnlID is
an optional part of the public header of a QUIC packet.
Furthermore, the ConnID allows migrating a connec-
tion to an endpoint’s new IP address and/or port. This
becomes necessary after NAT rebinding [31] or when a
new IP address gets assigned to an endpoint.

Next, the server responds with a reject (REJ) mes-
sage. This message contains among others: (i) the server
config including the server’s long-term Diffie-Hellmann
public value (PUBS), (ii) a certificate chain authenticat-
ing the server (CRT), (iii) a signature from the server’s
private key, (iv) a server config identifier (SCID) and
(v) a source-address token (token). While (i)-(iii) are re-
quired to authenticate the server’s identity and to estab-
lish the secure channel, the token is used to authenticate
the client’s publicly visible IP address. Subsequently,
the client responds with a complete CHLO. Now, the
client can compute the initial keys as a shared value of
the server’s PUBS and its own ephemeral Diffie-Hellman
private key. The initial keys can be used to send en-
crypted requests to the server before the server responds
to the complete CHLO. Note, that data encrypted with
the initial keys do not provide forward-secrecy [17].

The server can compute the final and forward-
secure key based on the client’s ephemeral Diffie-
Hellman public value (KeyShare) contained in the com-
plete CHLO. Therefore, the server hello (SHLO) and all
consecutive messages are forward-securely encrypted.

Client Server Client

Inchoate CHLO (...)

D_1,Token_lL, ..))

REJ (PUBS, CRT, SCI

CHLO (SCID_1, Token_1, KeyShare_|)
Encrypted Request (.. .)

SHLO (Token_2, KeyShare_2, -

Encrypted Response (..)

a) 1-RTT full handshake b) O-RTT handshake

Fig. 1. Handshakes in QUIC transport protocol.

The SHLO message contains amongst others a new to-
ken, the server’s KeyShare, and the ConnlID.

For a 0-RTT handshake as shown in Figure 1b),
the client follows the same protocol starting from the
complete CHLO. Thus, the client needs to cache the
server config received with the REJ message and the
latest received source-address token for subsequent 0-
RTT connection setups.

Moreover, the server can reject the client’s 0-RTT
handshake attempt as shown in Figure 1¢). Failures like
an invalid token or an expired server config presented
by the client can cause the server to reject. If this oc-
curs, the server will reply with a REJ message and both
parties can proceed with the initial handshake protocol
starting from its third message.

3 Tracking via QUIC

QUIC’s novel approach to build secure 0-RTT connec-
tions uses long-term Diffie-Hellmann public values for
the key exchange. This novelty as well as the mixing of
cryptographic and transport-layer handshakes, make it
advisable to conduct a privacy analysis of this protocol
design.

In this section, we analyze which parameters of
QUIC’s handshake can be used by a malicious server to
track a user across several connections. Subsequently,
we describe the impact of QUIC’s tracking duration on
user privacy. Subsequently, we review the consequences
of the unrestricted use of QUIC’s cross-session identi-
fiers by a third-party online tracker.

CHLO (SCID_1, Token 2, KeyShare 3) %

Encrypted Request (. ..)

SHLO (Token_3, KeyShare 4

Encrypted Response (..)
)

A QUIC Look at Web Tracking = 257

Server Client Server

CHLO (SCID_1, Token_3, KeyShare 5)

2, Token_4,)

REJ (PUBS, CRT, SCID

CHLO (SCID_2, Token>4, KeyShare 6)
Encrypted Request (.. .)

——Eeoped R)

)

)

SHLO (Token_5, KeyShare 7. .-

Encrypted Response (...)

c) Rejected 0-RTT handshake

3.1 QUIC's identifiers suitable for user
tracking

The QUIC protocol includes identifiers which are bound
to a single user session such as the ConnlID. However,
to track users’ browsing behavior over long periods, a
tracker needs to link consecutive user sessions to each
other. Thus, the tracker requires an identifier, which
allows recognizing the user across multiple sessions.

A QUIC protocol client is required to cache the re-
trieved server config and the source-address token across
sessions and to present them to the server when estab-
lishing a new 0-RTT connection. Therefore, it needs to
be investigated, whether this cached data can be ex-
ploited by a server as a storage-based tracking mecha-
nism that assigns unique identifiers to users.

We observe, that the server config contains several
tag/value pairs that may be used as a hidden channel for
user tracking. For example, the server can assign a dis-
tinct server config identifier (SCID) to each user, which
provides 16-byte of entropy. A tracking server would
then be able to link the connection in which a unique
server config was initially issued to those connections
where the client provides the same server config within
its CHLO.

Note, that the tag/value pairs of the server config
such as the SCID are transmitted in cleartext within
the CHLO and the REJ message. Thus, also a passive
observer of the exchanged messages can identify a user
based on the used unique SCID.

The
authenticated-encrypted data block provided by the

source-address token is a unique,
server, which cannot be decrypted by the client. For the
purpose of IP address spoofing prevention, it contains
the user’s publicly visible IP address and a timestamp

as seen by the server. The client caches the source-

address token and presents it to the server during the
setup of a new connection. This allows a server to link
the connection where the source-address token is ini-
tially issued with each subsequent connections where
the same token is presented during the CHLO message.
Finally, this enables the server to identify a chain of
connections associated with a user.

Moreover, a rejected 0-RT'T handshake as shown in
Figure 1 ¢) does not terminate a tracking period, be-
cause the server can link the observed source-address to-
ken and/or server config from the inchoate CHLO with
the newly assigned ones in the server’s REJ message.

3.2 Achievable tracking periods

Always on and always with are characteristics of mobile
devices such as smartphones and tablets that provide
ubiquitous access to the Internet. These mobile devices
account already for about half of all web browsing ac-
tivity [32]. On such devices, a web browser along with
its cache can remain active for several days in the back-
ground of the operating system. Thus, also the retrieved
server configs and tokens remain accessible until the web
browser is restarted or they eventually expire.

To protect users against tracking via QUIC, it is
required to restrict the maximum tracking duration in-
dependently of browser restarts. The QUIC protocol
provides the server config time to live (STTL), which
describes a hint by the server about the remaining life-
time of the provided server config. The STTL could
constitute an upper limit to feasible tracking periods
via QUIC’s server config. This would be the case, if the
client no longer used previously retrieved server configs
or source-address tokens to establish connections after
the STTL expired.

The protocol design must not allow a prolongation
of the STTL if it shall serve as an effective upper limit
for tracking periods. However, the documentation of the
QUIC protocol [36] describes that server config update
(SCUP) messages are used to refresh the server con-
fig and source-address token. Thus, SCUP messages can
extend the period over which 0-RTT connections can
be established by overwriting the cached data with the
fresh server config and its corresponding STTL. This
leads to a situation, in which every server that is revis-
ited within the given STTL is able to extend the track-
ing period beyond the STTL by making use of SCUP
messages. Note that the documentation of QUIC [12, 35]
does not describe a maximum tracking duration regard-
ing prolongations based on SCUP messages.

A QUIC Look at Web Tracking = 258

Moreover, the QUIC protocol does not include a
mechanism that explicitly restricts tracking periods
based on QUIC’s source-address token. Thus, it depends
on the QUIC implementation to restrict tracking via
source-address tokens.

3.3 Third-party tracking

To collect comprehensive profiles about a user’s brows-
ing behavior, third-party tracking can be applied.
Third-party tracking refers to a practice, where a party,
other than the targeted website, can track a user’s visit.
It is a widespread phenomenon on the Internet with an
average of 17.7 third-party trackers per website across
the Alexa Top 500 categories [9]. Especially Google with
its various hostnames is present on nearly 80% of the
Alexa Top Million Sites [3, 9] and thus can gain deep
insights into users’ browsing behavior.

As for tracking via QUIC, third-party trackers can
recognize users based on the token that the latter
present during the 0-RTT connection attempt. Thus,
a tracker can link multiple observed visits of a user
across sites, where the tracker is present as a third-party.
However, to distinguish the various first-party sites a
user visited, the tracker requires an identifier such as an
HTTP referrer or a custom URL per first-party.

Note, that the documentation of QUIC [12, 35]
does not contain information on the protection of users

against such third-party tracking.

4 Evaluation

To evaluate the feasibility of user tracking via the QUIC
protocol, we investigate the default configuration of
browsers supporting the QUIC protocol. Subsequently,
we analyze the configuration of QUIC servers deployed
by popular websites.

4.1 Evaluation of browser configurations

The default configuration of browsers can significantly
contribute to the protection of users’ privacy against
online trackers. In this section, we present our measure-
ment of browsers’ QUIC configuration.

We sampled the most popular browsers as provided
by [25] to investigate if they enable the QUIC proto-
col by default. Furthermore, we included the Chromium
browser to our set of test candidates, because this rela-

tively popular browser employs the same user-agent as
the Chrome browser and would thus not be listed sep-
arately. We found that the QUIC protocol is supported
by Chrome, Chromium, and Opera on desktop oper-
ating systems and by Chrome on the Android mobile
operating system.

To assess the default configuration of these
browsers, we intercepted and analyzed the network traf-
fic between the browser and a provided website that sup-
ports the QUIC protocol. We captured the network traf-
fic using Wireshark [7] which ran on the same computer
as the tested browser. For the Android device running
the mobile version of Chrome, we provided Internet ac-
cess over a dedicated Wi-Fi, where we intercepted the
network traffic on the Wi-Fi access point. To investi-
gate the encrypted network traffic, we used the network
logging systems of these browsers [28].

During our measurements, the browsers remained
running in the background of their operating systems
and we explicitly did not restart or update the browsers
during our measurements.

4.1.1 Token lifetime

With our first test, we investigate the time until a
browser no longer uses a previously assigned token when
revisiting a website. We refer to this period as the token
lifetime. To assess the token lifetime, we visit a website
and validate that the connection was established with
the QUIC protocol. Afterwards, we close the browser
tab which we used to visit the website and leave the
browser idle in the background of the operating system
for a given period of time. Next, we revisit the web-
site with the browser and analyze the network traffic to
observe whether the browser transmitted an old token
during the handshake. We repeated this measurement
for increasingly longer periods of intermediate waiting.

Table 1. Browsers' default QUIC configuration

£ Browser Lower boundary of Honors Third-party
o token lifetime STTL tracking
g Chrome 11 days no viable
+ .

E Opera 11 days no viable
A Chromium 11 days no viable
o

2 .

5 Chrome 11 days no viable
c

<

A QUIC Look at Web Tracking = 259

Our results suggest that the token lifetime is unre-
stricted in the evaluated browsers (see Table 1). How-
ever, on the basis of our measurements, we can only
exclude the existence of such restrictions for the first
11 days for the investigated browsers. This duration sub-
stantiates that the investigated browsers do not restrict
this tracking mechanism.

4.1.2 STTL adherence

Our second test examines whether browsers transmit
the cached server config and the cached token after the
server config time to live has expired. We measured this
browser behavior by visiting a website that provided a
server config with a STTL of two days. Following this,
we closed all browser tabs with a connection to that
site and the browser remained idle in the background
of the operating system. After the STTL expired, we
reconnected to the website and observed whether the
browser still transmitted the expired server config and
token during the first reconnection attempt.

As shown in Table 1, none of the investigated
browsers stopped using the server config after the STTL
expired. Furthermore, we found that all tested browsers
continued to send their cached source-address token in
the subsequent CHLO after the STTL expired. There-
fore, the observed browser configurations indicate that
not even STTLs as short as the duration of a single
page visit would protect against the presented tracking
mechanisms, if browsers do not enforce the STTL expiry
themselves.

4.1.3 Third-party tracking

In the third browser measurement, we assess whether
third-party tracking is feasible via the browser’s QUIC
configuration. For this purpose, we load a website A
which includes a third-party 7, as it is shown in Fig-
ure 2. Afterwards, we close all browser tabs and wait for
all QUIC connections to time out. The upper limit for
an idle timeout is specified in the QUIC protocol as ten
minutes for implicit connection shutdowns [36]. Next,
we retrieve website B which includes the same third-
party 7. Based on the intercepted network traffic, we
analyze this second QUIC handshake with 7, which we
conducted within the context of the website B. If a to-
ken or server config from A’s context has been reused to
connect to T in the context of visiting B, then we con-

User

=

Loading website A
Loading website B

b,

.....‘-‘

H
i

Third-party T

Website A
(incl. T)

Website B
(incl. T)

Fig. 2. Testbed to measure browser behavior in regard to third-
party tracking.

clude that third-party tracking is feasible for the tested
browser.

Our results indicate that all investigated browsers
do not protect against third-party tracking via
QUIC (see Table 1). This highlights the practical impact
of the presented tracking approach, because third-party
tracking is a wide-spread practice on the web [30].

4.2 Evaluation of server configurations

In the server-part of our evaluation, we analyse the de-
gree of distribution of QUIC-enabled web sites, the con-
figuration of QUIC’s server config time to live among
these sites, and their turnover of server configs.

4.2.1 Availability of QUIC-enabled servers

In our next experiment, we investigate the deployment
of QUIC-enabled servers within the Alexa Top Million
websites [3]. This provides an approximation of the total
share of QUIC-enabled websites on the Internet.

We conducted this measurement on the 18th of June
2018 from the campus of the University of Hamburg. To
scan the Alexa Top Million Sites, we applied a similar
methodology as used in prior research work [29]. Thus,
we used the tool Zmap [8] with the gQUIC-module [29]
to send a client hello message to UDP port 443 of each
Alexa-listed host. If the server responded with a valid
reject message, we concluded that the server is support-
ing the QUIC protocol.

We found 186 websites within the Alexa Top Mil-
lion that support the QUIC protocol. Of these sites, 141
were related to Google. The remaining 45 sites such as
www.paris.fr, www.seagate.com or www.sony.jp employ
a similar configuration, but we could not identify a com-
mon entity behind these websites. Table 2 presents the

A QUIC Look at Web Tracking = 260

share of QUIC-enabled websites within different Alexa
Top lists. With 20% and 21%, we find a significant adop-
tion of QUIC within the Top Ten and the Top Hun-
dred Sites, respectively. However, this share decreases
for larger Top Alexa lists to only 0.0186% within the
Alexa Top 1 Million. As several top ranked websites de-
ploy the QUIC protocol, the share of the QUIC protocol
on the global Internet traffic accounts for approximately
seven percent [18].

Table 2. Websites with QUIC support in Alexa Top lists

Alexa Top list Share with QUIC support
Alexa Top 10 20.00%
Alexa Top 100 21.00%
Alexa Top 1K 8.10%
Alexa Top 10K 1.69%
Alexa Top 100K 0.19%
Alexa Top 1M 0.02%

The small number of websites supporting QUIC in-
dicates that the number of online trackers potentially
exploiting the presented mechanisms is still small. How-
ever, the impact of a tracking mechanism is also signifi-
cantly influenced by the size of the affected user base
and the length of feasible tracking periods. In 2019,
around 60% of global Internet users are affected by
the presented tracking mechanism, as this is the market
share of the Chrome browser [33]. Thus, any entity aim-
ing to track its users, can deploy QUIC on its servers
and achieve tracking periods of longer than 10 days for
a significant share of its users (see Section 4.1).

Our measurement investigates still an early stage
of QUIC’s deployment on the Internet. For example,
the upcoming third version of HTTP will use QUIC
instead of TCP as the transport protocol [4]. Thus, we
expect that more browser vendors and websites will add
support for QUIC to their products and services within
the next years.

4.2.2 Server config time to live

To analyze the default configuration of the identified
186 QUIC-enabled websites, we used the tool quic-
grabber [29] to establish QUIC connections to them.
We captured the network traffic of the respective hand-
shakes with Wireshark [7] and extracted the handshake
parameters. We investigated the server config time to
live (STTL) issued by the server, because it may be

used by a QUIC client to temporally limit the usage of
the presented tracking mechanisms.

We observed that servers issue the same server con-
fig with a decreasing STTL over time, until the server
starts distributing a fresh server config. To account for
this server behavior, we collected the server configs of
these servers within intervals of ten minutes for a two-
day period.

Our results indicate, that the domains belonging to
Google deploy STTLs between 32 and 48 hours. Diver-
gently, the other 45 domains exhibited STTLs between
4311 and 4320 hours, which are approximately 180 days.
Note, that an STTL of 180 days as configured by these
web servers does not contribute to the protection of user
privacy, because it allows online trackers to aggregate
long-term user profiles containing characteristic brows-
ing behavior.

STTLs of 180 days indicate that a server allows for
uninterrupted 0-RTT connection establishment within
this period, provided that clients use the respective
server config. Consequently, the server is required to se-
curely store and hold the private keys corresponding to
the Diffie-Hellmann public values (PUBS) that were is-
sued as part of the respective server config for at least
this period. Thus, from a security perspective, it seems
reasonable to considerably reduce the observed STTLs
of 180 days.

4.2.3 Server config turnover

Our measurements also indicate that the investigated
web servers issue new server configs at least every twelve
hours. This enables a server to refresh a client’s server
config at similar intervals upon a client’s revisit by us-
ing SCUP messages (see Section 3.2). If we assume, that
servers update server config whenever possible, then
only a small fraction of website revisits would benefit
from such long STTLs as 180 days compared to a two
day STTL, because empirically, 87.3% of all website re-
visits occur within the first two days after the previous
visit [34].

5 Discussion

In this section, we discuss the practical impact of the
presented tracking mechanisms as well as protective
measures against tracking via QUIC.

A QUIC Look at Web Tracking = 261

5.1 Practical impact of tracking via QUIC

To discuss its practicality, we compare tracking via
QUIC to conventional browser fingerprinting, HTTP
cookies and IP address-based tracking. We present use-
cases in which the presented tracking approach is ad-
vantageous compared to these other popular tracking
mechanisms, and discuss how the limitation of tracking
interruptions through browser restarts can be overcome
by using a secondary tracking mechanism as a fallback.

5.1.1 Comparison to other tracking mechanisms

As shown in Table 3, every considered tracking mech-
anism has its limitations, which reduces its practical
applicability. Consequently, the highest long-term user
identification rates can be achieved by combining dif-
ferent tracking mechanisms which compensate individ-
ual limitations. However, the simultaneous execution of
multiple tracking mechanisms would increase client- and
server-side resource consumption, both computationally
and bandwidth-wise. To save resources, it seems inter-
esting to an online tracker to prioritize tracking via
QUIC over browser fingerprinting and HTTP cookies.
Tracking via QUIC achieves unique user identification
and is completed with the receipt of the CHLO mes-
sage. It reduces the bandwidth overhead and tracking
delay compared to browser fingerprinting. In contrast,
browser fingerprinting negatively impacts the page load
time of a website and thus might not be applicable in
contexts where, for example, a third-party tracker hosts
web fonts required for the rendering of the website.
Tracking with QUIC can be applied even under such
constrained circumstances.

Compared to HTTP cookies, QUIC-based track-
ing reduces the tracking delay in two scenarios: Either
the encrypted request that includes the client’s HTTP
cookie is sent over a forward-secure connection or the
server rejects the encrypted client request. In both sce-
narios, the server can track the user via QUIC one round
trip before the server can decrypt the client’s request to
obtain the included HTTP cookie. This makes user iden-
tification via QUIC favorable in highly time-constrained
scenarios such as real-time biddings for online advertis-
ing [37].

Just like QUIC-based tracking, IP address-based
tracking is fully passive and does not introduce addi-
tional computational or communication overhead. How-
ever, IPv4 addresses are often shared nowadays [5],

A QUIC Look at Web Tracking = 262

Table 3. Comparison of tracking via QUIC to widely used tracking mechanisms.

Properties Browser Fingerprinting

HTTP Cookies

IP Address Tracking Tracking via QUIC

additional round-trip time after
connection setup & processing time

Tracking delay

Bandwidth additional requests & response

requirements

Accuracy limited [19]

Coverage HTTP connections
(restrictions apply [24])

Survives a change yes

of IP Address

Survives a yes
browser restart

HTTP connections
(restrictions apply [23])

requires completed none none
connection setup
low low low
unique limited unique

IP connections QUIC connections

yes no yes

yes yes no

(restrictions apply [14])

which renders this approach less accurate than track-
ing via QUIC with respect to unique user identification.

5.1.2 Limitation of QUIC-based tracking

Continuous tracking via QUIC is only possible as long
as the browser is not restarted, because this clears the
cached state of prior QUIC connections. We note that
mobile devices are always on and rarely restarted. Fur-
thermore, desktop operating systems provide a sleep
mode which presumably reduces the occasions to restart
the OS. Thus, the OS provides only limited restrictions
to feasible tracking periods. Moreover, the avoidance
of browser restarts allows the user to easily continue
a prior browsing session as respective browser tabs are
still available. Thus, we assume that incentives exist for
the user to seldom restart a browser. From our perspec-
tive, tracking periods of several days or even weeks are
feasible under real-world circumstances for a significant
part of users.

The QUIC-based tracking mechanism is further lim-
ited by the ability of active network-based attackers to
alter the server config and source-address token. These
identifiers are transmitted in cleartext over the network
within the CHLO and REJ messages. In the following,
we describe the possible impact of such malicious be-
havior on user identification.

The server’s REJ message and the client’s CHLO
message allow a network-based attacker to retrieve the
source-address token and the server config which the
server assigned to a user. Subsequently, the network-
based attacker can establish own connections to the
server, which make use of the observed source-address
token and server config. Thereby, the network-based at-

tacker would impersonate the user from the perspective
of a tracking server.

Furthermore, the attacker can manipulate a server’s
REJ message and insert a different source-address to-
ken and/or server config. This causes the client to use
this inserted data during the subsequent connection
setup. However, a connection between the client-server
pair can only be successfully established if the server is
able to cryptographically validate the provided source-
address token and server config. In exploiting this be-
havior, an attacker can trick a user to impersonate an-
other user by inserting the latter’s source-address token
and/or server config into the former’s server response.

As investigated by Lychev et al. [21], the manipula-
tion of the user’s source-address token or server config
within the CHLO message will lead to failures within
the connection establishment, because they are used as
input into the encryption key derivation process. There-
fore, the client and server will compute different encryp-
tion keys for the connection in such an event, which
leads to a communication failure.

As a consequence, a network-based attacker can—to
a limited extent—manipulate the source-address token
and the server config that a client uses for the subse-
quent connection establishment. Hence, a user identifi-
cation based on the presented tracking mechanisms can
be misled by a network-based attacker.

5.2 Countermeasures

A simple and effective countermeasure against user
tracking via the QUIC protocol is to establish every new
connection with a full handshake. However, this pre-
vents 0-RTT connection establishment and thus leads

to performance losses during website revisits. In the fol-
lowing, Section 5.2.1 presents measures to protect users
against tracking via the server config. To mitigate the
privacy issues originating from source-address tokens,
we propose directly applicable measures for browser
vendors in Section 5.2.2. Subsequently, we review the
design of a privacy-friendly connection establishment in
Section 5.2.3.

5.2.1 Protection against tracking via the server config

This privacy problem is inherent to QUIC’s handshake
design which relies on previously shared PUBS for con-
nection establishment. To solve this problem, we pro-
pose a mechanism to monitor issued server configs.
Note, that this proposal is similar to the established
certificate transparency [20] where issued TLS certifi-
cates are collected in logs. To gather data, every user
can submit an observed server config to such a log. Al-
ternatively, the server operator can submit the issued
server config to a log and provide the user with a cryp-
tographic signature from the log operator to proof this
transaction. Note, that the latter approach is similar to
the Signed Certificate Timestamp [20] extension of TLS.
Such a log allows to discover server operators that issue
a large number of unique server configs within a given
period, which presents an indication for user tracking
via the server config.

If log operators suspect a website to conduct track-
ing via the server config, they should recommend users
to not reuse the server config for new connections and
to conduct a full QUIC handshake instead. If the server
submitted the respective server config to the log, then
the log operator should sign the request with a dedi-
cated private key to mark that server config as one that
is suspicious to be used for user tracking.

This proposal mitigates tracking via server configs
on a large scale, if the log operators allow only a sin-
gle server config to be used within a specific period and
mark all other server configs in the same period as sus-
picious.

5.2.2 Quick measures to protect against tracking via
QUIC’s token

In this section, we present steps that can be applied
immediately by browser vendors and the QUIC work-
ing group to mitigate the privacy impact of the QUIC
protocol.

A QUIC Look at Web Tracking = 263

As a first mitigation measure, browser vendors
should implement an expiry time for tokens. The
choice of an appropriate expiry time presents a trade-
off between performance and privacy. A study of this
trade-off based on real-world DNS traffic recommends
limiting the expiry time to ten minutes [34]. Note, that
on average, 27.7% of revisits to websites occur within
this period. However, an expiry time of 60 minutes, al-
lows in average 48.3% of website revisits to use 0-RTT
handshakes, but a web tracker can observe a greater
share of users’ online activities in return. Furthermore,
the results of the study suggest [34] that an expiry time
longer than 24 hours does not significantly contribute to
a higher share of 0-RTT handshakes. Thus, setting the
expiry time to 48 hours instead of 24 hours increases the
share of abbreviated handshakes only by 5.7 percentage
points.

Furthermore, a server config update message
should not prolongate the feasible tracking pe-
riod via tokens. Instead, the expiry of the first token
received from a web server should lead to a full hand-
shake within the subsequent connection establishment,
regardless of later expiry dates of tokens that were part
of SHLO messages in the meantime.

The STTL hints on how long the server intends to
support connection establishments for a given server
config. Depending on the server implementation, it be-
comes more likely that a server rejects 0-RTT connec-
tion attempts after a server config expired. Anticipat-
ing this server behavior, it is beneficial from a privacy
perspective to conduct a full handshake after the
respective cached server config has expired.

A QUIC server uses the token to validate a client’s
IP address. Therefore, if a client changed the IP address
after receiving a token, the server is more likely to re-
spond with a REJ message during the next 0-RTT con-
nection attempt. From a privacy perspective, the change
of an IP address provides the opportunity to disassoci-
ate past activities from future ones, therefore breaking
linkability at network-level. Thus, it seems reasonable
to establish new connections with a full hand-
shake whenever a client’s IP address changed, to
also disassociate activities in QUIC. Note that QUIC
allows to explicitly migrate existing connections across
different IP addresses. In this case, the server is already
in a position to link both IP addresses to the same user
based on the migration process. Thus, our proposal ex-
cludes this use case of connection migration.

To address the issue of third-party tracking via
QUIC, browser vendors should restrict the access
to cached source-address tokens. Cached tokens of

third-parties should only be used within the con-
text of the same visited website.

5.2.3 Privacy-friendly connection establishment to
protect against tracking via QUIC’s token

We propose an alternative handshake design, that re-
quires clients to only use tokens within their CHLO
message if this message is a direct response to a server’s
REJ message. Figure 3 provides a sketch of these hand-
shakes, where no longer required tokens are marked in
bold and struck through.

This proposal applies strict source-address valida-
tion during the full and the rejected 0-RTT handshake,
as shown in Figure 3a) and c), respectively. However,
the 0-RTT connection establishment does not conduct
a validation of the source-address (see Figure 3b). To
mitigate excessive IP address spoofing, this design re-
quires QUIC servers to monitor the number of unre-
quited connections. If the number of unrequited connec-
tions exceeds a specified threshold, the server falls back
to an operation mode that rejects all O-RTT connec-
tion handshakes (see Figure 3c¢). Otherwise, the server
allows 0-RT'T handshakes without requiring a token.

By logical conclusion, this design is privacy-friendly
because source-address tokens are not reused across dif-
ferent connections. Furthermore, it enables O-RTT con-
nection establishments whenever the number of unre-
quited connections are below the specified threshold.
The definition of the threshold itself presents a trade-off
between the protection against IP address spoofing and
the performance of the connection establishment.

The original QUIC connection establishment re-
quires the first visit of a website to be a 1-RTT full
handshake because the client is required to retrieve a
corresponding token, as shown in Figure 1. Assuming
that a client is in possession of a corresponding server
config, then our proposal allows establishing a 0-RTT
handshake upon the first website visit. Therefore, our
design saves a round-trip compared to the connection
establishment of the original QUIC, if the server expe-
riences a low number of unrequited connections and the
client received its server config out of band. An out of
band provision may take place via DNS. Thus, the client
receives a valid server config before connecting to the
website similar to the TLS extension Encrypted Server
Name Indication [27], which distributes cryptographic
keys via DNS.

A QUIC Look at Web Tracking = 264

6 Related work

The security properties of QUIC have been discussed in
prior work. A first cryptographic analysis of QUIC was
done by Fischlin et al. [11]. Moreover, Jager et al. [13]
analyzed the key exchange of QUIC and presented an
attack on the confidentiality of the encrypted messages.
Lychev et al. [21] demonstrated attacks against QUIC
which lead to connection failures, server load, or server
DOS.

In this work, we investigated QUIC version 39 which
was negotiated by default between Google’s servers
and Chrome version 67 in June 2018. The IETF aims
to redesign the key exchange of QUIC by adapting
TLS 1.3 [12], which does currently not deploy a concept
similar to QUIC’s server config. However, the adaption
of TLS 1.3 requires QUIC implementations to solve the
privacy problem of TLS session resumption [34] which is
not present within the current QUIC variant. Further-
more, the adoption of TLS 1.3 will not solve the privacy
problems related to the source-address token.

We observe, that proposals such as OPTLS 1.3 [16]
and the IETF draft on a semi-static Diffie-Hellman key
establishment [26] envision to add a handshake design to
TLS 1.3 which is similar to the discussed QUIC hand-
shake and requires the long-term storage of a server’s
public key by the client. If adopted, this would lead to
similar privacy considerations as discussed in the con-
text of QUIC’s server config.

Note, that the current IETF draft on QUIC [12] dis-
cusses the privacy consequences arising from the migra-
tion of QUIC connections across different IP addresses
of a client. However, this tracking mechanism does not
allow tracking across several user connections as our
presented approaches do, because the ConnlD which is
used for the migration process is randomly chosen by
the client at the beginning of each new connection.

To the best of our knowledge, we are the first to
report on user tracking via QUIC across several con-
nections and validated our findings based on current
browser implementations. While there exist several web
tracking approaches [6], the presented tracking mecha-
nisms are exceptional for allowing unique user identifi-
cation based on the first client message in an Internet-
scale deployed transport protocol. Other tracking mech-
anisms via the HTTPS stack such as TLS session re-
sumption or IP addresses require either a previous es-
tablishment of a TCP connection or do not provide
unique user identification.

Client Server Client

Inchoate CHLO (...)

REJ (PUBS. CRT, SCID_1 Token_l.)

CHLO (SCID_1, Token_1, KeyShare_|)
Encrypted Request (.. .)

SHLO (Foken2: KeyShare2. ...

Encrypted Response (..)

a) Full handshake

C| E
FLOGCID. | Soken2, KeyShure 3. ————PedRequesi() |

Encrypted Request (. ..)

—— ErenpedRequest ()

SHLO (Foken=3: KeyShare_4,)

Encrypted Response (..)

b) O-RTT handshake

A QUIC Look at Web Tracking = 265

Server Client Server

C
HLO (SCID_1, Foken-3, KeyShare s,)

RT, SCID_2.Token_4, ...)

REJ (PUBS. C

CHLO (SCID_2, Token>4, KeyShare 6)
Encrypted Request (.. .)

SHLO (Poken=5: KeyShare_T.)

Encrypted Response (...)

c) Rejected 0-RTT handshake

Fig. 3. Proposal for handshakes in the relaxed source-address validation scenario with no longer required tokens marked bold and

struck through.

7 Conclusion

The presented tracking mechanisms via QUIC’s source-
address token and server config enable web servers to
track their user. In the case of tracking via the server
config even network-based attackers are able to iden-
tify clients across several consecutive connections. To
the practical impact of tracking via QUIC contributes
that widely used browsers such as Google Chrome sup-
port QUIC by default. Furthermore, our measurements
indicate that these browsers do not employ protective
measures against tracking via the presented approaches.
Thus, also online third-party trackers can exploit these
mechanisms and benefit from the potentially reduced
delays compared to tracking via HTTP cookies.

The introduced countermeasures show that user
tracking is not an inevitable by-product of realizing 0-
RTT connections. We find, that the proposed privacy-
friendly connection establishment for QUIC mitigates
tracking via source-address token and furthermore di-
rects QUIC to new performance gains. Our proposal al-
lows a 0-RTT connection establishments upon the first
visit of a website, if the server config is provided out
of band, e.g. via DNS. Compared to the original QUIC
protocol, this saves an extra round-trip during the first
connection establishment.

In summary, we hope that our work leads to a
greater awareness about the privacy risks in the QUIC
transport protocol and spurs further research on user
tracking via the HT'TPS stack.

Acknowledgment

The authors would like to thank the anonymous review-
ers for their valuable feedback. This work is supported
in part by the German Federal Ministry of Education
and Research under the reference number 16KIS0381K.

References

[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 674-689. ACM, 2014.

[2] A. Albasir, K. Naik, B. Plourde, and N. Goel. Experimental
study of energy and bandwidth costs of web advertisements
on smartphones. In Mobile Computing, Applications and
Services (MobiCASE), 2014 6th International Conference on,
pages 90-97. IEEE, 2014.

[3] Alexa Internet Inc. Alexa Top 1,000,000 Sites, 2018. URL
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.

[4] M. Bishop. Hypertext Transfer Protocol Version 3
(HTTP/3). Internet-Draft draft-ietf-quic-http-18, In-
ternet Engineering Task Force, Jan. 2019. URL https:
//datatracker.ietf.org/doc/html/draft-ietf-quic-http-18.
Work in Progress.

[5] M. Boucadair, M. Ford, P. Roberts, A. Durand, and
P. Levis. Issues with IP Address Sharing. RFC 6269, June
2011. URL https://rfc-editor.org/rfc/rfc6269.txt.

[6] T. Bujlow, V. Carela-Espafiol, J. Sole-Pareta, and P. Barlet-
Ros. A survey on web tracking: Mechanisms, implications,
and defenses. Proceedings of the IEEE, 105(8):1476-1510,
2017.

[7] G. Combs. Tshark- the Wireshark Network Analyser. URL
http://www.wireshark.org, 2017.

[8] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap:
Fast Internet-wide Scanning and Its Security Applications. In
USENIX Security Symposium, volume 8, pages 47-53, 2013.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-18
https://rfc-editor.org/rfc/rfc6269.txt

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

S. Englehardt and A. Narayanan. Online tracking: A 1-
million-site measurement and analysis. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1388-1401. ACM, 2016.

S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,

J. Mayer, A. Narayanan, and E. W. Felten. Cookies that
give you away: The surveillance implications of web track-
ing. In Proceedings of the 24th International Conference on
World Wide Web, pages 289-299. International World Wide
Web Conferences Steering Committee, 2015.

M. Fischlin and F. Giinther. Multi-stage key exchange and
the case of Google's QUIC protocol. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1193-1204. ACM, 2014.

J. lyengar and M. Thomson. QUIC: A UDP-Based Multi-
plexed and Secure Transport. Internet-Draft draft-ietf-quic-
transport-12, Internet Engineering Task Force, May 2018.
URL https://datatracker.ietf.org/doc/html/draft-ietf-quic-
transport-12. Work in Progress.

T. Jager, J. Schwenk, and J. Somorovsky. On the secu-
rity of tls 1.3 and quic against weaknesses in pkcs# 1 v1. 5
encryption. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pages
1185-1196. ACM, 2015.

C. K. Karlof, U. Shankar, et al. A Usability Study of Dop-
pelganger, A Tool for Better Browser Privacy. 2007.

G. Kontaxis and M. Chew. Tracking Protection in Firefox
For Privacy and Performance. CoRR, abs/1506.04104, 2015.
URL http://arxiv.org/abs/1506.04104.

H. Krawczyk and H. Wee. The OPTLS protocol and TLS
1.3. In Security and Privacy (EuroS&P), 2016 IEEE Euro-
pean Symposium on, pages 81-96. |IEEE, 2016.

A. Langley and C. Wan-Teh. QUIC Crypto, 2018. URL
https://www.chromium.org/quic.

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,

D. Zhang, et al. The QUIC transport protocol: Design and
Internet-scale deployment. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication,
pages 183-196. ACM, 2017.

P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and
the beast: Diverting modern web browsers to build unique
browser fingerprints. In Security and Privacy (SP), 2016
IEEE Symposium on, pages 878-894. IEEE, 2016.

B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency. RFC 6962, June 2013. URL https://rfc-
editor.org/rfc/rfc6962.txt.

R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru. How
secure and quick is QUIC? Provable security and perfor-
mance analyses. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 214-231. IEEE, 2015.

Y. Mansour, S. Muthukrishnan, and N. Nisan. Doubleclick
ad exchange auction. CoRR, abs/1204.0535, 2012. URL
http://arxiv.org/abs/1204.0535.

J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 413-427. IEEE, 2012.

K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in HTML5. Proceedings of W2SP, pages 1-12, 2012.
Refsnes Data. The Most Popular Browsers, 2018. URL
www.w3schools.com/browsers/.

[26]

[27]

28]

[29]

30]

(31]

(32]

33]

(34]

[35]

(36]

37]

A QUIC Look at Web Tracking = 266

E. Rescorla and N. Sullivan. Semi-Static Diffie-Hellman Key
Establishment for TLS 1.3.
tls13-semistatic-dh-00, Internet Engineering Task Force,
Mar. 2018. URL https://datatracker.ietf.org/doc/html/
draft-rescorla-tls13-semistatic-dh-00. Work in Progress.
E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood. En-
crypted Server Name Indication for TLS 1.3. Internet-Draft

Internet-Draft draft-rescorla-

draft-ietf-tls-esni-02, Internet Engineering Task Force, Oct.
2018. URL https://datatracker.ietf.org/doc/html/draft-ietf-
tls-esni-02. Work in Progress.

E. Roman and M. Menke. NetLog: Chrome’s network
logging system, 2018. URL https://www.chromium.org/
developers/design-documents/network-stack/netlog.

J. Riith, I. Poese, C. Dietzel, and O. Hohlfeld. A First Look
at QUIC in the Wild. In International Conference on Passive
and Active Network Measurement, pages 255-268. Springer,
2018.

S. Schelter and J. Kunegis. On the Ubiquity of Web Track-
ing: Insights from a Billion-Page Web Crawl. arXiv preprint
arXiv:1607.07403, 2016.

P. Srisuresh and K. Egevang. Traditional IP network address
translator (Traditional NAT). Technical report, 2000.
StatCounter. Desktop vs Mobile vs Tablet Market Share
Worldwide, 2018. URL gs.statcounter.com/platform-market-
share/desktop-mobile-tablet /worldwide.

StatCounter. The Most Popular Browsers, 2019. URL
http://gs.statcounter.com/browser-market-share.

E. Sy, C. Burkert, H. Federrath, and M. Fischer. Track-

ing Users Across the Web via TLS Session Resumption. In
Proceedings of the 34th Annual Computer Security Ap-
plications Conference, ACSAC '18, pages 289-299, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-6569-7.
10.1145/3274694.3274708. URL http://doi.acm.org/10.
1145/3274694.3274708.

The Chromium Project. QUIC, a multiplexed stream trans-
port over UDP, 2018. URL https://www.chromium.org/
quic.

The Chromium Project. QUIC Wire Layout Specification,
2018. URL https://www.chromium.org/quic.

S. Yuan, J. Wang, and X. Zhao. Real-time bidding for online
advertising: measurement and analysis. In Proceedings of
the Seventh International Workshop on Data Mining for
Online Advertising, page 3. ACM, 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-12
http://arxiv.org/abs/1506.04104
https://www.chromium.org/quic
https://rfc-editor.org/rfc/rfc6962.txt
https://rfc-editor.org/rfc/rfc6962.txt
http://arxiv.org/abs/1204.0535
www.w3schools.com/browsers/
https://datatracker.ietf.org/doc/html/draft-rescorla-tls13-semistatic-dh-00
https://datatracker.ietf.org/doc/html/draft-rescorla-tls13-semistatic-dh-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-02
https://www.chromium.org/ developers/design-documents/ network-stack/netlog
https://www.chromium.org/ developers/design-documents/ network-stack/netlog
gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
http://gs.statcounter.com/browser-market-share
https://doi.org/10.1145/3274694.3274708
http://doi.acm.org/10.1145/3274694.3274708
http://doi.acm.org/10.1145/3274694.3274708
https://www.chromium.org/quic
https://www.chromium.org/quic
https://www.chromium.org/quic

	A QUIC Look at Web Tracking
	1 Introduction
	2 Background on QUIC's handshake
	3 Tracking via QUIC
	3.1 QUIC's identifiers suitable for user tracking
	3.2 Achievable tracking periods
	3.3 Third-party tracking

	4 Evaluation
	4.1 Evaluation of browser configurations
	4.1.1 Token lifetime
	4.1.2 STTL adherence
	4.1.3 Third-party tracking

	4.2 Evaluation of server configurations
	4.2.1 Availability of QUIC-enabled servers
	4.2.2 Server config time to live
	4.2.3 Server config turnover

	5 Discussion
	5.1 Practical impact of tracking via QUIC
	5.1.1 Comparison to other tracking mechanisms
	5.1.2 Limitation of QUIC-based tracking

	5.2 Countermeasures
	5.2.1 Protection against tracking via the server config
	5.2.2 Quick measures to protect against tracking via QUIC's token
	5.2.3 Privacy-friendly connection establishment to protect against tracking via QUIC's token

	6 Related work
	7 Conclusion

