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Website Fingerprinting with Website Oracles
Abstract: Website Fingerprinting (WF) attacks are a
subset of traffic analysis attacks where a local passive
attacker attempts to infer which websites a target vic-
tim is visiting over an encrypted tunnel, such as the
anonymity network Tor. We introduce the security no-
tion of a Website Oracle (WO) that gives a WF attacker
the capability to determine whether a particular mon-
itored website was among the websites visited by Tor
clients at the time of a victim’s trace. Our simulations
show that combining a WO with a WF attack—which
we refer to as a WF+WO attack—significantly reduces
false positives for about half of all website visits and
for the vast majority of websites visited over Tor. The
measured false positive rate is on the order one false
positive per million classified website trace for websites
around Alexa rank 10,000. Less popular monitored web-
sites show orders of magnitude lower false positive rates.

We argue that WOs are inherent to the setting of
anonymity networks and should be an assumed capabil-
ity of attackers when assessing WF attacks and defenses.
Sources of WOs are abundant and available to a wide
range of realistic attackers, e.g., due to the use of DNS,
OCSP, and real-time bidding for online advertisement
on the Internet, as well as the abundance of middleboxes
and access logs. Access to a WO indicates that the eval-
uation of WF defenses in the open world should focus
on the highest possible recall an attacker can achieve.
Our simulations show that augmenting the Deep Fin-
gerprinting WF attack by Sirinam et al. [60] with access
to a WO significantly improves the attack against five
state-of-the-art WF defenses, rendering some of them
largely ineffective in this new WF+WO setting.
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1 Introduction
A Website Fingerprinting (WF) attack is a type of
traffic analysis attack where an attacker attempts to
learn which websites are visited through encrypted net-
work tunnels—such as the low-latency anonymity net-
work Tor [20] or Virtual Private Networks (VPNs)—by
analysing the encrypted network traffic [11, 26, 27, 35,
48, 62]. The analysis considers only the size and tim-
ing of encrypted packets sent over the network to and
from a target client. This makes it possible for attack-
ers that only have the limited capability of observing
the encrypted network traffic (sometimes referred to as
a local eavesdropper) to perform WF attacks. Sources of
such capabilities include ISPs, routers, network interface
cards, WiFi hotspots, and guard relays in the Tor net-
work, among others. Access to encrypted network traffic
is typically not well-protected over the Internet because
it is already in a form that is considered safe to expose
to attackers due to the use of encryption.

The last decade has seen significant work on im-
proved WF attacks (e.g., [8, 25, 60, 70]) and defenses
(e.g, [6, 7, 31, 36]) accompanied by an ongoing debate
on the real-world impact of these attacks justifying the
deployment of defenses or not, in particular surround-
ing Tor (e.g., [30, 49, 71]). There are significant real-
world challenges for an attacker to successfully perform
WF attacks, such as the sheer size of the web (about
200 million active websites)1, detecting the beginning of
website loads in encrypted network traces, background
traffic, maintaining a realistic and fresh training data
set, and dealing with false positives.

Compared to most VPN implementations, Tor has
some basic but rather ineffective defenses in place
against WF attacks, such as padding packets to a
constant size and randomized HTTP request pipelin-
ing [8, 20, 70]. Furthermore, Tor recently started im-
plementing a framework for circuit padding machines
to make it easier to implement traffic analysis de-

1 Netcraft January 2019 Web Server Survey, https:
//web.archive.org/web/20190208081915/https://news.netcraft.
com/archives/category/web-server-survey/.

https://web.archive.org/web/20190208081915/https://news.netcraft.com/archives/category/web-server-survey/
https://web.archive.org/web/20190208081915/https://news.netcraft.com/archives/category/web-server-survey/
https://web.archive.org/web/20190208081915/https://news.netcraft.com/archives/category/web-server-survey/
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fenses2 based on adaptive padding [31, 59]. However,
the unclear real-world impact of WF attacks makes de-
ployment of proposed effective (and often prohibitively
costly in terms of bandwidth and/or latency overheads)
WF defenses a complicated topic for both researchers to
reach consensus on and the Tor Project to decide upon.

1.1 Introducing Website Oracles

In this paper, we introduce the security notion of aWeb-
site Oracle (WO) that can be used by attackers to aug-
ment any WF attack. A WO answers “yes” or “no” to
the question “was a particular website visited over Tor
at this point in time?”. We show through simulation that
such a capability—access to a WO—greatly reduces the
false positive rate for an attacker attempting to finger-
print the majority of websites and website visits through
the Tor network. The reduction is to such a great ex-
tent that our simulations suggest that false positives
are no longer a significant reason for why WF attacks
lack real-world impact. This is in particular the case for
onion services where the estimated number of websites
is a fraction compared to the “regular” web [28].

Our simulations are based on the privacy-preserving
network measurement results of the live Tor network in
early 2018 by Mani et al. [38]. Besides simulating WOs
we also identify a significant number of potential sources
of WOs that are available to a wide range of attackers,
such as nation state actors, advertisement networks (in-
cluding their customers), and operators of relays in the
Tor network. Some particularly practical sources—due
to DNS and how onion services are accessed—can be
used by anyone with modest computing resources.

We argue that sources of WOs are inherent in Tor
due to its design goal of providing anonymous and
not unobservable communication: observable anonymity
sets are inherent for anonymity [32, 50, 53], and a WO
can be viewed as simply being able to query for mem-
bership in the destination/recipient anonymity set (the
potential websites visited by a Tor client). The solution
to the effectiveness of WF+WO attacks is therefore not
to eliminate all sources—that would be impossible with-
out unobservable communication [32, 50, 53]—but to
assume that an attacker has WO access when evaluat-

2 Tor blog post by Nick Mathewson, https://web.archive.org/
web/20190208085701/https://blog.torproject.org/new-release-
tor-0401-alpha.

ing the effectiveness of WF attacks and defenses, even
for weak attackers like local (passive) eavesdroppers.

The introduction of a WO in the setting of WF
attacks is similar to how encryption schemes are con-
structed to be secure in the presence of an attacker
with access to encryption and decryption oracles (cho-
sen plaintext and ciphertext attacks, respectively) [23,
43, 52]. This is motivated by the real-world prevalence
of such oracles, and the high impact on security when
paired with other weaknesses of the encryption schemes:
e.g., Bleichenbacher [4] padding oracle attacks remain
an issue in modern cryptosystems today despite being
discovered about twenty years ago [40, 56].

1.2 Contributions and Structure

Further background on anonymity, Tor, and WF are
presented in Section 2. Section 3 defines a WO and de-
scribes two generic constructions for combining a WO
with any WF attack. Our generic constructions are a
type of Classify-Verify method by Stolerman et al. [61],
first used in the context of WF attacks by Juarez
et al. [30] and later by Greschbach et al. [24]. Section 4
presents a number of sources of WOs that can be used by
a wide range of attackers. We focus on practical sources
based on DNS and onion service directories in Tor, offer-
ing probabilistic WOs that anyone can use with modest
resources. We describe how we simulate access to a WO
throughout the rest of the paper in Section 5, based on
Tor network measurement data from Mani et al. [38].

Section 6 experimentally evaluates the performance
of augmenting the state-of-the-art WF attack Deep Fin-
gerprinting (DF) by Sirinam et al. [60] with WO access
using one of our generic constructions. We show signif-
icantly improved classification performance against un-
protected Tor as well as against traces defended with
the WF defenses WTF-PAD by Juarez et al. [31] and
Walkie-Talkie by Wang and Goldberg [72], concluding
that the defenses are ineffective in this new setting
where an attacker has access to a WO. Further, we
also evaluate DF with WO access against Wang et al.’s
dataset [70] with simulated traces for the constant-
rate WF defenses CS-BuFLO and Tamaraw by Cai
et al. [6, 7]. Our results show that constant-rate de-
fenses are overall effective defenses but not efficient due
to the significant induced overheads. We then evaluate
two configurations of the WF defense DynaFlow by Lu
et al. [36], observing similar effectiveness as CS-BuFLO
but at lower overheads approaching that of WTF-PAD
and Walkie-Talkie.

https://web.archive.org/web/20190208085701/https://blog.torproject.org/new-release-tor-0401-alpha
https://web.archive.org/web/20190208085701/https://blog.torproject.org/new-release-tor-0401-alpha
https://web.archive.org/web/20190208085701/https://blog.torproject.org/new-release-tor-0401-alpha
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In Section 7 we discuss our results, focusing on the
impact on false positives with WO access, how imper-
fect sources for WOs impact WF+WO attacks, limita-
tions of our work, and possible mitigations. Our simu-
lations indicate that WF defenses should be evaluated
against WF attacks based on how they minimise recall.
We present related work in Section 8, including how
WF+WO attacks relate to traffic correlation and confir-
mation attacks. Section 9 briefly concludes this paper.

2 Background
Here we present background on terminology, the
anonymity network Tor, and WF attacks and defenses.

2.1 Anonymity and Unobservability

Anonymity is the state of a subject not being identifi-
able from an attackers perspective within the anonymity
set of possible subjects that performed an action such as
sending or receiving a message [50]. For an anonymity
network, an attacker may not be able to determine who
sent a message into the network—providing a sender
anonymity set of all possible senders—and conversely,
not be able to determine the recipient of a message from
the network out of all possible recipients in the recipi-
ent anonymity set. Inherent for anonymity is that the
subjects in an anonymity set change based on what the
attacker observes, e.g., when some subjects send or re-
ceive messages [32, 53]. In gist, anonymity is concerned
with hiding the relationship between a sender and re-
cipient, not its existence.

Unobservability is a strictly stronger notion than
anonymity [32, 50, 53]. In addition to anonymity of the
relationship between a sender and recipient, unobserv-
ability also requires that an attacker (not acting as ei-
ther the sender or recipient) cannot sufficiently distin-
guish if there is a sender or recipient or not [50]. Perfect
unobservability is therefore the state of an attacker be-
ing unable to determine if a sender/recipient should be
part of the anonymity set or not.

2.2 Tor

Tor is a low-latency anonymity network for anonymis-
ing TCP streams with about eight million daily users,
primarily used for anonymous browsing, censorship
circumvention, and providing anonymous (onion) ser-

vices [20, 38]. Because Tor is designed to be usable for
low-latency tasks such as web browsing, its threat model
and design does not consider powerful attackers, e.g.,
global passive adversaries that can observe all network
traffic on the Internet [18, 20]. However, less powerful
attackers such as ISPs and ASes that observe a fraction
of network traffic on the Internet are in scope.

Users typically use Tor Browser—a customised ver-
sion of Mozilla Firefox (bundled with a local relay)—
as a client that sends traffic through three relays when
browsing a website on the regular Internet: a guard,
middle, and exit relay. Traffic from the client to the exit
is encrypted in multiple layers as part of fixed-size cells
such that only the guard relay knows the IP-address of
the client and only the exit relay knows the destination
website. There are about 7000 public relays at the time
of writing, all available in the consensus generated pe-
riodically by the network. The consensus is public and
therefore anyone can trivially determine if traffic is com-
ing from the Tor network by checking if the IP-address
is in the consensus. Note that the encrypted network
traffic in Tor is exposed to network adversaries as well
as relays as it traverses the Internet. Figure 1 depicts
the setting just described, highlighting the anonymity
sets of users of Tor Browser and the possible destina-
tion websites.

Fig. 1. Using Tor to browse to a website, where an attacker ob-
serves the encrypted traffic into the Tor network for a target user,
attempting to determine the website the user is visiting.

2.3 Website Fingerprinting

As mentioned in the introduction, attacks that analyse
the encrypted network traffic (a trace) between a Tor
client and a guard relay with the goal to detect the
website a client is visiting are referred to as website fin-
gerprinting (WF) attacks. Figure 1 shows the typical
location of the attacker, who can also be the guard it-
self. WF attacks are evaluated in either the closed or the
open world. In the closed world, an attacker monitors
a number of websites and it is the goal of the attacker
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to determine which website out of all the possible mon-
itored websites a target is visiting. The open world is
like the closed world with one significant change: the
target user may also visit unmonitored websites. This
means that in the open world the attacker may also clas-
sify a trace as unmonitored in addition to monitored,
posing a significantly greater challenge for the attacker
in a more realistic setting than the closed world. The
ratio between monitored and unmonitored traces in a
dataset is further a significant challenge for WF attacks
when assessing their real-world significance for Tor [30].
Typically, WF attacks are evaluated on the frontpages
of websites: webpage fingerprinting is presumably much
more challenging due to the orders of magnitude of more
webpages than websites. Unless otherwise stated, we
only consider the frontpages of websites in this paper.

2.3.1 Website Fingerprinting Attacks

Prior to WF attacks being considered for use on Tor,
they were used against HTTPS [11], web proxies [27, 62],
SSH tunnels [35], and VPNs [26]. For Tor, WF attacks
are typically based on machine learning and can be cat-
egorized based on if they use deep learning or not.

Traditional WF attacks in the literature use man-
ually engineered features extracted from both the size
and timing of packets (and/or cells) sent by Tor. State
of the art attacks with manually engineered features are
Wang-kNN [70], CUMUL [46], and k-FP [25]. For ref-
erence, Wang-kNN has 1225 features, CUMUL 104 fea-
tures, and k-FP 125 features. In terms of accuracy, k-FP
appears to have a slight edge over the other two, but
all three report over 90% accuracy against significantly
sized datasets. As traditional WF attacks progressed,
the features more than the type of machine learning
method have shown to be vital for the success of attacks,
with an emerging consensus on what are important fea-
tures (e.g., coarse features like number of incoming and
outgoing packets) [12, 25, 46].

Deep learning was first used for WF attacks by
Abe and Goto in 2016 [2]. Relatively quickly, Rimmer
et al. reached parity with traditional WF attacks, lend-
ing credence to the emerging consensus that the research
community had found the most important features for
WF [55]. However, recently Sirinam et al. [60] with Deep
Fingerprinting (DF) significantly improved on other
WF attacks, also on the WTF-PAD and Walkie-Talkie
defenses, and is at the time of writing considered state-
of-the-art. DF is based on a Convolutional Neural Net-
work (CNN) with a customized architecture for WF.

Each packet trace as input to DF is simply a constant
size (5000) list of cells (or packets) and their direction
(positive for outgoing, negative for incoming), ignoring
size and timings. Based on the input, the CNN learns
features on its own: we do not know what they are,
other than preliminary work indicating that the CNN
gives more weight to input early in the trace [39].

The last layer of the CNN-based architecture of DF
is a softmax function: it assigns (relative) probabilities
to each class as the output of classification. These prob-
abilities allow a threshold to be defined for the final
classification in the open world, requiring that the prob-
ability of the most likely class is above the threshold to
classify as a monitored website.

2.3.2 Website Fingerprinting Defenses

WF defenses for Tor modify the timing and number of
(fixed-size) cells sent over Tor when a website is visited.
The modifications are done by injecting dummy traffic
and introducing artificial delays. Defenses can typically
be classified as either based on constant-rate traffic or
not, where constant rate defenses force all traffic to fit
a pre-determined structure, forming collision sets for
websites where their traffic traces appear identical to
an attacker. Non-constant rate defenses simply more-or-
less randomly inject dummy traffic and/or artificial de-
lays with the hope of obfuscating the resulting network
traces. WF defenses are typically compared in terms of
their induced bandwidth (BOH) and time (TOH) over-
heads compared to no defense. Further, different WF
defenses make more or less realistic and/or practical as-
sumptions, making comparing overheads necessary but
not nearly sufficient for reaching conclusions.

We briefly describe WF defenses that we later use
to evaluate the impact of attackers performing enhanced
WF attacks with access to WOs:
Walkie-Talkie by Wang and Goldberg [72] puts Tor

Browser into half duplex mode and pads traffic such
that different websites result in the same cell se-
quences. This creates a collision set between a vis-
ited website and a target decoy website which results
in the same cell sequence with the defense. Their
evaluation shows 31% BOH and 34% TOH. Colli-
sion sets grow beyond size two at the cost of BOH.

WTF-PAD by Juarez et al. [31] is based on the idea
of adaptive padding [59] where fake padding is in-
jected only when there is no real traffic to send. The
defense is simulated on collected packet traces and
its design is the foundation of the circuit padding
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framework recently implemented in Tor. The simu-
lations report 50-60% BOH and 0% TOH.

CS-BuFLO by Cai et al. [6] is a constant rate defense
where traffic is always sent at a constant rate be-
tween a sender and receiver, improving on prior
work by Dyer et al. [21]. Their evaluation shows
220-270% BOH and 270-340% TOH.

Tamaraw by Cai et al. [7] is another constant rate
defense that further improves on CS-BuFLO. In
the evaluation by Wang and Goldberg, they report
103% BOH and 140% TOH for Tamaraw [72].

DynaFlow by Lu et al. [36] is a dynamic constant-
rate defense that allows for the defense to adjust
its parameters (notably the “inter-packet interval”)
based on configuration and on the observed traffic.
The evaluation shows an overall improvement over
Tamaraw when configured to use similar overheads.

The primary downside of defenses like Walkie-Talkie
that depend on creating collision sets for websites is that
they require up-to-date knowledge of the target web-
site(s) to create collisions with (to know how to morph
the traffic traces): this is a significant practical issue
for deployment [45, 70, 72]. Constant rate defenses like
CS-BuFLO and Tamaraw are easier to deploy but suf-
fer from significant overheads [6, 7]. WTF-PAD is hard
to implement both efficiently and effectively in practice
due to only being simulated on packet traces as-is and
also being vulnerable to attacks like Deep Fingerprint-
ing [31, 60]. While DynaFlow shows great promise, but
requires changes at the client (Tor Browser, local relay,
or both) and at exit relays to combine packets with pay-
loads smaller than Tor’s cell size [36]. Without combined
packets its advantage in terms of overhead compared to
Tamaraw likely shrinks.

2.4 Challenges for WF Attacks in Practice

A number of practical challenges for an attacker per-
forming WF attacks have been highlighted over the
years, notably comprehensively so by Mike Perry of
the Tor Project [49] and Juarez et al. [30]. Wang and
Goldberg have showed that several of the highlighted
challenges—such as maintaining a fresh data set and
determining when websites are visited—are practical to
overcome [71]. What remains are two notably significant
challenges: distinguishing between different goals of the
attacker and addressing false positives.

For attacker goals when performing WF attacks, an
attacker may want to detect website visits with the goal

of censoring access to it, to identify all users that visit
particular websites, or to identify every single website
visited by a target [49]. Clearly, these goals put differ-
ent constraints on the attacker. For censorship, classifi-
cation must happen before content is actually allowed
to be completely transferred to the victim. For moni-
toring only a select number of websites the attacker has
the most freedom, while detecting all website visits by
a victim requires the attacker to have knowledge of all
possible websites on the web.

For addressing false positives there are a number
of aspects to take into account. First, the web has mil-
lions of websites that could be visited by a victim (not
the case for onion services [28]), and each website has a
significant number of webpages that are often dynam-
ically generated and frequently changed [30, 49]. Sec-
ondly, how often victims potentially visit websites that
are monitored by an attacker is unknown to the at-
tacker, i.e., the base rate of victims are unknown. The
base rate leads to even a small false positive rate of
a WF attack overwhelming an attacker with orders of
magnitude more false positives than true positives, leav-
ing WF attacks impractical for most attacker goals in
practice.

3 Website Oracles
We first define a WO and then present two generic con-
structions for use with WF attacks based on the kind of
output the WF attack supports.

3.1 Defining Website Oracles

Definition 1. A website oracle answers true or false
to the question “was a particular monitored website w

visited over the Tor network at time t?”.

A WO considers only websites and not webpages for w,
but note that even for webpage fingerprinting being able
to narrow down the possible websites that webpages be-
long to through WO access is a significant advantage to
an attacker. The time t refers to a period of time or
timeframe during which a visit should have taken place.
Notably, different sources of WOs may provide different
resolutions for time, forcing an attacker to consider a
timeframe in which a visit could have taken place. For
example, timestamps in Apache or nginx access logs use
regular Unix timestamps as default (i.e., seconds), while
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CDNs like Cloudflare maintain logs with Unix nanosec-
ond precision. Further, there are inherent limitations in
approximating t for the query when the attacker in addi-
tion to WO access can only directly observe traffic from
the victim into Tor. We explore this later in Section 5.3.

One important limitation we place on the use of a
WO with WF is that the attacker can only query the
WO for monitored websites. The open world setting is
intended to capture a more realistic setting for evalu-
ating attacks, and inherent in this is that the attacker
cannot train (or even enumerate) all possible websites
on the web. Given the ability to enumerate and query all
possible websites gives the adversary a capability in line
with a global passive adversary performing correlation
attacks, which is clearly outside of the threat model of
Tor [20]. We further relate correlation and confirmation
attacks to WF+WO attacks in Section 8.

Definition 1 defines the ideal WO: it never fails to
observe a monitored website visit, it has no false posi-
tives, and it can answer for an arbitrary t. This is sim-
ilar to how encryption and decryption oracles always
encrypt and decrypt when modelling security for en-
cryption schemes [23, 43, 52]. In practice, sources of all
of these oracles may be more or less ideal and chal-
lenging for an attacker to use. Nevertheless, the preva-
lence of sources of these imperfect oracles motivate the
assumption of an attacker with access to an ideal or-
acle. Similarly, for WOs, we motivate this assumption
in Sections 4 and 5, in particular wrt. a timeframe on
the order of (milli)seconds. Section 7 further considers
non-ideal sources of WOs and the effect on WF+WO
attacks, both when the WO can produce false positives
and when the source only observes a fraction of visits
to monitored websites.

3.2 Generic Website Fingerprinting
Attacks with Website Oracles

As mentioned in Section 2.3, a WF attack is a classi-
fier that is given as input a packet trace and provides
as output a classification. The classification is either a
monitored site or a class representing unmonitored (in
the open world). Figure 2 shows the setting where an at-
tacker capable of performing WF attacks also has access
to a WO. We define a generic construction for WF+WO
attacks that works with any WF attack in the open
world in Definition 2:

Definition 2 (Binary verifier). Given a website oracle
o and WF classification c of a trace collected at time

Fig. 2. WF+WO attacks, where the WO infers membership of a
particular website w in the website anonymity set of all possible
websites visited over Tor during a particular timeframe t.

t, if c is a monitored class, query the oracle o(c, t). Re-
turn c if the oracle returns true, otherwise return the
unmonitored class.

Note that the WO is only queried when the WF classi-
fication is for a monitored website and that Definition 2
is a generalisation of the “high precision” DefecTor at-
tack by Greschbach et al. [24]. In terms of precision and
false positives, the above generic WF+WO construction
is strictly superior to a WF attack without a WO. As-
sume that the WF classification incorrectly classified
an unmonitored trace as monitored, then there is only
a probability that a WO also returns true, depending on
the probability that someone else visited the website in
the same timeframe over Tor. If it does not, then a false
positive is prevented. That is, a WF attack without WO
access is identical to a WF attack with access to a use-
less WO that always returns true; any improvements
beyond that will only help the attacker in ruling out
false positives. We consider the impact on recall later.

We can further refine the use of WOs for the sub-
set of WF attacks that support providing as output an
ordered list of predictions in decreasing likelihood, op-
tionally with probabilities, as shown in Definition 3:

Definition 3 (List verifier). Given an ordered list of
predictions in the open world and a website oracle:

for top prediction p in list do

if p is unmonitored or oracle says p visited then

return list

move p to last in list and optionally update probabilities

First, we observe that if the WF attack thinks that it
is most likely an unmonitored website, then we accept
that because a WO can only teach us something new
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about monitored websites. Secondly, if the most likely
prediction has been visited according to the WO then
we also accept that classification result. Finally, all that
is left to do is to consider this while repeatedly iterat-
ing over the top predictions: if the top classification is a
monitored website that has not been visited according
to the WO, then move it from the top of the list and
optionally update probabilities (if applicable, then also
set p = 0.0 before updating) and try again. Per defini-
tion, we will either hit the case of a monitored website
that has been visited according to the WO or an un-
monitored prediction. As mentioned in Section 2.3, WF
output that has some sort of probability or threshold as-
sociated with classifications are useful for attackers with
different requirements wrt. false positives and negatives.

One could consider a third approach based on re-
peatedly querying a WO to first determine if any moni-
tored websites have been visited and then train an opti-
mised classifier (discarding monitored websites that we
know have not been visited). While this may give a mi-
nor improvement, our results later in this paper as well
as earlier work show that confusing monitored websites
is a minor issue compared to confusing an unmonitored
website as monitored [24, 30, 70].

4 Sources of Website Oracles
There are a wide range of potential sources of WOs.
Table 1 summarizes a selection of sources that are more
thoroughly detailed in Appendix C. The table shows
the availability of the source, i.e., if the attacker needs
to query the source in near real-time as a website visit
occurs or if it can be accessed retroactively, e.g., through
a legal request. We also estimate qualitatively the false
positive rate of the source, its coverage of websites it can
monitor (or fraction of Tor network traffic, depending
on source), as well as the estimated effort to access the
source. Finally, the table gives an example of an actor
with access to the source.

Next we focus on a number of sources of WOs that
we find particularly relevant: several due to DNS in Sec-
tion 4.1, the DHT of Tor onion directory services in Sec-
tion 4.2, and real-time bidding platforms in Section 4.3.

4.1 DNS

Before a website visit the corresponding domain name
must be resolved to an IP address. For a user that uses

Fig. 3. The two cases when deciding on a classifier’s threshold.

Tor browser, the exit relay of the current circuit resolves
the domain name. If the DNS record of the domain name
is already cached in the DNS cache of the exit relay,
then the exit relay uses that record. Otherwise the do-
main name is resolved and subsequently cached using
whichever DNS resolution mechanism that the exit re-
lay has configured. Based on this process we present
three sources of WOs that work for unpopular websites.

4.1.1 Shared Pending DNS Resolutions

If an exit relay is asked to resolve a domain name that
is uncached it will create a list of pending connections
waiting for the domain resolution to finish. If another
connection asks that the same domain name be resolved,
it is added to the list of pending connections. When a
result is available all pending connections are informed.
This is the basis of a WO: if a request to resolve a do-
main name returns a record more quickly than previ-
ously measured by the attacker for uncached entries, the
entry was either pending resolution at the time of the
request or already cached. Notably this works regard-
less of if exit relays have DNS caches or not. However,
the timing constraints of shared pending connections
are significant and thus a practical hurdle to overcome.

4.1.2 Tor’s DNS Cache at Exit Relays

If an unpopular website is visited by a user, the resolved
domain name will likely be cached by a single exit relay.
We performed 411 exitmap [73] measurements between
April 1–10 (2019), collecting on average 3544 (un)cached
data points for each exit relay using a domain name
under our control that is not in use by anyone else.

Given a labelled data set of (un)cached times for
each exit relay, we can construct distinct per-relay clas-
sifiers that predict whether a measured time corre-
sponds to an (un)cached domain name. While there are



Website Fingerprinting with Website Oracles 242

Table 1. Comparison of a number of WO sources based on their estimated time of availability (when attacker likely has to collect
data, i.e., retroactively or real-time), False Positive Rate (FPR), coverage of website/network visits, and primary entities with access.

Source Availability FPR Coverage Effort Access

Dragnet surveillance programmes retroactive negl. high high intelligence agencies
Content Delivery Networks retroactive negl. high high operators
Real-time bidding real-time (retroactive) negl. high modest customers (operator)
Webserver access logs retroactive negl. high medium operators
Middleboxes retroactive [1] negl. medium medium operators
OCSP retroactive low high medium few CAs, plaintext
8.8.8.8 operator retroactive low [24] 16.8% of visits high Google, plaintext
1.1.1.1 operator retroactive low [24] 7.4% of visits high Cloudflare, plaintext
Exit relays real-time negl. low low operators
Exit relays DNS cache real-time medium high medium anyone
Query DNS resolvers real-time high low low anyone
Onion v2 (v3) real-time negl. high (low) low (high) anyone

Fig. 4. The difference between (un)cached standard deviation and
mean times without any absolute values, i.e., a negative value
implies that the uncached time is smaller than the cached time.

many different approaches that could be used to build
such a classifier, we decided to use a simple heuristic
that should result in little or no false positives: out-
put ‘cached’ iff no uncached query has ever been this
fast before. Figure 3 shows the idea of this classifier
in greater detail, namely create a threshold that is the
minimum of the largest cached time and the smallest
uncached time and then say cached iff the measured
time is smaller than the threshold. Regardless of how
well this heuristic performs (see below), it should be
possible to construct other classifiers that exploit the
trend of smaller resolve times and less standard devia-
tion for cached queries (Figure 4). For example, 69.1%
of all exit relays take at least 50 ms more time to resolve
an uncached domain on average.

To estimate an upper bound on how effective the
composite classifier of all per-relay classifiers could be
without any false positives using our heuristic, we ap-
plied ten-fold cross-validation to simply exclude every
exit relay that had false positives during any fold and
then weighted the observed bandwidth for the remain-
ing classifiers by the individual true positive rates. This
gives us an estimate of how much bandwidth we could

predict true positives for without having any false pos-
itives. By comparing it to the total exit bandwidth of
the Tor network, we obtain an estimated upper bound
true positive rate for the composite classifier of 17.3%.

When an attacker measures if a domain is cached or
not the domain will, after the measurement, be cached
for up to an hour (current highest caching duration in
Tor, independent of TTL) at every exit. However, if a
an attacker can cause an exit to run low on memory,
the entire DNS cache will be removed (instead of only
parts of it) due to a bug in the out-of-memory manager
of Tor. We have reported this to the Tor Project3. We
further discuss in Section 7 how frequently an attacker
on average can be expected to query a WO.

4.1.3 Caching at Recursive DNS Resolvers

For a website that is unpopular enough, there is a high
chance that nobody on the web visited the website
within a given timeframe. This is the basis of our next
idea for a WO which is not mutually exclusive to the
Tor network: wait a couple of seconds after observing
a connection, then probe all recursive DNS resolvers of
Tor exits that can be accessed to determine whether
any monitored website was cached approximately at the
time of observing the connection by inspecting TTLs.

In 2016 Greschbach et al. [24] showed that remote
DNS resolvers like Google’s 8.8.8.8 receive a large por-
tion of all DNS traffic that exit relays generate. To bet-
ter understand how the DNS resolver landscape looks
today, we repeated their experiment setup for 35 hours

3 https://trac.torproject.org/projects/tor/ticket/29617

https://trac.torproject.org/projects/tor/ticket/29617
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in February 17–18 (2019), measuring every 30 minutes.
Our results show that Google (16.8%) and Cloudflare
(7.4%) are both popular. Many exits use a same-AS re-
solver which is presumably the ISP (42.3%), while other
exits resolve themselves (15.2%) or use a remote DNS
resolver that we did not identify (18.2%). Further, we
note that there are at least one RIPE Atlas4 network
measurement probe in the same AS as 53.3% of all ex-
its, providing access to many of the same DNS resolvers
as used by exits from a similar network vantage point.

Instead of using RIPE Atlas nodes we opted for
a different approach which is strictly worse: query
Google’s and Cloudflare’s DNS resolvers from VMs in 16
Amazon EC2 regions. With a simple experiment of first
visiting a unique domain (once again under our control
and only used by us) using torify curl and then query-
ing the DNS resolvers from each Amazon VM to observe
TTLs, we got true positive rates of 2.9% and 0.9% for
Google and Cloudflare with 1000 repetitions. While this
may seem low, the cost for an attacker is at the time of
writing about 2 USD per day using on-demand pric-
ing. Using an identical setup we were also able to find a
subset of monitored websites that yield alarmingly high
true positive rates: 61.4% (Google) and 8.0% (Cloud-
flare). Presumably this was due to the cached entries
being shared over a wider geographical area for some
reason (however, not globally). Regardless, coupled with
the fact that anyone can globally purge the DNS caches
of Google5 and Cloudflare6 for arbitrary domain names,
this is a noteworthy WO source.

4.2 Onion Service Directories in Tor

To access an onion service a user first obtains the ser-
vice’s descriptor from a Distributed Hash Table (DHT)
maintained by onion service directories. From the de-
scriptor the user learns of introduction points selected
by the host of the onion service in the Tor network that
are used to establish a connection to the onion service in
a couple of more steps [64, 65] that are irrelevant here.
Observing a request for the descriptor of a monitored
onion service is a source for a WO. To observe visits for
a target (known) onion service in the DHT, a relay first

4 https://web.archive.org/web/20190228145306/https:
//atlas.ripe.net/
5 https://web.archive.org/web/20190228150306/https:
//developers.google.com/speed/public-dns/cache
6 https://web.archive.org/web/20190228150344/https:
//1.1.1.1/purge-cache/

has to be selected as one out of six or eight (depending
on version) relays to host the descriptor in the DHT,
and then the victim has to select that relay to retrieve
the descriptor. For v2 of onion services, the location in
the DHT is deterministic [64] and an attacker can po-
sition its relays in such a way to always be selected for
hosting target descriptors. Version 3 of onion services
addresses this issue by randomising the process every
24 hours [65], forcing an attacker to host a significant
number of relays to get a WO for onion services with
high coverage. At the time of writing, there are about
3,500 relays operating as onion service directories.

4.3 Real-Time Bidding

Real-Time Bidding (RTB) is an approach towards on-
line advertisement that allows a publisher to auction
ad space to advertisers on a per-visit basis in real
time [68]. Google’s Display Network includes more than
two million websites that reach 90% of all Internet
users7, and an advertiser that uses RTB must respond
to submitted bid requests8 containing information such
as the three first network bytes of an IPv4 address,
the second-level domain name of the visited website,
and the user agent string within ≈100 ms. While the
exact information available to the bidder depends on
the ad platform and the publisher’s advertisement set-
tings, anonymous modes provide less revenue9. Com-
bined with many flavours of pre-targeting such as IP
and location filtering [67], it is likely that the bidder
knows whether a user used Tor while accessing a mon-
itored website. Vines et al. [67] further note that “35%
of the DSPs also allow arbitrary IP white-and blacklist-
ing (Admedo, AdWords, Bing, BluAgile, Criteo, Centro,
Choozle, Go2Mobi, Simpli.fi)”. Finally, observe that an
attacker need not win a bid to use RTB as a WO.

7 https://web.archive.org/web/20190228122431/https:
//support.google.com/google-ads/answer/2404191?hl=en&
ref_topic=3121944%5C
8 https://web.archive.org/web/20190228122615/https:
//developers.google.com/authorized-buyers/rtb/downloads/
realtime-bidding-proto
9 https://web.archive.org/web/20190228123602/https:
//support.google.com/admanager/answer/2913411?hl=en&
ref_topic=2912022

https://web.archive.org/web/20190228145306/https://atlas.ripe.net/
https://web.archive.org/web/20190228145306/https://atlas.ripe.net/
https://web.archive.org/web/20190228150306/https://developers.google.com/speed/public-dns/cache
https://web.archive.org/web/20190228150306/https://developers.google.com/speed/public-dns/cache
https://web.archive.org/web/20190228150344/https://1.1.1.1/purge-cache/
https://web.archive.org/web/20190228150344/https://1.1.1.1/purge-cache/
https://web.archive.org/web/20190228122431/https://support.google.com/google-ads/answer/2404191?hl=en&ref_topic=3121944%5C
https://web.archive.org/web/20190228122431/https://support.google.com/google-ads/answer/2404191?hl=en&ref_topic=3121944%5C
https://web.archive.org/web/20190228122431/https://support.google.com/google-ads/answer/2404191?hl=en&ref_topic=3121944%5C
https://web.archive.org/web/20190228122615/https://developers.google.com/authorized-buyers/rtb/downloads/realtime-bidding-proto
https://web.archive.org/web/20190228122615/https://developers.google.com/authorized-buyers/rtb/downloads/realtime-bidding-proto
https://web.archive.org/web/20190228122615/https://developers.google.com/authorized-buyers/rtb/downloads/realtime-bidding-proto
https://web.archive.org/web/20190228123602/https://support.google.com/admanager/answer/2913411?hl=en&ref_topic=2912022
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5 Simulating Website Oracles
To be able to simulate access to a WO for arbitrary
monitored websites we need to simulate the entire web-
site anonymity set of Tor, because the anonymity set is
what a WO queries for membership. We opt for simu-
lation for ethical reasons. The simulation has three key
parts: how those visits are distributed, the number of
visits to websites over Tor, and the timeframe (resolu-
tion) of the oracle source. Note that the first two parts
are easy for an attacker to estimate by simply observ-
ing traffic from live Tor exit relays, something we can-
not trivially do as researchers adhering to Tor’s research
safety guidelines10. Another option available to an at-
tacker is to repeatedly query a WO to learn about the
popularity of its monitored websites and based on those
figures infer the utility of the WO. We opted to not
perform such measurements ourselves, despite access to
several WOs, due to fears of inadvertently harming Tor
users. Instead we base our simulations on results from
the privacy-preserving measurements of the Tor network
in early 2018 by Mani et al. [38].

5.1 How Website Visits are Distributed

Table 2 shows the average inferred website popular-
ity from Mani et al. [38]. The average percentage does
not add up to 100%, presumably due to the privacy-
preserving measurement technique or rounding errors.
Their results show that torproject.org is very popular
(perhaps due to a bug in software using Tor), and be-
yond that focus on Alexa’s11 top one million most pop-
ular websites as bins. The “other” category is for web-
sites identified not part of Alexa’s top one million web-
sites ranking. For the rest of the analysis (not simula-
tion) in this paper we exclude torproject.org: for one,
that Tor users visit that website is unlikely to be an
interesting fact for an attacker to monitor, and its over-
representation (perhaps due to a bug) will skew our
analysis. Excluding torproject.org, about one third of
all website visits go to Alexa (0,1k], one third to Alexa
(1k,1m], and one third to other websites. The third col-
umn of Table 2 contains adjusted average percentages.

In our simulations for website visits we treat the
entries in column two of Table 2 as bins of a histogram

10 https://web.archive.org/web/20190213130918/https:
//research.torproject.org/safetyboard.html
11 https://www.alexa.com/topsites

Table 2. Inferred average website popularity for the entire Tor
network early 2018, from Mani et al. [38, Figure 2].

Website Average Without
primary domain (%) torproject.org

torproject.org 40.1
Alexa (0,10] 8.4 13.9
Alexa (10,100] 5.1 8.4
Alexa (100,1k] 6.2 10.3
Alexa (1k,10k] 4.3 7.1
Alexa (10k,100k] 7.7 12.7
Alexa (100k,1m] 7.0 11.6
other 21.7 35.9

with the relative size indicated by the average website
popularity. After randomly selecting a bin (weighted by
popularity), in the case of an Alexa range we uniformly
select a website within the range, and for the other
category we uniformly select from one million other
websites. This is a conservative choice given that there
are hundreds of millions of active websites on the In-
ternet. Uniformly selecting within a bin will make the
more popular websites in the bin likely underrepresented
while less popular websites in the bin get overrepre-
sented. However, we typically simulate an attacker that
monitors ≈100 websites and use the website popularity
as the starting rank of the first monitored website. For
the most popular websites, monitoring 100 websites cov-
ers the entire or significant portions of the bins (Alexa
≤1k), and for less popular websites (Alexa >1k), as our
results later show, this does not matter.

5.2 The Number of Website Visits

Mani et al. also inferred with a 95% confidence interval
that (104±36)∗106 initial streams are created during a
24 hour period in the entire Tor network [38]. Based on
this, in our simulation we assume 140 million website
visits per day that are distributed as described above
and occur uniformly throughout the day. While assum-
ing uniformity is naive, we selected the upper limit of
the confidence interval to somewhat negate any unrea-
sonable advantage to the attacker.

5.3 A Reasonable Timeframe

Wang and Goldberg show that it is realistic to assume
that an attacker can determine the start of a webpage
load even in the presence of background noise and mul-
tiple concurrent website visits [71]. An attacker can fur-

torproject.org
torproject.org
torproject.org
https://web.archive.org/web/20190213130918/https://research.torproject.org/safetyboard.html
https://web.archive.org/web/20190213130918/https://research.torproject.org/safetyboard.html
https://www.alexa.com/topsites
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Fig. 5. Time differences between start, log, and stop events when
visiting a website over HTTP(S) using Tor.

ther determine if a circuit is used for onion services or
not [34, 47]. Now, consider an attacker that observes
traffic between a Tor client and its guard. The initial
stream contains the first HTTP GET request for a typ-
ical website visit. The request will be the first outgoing
packet as part of a website visit once a connection has
been established. When the request arrives at the desti-
nation is the point in time when an oracle, e.g., instan-
tiated by access logs would record this time as the time
of visit. Clearly, the exact time is between the request
and the response packets and the attacker observes the
timing of those packets. So what is a realistic timeframe
for the attacker to use when it queries a WO?

Between January 22–30 (2019) we performed
Round-Trip Time (RTT) measurements using four
Amazon EC2 instances that ran their own nginx
HTTP(S) servers to visit themselves over Tor (with
torify curl) using a fresh circuit for each visit. This
allowed us easy access to start and stop times for the
RTT measurement, as well as the time a request ap-
peared in the nginx access log (without any clock-drift).
In total we collected 21,497 HTTP traces and 21,492
HTTPS traces, where each trace contains start, log, and
stop timestamps. Our results are shown in Figure 5.
It is clear that that log-to-stop times are independent
of HTTP(S). More than half of all log-to-stop times
(54.5%) are within a 100 ms window (see 40–140 ms),
and nearly all log-to-stop times are less than 1000 ms.

Based on our experiment results we consider three
timeframes relevant: 10 ms, 100 ms, and 1000 ms. First,
10 ms is relevant as close to optimal for any attacker. On
average, there are only 17 website visits during a 10 ms
window in the entire Tor network. 100 ms is our default
for the WF experiments we perform: we consider it real-
istic for many sources of WOs (e.g., Cloudflare logs and
real-time bidding). We also consider a 1000 ms time-
frame relevant due to the prevalence of sources of WOs
with a resolution in seconds (e.g., due to Unix times-

tamps or TTLs for DNS). Based on our simulations and
the different timeframes, Appendix A contains an anal-
ysis of the utility of WOs using Bayes’ law. Appendix B
presents some key lessons from the simulation, in partic-
ular that while the resolution and resulting timeframe
is an important metric in our simulation, it is minor in
comparison to the overall website popularity in Tor of
the monitored websites.

6 Deep Fingerprinting with
Website Oracles

We first describe how we augment the Deep Fingerprint-
ing (DF) attack by Sirinam et al. [60] with WO access.
Next we evaluate the augmented classifier on three dif-
ferent datasets with five different WF defenses. Source
code and datasets for simulating WF+WO attacks as
well as steps to reproduce all of the following results
using DF are available at github.com/pylls/wfwo.

6.1 The Augmented Classifier

As covered in the background (Section 2.3), DF is a
CNN where the last layer is a softmax. The output is an
array of probabilities for each possible class. Compared
to the implementation of DF used by Sirinam et al.,
we changed DF to not first use binary classification in
the open world to determine if it is an unmonitored
trace or not, but rather such that there is one class
for each monitored website and one for unmonitored.
Conceptually, this slightly lowers the performance of DF
in our analysis, but our metrics show that mistaking
one monitored website for another is insignificant for the
datasets used in the analysis of this paper. The principal
source of false positives is mistaking an unmonitored
website for a monitored.

Given the probability of each possible class as out-
put of DF, we used the second generic construction (Def-
inition 3) from Section 3.2 to combine DF with a WO.
To update the remaining probabilities after removing
a (monitored) prediction with the help of the WO, we
use a softmax again. However, due to how the softmax
function is defined, it emphasizes differences in values
above one and actually de-emphasizes values between

https://github.com/pylls/wfwo
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(a) No defense. (b) Walkie-Talkie [72]. (c) WTF-PAD [31].

Fig. 6. Attack simulation for Deep Fingerprinting (DF) with website oracles (100 ms timeframe) on Sirinam et al.’s dataset [60]. The
lines in each sub-figure show DF with and without website oracle access for different starting Alexa ranks for monitored websites.

zero and one12. This is problematic for us because all
values we send through the softmax are probabilities
that per definition are between zero and one. To ac-
count for this, we first divide each probability with the
maximum probability and multiply with a constant be-
fore performing the softmax. Through trial-and-error, a
constant of five gave us a reasonable threshold in prob-
abilities. Note that this does not in any way affect the
order of likely classes from DF, it simply puts the prob-
abilities in a span that makes it easier for us to retain
a threshold value between zero and one after multiple
calls to the softmax function.

6.2 WTF-PAD and Walkie-Talkie

We use the original dataset of Sirinam et al. [60]
that consists of 95 monitored websites with 1,000 in-
stances each as well as 20,000 unmonitored websites
(95x1k+20k). The dataset is split 8:1:1 for training,
validation, and testing, respectively. Given the dataset
and our changes to DF to not do binary classification
means that our testing dataset is unbalanced in terms of
instances per class. Therefore we show precision-recall
curves generated by alternating the threshold for DF
with and without WO access.

Figure 6 shows the results of DF and DF+WO with
a simulated WO on Sirinam et al.’s dataset with no de-
fense (Figure 6a), Walkie-Talkie (Figure 6b), and WTF-
PAD (Figure 6c). For the WO we use a 100 ms time-
frame and plot the results for different starting Alexa
ranks of the 95 monitored websites. Regardless of de-
fense or not, we observe that for Alexa ranks 1k and
less popular websites the precision is perfect (1.0) re-
gardless of threshold. This indicates that—for an at-

12 https://en.wikipedia.org/w/index.php?title=Softmax_
function&oldid=883834589

tacker monitoring frontpages of websites—a 100 ms WO
significantly reduces false positives for two-thirds of all
website visits made over Tor, for the vast majority of
potentially monitored frontpages of websites. Recall is
also slightly improved.

For Walkie-Talkie we observe a significant improve-
ment in precision due to WO access. Wang and Gold-
berg note that the use of popular websites as decoy
(non-sensitive) websites protects less-popular sensitive
websites due to the base rate: an attacker claiming that
the user visited the less-popular website is (per defi-
nition) likely wrong, given that the attacker is able to
detect both potential website visits [72]. Access to a WO
flips this observation on its head: if a WO detects the
sensitive less-popular website, the base rate works in
reverse. The probability of an unpopular website being
both miss-classified and visited in the timeframe is small
for all but the most popular websites. The key question
becomes one of belief in the base rate of the network
and that of the target user, as analysed in Appendix A.

Further, WO access improves both recall and pre-
cision for all monitored websites against WTF-PAD.
WTF-PAD only provides a three percentage points de-
crease in recall compared to no defense for monitored
websites with Alexa ranks 1k and above.

6.3 CS-BuFLO and Tamaraw

To evaluate the constant-rate defenses CS-BuFLO and
Tamaraw by Cai et al. [6, 7] we use Wang et al.’s dataset
in the open world [70]. The dataset consists of 100 mon-
itored websites with 90 instances each and 9000 un-
monitored sites (100x90+9k), that we randomly split
(stratified) into 8:1:1 for training, validation, and test-
ing. We had to increase the length of the input to DF
for this dataset, from 5000 to 25000, to ensure that we
capture most of the dataset. To get defended traces for

https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=883834589
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=883834589
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(a) No defense. (b) CS-BuFLO [6], with reported 67.2% BOW
and 575.6% TOH [12].

(c) Tamaraw [7], with reported 256.7% BOW and
341.4% TOH [12].

Fig. 7. Attack simulation for Deep Fingerprinting (DF) [60] with website oracles (100 ms timeframe) on Wang et al.’s dataset [70].
The lines in each sub-figure show DF with and without website oracle access for different starting Alexa ranks for monitored websites.

(a) No defense. (b) DynaFlow [36] config 1, with measured 59%
BOH and 24% TOH.

(c) DynaFlow [36] config 2, with measured 109%
BOH and 30% TOH.

Fig. 8. Attack simulation for Deep Fingerprinting (DF) [60] with website oracles (100 ms timeframe) on Lu et al.’s dataset [36]. The
lines in each sub-figure show DF with and without website oracle access for different starting Alexa ranks for monitored websites.

CS-BuFLO and Tamaraw we use the slightly modified
implementations as part of Cherubin’s framework [12].

Figure 7 shows the results of our simulations. DF
alone is also highly effective against the original Wang
dataset—as expected—and our attack simulation shows
that we can further improve it with access to website or-
acles. Most importantly, both CS-BuFLO and Tamaraw
offer protection against DF with and without oracle ac-
cess by significantly lowering recall. Tamaraw offers an
order of magnitude better defense in terms of recall. As
implemented in the framework by Cherubin, CS-BuFLO
and Tamaraw reportedly has BOH 67.2% and 256.7%,
and TOH 575.6% and 341.4%, respectively. This kind
of overhead is likely prohibitively large for real-world
deployment in Tor [6, 7, 31, 60, 72].

6.4 DynaFlow

DynaFlow is a dynamic constant-rate defense by Lu
et al. [36] with two configurations that result in dif-
ferent overheads and levels of protection. Lu et al.
gathered their own dataset of 100 monitored websites
with 90 instances each and 9000 unmonitored websites
(100x90+9k, same as Wang et al.’s [70]) to be able to
combine smaller packets, as discussed briefly in Sec-

tion 2.3. As for CS-BuFLO and Tamaraw, we had to
increase the length of the input to DF for this dataset
to 25000 to ensure that we capture most of the dataset.

Figure 8 shows the results of our simulations for no
defense as well as the two configurations of DynaFlow.
As for Wang et al.’s dataset [70], we see as expected that
DF is highly effective and WO access further improves
the attack. Further, both configurations of DynaFlow
are effective defenses, comparable to CS-BuFLO with
significantly lower overheads at first glance. However,
note that the comparison is problematic due to Dy-
naFlow combining smaller packets. The extra overhead
for config 2 over 1 is not wasted: recall is significantly
reduced, more than halved for regular DF and slightly
less than half with a WO.

7 Discussion
For defenses that are based on the idea of creating col-
lision sets between packet traces generated by websites,
oracle access is equivalent to being able to perform set
intersection between the set of websites in a collision
set and monitored websites visited at the time of fin-
gerprinting. As the results show from Section 6, some
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defenses can significantly reduce the recall of WF at-
tacks with WOs, but not the precision for the majority
of websites and website visits in Tor.

Next, in Section 7.1 we further cement that our sim-
ulations show that WOs significantly reduces false posi-
tives, highlighting that a WF+WO attacker surprisingly
infrequently have to query a WO when classifying un-
monitored traces. Section 7.2 discusses the impact of im-
perfect WO sources with limited observability and false
positives on the joint WF+WO attack. Finally, Sec-
tion 7.3 covers limitations of our work, and Section 7.4
discusses possible mitigations.

7.1 A Large Unmonitored Dataset

We look at the number of false positives for a large test
dataset consisting of only unmonitored websites (rep-
resenting a target user(s) with base rate 0, i.e., that
never visits any monitored website). Using the dataset
of Greschbach et al. [24], we trained DF on 100x100
monitored and 10k unmonitored websites (8:2 stratified
split for validation), resulting in about 80% validation
accuracy after 30 epochs (so DF is clearly successful also
on this dataset). We then tested the trained classifier
on only 100k unmonitored traces, with and without or-
acle access (100ms resolution) for different assumptions
of the popularity of the monitored websites. With ten
repetitions of the above experiment, we observed a false
positive rate in the order of 10−6 for monitored websites
with Alexa popularity 10k. Excluding torproject.org,
this indicates that an attacker would have close to no
false positives for about half of all website visits in Tor,
according to the distribution of Mani et al. [38] (see
Section 5.1). Without access to a WO, DF had a false
positive rate in the order of 10−3 to 10−4, depending on
the threshold used by the attacker.

Recall how WOs are used as part of WF+WO at-
tacks in Section 3.2: the WO is only used if the WF at-
tack classifies a trace as monitored13. This means that,
in the example above, the WO is used on average every
103 to 104 trace, to (potentially) rule out a false posi-
tive. Clearly, this means that WO sources that can only
be used infrequently, e.g., due to caching as in DNS, are
still valuable for an attacker.

13 For WF attacks like DF that produces a list of probabilities
(Definition 3), just assume that the attacker picks the threshold
and checks if the probability is above as part of the if-statement
before using the WO.

Fig. 9. How limited WO observability effects the final recall of a
WF+WO attack for five different WO false positive rates.

7.2 Imperfect Website Oracle Sources

Our analysis considered an ideal source of a WO that
observes all visits to targeted monitored websites of the
attacker and that produces no false positives. Next, us-
ing the same dataset and setup as for Figure 6a with an
Alexa starting rank of 104, we simulate the impact on
recall and the False-Negative-to-Positive-rate14 (FNP)
of the joint WF+WO attack for five false positive rates
of the WO and a fraction of observed website visits.

Figure 9 shows the impact on the joint recall in the
above setting. We see that recall is directly proportional
to the fraction of observed visits, as per the results of
Greschbach et al. [24]. Further, false positives for the
WO have a positive impact on the fraction of recall,
counteracting visits missed due to limited observability.
For the same reason, a larger timeframe or monitoring
more popular websites would also improve recall.

Figure 10 shows the impact on the joint FNP. Note
that lower FNP is better for an attacker. We see that
limited observability has no impact on FNP. This makes
sense, because a WO cannot confirm anything it does
not observe. The FNP fraction for the joint FNP is
roughly proportional to the FP of the WO. We also see
that the FNP fraction consistently is above the FP of
the WO: this is because—beyond the simulated FP—
there is a slight probability that someone else (in our
simulation of the Tor network) visited the website for
each classified trace. A larger timeframe or monitoring
more popular websites would also increase FNP.

From above results, our simulations indicate that
even with a deeply imperfect WO source an attacker
can get significant advantage in terms of reduced false

14 For a classifier with multiple monitored classes and an un-
monitored class (as for our modified DF, see Section 6.1), FNP
captures the case when the classifier classifies an unmonitored
testing trace as any monitored class. In addition to FNP, such
a classifier can also confuse one monitored website for another.
Both these cases are false positives [69].

torproject.org
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Fig. 10. How limited WO observability effects the final False-
Negative-to-Positive-rate (FNP) of a WF+WO attack for five
different WO false positive rates. Lower is better.

positives at a comparatively small cost of recall. For
example, given a WO with 50% observability and false
positives, the resulting WF+WO attack has about 75%
of the recall of the WF attack and slightly more than
half the false positives.

7.3 Limitations

As discussed in Section 2.3, there are a number of prac-
tical limitations in general for WF attacks. Regarding
attacker goals, WOs are likely less useful for the purpose
of censorship than for other goals. Many sources of WOs
cannot be accessed in real-time, giving little utility for
an attacker that needs to make a near real-time cen-
sorship decision. An attacker that only wants to detect
visits to a few selected monitored websites gains signif-
icant utility from WOs, as long as the detection does
not have to be in real-time. It is also noteworthy that
an attacker that wants to detect all possible website vis-
its by a victim can use the WO to in essence “close the
world” from all possible websites to only those visited
over Tor while the victim is actively browsing. Granted,
this requires a source for the WO that is slightly differ-
ent from our definition, but some do offer this: e.g., an
attacker that gains comprehensive control over the DNS
resolvers used by Tor exits [24].

When it comes to false positives a significant limita-
tion of our simulations is that we consider fingerprinting
the frontpages of websites and not specific webpages.
Several sources or WOs are not able to detect webpage
visits. This is also true for subsequent webpage visits on
the same website after first visiting the frontpage of a
website (e.g., DNS and OCSP will be cached). An at-
tacker with the goal of detecting each such page visit
will thus suffer more false positives or fail at detecting
them for some sources of WOs.

7.4 Mitigations

The best defense against WOs is WF defenses that sig-
nificantly reduce the recall of WF attacks. In particu-
lar, if an attacker can significantly reduce the website
anonymity set after accounting for information from the
WO, then attacks are likelier to succeed. This implies
that most websites need to (at least have the potential
to) result in the same network traces, as we see with
DynaFlow, Tamaraw, and CS-BuFLO.

For onion websites we note that the DHT source of
a WO from Section 4 is inherent to the design of onion
services in Tor. Defenses that try to make it harder to
distinguish between regular website visits and visits to
onion websites should also consider this WO source as
part of their analysis, in particular for v2 onion services.

Finally, some sources of WOs could be minimized. If
you run a potentially sensitive website: do not use RTB
ads, staple OCSP, have as few DNS entries as possible15

with a high TTL, do not use CDNs, do not retain any
access logs, and consider if your website, web server, or
operating system have any information leaks that can
be used as an oracle. If you run a Tor exit, consider not
using Google or Cloudflare for your DNS but instead
use your ISP’s resolver if possible [24].

8 Related Work
The combination of a WF attack with a WO is a type
of Classify-Verify method as proposed by Stolerman et
al. [61], which in turn is a type of rejection function as
described by Chow [13]. Such a method was first used
in the context of WF by Juarez et al. [30] and later by
Greschbach et al. [24] to augment WF attacks with in-
ferences from observed DNS traffic. Note that the attack
by Greschbach et al. can be seen as a probabilistic WO
due to the attacker under their threat model only ob-
serving a fraction of DNS traffic from the Tor network.
Our work builds upon and generalises their work where
DNS traffic is just one of many possible sources to infer
website visits from. Further, our DNS-based sources are
usable by anyone instead of relatively strong network
attackers (or Google or Cloudflare).

All anonymity networks produce anonymity sets
(per definition) that change with observations by an at-

15 As noted by Greschbach et al. [24], websites may have sev-
eral unique domain names. Each of those could be used inde-
pendently to query several sources (e.g., DNS) of WOs.
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tacker over time [53]. Modelling the behaviour of an
anonymity system (as a mix), what the attacker ob-
serves, and how the anonymity sets change over time
allows us to reason about how the attacker can perform
traffic analysis and break the anonymity provided by the
system [19, 32, 58]. Attacks along these lines are many
with more-or-less consistent terminology, including in-
tersection attacks, (statistical) disclosure attacks, and
traffic confirmation attacks [3, 15–17, 33, 53, 54, 66].

WOs are nothing more than applying the notion
of anonymity sets to the potential destination websites
visited over an anonymity network like Tor and giving
an attacker the ability to query this anonymity set for
membership for a limited number of monitored web-
sites. The way we use WOs in our generic attacks is not
to learn long-term statistically unlikely relationships be-
tween senders and recipients in a network. Rather, the
WO is only used to learn part of the anonymity set at
the time of the attack. That an attacker can observe
anonymity sets is not novel, what is novel in our work
is how we apply it to the WF domain and argue for its
inclusion as a core attacker capability when modelling
WF attacks and defenses.

Murdoch and Danezis showed how to use observed
latency in Tor as an oracle to perform traffic analy-
sis attacks [42]. Chakravarty et al. detailed similar at-
tacks but based on bandwidth estimation [10] and Mit-
tal et al. using throughput estimation [41]. Attackers
in these cases do not need to be directly in control of
significant fractions Tor, but rather use network mea-
surements to infer the state of the network and create
an oracle that an attacker can utilize, similar to WOs.

Correlation of input and output flows is at the core
of many attacks on anonymity networks like Tor [5, 29,
63]. Flow correlation attacks correlate traffic on the net-
work layer, considering packet sizes and timing of sent
traffic. The RAPTOR attack by Sun et al. [63] needs
about 100MB of data sent over five minutes to correlate
flows with high accuracy. The recent state-of-the-art at-
tack DeepCorr by Nasr et al. [44]—based on deep learn-
ing like Deep Fingerprinting by Sirinam et al. [60]—
needs only about 900KB of data (900 packets) for com-
parable accuracy to RAPTOR. While flow correlation
attacks like RAPTOR and DeepCorr operate on the net-
work layer, WF+WO attacks can be viewed as applica-
tion layer correlation attacks. WF attacks extract the
application-layer data (the website) while WOs recon-
struct parts of the anonymity set of possible monitored
websites visited. WF attacks need to observe most of
the traffic generated when visiting a website that goes
into the anonymity network. While a WO does not have

to directly view any of the output flows of the network,
it needs to be able to infer if a particular website was
visited during a period of time, as shown in Section 4.

9 Conclusions
WF+WO attacks use the base rate of all users of the
network against victims, significantly reducing false pos-
itives in the case of all but the most popular websites
visited over Tor. This is troubling in many ways, in part
because presumably many sensitive website visits are to
unpopular websites used only by local communities in
regions of the world where the potential consequences
of identification are the worst.

The threat model of Tor explicitly states that Tor
does not consider attackers that can observe both in-
coming and outgoing traffic [20]. Clearly, a WO gives
the capability to infer what the outgoing traffic of the
network encodes on the application layer (the website
visits). This is in a sense a violation of Tor’s threat
model when combined with a WF attacker that also
observes incoming traffic. However, we argue that be-
cause of the plethora of possible ways for an attacker
to infer membership in the anonymity sets of Tor, WOs
should be considered within scope simply because Tor
asserts that it is an anonymity network.

While the real-world impact of WF attacks on Tor
users remains an open question, our simulations show
that false positives can be signficantly reduced by many
attackers with little extra effort for some WO sources.
Depending on WO source, this comes at a trade-off of
less recall. For many attackers and attacker goals, how-
ever, this is a worthwhile trade. To us, the threat of WF
attacks appears more real than ever, especially when
also considering recent advances by deep learning based
attacks like DF [60] and DeepCorr [44].
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A Bayes’ Law for Estimating
Utility of Website Oracles

To reason about the advantage to an attacker of having
access to a WO, we estimate the conditional probabil-
ity of a target user visiting a monitored website. For
conditional probability we know that:

P (C0 ∩ C1) = P (C0|C1)P (C1) (1)

For a hypothesis H given conditional evidence E,
Bayes’ theorem states that:

P (H|E) = P (E|H)P (H)
P (E) (2)

Assume that E = E0 ∩ E1, then:

P (H|E0 ∩ E1) = P (E0 ∩ E1|H)P (H)
P (E0 ∩ E1) (3)

Substituting P (E0 ∩ E1) with (1) we get:

P (H|E0 ∩ E1) = P (E0 ∩ E1|H)P (H)
P (E0|E1)P (E1) (4)
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(a) 10 ms (b) 100 ms (c) 1000 ms

Fig. 11. The conditional probability as a function of user base rate and website popularity (Alexa) for three different timeframes.

For a timeframe t, we define
H the probability that target user(s) visited website w

over Tor in t

E0 the probability that target user(s) visited a website
over Tor in t

E1 the probability that someone visited website w over
Tor in t

We see that P (E0 ∩ E1|H) = 1 by definition and get:

P (H|E0 ∩ E1) = P (H)
P (E0|E1)P (E1) (5)

Consider P (E0|E1): while the conditional E1 may
have some minor affect on user behaviour (in particular
for overall popular websites), we assume that the popu-
larity of using Tor to visit a particular website (by any
of the users of Tor) has negligible impact on E0 and
treat E0 and E1 as independent:

P (H|E0 ∩ E1) = P (H)
P (E0)P (E1) (6)

We can further refine P (H) as being composed of
at least:

P (H) = P (E0) ∩ P (Bw) = P (E0|Bw)P (Bw) (7)

Where P (Bw) is the base rate (prior) of the user(s)
visiting website w out of all possible websites they visit
(P (E0)). We again assume (perhaps naively) that E0 is
also independent of Bw, which gives us:

P (H|E0 ∩ E1) = P (E0)P (Bw)
P (E0)P (E1) = P (Bw)

P (E1) (8)

In other words, if an attacker learns that target
user(s) visited a website (E0) over Tor and that website
w was also visited over Tor by some user (E1), then we
can estimate the probability that it was target user(s)
that visited website w (H) as the ratio between the base
rate (prior) for visiting w of target user(s) (Bw) and the

probability that someone visited the website over Tor
(E1), all within a timeframe t.

Figure 11 shows the results for simulating the prob-
ability P (H|E0 ∩ E1) for different website popularities
of w, base rates, and timeframes. We see that with a re-
alistic timeframe of 100 ms, for all base-rates but 10−6

there is non-zero conditional probability (and therefore
utility of WO access) for Alexa top 100k or less popular
websites, which covers about half of all website visits
over Tor (excluding torproject.org).

B Lessons from Simulation
With the ability to simulate access to WOs we can now
simulate the entire website anonymity set for Tor. To
get a better understanding of why WOs are so useful
for an attacker performing WF attacks, we look at two
results from the simulation below.

B.1 Time Until Website Visited over Tor

Figure 12 shows the time until there is a 50% probability
that a website has been visited over Tor depending on
website popularity (Alexa, as discussed in Section 5.1).
Within ten seconds, we expect that most of Alexa top 1k
has been visited. Recall that this represents about one
third of all website visits over Tor. The less popular web-
sites on Alexa top one-million represent another third
of all visits, quickly approaching hundreds of seconds
between visits. For the remaining third of all website
visits we expect them to be even less frequent.

B.2 Visits Until First False Positive

Assume that target user(s) have a base rate of 0, i.e.,
they never visit the attacker’s monitored websites. With

torproject.org
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Fig. 12. The simulated time until there is a 50% probability that
a website for different Alexa ranks has been visited over Tor.

Fig. 13. The number of website visits until there is a 50% proba-
bility that a website oracle would contribute to a false positive.

WO access, we can determine how many (naively as-
sumed independent) website visits it at least takes until
there is a 50% chance that the attacker’s classifier gets
a false positive. This is because if the attacker’s website
classifier without oracle access always returns a false
positive, then the false positive rate by the WF+WO
attack will be determined by when the WO says that
the—incorrectly classified as monitored—website has
been visited. Figure 13 shows the expected number of
visits by the victim(s) for different timeframes based on
the popularity of the monitored websites. Note that the
attacker per definition chooses which websites are mon-
itored and can therefore take the probability of false
positives into account.

C Sources of Website Oracles
There are a wide number of possible sources to instan-
tiate WOs. Here we present some details on a selection
of sources, far from exhaustive.

C.1 Surveillance Programmes

Intelligence agencies operate surveillance programmes
that perform bulk collection and retention of communi-
cations metadata, including web-browsing [37]. For ex-
ample, the Snowden revelations included Marina:

Of the more distinguishing features, Marina has the ability
to look back on the last 365 days’ worth of DNI (Digital
Network Intelligence) metadata seen by the Sigint collec-
tion system, regardless whether or not it was tasked for
collection.16

Another example is the prevalence of nation states to
monitor Internet traffic that crosses geographic bor-
ders. For example, China operates the Great Firewall
of China that is also used for censorship purposes. Due
to the nature of Tor and how exits are selected, visits
to websites that are not operated by world-wide reach-
ing hosting providers are highly likely to cross multiple
nation borders as traffic goes from an exit to the web-
site. It is also worth to highlight that any sensitive web-
site hosted from within a country where a state actor
is interested in identifying visitors are likely to capture
traffic to that website due to the Tor traffic crossing its
borders more often than not.

C.2 Content Delivery Networks

Content Delivery Networks (CDNs), such as Akamai,
Google, and Amazon host different types of content
for a significant fraction of all websites on the Inter-
net [57]. Inherently, all requests for these resources are
easily identified as coming from Tor exits, and depend-
ing on content, things like unique identifiers and HTTP
referrer headers enable the CDN provider to infer the
website the content is hosted on.

C.3 Internet Giants

Internet giants like Google, Apple, Facebook, Amazon,
Microsoft, and Cloudflare make up a large fraction the
web as we know it. For example the use of Google
Analytics is wide-spread, so is hosting in clouds pro-
vided by several of these giants, and Cloudflare with
its “cloud network platform” hosts over 13 million do-
mains17. While some of them may do what is in their
power to protect the valuable data they process and
retain, they are still subject to many legal frameworks
across the world that might not offer the best of pro-
tections for, say, access logs pertaining to “anonymous”

16 https://web.archive.org/web/20190227151029/https:
//www.theguardian.com/world/2013/sep/30/nsa-americans-
metadata-year-documents
17 https://web.archive.org/web/20190227165133/https:
//www.cloudflare.com/

https://web.archive.org/web/20190227151029/https://www.theguardian.com/world/2013/sep/30/nsa-americans-metadata-year-documents
https://web.archive.org/web/20190227151029/https://www.theguardian.com/world/2013/sep/30/nsa-americans-metadata-year-documents
https://web.archive.org/web/20190227151029/https://www.theguardian.com/world/2013/sep/30/nsa-americans-metadata-year-documents
https://web.archive.org/web/20190227165133/https://www.cloudflare.com/
https://web.archive.org/web/20190227165133/https://www.cloudflare.com/


Website Fingerprinting with Website Oracles 255

users of Tor when requested by authorities of nation
states. As another example, Cloudflare offers a nice API
for their customers to get their access logs with Unix
nanosecond precision. The logs are retained for up to
seven days18, giving ample time for legal requests.

C.4 Access Logs of Web Servers

The vast majority of web servers retain access logs
by default. Typically, they provide unix timestamps
with seconds as the resolution (the case for Apache
and nginx). Further, the access logs may be shipped
to centralised security information and event manage-
ment (SIEM) systems for analysis, with varying reten-
tion times and rigour in storage. For example, it is com-
mon to “anonymize” logs by removing parts of the IP-
addresses and then retaining them indefinitely, as is the
case for Google who removes part of IP addresses in logs
after nine months19.

C.5 Middleboxes

Network middleboxes that observe, analyse, and poten-
tially retain network traffic abound. Especially in more
oppressive countries, middleboxes are often used for cen-
sorship or dragnet surveillance, e.g., as seen with Blue
Coat in Syria [1].

C.6 OCSP Responders

Chung et al. [14] found in a recent study that 95.4%
of all certificates support the Online Certificate Status
Protocol (OCSP), which allows a client to query the
responsible CA in real-time for a certificate’s revoca-
tion status via HTTP. As such, the browsed website
will be exposed to the CA in question. From a privacy-
standpoint this could be solved if the server stapled a
recently fetched OCSP response with the served certifi-
cate. Unfortunately, only 35% of Alexa’s top-one-million
uses OCSP stapling [14].

Unless an OCSP response is stapled while visiting
a website in a default configuration of the Tor browser,
the status of a certificate is checked in real-time using

18 https://web.archive.org/web/20190227165850/https:
//developers.cloudflare.com/logs/faq/
19 https://web.archive.org/web/20190227170903/https:
//policies.google.com/technologies/retention

OCSP. As such, any CA that issued a certificate for
a website without OCSP stapling could instantiate a
WO with an RTT-based resolution. Similarly, any ac-
tor that observes most OCSP traffic (which is in plain-
text due to HTTP) gets the same capability. To bet-
ter understand who could instantiate a WO based on
OCSP we performed preliminary traceroute measure-
ments20 on the RIPE Atlas network towards four OCSP
responders that are hosted by particularly large CAs:
Let’s Encrypt, Sectigo, DigiCert, and GoDaddy. Let’s
Encrypt and Sectigo are fronted by a variety of actors
(mainly due to CDN caching), while DigiCert is fronted
by a single CDN. Requests towards GoDaddy’s OCSP
responder always end-up in an AS hosted by GoDaddy.

C.7 Tor Exit Relays

Anyone can run a Tor exit relay and have it be used
by all Tor users. Obviously, the operator of the exit
relay can observe when its relay is used and the des-
tination websites. At the time of writing, the consumed
exit bandwidth of the entire Tor network is around
50 Gbit/s. This makes the necessary investment for an
attacker that wishes to get a decent chunk of exit band-
width more a question of stealthily deploying new exit
relays than prohibitively large monetary costs.

C.8 Information Leaks

More sophisticated attackers can look for information
leaks at the application, network, and operating system
levels that allow them to infer that websites have been
visited. Application level information leaks are particu-
larly of concern for onion services: any observable state
that can be tied to a new visitor is a WO for an onion
visit (this is not the case for “regular” websites). Such
state can include online status or the number of online
users of a service, any observable activity with times-
tamps, a predictable caching structure, and so on. Sim-
ilar information leaks can also occur on the network and
operating system level [9, 22, 51].

20 Every RIPE Atlas probe used its configured DNS resolver(s).
In total we requested 2048 WW-probes for one-off measure-
ments.

https://web.archive.org/web/20190227165850/https://developers.cloudflare.com/logs/faq/
https://web.archive.org/web/20190227165850/https://developers.cloudflare.com/logs/faq/
https://web.archive.org/web/20190227170903/https://policies.google.com/technologies/retention
https://web.archive.org/web/20190227170903/https://policies.google.com/technologies/retention
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