
Proceedings on Privacy Enhancing Technologies ; 2019 (4):272–291

Gerry Wan*, Aaron Johnson, Ryan Wails, Sameer Wagh, and Prateek Mittal

Guard Placement Attacks on Path Selection
Algorithms for Tor
Abstract: The popularity of Tor has made it an attrac-
tive target for a variety of deanonymization and fin-
gerprinting attacks. Location-based path selection al-
gorithms have been proposed as a countermeasure to
defend against such attacks. However, adversaries can
exploit the location-awareness of these algorithms by
strategically placing relays in locations that increase
their chances of being selected as a client’s guard. Being
chosen as a guard facilitates website fingerprinting and
traffic correlation attacks over extended time periods.
In this work, we rigorously define and analyze the guard
placement attack. We present novel guard placement
attacks and show that three state-of-the-art path se-
lection algorithms—Counter-RAPTOR, DeNASA, and
LASTor—are vulnerable to these attacks, overcoming
defenses considered by all three systems. For instance,
in one attack, we show that an adversary contributing
only 0.216% of Tor’s total bandwidth can attain an av-
erage selection probability of 18.22%, 84× higher than
what it would be under Tor currently. Our findings in-
dicate that existing location-based path selection algo-
rithms allow guards to achieve disproportionately high
selection probabilities relative to the cost required to run
the guard. Finally, we propose and evaluate a generic
defense mechanism that provably defends any path se-
lection algorithm against guard placement attacks. We
run our defense mechanism on each of the three path se-
lection algorithms, and find that our mechanism signifi-
cantly enhances the security of these algorithms against
guard placement attacks with only minimal impact to
the goals or performance of the original algorithms.

DOI 10.2478/popets-2019-0069
Received 2019-02-28; revised 2019-06-15; accepted 2019-06-16.

*Corresponding Author: Gerry Wan: Princeton Univer-
sity, E-mail: gwan@princeton.edu
Aaron Johnson: U.S. Naval Research Laboratory, E-mail:
aaron.m.johnson@nrl.navy.mil
Ryan Wails: U.S. Naval Research Laboratory, E-mail:
ryan.wails@nrl.navy.mil
Sameer Wagh: Princeton University, E-mail:
swagh@princeton.edu
Prateek Mittal: Princeton University, E-mail: pmit-
tal@princeton.edu

1 Introduction
Anonymous communication systems aim to protect the
privacy of Internet users from untrusted entities. These
systems hide the identities of users and prevent third
parties from linking communication partners on the In-
ternet. Today, Tor [10] is the most widely used anony-
mous communication system, serving millions of busi-
nesses, law-enforcement agencies, journalists, whistle-
blowers, and ordinary citizens from around the world.
As of August 2018, the Tor network is comprised of over
6,000 volunteer-run relays and carries terabytes of traffic
every day [47]. Each Tor client uses a public consensus
to choose which relays to send its traffic through. The
client uses onion routing [17] to send traffic, in which a
sequence of relays is selected, a circuit is built through
that sequence, and then encrypted data is forwarded
along the circuit. This process protects user anonymity
by preventing clients from being linked to their destina-
tions on the Internet.

As a popular anonymity system, Tor is an attrac-
tive target for adversaries wishing to deanonymize users.
Researchers have found that Tor is vulnerable to adver-
saries with visibility into Internet traffic [15, 21, 26, 27].
Passive attackers can use packet sizes and packet tim-
ings to correlate traffic on different segments of the Tor
circuit. This ability can be used to associate traffic origi-
nating from the client with traffic flowing to the destina-
tion and thereby deanonymize the user [10, 13, 28, 29].
Website fingerprinting attacks can allow adversaries to
recognize the encrypted traffic patterns of a client as
those of specific websites [12, 33, 35, 38, 53]. Active at-
tackers can manipulate the underlying Internet topology
to place themselves along the path of Tor traffic [41]. To
mitigate these threats, a number of systems have been
developed that modify Tor’s path selection algorithm
to take into account the Internet locations of the re-
lays, such as Counter-RAPTOR [40], DeNASA [5], and
Astoria [30]. Other such path selection algorithms take
into account the geographic location of relays, such as
LASTor [1], which is designed to improve Tor’s latency.

However, the location-awareness of these algorithms
presents a new attack vector, in which malicious re-
lays can be strategically placed in locations that make

Guard Placement Attacks 273

them more likely to be selected, leading to easier user
deanonymization. To understand the threat of these
guard placement attacks, we investigate their effective-
ness on several proposed Tor path selection algorithms.
Moreover, we precisely define the attack and give a
generic defense algorithm that can be applied to all path
selection algorithms. To the best of our knowledge, we
are the first to systematically study guard placement
attacks and the first to develop a framework for quan-
tifying and mitigating the threat. Our contributions in
this work are:
(A) Theoretical formalization: We formalize a general

framework for analyzing security against guard
placement attacks. This includes defining a formal
threat model with an explicit adversary, giving un-
targeted and targeted attack versions, quantifying
the adversary’s success via a metric, and providing
a definition that guarantees security against guard
placement attacks.

(B) Attack evaluations: We demonstrate the threat by
running our attacks on three state-of-the-art Tor
path selection algorithms: Counter-RAPTOR [40],
DeNASA [5], and LASTor [1]. For instance, we show
that in LASTor an adversary with a bandwidth of
just 0.216% of the Tor network can increase its av-
erage guard selection probability to almost 18.22%,
84× the current Tor selection probability. We re-
mark that we defeat the separate defenses against
guard placement attacks that each individual algo-
rithm already possesses and showcase the impor-
tance of provably secure defenses.

(C) Defense framework: We propose a general tech-
nique to defend against guard placement attacks
that can be applied to any path selection algorithm.
We prove our approach secure under our definition,
which bounds the advantage of an attack (Theo-
rem 2). Finally, we apply our defense mechanism
to the three algorithms we attack, and find that it
is feasible to largely maintain the original goals of
location-aware path selection algorithms while mit-
igating the threat.

Overall, our work provides a critical tool for the design
and analysis of path selection algorithms for Tor.

2 Background
2.1 Tor
The Tor network is a widely deployed and popular
anonymous communication system that primarily aims

to prevent attackers from linking communication part-
ners or associating online communication with a single
user. Tor uses the onion routing protocol [17], in which
data is transmitted over the network through a series
of relays. A Tor client constructs a circuit by choosing
an entry, middle, and exit relay to reach a destination
on the Internet. Tor clients choose these relays from
those listed in the current network consensus, which is
updated hourly. A relay is chosen for a given position
randomly with probability roughly proportional to its
bandwidth weight as given in the consensus. We refer
to the current algorithm for choosing relays in a circuit
as Vanilla Tor. When creating and using the circuit, the
layered encryption of onion routing ensures that each re-
lay learns information about only the previous hop and
the next hop in the circuit, and that no single relay is
able to link the client to the destination [10].

To improve long-term security, Tor clients use entry
guards (or simply guards) for the entry position of their
circuits [31, 59]. Each client selects a small number of
relays to use as guards for a long period of time. Cur-
rently, a typical Tor client selects one guard to be used
for 3–4 months. For all circuits created during this time
period, one of the selected guards will be used as the
entry relay. Each guard is chosen by clients at random
with probability proportional to bandwidth [45, 46].

To be a guard, a relay must satisfy a number of cri-
teria that are chosen to ensure good performance and
to raise the cost of obtaining the guard position. We
highlight four criteria that affect this cost. First, the re-
lay must be measured by Tor’s bandwidth-measurement
system, which can take up to two weeks after joining the
network [48]. Second, the relay must have enough band-
width for its consensus weight to be at least 2,000, which
we estimate to require 35.5 Mbit/s (see Appendix A).
Third, the relay must be online consistently enough to
be considered “stable”, which can be ensured by keeping
the relay online at all times. Fourth, the relay must be
online long enough to be considered “familiar”, which
takes at most eight days [45].

2.2 Tor Adversaries

Relay Adversaries. There are two general types of
Tor adversaries: relay adversaries and network adver-
saries. Relay adversaries run Tor relays with the goal
of performing traffic analysis attacks on the circuits
that they are a part of. Since all Tor relays are run
by volunteers with no restrictions, it is difficult to tell
which ones can be trusted [11, 57, 58]. A well-known

Guard Placement Attacks 274

threat is when the adversary controls both the entry
and the exit relay in a single circuit, allowing them
to trivially deanonymize the client [10, 13, 21]. An-
other well-studied attack, called website fingerprinting,
only requires the adversary to control the entry relay
[22, 24, 32, 33, 35, 38, 53, 55].

To defend against attacks that can be performed
by malicious entry relays, Tor uses the same guards in
the entry position for all circuit creations during the
lifetime of the guards (typically several months). This
provides a long-term defense by preventing clients from
quickly choosing a malicious entry relay [9]. Elahi et
al. [14] observe that the use of guards prevents a relay
adversary from compromising a large set of clients in a
short amount of time, and Johnson et al. [21] observe
that the frequency of guard selections limits the speed
of compromise by a relay adversary. In this work, we
focus on the threat of malicious guards.

Network Adversaries. Network adversaries do
not run malicious relays. Instead, they leverage their
position as a network operator to observe some por-
tion of a client’s circuit. These can include Autonomous
Systems (ASes), Internet Service Providers (ISPs), and
Internet Exchange Points (IXPs) [27]. A single such
network entity can potentially observe both sides of a
Tor circuit, performing traffic correlation attacks to link
a client to its destination [15, 42]. Asymmetric traffic
analysis (i.e. correlating traffic flows in different direc-
tions) and active attacks that exploit BGP dynamics
can deanonymize users even more effectively [41]. Fur-
ther work has also shown that network adversaries can
exploit client mobility and user behavior over time to
deanonymize users or leak information about their net-
work location [51].

2.3 Location-Aware Path Selection

The current Tor network does little to defend against
network adversaries [10]. A number of location-aware
path selection algorithms have been proposed to defend
against passive and active AS-level adversaries, as well
as to enhance Tor’s performance.

Passive AS-level adversary defenses. Edman
and Syverson [13] propose an AS-aware path selection
algorithm that uses AS topology snapshots to avoid
ASes that appear both between the client and guard and
between the exit and destination. Nithyanand et al. [30]
propose Astoria, a similar AS-aware Tor path selection
algorithm that also considers asymmetric attackers, col-
luding attackers, and load-balancing across the Tor net-

work. Furthermore, it ensures that in the case where no
safe paths are available, the Tor client chooses guard
and exit relays in a way that will minimize the chance
of a successful attack. Barton and Wright [5] propose
a destination-naïve AS-aware path selection approach
called DeNASA. DeNASA chooses guards by avoiding
network paths that contain an empirically-determined
list of “suspect” ASes.

Active AS-level adversary defenses. To im-
prove Tor security against BGP hijack attacks [41], Sun
et al. propose a new guard selection algorithm called
Counter-RAPTOR [40]. The resilience of each candidate
guard to BGP hijacks is determined based on the client
and guard location, and this is factored into the guard’s
selection probability. Resilience is defined as the proba-
bility of a client source AS not being deceived by a false
BGP advertisement launched by an attacker against the
guard AS. Counter-RAPTOR is shown to improve the
resilience experienced by Tor clients up to 36% on av-
erage and up to 166% for certain clients.

Performance improvements. LASTor [1] is a
location-aware path selection algorithm designed to re-
duce Tor latency. LASTor incorporates some awareness
of passive AS-level adversaries, but primarily favors re-
lays that minimize the geographic distance from the
client and through the circuit to the destination. LAS-
Tor is able to reduce median path latencies by 25%.

These location-aware path selection algorithms use
client and guard location to choose guard relays in or-
der to protect against AS-level adversaries and improve
performance. However, in doing so, these systems make
themselves vulnerable to the guard placement attack.

3 Models and Definitions
3.1 Adversary Model

To perform a guard placement attack, the adversary
needs bandwidth to contribute to his malicious guards
and IP addresses to host relays (Tor enforces a limit
of two relays per IP). A global and competitive mar-
ket exists for hosting services, and so this attack can
be performed by nearly anyone with a small amount of
money and an Internet connection. In particular, priv-
ileged points of network observation are not necessary.
This is a weak adversary that falls within the threat
models considered by the systems we attack as well as
by Tor itself.

Guard Placement Attacks 275

Adversary Resource Endowment. We formal-
ize the adversary’s resources using the following param-
eters:
1. Total bandwidth (B): The total amount of band-

width the adversary can support (across all relays).
2. Number of guards (K): The total number of guard

relays the adversary can deploy.
3. Set of candidate guard locations (L): The set of loca-

tions where it is feasible for the adversary to deploy
relays. Possible examples of L include all ASes on
the Internet, all ASes hosting at least one Tor relay,
or all geographic coordinates within certain regions.
Attack Parameters. The attack itself is a function

of the following parameters:
1. Client locations (C): The set of possible locations of

clients that the adversary would like to attack.
2. Guard selection algorithm (A): The guard selection

component of the path selection algorithm used by
Tor clients. We will consider the following algo-
rithms: (1) Vanilla Tor (A = VT), (2) Counter-
RAPTOR (A = CR), (3) DeNASA (A = DN), and
(4) LASTor (A = LT).

3.2 Definitions

Attack Taxonomy. A guard placement attack is a
type of relay-level attack. The adversary places ma-
licious guards in network locations with the goal of
maximizing the probability that at least one of the
guards is selected by a client under attack. Once a
malicious guard is selected, the adversary can then
mount website fingerprinting or traffic correlation at-
tacks [6, 10, 12, 21, 33, 35, 55]. In this work, we con-
sider two types of guard placement attacks: untargeted
and targeted. In the untargeted attack, the adversary
attacks all likely Tor client locations. This case can ap-
ply when an adversary wishes to attack every Tor client
or when he has no information about the locations of
the clients of interest. In the targeted attack, the adver-
sary attacks clients in a single location, i.e. |C| = 1. Of
course, an adversary could target a number of client lo-
cations in between these extremes, but we find it useful
to investigate them as they estimate the best and worst
cases for a client.

Attack Success Metrics.We measure the success
of a guard placement attack as the probability that an
attacked client selects a guard of the adversary. Given
an adversary with total bandwidth B, total guards K,
and candidate guard locations L, an attack strategy s is

a tuple of location-bandwidth pairs representing guard
placements: s = ((`1, b1), . . . , (`K , bK)), where ∀i`i ∈ L,
∀ibi ≥ 0, and

∑
i bi ≤ B. Given guard selection algo-

rithm A and a client in location c ∈ C, let pA(c, s) be
the probability that the next guard selected by the client
is malicious. Then our main metric for the success of at-
tack strategy s is

σ(A,C, s) = 1
|C|

∑
c∈C

pA(c, s). (1)

This metric quantifies the average success over client lo-
cations C. This can be viewed as reflecting the average
risk to clients in C or the adversary’s expected chance
of success against a specific client knowing only that the
client location is in C. We also analyze the maximum
success over client locations: maxc∈C pA(c, s). Note that
these metrics are general for both untargeted and tar-
geted attacks, the latter being the case where |C| = 1.

Attack Goal. The adversary’s goal is to find a
strategy s that maximizes σ(A,C, s) given the client lo-
cations C and the clients’ guard selection algorithm A.
Let S(B,K,L) be the set of all attack strategies given
bandwidth B, number of guardsK, and candidate guard
locations L: S(B,K,L) = {((`1, b1), . . . , (`K , bK)) :
∀i`i ∈ L,∀ibi ≥ 0, and

∑
i bi ≤ B}. Then we can ex-

press the goal of the attacker as selecting some strategy
s∗ ∈ arg maxs∈S(B,K,L) σ(A,C, s). This goal applies to
both the untargeted and targeted attacks, as it is pa-
rameterized by the set of client locations C.

Security Definition. We define security against
the guard placement attack in a more conservative way
than we measure attack success. While attack success
is measured given an adversary strategy, a meaningful
security definition must take into account all possible
adversary strategies. However, the resources needed by
these strategies must also be incorporated into the def-
inition. The reason is that Tor (and onion routing in
general) makes no trust assumptions on the relays and
prioritizes performance, and so an adversary that con-
tributes the majority of the guard resources should have
his guards selected by the majority of clients. In order
to quantify the adversary’s maximum possible success
relative to his contribution, we unify the resources con-
tributed by relays under a single cost parameter. This
cost includes the time required to run the relays and
obtain the necessary GUARD flag. We give a specific cost
model in Section 3.3, but our framework is generic and
applies to any cost model.

We define the cost of running a guard placement
attack as the cost of running the adversary’s guards
relative to the total cost of running all guards in the

Guard Placement Attacks 276

Tor network. Let relCost(g) be the cost of running guard
g divided by the cost of running all Tor guards. Costs
are additive in our model, and so the relative cost of
running a set of guards G is

∑
g∈G relCost(g). Note that

relCost(g) ∈ [0, 1], and
∑

g∈G relCost(g) = 1, where G is
the set of all guards in the network.

Using this cost model, we define security as the max-
imum success of the attacker relative to his cost. We
will define security over all possible client locations C
(i.e. not just those in C that the adversary intentionally
attacks) to guarantee security to all clients. Let S be all
possible attack strategies given all possible guard loca-
tions L: S = ∪B≥0,K≥0,L⊆LS(B,K,L). The maximum
success relative to cost is

σ(A) = max
s∈S

max
c∈C

pA(c, s)∑
g∈s relCost(g) . (2)

Observe that, because of the maximization over all
strategies, σ(A) bounds the absolute success of any
specific strategy s after adjusting for its cost: σ(A) ≥
σ(A,C, s)/

∑
g∈s relCost(g). Thus our security notion,

given in Definition 1, simply bounds σ(A).

Definition 1. Path selection algorithm A is secure
against guard placement attacks with parameter θ, i.e.
is θ-GP-secure, if σ(A) ≤ θ.

Definition 1 provides a strong notion of security. Be-
cause it bounds the maximum success over all strategies,
it applies to all adversaries and attacks. Moreover, be-
cause it considers the maximum over all possible client
locations, it provides the same security guarantee to all
clients. This use of a worst case metric is in contrast to
our attack metric σ, which considers success averaged
over a set of client locations. While the weaker average
metric is useful to understand the threat of specific at-
tacks, it is less appropriate as a security definition as
a bounded average could still leave certain client loca-
tions highly vulnerable to attack and may even allow
every client location to be vulnerable when individually
targeted. Note that Definition 1 applies to all strategy
components—not just the malicious guard locations.
In particular, the definition covers strategies that sim-
ply vary the number and bandwidths of the malicious
guards.

Proving that an algorithm satisfies Definition 1 is
not straightforward due to the maximization over all
strategies. However, we can show that it is equivalent
to a simpler condition on the path selection algorithm.
Let fA(c, g) be the probability that a client using path
selection algorithm A in location c chooses g as its next

guard. Let G be the set of all guards. The maximum
probability-cost ratio for path selection algorithm A is

ρ(A) = max
c∈C

max
g∈G

fA(c, g)
relCost(g) . (3)

Theorem 1 shows that we can just bound ρ(A) to prove
that A satisfies Definition 1. Its proof is in Appendix C.

Theorem 1. Path selection algorithm A is θ-GP-secure
if and only if ρ(A) ≤ θ.

3.3 Empirical Cost Model

We propose a cost model derived from empirical analy-
sis of the prices of commercial hosting providers. Using
data from Tor Metrics [47], we identify the top 10 ASes
in the Tor network by total relay consensus weight (see
Appendix D). Of these 10, we find 7 that provide com-
mercial hosting and list prices online. For each of these 7
providers, we identify the cheapest server price for each
bandwidth offered. Moreover, we include the possibility
of running two relays on the same IP address (as limited
by Tor) and splitting the bandwidth and cost between
them. If the host allows purchasing extra IP addresses,
we consider additional splitting of the bandwidth, up
to 32 possible IP addresses, which would constitute an
entire /24. Then, to determine the cheapest price for a
given bandwidth, we consider the cheapest possible op-
tion among all providers with at least that bandwidth.

In every case, the cheapest provider was Online
SAS. Each bandwidth could be obtained at the cheap-
est price from one of three of its products: a dedicated
server at 1,000 Mbps for $11.40/month, a cloud server
at 200 Mbps for $4.55/month, and a cloud server at 100
Mbps for $2.28/month. We emphasize that these costs
are for running the relays for one month, which takes
into consideration the time it takes to obtain the GUARD
flag. The exact cost model is given in Appendix D.

To obtain a guard’s relative cost (i.e. relCost), the
guard’s bandwidth is input to the model to determine
the absolute cost, and that value is divided by the sum
of the absolute guard costs. We use a linear regression
on the past consensus weights and self-advertised band-
widths of Tor’s guards to convert consensus weights to
the bandwidths used in the cost model. The regression
is necessary because the consensus weights are the result
of a load-balancing algorithm [34] that causes them to
differ substantially from the true bandwidths. This re-
gression has a coefficient of determination of r2 = 0.86.
See Appendix A for more details.

Guard Placement Attacks 277

While our cost model is based on limited data, Def-
inition 1 is somewhat robust to any inaccuracies. If the
model estimates the relative cost c of any set of guards
to be (1 + ε)c, then an algorithm with θ-GP-security
under the model will instead actually have (1 + ε)θ-GP
security. Moreover, while any cost model will not reflect
the costs to all adversaries at all times, any guard se-
lection algorithm will give an adversary some success
relative to his cost, and we argue that explicitly model-
ing the cost increases the chance of successfully limiting
his relative success.

4 Case Study I:
Counter-RAPTOR

Counter-RAPTOR [40] modifies the way guards are cho-
sen in Tor to improve security against BGP hijack at-
tacks. In Counter-RAPTOR, the client computes, for
each guard g, the guard’s resilience r(g), which is the
probability that the client’s AS is not deceived by an
equally-specific prefix attack on the guard’s AS. The re-
siliences are used as a component of the weights used by
the client to select guards. To prevent a client from being
too biased towards any one guard, Tille’s algorithm [49]
is applied to the resiliences to produce more uniform val-
ues r′(g) (for details, see Appendix B). Guard g, with
normalized bandwidth b(g), is then given weight

w(g) = α · r′(g) + (1− α) · b(g), (4)

where α is a parameter that trades off attack resilience
and performance (the recommended value is α = 0.5).
We show that, despite the use of Tille’s algorithm,
Counter-RAPTOR is still vulnerable to guard place-
ment attacks.

4.1 Untargeted Attack –
Counter-RAPTOR

We first analyze the success of an untargeted attack in
which the attacker seeks a high average guard-selection
probability over many client locations. When placing a
guard, the attacker benefits from choosing a location
that has high resilience with respect to many client lo-
cations. We consider the success of the attack under
different bandwidths and numbers of guards.

Experimental Setup.We attack the locations (C)
in the list of 368 top Tor client ASes measured by
Juen [23]. We let the set of candidate ASes for running
the malicious guard (L) include all ASes that already

contain at least one Tor relay. We obtain Tor network
data from CollecTor [44] and retrieve relevant relay in-
formation from an August 1, 2018 consensus. All IP to
AS mappings are done using Team Cymru data [43], and
we use Internet topology data from CAIDA [8]. AS path
prediction [16] is used to compute resiliences. This data
is used to model Tor and Internet routing throughout
the paper unless otherwise noted.

Varying the bandwidth. We use one malicious
guard (K = 1) and consider seven consensus weight
values B: 2,000; 3,000; 7,500; 10,000; 30,000; 75,000;
and 150,000. These bandwidths are the Tor consensus
weights across the range of existing guard bandwidths.
Our linear regression on consensus weights and adver-
tised bandwidths (Appendix A) shows that a guard with
a weight of 2,000, which is 0.011% of the total guard
weight, likely has an actual bandwidth of 35.5 Mbit/s,
and a guard with a weight of 150,000, which is 0.81%
of the total guard weight, has a predicted actual band-
width of 939.8 Mbit/s. To optimize the attack success
σ (Equation 1) against all client locations (C), the ad-
versary computes the success probability for placing a
malicious guard in each of the candidate ASes (L), and
then chooses the location with the largest attack suc-
cess. This is the same AS regardless of bandwidth, and
we find that it is AS199524 (G-Core Labs).

We consider the attack success probabilities un-
der Counter-RAPTOR from two perspectives. First, to
show the increase in guard probability compared to to-
day’s Tor network, we include the success probability
under Vanilla Tor. Second, we show the relative cost of
the attack (Section 3.3) to present what would be the
“ideal” success of the attacker under our cost model.

Figure 1 shows the untargeted attack success for a
varying attacker bandwidth. The shaded areas represent
the range of guard-selection probabilities over the client
locations even though no specific one is being targeted.
For the smallest bandwidth guard shown (2,000), we
can see that it achieves a selection probability of 0.046%,
which is 4.3× greater than the Vanilla Tor success prob-
ability and 1.37× greater than the relative cost of the
guard. This means that it would be feasible for small
adversaries (such as a single person) to have higher suc-
cess rates on average than they could on today’s Tor
network. For all bandwidths, the highest success prob-
ability is obtained against AS28885. The adversary has
the highest relative advantage against that client loca-
tion for a bandwidth of 2,000, giving them a 12.7× in-
crease in success rate compared to Vanilla Tor and a
4.1× increase over the ideal cost-based probability, even
without targeting those client locations specifically. We

Guard Placement Attacks 278

Fig. 1. Success probability of an untargeted attack on Counter-
RAPTOR clients with 1 malicious guard and varying bandwidths.
Shaded areas show range of success over client locations.

can also see that a single-guard untargeted attack’s rel-
ative success compared to the ideal cost-based model
stays about the same as bandwidth increases, but loses
effectiveness when compared to Vanilla Tor for band-
widths greater than 0.1% of the total. This is because
Counter-RAPTOR inherently weights bandwidth less
than Vanilla Tor (exactly 1/2, due to α). However, this
does not exonerate Counter-RAPTOR; a larger adver-
sary can instead run many small guards to obtain high
absolute success.

Varying the number of relays. Because Tor does
not place restrictions on how many relays one can run, a
strategic adversary can deploy a large number of guards
in the Tor network to better optimize his attack success
probability. For a fixed bandwidth budget, the adver-
sary can split the bandwidth among multiple guards
and place them each strategically to increase the likeli-
hood that one of them is selected. The adversary does
need to take care not to reduce the individual band-
width of each relay such that it falls below the mini-
mum threshold (2,000) to be considered a guard. We
observe that Counter-RAPTOR is particularly vulner-
able to splitting bandwidth among multiple guards due
its additive formula for guard weight (Equation 4). Di-
viding B bandwidth among K guards instead of one
guard reduces the bandwidth term by a factor K but
does not reduce the resilience term.

We use a fixed bandwidth weight of 40,000, which
represents just 0.216% of the total guard bandwidth.
This ensures that the adversary can divide the band-
width evenly among up to 20 guards without falling be-
low the minimum guard threshold (see Section 2.1). We
analyze the optimal strategy, which places all malicious
guards in the same AS location (AS199524).

Guards relCost Avg Max
(K) (%) Success (%) Success (%)

1 0.134 0.148 0.238
2 0.153 0.189 0.368
3 0.181 0.230 0.498
5 0.263 0.311 0.754

10 0.334 0.512 1.384
20 0.665 0.909 2.597

Vanilla 0.134 0.216 0.216

Table 1. Success probability of an untargeted attack on Counter-
RAPTOR clients with a fixed bandwidth of 40,000 (0.216% of
total guard bandwidth) and varying number of malicious guards.

Table 1 shows the effects of splitting a fixed band-
width budget among an increasing number of malicious
guards in an untargeted attack. Dividing the bandwidth
evenly among 20 guards increases the average attack
success to 0.909%, which is 4.2× higher than the Vanilla
Tor success and 1.4× higher than the relative cost. De-
ploying multiple guards pushes the success probability
for this moderately sized adversary above Vanilla Tor,
and it also increases the advantage relative to the cost
of running the attack. We can also see this trend in the
maximum success over all clients, where the absolute
success probability reaches nearly 2.6% for 20 guards,
an increase of 12× over Vanilla Tor and 3.9× over the
relative cost.

4.2 Targeted Attack – Counter-RAPTOR

We next analyze targeted guard placement attacks on
Counter-RAPTOR. We use a single malicious guard
with a bandwidth of 2,000 and for each of the 368 top
Tor client ASes compare the targeted and untargeted
success rates. For each of these locations, the adversary
performs an exhaustive search over all candidate ASes
(L) to find the one that has the maximum success prob-
ability for the client location.

Figure 2 shows the success rates of targeted and un-
targeted attacks over the client locations with just one
guard. For visual clarity, we rank each client AS in in-
creasing order first by untargeted success and then by
targeted success. The largest increase in targeted suc-
cess probability over all client ASes is 47%. However, for
the 13 client ASes where the optimal untargeted place-
ment happens to also be the optimal targeting location,
targeting them specifically is no better than attacking
all clients at once. For the client AS with the maxi-
mum adversary success (index 368), we can see that a

Guard Placement Attacks 279

Fig. 2. Success rates of targeted attacks against Counter-
RAPTOR clients using 1 malicious guard with a bandwidth of
2,000 (0.011% of total guard bandwidth).

single-guard targeted attack with a bandwidth of 2,000
can achieve a success probability of 0.15%. This is over
13.6× higher than what an adversary with the same re-
sources could achieve against Vanilla Tor and over 4.4×
higher than the relative cost.

4.3 Summary

We show that strategic guard placement attacks expose
new vulnerabilities in Counter-RAPTOR. Similar to
Vanilla Tor, adversaries with more bandwidth resources
are able to compromise clients with higher probability.
However, small adversaries with relatively little band-
width can attack Counter-RAPTOR more successfully
than they can attack today’s Vanilla Tor network. We
also show that targeted guard placement attacks can
boost the attack’s likelihood of success, and splitting
the same bandwidth resource among multiple malicious
guards can increase the probability that one of them is
chosen.

5 Case Study II: DeNASA
DeNASA [5] is a proposal for improving security against
passive AS attackers that may snoop on Tor circuits.
This algorithm chooses guards weighted by bandwidth,
except only among those that do not have a Suspect AS
on the path to or from the guard. Suspect ASes are those
that are frequently in a position to perform traffic corre-
lation attacks on Tor circuits. According to the authors,
the top two Suspect ASes that clients should avoid are
AS3356 (Level 3) and AS1299 (Telia Company) [5]. De-
NASA uses AS path inference [16] to predict whether

or not a Suspect AS is on-path between client-guard
pairs. Guards that do not have a Suspect AS on-path are
called suspect-free. If there are no suspect-free guards,
DeNASA resorts back to the Vanilla Tor guard selec-
tion algorithm. The number of Suspect ASes is limited
to only two as a defense against guard placement at-
tacks, but we show that this is still ineffective.

5.1 Untargeted Attack – DeNASA

We consider an untargeted attack on DeNASA in which
the adversary attempts to maximize average guard-
selection probability over common Tor client locations.
In this attack, the adversary seeks to place a malicious
guard in a location that is suspect-free from many client
locations. The adversary further benefits from choosing
a guard location that is suspect-free from client loca-
tions that have few other suspect-free guards and thus
are more likely to choose the malicious guard.

Experimental Setup. We again analyze an un-
targeted attack with the 368 top Tor client ASes [23] as
the client locations (C) and the ASes with at least one
Tor relay as the candidate ASes (L). We use the same
Internet topology and Tor data as in Section 4.

Varying the bandwidth. We again evaluate the
attack success for one malicious guard (K = 1) and
seven different guard bandwidths (B) ranging from
2,000 to 150,000 and compare it to Vanilla Tor and the
ideal cost-based success. To place the guard, the adver-
sary does an exhaustive search over all candidate ASes
(L) and chooses the AS that receives the highest av-
erage selection probability over all client locations. We
discover that the optimal location to place the malicious
guard is in AS1659 (Taiwan Academic Network) for
smaller adversaries (bandwidth weight less than 30,000),
but is AS12637 (Seeweb) for larger adversaries. This dif-
ference is because once an adversary has enough band-
width, it is better to give up on attacking client loca-
tions that are extremely vulnerable in favor of attacking
many more clients that are only somewhat vulnerable.

Figure 3 shows the attack success. For the small-
est bandwidth shown (2,000), the adversary achieves
on average 0.043% success. This is a relative advan-
tage of 3.9 over Vanilla Tor and 1.29 over the relative
cost. The shaded area shows the range over all client
locations of the probability that the malicious guard is
selected provided that the adversary places the guard
in the location that maximizes average success. There
is a wide range of attack success across client locations
for any given bandwidth, even though this attack is un-

Guard Placement Attacks 280

Fig. 3. Success probability of an untargeted attack on DeNASA
clients with 1 malicious guard and varying bandwidths. Shaded
areas show range of success over client locations.

targeted. Clients in the worst-case location (AS30083)
have an extremely high probability of selecting the ma-
licious guard. In particular, for a bandwidth of 2,000, a
single malicious guard placed in AS1659 achieves a se-
lection probability of 10.6% (964× that of Vanilla Tor,
316× the relative cost) for clients in AS30083. The rea-
son for such large success probabilities is that AS30083
can only reach one non-malicious suspect-free guard.
For large bandwidths, the worst-case client location be-
comes AS36992. A guard with a bandwidth of 150,000,
which represents just 0.81% of total guard bandwidth,
achieves success rates of 16.2%, even though AS36992
is not specifically targeted.

Varying the number of relays. With DeNASA,
an adversary must place guards in separate ASes to gain
an advantage in running multiple small guards with a
fixed total bandwidth. Deploying multiple guards within
the same AS will have no effect on average success prob-
ability because the entire AS is either suspect-free or
not. By deploying a fraction of the guard bandwidth
in a separate AS, the adversary may be able to capture
some clients that were not able to reach the first AS due
to an on-path Suspect AS. In our attack analysis, we im-
plement a greedy algorithm that places each additional
guard in the candidate AS that maximally increases the
success probability. Note that this is just a heuristic and
may not find the optimal strategy.

Table 2 shows the effect of splitting a bandwidth
weight of 40,000 among up to 20 malicious guards. Note
that the success probabilities do not strictly increase be-
cause we use a heuristic. We can see that running two
guards instead of just one vastly increases the maximum
success probability to 54.2%. This is 251× the Vanilla
Tor success rate and 354× the relative cost. The reason
for this huge improvement is that the second guard can

Guards relCost Avg Max
(K) (%) Success (%) Success (%)

1 0.134 0.522 4.896
2 0.153 0.555 54.16
3 0.181 0.535 61.17
5 0.263 0.544 58.64

10 0.334 0.531 62.32
20 0.665 0.531 62.32

Vanilla 0.134 0.216 0.216

Table 2. Success probability of an untargeted attack on DeNASA
clients with a fixed bandwidth of 40,000 (0.216% of total guard
bandwidth) and varying number of malicious guards.

be deployed in an AS that is suspect-free from client
AS30083, while the optimal location for deploying just
one guard of size 40,000 cannot reach this particularly
vulnerable client AS. We further see that adding even
more guards does not increase the average success or the
maximum success, but does increase the relative cost.
This is because while adding more guards does allow
the adversary to attack more client locations, it also
removes bandwidth from the most effective attack van-
tage points. Since there is some cost to deploying more
guards, an adversary attacking DeNASA should use no
more than two or three guards placed in separate ASes.

5.2 Targeted Attack – DeNASA

In a targeted guard placement attack, the adversary
maximizes his success by placing his guard in an AS
that is suspect-free from the target client. This is pos-
sible as long as the client is not in one of the Suspect
ASes and the set of candidate guard locations L is large
enough. For example, if the client’s AS is in the set of
candidate guard locations L, the adversary can simply
place the malicious guard in that AS. If there exists no
suspect-free AS for a targeted client location, then De-
NASA chooses guards based on bandwidth, and so the
adversary can choose any location for his guard.

We show in Figure 4 the success rate of targeted
attacks using one malicious relay with a bandwidth of
2,000 against each client AS. Again, we rank each AS in
increasing order first by untargeted success and then by
targeted success. For the 50 of 368 client ASes (13.6%)
that had zero probability of compromise in the untar-
geted attack, we find that all are able to reach at least
one suspect-free AS, and so targeting them specifically
gives a non-zero success rate. For the other 318 client
ASes, targeting them does no better than generally at-

Guard Placement Attacks 281

Fig. 4. Success rates of targeted attacks against DeNASA clients
using 1 malicious guard relay with a bandwidth of 2,000 (0.011%
of total guard bandwidth). For 86.4% client ASes, the targeted
and untargeted success rates are equivalent (the overlapping
points).

tacking all clients. Figure 4 also shows that the suc-
cess of a targeted attack in DeNASA is heavily depen-
dent on the target client AS. For about five percent
of clients, the probability of successful attacks target-
ing these ASes are bigger than an order of magnitude
higher than what the same adversary would be capa-
ble of in the Vanilla Tor network. While a majority of
clients can reach most non-adversarial guards without
traversing a Suspect AS, there are a few ASes that are
especially vulnerable to adversaries that leverage De-
NASA’s location-awareness.

5.3 Summary

We demonstrate vulnerability in DeNASA to the guard
placement attack in that an adversary can strategically
place guards in suspect-free locations. We show that for
an untargeted attack with a single guard of bandwidth
weight 2,000, a DeNASA client chooses the malicious
guard with average probability 3.9 times greater than
a Vanilla Tor client does, and in the worst case the se-
lection probability can be more than 964 times greater.
This shows that the guard placement success rates of
an adversary varies significantly across client locations.
For large enough guards, the maximum absolute success
probability is also large. We also show that splitting the
bandwidth among a few guards in separate ASes can
greatly increase the untargeted success rate by reach-
ing more clients. However, it is also important to note
that such deployment more comes at a higher cost to
the adversary. Finally, we show that targeted attacks
are successful against clients that were not vulnerable
to the untargeted attack.

6 Case Study III: LASTor
LASTor [1] is a location-aware path selection algorithm
that primarily aims to reduce latency of communica-
tion on Tor. While the proposal offers some additional
AS-awareness to defend against passive AS adversaries,
it is only incorporated in the path selection algorithm
after guards are chosen. LASTor uses a Weighted Short-
est Path algorithm that selects a given path with prob-
ability inversely proportional to the expected latency
between the client and destination. Network latency is
approximated by the end-to-end geographical distance.
Thus, the algorithm attempts to select a path close to
the direct line between the client and the destination.

LASTor includes relay clustering as a defense
against guard placement attacks. This technique lim-
its the success of an adversary strategy that places all
of the malicious relays in the same location. However,
we demonstrate that it is ineffective in general against
guard placement. The clustering algorithm divides the
globe into a grid of cells and includes a cluster for each
cell containing all the relays within that cell. The recom-
mended edge lengths of each cell are 2 degrees of latitude
and longitude. To select guards, all guards are first clus-
tered, and then distance from each cluster is computed
as the great-circle distance [50] from the center of the
cluster to the client. The client selects a “feasible” clus-
ter uniformly at random from the closest 20% of clusters
and then picks one guard uniformly at random among
the guards in that cluster. Note that LASTor does not
consider relay bandwidth.

6.1 Untargeted Attack – LASTor

We consider an untargeted attack on LASTor in which
the adversary seeks high average selection probability
over many likely physical locations for Tor clients. The
adversary benefits by placing his guards close to many
of the client locations. Because LASTor does not take
bandwidth into account, the adversary further benefits
from having as many guards as possible.

Experimental Setup. We choose the client loca-
tions (C) from the ten countries with the most directly-
connecting Tor users. We use 200 cities located across
these countries as client locations. The locations in the
ith country are the geographic coordinates of the 200fi

most-populous cities in that country, where fi is that
country’s fraction of Tor users among the top-ten coun-
tries. We obtain the top ten Tor countries and their fi

values using data from Tor Metrics [47]. We let the can-

Guard Placement Attacks 282

Fig. 5. Success probability of an untargeted attack on LASTor
clients with 1 malicious guard and varying bandwidths. The
shaded area shows ranges of success over client locations.

didate locations for running the guard (L) be the set of
all relay clusters that already contain at least one Tor
relay. We use the Maxmind GeoIP database [25] for IP
to geo-location mapping.

Varying the bandwidth. We again consider a
single malicious guard (K = 1) with seven bandwidth
weights (B) from 2,000 to 150,000. To choose the guard’s
location, the adversary finds the optimal strategy by
computing for each candidate location its potential
guard selection probability from all client locations and
choosing the one that maximizes the average probabil-
ity (i.e. σ, see Equation 1). We find that this optimal
location is just north of Moscow (57.8794, 34.9925).

Figure 5 shows the attack’s success on the set of
client locations. It is clear that LASTor selection prob-
abilities have no dependency on bandwidth, giving an
adversary running a small guard a significant advan-
tage compared to both Vanilla Tor and the relative
cost. A malicious guard with consensus weight 2,000,
which is the minimum weight that we examine, obtains a
1.13% average success probability over all clients, 103×
greater than what the same adversary would obtain un-
der Vanilla Tor, and 34× greater than the relative cost.
The shading shows that the success rates range widely
from 0% to 2.94% for all bandwidths. The constant max-
imum success probability over all clients indicates that
there is always at least one client location that has the
malicious guard’s cluster within its closest 20%. The
constant minimum success probability, which occurs for
61% of client locations, is because it is not in the closest
20% of clusters for those locations.

Varying the number of relays. Because the
LASTor guard selection algorithm does not depend on
bandwidth, it is particularly susceptible to an adver-
sary that has limited bandwidth but can run multiple

Guards relCost Avg Max
(K) (%) Success (%) Success (%)

1 0.134 1.132 2.941
2 0.153 2.250 5.882
3 0.181 3.353 8.824
5 0.263 4.414 14.29

10 0.334 10.22 27.78
20 0.665 18.22 34.21

Vanilla 0.134 0.216 0.216

Table 3. Success probability of an untargeted attack on LASTor
clients with a fixed bandwidth of 40,000 (0.216% of total guard
bandwidth) and a varying number of malicious guards.

relays. Moreover, an adversary with multiple relays can
strategically place them in separate clusters to obtain
positive success probability from more client locations.
We consider an adversary implementing a greedy algo-
rithm to insert malicious guards into the Tor network,
where each added guard is placed to maximize the in-
crease in average success probability. Note that this is
a heuristic may not find the optimal strategy.

In Table 3 we show the success probabilities of un-
targeted attacks on the 200 client locations with a band-
width budget of 40,000 and up to 20 relays (K = 20).
As we can see, the success probability increases nearly
linearly with the number of relays even while keeping
the total bandwidth constant. Thus, the attacker ob-
tains the highest advantage by running 20 relays, in
which case he increases the average success probabil-
ity 84× over Vanilla Tor and 27× over the relative cost.
The maximum success probability is 158× higher than
Vanilla Tor’s and 51× higher than the relative cost.

6.2 Targeted Attack – LASTor

In the targeted attack, the adversary focuses on a sin-
gle client location and attempts to maximize his suc-
cess probability with respect to this target. LASTor
first chooses a feasible cluster, then chooses a guard
within that cluster. Therefore, a strategic adversary
would want to place guards in feasible clusters that
are geographically close to the client but that contain
as few guards as possible. We find that an adversary
specifically targeting any one of the 200 client locations
is always able to find a feasible cluster that is within
the closest 20% and that does not already contain a
guard. This gives a malicious guard targeting any spe-
cific client a 2.94% chance of being selected from among
the 1,935 other guards in the Tor network, regardless

Guard Placement Attacks 283

of its bandwidth. By comparison, the highest-bandwidth
non-malicious guard has a 0.74% chance of selection un-
der Vanilla Tor. We emphasize that this targeted attack
success applies to all 200 client locations, even those that
have zero chance of selecting a malicious guard in the
untargeted attack.

6.3 Summary

We demonstrate serious vulnerabilities in LASTor to
the guard placement attack, despite the relay cluster-
ing that LASTor uses as a defense to that very attack.
With just a single malicious guard, a low-bandwidth
adversary can exploit the location-awareness of LAS-
Tor to increase its guard selection probability by more
than two orders of magnitude over Vanilla Tor. We also
show that splitting the adversary’s bandwidth among
multiple guards and placing them in separate clusters
drastically increases the attack success probability.

7 Countermeasures
In this section, we present a meta-algorithm that modi-
fies the guard selection component of any path selection
algorithm to provably defend against guard placement
attacks. We apply this algorithm to Counter-RAPTOR,
DeNASA, and LASTor and evaluate its effect on their
security and performance.

7.1 Defense Mechanism

In a successful guard placement attack, the adversary
obtains a success probability that is disproportionate to
the fraction of Tor’s guard resources that he contributes.
We therefore propose a defense mechanism that bounds
guard selection probabilities relative to their costs. Our
defense mechanism can be applied to any guard selec-
tion algorithm, as it operates by interacting with the
algorithm to produce a modified guard selection distri-
bution. The mechanism takes as input a desired bound
on the guards’ probability-cost ratios, and it produces
a distribution satisfying this bound while preserving as
much as possible the security benefits of the original
guard distribution.

Before describing the mechanism, we introduce
some notation. Let A be the client’s algorithm for se-
lecting its next guard. Let θ ≥ 1 be a security parameter
indicating the desired bound on the guards’ probability-
cost ratios. Intuitively, θ represents the maximum rela-

tive advantage the network is willing to give to an ad-
versary running a guard placement attack. Let G be the
set of guards in the Tor network. For g ∈ G, recall (Sec-
tion 3.2) that relCost(g) denotes its cost fraction. Also
recall that fA(g) denotes the selection probability of g
for a client using A (we drop the client parameter c for
simplicity). We assume that A produces this distribu-
tion given the set of guards (i.e. fA = A(G)).

The defense mechanism D is given in Algorithm 1.
It takes in A and θ and produces a guard selection dis-
tribution f ′A that bounds the probability-cost ratio for
all guards. D operates by asking A for its desired guard
selection distribution, enforces the θ bound on that dis-
tribution by potentially reducing guard probabilities, re-
moves any guards thus limited, and repeats to assign to
the remaining guards the probability in excess of the
bound from the removed guards. Thus D repeatedly
uses A as the guide for how the current unassigned prob-
ability should be allocated among guards that haven’t
yet met the θ bound. D uses each distribution that A
produces as much as possible, only reducing some de-
sired probabilities if they would cause the guard to ex-
ceed the θ bound. We prove in Appendix C that this
algorithm terminates (Theorem 2), as it is not obvious
from the description that it does so.

7.2 Defense Framework Evaluation

We evaluate the security and performance of our de-
fense framework from three perspectives: (1) how well
it reduces vulnerability to a guard placement attack, (2)
how well the modified guard selection algorithm main-
tains its original goal (e.g. increasing hijack resilience),
and (3) how it affects the load balancing of clients over
guards. We apply Algorithm 1 to Counter-RAPTOR,
DeNASA, and LASTor with varying threshold values.

7.2.1 Security from Guard Placement Attack

The defense algorithm bounds the extent to which ad-
versaries can exploit the location-awareness of the guard
selection algorithm to achieve high selection probabili-
ties. Tor clients can apply this defense to their location-
aware path selection algorithm to mitigate guard place-
ment attacks while maintaining AS-awareness or latency
benefits. Theorem 2 shows that modifying a guard se-
lection algorithm using the defense makes it robust to
guard placement attacks in general, regardless of at-
tacker strategy.

Guard Placement Attacks 284

Algorithm 1: Defense algorithm D

Input: Guard selection algorithm A, security
parameter θ

Output: Guard selection distribution f ′A
1 forall g ∈ G do
2 f ′A(g)← 0
3 end
4 B ← G // Guards below threshold
5 p← 1 // Probability to allocate
6 repeat
7 x← 0 // Excess probability
8 fA ← A(B)
9 forall g ∈ B do

10 if f ′A(g) + p · fA(g) ≥ θ · relCost(g) then
11 x← x+f ′A(g)+p ·fA(g)−θ · relCost(g)
12 f ′A(g)← θ · relCost(g)
13 B ← B − g
14 else
15 f ′A(g)← f ′A(g) + p · fA(g)
16 end
17 end
18 p← x

19 until x = 0
20 return f ′A

Theorem 2. Let A be any guard selection algorithm
and θ ≥ 1 be the security parameter. Then using the
guard selection distribution f ′A = D(A, θ) is θ-GP-
secure.

In other words, applying Algorithm 1 and using the re-
sulting guard selection probability distribution is secure
against guard placement even though the original guard
selection algorithm may not be. An additional conse-
quence of Theorem 2 is that applying Algorithm 1 limits
any advantage the adversary might obtain from splitting
his bandwidth among multiple relays, as Definition 1 al-
lows the adversary to vary the number and bandwidths
of guards in addition to their locations. We defer the
proof of Theorem 2 to Appendix C.

We evaluate how much the defense would improve
the security of using the location-aware algorithms on
the existing Tor network by computing the probability-
cost ratios for each algorithm. The probability-cost ratio
of guard g under algorithm A is ρ(g) = fA(g)/relCost(g).
We determine the values of ρ(g) under our cost model
for each existing guard in the August 1, 2018 consensus.
We do not insert any malicious guards.

Fig. 6. Maximum selection probability to cost ratio for clients
choosing guards in the August 1, 2018 Tor consensus.

Figure 6 shows the maximum probability-cost ratio
for each client location under Counter-RAPTOR, De-
NASA, and LASTor. These values represent the ability
of existing guards to attract clients relative to their costs
(recall Equation 3). For Counter-RAPTOR, the worst-
case client location has at least one guard with a ratio of
5.4. Some clients under DeNASA could select a guard
with a probability 1,490× the cost it took to deploy
the guard, but this ratio varies greatly across clients.
LASTor always gives some existing guard a large ad-
vantage, and 75% of client locations have a maximum
probability-cost ratio of greater than 100.

These results show that even on the current net-
work, applying proposed location-aware algorithms
would give some guards a chance to observe clients that
is disproportionate to their cost. We emphasize that
these results only include relays that currently exist,
and a strategic attack on a specific location-aware al-
gorithm would yield even higher success, as shown in
Sections 4–6. Furthermore, Theorem 2 shows that ap-
plying Algorithm 1 to any of these algorithms would
mitigate the threat by guaranteeing that the maximum
probability-cost ratio for all client locations would be
no higher than the desired limit θ.

7.2.2 Algorithms’ Original Goals

The defense meta-algorithm provably limits the advan-
tage of a guard placement attack to a factor of θ, but
it does impact the original goals of the location-aware
path selection algorithm. However, we show that for rea-
sonable values of θ that impact is generally small. In the
following sections, again let fA(g) denote the probabil-

Guard Placement Attacks 285

Fig. 7. Probability of being resilient to attacks with different
threshold (θ) values.

ity that a client selects guard g under algorithm A, and
let G denote the set of all guards in the network.

Counter-RAPTOR. Let r(g) indicate the hijack
resilience of guard g. The aggregated probability of a
client being resilient to a BGP hijack attack can be
expressed as

∑
g∈G fCR(g)r(g). Figure 7 shows the ag-

gregated resilience for θ ∈ {1, 1.1, 1.25, 1.5}, as well as
for “pure” Counter-RAPTOR without the guard place-
ment defense. We use the 368 top client ASes [23] and
guard data from the August 1, 2018 consensus. Natu-
rally, θ = 1 has the lowest probability of being resilient
to an equally-specific prefix hijack attack, while pure
Counter-RAPTOR is the most resilient. For θ = 1, 50%
of client locations have at least 0.62 resilience proba-
bility, and in pure Counter-RAPTOR, 50% of client lo-
cations have at least 0.7 resilience probability. Observe
that for θ = 1.25 the resilience probabilities over all
client locations are nearly identical to those of clients
using pure Counter-RAPTOR. This means that we can
relax the θ bound to 1.25 while maintaining the hi-
jack resilience benefits of Counter-RAPTOR. We rec-
ommend this value to mitigate guard placement attacks
as it bounds the adversary’s probability-cost advantage
to 1.25 and does not significantly impact the original
goals of Counter-RAPTOR.

DeNASA. Let 1sf(g) be the indicator function
for the AS paths between the client and guard being
suspect-free, i.e., 1sf(g) = 1 if the paths in both di-
rections are suspect-free and 0 otherwise. The aggre-
gated suspect-free probability can then be expressed
as

∑
g∈G fDN(g)1sf(g). Figure 8 shows the suspect-free

probability for θ ∈ {1, 1.25, 1.5, 2, 10}, as well as for pure
DeNASA. We use the same Tor client ASes [23] and
guards as in the Counter-RAPTOR evaluation. Natu-
rally, as θ increases, the algorithm behaves more sim-
ilarly to pure DeNASA, which has the highest proba-

Fig. 8. Probability of choosing suspect-free guards with different
threshold (θ) values.

bility for clients to choose suspect-free guards. For pure
DeNASA, 366 out of 368 client locations are guaranteed
to select suspect-free guards; the only clients not select-
ing suspect-free guards are clients located in the two
Suspect ASes themselves. As we reduce θ, the modified
distribution begins to give guards that are not suspect-
free non-zero probability of being selected. This is the
trade-off between protecting clients from the threat of
Suspect ASes and from guard placement attacks. We
recommend θ = 2, which has 80% of client locations
still only choosing suspect-free guards while ensuring
that no guard is more than twice as likely to be chosen
relative to the fraction of the Tor network it contributes.

LASTor. LASTor uses geographical distance as a
substitute for network latency [1]. Let d(g) denote the
distance to the guard from a client. The expected dis-
tance from the client to a chosen guard can then be
expressed as

∑
g∈G fLT(g)d(g). Figure 9 shows the ex-

pected distance in kilometers for θ ∈ {1, 2, 5, 10, 20}, as
well as for pure LASTor. We evaluate the set of 200
client locations used in Section 6.1 and use the same
guards as in the previous evaluations. Naturally, as θ
decreases (mitigating guard placement attacks), the ex-
pected distance of a guard selected by a client increases.
The median expected distances range between 1,348 km
to 4,375 km, depending on choice of θ. We recommend
θ = 5 for LASTor, which has 50% of client locations still
choosing guards within an 3,104 km.

7.2.3 Performance Impact

We will show that our defense mechanism can be applied
to Counter-RAPTOR, DeNASA, and LASTor without
negatively impacting the performance of Tor’s load bal-
ancing. In fact, application of the defense can improve

Guard Placement Attacks 286

Fig. 9. Expected guard distance with different threshold (θ) val-
ues.

the network load balance because it prevents attractive
relays from being overloaded with client traffic.

We examine guards’ expected load under these
path-selection algorithms, both with and without the
application of our defense mechanism. When computing
expected guard loads for Counter-RAPTOR and De-
NASA, we assume clients are distributed in the top 368
client ASes according to the densities measured by Juen
[23]. When computing expected loads for LASTor, we
assume clients are geographically distributed according
to our experimental setup described in Section 6.1. Fol-
lowing Tor’s existing load-balancing strategy, we con-
sider ideal load balancing to be when clients are dis-
tributed proportionally to bandwidth, which is most
reasonable under the assumption that clients produce
similar amounts of traffic. When applying the defense,
we use our recommended values of θ for each algorithm:
θ = 1.25 for Counter-RAPTOR, θ = 2 for DeNASA, and
θ = 5 for LASTor. Under each algorithm, we compute
each guard’s expected load factor, which is the ratio of
the guard’s fraction of clients to the guard’s fraction
of bandwidth; for example, if a guard is used by 4% of
Tor clients and contributes 2% of Tor’s bandwidth, then
the guard’s load factor is .04/.02 = 2. Under ideal load
balancing, guards would have load factors close to 1.

Figure 10 shows the distribution of expected guard
load under the location-aware algorithms. The CDFs
are over clients and not client locations; e.g., the point
at (x = 100, y = 0.5) on the Counter-RAPTOR lines
indicates that 50% of clients choose a guard with a load
factor of at most 1 in Counter-RAPTOR.

Applying our defense to Counter-RAPTOR pro-
duces a nearly identical load distribution; therefore,
1.25-GP-security can be achieved without disturbing the
load balance in Counter-RAPTOR. Applying our de-
fense to DeNASA slightly improves network balance—

Fig. 10. Distribution of expected guard load factors for location-
aware algorithms with and without guard placement defense ap-
plied.

the median load factor experienced by clients is reduced
from 1.25 to 1.07, and the worst load factor is reduced
from 3.00 to 1.70. Akhoondi et al. note that one of LAS-
Tor’s deficiencies is its poor load balancing [1], which
is reflected in our results. Applying our defense signifi-
cantly improves the load balance of LASTor: the median
load factor experienced by clients is reduced from 7.91
to 2.19, and the worst load factor is reduced from 70.1 to
8.70. Our analysis suggests that defending a path selec-
tion algorithm against the guard placement attack may
result in desirable performance benefits, in addition to
improving the security of the algorithm.

8 Related Work
Guard Placement Attacks. While previous work
on location-aware path selection algorithms in Tor has
mentioned guard placement attacks, it has not rigor-
ously studied them. We showed that the defenses pro-
posed for each algorithm we attacked are ineffective. Sun
et al. [40] note that an adversary can run a relay that
has a short AS-path length to the client to obtain a high
resilience value, making it more likely for a Counter-
RAPTOR client to choose the adversary’s relay. To
combat this, the resilience of each relay is somewhat
randomized using Tille’s algorithm [49]. Nithyanand et
al. [30] mention that Astoria clients may be manipulated
into connecting to malicious guards if there are few or
no safe paths available. In these cases, the authors sug-
gest having a minimum threshold of safe paths to choose
from, but no further analysis is provided. Akhoondi et
al. [1] also mention that an adversary may try to place
relays close to the direct line between a LASTor client
and destination, and they introduce a clustering algo-

Guard Placement Attacks 287

rithm as a defense. Perhaps most explicitly, Barton and
Wright [5] coin the term “guard placement attack”. To
mitigate the attack in DeNASA, they limit the list of
Suspect ASes to just two (AS3356 and AS1299), as do-
ing so increases the number of guards a client can use.

In contrast to previous works, we formally define
and analyze guard placement attacks using a metric that
quantifies the attack success. Our work is the first to
obtain quantitative estimates of the security of several
location-aware Tor path selection algorithms against
guard placement attacks. We also present a defense tech-
nique that modifies guard selection algorithms to make
them provably secure.

Other Path Selection Algorithms. There have
also been many alternate path selection algorithms pro-
posed to improve the security and/or performance of
Tor [2, 4, 36, 37, 39, 52]. Our security definitions apply
to more than just location-aware algorithms in that ad-
versaries can choose any strategy that maximizes their
guard placement attack success, which includes choosing
the number and bandwidths of their guards in addition
to their locations. Because these other path selection al-
gorithms do not address guard placement attacks, they
may also be vulnerable and benefit from our defense.

Traffic Analysis Attacks. Onion routing systems
such as Tor are vulnerable to adversaries that can ob-
serve traffic as it enters and exits the anonymity network
[6, 21, 26–29, 31]. Both relay and network adversaries
could monitor this traffic; a relay adversary may control
both the entry and exit relay, while a network adversary
might observe links on both sides of the circuit. The
low-latency requirement of Tor makes correlating traffic
patterns easy. This vulnerability has been known since
the initial development of Tor [10], and has been demon-
strated in a number of works [15, 26–28, 41]. A guard
placement attack would allow an adversary to obtain
the powerful guard position, making subsequent traffic
correlation attacks on the client much easier.

Website fingerprinting is another deanonymization
attack in which the adversary aims to associate a
client’s traffic patterns with those of specific websites
[7, 18, 19, 22, 24, 32, 33, 35, 38, 53–56]. This is a pow-
erful attack because the adversary only needs access to
the client’s traffic. Machine learning techniques can be
used on features such as timing, volume, and direction
to classify encrypted traffic as representative of a certain
website. Like traffic correlation attacks, both relay and
network adversaries could perform website fingerprint-
ing attacks; a relay adversary would need to control the
guard relay, and a network adversary would need to ob-
serve the link between the client and its guard. Guard

placement attacks make website fingerprinting easier by
making it easier for an adversary to induce a client to
choose his guard.

Cost-based Adversary Models. Backes et al. [3]
include an analysis of Tor’s security against a “mon-
etary” adversary, for which they produce a per-relay
cost model based on hosting prices and bandwidth-cost
statistics. In addition to considering a relay’s band-
width, their model also takes into account the specific
hosting provider or country, but it does not consider the
purchase of additional IP addresses. Jansen et al. [20]
produce a cost model for a Tor adversary, but they do
not require hosting providers to support Tor relays and
do not consider additional IP addresses.

9 Conclusion
In this work, we formalize the guard placement attack,
in which an adversary strategically places relays to com-
promise large fractions of Tor users at relatively low
cost. We are the first to systematically study the guard
placement attack and show that it is highly effective
against location-aware path selection algorithms. We
provide a definition of security against this attack and
describe a general method that modifies a path-selection
algorithm to satisfy this definition while minimizing the
impact on the algorithm’s original goals.

Our work motivates the following directions for fu-
ture work: (1) The design of θ-GP-secure path-selection
algorithms without requiring the application of our de-
fense. If an algorithm is explicitly designed to achieve
θ-GP-security, it may be able to achieve improved
traffic-analysis resistance or network performance. (2)
An improved cost model. Although we provide a con-
crete cost model through a study of current hosting
providers, defining more sophisticated cost models can
further refine our understanding of placement attacks
and Tor security in general [36]. (3) The generaliza-
tion of guard placement attacks to relay placement at-
tacks. Many path-selection algorithms modify the way
that clients choose middle and exit relays, making these
positions potentially vulnerable to placement attacks.
(4) The development of techniques to quantify the se-
curity of Tor path selection. Our work highlights the
importance of designing Tor algorithms that consider
multi-dimensional trade-offs among different types of
adversaries. Techniques that help researchers balance
the many considerations in path selection can greatly
benefit the development of new Tor algorithms.

Guard Placement Attacks 288

Acknowledgements
This work has been supported by the Office of Naval
Research, the Army Research Office Young Investi-
gator Prize (YIP), and National Science Foundation
grants CNS-1704105, CNS-1553437, and CNS-1617286.
We thank Florentin Rochet for valuable feedback.

References
[1] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha.

LASTor: A Low-latency AS-aware Tor Client. IEEE/ACM
Transactions on Networking, 22(6), 2014.

[2] Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Gold-
berg. The Path Less Travelled: Overcoming Tor’s Bottle-
necks with Traffic Splitting. In Privacy Enhancing Technolo-
gies, 2013.

[3] Michael Backes, Sebastian Meiser, and Marcin Slowik. Your
choice mator (s). Proceedings on Privacy Enhancing Tech-
nologies, 2016(2), 2016.

[4] Armon Barton, Mohsen Imani, Jiang Ming, and Matthew
Wright. Towards Predicting Efficient and Anonymous Tor
Circuits. In Proceedings of the 27th USENIX Conference on
Security Symposium, 2018.

[5] Armon Barton and Matthew Wright. DeNASA: Destination-
Naive AS-Awareness in Anonymous Communications. In
Proceedings on Privacy Enhancing Technologies, 2016.

[6] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi
Kohno, and Douglas Sicker. Low-resource Routing Attacks
Against Tor. In Proceedings of the 2007 ACM Workshop on
Privacy in Electronic Society, WPES ’07, 2007.

[7] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A Systematic Approach to Developing
and Evaluating Website Fingerprinting Defenses. In ACM
Conference on Computer and Communications Security
(CCS), 2014.

[8] CAIDA Data. http://www.caida.org/data.
[9] Roger Dingledine and George Kadianakis. One fast guard for

life (or 9 months). In HotPETs, 2014.
[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:

The Second-generation Onion Router. In Proceedings of the
13th Conference on USENIX Security Symposium, 2004.

[11] John R. Douceur. The Sybil Attack. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems,
2002.

[12] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-Boo, I Still See You: Why Effi-
cient Traffic Analysis Countermeasures Fail. In Proceedings
of the 2012 IEEE Symposium on Security and Privacy, SP
’12, 2012.

[13] Matthew Edman and Paul Syverson. AS-awareness in Tor
Path Selection. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, 2009.

[14] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingle-
dine, and Ian Goldberg. Changing of the Guards: A Frame-
work for Understanding and Improving Entry Guard Selec-

tion in Tor. In Proceedings of the 2012 ACM Workshop on
Privacy in the Electronic Society, WPES ’12, 2012.

[15] Nick Feamster and Roger Dingledine. Location Diversity
in Anonymity Networks. In Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, WPES ’04,
2004.

[16] Lixin Gao and Jennifer Rexford. Stable Internet Routing
Without Global Coordination. IEEE/AM Transactions on
Networking, 9(6), 2001.

[17] David M. Goldschlag, Michael G. Reed, and Paul F. Syver-
son. Hiding Routing Information. In Proceedings of the First
International Workshop on Information Hiding, 1996.

[18] Jamie Hayes and George Danezis. k-fingerprinting: A Robust
Scalable Website Fingerprinting Technique. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

[19] Andrew Hintz. Fingerprinting Websites Using Traffic Anal-
ysis. In Proceedings of the 2nd International Conference on
Privacy Enhancing Technologies, 2003.

[20] Rob Jansen, Tavish Vaidya, and Micah Sherr. Point Break:
A Study of Bandwidth Denial-of-Service Attacks against
Tor. In 28th USENIX Security Symposium, 2019.

[21] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and
Paul Syverson. Users Get Routed: Traffic Correlation on Tor
by Realistic Adversaries. In ACM Conference on Computer
and Communications Security (CCS), CCS ’13, 2013.

[22] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and
Rachel Greenstadt. A Critical Evaluation of Website Finger-
printing Attacks. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’14, 2014.

[23] Joshua Juen. Protecting anonymity in the presence of Au-
tonomous System and Internet exchange level adversaries.
Master’s thesis, University of Illinois at Urbana-Champaign,
2012.

[24] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring
Information Leakage in Website Fingerprinting Attacks and
Defenses. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018.

[25] Maxmind GeoLite2 Database. https://dev.maxmind.com/
geoip/geoip2/geolite2/.

[26] Steven J. Murdoch and George Danezis. Low-Cost Traffic
Analysis of Tor. In Proceedings of the 2005 IEEE Sympo-
sium on Security and Privacy, SP ’05, 2005.

[27] Steven J. Murdoch and Piotr Zieliński. Sampled Traffic
Analysis by Internet-Exchange-Level Adversaries. In Privacy
Enhancing Technologies Symposium (PETS), 2007.

[28] Milad Nasr, Alireza Bahramali, and Amir Houmansadr.
DeepCorr: Strong Flow Correlation Attacks on Tor Using
Deep Learning. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
2018.

[29] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. Com-
pressive Traffic Analysis: A New Paradigm for Scalable Traf-
fic Analysis. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS
’17, 2017.

[30] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill,
and Michael Schapira. Measuring and mitigating AS-level
adversaries against Tor. In Symposium on Network and
Distributed System Security (NDSS), 2016.

http://www.caida.org/data
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/geoip2/geolite2/

Guard Placement Attacks 289

[31] Lasse Overlier and Paul Syverson. Locating Hidden Servers.
In Proceedings of the 2006 IEEE Symposium on Security
and Privacy, 2006.

[32] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas
Engel, Andreas Zinnen, Martin Henze, and Klaus Wehrle.
Website Fingerprinting at Internet Scale. In Symposium on
Network and Distributed System Security (NDSS), 2016.

[33] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website Fingerprinting in Onion Routing
Based Anonymization Networks. In Proceedings of the 10th
Annual ACM Workshop on Privacy in the Electronic Society,
WPES ’11, 2011.

[34] Mike Perry. TorFlow: Tor Network Analysis. In HotPETs,
2009.

[35] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van
Goethem, and Wouter Joosen. Automated Website Finger-
printing through Deep Learning. In Symposium on Network
and Distributed System Security (NDSS), 2018.

[36] Florentin Rochet and Olivier Pereira. Waterfilling: Balancing
the Tor network with maximum diversity. Proceedings on
Privacy Enhancing Technologies, 2017(2), 2017.

[37] Micah Sherr, Matt Blaze, and Boon Thau Loo. Scalable
Link-Based Relay Selection for Anonymous Routing. In
Proceedings of the 9th International Symposium on Privacy
Enhancing Technologies, 2009.

[38] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew
Wright. Deep Fingerprinting: Undermining Website Finger-
printing Defenses with Deep Learning. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018.

[39] Robin Snader and Nikita Borisov. A Tune-up for Tor: Im-
proving Security and Performance in the Tor Network. In
Proceedings of 16th Annual Network and Distributed Sys-
tem Security Symposium, 2008.

[40] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang,
and Prateek Mittal. Counter-RAPTOR: Safeguarding Tor
Against Active Routing Attacks. In IEEE Symposium on
Security and Privacy, 2017.

[41] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li,
Jennifer Rexford, Mung Chiang, and Prateek Mittal. RAP-
TOR: Routing Attacks on Privacy in Tor. In Proceedings
of the 24th USENIX Conference on Security Symposium,
SEC’15, 2015.

[42] Paul Syverson, Gene Tsudik, Michael Reed, and Carl
Landwehr. Towards an Analysis of Onion Routing Security.
In International Workshop on Designing Privacy Enhancing
Technologies: Design Issues in Anonymity and Unobservabil-
ity, 2001.

[43] Team-Cymru. http://www.team-cymru.com.
[44] CollecTor - Tor Project. https://metrics.torproject.org/

collector.html.
[45] Tor Directory Protocol. https://gitweb.torproject.org/

torspec.git/tree/dir-spec.txt.
[46] Tor Guard Specification. https://gitweb.torproject.org/

torspec.git/tree/guard-spec.txt.
[47] Tor Metrics Portal. https://metrics.torproject.org/.
[48] Torflow Protocol Specification. https://gitweb.torproject.

org/torflow.git/tree/NetworkScanners/BwAuthority/
README.spec.txt.

[49] Yves Tillé. An elimination procedure of unequal probability
sampling without replacement. Biometrika, 83, 1996.

[50] Thaddeus Vincenty. Direct and Inverse Solutions of
Geodesics on the Ellipsoid with Application of Nested Equa-
tions. In Survey Review, 1975.

[51] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and
Prateek Mittal. Tempest: Temporal Dynamics in Anonymity
Systems. In Privacy Enhancing Technologies Symposium
(PETS), 2018.

[52] Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg.
Congestion-Aware Path Selection for Tor. In International
Conference on Financial Cryptography and Data Security,
2012.

[53] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson,
and Ian Goldberg. Effective Attacks and Provable Defenses
for Website Fingerprinting. In USENIX Security Symposium,
2014.

[54] Tao Wang and Ian Goldberg. Improved Website Fingerprint-
ing on Tor. In Proceedings of the 12th ACM Workshop on
Workshop on Privacy in the Electronic Society, WPES ’13,
2013.

[55] Tao Wang and Ian Goldberg. On realistically attacking Tor
with website fingerprinting. In Privacy Enhancing Technolo-
gies Symposium (PETS), 2016.

[56] Tao Wang and Ian Goldberg. Walkie-Talkie: An Efficient
Defense Against Passive Website Fingerprinting Attacks. In
26th USENIX Security Symposium (USENIX Security 17),
2017.

[57] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick
Feamster. Identifying and Characterizing Sybils in the Tor
Network. In 25th USENIX Security Symposium (USENIX
Security 16), 2016.

[58] Philipp Winter and Stefan Lindskog. Spoiled Onions: Ex-
posing Malicious Tor Exit Relays. In Privacy Enhancing
Technologies Symposium (PETS), 2014.

[59] Matthew Wright, Micah Adler, Brian N. Levine, and Clay
Shields. Defending Anonymous Communications Against
Passive Logging Attacks. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, SP ’03, 2003.

A Interpreting Consensus
Weights

Tor has a non-trivial method for computing consensus
weights [34, 45]. While these values are ostensibly in
units of KByte/s, they differ substantially from the ac-
tual bandwidths that relays report in their descriptors.
We observe that the consensus weight is correlated to
these self-advertised relay bandwidths, however. There-
fore, we can use a linear regression to convert the con-
sensus weights to relay bandwidths. The resulting lin-
ear regression (y = 0.7638x+ 2908.2712) expresses relay
bandwidth in units of KBytes/s and has a coefficient of
determination of r2 = 0.86. The conversion from weights
to actual bandwidth can be found in Table 4.

http://www.team-cymru.com
https://metrics.torproject.org/collector.html
https://metrics.torproject.org/collector.html
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://metrics.torproject.org/
https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt
https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt
https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt

Guard Placement Attacks 290

Consensus weight Weight fraction (%) BW (Mbit/s)
2,000 0.0108 35.5
3,000 0.0162 41.6
7,500 0.0404 69.1

10,000 0.0539 84.4
30,000 0.162 206.6
40,000 0.216 267.7
75,000 0.404 481.5

150,000 0.809 939.8

Table 4. Conversion from consensus weights to actual bandwidth
values.

B Tille’s Algorithm
Counter-RAPTOR sought to provide a preliminary de-
fense against guard placement attacks by adjusting the
resilience of guards using Tille’s algorithm [49]. Since
high resilience guards have a higher probability of selec-
tion, Counter-RAPTOR instead simulates the process
of first choosing a resilience-weighted sampling of size
g · N and then choosing uniformly within that sample,
where g ∈ [0, 1] indicates the fraction of sampled guards
and N is the total number of guards. Adding the sim-
ulated sampling step makes the selection distribution
more uniform. To simulate this process, each guard’s
resilience is adjusted from r(i) to r′(i) using Tille’s al-
gorithm and then a guard is selected using Equation 4.
Counter-RAPTOR uses a default value of g = 0.1 [40].
The steps of Tille’s algorithm applied to the guards are
as follows:

1. For each guard i, r′(i) = k·r(i)∑
j∈G

r(j)
, where k is ini-

tially equal to the sample size (g · N) and set G
initially includes all available guards.

2. For each guard i, if r′(i) > 1, set r′(i) = 1, set
k = k − 1, and exclude relay i from the set G.

3. Repeat the above process until each r′(i) is in [0, 1].
4. For each relay i, r′(i) = r′(i)

g·N

C Theorems and Proofs
Theorem 1. Path selection algorithm A is θ-GP-secure
if and only if ρ(A) ≤ θ.

Proof. Assume that ρ(A) ≤ θ. Consider any adversary
strategy s ∈ S and client location c ∈ C. Observe that
fA(c, g) ≤ relCost(g) · θ by the definition of ρ. More-

over, pA(c, s) =
∑

g∈s fA(c, g), and so pA(c, s) ≤ θ ·∑
g∈s relCost(g). Therefore, pA(c, s)/

∑
g∈s relCost(g) ≤

θ. Because s and c were arbitrary, σ(A) ≤ θ.
To prove the other direction of the equivalence, as-

sume that A is θ-GP-secure. For any guard g, let the
adversary strategy s consists of just that guard. Then
fA(c, g) = pA(c, s). By the definition of θ-GP-secure,
pA(c, s) ≤ θ · relCost(g). Therefore, fA(c, g)/relCost(g) ≤
θ. Because g and c were arbitrary, ρ(A) ≤ θ.

Theorem 2. D halts.

Proof. Every loop in Algorithm 1 has a constant number
of iterations except for the loop in Lines 6–19. This loop
terminates if the condition in Line 10 applies to no guard
in B. B contains all guards at the beginning of the loop,
and if the loop doesn’t terminate at least one guard is
removed. Thus, the loop iterates at most |G| times.

Theorem 3. Let A be any guard selection algorithm
and θ ≥ 1 be the security parameter. Then using the
guard selection distribution f ′A = D(A, θ) is θ-GP-
secure.

Proof. At the beginning of Algorithm 1, each guard is in
the set B. The assigned probability of g (i.e. f ′A(g)) only
changes while g is in B. f ′A(g) only increases because
its assignments occur in Lines 12 and 15, where the
former assignment is ensured to be an increase by the
fact that θ ≥ 0 and the latter is ensured by the fact that
always p ≥ 0. The condition in Line 10 guarantees that if
increasing f ′A(g) would violate the θ bound, then instead
f ′A(g) is set to meet the θ bound, and g is removed from
B. Therefore, if D terminates, f ′A is such that every
guard satisfies the θ bound. Moreover, every iteration
of the loop in Lines 6–19 must occur with a non-empty
B because θ ≥ 1 guarantees that some guard remains
strictly below the θ bound while there is unassigned
probability. This fact implies that some positive amount
of the unassigned probability p gets assigned during each
iteration of that loop, which also ensures that Line 11
executes and thus any probability unassigned during the
iteration is assigned to x, causing another iteration if
necessary. By Theorem 2, D does terminate, and so the
output f ′A must be a probability distribution satisfying
the θ bound. Thus, by Theorem 1, it is θ-GP-secure to
use f ′A = D(A, θ) as the guard selection distribution.

Guard Placement Attacks 291

Autonomous
System

Consensus
Weight (%)

Relays Hosting Prices

OVH SAS
(AS16276)

14.06 586 ovh.com

Hetzner Online
(AS24940)

12.57 408 hetzner.com

Online SAS
(AS12876)

10.84 332 online.net
scaleway.com

JP McQuistan
(AS200052)

3.95 48 N/A

Next Layer
(AS1764)

1.94 17 nextlayer.at

netcup
(AS197540)

1.86 71 netcup.eu

Quintex
(AS62744)

1.78 23 N/A

iomart
(AS20860)

1.66 20 N/A

myLoc
(AS24961)

1.59 38 myloc.de

DigitalOcean
(AS14061)

1.54 228 digitalocean.com

Total 51.78 1,771 -

Table 5. Top 10 ASes in Tor by consensus weight of hosted relays
as of 2019-2-26. When hosting prices were available online, sites
with pricing information are indicated.

D Cost Model Details
The top 10 ASes in the Tor network are listed in Ta-
ble 5. These ASes contained relays with the largest total
consensus weight. Of the 10 top ASes, 7 provide com-
mercial hosting and make their pricing available online.
For these ASes, the sites with that pricing information
are indicated in the table.

The exact cost model is given in Table 6. Data was
obtained from hosting provider sites 2019-2-26–27. The
number of relays indicates the number of relays the
product’s bandwidth and cost is split among to achieve
the given per-relay bandwidth and cost. Costs are given
in USD. Prices given in Euros are converted to USD at
a rate of 1.14 USD/Euro. The cost for a given band-
width B is the cost listed in the table for the smallest
bandwidth not smaller than B. Note that neighboring
bandwidths may appear to have identical costs due to
rounding.

Provider Product Number
of relays

Bandwidth
(Mbps)

Cost
($/month)

Online SAS Dedicated 1 1,000 11.4
Online SAS Dedicated 2 500 5.7
Online SAS Dedicated 3 333.33 4.56
Online SAS Dedicated 4 250 3.42
Online SAS Dedicated 5 200 3.19
Online SAS Dedicated 6 166.67 2.66
Online SAS Dedicated 7 142.86 2.61
Online SAS Dedicated 8 125 2.28
Online SAS Dedicated 9 111.11 2.28
Online SAS Dedicated 10 100 2.05
Online SAS Dedicated 12 83.33 1.9
Online SAS Dedicated 14 71.43 1.79
Online SAS Dedicated 16 62.5 1.71
Online SAS Dedicated 18 55.56 1.65
Online SAS Cloud 1-XS 2 50 1.14
Online SAS Cloud 1-S 6 33.33 1.14
Online SAS Cloud 1-XS 4 25 0.85
Online SAS Cloud 1-XS 6 16.67 0.76
Online SAS Cloud 1-XS 8 12.5 0.71
Online SAS Cloud 1-XS 10 10 0.68
Online SAS Cloud 1-XS 12 8.33 0.66
Online SAS Cloud 1-XS 14 7.14 0.65
Online SAS Cloud 1-XS 16 6.25 0.64
Online SAS Cloud 1-XS 18 5.56 0.63
Online SAS Cloud 1-XS 20 5 0.63
Online SAS Cloud 1-XS 22 4.55 0.62
Online SAS Cloud 1-XS 24 4.17 0.62
Online SAS Cloud 1-XS 26 3.85 0.61
Online SAS Cloud 1-XS 28 3.57 0.61
Online SAS Cloud 1-XS 30 3.33 0.61
Online SAS Cloud 1-XS 32 3.12 0.61

Table 6. Cost model derived from hosting prices of top Tor ASes.
Product in each case is from the Start line.

	Guard Placement Attacks on Path Selection Algorithms for Tor
	1 Introduction
	2 Background
	2.1 Tor
	2.2 Tor Adversaries
	2.3 Location-Aware Path Selection

	3 Models and Definitions
	3.1 Adversary Model
	3.2 Definitions
	3.3 Empirical Cost Model

	4 Case Study I: Counter-RAPTOR
	4.1 Untargeted Attack – Counter-RAPTOR
	4.2 Targeted Attack – Counter-RAPTOR
	4.3 Summary

	5 Case Study II: DeNASA
	5.1 Untargeted Attack – DeNASA
	5.2 Targeted Attack – DeNASA
	5.3 Summary

	6 Case Study III: LASTor
	6.1 Untargeted Attack – LASTor
	6.2 Targeted Attack – LASTor
	6.3 Summary

	7 Countermeasures
	7.1 Defense Mechanism
	7.2 Defense Framework Evaluation
	7.2.1 Security from Guard Placement Attack
	7.2.2 Algorithms' Original Goals
	7.2.3 Performance Impact

	8 Related Work
	9 Conclusion
	A Interpreting Consensus Weights
	B Tille's Algorithm
	C Theorems and Proofs
	D Cost Model Details

