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Abstract: Online advertising relies on trackers and data
brokers to show targeted ads to users. To improve tar-
geting, different entities in the intricately interwoven
online advertising and tracking ecosystems are incen-
tivized to share information with each other through
client-side or server-side mechanisms. Inferring data
sharing between entities, especially when it happens at
the server-side, is an important and challenging research
problem. In this paper, we introduce KASHF: a novel
method to infer data sharing relationships between ad-
vertisers and trackers by studying how an advertiser’s
bidding behavior changes as we manipulate the presence
of trackers. We operationalize this insight by training an
interpretable machine learning model that uses the pres-
ence of trackers as features to predict the bidding behav-
ior of an advertiser. By analyzing the machine learning
model, we can infer relationships between advertisers
and trackers irrespective of whether data sharing oc-
curs at the client-side or the server-side. We are able
to identify several server-side data sharing relationships
that are validated externally but are not detected by
client-side cookie syncing.
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1 Introduction

Online vs. offline advertising. Online advertising is
set to surpass offline advertising (e.g., newspapers, yel-
low pages, radio, TV) this year. In fact, online adver-
tising revenues in the US are expected to exceed two-
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thirds of total advertising spending by 2023 [30]. There
are several reasons driving this shift from offline ad-
vertising to online advertising. First, consumers are in-
creasingly spending more time online. This makes the
web a more attractive platform for advertisers. Specif-
ically, consumers in the US now spend about 24 hours
a week online, which exceeds the time spent watching
TV [47, 65]. Second, online advertising primarily relies
on highly automated technologies that enable advertis-
ers to programmatically launch advertising campaigns,
measure their effectiveness, and quickly adjust them
based on their performance. Programmatic advertising
already accounts for 86% of all online display advertising
in the US [48]. Third, online advertising allows target-
ing of advertising campaigns to specific audiences based
on their demographics, location, or intents. Personalized
online advertising campaigns are reported to be much
more effective as compared to their non-personalized
counterparts [4].

The
middle-men. Unlike offline advertising where there is

online advertising ecosystem includes
typically a direct relationship between advertisers and
publishers, the online advertising ecosystem comprises
of several specialized entities that mediate interactions
between advertisers and publishers. This is necessitated
by the need for technical expertise to participate in pro-
tocols, such as real-time bidding (RTB), which require
publishers and advertisers to identify, offer, and respond
to ad impression opportunities in near real-time. The
entities that fill this gap include supply-side platforms
(SSPs) that put up ad inventory of publishers for sale
at ad exchanges (AdXes), which are marketplaces that
run real-time auctions for individual ad slots. Advertis-
ers bid on individual ad slots auctioned off at AdXes
through demand-side platforms (DSPs), which use so-
phisticated models to determine how much to bid for
an ad slot based on the user information retrieved from
data management platforms (DMPs). DMPs gather user
information (e.g., browsing history) through a variety of
online tracking techniques such as cookies.

Entities engage in data sharing. Intuitively, an ad
slot’s value as assessed by a DSP, is highly dependent
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on the quality of information received from the DMP(s).
Consequently, DMPs strive to enhance the quality of
information by improving their ability to observe user
behavior on different websites and platforms. This can
be done by either (1) increasing their presence, as track-
ers, on the web or (2) developing data sharing relation-
ships with other tracking services. Prior research has
shown that only a few organizations (Google, Facebook,
Twitter, Amazon, AdNexus, and Oracle) are able to
track users on more than 10% of the top 1-million sites
[45]. Thus, DMPs often choose to develop data sharing
relationships rather than trying to arduously increase
their presence on the web. In fact, the RTB protocol
has built-in mechanisms to facilitate data sharing be-
tween advertisers and trackers. Cookie syncing (a.k.a.
cookie matching) in RTB allows two different entities
in RTB to exchange their cookies while bypassing the
same-origin policy [32, 67]. Cookie syncing essentially
allows two entities to map their cookies to each other
and get a more complete view of a user’s browsing his-
tory [562]. A recent study showed that cookie syncing
increases the number of entities that track users by al-
most 7X [69]. Another recent study showed that, despite
using privacy-enhancing technologies such as Ghostery
and Disconnect, trackers are still able to observe any-
where from 40-80% of a user’s browsing history due to
cookie syncing in RTB [36].

Transparency of data sharing relationships is
important. Privacy researchers and regulators are in-
creasingly interested in studying data sharing relation-
ships between different entities in the intricately inter-
woven online advertising and tracking ecosystems for
several reasons. First, a complete understanding of such
relationships can help detect whether a domain is a
tracker and, in turn, improve the effectiveness of tracker
blocking tools [58]. Blocking tools are presently the most
effective protection users can employ against trackers.
Second, it is important to uncover data sharing rela-
tionships between different organizations for regulatory
compliance verification purposes. Both General Data
Protection Regulation (GDPR) [3] in Europe and the
California Consumer Privacy Act (CCPA) [13] in the
US give people the right to know what personal infor-
mation is being collected and whether (and with whom)
it is being shared. Methods that can detect data shar-
ing between different tracking/advertising organizations
can help uncover unauthorized or undisclosed data shar-
ing relationships.

Measuring client-facilitated data sharing is in-
sufficient. Analysis of client-facilitated mechanisms in

RTB, such as cookie syncing, to detect data sharing
between entities is limited due to two reasons. First,
prior research relies on different heuristics to detect
cookie syncing at the client-side [32, 67, 69]. Unfortu-
nately, these heuristics are brittle to changes in non-
standardized implementations of cookie syncing, espe-
cially when obfuscation is employed [35]. Second, and
more importantly, analysis of client-side mechanisms
such as cookie syncing cannot detect server-side data
sharing between entities [27]. Server-side tracking (e.g.,
postback tracking [12]) is expected to grow in popular-
ity as mainstream browsers, notably Safari and Firefox
[66, 78], have started to implement stringent third-party
cookie policies [14]. Thus, it is important to develop
methods that can infer both client-side and server-side
data sharing between different entities in the online ad-
vertising ecosystem.

Inferring server-side data sharing is challenging.
It is particularly challenging to infer server-side data
sharing because it is not directly observable from purely
client-side measurements. To overcome this challenge,
prior research has attempted to exploit artifacts that
reflect semantics of how online ads are served, rather
than relying on specific mechanisms such as cookie sync-
ing. In a seminal work, Bashir et al. [35] exploited re-
targeting to infer data sharing even if it occurs on the
server-side. Their key insight is that retargeting takes
place only when data sharing occurs between AdXes
on different sites. To operationalize this insight, the au-
thors trained personas to trigger retargeting, which is
detected using crowdsourcing, and then analyze inclu-
sion chains to determine whether information is shared
at client-side or server-side. Using retargeting to infer
server-side data sharing is limited because retargeting
represents only a subset of scenarios in which server-
side data sharing occurs. More specifically, server-side
information exchange is a necessary but not a sufficient
condition to trigger retargeting. Furthermore, detecting
retargeting is a challenging task that requires significant
manual effort that is not only difficult to scale but also
susceptible to human errors.

Inferring tracker-advertiser data sharing using
header bidding. To address our inability to directly
measure server-side data sharing, like previous work
[35], we also leverage client-side observable artifacts of
the online advertising ecosystem. However, instead of
relying on retargeting, we rely on being able to observe
the bids placed by DSPs or bidders (on behalf of adver-
tisers) that participate in header bidding (HB) — a new
programmatic advertising mechanism aimed at increas-
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ing publisher advertising revenue as compared to tra-
ditional RTB. In contrast to traditional RTB that only
exposes the winning bid at the client-side, HB exposes
all bids made by different advertisers at the client-side.
The ability to precisely observe the bids placed by a
given advertiser in HB! enables us to observe how ad-
vertiser bids vary as a persona’s browsing history and
tracker presence are modified. At a high-level, our ap-
proach (named KASHF) to inferring tracker-advertiser
data sharing relies on the following insight: advertisers
with knowledge of a user’s browsing history will bid dif-
ferently (potentially higher) than an advertiser having
no knowledge of a user’s browsing history. In order to
operationalize this insight, we first selectively expose a
persona’s browsing history to different sets of trackers
and record the bids made by an advertiser in HB. We
then train interpretable machine learning models, us-
ing tracker presence as input features and bid values as
the target variable, to accurately predict the bids made
by an advertiser. We finally leverage the interpretabil-
ity of the trained machine learning models to determine
which features (i.e., trackers) were most influential in
predicting the values of bids placed by an advertiser.
This enables us to make inferences about the presence
of data sharing relationship (client-side or server-side)
between advertisers and trackers.

Key contributions. This paper makes the following

two key contributions.

—  Measuring bidding behavior of advertisers (§3). We
are able to draw several novel insights into how dif-
ferent advertisers value users. More specifically, we
leverage HB, which exposes all bids made by differ-
ent advertisers, to study how an advertiser’s bidding
preferences vary for different personas. We find that
with the exception of users with a Health persona
who are universally preferred, advertisers have very
different persona preferences. We also find that ad-
vertisers often have a strong preference for certain
personas and these rarely overlap. Furthermore, we
are able to shed light on the practice of underbid-
ding. We find that underbidding is very common
with zero bids making up 22% of all bids.

1 It is noteworthy that in RTB only exposes the winning bid
and the corresponding winner in the auction. Moreover, even
when a given advertiser wins the auction, RTB does not expose
the highest bid due to its use of the second-price auction. Thus,
RTB does not allow us to observe the bid placed by a given
advertiser.

—  Uncovering tracker-advertiser relationships (§4).
Our approach, KASHF, allows us to infer data shar-
ing relationships between advertisers and trackers
irrespective of whether they occur at the client-
side or the server-side. To this end, we train ma-
chine learning models that use tracker information
as features to predict the bidding behavior of ad-
vertisers with 75-83% accuracy. By analyzing the
interpretable machine learning model, we are able
to identify data sharing relationships between ad-
vertisers and popular trackers, most of which we
are able to externally validate. We also demonstrate
that many of these inferred server-side data sharing
relationships are not detected by client-side cookie
syncing.

2 Background

In this section, we provide an overview of online adver-
tising and tracking ecosystems and highlight how they
are intertwined.

2.1 Online Advertising Ecosystem

The contemporary online advertising ecosystem relies
on programmatic processes to trade ad impressions in
near real-time (i.e., typically less than 100ms).

Real-Time Bidding (RTB). RTB is the most widely
used programmatic process in online advertising. The
typical RTB workflow illustrated in Figure 1 involves
interactions between several entities in the advertis-
ing ecosystem. These include publishers, publisher ad
servers, supply side platforms (SSPs), ad exchanges

(AdX), demand side platforms (DSPs), and data man-

agement platforms (DMPs). The RTB process has three

distinct phases: ad request, bid collection, and ad place-
ment.

— Ad request. The workflow is initiated when the
browser sends a request to fetch the publisher’s web
page @ The publisher’s web server responds with
the HTML document that contains page content as
well as the ad tag (2). While the rest of the page
is loaded, the ad tag generates an ad request to an
RTB-enabled SSP along with information about the
ad slot (e.g., dimension, media type) (3).

— Bid collection. The SSP’s role is to manage the
publisher’s ad inventory and put it up for auction at
an AdX (4). The AdX notifies the DSP of the avail-
able ad inventory by sending a bid request (5), which
is composed of information from the ad slot as well
as any identifiers from the browser (e.g., via cookie
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syncing [18, 67]). The DSP evaluates the bid request
using the information sent by the AdX and by syn-
chronizing any identifiers with one or more DMPs
(6). The DSP then acts on behalf of an advertiser
by generating and sending the AdX a bid (7). DSPs
typically implement sophisticated bidding strategies
that leverage campaign information from the adver-
tiser, tracking information from the DMP(s), and ad
slot information in the bid request.

— Ad placement. The AdX collects bid responses
from multiple DSPs and uses an auction mecha-
nism (typically a second price auction) to determine
the winning bid. If the winning bid value surpasses
the impression’s minimum sale price set by the pub-
lisher, the winning bid and the associated ad is for-
warded to the SSP (8), which places the ad on a
browser page (9). If the winning bid value does not
surpass the impression’s minimum sale price, the
impression is presented to the next preferred AdX
(as determined by the SSP) and the bidding pro-
cess is repeated. Auctions occurring at lower levels
of the “waterfall” have a residual effect on bidder
perception, resulting in progressively lower bids.

Header Bidding (HB). HB is an emerging program-
matic process for online advertising that is rapidly gain-
ing popularity due to its promise to increase yield for
publishers as compared to traditional RTB [43, 68]. Ac-
cording to a recent survey [49], more than half of the top
one thousand websites that offer programmatic adver-
tising already use HB. In contrast to RTB, where the ad
inventory is offered to different ad exchanges (and con-
sequently bidders) in a sequential (or waterfall) manner,
HB offers the ad inventory to multiple bidders simulta-
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1. Online advertising workflow using Real-Time Bidding (RTB) and Header Bidding (HB).

neously. More specifically, in the waterfall model used
by RTB, the ad inventory is first offered to higher tier
ad exchanges and any leftover inventory is offered to
lower tier exchanges. This sequential process results in
less competition for bids and subsequently reduces pub-
lisher yield from advertising. HB essentially flattens the
waterfall, forcing increased competition among different
bidders for ad impressions and increasing the yield for
publishers. While there is some overlap between RTB
and HB, we explain the workflow of the HB model by
discussing differences that occur in the ad request (steps

(2) and (3)) and ad placement ((9) — @) phases. The

bid collection process ((4) — (8)) remains unchanged in

HB.

— Ad request. In HB, the publisher’s web server
responds with the HTML document that contains
page content as well as the ad tag with a HB wrap-
per.? The HB wrapper pauses a page’s ad tag from
being executed and sets a predetermined timeout.
While the ad tag is paused, the wrapper simulta-
neously contacts different demand partners (mainly
SSPs) by sending them bid requests (3). While the
HB wrapper is awaiting bid responses, parallel auc-
tions are occurring in multiple RTB pipelines as
shown in Figure 1.

— Ad placement. Each SSP asynchronously sends
bid responses to the HB wrapper (9). Once the HB
timeout expires, all bids are then forwarded to the
publisher’s ad server where a unified HB auction
mechanism is used to determine the winning bid and

2 There are two common implementations of HB. We are dis-
cussing client-side HB as opposed to server-to-server HB [7].
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price. The browser is notified of the winning bid and
the corresponding ad is placed on the page @

2.2 Online Tracking Ecosystem

The online tracking ecosystem is composed of a large
number of organizations engaging in tracking user be-
havior across the web. This is accomplished by a vari-
ety of techniques including tracking cookies, pixel tags,
beacons, and other sophisticated mechanisms. Below we
provide a high-level overview of how online tracking
works and some aspects of the interplay between online
tracking and online advertising.

How online tracking works. In order to determin-
istically identify users across the web, trackers need to
assign unique identifiers to individual users. This is of-
ten accomplished using cookies. Cookies are stored at
the client-side and are typically structured as key-value
pairs that contain identifiers that uniquely identify a
user. A tracker present, as a third-party, on multiple do-
mains across the web can read their own cookies linked
to a user as they traverse domains. This enables indi-
vidual trackers to recreate subsets of a user’s browsing
history.

There are two key limitations of cookies from the
perspective of online tracking. First, due to the same-
origin policy enforced by browsers, access to a cookie is
restricted to the tracker that sets it. This means that
two trackers, each with a partial view of a user’s brows-
ing history, cannot enhance their knowledge by directly
sharing their own cookies with each other. To circum-
vent this limitation, trackers typically rely on cookie
syncing in order to map each other’s identifiers of a
user [67]. Second, since they are stored at the client-
side (browser), cookies can be deleted by users. While
trackers can always set new cookies, there is still no
sound way of linking deleted cookies with new cookies.
To circumvent this limitation, trackers now also rely on
cookie respawning [32] and other stateless (probabilistic)
techniques such as browser fingerprinting [45].

Tracker relationships. In order to generate a more
complete view of a user’s browsing history and inter-
ests, trackers may collaborate with one another. This is
accomplished by using client-side or server-side mecha-
nisms to share information. Client-side mechanisms rely
on the user’s browser to facilitate an information sharing
channel between the collaborating trackers. As a result,
these data sharing relationships are directly observable
at the client-side. Cookie syncing is a popular client-
side mechanism that is used by trackers to facilitate

cookie sharing between trackers even in the presence of
the same-origin policy. Other client-side mechanisms in-
volve the sharing of other (non-cookie) unique identifiers
such as email addresses and unique device identifiers
(e.g., IMEIL Android ID, etc.) [50, 76]. Server-side mech-
anisms may rely on an out-of-band information shar-
ing channel between collaborating trackers. Since the
user’s browser is not involved in the mechanism, these
data sharing relationships are not directly observable
at the client. Instead, more complex controlled experi-
ments are needed to infer such relationships [35, 36].

Synergy between online advertising and track-
ing. Two common strategies used by online advertisers
for targeting users are contextual targeting and behav-
ioral targeting. In contextual targeting, ads shown to
a user are only dependent on the content of the page
(or website) being viewed. In contrast, behavioral ad-
vertising shows ads that are based on the interests and
behavior demonstrated by the user. In recent years, ad-
vertisers have started to increasingly rely on behavioral
advertising. In fact, just between 2008 and 2018, the ad
spend on behavioral ads in the United States increased
from $775M to $47B [49]. While many in the online
advertising industry claim that behavioral advertising
is always more effective that contextual advertising, its
effectiveness relies on the quantity and quality of data
available about the targeted individual. As a direct con-
sequence, user data obtained from online trackers is vital
to the success of the advertising industry. Put another
way, data obtained by online tracking is deemed critical
to improving the click-through rate (CTR) and return
on investment (ROI) in online advertising campaigns
[8]. Data management platforms (DMPs), shown in Fig-
ure 1, are responsible for feeding user data obtained by
trackers into the advertising ecosystem bidding process.

3 Quantifying the Value of Users

In this section, we seek to understand how much adver-
tisers are willing to pay to reach different users. Prior
work has attempted to understand how much advertis-
ers pay to reach different users [53, 67, 71]. There is a
subtle but important difference between our and prior
work. Prior work is limited to studying the price actually
paid by only the winning bidder in RTB. Specifically,
prior work leveraged the winning price notifications in
RTB, which only exposes the winning bid at the client-
side. First, note that the winning price is actually not
the bid value of the winner but rather the bid value of
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Question Results
How much does a user’s persona impact bid values? §3.2.1
How much does user intent matter to advertisers? §3.2.2
How does bidding behavior vary across advertisers?  §3.2.3
How much do advertisers pay to reach users? §3.2.4
How common is underbidding? §3.2.5

Table 1. Questions answered by our study. Questions in bold
have not been answered by previous work.

the second-highest bidder plus a predetermined amount
(typically one cent) because RTB uses the second-price
auction. Second, note that RTB’s winning price notifi-
cation does not include any information about the bid-
ders (or their bids) that did not win the auction. Third,
note that RTB’s winning price notifications often en-
crypt the winning bid, which prior work [67] assumed
(incorrectly [71]) to be the same as plaintext bids. In
this section, we leverage HB to empirically understand
how much advertisers are willing to pay to reach differ-
ent users while avoiding the limitations of prior work
based on RTB. The HB process, as explained in §2.1,
typically requires that all bids made by different bidders
are forwarded to the publisher ad server via the client in
plaintext. This client-side access to the details of every
bid made by advertisers for different user personas, not
just winning bids, allows us to improve and extend the
analytical insights drawn by previous work [53, 67, 71].
Table 1 illustrates the contributions of our work towards
quantifying the value of users to advertisers.

3.1 Measurement Method

To answer the questions listed in Table 1, we conducted
controlled experiments using the following method. At a
high-level, our measurement method is explained by: (1)
how we crawl web pages, (2) how we create web personas
which can signal user intent to complete a transaction,
(3) how we gather the bids placed by HB participants
on HB-enabled websites.

Web crawling. Our measurements were conducted us-
ing a lightly modified version of OpenWPM [45]. Open-
WPM was used to automatically load selected web-
pages. The timeout for each page load was set to 60 sec-
onds. In order to more accurately simulate real user be-
havior, the bot-mitigation features of OpenWPM were
enabled and additional scrolling on the webpage was
performed 5 seconds after the browser on-load event
fired. Randomized delays of 2-7 seconds were imple-
mented between each page scroll.

Personas Adult, Art, Business, Computers, Games, Health,

created Home, Kids, News, Recreation, Reference, Regional,
Science, Shopping, Society, Sports.

Intent hotels.com, zales.com, jamesedition.com, and

sites luxuryrealestate.com.

Table 2. List of web personas created and sites used to convey
transaction intent by our study. Each persona reflects a user
browsing the most popular sites in the corresponding Alexa cate-
gory. A product page was browsed on each intent site to convey
transaction intent.

Creating web personas. In order to gather informa-
tion about how advertisers value different users, we need
to construct personas mimicking different users. We con-
structed personas based on each of the 16 categories
found on Alexa’s top sites by category [16]. Starting
with a clean slate (clean client state), we crawled the
top 50 sites in each of these categories using the Open-
WPM configuration described above, saving associated
browser cookies after each site visit. Each web persona
is an accumulation of cookies for a single category and is
fully constructed when the crawl is complete. No crawl-
ing is performed to construct the control persona — its
persona is the absence of cookies. Note that our ap-
proach to constructing web personas aligns with previ-
ous work within this space [35, 67]. Table 2 lists the 16
different personas used in our study.

Signaling intent. Prior work [67] showed that adver-
tiser bids were generally higher for personas which had
previously demonstrated intent to make a transaction
(e.g., by navigating to a specific product page on a
website). We follow the methodology in [67] and select
a small number of sites to signal intent. Table 2 lists
the 4 sites on which specific products were chosen to
demonstrate transaction intent. In order to create per-
sonas which signal transaction intent, we repeated the
persona construction method detailed above followed by
the intent signaling mechanism described here. We con-
structed intent and no intent versions of each of our 16

personas.

bids. After
intent /non-intent personas, we crawled HB-enabled

Gathering advertiser constructing
websites to gather advertiser bids for each of our
personas. In order to identify HB-enabled websites,
we crawled the Alexa top 10K websites and short-
listed the 25 most popular domains (e.g., espn.com,
accuweather.com, cnn.com) that support the most
well-known open-source implementation of HB called
prebid.js [15, 31]. This was done by checking the
prebid. js version attribute in the prebid.js client-
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side APL3 Domains returning valid responses were
marked as HB-enabled. During each visit to these
25 websites, we made a call to the prebid.js API’s
getBidResponses method. All bid responses returned
by this method reflect the bids placed by advertisers for
the persona/intent being tested. The bid responses were
saved and formed the basis of our analysis. We repeated
this process 10 times for each intent/no-intent persona.

3.2 Results

We now analyze the bids placed by advertisers for the
following 33 personas: 16 personas signaling no intent to
complete a transaction, 16 personas signaling intent to
complete a transaction, and one control persona with
no prior browsing history. Next, we use these bids to
answer the questions listed in Table 1.

3.2.1 How much does a user’s persona impact bid
values?

Table 3 shows the median bid values by the five most
prevalent bidders for each of our 16 personas and the
control persona. The bid values are expressed in cost-
per-mille (CPM) which reflects the price paid for 1,000
ad impressions. Focusing on the average column, we are
able to draw several conclusions about the impact of
personas on average bid values. First, we note that the
Control persona (without any browsing history) attracts
lower bids than most of the trained personas. Second,
we note that the Health persona attracts significantly
higher bids — 1.6x the average bid value across all cat-
egories. Similarly, bids are significantly above the av-
erage across all categories for Computers, Science, and
Shopping personas. Third, we note the Sports persona
attracts the lowest average bids — 0.6x the average bid
value across all categories. Similarly, bidders bid signifi-
cantly below the average across all categories for Games,
and Home personas. Finally, we note significantly high
variation in bid values across bidders for the Health
and Computer personas, which also receive significantly
higher bids than other personas. Overall, variability in
average bid values allows us to conclude that a user’s
persona impacts bids placed by an advertiser.

3 Our measurements are dependent on client-side implementa-
tion of prebid. js, which would not work for server-side imple-
mentation [7, 68].

3.2.2 How much does user intent matter to
advertisers?

Table 4 shows the ratio of the median bids placed by
the five most common bidders for personas showing in-
tent to those showing no intent. A ratio near 1 means
that bid prices remain similar between Intent and No-
Intent personas. Focusing again on the Avg. column, we
are able to draw several conclusions about the impact
of showing intent on average bid values. First, we note
that the Control persona (without any browsing his-
tory) attracts significantly lower bid ratios than most of
the trained personas. It is also notable that bid ratios
from the Control persona were near 1 — bidder express
significantly lower interest regardless of intent. Second,
we note that the Health persona attracts the highest av-
erage bid ratios — 2.4x higher than the No-Intent Health
persona. A notable point is that the Health persona at-
tracts the highest bid values (Table 3) and bid ratios
(Table 4) — on average bidders are willing to pay signif-
icantly higher prices for No-Intent Health personas and
even higher prices for Intent Health personas. Similarly,
bid ratios were significantly above the average across all
personas for Health, Kids and Sports. While No-Intent
Sports personas attract significantly lower than average
bids, the Intent Sports persona drew significantly higher
bids than the average — bidders are willing to pay higher
prices for Intent Sports personas. Third, we note that
the Intent Science persona attracts the lowest average
bids and nearly the same as the No-Intent Science per-
sona. Similarly, bid ratios were below the average across
all categories for the Science, Recreation and Control
personas. Finally, we note significantly high variation in
bid ratios across bidders for the Health and Kids per-
sonas, which also receive significantly higher bid ratios
than other personas. Overall, variability in average bid
ratios allows us to conclude that both user intent and
persona impact bids placed by an advertiser.

3.2.3 How does bidding behavior vary across
advertisers?

We now turn our focus to uncovering the differences in
the behavior of different bidders. Table 3 and Table 4
illustrate the impact of personas and intent on the bid-
ding behaviors of the five most frequently observed bid-
ders — AppNexus, Rubicon, IX, OpenX, and PubMatic.
We breakdown our analysis based on bidders responses
to modified personas and intent.

Bidder response to different personas (Table 3).
First, Rubicon generally bids more per impression than
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App. Rub. IX OpX Pub. Avg. Std. App. Rub. IX OpX Pub. Avg. Std.
Adult 0.21¢ 043" 025 034 033 030 0.08 Adult 0.97 097 210" 085 0.95 1.13 0.44
Arts 0.347 045" 029¢ 037 036 0.36 0.05 Arts 1.04v 148" 1.45 097v 132 126 0.21
Business 0.28 0.45 0.28 0.30 0517 036 0.10 Business 1.02 1.09 266" 1.01 084 132 0.66
Computers 0.20 0.757 021 055 0.73"1T 0.457 0.257 Computers 1.06 1.19 238" 1.18 0.71%¢ 1.30 0.55
Games 021 0.33T 0.21 0.34" 0.25¢ 0.26% 0.06 Games 120 1.83 1.81 1.06v 1.807 153 0.34
Health 021 116" 028 0.94T 0.54 0.59"7 0.39" Health 1.85T 124 134 59617 121 2427 1.927
Home 0.20+ 039" 024 0.28" 0.28+ 0.27+ 0.07 Home 1.31 092+ 1507 1.12 121 119 0.19
Kids 0.20 041 0.18'% 047" 030 030 011 Kids 131 151 6.001T 0.76 1.49T 2347 1.997
News 0.19 0617 024 041 033 034 0.16 News 1.05 114 357" 1.05 095 1.62 1.06
Recreation 0.31T 0.677 0.23' 0.36 0.44 041 0.16 Recreation 1.76'T 1.09 1.04 1.08 0.86 1.15 0.29
Reference 0.18% 0.53 0.20 0.58"7 0.52 0.37 0.18 Reference 1.01 1.06 2.80T 0.70 0.60+ 1.26 0.82
Regional 0.23 043 033 0.73'7035 039 017 Regional 1.04 224" 146 096 083 135 054
Science  0.30 0.70" 0.28% 0.44 058" 0467 0.17 Science  1.11 1.02 0.81++ 1.12T 0.92 0.99¢ 0.12¢
Shopping 0.40'T 0.56 0.457 0.60"T 0.47 0.49T 0.07 Shopping 1.18 1.42 155 152 1.00+ 135 0.21
Society ~ 0.22+ 0.41 027 045" 037 032 0.09 Society 1.30 2.157 25527 076} 092 151 0.69
Sports 0.19 0.357 0.1344 0.234 030 0.23} 0.07 Sports 1.13+ 3.007 3.69TT 2.85T 1577 243" 0.94
Control  0.20¢ 0.26% 0.28 0.44"7 037" 029 0.08 Control  0.87¢ 1.327 1.33" 0.60+ 092 1.01¢ 0.28
Avg. 0.24¢ 0547 026 045 044 0.36 0.39 Avg. 1.19 1.45 233" 107 140 1.48 1.49
Std. 0.06+ 0217 0.07¢ 0.177 0.14T 0.08 0.13 Std. 0.25+ 0.54+ 1357 0.31¢ 1.267 0.45 0.74

Table 3. Impact of user personas. HB median CPMs (USD)
across our 16 personas and control persona for the top five bid-
ders (AppNexus, Rubicon, IX, OpenX, and PubMatic) and asso-
ciated weighted Avg. and Std. among categories and bidders. Bid
prices exceeding +0 among categories are denoted with T or *.
Bid prices exceeding -0 among bidders are denoted with T or +.
Avg. and Std. among persona weighted averages are in bold red.
Avg. and Std. among bidder weighted averages are in bold black.

any other advertiser (0.54 USD CPM 1.4x above the
average bidder) — regardless of persona. In fact, Rubicon
bids the highest average values for 9 of the 16 personas.
Second, the Health, Shopping and Computers categories
generally attract the most interest from all the bidders.
We also find that some bidders show an aversion towards
certain personas (e.g., IX - Sports, Kids) bidding even
less than they did for the control persona which had
no history attached to it. Finally, we see that OpenX
bids significantly more per impression than any other
advertiser to place ads in front of our control persona
(0.44 USD CPM). At a high-level, our results allow us
to conclude that different bidders have preferences and
aversions for different personas and only a few personas
are universally preferred.

Table 4. Impact of showing intent. Cells indicate the ratio of
median bid values for personas showing intent vs. personas show-
ing no intent for the top five bidders (AppNexus, Rubicon, IX,
OpenX, and PubMatic) and associated weighted Avg. and Std.
Ratios exceeding -0 among categories are denoted with T or

+. Ratios exceeding 0 among bidders are denoted with T or +.
Avg. and Std. among persona weighted averages are in bold red.
Avg. and Std. among bidder weighted averages are in bold black.

Bidder response to demonstrated intent (Ta-
ble 4). First, we see that while all of our bidders gener-
ally had positive responses to intent. The bid ratio for
IX is significantly more than other bidders (1.6x more
than the average). In fact, IX had the highest intent to
no-intent ratio for 10 of our 16 personas. Conversely,
PubMatic was found to be the least reactive to intent
with their average bid value increasing only by 1.07x.
Second, some bidders had increases of nearly 6X in bid
values when certain personas demonstrated intent. In
particular, OpenX showed a 5.96x increase in their bid
values when confronted with an intent Health persona.
Similarly, IX showed a 6.00x increase in their bid values
when intent was demonstrated by the Kids persona. Fi-
nally, looking at responses to our intent control persona,
we see bid increases only for Rubicon and IX (1.32x and
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App. Rub. IX OpX Pub. Avg. Std.
Adult 228" 0.86 287 072 5947 204 1.51
Arts 1.19 0.86 1.08v 094 108" 1.77 261"
Business 2.147T 0.86¢ 1.76 1.84 - 1.48 054}
Computers 1.06¢ 2.81 2.72 0.34+ 1.50+ 220 0.86
Games 053V 1.92 126 4.48"7 258" 162 0.95
Health 2.657 3.83" 3.007 1.47¢ 9.767T 3.99T 2.43T
Home 0.62¢ 250 279 - - 219 0.86
Kids 2.84T 0.86 030+ 202 5.94T 1.74 1.33
News 0.50+ 292" 117 0.77 4.86" 1.64 1.18
Recreation 0.45%+ 0.86 271 4.02T - 1.64 1.15
Reference 1.09 0.86 1.39 273" 356" 134 0.72
Regional 0.91 156 0.81¢ 7.737T - 232 272"
Science  2.08"T 3.56'T 3.007 1.60¢ - 2.69" 0.86
Shopping 0.45%% 158 4.87'T 0.88 5947 256 2.02
Society 1.73 4.00TT 1.81 0.944+ 3207 225 0.96
Sports 1.03 0.86 2297 0.28+ - 1.12¢ 057+
Control  0.62 0.86 275" 072 - 1.38 094
Avg. 127 178 201 225 6227 2.00 2.71
Std. 0.76+ 1.08¢ 0.91¢ 2237 3.067 0.66 1.61

Table 5. Impact of user personas on winning bids. HB median
CPMs (USD) across our 16 personas and control persona for the
top five bidders (AppNexus, Rubicon, IX, OpenX, and PubMatic)
and associated weighted Avg. and Std. among categories and
bidders. Bid prices exceeding +-0 among categories are denoted
with T or +. Bid prices exceeding ¢ among bidders are denoted
with T or . Avg. and Std. among persona weighted averages are
in bold red. Avg. and Std. among bidder weighted averages are
in bold black.

1.33x increase) while the average showed only a 1.01x
increase. This shows that, in general, for many bidders,
the knowledge of user personas dominates the decision
to increase bid values and intent is only used to de-
cide the magnitude of this increase. At a high-level, our
results allows us to conclude that bidders rarely have
stmilar responses to demonstrated user intent.

3.2.4 How much do advertisers pay to reach users?

We now turn our attention to understanding the price
advertisers actually pay to reach users. To answer this
question, we first examine the subset of winning bids
(i.e., highest bid value in the first-price HB auction) by
the five most common bidders for No Intent personas

as shown in Table 5. First, we note that on average bid-
ders pay $2.00 USD CPM across all personas in order
to serve ads — 5.5x the average of the corresponding bid
price in Table 5. We see this trend across the board for
different personas and bidders. We conclude that bid-
ders have to pay substantially higher prices than their
average bids to win the auctions. Second, we note that
the average winning bid in HB is 3.4x the average win-
ning bid of RTB (Table XI - Only category column in
[67]). There are two main explanations for this differ-
ence: (1) auction type (HB typically uses first-price auc-
tion and RTB typically uses second-price auction); and
(2) bidding structure (HB uses a flattened model to is-
sue bid requests and RTB uses a tiered /waterfall model
where bid requests received at lower tiers are interpreted
by bidders as bid “left-overs”). Third, we observe some
similarities and differences in winning bid trends across
personas for HB and RTB [67]. For the Health persona,
we observe above average winning bids in both RTB and
HB. For other personas such as Games and Sports, we
observe a shift from higher than average bids in RTB
to lower than average bids in HB. This shift could be
due to differences in bidder affinity caused by chang-
ing preferences among advertising partners [24, 74] or
time/location of measurements [67, 71].

3.2.5 How common is underbidding?

During our bid collection process, we observed many
bidders making zero bids — i.e., a bid of $0 USD CPM
for the impression. There are several reasons for these
bids. First, incorrect configurations of HB can lead to
zero bids by advertisers. For example, price granularity
is a setting made available to publishers which in essence
can enforce a minimum bid value. Any bid received be-
low this value is rounded down to zero. Advertisers mak-
ing bids without correctly accounting for this parameter
will generate zero bids. Second, and more interestingly,
zero bidding is a form of underbidding — i.e., purposely
making low bids with the motivation to gain access to
user data (e.g., synced cookie [46, 69]) associated with
the impression rather than to win the auction. Although
most exchanges which facilitate RTB auctions typically
ban such behaviour and enforce mandatory minimum
bidding participation, we find no such enforcement in
HB auctions. Bids gathered from our experiments allow
us to measure the frequency of zero bids, yet they do
not let us convincingly distinguish whether they are due
to misconfiguration or nefarious intent.

Table 6 shows the fraction of zero bids received for
our intent and no-intent persona for each of the top 20
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Percentage of zero bids

Bidder

No-intent Intent Total

personas personas
PubMatic* 68.75 66.37 67.70
AppNexus 0.32 0.26 0.29
IX* 19.14 6.19 13.53
Rubicon* 3.54 2.27 2.94
OpenX* 1.04 0.23 0.66
Criteo* 5.83 1.60 3.75
Aol 8.71 9.17 8.90
Sovrn* 10.43 3.87 7.10
Districtm 0.00 0.00 0.00
Conversant 0.00 0.00 0.00
Total (all bidders) 24.21 19.44 22.07

Table 6. The percentage of zero bids made, for intent and no-
intent personas, by our 10 most commonly observed bidders.
Bidders are sorted by total number of bids placed. Bidders ap-
pended with'*' indicate that zero bidding behavior for a bidder
was significantly impacted by Intent personas.

bidders observed. First, we note that zero bidding is
a common occurrence and they make up over 22% of
all bids. It is noteworthy that for two of the bidders —
PubMatic and Innity — most of their bids are zero bids
and together account for a vast majority of all zero bids
observed in our measurements. Frequent underbidding
observed for these two bidders is indicative of the ab-
sence of minimum bidding performance requirements in
HB through contract guarantees, which are often en-
forced in RTB auctions [46]. Second, we assess whether
a bidder’s likelihood of placing zero bids is significantly
impacted by personas demonstrating intent to make a
transaction. To this end, we apply the chi-square pro-
portions test [38] to compare percentages of zero bids
placed by a bidder for No-Intent and Intent personas.
We see a statistically significant (4.77%) decrease in the
percentage of zero bids when a persona shows intent to
make a transaction. This suggests that bidders are more
motivated to make positive bids when the user commu-
nicates transaction intent. Finally, we can hypothesize
a bidder’s motivation to place zero bids by comparing
percentage of zero bids between No-Intent and Intent
personas. We suspect that intentional underbidding will
lead to a statistically significant difference in the preva-
lence of zero bids between Intent and No-Intent per-
sonas. We observe a significant decrease in zero bids for

PubMatic, IX, Rubicon, OpenX, Criteo, Sovrn, which
leads us to suspect that zero bids are unlikely to be
caused as a result of configuration errors.

4 Inferring Tracker-Advertiser
Relationships

We showed that an advertiser’s assessment of the value
of a user (i.e., bids) is highly dependent on the avail-
able information (i.e., browsing history). To get relevant
user information, advertisers (or DSPs bidding on behalf
of advertisers) gather information from different track-
ers (or DMPs in general) through client-side or server-
side mechanisms. Inferring such data sharing relation-
ships between different entities in the online advertising
ecosystem is an important problem. It is challenging to
infer such data sharing relationships, particularly at the
server-side because they are not directly observable at
the client-side. Next, we present our approach to in-
fer tracker-advertiser data sharing relationships at the
client-side or the server-side.

4.1 Proposed Approach

Our approach, named KASHF, leverages the information
provided by HB to infer data sharing relationships be-
tween trackers and advertisers. Our key insight is that
an advertiser’s bids for a persona will change when it
has an information flow originating from some tracker
which has seen the persona before. This insight allows
us to use bids, which are observable at client-side in
HB, as a proxy for the existence of information flows
(i.e., data sharing relationship) between a tracker and
a bidder. Thus, through careful manipulation of tracker
exposure while constructing personas, we can analyze
an advertiser’s bids to make inferences about its data
sharing relationships with the exposed trackers.

We illustrate KASHF with a simplified model show-
ing information flows among key entities in the HB and
the associated tracking ecosystem in Figure 2. We start
with edge (1), from the client to a tracker. This edge
denotes data being gathered from clients by trackers
partnering with publishers. Notice that these edges can
be observed and manipulated at the client — i.e., track-
ers can be identified and blocked at the client and thus
these edges can be deleted. Edge @ denotes the flow
of data from trackers to advertisers. It is the presence
of these flows that impacts the advertiser’s bids for a
user. Unfortunately, these edges, which are crucial for
verifying regulatory compliance and building effective
privacy-enhancing tools, are not observable or manip-
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Fig. 2. A simplified model of the information flows between track-
ers and bidders.

ulated by the client. Finally, edge (3) denotes the bid
sent by an advertiser to a client in HB. Notice that
these edges are observable by the client in HB. Our goal
is to infer the existence of edge (2) given the ability to
observe and manipulate edges (1) and (3). We do this as
follows:

—  We gather a large number of bids from different ad-
vertisers (edge (3)) while exposing client personas to
a select set of trackers (by selectively deleting edge
@).

— We then train a machine learning model to pre-
dict the bid values placed by each advertiser based
on tracker presence/absence as features. We argue
that a model that is able to accurately predict bid
values also uncovers data sharing relationships be-
tween advertisers and trackers. An accurate model
will evaluate tracker presence to gauge their impact
on bid values. Put another way, if a machine learn-
ing model given edge (1) as features is able to predict
the values of edge (3), then it must have automati-
cally inferred the presence or absence of edge (2).

— Next, we analyze our interpretable machine learning
models to identify the features (i.e., edge (1)) which
had the most impact on our trained model’s bid
predictions. The information gain of these features
establishes the likelihood of a relationship between
the tracker and advertiser (i.e., edge (2)). Put an-
other way, trackers that have a high impact on our
model for a particular advertiser are more likely to
have a data sharing relationship with the advertiser
than those having no impact on our model. After
all, under the assumption of one tracker per page,
if deleting a tracker edge consistently has no impact
on the bid values from the advertiser, it must be true

Question Results

Is tracker presence a predictor for advertiser bids? §4.3.1

Which trackers influence the behaviors of which adver- §4.3.2
tisers?

Table 7. Questions answered by our study. Questions in bold
have not been answered by previous work.

that there is no relationship between the tracker and
advertiser. As we discuss next, our method can gen-
eralize to multiple trackers.

4.2 Measurement Method

Table 7 illustrates the contributions of this work towards
inferring advertiser-tracker data sharing relationships.
To answer the questions listed in Table 7, we conducted
controlled measurements as follows. At a high-level, our
method is explained by: (1) how we selectively expose
trackers to information about our personas (how we ma-
nipulate edge (1)); (2) how we measure the bids made
by advertisers for each of our personas (how we observe
edge (3)); (3) how we predict bids; and (4) how we iden-
tify and validate influence of a tracker on an advertiser.

Exposing user personas to trackers (manipulat-

ing edge @) We constructed 10,000 user personas,

each exposing selective characteristics to some subset of
trackers, using the following approach.

—  Tracker exposure. We used EasyList [10] and
EasyPrivacy [11] in combination with the outcome
of the most recent Alexa top 1-million site crawl [45]
to obtain the top 20 most frequently observed track-
ing organizations and the tracking domains owned
by them.?* We then randomly selected one organi-
zation and blocked all their trackers when building
a user persona. Specifically, trackers from the se-
lected organization were blocked during the crawl-
ing of persona and intent sites described below.

—  Persona selection. We first randomly selected a
persona which for the user persona to mimic. We
used the same approach described in §3.1, with the
caveat that user persona was only constructed from
a random subset of 1-10 of the Alexa top-50 sites

4 These 20 organizations are: Adobe, Alibaba, Alphabet, App-
Nexus, Automattic, Baidu, Comscore, Criteo, DoubleVerify, Ex-
oClick, Facebook, Integral Ad Science, Microsoft, Oracle, Pub-
Matic, Quantcast, Sovrn, Twitter, Verizon, and Yandex.
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within a persona category (rather than all of the
top 50 sites). This reduction was necessary to scale
of our experiments to build 10,000 user personas.

—  Intent selection. Finally, we randomly assigned some
of our personas to demonstrate intent to complete
an online transaction. The method used was identi-
cal to the intent signaling mechanism described in
§3.1.

After building each user persona, we waited at least 90
minutes before moving into the bid collection phase.

Measuring advertiser bids (recording edge @)
In order to measure the impact of selectively block-
ing edge (1), we needed to measure the values obtained
through edge (3). This was accomplished by visiting one
HB-enabled site using each trained persona and gather-
ing the bids made by advertisers. We limited bid gath-
ering to only one site since visiting multiple sites could
result in tracker flows from the first site influencing the
bids measured on subsequent sites. Visiting a single site
allows us to ensure that any tracker-advertiser informa-
tion flow originates during the persona building phase
and not during the bid collection.

Predicting bids. Since our recorded bid values are con-
tinuous, we need a method to discretize them. Our bid
values were discretized, in a similar manner as previ-
ous work seeking to predict encrypted bid values [71],
by dividing bid values into classes. Specifically, we di-
vided our dataset of bids values into three classes with
the following bid ranges: [—oo, u — o) low, [ — o, u+ o]
medium, and (p + o,+00] high, where u is the mean
bid value and o is the standard deviation of bid val-
ues. Next, we trained a separate Random Forest classi-
fier for each advertiser with the goal of predicting bid
classes given the presence of trackers as features. The
Random Forest classifier was explicitly chosen due to
its interpretable decision tree classification model. We
applied 10-fold cross-validation to validate the accuracy
of our constructed models. An accurate model for an
advertiser demonstrates that tracker presence is a good
predictor for bid class.

Validating tracker influence on an advertiser. We
want to rank trackers based on their influence on ad-
vertiser generated bids. The decision trees produced by
the Random Forest classifier rank features based on
their importance. The most influential feature, with the
highest information gain, is the root node of the tree.
The subsequent nodes at lower levels have decreasing
information gain on the partitioned data. Thus, given
a reasonably accurate model of advertiser’s bidding be-

havior, we analyzed decision trees to obtain a list of

trackers ranked by their influence on each advertiser. We

then validated this list by comparing the observed rela-
tionships with the following sources of known tracker-
advertiser relationships:

—  FEzxternal databases. We manually searched a vari-
ety of sources (e.g., Crunchbase, public company
websites, ad-tech blogs, etc.) to obtain publicly dis-
closed advertiser-tracker relationships.

—  Client-side cookie syncing. The entities in online ad-
vertising ecosystem use the cookie syncing mech-
anism to share user identifiers at the client-side
while circumventing the browser’s same-origin pol-
icy. Using the heuristic presented in [69], we detect
client-side cookie syncing by looking for identifiers
in the URL and the referrer field during our mea-
surements.

4.3 Results

4.3.1 Can tracker presence be used to predict bids?

We now evaluate whether tracker presence can be used
as predictors of advertiser bids. Table 8 presents the
classification performance of trained machine learning
models for the top-5 bidders in our dataset. We note
that trained machine learning models can predict bids
by different bidders with reasonable accuracy. Specifi-
cally, the accuracy ranges from 75% for AppNexus to
83% for IX. It is noteworthy that our trained machine
learning models provide comparable accuracy to prior
work on predicting encrypted bid values in RTB (82%)
[71]. Thus, we conclude that our trained machine learn-
ing models can leverage tracker presence to accurately
predict bids by different advertisers.

Bidders Accuracy
AppNexus 75%
IX 83%
Openx 81%
Rubicon 82%
PubMatic 78%
Avg. 80%

Table 8. Bid prediction accuracy of machine learning models for
top-5 bidders in our dataset.
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4.3.2 Tracker Influence On Bidder Behavior

To understand a tracker’s influence on an advertiser’s
bidding behavior, we use the decision tree model gener-
ated by our machine learning classifier. As discussed ear-
lier, trackers at the top of the decision tree are more in-
fluential than those at the bottom. Table 9 lists the top-
3 trackers for each of the top-5 bidders in our dataset.
We note that different trackers are the most influential
across different bidders. For example, our model ranks
DoubleVerify as the most influential tracker for App-
Nexus while Alphabet as the most influential tracker for
PubMatic. We observe that 11 of 15 advertiser-tracker
relationships inferred by our model are validated by ex-
ternal databases (10 of 15) or client-side cookie sync-
ing (4 of 15). 3 of these advertiser-tracker relationships
are validated by both external databases and client-
side cookie syncing. We note 11 potential server-side
advertiser-tracker relationships that are not validated
using client-side cookie syncing. Of these 11, we are able
to validate 7 such server-side relationships using exter-
nal databases. The remaining 4 may be attributed to
previously unknown server-side data sharing relation-
ships, imperfect heuristics to detect cookie syncing, or
erroneous inferences by KASHF.

4.3.3 Implications

It is noteworthy that KASHF is able to uncover several
server-side advertiser-tracker relationships that are not
observable at the client-side. Our findings seem to in-
dicate that online advertising and tracking ecosystems
may be shifting from the client-side to the server-side.
We argue that there are several motivations for such a
shift from client-side to server-side. First, and perhaps
most importantly, advertisers and trackers are shift-
ing to server-side data sharing to circumvent client-side
blocking tools. Specifically, a significant fraction of users
have installed browser extensions (e.g., uBlock Origin
[56], Adblock Plus [29], Ghostery [22], Privacy Bad-
ger [26], etc.) to block ads and trackers at the client-
side. Moreover, mainstream browsers such as Safari and
Firefox have enabled anti-tracking protections by de-
fault [66, 78]. We believe that advertisers and trackers
are likely shifting to server-side data sharing to circum-
vent client-side blocking mechanisms. Second, advertis-
ers and trackers also prefer server-side implementations
due to performance reasons. Specifically, client-side im-
plementation of resource-heavy advertising and track-
ing logic significantly degrades page load performance
[7, 51]. Moreover, client-side implementations are also

Tracker 1 Tracker 2 Tracker 3

AppNexus DoubleVerify 21 Automattic 19 Comscore €51

IX Sovrn [ PubMatic 1281 DoubleVerify [28]
OpenX  Microsoft 251 AppNexus 5[17] Criteo [9]
Rubicon  Verizon ©5:[6] DoubleVerify Facebook

PubMatic  Alphabet €S Twitter Microsoft

Table 9. Tracker influence is ranked in the descending order of
information gain for each of the top-5 bidders in our data set.
The bidder-tracker relationships that we are able to validate us-
ing manual search are marked with a citation. Cookie syncing
detected using client-side analysis are marked with €.

susceptible to slow response times resulting in auction
timeouts (bids arriving after an auction timeout oc-
curs are ignored) [7]. To conclude, our findings highlight
the shift from client-side to server-side data sharing in
the online advertising ecosystem. As server-side data
sharing—which can be inferred by KASHF—becomes
more prevalent, it is unclear whether the current gen-
eration of client-side blocking tools would continue to
remain effective.

4.4 Limitations

Completeness issues. Our study makes two simplify-
ing assumptions that may impact the completeness of
our results. First, we restrict our inferences to only in-
clude bidder relationships with the top-20 tracking orga-
nizations. As a result, we are unable to draw inferences
about bidder relationships with smaller tracking services
(rank > 20). We argue that, given the extreme skew
in tracker coverage across the web [45], our approach
would capture the overwhelming majority of data shar-
ing occurring in the advertising and tracking ecosystem.
Second, the data sharing relationships in the online ad-
vertising ecosystem may be indirect. More specifically,
trackers may share data with many non-bidder enti-
ties (e.g., SSP, AdX) and bidders may gather data from
different data sources (DMP). Our approach is unable
to determine whether a tracker-bidder relationship is
direct or indirect (i.e., involves other intermediaries).
However, as long as the presence of a tracker impacts
the bids, our approach is able to infer that there is a
direct or indirect tracker-bidder relationship.

Correctness issues. Our study also makes several sim-
plifying assumptions that may impact the correctness
of our results. First, the accuracy of our machine learn-
ing approach is not perfect. It is possible that some of
the tracker-bidder relationship inferences based on our
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trained machine learning models are incorrect. To over-
come this limitation, we take a conservative approach
by limiting ourselves to top-3 trackers identified by our
machine learning models. As part of our future work,
we plan to investigate automated methods to determine
the optimal cutoff point given a certain error tolerance.
Second, our approach may fail in the presence of tracker-
tracker data sharing relationships. Consider an example
where the following data sharing relationships are ob-
served: (11, T2), (Tz, A) where T1 and T» are trackers
and A is an advertiser. Our technique might conclude
that there is no relationship between Ts and A as a con-
sequence of not observing a change in bidding behav-
ior from A when blocking T5. However, this conclusion
might be incorrect if the reason for no change in A’s
behavior is the flow of information from 7y to A via
T5>. We mitigate this problem in our work by analyzing
trackers at the organizational level. In other words, we
assume that all domains within an organization (e.g.,
doubleclick.net and google-analytics.com belong to Al-
phabet) will share data with each other.

5 Related Work

Prior work related to our research can be categorized
into two types: (1) user value quantification and (2)
characterization of entities and their relationships in the
online advertising and tracking ecosystem.

5.1 Quantifying the Value of a User

As more advertisers rely on online advertising [55] and
more Internet users have the expectation of free services
[44, 62, 77], online behavioral advertising, facilitated by
tracker gathered user data, has become the dominant
monetization model on the web. Much of prior work
has sought to uncover the value of different types of
users (and their data) to different entities in the on-
line advertising and tracking ecosystem. Along these
lines, there has been a great deal of interest in under-
standing how much value users place in the data that
they trade for free access to online services. These stud-
ies have generally borrowed techniques from psychology
and economics to design experiments to implicitly un-
cover the value that users place on their data. Findings
have shown that context dictates privacy valuations of
data [33, 54, 57|, trustworthiness and intention of the
buyer plays a role in privacy valuations [41, 42], and
there is a mismatch in the actual and perceived value of
user data [39, 53, 70]. From another perspective, there
have been efforts [67, 70, 71] to quantify how much user

data is worth to advertisers. Such efforts are generally
more challenging due to the opacity of the advertising
ecosystem — i.e., it is difficult to uncover exactly how
much advertisers are paying (bidding) to place ads in
front of specific users. These works leveraged the visibil-
ity afforded to the user’s browser in the RTB auction to
uncover the winning bids. More specifically, these works
leveraged the fact that the winning bid notification in
an RTB auction (including information about the win-
ner and the winning bid value) is relayed to the browser

in step (9) of the RTB workflow shown in Figure 1.

In a seminal work, Olejnik et al.[67] analyzed RTB
winning bid notifications to understand variation across
different user personas based on their location, time,
and browsing history. The authors reported that adver-
tisers pay as little as $0.0005 per site visit. Further, they
showed that the prices that advertisers pay vary based
on browsing histories reflecting different generic inter-
ests (e.g., , games, news, shopping) and specific intents
(e.g., , hotel booking, jewelry, electronics). Our work
differs and builds upon this work in the following ways.
—  First, we are able to shed light on the bidding behav-

ior of different advertisers as we are able to capture

bids from each advertiser, not just the winning bid.

— Second, they encountered and ignored encrypted
bids, which were (incorrectly [71]) assumed to be
comparable to plain text bids. In contrast, we do
not encounter encrypted bids in our HB measure-
ments.

— Third, because we can observe bids from different
advertisers in HB, we are able to show that adver-
tisers bid differently (by as much as 5.5x for Health
category in Table 4) for the same user personas.

—  Further, through controlled experiments in the sec-
ond phase of our study, we are able to show that
bid variations across different advertisers are, in
part, due to differences in advertiser-tracker rela-
tionships.

In a follow-up work, Papadopoulos et al.[71] addressed
the limitation placed by encrypted bid values (encoun-
tered by [67]) by developing a machine learning ap-
proach to infer values of encrypted winning bids with
82% accuracy. The authors showed that encrypted bids
are are 1.7X higher than bids sent in the clear. We build
on this work by seeking to understand tracker-advertiser
relationships using a similar machine learning approach
for modeling bid values. However, unlike their work, we
are not interested in predicting encrypted bid values
because we do not encounter encrypted bids in HB. In-
stead, we leverage a machine learning model that can
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accurately predict an advertiser’s bids based on informa-
tion about presence/absence of trackers to infer tracker-
advertiser relationships.

5.2 Characterization of Advertising and
Tracking Entities and Relationships

There have been many studies which have sought to
measure the prevalence of different entities in the ad-
vertising and tracking ecosystem. These include large-
scale and longitudinal crawls measuring the prevalence
of trackers and different tracking techniques on the web
[45, 60, 63, 64, 69], mobile [34, 40, 59, 72, 73, 75], and
across multiple platforms [37, 79].

Notably, Englehardt and Narayanan [45] studied
the prevalence of different stateful and stateless tech-
niques on the Alexa top 1-million websites. They re-
ported that a few third-parties including Google, Face-
book, Twitter,Amazon, and AdNexus cover at least
10% of the top 1M websites. They also showed that
client-side cookie syncing is prevalent among third-
parties: 45 of the top 50 third-parties sync cookies
with at least one other party and the most popu-
lar third-party (doubleclick.net, an Alphabet-owned
AdX) syncs cookies with 118 different third-parties.
This highlighted that trackers, even when owned by dif-
ferent organizations, often exchanged data to improve
participation in online advertising. In addition to infor-
mation flows among trackers that are observable at the
client-side (i.e., cookie syncing), researchers have also
investigated methods to detect server-to-server (S2S)
information flows among trackers. This is much more
challenging since they are not observable at the client-
side (browser).

To address this challenge, Bashir et al.conducted
controlled experiments and inferred a small subset of
S2S information flows by investigating the process of
ad retargeting [35]. Since retargeting necessitates data
exchange between two AdXes, the authors conducted
controlled experiments to trigger and detect ad retar-
geting and infer S2S information flows. The underlying
intuition was that if a retargeted ad was served by an
entity that did not observe the original visit which trig-
gered the retargeted ad, then it must have got informa-
tion about this visit through an S2S information flow.
We leverage the same underlying intuition as in Bashir
et al. [35, 36] to infer tracker-advertiser relationships.
However, instead of relying on retargeting as the “sig-
nal” for data exchange, we operationalize this intuition
using a machine learning model that is trained to pre-

dict an advertiser’s bid values using presence/absence
information of popular trackers.

6 Concluding Remarks

In this paper, we leveraged header bidding (HB) to gain
insights into the bidding behavior of advertisers and pre-
sented a machine learning approach to infer data shar-
ing relationships between advertisers and trackers. Our
work advances the field along two main avenues. First,
we are able to provide more nuanced insights into the
bidding behavior of online advertisers. While prior re-
search [67, 71] was limited to analyzing only the winning
bids in RTB, we are able to observe all bids made by
different advertisers in HB. Second, we are able to in-
fer data sharing relationships between advertisers and
trackers irrespective of whether it is happening at the
client-side or the server-side. While prior work could
only detect client-side data sharing [69] or infer server-
side data sharing relationships when retargeting occurs
[35], our approach is able to infer client-side and server-
side data sharing for any advertiser placing bids without
relying on specific triggers such as retargeting.

Our work can help existing privacy-enhancing tools
in presenting empirically derived inferences about (1)
how the data is shared between entities in the online ad-
vertising and tracking ecosystems; and (2) what is the
perceived value of users. Along the first direction, pri-
vacy enhancing tools such as Mozilla Lightbeam [20],
uBlock Origin [56], and Ghostery [22] provide users
transparency and control over online tracking. Our work
can be used to address known limitations [36] of these
tools by identifying server-side data sharing practices
of online trackers. Along the second direction, our HB
measurements can be used to improve existing user val-
uation tools such as RTBAnalyzer [67] and YourAD-
Value [71] by capturing a more complete picture of all
advertisers’ bidding behaviors. These measurements can
further inform micropayment-based alternate web mon-
etization models [61] (e.g., Flattr [21], Contributor [23],
BAT [9]) by suggesting how much users should pay a
publisher in exchange for blocking ads.
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