
Proceedings on Privacy Enhancing Technologies ; 2020 (1):216–234

Anrin Chakraborti* and Radu Sion

SqORAM: Read-Optimized Sequential
Write-Only Oblivious RAM
Abstract: Oblivious RAMs (ORAMs) allow a client to
access data from an untrusted storage device without
revealing the access patterns. Typically, the ORAM ad-
versary can observe both read and write accesses. Write-
only ORAMs target a more practical, multi-snapshot
adversary only monitoring client writes – typical for
plausible deniability and censorship-resilient systems.
This allows write-only ORAMs to achieve significantly-
better asymptotic performance. However, these appar-
ent gains do not materialize in real deployments primar-
ily due to the random data placement strategies used to
break correlations between logical and physical names-
paces, a required property for write access privacy. Ran-
dom access performs poorly on both rotational disks and
SSDs (often increasing wear significantly, and interfer-
ing with wear-leveling mechanisms).
In this work, we introduce SqORAM, a new locality-
preserving write-only ORAM that preserves write ac-
cess privacy without requiring random data access. Data
blocks close to each other in the logical domain land
in close proximity on the physical media. Importantly,
SqORAM maintains this data locality property over
time, significantly increasing read throughput.
A full Linux kernel-level implementation of SqORAM
is 100x faster than non locality-preserving solutions
for standard workloads and is 60-100% faster than the
state-of-the-art for typical file system workloads.

Keywords: Write-Only Access Privacy, Oblivious RAM

DOI 10.2478/popets-2020-0012
Received 2019-05-31; revised 2019-09-15; accepted 2019-09-16.

1 Introduction
Dramatic advances in storage technology have resulted
in users storing personal (sensitive) information on
portable devices (mobiles, laptops etc). To ensure con-

*Corresponding Author: Anrin Chakraborti: Stony
Brook University, E-mail: anchakrabort@cs.stonybrook.edu
Radu Sion: Stony Brook University, E-mail:
sion@cs.stonybrook.edu

fidentiality, data can be encrypted at-rest. However, of-
ten this is not enough since access sequences of read
and written locations leaks significant amounts of in-
formation about the data itself, defeating the protec-
tion provided by encryption [15]. To mitigate this, one
solution is to access items using an oblivious RAM
(ORAM) protocol to hide data access patterns from
an adversary monitoring the storage device or unse-
cured RAM. Informally, ORAM protocols ensure (com-
putational) indistinguishability between multiple equal-
length query/access sequences.

ORAMs have been typically proposed in the context
of securing untrusted remote storage servers e.g., public
clouds. However, protecting data access patterns is a key
requirement in many other privacy-critical applications
including plausibly-deniable storage systems [4, 5, 24],
secure data backup mechanisms [2] and secure proces-
sors [14]. Plausible deniability ultimately aims to enable
users to deny the very existence of sensitive information
on storage media when confronted by coercive adver-
saries e.g., border officers in oppressive regimes. This is
essential in the fight against increasing censorship and
intrusion into personal privacy [7, 20]

Unfortunately, it is impractical to deploy ex-
isting ORAM mechanisms in such systems due to
prohibitively-high access latencies deriving from high
asymptotic overheads for accessing items and ORAM-
inherent randomized access patterns. Also, a full ORAM
protocol protecting access patterns of all operations in
real time may be unnecessary for plausible-deniability.
After all, most realistic adversaries in this context only
have multi-snapshot capabilities and can only access the
device periodically while at rest. For example, a border
officer in an oppressive regime can inspect a user’s de-
vice during multiple border crossings and compare disk
snapshots. This reveals the changes to the disk due to to
user writes but does not compromise privacy of runtime
reads [4] (except in the presence of end-point compro-
mise e.g., malware in which case the adversary usually
gets full access to the entire system).

This opens up a significant opportunity, namely the
idea of a write-only ORAM, a simpler, more effective
ORAM that only protects the privacy of write accesses
[19]. In fact write-access privacy has been proven to

SqORAM 217

be one of the necessary and sufficient requirements for
building strong plausible deniability systems [5]. Conse-
quently, write-only ORAMs are a critical component of
state-of-the-art plausibly-deniable storage mechanisms
including systems such as HIVE [4] and DataLair [5].
Further, it has been shown that write-only ORAMs
can achieve significantly better asymptotic performance
compared to full ORAMs.

Unfortunately, existing designs are still orders of
magnitude slower than the underlying raw media. For
example, HIVE is almost four orders of magnitude
slower than HDDs and two orders of magnitude slower
than SSDs. The main contributor to this slowdown is
the random placement of data meant to break linkability
between separate writes [7, 24], an important property
ensuring that an adversary cannot link a set of writes
to each other logically, given multiple snapshots of the
media. Random data placement results in dramatically
increased disk-seek related latencies. Non-locality of ac-
cess also interferes with numerous higher-level optimiza-
tions including caching policies, read-aheads etc.

To mitigate this, Roche et al. [24] recently proposed
a write-only ORAM that preserves locality of access for
writes. This is based on the idea that unlinkability can
also be achieved by writing data to the storage media
in a canonical form – e.g., by writing logical data blocks
sequentially at increasing physical block addresses, in-
dependent of their logical block addresses, similar to a
log-structured file system. Unfortunately, this does not
solve the problem. Sequentially-written physical blocks
rarely translate in locality for the logically-related items.
In fact, sequential-write log structured file systems per-
form quite poorly for reads as logically related data ends
up scattered across the disk over time [16]. And since
reads tend to dominate in modern workloads – e.g., over
70% of ext4 requests are reads [18, 25] – optimizing for
logical reads is especially important.

This paper introduces the philosophy, design and
implementation of SqORAM, a new write-only ORAM
that preserves locality of access for both reads and
writes. SqORAM introduces a seek-optimized data lay-
out: logically-related data is initially placed and then
maintained throughout its lifetime in close proximity on
the underlying media, to dramatically increase locality
of access and overall throughput, especially when paired
with standard file systems.
Locality-Preserving Hierarchical Layout. SqO-
RAM smartly adapts hierarchical ORAM [10] tech-
niques for periodic efficient reshuffles keeping logically-
related items in close proximity. Specifically, hierarchi-
cal ORAMs store blocks in multiple levels, where each

level is twice the size of the previous level. Blocks are
stored at random locations in a level and the contents
in each level are periodically reshuffled and moved to
the next level. In SqORAM data is organized similar
to hierarchical ORAMs. However, instead of random-
ized block placement, SqORAM stores blocks per-level
sorted on their logical address. Related blocks with log-
ically contiguous addresses are stored close together in
the levels, and can be fetched efficiently while eliminat-
ing seek-related latencies.

A key set of insights underlies this: (i) in standard
ORAMs, randomized block placement is mainly neces-
sary to protect the privacy of read patterns, and (ii)
storing blocks in a standard canonical form (e.g., sorted
on logical address) does not reveal write access patterns.
Asymptotically-Efficient Level Reshuffles. In
standard hierarchical ORAMs, level reshuffles are ex-
pensive. Random block placement (and read-privacy
guarantees) necessitates complex oblivious sorting
based mechanisms to securely reshuffle data. Eliminat-
ing read-privacy requirements provides the opportunity
for simple and asymptotically more efficient (by a factor
O(logN) for a N block database) level reshuffles.
Efficiently Tracking Blocks. In hierarchical ORAMs
locating a particular block on disk is expensive and re-
quires searching in all the levels. This is necessary be-
cause the location of a block (the level that it is read
from) reveals information about its last access time,
thus all levels need to be searched to prevent the server
from learning the one of interest. SqORAM does not
face this requirement and employs a new efficient mech-
anism to securely and efficiently track the location of
blocks based on last access times. To retrieve a block,
only one level needs to be searched – this includes an
index lookup and reading the block from its current on-
disk location.
Evaluation. Compared to randomization-based write-
only ORAMs (HIVE [4], DataLair [5]) that have been
employed in plausible-deniability schemes, SqORAM is
orders of magnitude faster for both sequential reads and
writes. Compared to the state-of-the-art [24], SqORAM
features a 2x speedup for sequential reads and achieves
near raw-disk throughputs in the presence of extra mem-
ory. As an application, experiments demonstrate that
SqORAM is faster than [24] for a typical file system
workload with 70% reads and 30% writes [18, 25] and is
only 1.5x slower than the baseline.

SqORAM 218

2 Related Work
Oblivious RAM (ORAM). ORAMs have been well-
researched since the seminal work by Goldreich and Os-
trovsky [10]. Most of the work on ORAMs optimize
access complexity [10, 11, 11–13, 17, 21, 22, 26–31].
Locality-preserving ORAMs are an emerging field of
research [1, 6, 9]. However, full ORAM constructions
with locality of access are asymptotically more expen-
sive than traditional ORAMs and in some cases trade-off
security for performance. We refer to the vast amount of
literature on full ORAM constructions for more details.
Write-Only ORAM. Li and Datta [19] proposed the
first write-only ORAM scheme with an amortized write
complexity of O(B× logN) where B is the block size of
the ORAM and N is the total number of blocks.

Blass et al. [4] designed a constant time write-only
ORAM scheme assuming an O(logN) sized stash stored
in memory. It maps data from a logical address space
uniformly randomly to the physical blocks on the un-
derlying device. Chakraborti et al. [5] improved upon
the HIVE-ORAM construction by reducing the overall
access complexity by a factor of O(logN).

Roche et al. [24] recently proposed DetWoORAM, a
write-only ORAM that is optimized for sequential writes
with O(logN) read complexity and O(1) write complex-
ity. The idea is to write blocks to the disk sequentially,
at increasing physical addresses, independent of their
logical address, not unlike log-structured file systems.
It has been shown [24] that maintaining this layout en-
sures that a multi-snapshot adversary cannot link a set
of writes to each other logically given multiple snap-
shots of the disk. However, once written to disk, blocks
are not guaranteed to remain at the same location and,
on updates, blocks are written to new locations (e.g., at
the head of the log), thus destroying locality of logical
accesses for subsequent reads.

3 Background
Adversary. We consider a multi-snapshot adversary
that can observe the storage media not just once but
at multiple different times and possibly take snapshots
after every write operation. The adversary may com-
pare past snapshots including device-specific informa-
tion, filesystem metadata and bits stored in each block
with the current state in an attempt to learn about the
location of the written information.

Security Definition. To hide access patterns from a
multi-snapshot adversary, a write-only ORAM needs to
ensure write-access privacy.

Definition (Write-Access Privacy). Let ~y =
(y1, y2, . . .) denote a sequence of operations, where each
yi is a Write(ai, di); here, ai ∈ [0, N) denotes the logical
address of the block being written, and di denotes a
block of data being written. For an ORAM scheme Π,
let AccessΠ(~y) denote the physical access pattern that its
access protocol produces for the logical access sequence
~y. We say the scheme Π ensures write-access privacy if
for any two sequences of operations ~x and ~y of the same
length, it holds

AccessΠ(~x) ≈c AccessΠ(~y),

where ≈c denotes computational indistinguishability
(with respect to the security parameter λ).

3.1 Hierarchical ORAM

In this section, we review hierarchical ORAM construc-
tions, which is an important building block of SqORAM.
Organization. Hierarchical ORAMs [10] organize data
into levels, with each level twice the size of the previous
level. Specifically, for a database with N data blocks,
the ORAM consists of logN levels, with level i ≤ logN
containing 2i blocks (including dummy blocks).

At each level, blocks are stored at uniformly random
physical locations determined by applying level-specific
hash functions on logical addresses. In other words, each
level storage can be viewed as a hash table of appropri-
ate size [17, 30]. Blocks are always written to the top
level first and periodically move down the levels as a
result of reshuffles.
Queries. During queries, all levels are searched sequen-
tially for the target block using the level-specific hash
functions to determine the exact location of the block
in a particular level. When a block is found at a certain
level i, dummy blocks are read from rest of the levels.

After a block is read from a certain level in the
ORAM, it is written re-encrypted to the top level. Once
the top level is full, the contents of the top level are
securely reshuffled and written to the next level. This
mechanism is applied for all levels in the ORAM.
Reshuffles. The most expensive step of hierarchical
ORAMs is the level reshuffle. This is because when
reshuffling level i, its contents are obliviously sorted
on randomly-assigned tags (e.g., logical address hashes)
and written to random locations in level i + 1. Conse-

SqORAM 219

quently, reshuffles are expensive not only in terms of the
total I/O, but also in the number of seeks.

4 Overview
SqORAM aims to perform locality-preserving reads and
writes, while preserving write-access privacy. A good
starting point for this is to place logically-related data
close-together on disk initially when access are sequen-
tial in the logical domain e.g., by writing logically-
related data blocks to adjacent physical blocks sequen-
tially [24]. In an initial stage, the disk layout resembles
an append-only log, where the next logical write is per-
formed by writing data to the head of the log.

The next critical task is to maintain the layout as
data ends up being scattered across the disk over time
[16]. One way to achieve this is by periodically reshuf-
fling data to bring logically-related items in close prox-
imity. Importantly, the frequency of reshuffles and the
corresponding access patterns should not leak write-
access privacy. SqORAM adopts a physical layout simi-
lar to hierarchical ORAMs (Section 3.1) with several key
differences. In this section we overview the SqORAM
construction and present key insights. Further details
are provided in later sections.

4.1 Locality-Preserving Disk Layout

Organization. Similar to the case of hierarchical
ORAMs, in SqORAM N data blocks are organized in a
“pyramid” with multiple levels, each level twice the size
of the preceding one. Levels are further subdivided into
two identical buffers – a merge buffer and a write buffer.
Their function will be discussed shortly. The buffers
comprise multiple logical “buckets”, each bucket con-
taining up to β fixed-sized blocks. The level number de-
termines the number of buckets in the buffers: a buffer
in level i contains 2i buckets and overall level i contains
2i+1 × β blocks in total. The last level buffers contain
N/β buckets and can hold all N blocks. The total num-
ber of logical levels is O(log(N/B)

log(k)).
Insight 1: Locality-Preserving Storage Invari-
ant. To preserve logical domain access locality (e.g.,
reads by an overlying file system) it is desirable to phys-
ically store blocks sorted on their logical addresses. To
achieve this, SqORAM replaces level-specific hash ta-
bles used in standard hierarchical ORAMs with a lay-
out sorting blocks by logical addresses. This is allowable

since write-only privacy does not require storing blocks
at random locations as in standard hierarchical ORAMs
– since the adversary does not see reads and thus can-
not link reads with writes. Before being written to disk,
blocks are re-encrypted/randomized.

SqORAM stores levels in their entirety on-disk un-
der the following invariant, which enables seek-efficient
level reshuffles (as will be discussed shortly):

Blocks in level buffers are written to disk in as-
cending order of their logical addresses.

Level Index. To efficiently track the precise location
of blocks, SqORAM stores a search index for the merge
and write buffer in each level. In a given level, each
buffer has its own on-disk B-tree index, named buffer
map. Each buffer map node is stored in a physical block.
Buffer map tree leaf node entries contain tuples of the
form 〈laddr, paddr〉, where laddr denotes the logical ad-
dress of a block and paddr is an offset within the corre-
sponding buffer where the block currently resides. En-
tries are sorted on laddr.

Each internal node entry corresponds to a child
node and is a tuple of the form 〈child_addr, child_paddr〉.
Specifically, for each child node, child_addr is the value
of the lowest logical address noted in the child node and
child_paddr is the physical address corresponding to the
location of the child node on disk.

We remark that the buffer maps allow faster queries
than a binary search over the sorted blocks in the
buffers. This is because each B-tree node is stored in
a disk block which must be read/written as a whole,
and the tuples are small in size – 16 bytes each assum-
ing 8 byte logical and physical addresses. Thus, a large
number of tuples can be packed into a single node (e.g.,
256 entries for 4KB disk blocks), for a B-tree with a
large fan out and small depth. Queries can then be per-
formed more efficiently and with less number of seeks
than binary search. As we show in Section 5, the B-tree
maps can also be constructed in a seek-efficient manner.

4.2 Asymptotically-Efficient Level
Reshuffles

For hierarchical ORAM constructions, expensive level
reshuffle mechanisms are primarily responsible for high
performance overheads. In the SqORAM construction
described thus far, level reshuffles would constitute
obliviously sorting the combined contents in the merge
buffer and the write buffer of a level based on ran-

SqORAM 220

Fig. 1. SqORAM Layout. The database is organized into logk(N
B

) levels. Each level contains two identical buffers. Each buffer in level
i contains 2i buckets with β data blocks. Levels are stored sequentially to disk. Each buffer has a buffer map (B-tree) to quickly map
logical IDs to blocks within that buffer.

dom tags (e.g., logical address hashes), and writing the
sorted contents to the next level. This is not only expen-
sive in terms of access complexity (featuring an asymp-
totic complexity of O(N logN)) but also seek-intensive
as blocks are read from and written to random locations.
Insight 2: Oblivious Merge for Level Reshuf-
fles. Sorted layouts come with a significant additional
benefit: the ability to obliviously and efficiently merge
the write and the merge buffers in a level to create the
next level during level reshuffles. Obliviously merging
is asymptotically faster (by a factor of O(logN)) than
oblivious sorting. Importantly, such oblivious merges are
also more seek-efficient. Obliviously sorting blocks on
randomly-generated tags requires at least O(N logN)
seeks. In contrast, obliviously merging blocks from the
sorted buffers requires only O(N) seeks, as the merge
can be performed in a single pass. In fact, with a small
constant amount of memory, it is possible to reduce
seeks further (Section 5).
Worst-Case Construction. Typically, hierarchical
ORAMs [10], amortize the cost of the expensive reshuf-
fles over multiple queries. Unfortunately this comes with
often prohibitive worst-case delays when clients need to
wait (up to hours or days) for reshuffles to complete.

This is often impractical for existing system stacks with
pre-defined timeouts, such as file systems. Several so-
lutions have suggested de-amortizing the construction
[13, 17, 31]. However, as noted in [31], these solutions
do not strictly de-amortize the level reshuffle, since the
subtasks involved in oblivious sorting have widely dif-
ferent completion times. Proper monitoring and strict
de-amortization of hierarchical ORAMs is a non-trivial
task. Benefiting from the oblivious merges, SqORAM
presents a naturally un-amortized construction where
exactly the same amount of work is done per query, not
unlike efficient tree-based ORAM designs [27].

4.3 Efficiently Tracking Blocks for Queries

In hierarchical ORAMs, the exact location of a block
is precisely determined by its last access time. Once a
block is written to the top level, it moves down the levels
according to a precise periodic level reshuffle schedule.
Typically, during a query, each of the logN levels is
searched for the matching block. Once found at a par-
ticular level, the search continues in the next levels by
reading dummy blocks, to hide the location where the

SqORAM 221

block has been found. However, when reads cannot be
observed by the adversary, the search can stop as soon
as the block is found at a particular level.
Insight 3: Tracking Block Locations Using Last
Access Time Based Position Map. Moreover, us-
ing the last access time of a block, SqORAM can pre-
cisely track its location and perform queries efficiently
by directly reading the block from the level where it
currently resides. Time is measured by a write counter
tracking the number of writes since initialization. Last
access time information, in conjunction with the cur-
rent time, allows a precise determination of the level
and buffer in which a particular block resides.

The critical challenge is to privately and efficiently
store this information. With enough in-memory stor-
age, the last access times can be stored in memory, and
synced to the disk on clean power-downs. On power fail-
ure or dirty power-downs, the information can be recon-
structed in a linear pass over the level indexes only.

However, with limited memory, this information
needs to be stored and obliviously queried from disk.
To this end, SqORAM maintains an oblivious access
time map (ATM) structure. The ATM is similar to a
B+ tree with one key difference – instead of each B+
tree node storing physical addresses as pointers to its
children, the last access times of the children nodes act
as pointers and are stored in the nodes. ATM nodes
are stored in the same ORAM along with the data. The
ATM can be traversed from the root to the leaf for de-
termining the location of each child node on the path in
the ORAM, based on its last access time value. This is
detailed in Section 6.3. ßUsing the ATM, SqORAM can
reduce the number of index lookups during queries by
a factor of O(logN).

5 Amortized Construction
We first introduce an amortized construction to demon-
strate our key idea. Later Section 6 shows how to de-
amortize efficiently.
Search Invariant. As with most hierarchical ORAM
constructions, SqORAM ensures the following invariant:

The most recent version of a block is the first one
found when ORAM levels are searched sequen-
tially in increasing order of their level number.

5.1 SqORAM Operations

In this section, we detail the SqORAM operations.
• write(b, d): Writes block with address b and data d.
• merge(i): Merge contents of the buffers in level i and
write to level i+ 1 on disk.

• read(b): Read block with address b from the ORAM.
Writes. SqORAM performs data block writes to an in-
memory write queue. The queue is of the size of a bucket.
When the write queue is full (after β writes), its blocks
are sorted on their logical block addresses and flushed
to the write buffer of the ORAM top level.
Merging Levels: Intuition. Once the contents of the
write queue has been written to the write buffer of the
top level, SqORAM checks the state of the merge buffer
of the top level. Specifically, at this stage the following
two cases are possible:
• Merge buffer is empty: In this case, the buffers are
logically switched – the write buffer becomes the
merge buffer and the previously empty merge buffer
becomes the write buffer for future accesses.

• Merge buffer is full: In this case, the contents of the
write buffer and the merge buffer of the top level
are merged together to create the write buffer of the
second level. To this end, the (sorted) write buffer
and merge buffer buckets are read into memory. The
two buckets are merged, their blocks re-encrypted
and written sequentially to the write buffer buckets
in the second level.

Merging Levels: Protocol. Formally, merge(i) (Al-
gorithm 1 in Appendix) includes the following steps:
• Setup: Initialize two bucket-sized queues in mem-
ory corresponding to the write buffer (qw) and the
merge buffer (qm) of level i.

• Fill up queues: Read sequentially from the corre-
sponding buffers to the respective queues until full
(Steps 2 - 13). In case all 2i · β blocks have already
been read from the buffers, fake blocks (blocks as-
signed a logical block address of N + 1, containing
random data) are added to the queues instead.

• Write blocks from queues to next level until empty:
Retrieve a block each from both the queues, com-
pares their logical addresses and writes back the
block with the lower logical address sequentially to
the write buffer in level i+ 1 (Steps 14 - 25).

Handling Duplicates. If the queues contain dupli-
cates then the block in the write buffer queue(qw) will
be written (as it is more recent) and the block in the
merge buffer queue (qm) will be discarded (Steps 21,
22). Also, since fake blocks have a logical address of
N + 1, real blocks will be written to level i before fake

SqORAM 222

Write Queue Write Queue Write Queue Write Queue

Write
Buffer

Merge
Buffer

Write
Buffer

Merge
Buffer

Write
Buffer

Merge
Buffer

Write To Next Level

(a) (b) (c) (d)

Write
Buffer

Merge
Buffer

Fig. 2. Illustrative example of the merge protocol. (a) Blocks in the write queue are written to the write buffer in level 0. (b) The write
queue is flushed to the empty write buffer in level 0. After this, the blocks in the write buffer and merge buffer of level 0 are merged
and written to level 1. Once the write buffer of level 1 is full, the buffers iare switched. Figure (c) and (d) show how the two buffers in
level 1 are similarly filled and then merged and written to the next level(s).

blocks. This however is not a security leak since the lo-
cation of fake and real blocks are important only while
performing reads – which is not protected by SqORAM.
Semantic security ensures content-indistinguishability.
Bottom-Up Buffer Map Construction. SqORAM
employs a novel mechanism to optimize the number of
disk seeks that need to be performed to construct a par-
ticular B-tree buffer map. Specifically, the B-tree buffer
map for the write buffer of a level is constructed in a
bottom up fashion when blocks are written as a result
of a merge (Algorithm 1, Step 24). In particular, after a
new bucket is written to the write buffer of a level (Steps
14 - 25, Algorithm 1), a new leaf node is added to the
corresponding B-tree buffer map, containing logical and
physical addresses of blocks in that bucket.

After β leaf nodes have been added to the B-tree as
a result of subsequent accesses, a parent node of the β
leaf nodes is created in memory with an entry for the
minimum of the logical block addresses in the corre-
sponding leaf nodes (Figure 1). Once the parent node
has β entries, the parent node is written to the disk as
well. In this way, parent nodes are created in memory
before being written to the disk next to the children
nodes. Writing parent nodes next to the children nodes
sequentially on disk optimizes the number of seeks that
need to be performed while constructing the tree. Note
that this requires O(logN

log β) blocks of memory in order to
store the parent nodes up to the root.

Theorem 1. The amortized merge procedure (Algo-
rithm 1 in Appendix) ensures that all data blocks from
the merge and write buffers of level i − 1 (for any
i ≤ logN) are merged in ascending order of their logical
addresses and written to level i, within 2i · β accesses.

Proof. W.l.o.g. consider that at a particular stage of
the merge, x ≤ 2i−1 · β blocks have been written from
the write buffer of level i − i and y ≤ 2i−1 · β blocks
have been written from the merge buffer of level i−1 to
level i. Since, none of the buffers have been read entirely
(ctrw, ctrm ≤ 2i−1 · β), both qw and qm will contain
only real blocks at this stage. Now, consider that in
subsequent 2i−1 · β − y accesses, all remaining blocks
from the level i − 1 merge buffer are written to level
i (the same argument holds if blocks from the write
buffer are written to level i instead). In this case, qm
will contain fake blocks for the remaining 2i−1 · β − x
accesses (Step 13).

Since fake blocks invariably have logical address
N + 1 (greater than the logical address of any real data
block), the next 2i−1 ·β−x writes will be from qw (Step
23), until both qw and qm contain fake blocks. Further,
either of the buffers in level i − 1 can contain at most
2i−1 · β real blocks and fake blocks can be added to qw
only after all real data blocks have been written (Step
7). Thus, the remaining real blocks from the write buffer
will be necessarily written to level i within the next
2i−1 · β − x accesses. �

SqORAM 223

Theorem 2. The amortized merge protocol (Algo-
rithm 1 in Appendix) ensures that during the merge all
writes to level i are uncorrelated and indistinguishable,
independent of the logical block addresses.

Proof (sketch): Observe that while merging the buffers
in levels i−1 and writing the constituent blocks to level
i (for any i ≤ logN), the only steps observable to the
adversary are the writes performed by Steps 40 and 43
(Algorithm 1). The rest of the steps involve reads or
in-memory operations.

Invariably the merge process writes 2i · β blocks to
level i every 2i·β writes by repeatedly executing Steps 40
and 43. Each execution of Step 40 writes an encrypted
block to a predetermined location (public information)
in a particular level in the ORAM, irrespective of the
logical block address and content. Similarly, each execu-
tion of Step 43 writes an encrypted block to a predeter-
mined location in the last level, irrespective of the logi-
cal address and content. If there are less than 2i · β real
blocks to write to level i, fake blocks are written instead.
Semantic security ensures that fake blocks are indistin-
guishable from real data blocks. Therefore, observing
the location, periodicity and content of the writes does
not provide any advantage to the adversary in guessing
block addresses and contents.

�

Reads. SqORAM reads are similar to queries in hi-
erarchical ORAM constructions. Specifically, reads are
performed by searching each level in the ORAM sequen-
tially for the required block. A block may reside either in
the write buffer or the merge buffer of a particular level
at any given time. Therefore, both the buffers in a level
must be checked for a block – SqORAM checks the write
buffer first since it contains blocks that have been more
recently updated than the blocks in the merge buffer. As
a result, the most up-to-date version of a block is found
before other (if any) invalid versions.

Retrieving a particular block requires querying the
maps for the write buffer and the merge buffer (in order)
at each level, starting from the top level and sequentially
querying the levels in increasing order of the level num-
bers, until an entry for the block is found. Then, the
block is read from the corresponding buffer.
Write Access Complexity. Note that during con-
struction of level i, 2i−1 buckets each in the write buffer
and the merge buffer in level i− 1 are merged and writ-
ten to level i. For the merge 2i buckets in total have to
be read from level i − 1 exactly once while 2i buckets
are written exactly once to level i. Further, constructing

the B-tree map for the write buffer in level i requires
writing 2 × 2i blocks. Level construction for level i can
thus be performed with O(2i) accesses.

Since each level is exponentially larger than the pre-
vious level, level i is constructed only after 2i×β writes.
The amortized write access complexity is:

logN/B∑
i=0

O(2i·β)
2i×β = O(logN)

Read Access Complexity. The read access complex-
ity of the amortized construction is O(logN × logβ N)
since to read a block, a path in the B-tree buffer maps at
each level must be traversed to locate the level at which
the block exists. Each buffer in level i has 2i×β blocks.
To determine the height of the buffer map B-trees for
a level, note that each leaf of the tree contains β tu-
ples. With each tuple then corresponding to a block, the
number of leaves in the B-tree for that level is 2i. Con-
sequently, the height of the B-trees (with fanout β) for
level i is logβ 2i = O(logβ N). For a 1TB disk with 4KB
blocks and 64-bit addresses, β = 256 and logβ N = 4.

Theorem 3 (Seek analysis). SqORAM requires
O(logN)

β disk seeks, amortized over the number of writes,
to perform level reshuffles across logN levels with 2 · β
blocks of in-memory memory.

Proof. Consider the process of merging buffers in level
i − 1 (Algorithm 1). First, blocks are read sequentially
from the merge buffer and the write buffer of level i− 1
into the in-memory queues, qm and qw respectively, until
the queues are full. Observe that filling up the queues
requires only two disk seeks overall – to place the head
at the starting locations of the respective buffers.

After the queues are full, β blocks are written to
the write buffer of level i sequentially, which requires
one disk seek. Finally, a leaf node is added to the corre-
sponding buffer B-tree map with entries for block that
are written to the bucket, and the parent node(s) of the
leaf node are updated in memory. If required, the parent
node(s) are flushed to the disk and written sequentially
after the leaf node. Overall, writing β blocks to the write
buffer in level i and updating the B-tree map requires
only a constant number of seeks in total.

Since, the write buffer of level i contains 2i buckets,
the total number of seeks for entirely filling up the write
buffer is O(2i). Also, the write buffer in level i fills up
every 2i writes. Thus, the number seeks for all level
reconstructions amortized over the number of writes is:

SqORAM 224

logk(N
B)∑

i=0

O(2i)
2i·β = O(logN)

β

�

Observe that for β = O(logN), SqORAM requires a
constant number of disk seeks to perform level reshuf-
fles, amortized over the number of writes. A bucket size
of O(logN) entails allocating O(logN) blocks of mem-
ory for storing the queues. This is not impractical –
e.g., the actual memory required to be allocated for
the queues in order to achieve an amortized number
of seeks equal to 1, with 4KB blocks and 1TB disk is
M = 2× 4× (30) = 240 blocks, or 960KB.

Theorem 4. The amortized SqORAM construction
provides write-access privacy (Definition 3).

Proof (sketch): Consider two equal length write access
patterns, ~A = w1, w2, . . . wi and ~B = x1, x2, . . . xi. When
either of the access patters are executed, i encrypted
blocks are first added to the in-memory write queue ir-
respective the logical addresses. Once the write queue is
full, its contents are written the top level encrypted with
semantic security. The top level contents do not leak any
information about whether ~A or ~B was executed.

Flushing the write queue will trigger level reshuffles
for k < logN levels. Theorem 2 shows that the writes to
the disk while reshuffling any level are uncorrelated to
each other and independent of the block addresses and
content. Therefore, the writes performed for reshuffling
level j ≤ k when ~A is indistinguishable from the writes
performed when ~B is executed.

Further, level reshuffles are independent of each
other and are triggered at periodic intervals determined
solely by the number of writes performed (public infor-
mation). Therefore, by observing the writes to the top
level and the writes due to the level reshuffles an adver-
sary can only do negligibly better than purely guessing
whether ~A or ~B was executed.

�

6 De-Amortized Construction
The amortized construction achieves appreciable per-
formance incentives over [4] by reducing the amortized
write access complexity and number of seeks per write.
However it also suffers from two major drawbacks: i)
the read access complexity is higher and ii) the worst
case write access complexity is O(N) (for merging and

Fig. 3. Level design for the de-amortized construction. Level i has
two sets containing 2i buckets for each buffer. The buckets in the
two sets are denoted as generation 0 buckets and generation 1
buckets respectively

reconstructing the last level). Therefore, to make SqO-
RAM usable in practice, we first present a practical de-
amortized version in the following and then describe
how to reduce the read access complexity.

6.1 De-Amortized Writes

De-amortization for hierarchical ORAMs is achieved by
leveraging extra space [13, 17, 31]. These techniques ef-
fectively ensure that each query takes roughly the same
amount of time by monitoring progress over subtasks
and forcing query progress to be proportional to level
construction [31]. However, as noted in [31], this does
not strictly de-amortize the level reshuffle, since sub-
tasks have widely different completion times – correct
monitoring and strict de-amortization of hierarchical
ORAMs is a non-trivial task.

In contrast, our key idea is to leverage the fact that
SqORAM does not protect reads and achieve strict de-
amortization. This ensures that each write performs ex-
actly the same amount of work and has identical com-
pletion time, eliminating the need for additional syn-
chronization between queries and reshuffles.
Key Differences from Section 5. In order to de-
amortize the construction we make several changes:
• Leveraging extra space to continue reshuffles in
background with queries: As in [13, 17], SqORAM
uses extra space per level to continue writes while
reshuffling. In particular, each bucket in a level
is duplicated – the two set of buckets are termed
generation 0 and generation 1 buckets respectively
(Figure 3). Each generation is augmented with a B-
tree search index (similar to the buffer maps in the
amortized construction)

• Merging contents in generations: Instead of merging
blocks in the merge buffer and the write buffer of a

SqORAM 225

level, the blocks in the generation 0 and generation
1 buckets of the merge buffer are merged together
and written to the write buffer of the next level.
The results of the merge are written to a particular
generation of the write buffer in the next level:
– If generation 0 buckets are empty, then the

blocks after the merge are written to the gener-
ation 0 buckets.

– If generation 0 buckets are already full, the
blocks after the merge are written to the gener-
ation 1 buckets.

Once the write buffer of a level is full, it is switched
with the merge buffer. At this stage, the merge
buffer is invariably empty. Buffers are used alterna-
tively for merging levels (merge buffer) or for writes
from the previous level (write buffer).

Last Level Organization. In addition, the last level
is organized differently from the other levels – the last
level contains only one buffer with N/β buckets, or N
blocks in total. Blocks in the last level are also placed
in a different manner – the offset at which a block is
placed in the last level buffer is determined by its log-
ical block address – e.g., if the logical block address of
a given block is l and the last level buffer starts from
physical address x, the block will be placed at physi-
cal address x+ l. Contrast this with other levels where
blocks within a buffer are sorted according to the logical
address but the physical location has no correspondence
with the logical address. As we will show later, this does
not leak security and is crucial for the correctness of our
de-amortized merge protocol.
De-Amortized Merge: Intuition. Essentially, the
de-amortized merge protocol writes β blocks sequentially
to a bucket in each of the logN levels. The specific
bucket that is written at a particular level is determined
based on the current value of the global access counter.
In particular, since the write buffer in level i contains
2i+1 buckets in total (two generations with 2i buckets
each) and one new bucket is written each time a merge
is executed after a write queue flush, all 2i+1 buckets
in the write buffer will be written once the write queue
has been flushed 2i+1. Subsequently, the write buffer
is switched with the empty merge buffer and the next
bucket to be written to the new write buffer in level i
will be the first bucket. The de-amortized merge protocol
reconstructs each level in tandem, one bucket at a time.
De-Amortized Merge: Protocol. Formally, the de-
amortized merge protocol, merge_deamortized (Algo-
rithm 2 in Appendix) includes the following steps:

1. Setup: The de-amortized merge protocol requires
few supporting counters that are initialized during
setup and two queues for each level:
• qx0 – In-memory queue of size β used to store
blocks from generation 0 of the merge buffer of
level x < logN .

• qx1 – In-memory queue of size β used to store
blocks from generation 1 of the merge buffer of
level x < logN .

• ctrx0 – Tracks the number of blocks that have
already been read to qx0 from generation 0 of
the merge buffer of level x < logN .

• ctrx1 – Tracks the number of blocks that have
already been read to qx1 from generation 0 of
the merge buffer of level x < logN .

2. Merge buffers and write to next level: For each level
x < logN , perform the following sub-steps –
(a) Fill Up Queues: Fill up the two queues qx0 and

qx1 with blocks read sequentially from the gen-
eration 0 buckets and generation 1 buckets of
the merge buffer in level x (Lines 6 - 17). Sim-
ilar to Algorithm 1, if all real blocks have been
read from the two generations, fake blocks are
added instead (lines 8, 14). The values of ctrx0
and ctrx1 indicate the next blocks to be read
from the respective generations.

(b) Write to next level: Write β blocks sequentially
to the write buffer in level x+ 1 (Lines 18 - 31).

Last Level Writes. The merge to the last level is han-
dled slightly differently. Recall that due to the special
organization of the last level, a block with logical ad-
dress j must be invariably written to offset j within the
last level buffer. Thus, the value of ctrnext for the last
level is determined keeping in mind that there is only a
single buffer with N/β buckets in the last level (Line 5).
ctrnext points to the next offset in the last level where
the next block will be written after the merge. In case
this does not match with the logical address of either
of the blocks from the two previous level queues, the
block at that offset is re-encrypted for indistinguisha-
bility (Lines 31 - 32). Otherwise, the required block is
written from one of the queues assigned for the second
to last level. (Line 34 - 41).

Theorem 5. The de-amortized merge protocol (Algo-
rithm 2) ensures that by the time the write buffer of
level i < logN is full, all real data blocks from the merge
buffer of level i have been written to level i+ 1.

Proof. Every successive execution of Algorithm 2 writes
β blocks to the write buffer of level i sequentially. At the

SqORAM 226

Write Queue

G0 G1 G0 G1

G0 G1 G0 G1 G0 G1 G0 G1

Write Queue

G0 G1 G0 G1

G0 G1 G0 G1 G0 G1 G0 G1

Merge Buffer Write Buffer Merge Buffer Write Buffer

Merge Buffer Write BufferMerge Buffer Write Buffer

Write Queue

G0 G1 G0 G1

G0 G1 G0 G1 G0 G1 G0 G1

Merge Buffer Write Buffer

Write Buffer Merge Buffer

Write Queue

G0 G1 G0 G1

G0 G1 G0 G1 G0 G1 G0 G1

Merge Buffer Write Buffer

Write Buffer Merge Buffer

(a) (b)

(c)(d)

Fig. 4. De-amortization example for 3 levels. In (a) and (b), the generation 0 and generation 1 buckets in the merge buffer of level 1
are merged to form generation 0 of level 2 while writes from the write queue are 1 to the write buffer in level 1. Once generation 0 in
write buffer in level 2 has been written (and the merge in the merge buffer of level 1 has been completed), the buffers are switched. In
(c) and (d), the merge in level 0 creates generation 1 of level 2 while writes are performed to the write buffer.

same time, β blocks are written from the merge buffer
of level i to the write buffer in level i + 1. Note that
within exactly 2i+1 successive executions of Algorithm
2, the write buffer of level i will be full. But within the
same time, 2i+1 · β blocks will have been written from
the merge buffer of level to level i + 1 (Line 18 - 29).
From Theorem 1, all real blocks from the merge buffer
of level i will necessarily be written to level i+ 1 within
2i+1 ·β writes. Thus, when the buffers are switched after
2i+1 · β writes, all valid content from the merge buffer
of level i will be in level i+ 1. �

Theorem 6. The de-amortized merge protocol (Algo-
rithm 2 in Appendix) ensures that during the merge all
writes to level i are uncorrelated and indistinguishable,
independent of the logical block addresses.

Proof (sketch): Observe that while executing Algorithm
2, the only steps visible to the adversary are the writes
performed by Steps 47 and 63. Each execution of Step 47
writes an encrypted block to a predetermined location
(public information) in a particular level in the ORAM,
irrespective of the logical block address and content.
Similarly, each execution of Step 63 writes an encrypted

block to a predetermined location in the last level, irre-
spective of the logical address and content.

Effectively, Steps 33 - 65 write β blocks sequentially
in the write buffer in each level, starting from a level-
specific predetermined location. The merge protocol is
executed invariably after every write queue flush. Fur-
ther, if there are less than β real data blocks that can
be written to a particular level, fake blocks are written
instead. Semantic security ensures that fake blocks are
indistinguishable from real data blocks. Therefore, the
locations where blocks are written or the periodicity of
the writes does not reveal to the adversary any infor-
mation about block addresses and contents.

�

Write Access Complexity. For each invocation of
the de-amortized merge algorithm after the in-memory
write queue has been filled up, one bucket is written
to each level. Since the write queue is the same size
as the buckets, the overall write access complexity is
O(logN). Effectively, the de-amortization converts an
O(logN) amortized construction with a worst case of
O(logN) to an O(logN) worst case construction.
Number of Seeks. Observe that once the write queue
is filled up (after β new writes), the constituent blocks
are flushed to the ORAM top level and the de-amortized

SqORAM 227

merge protocol (Algorithm 2) is executed. The protocol
writes a bucket to each of the logN levels. Writing a
bucket to a level requires one seek while filling up the
two queues with blocks from the previous level merge
buffer requires a seek each. In effect, the write queue
flush after β writes triggers a reshuffle mechanism which
requires s = 3 · logN seeks. An additional seek is per-
formed for updating corresponding B-tree buffer map.
Thus, the number of seeks performed per write is 4·logN

β

Similar to Section 5, with β = O(logN), the num-
ber of seeks performed by the SqORAM de-amortized
construction is a constant.

6.2 Efficient Reads

The asymptotic read complexity for the de-amortized
construction is O(logβ N × logN). In contrast, position
map-based write only ORAMs [4, 5, 24] benefit from
asymptotically faster reads with O(logN) access com-
plexity. The additional read complexity for hierarchical
ORAMs is the result of checking up to logN levels in
order to locate a particular block, which in turn entails
querying per-level indexing structures.
Reducing Read Complexity. Unfortunately, it is
non-trivial to track the precise location of each block
in SqORAM. This is because a block moves down the
levels due to periodic reshuffles even when the block is
not specifically updated. Also, the location of each block
in a level depends on other blocks present in that level.

To perform reads efficiently in SqORAM, our key
idea is to correctly predict the level, the buffer and the
generation in which a block resides currently. Then, only
the buffer map for that generation can be queried to de-
termine the actual physical location of the block, thus
avoiding buffer map checks in all other levels. This is
possible since ORAM writes trigger level reconstruc-
tions deterministically – each flush from the write queue
is followed by writing exactly one bucket at each level.
So, the number of write queue flushes required before
the write buffer of a level is full depends only on the
level size. In particular, the level in which a block cur-
rently resides can be accurately predicted by comparing
the value of a global access counter – tracking the to-
tal number of writes since initialization – and the last
access time for the block (mechanism detailed below).
The last access time for each block is the value of the
global counter when the block was flushed from the
write queue.

Using this mechanism, only one level needs to be
checked for a block read, reducing the asymptotic read

access complexity by a factor of O(logN). In fact, the
idea can be extended further to also correctly predict the
buffer and the generation in the level where a particular
block currently resides and reduce the constants further.

First, we describe the mechanism to predict the
level, buffer and generation for a a block and then in
Section 6.3 show how to efficiently store the last access
time information.
Identifying Generation. Consider a block with log-
ical address x that was last accessed when the value
of the global access counter was c. Also, let the cur-
rent value of the global counter be g. Thus, after x was
written, the write queue was flushed g − c times more.
During this time, x moved down the levels due to the
merge protocol after every flush.

Predicting the generation to which x will be written
in a level is relatively straightforward. Observe that by
construction the ORAM is initialized with empty levels
– the first time generation 0 of level i will be full is
when it contains all blocks written as part of the first
2i · β writes. In other words, blocks written during the
first 2i · β writes (write queue flushed to disk 2i times)
will be written together to generation 0 in the write
buffer in level i due to the periodic execution of the
merge protocol. Similarly, the next 2i ·β writes will be to
generation 1 in the write buffer in level i. In particular,
the kth group of 2i·β writes will be to generation k mod 2
in level i write buffer.

Observation (Identifying Generation). If a block x is
written when g = c, and k =

⌊
c/2i

⌋
, then currently

x resides in generation j in level i write buffer where
j = k mod 2.

Identifying Level. To determine the level in which
x currently resides, we specifically track the number of
write queue flushes that x spends in level i. Based on
this, Algorithm 3 (in Appendix) determines the level
by calculating the cumulative time x spent in all levels
j < i, for each level i (Lines 5 - 10) and comparing with
the total number of write queue flushes that have taken
place since x was written (Line 4).
Identifying Buffer. To identify the correct buffer in
which x currently resides in level i, we need to determine
the number of writes that have taken place since x was
written to level i. Specifically, the total number of write
queue flushes performed after x was written to level i:

w = g − c−
i−1∑
j=1

flushj (1)

SqORAM 228

Here flushj is the number of write queue flushes x
spend in level j as determined by Algorithm 3. The dif-
ference in the number of write queue flushes x cumula-
tively spent in levels 0 to i − 1 with the total number
of write queue flushes that have been performed since
x was written determines the number of write queue
flushes performed after x was written to level i. Thus, x
is currently in generation 1 in the merge buffer of level
i if x was written to generation 0 in level i and w > 2i.

6.3 Access Time Map

To use the mechanism described above, we need to
track the last time a particular block was accessed. For
this, SqORAM stores an oblivious data structure (ODS),
named the access time map (ATM) within the same
ORAM with the data. In structure, the ATM is effec-
tively a B+ tree but unlike a standard B+ tree where
each node stores pointers to its children nodes, each node
in the ATM stores an access time value for its children.
The ATM is traversed from the root to the leaf by deter-
mining the location of each child node on the path based
on its last access counter value as described above.
ATMDesign. Each node of the ATM is assigned a log-
ical address within the same address space as the data
blocks. In particular, each leaf node of the ATM stores
a tuple 〈laddr, last_access_ctr〉 where laddr is the logi-
cal address of a block and last_access_ctr is the value
of the global access counter when the block was last
written to the write queue. Recall that the global ac-
cess counter tracks the number of times the write queue
has been flushed since the ORAM initialization. Each
leaf node is stored in one disk block. The number of
entries that can fit in a disk block depends on the size
of the tuple. Assuming 64 bit logical addresses and last
access counter values, the number of entries in a block
can also be fixed as β (as defined before). Consequently,
the height of the tree is logβ N with a fanout of β.

The leaf nodes themselves are ordered from left to
right on the basis of the logical address – the leftmost
leaf node has entries for logical block addresses 1 to β
while the rightmost leaf node has entries for addresses
N − β to N . Thus, it is straightforward to determine
the path in the tree corresponding to an entry for a
particular block address since the logical block address
uniquely defines the corresponding path in the ATM.

Each internal node contains a tuple that keeps
track of the 〈laddr, last_access_ctr〉 values of its children
nodes. The root of the ATM is stored in-memory and
allows traversing a path of the ATM by determining lo-

Fig. 5. Writing a path of the ATM in the write queue after up-
dating the path corresponding to an updated data block.

cations of the nodes in the ORAM based on the last
access counter values.
Querying the ATM. To read block b (Algorithm 4
in Appendix), first the ATM path corresponding to the
leaf containing the entry for b is traversed to determine
the last access counter value of the block for b (Lines
1 - 9). This determines the level, buffer and generation
where the block currently resides in the ORAM. Then
the buffer map of the corresponding level, buffer and
generation is queried for the location of b and the block
is read from there (Line 11 - 13).

The height of the ATM is O(logβ N) and the height
of the buffer map is bounded by O(logβ N). Therefore,
the overall read complexity is O(log2

β N) – the ATM re-
duces the read complexity of the de-amortized construc-
tion from O(logβ N × logN) to O(log2

β N) with β >> 2.
Updating the ATM. If a data block is to be writ-
ten/updated (Algorithm 5 in Appendix), it is first writ-
ten to the write queue (line 1). This is followed by up-
dating the last accesses counter value for that block in
the ATM. Specifically, the leaf node on the ATM path
containing an entry for the block is first updated with
the new access counter value for the block (Line 4).
Then, the path is updated with the new access counter
values for the children nodes up to the root (Line 5 -
7), and the updated nodes are added to the write queue
(line 6). At this stage, if the write queue is full, it is
flushed to the top level and the de-amortized merge pro-
tocol (Algorithm 2) is executed (Lines 8 - 10).

Observe that each write of a data block is followed
by updating the corresponding path in the ATM. Thus,
the actual number of data blocks that can be written
to the write queue before a flush (and consequently the
overall write throughput) reduces by a factor equal to
the height of the ATM (Figure 6).
Sequential Reads. Exploiting sequentiality in logical
blocks written together, allows optimizing the through-

SqORAM 229

Fig. 6. (a) The state of the write queue when random data
blocks are written and the corresponding ATM paths do not in-
tersect. (b) State of the write queue when logically sequential
data blocks are written. Only one path common to all the data
blocks needs to the be updated for the ATM.

put by writing nodes common to the ATM path corre-
sponding to multiple writes only once. For example, in
Figure 6, if all the data blocks in the write queue have
entries within the same leaf node of the ATM, then the
updated nodes on the corresponding path can be writ-
ten only once after all the data writes have been com-
pleted. This reduces the overhead of writing the same
path multiple times. Since, the height of the tree, logβ N
is small (4 for a 1TB database with β = 256), writing
4 map blocks instead of data blocks in a write queue
of size β = 256 leads to minimal reduction in overall
throughput. Thus, sequential writes are faster than ran-
dom writes in SqORAM.
Effect of Caching. Caching can dramatically improve
read throughput by avoiding seeks in between sequential
reads. In this case, using a cache of O(logβ N) blocks for
storing a path of the ATM allows optimizing the number
of nodes that need to be accessed for the next read. If the
next read is sequential and has the logical block address
within the leaf node in the cache, the ATM traversal to
locate the level for the block can be completely avoided.
Map Caches. To further optimize sequential reads,
recently read leaf nodes from the buffer maps can be
cached in memory. Since the leaf nodes contain entries
sorted on logical addresses, blocks with sequentially in-
creasing logical addresses will have entries within the
same leaf node. Thus, for sequential reads, if an entry
for a block is found in the ATM path in memory, then
instead of querying the buffer map at the required level
(and incurring an overhead of O(logβ N)), the entry for

that particular block will be found in the cached leaf
node for that buffer map.

Theorem 7. The deamortized SqORAM construction
provides write access privacy (Definition 3).

Proof (sketch): Consider two equal-length write access
patterns ~A = w1, w2, . . . wi and ~B = x1, x2, . . . xi. First,
note that in the de-amortized construction (similar to
the amortized construction) when either of ~A or ~B is
executed, i blocks are added to the write queue irre-
spective the logical addresses. Once the write queue
is full, its contents are written the top level write
buffer, encrypted with semantic security. Further, the
de-amortized level reshuffling protocol ensures the same
security guarantees as the amortized protocol – while
reshuffling level j < logN , the writes to the disk are un-
correlated to each other and independent of the block
addresses (Theorem 6). Therefore, by simply observing
the writes to the top level and the writes due to the
level reshuffles, an adversary can only do negligibly bet-
ter than purely guessing whether ~A or ~B was executed.

�

7 Evaluation
SqORAM has been implemented as a kernel device map-
per as well as a virtual block device using the Block
Device in User Space (BUSE) [8] framework for a fair
comparison with all related work.

7.1 Kernel-Space Implementation

SqORAM has been implemented as a kernel device map-
per and benchmarked in comparison with the kernel im-
plementations of HIVE [4] and DataLair [5]. The cipher
used for encryption is AES-CTR (256 bit) with indi-
vidual per-block random IVs. IVs are stored in a pre-
allocated location on disk. Underlying hardware blocks
are 512 bytes each and 8 adjacent hardware blocks con-
stitute a “physical block” (4KB in size).
Setup. Benchmarks were conducted on Linux boxes
with Intel Core i7-3520M processors running at 2.90GHz
and 4GB+ of DDR3 DRAM. The storage device of
choice was a 1TB IBM 43W7622 SATA HDD running
at 7200 RPM. The average seek time and rotational la-
tency of the disk is 9ms and 4.17ms respectively. The
data transfer rate is 300MB/s. SqORAM was built on a

SqORAM 230

SeqRead SeqWrite
0

20

40

60 59.4

32.2

18 16.1

30

4.8

48.6

6.1

T
hr
ou

gh
pu

t
(M

B
/s
)

Baseline DetWoORAM
SqORAM (on-disk ATM) SqORAM (in-memory ATM)

(a) Sequential Access Throughput

RandRead RandWrite
0

2

4

6

8

10

12

1.7

4.6

0.4

12

0.12
1.20.7

5

T
hr
ou

gh
pu

t
(M

B
/s
)

Baseline DetWoORAM
SqORAM (on-disk ATM) SqORAM (in-memory ATM)

(b) Random Access Throughput

R=30%
W=70%

R=60%
W=40%

R=70%
W=30%

20

30

40

50 48.7 48.5 48

20 21
19.1

15

23.5

31.3

T
hr
ou

gh
pu

t
(M

B
/s
)

Baseline DetWoORAM SqORAM

(c) Workload Benchmarks
Fig. 7. Throughput comparison in MB/s (higher is better). The baseline is a block device implemented in BUSE that translates FS
requests to block requests. (a) When the ATM is stored in memory, SqORAM can achieve almost raw-disk sequential read throughputs
and slightly better performance for random reads compared to DetWoORAM. When the ATM is on disk, SqORAM sequential read
throughput is higher (almost 2x) than DetWoORAM sequential read throughput. (b) SqORAM outperforms DetWoORAM for random
reads. (c) Throughput comparison in MB/s (higher is better) for different read/write distributions. With 70% reads and 30% writes,
SqORAM is 1.6x faster than DetWoORAM [24]. DetWoORAM performs generally better for write-intensive workloads.

Table 1. Throughput comparison in MB/s (higher is better).
SqORAM features a 150x speedup over HIVE [4] and DataLair
[5] for sequential reads and a 100x speedup for sequential writes.
SqORAM random read performance is comparable to HIVE [4].

Access dm-crypt SqORAM HIVE [4] DataLair [5]

Sequential Read 91 21 0.135 0.200
Sequential Write 88 1.5 0.016 0.110
Random Read 5.0 0.055 0.120 0.105
Random Write 4.3 1.0 0.014 0.2

256GB physical partition. Benchmarks were performed
using FileBench version 1.4.9.1 on Ubuntu 14.04 LTS,
kernel version 3.13.6. Results for HIVE [4] were collected
by compiling the open source project [3]. We thank the
authors of DataLair [5] for providing their implementa-
tion. All tests were run multiple times and results were
collected with a 95% confidence interval.
Results. Tests were performed using the sequen-
tial and random read/write workload personalities of
FileBench. Sequential accesses were measured over a
8GB file by performing individual 1MB sequential IOs.
Using a file size twice the size of the available DRAM
(4GB here) eliminates caching effects. For random
reads/writes, individual I/O sizes were reduced to 4KB.
Table 1 compares the sequential and random read/write
throughputs for SqORAM with HIVE, DataLair and
dm-crypt, a Linux device mapper for disk encryption.

SqORAM is 150x faster than HIVE [4] for sequen-
tial reads and 100x faster for sequential writes. Random
write performance for SqORAM and HIVE [4] are com-
parable while HIVE [4] peforms better for random reads

as it features a read complexity of O(logβ N) compared
to O(log2

β N) for SqORAM.

7.2 Userland Implementation

To compare with the user space implementation of Det-
WoORAM [23], SqORAM has also been implemented
as a virtual block device using the Block Device in User
Space (BUSE) [8] framework. The baseline is a block de-
vice which translates file system requests into block re-
quests to the underlying device. It is necessary to build
a baseline from the ground up since, as also noted in
[24], simply using a loopback device with BUSE as the
baseline unfairly overestimates performance by directly
offsetting arbitrary lengths within the partition without
any address translation to blocks.

Tests were run on a 40 GB ORAM (similar parame-
ters as used in [24]). Each ORAM volume was mounted
using an ext4 file system. DetWoORAM was setup with
the holding area equal to thrice the size of the main
area. Filebench results are presented in Figure 7.
Micro-Benchmark Results. DetWoORAM performs
better for writes since it performs two physical writes
for each logical write in contrast to the logN worst case
writes in SqORAM. Both logically random and sequen-
tial writes in DetWoORAM result in the same physical
writes by construction.

Being optimized for reads, SqORAM outperforms
DetWoORAM for sequential reads. The advantages of
maintaining data locality can be clearly observed in the
sequential read throughput, where the overhead com-

SqORAM 231

pared to the baseline is less than 2x. In fact, for memory-
rich systems if the ATM is stored in-memory, SqO-
RAM can achieve sequential read throughputs close to
the baseline. For a 40GB partition, the ATM requires
128MB of memory considering 64 bit access time coun-
ters. Note that trivially storing in-memory maps for
DetWoORAM will not result in similar gains as log-
ically sequential data is not maintained close on disk
throughout its lifetime due to frequent updates.

Interestingly, for random writes both DetWoORAM
and SqORAM outperform the baseline. This is because
for the baseline, the logical address of a block deter-
mines the physical address where the data is written on
disk. Thus, writing to random logical addresses, incurs a
large amount of disk seeks. For both DetWoORAM and
SqORAM, the physical addresses for performing writes
are not correlated to the logical addresses, and all writes
are performed while preserving locality of access.
Effect of Workload Distribution. To further in-
vestigate the effects of the read/write distribution in
workloads on the performance of SqORAM, we eval-
uated three FileBench workloads with SqORAM and
DetWoORAM [24] with different read-write distribu-
tions. For the read-intensive workloads (> 50% reads),
SqORAM is almost 1.7x faster than DetWoORAM and
only 1.5x slower than the baseline. Note that typical
file system workloads are read-intensive [18, 25]. For
the write-intensive workload (e.g., for online backup ser-
vices), DetWoORAM is generally faster than SqORAM.
File System Aging & Effect of Micro-Writes. As
noted before, the physical layout of DetWoORAM is
similar to a log-structured file system. It is well known
that log structured filesystems perform poorly for reads
– performance degrades over time as the file system ages
– as an increasing number of smaller random writes (up-
dates) are performed across large sequential files [16].
This results in a file’s blocks being scattered, making
sequential reads more expensive. Standard micro bench-
marks do not capture this behavior since in most cases,
sequential reads are performed on a sequentially written
file without interleaving random writes.

To understand the effects of micro-writes, we use a
sequential read after random write benchmark [16]. The
test writes a large file (1GB) sequentially, followed by a
sequential read. Then, a fixed number (around 100MB)
of random block-sized random writes are performed on
the file. This is followed by sequentially reading the file
again and comparing the read throughput with the ear-
lier reported value. Results are tabulated in Table 2.

The sequential read throughputs for the baseline
and SqORAM remain largely unaffected due to data lo-

Table 2. Throughput comparison. (MB/s, higher is better). A
series of block-sized random updates to a large file, sequentially-
written on disk by DetWoORAM, results in a drop in the sequen-
tial read throughput while reading the file subsequently. The drop
in throughput for the baseline and SqORAM are not significant.

ORAM Before random write After random write

Baseline 61 60.7
SqORAM 47.2 42
DetWoORAM [24] 18.7 10.2

cality – logically-close blocks remain close on disk. Det-
WoORAM throughput however drops since blocks are
increasingly scattered and additional seeks are required.
Memory Footprint. SqORAM does not require more
than 30MB (mostly for caches and queues), even for
1TB+ ORAMs. The full access time map for a 40GB
ORAM takes up less than 128MB, and if stored in mem-
ory, the total memory footprint for SqORAM is upper-
bound by 200MB. In that case, periodically syncing the
ATM with an on-disk copy can ensure crash consistency.

8 Conclusion
This work describes the design and implementation of
SqORAM, a write-only ORAM that achieves write ac-
cess privacy while preserving locality of access for both
reads and writes. SqORAM maintains an increased level
of data locality over time, thus significantly increasing
throughput for both sequential reads and writes.

Compared to randomization-based write-only
ORAMs, SqORAM is orders of magnitude faster for
both sequential reads and writes. SqORAM is 60%
faster than the state-of-the-art for a typical file system
workload and is only 1.5x slower than the baseline.

9 Acknowledgements
This research is supported by the National Science
Foundation under awards 1526707, 1526102 and by the
Office of Naval Research. We thank the anonymous re-
viewers for their valuable comments and suggestions.

SqORAM 232

References
[1] G. Asharov, T.-H. H. Chan, K. Nayak, R. Pass, L. Ren, and

E. Shi, “Locality-preserving oblivious ram,” vol. 11477, pp.
214–243, 2019.

[2] A. J. Aviv, S. G. Choi, T. Mayberry, and D. S. Roche,
“Oblivisync: Practical oblivious file backup and synchro-
nization,” in 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017, 2017.

[3] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu,
“Hive,” "http://www.onarlioglu.com/hive".

[4] E. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “To-
ward robust hidden volumes using write-only oblivious
RAM,” in Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, 2014, pp. 203–214.

[5] A. Chakraborti, C. Chen, and R. Sion, “Datalair: Efficient
block storage with plausible deniability against multi-snapshot
adversaries,” PoPETs, vol. 2017, no. 3, p. 179, 2017. [Online].
Available: https://doi.org/10.1515/popets-2017-0035

[6] A. Chakraborti, A. J. Aviv, S. G. Choi, T. Mayberry,
D. S. Roche, and R. Sion, “roram: Efficient range
ORAM with o(log2 N) locality,” in 26th Annual Network
and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019, 2019.
[Online]. Available: https://www.ndss-symposium.org/ndss-
paper/roram-efficient-range-oram-with-olog2-n-locality/

[7] C. Chen, A. Chakraborti, and R. Sion, “PD-DM: an efficient
locality-preserving block device mapper with plausible
deniability,” PoPETs, vol. 2019, no. 1, pp. 153–171, 2019.

[8] A. Cozzette, “Block device in user space (buse),” "https:
//github.com/acozzette".

[9] I. Demertzis, D. Papadopoulos, and C. Papamanthou,
“Searchable encryption with optimal locality: Achieving
sublogarithmic read efficiency,” in Advances in Cryptology –
CRYPTO 2018, 2018, pp. 371–406.

[10] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious rams,” Journal of the ACM, vol. 43,
pp. 431–473, 1996.

[11] M. T. Goodrich, “Randomized shellsort: A simple
data-oblivious sorting algorithm,” J. ACM, vol. 58,
no. 6, pp. 27:1–27:26, Dec. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2049697.2049701

[12] M. T. Goodrich and M. Mitzenmacher, “Privacy-
preserving access of outsourced data via oblivious
ram simulation,” in Proceedings of the 38th International
Conference on Automata, Languages and Programming -
Volume Part II, ser. ICALP’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 576–587. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2027223.2027282

[13] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia, “Oblivious ram simulation with
efficient worst-case access overhead,” in Proceedings
of the 3rd ACM Workshop on Cloud Computing Security
Workshop, ser. CCSW ’11. New York, NY, USA:
ACM, 2011, pp. 95–100. [Online]. Available: http:
//doi.acm.org/10.1145/2046660.2046680

[14] S. K. Haider and M. van Dijk, “Flat ORAM: A simplified
write-only oblivious RAM construction for secure processor
architectures,” CoRR, vol. abs/1611.01571, 2016.

[15] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation,” in 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California,
USA, February 5-8, 2012, 2012. [Online]. Available:
https://www.ndss-symposium.org/ndss2012/access-pattern-
disclosure-searchable-encryption-ramification-attack-and-
mitigation

[16] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet,
Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh,
M. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul,
and D. E. Porter, “Betrfs: A right-optimized write-optimized
file system,” in Proceedings of the 13th USENIX Conference
on File and Storage Technologies, ser. FAST’15. Berkeley,
CA, USA: USENIX Association, 2015, pp. 301–315.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
2750482.2750505

[17] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in)
security of hash-based oblivious ram and a new balancing
scheme,” in Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms. SIAM, 2012, pp.
143–156.

[18] A. W. Leung, S. Pasupathy, G. Goodson, and E. L.
Miller, “Measurement and analysis of large-scale network
file system workloads,” in USENIX 2008 Annual Technical
Conference, ser. ATC’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 213–226. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1404014.1404030

[19] L. Li and A. Datta, “Write-only oblivious ram-based
privacy-preserved access of outsourced data,” Int. J. Inf.
Secur., vol. 16, no. 1, pp. 23–42, Feb. 2017. [Online].
Available: https://doi.org/10.1007/s10207-016-0329-x

[20] T. Peters, M. Gondree, and Z. N. J. Peterson, “DEFY: A
deniable, encrypted file system for log-structured storage,” in
22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015, San Diego, California, USA, February
8-11, 2014, 2015.

[21] B. Pinkas and T. Reinman, “Oblivious ram revisited,”
in Proceedings of the 30th Annual Conference on Advances
in Cryptology, ser. CRYPTO’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 502–519. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1881412.1881447

[22] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi,
M. van Dijk, and S. Devadas, “Constants count:
Practical improvements to oblivious ram,” in 24th USENIX
Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, Aug. 2015, pp. 415–430.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/ren-ling

[23] D. S. Roche, A. J. Aviv, S. G. Choi, and T. May-
berry, “Deterministic stash-free write-only oram,”
"https://github.com/dsroche/detworam".

[24] D. S. Roche, A. Aviv, S. G. Choi, and T. Mayberry,
“Deterministic, stash-free write-only oram,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY,
USA: ACM, 2017, pp. 507–521. [Online]. Available:

"http://www.onarlioglu.com/hive"
https://doi.org/10.1515/popets-2017-0035
https://www.ndss-symposium.org/ndss-paper/roram-efficient-range-oram-with-olog2-n-locality/
https://www.ndss-symposium.org/ndss-paper/roram-efficient-range-oram-with-olog2-n-locality/
"https://github.com/acozzette"
"https://github.com/acozzette"
http://doi.acm.org/10.1145/2049697.2049701
http://dl.acm.org/citation.cfm?id=2027223.2027282
http://doi.acm.org/10.1145/2046660.2046680
http://doi.acm.org/10.1145/2046660.2046680
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
http://dl.acm.org/citation.cfm?id=2750482.2750505
http://dl.acm.org/citation.cfm?id=2750482.2750505
http://dl.acm.org/citation.cfm?id=1404014.1404030
https://doi.org/10.1007/s10207-016-0329-x
http://dl.acm.org/citation.cfm?id=1881412.1881447
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-ling
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-ling
"https://github.com/dsroche/detworam"

SqORAM 233

http://doi.acm.org/10.1145/3133956.3134051
[25] D. Roselli, J. R. Lorch, and T. E. Anderson, “A

comparison of file system workloads,” in Proceedings
of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’00. Berkeley, CA, USA:
USENIX Association, 2000, pp. 4–4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267724.1267728

[26] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious
ram with o((logn)3) worst-case cost,” in ASIACRYPT, 2011.

[27] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher,
L. Ren, X. Yu, and S. Devadas, “Path oram: An
extremely simple oblivious ram protocol,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY,
USA: ACM, 2013, pp. 299–310. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516660

[28] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness
of the goldreich-ostrovsky lower bound,” in Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. New York, NY,
USA: ACM, 2015, pp. 850–861. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813634

[29] P. Williams and R. Sion, “Usable PIR,” in Pro-
ceedings of the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA, 10th
February - 13th February 2008, 2008. [Online]. Available:
http://www.isoc.org/isoc/conferences/ndss/08/papers/
09_usable_pir.pdf

[30] P. Williams, R. Sion, and B. Carbunar, “Building
castles out of mud: Practical access pattern privacy and
correctness on untrusted storage,” in Proceedings of the
15th ACM Conference on Computer and Communications
Security, ser. CCS ’08. New York, NY, USA:
ACM, 2008, pp. 139–148. [Online]. Available: http:
//doi.acm.org/10.1145/1455770.1455790

[31] P. Williams, R. Sion, and A. Tomescu, “Privatefs:
A parallel oblivious file system,” in Proceedings of the
2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. New York, NY, USA:
ACM, 2012, pp. 977–988. [Online]. Available: http:
//doi.acm.org/10.1145/2382196.2382299

10 Appendix

Algorithm 1: merge(i)
1 qw := φ (queue of size β);
2 qm := φ (queue of size β);
3 ctrw := 0 ;
4 ctrm := 0 ;
5 ctrnext := 0;
6 for x = 1 to 2i+1β do
7 while qw.notFull do
8 if ctrw ≤ 2iβ then
9 Enqueue(qw, readFromWriteBuffer(i, ctrw));

10 ctrw = ctrw + 1;
11 end
12 else
13 Enqueue(qw, fake);
14 end
15 end
16 while qm.notFull do
17 if ctrm ≤ 2iβ then
18 Enqueue(qm, readFromMergeBuffer(i, ctrm));
19 ctrm = ctrm + 1 ;
20 end
21 else
22 Enqueue(qm, fake);
23 end
24 end
25 end
26 for y = 1 to β do
27 b0 = q0.peek;
28 b1 = q1.peek;
29 if b0.add < b1.add then
30 b = Dequeue(q0);
31 end
32 else if b0.add = b1.add then
33 b = Dequeue(q0);
34 (discard b1 from q1);
35 end
36 else
37 b = Dequeue(q1);
38 end
39 if i 6= logN then
40 writeNextToWriteBuffer(i+ 1, ctrnext, b);
41 end
42 else
43 writeNextToWriteBuffer(i, ctrnext, b);
44 end
45 ctrnext = ctrnext + 1;
46 end

http://doi.acm.org/10.1145/3133956.3134051
http://dl.acm.org/citation.cfm?id=1267724.1267728
http://doi.acm.org/10.1145/2508859.2516660
http://doi.acm.org/10.1145/2810103.2813634
http://www.isoc.org/isoc/conferences/ndss/08/papers/09_usable_pir.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/09_usable_pir.pdf
http://doi.acm.org/10.1145/1455770.1455790
http://doi.acm.org/10.1145/1455770.1455790
http://doi.acm.org/10.1145/2382196.2382299
http://doi.acm.org/10.1145/2382196.2382299

SqORAM 234

Algorithm 2: merge_deamortized
1 Procedure Init(φ)
2 qx0 := φ // Persistent in-memory queue of size β

assigned for level x < logN ;
3 qx1 := φ // Persistent in-memory queue of size β

assigned for level x < logN ;
4 ctrx0 := 0 // Persistent in-memory counter assigned for

level x < logN ;
5 ctrx1 := 0 // Persistent in-memory counter assigned for

level x < logN ;
6 g := 0 // Global Access Counter (number of times

write queue has been flushed to the disk);
7 Procedure Merge(φ)
8 for x = 1 to logN − 1 do
9 if x 6= logN − 1 then

10 ctrnext := (g mod 2x+1)× β;
11 end
12 else
13 ctrnext := (g mod 2x)× β;
14 end
15 while qx0.notFull do
16 if ctr0 ≤ 2iβ then
17 Enqueue(qx0, readFromMergeBuffer(i, ctrx0));
18 ctrx0 = (ctrx0 + 1) mod 2x;
19 end
20 else
21 Enqueue(qx0, fake);
22 end
23 end
24 while qx1.notFull do
25 if ctrx1 ≤ 2iβ then
26 Enqueue(qx1, readFromMergeBuffer(i, ctrx1 +

2x × β));
27 ctrx1 = (ctrx1 + 1) mod 2x;
28 end
29 else
30 Enqueue(qx1, fake);
31 end
32 end
33 for y = 1 to β do
34 b0 = qx0.peek;
35 b1 = qx1.peek;
36 if i 6= logN − 1 then
37 if b0.add < b1.add then
38 b = Dequeue(qx0);
39 end
40 else if b0.add = b1.add then
41 b = Dequeue(qx0);
42 (discard b1 from qx1);
43 end
44 else
45 b = Dequeue(qx1);
46 end
47 writeNextToWriteBuffer(x+ 1, ctrnext, b);
48 end
49 else
50 if b0.add, b1.add 6= ctrnext then
51 Reencrypt(i, ctrnext);
52 end
53 if b0.add < b1.add then
54 b = Dequeue(q0);
55 end
56 else if b0.add = b1.add then
57 b = Dequeue(q0);
58 (discard b1 from q1);
59 end
60 else
61 b = Dequeue(q1);
62 end
63 writeToLastLevelBuffer(x+ 1, ctrnext, b);
64 end
65 end
66 ctrnext = ctrnext + 1 ;
67 end

Algorithm 3: Determine_Level(g, c)
1 flushi = 0 // Number of subsequent write queue flushes x

spent in level i after being flushed to the top level ;
2 flushsum = 0 ;
3 i = 0;
4 while flushsum ≤ g − c do
5 if

⌊
c/2i
⌋

mod 2 = 0 then
6 (x was written to generation 0 in level i);
7 flushi = 3× 2i;
8 end
9 else

10 (x was written to generation 1 in level i);
11 flushi = 2× 2i;
12 end
13 i = i+ 1 ;
14 flushsum = flushsum + flushi ;
15 end
16 return i− 1;

Algorithm 4: SqORAM_read(b)
1 root← Get root node of ATM from memory;
2 ATM.path← Get root to leaf path containing entry for b;
3 while not at leaf do
4 child_num = ATM.path.nextNode.id;
5 l_ctr ← root.getVal(child_num);
6 child_level← Determine_Level(g, l_ctr);
7 child← Get Child node from child_level;
8 root = child;
9 end

10 l_ctr ← root.getVal(b);
11 level← Determine_Level(g, l_ctr) ;
12 loc_in_level← level.bufferMap.query;
13 blk ← Read block from loc_in_level;
14 return blk;

Algorithm 5: SqORAM_write(b, d)
1 WriteQueue.push(b, d);
2 ATM.path← Root to leaf path containing entry for b;
3 ATM.node = ATM.path.leafNode;
4 ATM.node.update(b, g + 1);
5 while not at root do
6 WriteQueue.push(ATM.node.id,ATM.node.data);
7 ATM.node = ATM.path.node.parent;
8 end
9 // Flush contents of Write Queue sequentially to top level

write buffer;
10 if WriteQueue.full then
11 merge_deamortized()
12 end

	SqORAM: Read-Optimized Sequential Write-Only Oblivious RAM
	1 Introduction
	2 Related Work
	3 Background
	3.1 Hierarchical ORAM

	4 Overview
	4.1 Locality-Preserving Disk Layout
	4.2 Asymptotically-Efficient Level Reshuffles
	4.3 Efficiently Tracking Blocks for Queries

	5 Amortized Construction
	5.1 SqORAM Operations

	6 De-Amortized Construction
	6.1 De-Amortized Writes
	6.2 Efficient Reads
	6.3 Access Time Map

	7 Evaluation
	7.1 Kernel-Space Implementation
	7.2 Userland Implementation

	8 Conclusion
	9 Acknowledgements
	10 Appendix

