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Abstract: Anonymous communication tools, such as
Tor, are extensively employed by users who want to keep
their web activity private. But recent works have shown
that when a local, passive adversary observes nothing
more than the timestamp, size and direction (incom-
ing or outgoing) of the packets, it can still identify with
high accuracy the website accessed by a user. Several de-
fenses against these website fingerprinting attacks have
been proposed but they come at the cost of a significant
overhead in traffic and/or website loading time. We pro-
pose a defense against website fingerprinting which ex-
ploits multihoming, where a user can access the Internet
by sending the traffic through multiple networks. With
multihoming, it is possible to protect against website
fingerprinting by splitting traffic among the networks,
i.e., by removing packets from one network and send-
ing them through another, whereas current defenses can
only add packets. This enables us to design a defense
with no traffic overhead that, as we show through ex-
tensive experimentation against state-of-the-art attacks,
reaches the same level of privacy as the best existing
practical defenses. We describe and evaluate a proof-of-
concept implementation of our defense and show that is
does not add significant loading-time overhead. Our so-
lution is compatible with other state-of-the-art defenses,
and we show that combining it with another defense fur-
ther improves privacy.
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1 Introduction
The web activity of users, i.e., which websites they
visit, is known to be sensitive data as it discloses a
large amount of information. Such information can be
used by repressive states against citizens who try to go
against country-level censorship and by marketers (e.g.,
it has been revealed that in the USA, Internet service
providers (ISPs) sell the Internet browsing records to
marketers [4]). Being able to keep a person’s web ac-
tivity private is thus of the utmost importance. Typical
solutions include the use of encryption protocols that
hide only the content of the packet, such as TLS (used
by HTTPS), and of anonymous communication tools
that also hide the destination of the packets from a local
adversary (e.g., a curious or state-controlled ISP, or the
curious administrator of a public WiFi access-point),
such as Tor. Anonymous communication tools like Tor,
which we study more particularly, are supposed to make
it impossible for a local adversary to detect which web-
site a client visits.

Recent works [9, 18, 30, 32, 44, 48, 49, 55, 62, 66, 68],
however, have shown that traffic analysis techniques,
such as website fingerprinting (denoted in this paper
by WF), enable a local adversary to identify with high
accuracy which website is visited (more than 90% ac-
curacy in a list of 100 monitored websites), even if the
client uses an anonymous communication tool (i.e., she
hides the final destination and content of the packets
from the local adversary). The adversary can success-
fully identify the website (carry out a WF attack) by
looking at only packet metadata; with Tor, the packets
are fragmented in so-called Tor cells of fixed size, which
means that only the timestamp and direction (incoming
or outgoing) of the packets are available to the adver-
sary, and not the size of the packets. WF attacks typi-
cally extract features on the observable metadata (such
as total number of packets, timings of packets, ratio be-
tween outgoing packets and incoming packets). These
attacks are formulated as a classification problem and
rely on supervised machine-learning techniques to learn
associations between features and websites.

A large number of defenses has been proposed to
defeat these attacks. They rely on two main techniques:
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(i) link padding, which takes advantage of the inability
of the adversary to see the content of the packets and
inserts dummy packets to the packet flow to confuse the
adversary; and (ii) packet delaying, which delays pack-
ets to modify the trace. Both of these techniques incur
a performance overhead: Link padding causes a traffic
overhead, because more packets are sent; and packet
delaying causes a loading-time overhead, because delay-
ing packets makes the website loading time larger. This
yields a trade-off between privacy and performance.

In this paper, we consider a client that is multi-
homed, i.e., she is connected to the Internet through
multiple networks. Multihoming has been studied for
quite some years as a solution for improving reliability
and performance. It has long been used by enterprises [7]
but, until recently, rarely by individual clients due to
the lack of natively multihomed devices, and because
it relied on multipath solutions, such as SCTP [33, 64],
which are difficult to use in today’s Internet. Multihom-
ing has recently gained popularity for individual clients
for two reasons. First, multihomed devices have become
omnipresent in the last few years, in particular due to
the emergence of hybrid networks (networks with two or
more technologies). Today, virtually all smartphones are
natively multihomed and support both WiFi and cellu-
lar. All laptops have a WiFi interface and can easily be
made multihomed by the addition of a lightweight and
low-cost component (e.g., 3G/4G USB dongles) or with
a smartphone sharing its connection through Bluetooth
or USB. Dual-SIM cellphones have also been launched
onto the market and are gaining popularity. Second,
multipath solutions compatible with the protocols dom-
inant in today’s Internet have been recently developed
to exploit hybrid networks. The most popular solution is
multipath TCP (MPTCP) [27, 28]: It has been shown
to bring significant performance gains [16, 29, 42, 53]
and it is now widely deployed [11]. In particular, all Ap-
ple operating systems (for phones and computers) now
support MPTCP [1], and an implementation exists for
Linux-based devices [46].

As exposed above, multihoming and multipath
are becoming increasingly present in today’s networks.
Here, we study their implications on WF attacks. We
consider the scenario of a multihomed client with an
adversary that can only observe the traffic sent through
one of the networks—which is very likely in several use
cases. For instance, one of the most relevant use cases for
Tor is web access in countries under censorship, where
users might be fingerprinted by their local ISP under
government regulations. In this case, multihoming does
not only offer better performance and reliability; it can

also be a means to circumvent fingerprinting by a local
ISP, because it is very complex and highly unlikely that
different ISPs combine their traces to fingerprint a user,
as we explain later.

The availability of multiple networks makes it pos-
sible to choose, for each packet, through which one of
these networks it should be sent, which is referred here-
after as splitting. Splitting traffic among the networks
makes it possible to remove packets from one network
by sending them through another—whereas current de-
fenses can only add and/or delay packets, which creates
performance overhead, as explained above. This enables
us to design a defense with no traffic overhead. Insert-
ing dummy packets and/or delaying packets remains of
course possible in multihoming and can be combined
with splitting to further improve privacy, as we also
show.

To provide security and privacy guarantees, exploit-
ing the existence of several non-colluding entities is a
standard and successful technique used in other contexts
(e.g., secret sharing [58]). But splitting traffic through
multihoming is not straightforward and raises several
challenges. The main challenge that needs to be ad-
dressed is to know how to split the traffic between the
networks to improve the resistance against WF. We
show that this is non-trivial, as deterministic schemes
(e.g., round-robin) do not significantly improve privacy.
This makes necessary the development of a specific mul-
tipath scheduler for increasing the resistance against
WF. Our first contribution is the design of a novel mul-
tipath scheduler for protecting against WF. Because one
of the main use cases of multihoming relies on hybrid
networks, we call this multipath scheduler HyWF. We
extensively evaluate HyWF against state-of-the-art WF
attacks and we show that it achieves the same level of
accuracy as the best existing practical defenses, but does
so without adding any traffic overhead. HyWF is com-
patible with other defenses that rely on link padding or
packet delaying, and combining HyWF with another de-
fense further improves privacy by combining the gains
brought by the two defenses. Our second contribution
is to demonstrate this with the description and evalu-
ation of two novel defenses that combine HyWF with
two state-of-the-art defenses: HyWF-AP, an extension
of HyWF with adaptive padding [36, 60], and HyWF-
WT, an extension of HyWF with Walkie-Talkie [69].
Our third contribution is a proof-of-concept implemen-
tation of HyWF. Our implementation does not require
modifying Tor or the application. It enables us to eval-
uate the performance of our splitting scheme. We show
that having two paths instead of one has no cost in
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terms of performance, as HyWF does not add signifi-
cant loading-time overhead.

This paper is structured as follows. We discuss re-
lated work in Section 2, present our system and adver-
sarial model in Section 3, and describe our methodology
in Section 4. In Section 5, we introduce HyWF, a defense
with no traffic overhead. We evaluate it through exten-
sive simulations in Section 6. In Section 7, we describe
the implementation of HyWF and show that it does not
add significant loading-time overhead. In Section 8, we
introduce and evaluate HyWF-AP and HyWF-WT, two
extensions of HyWF with two state-of-the-art WF de-
fenses: adaptive padding and WalkieTalkie, respectively.
We conclude in Section 9.

2 Related Work

2.1 Traffic Analysis

Traffic analysis has been extensively studied in the last
20 years. In 1996, it was shown that valuable informa-
tion could be extracted from encrypted data [65]; and in
1998, that the website accessed by clients could be suc-
cessfully identified when observing encrypted data [18].
In 2009, Herrmann et al. showed that WF attacks could
be successfully applied to anonymous communication
tools [32]. Since then, many WF attacks and defenses
have been proposed and several attacks have been shown
to be efficient for Tor, as detailed below.

2.1.1 Existing Attacks

WF Attacks against Tor: After the first work by
Herrmann et al., many other attacks were proposed.
They are all formulated as a classification problem:
They first extract meaningful features from the ob-
servable metadata; then, to associate these features to
the websites, they train a supervised machine-learning
model. The first attack against Tor that proved to be
successful relied on support vector machines (SVM) [49].
Since then, many attacks that employ different fea-
tures and machine-learning models have been pro-
posed [15, 26, 30, 34, 48, 59, 66, 67, 71]. Recently, at-
tacks employing deep learning have been proposed and
proved to be successful [9, 44, 55, 62]. In this paper, we
evaluate our defenses against the most relevant attacks,
considered to be the most advanced and effective WF
attacks [19, 45]. They are very general and not bound
to any specific defenses.

• k-NN [66]: Wang et al. use a k-nearest neighbors
model with N = 1,225 features (total transmission time,
number of packets, concentration of outgoing packets,
etc.).
• CUMUL [48]: Panchenko et al. propose an attack
that uses an SVM model with, as features, the cumu-
lative sum of the packet sizes (negative for outgoing
packets, positive for incoming packets). With Tor, the
absolute value of the packet sizes is constant.
• k-fingerprinting [30]: Hayes et al. propose an attack
that extracts N = 175 features out of the traces (e.g.,
total number of packets, number of packets per second,
concentration of incoming/outgoing packets, etc.) and
uses a random forest classifier.
• Deep Fingerprinting [62]: Sirinam et al. propose to
use deep learning on the sequences of incoming and out-
going packets to predict the visited website. It is denoted
hereafter by DF.

Juarez et al. [35] and Wang and Goldberg [68] study
the practicality of WF attacks. In particular, Wang and
Goldberg show that by carefully building the datasets
on which the attacks train their model, it is possible to
achieve a practical WF attack against Tor.
Other WF Attacks: Attacks in contexts other than
Tor are also studied. Danezis [21] and Miller et al. [43]
study attacks against HTTPS traffic, where the adver-
sary has information about the website that is accessed
(the IP address of the server is sent in clear). They show
that it can with very good accuracy infer which webpage
of the website the client visits. Website fingerprinting
is also possible by looking at the effects of contention
on the CPU’s cache of the client’s computer [61]. Re-
cently, a new WF attack based on similarity digest was
proposed [51]. As opposed to all other existing WF at-
tacks, it is not formulated as a machine learning prob-
lem, and it requires fewer samples for training. This at-
tack is shown to be effective against VPN traffic and
to detect malware activity, but not as an attack against
Tor traffic.
End-to-end Traffic Analysis: Finally, end-to-end
traffic analysis attacks, introduced by the seminal work
of Feamster and Dingledine [25], are performed when
the adversary (typically, an ISP) sees traffic on both
ends of the path and can identify the website visited
by a client by correlating the traffic sent before and af-
ter an anonymity network (e.g., Tor). Similarly to most
WF defenses [14, 19, 36, 69], we assume here that the
adversary is local, i.e., it is unable to perform end-to-
end traffic analysis attacks. With a non-local adversary,
the multihoming solution presented in this paper has
two contradicting consequences: On the one hand, by
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sending traffic to different ISPs at the client side, mul-
tihoming increases the probability that the same ISP is
on the two ends of the path and is able to perform an
end-to-end traffic analysis attack. On the other hand,
because this ISP would see only part of the packets at
the client side and all the packets at the server side,
correlation would be looser, which would very likely de-
crease the accuracy of the attack. Studying the precise
effect of multihoming on end-to-end traffic analysis at-
tacks is out of the scope of this paper.

2.1.2 Existing Defenses

In parallel, mechanisms to protect against these WF
attacks are studied. The large majority relies on link
padding (inserting dummy packets1 to confuse the ad-
versary that is unable to distinguish them from real
packets) and/or on packet delaying, and incurs traffic
and/or loading-time overhead.

The most secure defense consists in ensuring that
all traces look exactly the same; this is the basis for
constant-rate padding, such as BuFLO [24]. With Bu-
FLO, real packets are delayed and dummy packets are
inserted so that the inter-arrival times (time interval
between two consecutive packets) stay constant. But
this might still leak some information as the total load-
ing time might be different for different websites (short
traces will end before long traces). CS-BuFLO [13] and
Tamaraw [14] are proposed to improve the performance
and to reduce the overhead of BuFLO. With these im-
proved techniques, traces for different websites look the
same, and the adversary is virtually unable to distin-
guish between them. However, sending packets at a con-
stant rate requires both inserting dummy packets and
delaying real packets, which causes very high traffic and
loading-time overhead. Tamaraw offers the best perfor-
mance, but the authors still report a loading-time over-
head of 320%. For this reason, several other defenses are
proposed.

One defense is proposed that does not rely on link
padding or on packet delaying: randomized pipelining
(RP) [50]. It enables HTTP pipelining (i.e., sending
multiple HTTP requests in parallel) and it random-

1 Note that breaking packets in Tor cells also requires some
padding so that all cells have the same size. Because this padding
is done with Tor with or without another specific defense against
WF attacks, we only consider the insertion of dummy packets
to compute the traffic overhead.

izes the number and order of parallel HTTP requests.
But this technique is shown to be ineffective in prac-
tice [15, 67]. LLaMA [19] is a defense that improves RP
by combining it with link padding and packet delay-
ing, but this incurs traffic and loading-time overhead.
Another defense loads a decoy page each time the client
wants to access a website [49], but this defense performs
worse than other defenses such as adaptive padding (de-
scribed below), with smaller privacy and larger over-
head [30]. WalkieTalkie [69] improves this idea by sim-
ulating the loading of sensitive and non-sensitive pages
altogether in a half-duplex mode. Other defenses are
proposed at the application layer. ALPaCA [19] is a
server-side defense that pads the content of a webpage
to alter its characteristics (in particular its size) without
modifying how it looks to the client. ALPaCA signifi-
cantly improves privacy (the accuracy of the attack is
reduced to about 15%), but it incurs a traffic overhead
of about 90% and a loading-time overhead of more than
50%. In addition, as this defense needs to be imple-
mented at the server side, it might be difficult to deploy
in practice.

Other defenses are proposed: They do not try to
make all traces look exactly the same (by sending pack-
ets at constant rate), rather aim at making the traces
be statistically similar. Traffic morphing [70] relies on
padding and ensures that the packet-size distribution is
similar for all traces. This method is not effective with
Tor, which already sends packets with a fixed size, and it
is shown to be ineffective even when the packet sizes are
different [24, 30]. Adaptive padding (denoted in this pa-
per by AP) [60] employs a similar idea, but it works on
the inter-arrival times rather than on the packet sizes.
It relies on padding and tries to make all traces statisti-
cally similar and undistinguishable from each other by
ensuring that the distribution of the inter-arrival times
is the same for all traces. WTF-PAD [36] is an imple-
mentation of AP for WF attacks.

The above-mentioned defenses can be implemented
along with HyWF, the defense that we propose and that
does not add overhead, as shown in Section 8.

2.2 Privacy-Protecting Splitting Schemes

Splitting data between several non-colluding entities has
been proven to be a successful technique. Shamir [58]
and Blakley [10] first invented secret sharing in 1979,
as a way to protect information by sharing it between
several participants. Since then, data-splitting schemes
have been used in many other contexts that include
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ISP 1
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Fig. 1. Different real-world examples of a multihomed client. The adversary can be a curious ISP (ISP 1 and ISP 2 in the figure) or
the curious administrator of a public WiFi access point (AP admin in the figure). Left: client with a smartphone connected to a WiFi
access-point (home or public) and to a cellular network. Center left: desktop computer connected to a WiFi access-point (home or
public) and to a cellular network through a smartphone sharing its connection with USB. Center right: client with a dual-SIM smart-
phone connected to two cellular networks with different ISPs. Right: client with a laptop connected to two WiFi access-points (home
and public).

cloud oblivious storage [63], privacy-protecting cloud
computing [37], secure data deduplication [39], vehic-
ular ad-hoc networks [54], and secure sharing of per-
sonal health records [40], to name a few. Tor itself re-
lies on non-colluding entities (the guard and exit relays)
to maintain privacy. Message splitting between differ-
ent paths is theoretically studied in the context of mix
networks [57]. Finally, traffic splitting in Tor is briefly
studied by De la Cadena et al. [23], in particular when
the number of networks is greater than two.

2.3 Multipath Routing

Multipath routing makes it possible to split the traf-
fic among several paths. It has recently gained popu-
larity as a way to improve performance [31, 52], in-
cluding in Tor [8, 38, 56]. The most popular solution
is multipath TCP (MPTCP) [27, 28] that we use for
our implementation. Our solution can also be imple-
mented with other multipath solutions, e.g., multipath
QUIC [22]. In hybrid networks with WiFi and cellular
networks, MPTCP has been shown to improve through-
put [16, 53], reliability [42], and latency [29]. MPTCP is
now widely deployed [11]; in particular, all Apple oper-
ating systems (for phones and computers) now support
MPTCP [1], and an implementation exists for Linux-
based devices [46].

3 System and Adversarial Model

3.1 System Model

We consider a Tor client who is multihomed, i.e., she has
access to multiple networks. In this paper, we consider
that the client uses two networks, which is by far the
most frequent case in practice; our defense can easily be
extended to more networks which would further improve
the protection against WF attacks [23].

A widely available real-world example of a multi-
homed client is the case illustrated in Fig. 1 (left) of a
client connected to a WiFi access-point and to a cellu-
lar network with a smartphone. Other real-world exam-
ples of a multihomed client are presented in Fig. 1: A
client with a desktop computer or a laptop connected
to a home network with WiFi and to a cellular net-
work through a smartphone sharing its connection with
USB (center left); a client with a dual-SIM smartphone
connected to two cellular networks with different ISPs
(center right); and a client with a laptop connected to
two access-points, home and public (right). Even though
multihoming might come at the price of having to pay
for the services of two ISPs, these real-world examples
already cover a large amount of users that have multi-
homed devices (e.g., tablets or smartphones) and have
contracts with two ISPs (e.g., cellular and fixed access).
Such users already exploit multihoming for enhanced
performance and ubiquitous connectivity, and improved
privacy is one additional benefit that they can enjoy.

In this paper, we assume that both networks are
cost-equivalent, i.e., that the client does not wish to send
less traffic on one network. This may be the case in many
practical situations (e.g., cellular access with flat fee and
home access). When this is not the case, our defense
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can still be applied with a trade-off between cost and
privacy. We briefly discuss this trade-off in Section A.1
in Appendix. We also assume that the delays incurred
by the networks are of the same order of magnitude,
which is the dominant case (in particular, WiFi and
LTE have been shown to have similar latencies, with
LTE incurring delays only 10% higher than WiFi on
average [29]).

We assume that it is possible to decide on a packet-
per-packet basis, in both directions, through which net-
work traffic is sent. The client connects to Tor through
a multipath-compatible Tor bridge, as depicted in Fig. 2
(MP bridge). In our evaluation, the client and the Tor
bridge use MPTCP, the most popular multipath solu-
tion. This approach with a Tor bridge has been widely
employed by previous WF defenses [14, 36, 69]. With
this architecture, the client defends against all adver-
saries located before the first Tor node, e.g., the client’s
local ISP.2 It does not require modifying Tor nor the
application, and MPTCP or any other out-of-the-box
multipath solution can be employed between the client
and the bridge. The multipath solution can be imple-
mented as a Tor pluggable transport (PT) [2]. In addi-
tion to sending traffic on multiple paths, the PT mecha-
nism must also hide that the traffic is using a multipath
solution by encrypting the MPTCP packet and encap-
sulating it in a single-path TCP packet,3 thus hiding
the MPTCP fields (e.g., sequence number).

The above architecture adds some complexity to the
system implementation, as multipath needs to be used
until the multipath bridge, but such complexity is trans-
parent to the users and the applications. Indeed, multi-
homing is implemented at the transport layer (e.g., with
MPTCP) through a dedicated multipath scheduler (im-
plemented in the client’s phone or laptop and in the MP
bridge). It does not disrupt the operation of the higher
layers (i.e., the application).

2 The client can also use multiple paths in Tor, similarly as
Conflux [8] that uses multipath to improve the performance of
Tor. This enables the client to defend in addition against ad-
versaries located within the Tor network, such as curious Tor
guard nodes. This would require modifying the Tor software at
the client and exit node.
3 The detailed implementation of the encapsulation and encryp-
tion scheme is left as an engineering issue that is not addressed
by this paper.

3.2 Adversarial Model

We consider a scenario where the client wants to protect
against curious adversaries snooping on her traffic in
order to know which website she accesses. Similarly as
with the vast majority of WF defenses [14, 19, 36, 69],
we assume that the curious adversaries are local. They
can be an ISP, an entity that controls the ISP (e.g.,
a state) or the curious administrator of a public WiFi
access-point. The adversaries are passive, i.e., they do
not modify the transmissions. Because the client uses
Tor and a PT mechanism as described in Section 3.1,
the adversaries are able to observe only the timestamp
and direction of the packets. The observable metadata
for one website access is called a trace.

The key assumption that we make is that the adver-
saries are not able to correlate the traffic sent through
one network and the traffic sent at the same time
through the other network, i.e., they cannot reconstruct
the original trace (in particular, a single adversary can-
not snoop on the two networks at the same time). This
happens when the client connects to the Internet by us-
ing two technologies and an adversary can snoop on a
single technology (e.g., when the adversary is the cu-
rious administrator of a WiFi access-point). This also
happens when the adversaries are different ISPs, which
is an important use case: For example, it has been re-
vealed that in the USA, ISPs sell the Internet browsing
records to marketers [4], which is cited as one reason
for using the Tor network [3]. Browsing records can typi-
cally be inferred by WF attacks. To be protected against
such attacks, the client can use two different ISPs, e.g.,
she uses two technologies (wired or wireless) with two
different ISPs, or she connects to two ISPs with the
same technology (see the examples of Fig. 1).

We consequently assume that there is one adver-
sary per network. In most cases, the two adversaries do
not collude and are consequently unable to reconstruct
the original trace. Even if the client uses the same ISP
for her connections to the two networks with different
medium access technologies (e.g., mobile and WiFi),4 or
if an external entity (e.g., a state or a state-controlled
entity) can make the two adversaries (e.g., two local
ISPs) collude, for example, in a repressive country un-

4 Note that the client must be connected to two different net-
works. If she is connected to the same home router, even with
two different technologies (e.g., WiFi and Ethernet, WiFi and
power-line communication, two WiFi connections in the 2.4 GHz
and 5 GHz band, etc.), the ISP will see a single trace and will
be able to apply existing efficient attacks.
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client MP bridge
Tor network

Web

Fig. 2. Model where the client is multihomed, with two different adversaries, and connects to a multipath-compatible Tor bridge (MP
bridge), typically located in another country.

der censorship, it would also prove difficult and chal-
lenging to reconstruct the original trace from the two
different traces, for the following reasons. First, when a
device is multihomed, it has two different identifiers for
the two ISPs (different IP and MAC addresses), and it
can be non-trivial to associate the two identifiers with
a same device.5 Second, the infrastructures for the two
different ISPs or for the two medium-access technolo-
gies of the same ISP are necessarily different, which
means that the paths taken by the packets are distinct:
Even if the colluding ISPs are able to associate the two
identifiers of a device, the reconstruction of the original
trace cannot be achieved synchronously but is neces-
sarily asynchronous. Consequently, the traces for each
ISP would need to be stored to be reconstructed later,
i.e., the two ISPs would need to store all the per-packet
metadata sent through their network for all users they
want to attack, until they can reconstruct the complete
traces. This would incur significant practical difficulties
and storage overhead. Third, the two ISPs should be
tightly synchronized in order to reconstruct the trace,6
which would also be challenging in practice; also, dif-
ferent paths would necessarily mean different latencies
and packet ordering, which would make the attack much
more difficult to perform. In contrast, when the client
uses a single ISP, the attack can be performed on-the-fly
along the single path, hence there is no need for storage
and synchronization. Therefore, in repressive countries
where the state is known to spy on the users and can
force ISPs to collude, spying on a client who uses two
different ISPs would be much more difficult, if at all

5 It is trivial if the client is registered with the ISPs under the
same name, but this is not always the case, e.g., if she uses a
friend’s Internet access.
6 To prevent the ISPs from using the TCP timestamp field,
which would enable them to reconstruct the traces without being
synchronized, the TCP timestamp option should be disabled;
because the TCP timestamp option is negotiated during the
TCP handshake between the hosts [12], it is enough if the PT
disables it.

possible, as specific tools would need to be devised to
correlate the different traces.

In a direct consequence of our hypothesis, an adver-
sary can only use the partial trace sent through a single
network to infer the website. In the following, we con-
sequently consider a single adversary that tries to infer
the website that a client visits by observing the traffic
sent through a single network.

We also make the following assumptions that, ex-
tensively made in the literature [15, 32, 49, 59, 66, 67],
all favor the adversary:
Page Load Parsing: The adversary is able to detect
the beginning and the end of different website accesses.
No Background Traffic: The adversary is able to
distinguish one trace for a specific website access from
other packets sent by other applications or for the ac-
cess of another website. This can prove challenging in
practice, because multiple applications might be used
simultaneously.
Replicability: The adversary is able to train its
machine-learning model under the same conditions as
the client. In practice, the trace that an adversary wants
to classify is not obtained with the same method as
the traces used for training the machine-learning model
(e.g., they do not use the same device, the device is not
at the same distance of the WiFi access-point and the
cellular base-station, etc.).

Failing to verify one of these three assumptions has
been shown to have negative effect on the attack [20, 35].
This means that the reported accuracy of the attacks
against the defenses that we propose, HyWF, HyWF-
WT and HyWF-AP, is a conservative value and that in
a practical scenario, it is very likely that our defenses
would achieve better privacy.
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4 Data and Methodology

4.1 Datasets

Wang: The primary dataset are traces gathered in 2014
by Wang et al. [66]. This dataset, denoted by Wang, has
been extensively used in the literature [6, 30, 48, 66, 68].
It contains 90 different traces for each of 100 moni-
tored websites (the total number of monitored traces is
nmon = 9,000), and one trace for each of nunmon = 9,000
unmonitored websites. The monitored websites come
from a list of websites blocked in China, the United
Kingdom, and Saudi Arabia. The unmonitored websites
are drawn from Alexa’s top 10,000 list. There is no inter-
section between the monitored and unmonitored web-
sites. 6,000 of the monitored and 6,000 of the unmoni-
tored websites are randomly chosen as the training set,
i.e., the set of traces used by the adversary to train the
machine-learning model; the remaining 3,000 monitored
and 3,000 unmonitored are used as our testing set, i.e.,
the set of traces used to test the accuracy of the attack.
Hayes: To verify that our conclusions can be generalized
to different datasets, we also use the dataset gathered
in 2016 by Hayes et al. [30]. This dataset is denoted by
Hayes. It contains 100 different traces for 85 monitored
websites (i.e., nmon = 8,500), and one trace for 100,207
unmonitored websites. 55 of the monitored websites are
the 55 top Alexa websites and the remaining 30 moni-
tored websites are 30 popular Tor hidden services. The
unmonitored websites are drawn from Alexa’s top list,
excluding the top 55. There is no intersection between
the monitored and unmonitored websites. The training
set always contains two-thirds of the monitored traces,
i.e., 5,667 monitored traces, and the testing set contains
the remaining third of the monitored traces. For the un-
monitored traces, the Hayes dataset is tried in two sce-
narios: with nunmon = nmon = 8,500 (because we have
nunmon = nmon in the Wang dataset), and two-thirds of
them in the training set and one third in the testing set;
and, similarly as what is done by Hayes et al. [30], with
all the unmonitored websites (nunmon = 100,207), and
5% of them in the training set (i.e., 5,010) and 95% of
them in the testing set.
DF: Finally, we use the dataset provided by the authors
of the DF attack [62]. The dataset is denoted by DF.
It consists of 1,000 traces for 95 monitored websites of
the top Alexa’s top 100 list and 40,716 unmonitored
websites of the Alexa’s top 50,000 list (excluding the top
100). The authors of DF have kept only the first 5000
packets of each trace, which means that some traces

are truncated. The truncated traces represent however
only 8% of the traces, and we do not expect this to
impact significantly the results. Two-thirds of the traces
are used as the training set, one-sixth as the validation
set (used by the DF algorithm) and one-sixth as the
testing set.

The raw traces of these datasets are hereafter called
original traces. When a defense is applied on an orig-
inal trace (packets are split between the two networks
and/or dummy packets are inserted), the resulting trace
is called protected.

4.2 Methodology and Experiments

We assume that the adversary knows the defense (i.e.,
it knows the splitting scheme used by the client and
by the MP bridge) and is able to train a machine learn-
ing model on protected traces. In practice, an adversary
does not know whether a specific trace is protected (sent
through two networks) or not (sent through a single net-
work). Hence we initially assume that it knows that the
client has the possibility to use two networks, but that
it does not know if the client is actually using one or two
networks. We will show that this assumption does not
weaken the adversary, as the performance of the WF
attacks remains extremely close to that obtained if the
adversary knows beforehand that the trace is protected
(in other words, the adversary is able to train a model
that distinguishes protected traces from original traces).

To evaluate the attacks, we use the true positive
rate (TPR) as one accuracy measure, defined as the
probability that a monitored website is classified as the
correct monitored website. The lower the TPR is, the
more secure the scheme is. We do both closed-world and
open-world experiments.
Closed-world: In the closed-world experiments, the
adversary tries to predict which website is visited out
of the different monitored websites. Only the monitored
websites are used for both training and testing.
Open-world: In the more practical open-world exper-
iments, the adversary tries to predict whether the client
visits a monitored or an unmonitored website, and if it
is a monitored website, which one it is. It is important
to measure if the adversary makes a prediction error
when observing the trace of an unmonitored website:
In addition to using the TPR, we use the false positive
rate (FPR) as a second accuracy measure, defined as the
probability that an unmonitored website is incorrectly
classified as a monitored website. The higher the FPR
is, the more secure the scheme is.
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5 Designing HyWF, a Defense
without Overhead

We first study defenses with no overhead: No packet
is added to the trace (i.e., no link padding) and no
packet is delayed by the client. The only choice that the
client and the MP bridge make is about how packets
are split between the two networks. In this section, we
evaluate our design decisions in the closed-world exper-
iment with the primary dataset (Wang) and against the
k-fingerprinting attack. This attack is chosen because it
is found to be the most efficient attack among k-NN,
CUMUL, and k-fingerprinting, three attacks that run
on commodity machines. We will evaluate our defense
more broadly in Section 6, in particular against the DF
attack that is more effective but more complex to carry
out. For all attacks, we try different hyper-parameter
values (e.g., number of trees for k-fingerprinting) and
report the best results. In this section, we want to com-
pare our defense to AP [36, 60] because it is the defense
that, found to offer good trade-off between privacy and
performance [30], is currently being considered for ad-
dition to the Tor project [5]. In Section 6, we compare
HyWF with WalkieTalkie [69], another state-of-the-art
defense.

As opposed to AP, the schemes described in this
section do not incur any traffic overhead and do not re-
quire statistics on the traces. With the Wang dataset in
the closed-world experiment, AP reduces the TPR of the
k-fingerprinting attack to around 40% (see Section 8 for
details on AP). Our goal is to achieve at least the same
accuracy. We first show that off-the-shelf schedulers do
not achieve this goal. We then show that a random split-
ting scheme can achieve a level of privacy equivalent to
that of AP.

5.1 Off-the-Shelf Schedulers

5.1.1 Split Outgoing and Incoming Traffic

The first solution, appealing due to the simplicity of
its implementation, is to divide outgoing and incom-
ing traffic, and to send the former through one network,
and the latter through the other network. With the Wang
dataset, this means that 90% of the traffic (the incom-
ing traffic) is sent through one network, and 10% (the
outgoing traffic) through the other. Such a scheme re-
duces to 67% the TPR of the attack against the net-
work through which the incoming traffic is sent, and to

55% against the network through which the outgoing
traffic is sent. Even though the privacy improvement is
significant, this does not achieve our goal to reach the
level of privacy offered by AP. Consequently, we move
to schemes where both networks can be used for both
incoming and outgoing traffic.

5.1.2 Round-Robin Scheduler

The simplest multipath scheduler is a round-robin
scheduler (a scheduler that sends packets alternatively
through the two networks). This scheduler is, for exam-
ple, proposed in the default Linux kernel MPTCP im-
plementation [47]. The number of consecutive packets
sent through one network can be tuned and is denoted
by ncons ∈ N. But for all values of ncons, the TPR of the
attack is almost not reduced, compared to the baseline,
going from 91% to at best 85% (the results are shown in
Fig. 13 in Appendix). This is because with the round-
robin scheduler, the splitting scheme is deterministic,
and the adversary is able to learn the characteristics of
the protected traces. To increase the level of privacy to
the desired goal, off-the-shelf deterministic schedulers
are not sufficient. We now study the use of a random
splitting strategy.

5.2 Fixed Splitting Probability

As mentioned earlier, we assume that the client wants
the same level of privacy in the two networks, i.e., she
sends the same average amount of traffic through both
networks. In Appendix, we discuss the case where she
sends a smaller fraction of her traffic through one of the
networks, e.g., because this network is more costly (this
naturally degrades privacy in the other network).

We first study the simplest random splitting strat-
egy: For each packet, the client and the MP bridge
randomly send it through Network 1 (with probabil-
ity p = 0.5) or through Network 2 (with probability
1− p = 0.5). The accuracy of this very simple strategy
depends heavily on the assumption made for the adver-
sary. If the adversary does not know that the client is
using a second network (i.e., it learns a model only on
original traces), the TPR of the attack is reduced to vir-
tually 0 (around 3%, whereas random guessing gives an
accuracy of 1%). But this corresponds to a very weak ad-
versary, hence is too optimistic. If the adversary knows
that a second network is used (i.e., it learns a model on
protected traces), then the TPR of the attack is again
high (around 80%). More importantly, if the adversary
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learns a model with both protected and original traces
(it only knows that the client has the possibility to use
two networks, but it does not know if the client is ac-
tually using one or two networks), the accuracy is also
around 80% for protected traces and around 90% for
original traces. This means that the adversary is able
to learn if the traces are protected or not. Clearly, this
simple random strategy is insufficient.

5.3 One Probability per Website Access

Alternatively, the client and the MP bridge can employ
the following more complex defense: At the beginning of
a website access, they choose a probability p uniformly
at random in [0, 1], and for this website access, they send
packets with probability p through Network 1 and with
probability 1 − p through Network 2. This means that
for each access of a website, the splitting probability is
different. In particular, two different accesses of a same
website will look different. On average along all website
accesses, 50% of the traffic is sent through each network.

The probability used by the client and by the MP
bridge are different, because they are chosen indepen-
dently; they are respectively denoted by pc and pp. The
adversary has no access to pc or pp, chosen locally for
each website access. We assume, however, that it knows
the strategy (i.e., that p is chosen uniformly in [0, 1])
and it is able to train a model on traces protected with
this strategy, i.e., to devise an attack that specifically
targets a multipath defense with random splitting prob-
ability: With the nor = 6,000 traces in the training set of
original traces, the adversary can build a larger training
set of npr protected traces by computing several times
the protected trace of any original trace (the protected
trace is different each time because pc and pp are differ-
ent each time). Because we assume that the adversary
does not know if a trace is protected or not, it must
train a model with a training set that consists of both
protected and original traces. We evaluate the effect of
the defense when the adversary tries to attack original
traces and when it tries to attack protected traces.
Effect of the Scheme on Original Traces: We
start by studying the effect of the defense for an at-
tack against original traces. The results are shown in
Fig. 3 (Orig. traces) for different values of npr; for ev-
ery npr, the attack is repeated five times: The results
might be different for each attack because the split-
ting probability p are different. Consequently, the traces
in both the training set and the testing set are differ-
ent. We present averaged results with a bar indicating
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Fig. 3. Performance of the attack on original traces and traces
protected with the splitting scheme described in Section 5.3, for
different sizes of the training set. Closed-world experiment, Wang
dataset, ncons = 1.

the standard deviation. Adding more protected traces in
the training set and using only the nor = 6,000 original
traces tends to decrease the accuracy (plain blue line).
However, this comes only from the fact that adding more
protected traces biases the training set towards the pro-
tected traces, hence reduces the accuracy for the origi-
nal traces. If the training set contains as many original
traces as the number of protected traces (nor = npr,
dashed orange line), then the accuracy stays very close
to the baseline. Note that, as opposed to the protected
traces for which protecting the original trace gives a dif-
ferent result each time, adding each original trace sev-
eral times does not add any information (as the trace
is always the same) but only removes the bias towards
protected traces.
Effect of the Scheme on Protected Traces: We
then study the effect of the defense on protected traces.
The results are shown in Fig. 3 (Prot. traces) in three
scenarios: when only protected traces are used to train
the model (nor = 0); when the 6,000 original traces are
used once to train the model along with the protected
traces (nor = 6,000); and, to remove the bias towards
protected traces, when the number of original traces is
the same as the number of protected traces (nor = npr).
As expected, adding several protected traces for each
original trace in the training set helps the adversary:
The TPR increases from 37.9±0.8% when they are not
repeated to 45.8±0.8% when they are repeated seven
times. This is because adding several protected traces
per original trace enables the attack to implicitly infer
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Fig. 4. Performance of the attack on traces protected with the
splitting scheme described in Section 5.4, for different values of
the average number of consecutive packets ncons. Closed-world
experiment, Wang dataset.

the splitting probability p used for one website access,
because it becomes more likely that a protected trace for
the same website exists in the training set with a split-
ting probability close to that used for the website access.
But the TPR plateaus once nor reaches 36,000/42,000.
We also note again that the TPR of the attack is simi-
lar when the adversary knows beforehand that the trace
is protected (nor = 0) and when the adversary does not
know it (nor = npr): The adversary is able to distinguish
protected traces from original traces.

5.4 Consecutive Packets to One Network

Fig. 3 also shows that this random splitting scheme does
not attain our goal of reaching a TPR of the attack be-
low 40%. We next show that the number of consecutive
packets sent through one network has an impact on the
TPR of the attack. We try two different settings. In the
first setting, a number ncons ∈ N is fixed in advance
for all traces; when one network is chosen randomly
for sending one packet, the source sends ncons packets
through this network, before choosing again randomly
one of the two networks. In the second setting, the av-
erage number of consecutive packets ncons ∈ N is fixed
in advance for all traces; when one network is chosen
randomly, the source draws randomly a number c ∈ N
from a geometric distribution with average ncons, and
sends c packets through this network, before choosing
again randomly one of the two networks and drawing
a new value c. Intuitively, choosing a geometric distri-
bution makes it much more difficult for an adversary
to predict when the flow switches path (the geometric
distribution is the only memoryless discrete-valued dis-
tribution). Note that ncons is the average number of con-
secutive packets sent each time a network is chosen. The
average number of consecutive packets per network for

an entire trace is different and depends on p: If p is close
to 1, then the probability that Network 1 is chosen sev-
eral times in a row will be high, and the average number
of consecutive packets in Network 1 will be larger than
in Network 2. The results are shown in Fig. 4. Sending
consecutive packets through each network improves the
privacy of the defense scheme (it decreases the TPR of
the attack). As expected, choosing randomly the num-
ber of consecutive packets to send (second scheme, with
a geometric distribution) further improves privacy. In
Section 6.2, we evaluate further the effect of ncons.

Repeating several times the same trace with differ-
ent splitting probabilities enables the attacker to implic-
itly estimate the splitting probability p. We also verify
that our scheme is robust against an attack that would
specifically target our defense by trying to explicitly es-
timate p. This attack relies on the fact that sending
consecutive packets through one network causes longer
inter-packet delays on the other network. If long delays
happen only during the utilization of the other network,
then it is possible to estimate p by counting the average
number n of consecutive packets for which the inter-
packet delay d is below some threshold T : The expec-
tation of n is ncons/(1 − p), hence an estimation of p is
(n−ncons)/n. We add to the features of k-fingerprinting
the estimated value of p for different values of T . Specif-
ically, T = α∗davg where davg is the average inter-packet
delay. In Table 1, we show the TPR of k-fingerprinting
for different values of α (α = 1/3 and α = 3 were also
tried with similar results, not shown for clarity’s sake);
when all p for all α are added in the feature set; and
when no p is added to the feature set (same attack as
for Figure 4). The attack is repeated five times and we
show the average TPR. The results show that our de-
fense remains robust against such an attack; the TPR
for all values of α is within the standard deviation of
the value without the estimated p (36.9% ± 0.8%).

5.5 Definition of HyWF

The scheme defined in Section 5.4 achieves our goal of
reaching a level of privacy equivalent to that of AP. It

Table 1. Performance (TPR) of k-fingerprinting where an esti-
mation of the splitting probability p is added to the feature set,
for different values of α. Closed-world experiment, Wang dataset,
npr = 42,000.

α 1/4 1/2 1 2 4 all none
37.2% 37.4% 36.4% 37.2% 36.4% 36.9% 36.9%
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Fig. 5. Performance of the k-fingerprinting attack against HyWF,
for different sizes of the training set. Closed-world experiment,
Wang dataset.

choses a splitting probability uniformly at random for
each website access and uses a number of consecutive
packets drawn from a geometric distribution with av-
erage ncons = 20. The TPR of the attack against this
scheme is shown in Figure 5 as a function of npr. With
npr = 120,000, it is decreased to 36.9±0.8%, i.e., it per-
forms even a bit better than AP. We denote this scheme
by HyWF. Algorithm 1 presents the pseudo-code for
HyWF.

Algorithm 1 Pseudo-code of HyWF. G0, Unif and
Bern denote, respectively, the geometric, uniform and
Bernoulli distributions.
ncons = 20
for each website access do

Draw p from Unif ([0, 1])
n← 0, c← 0
for each packet do

n← n+ 1
if n > c then

Draw c from G0 (1/ncons) and i from
Bern (p)

n← 0
end if
Send packet through Network i

end for
end for

6 Evaluation of HyWF
We now broadly evaluate HyWF with different WF at-
tacks and different datasets, and with open-world ex-
periments. We also compare HyWF with other state-of-
the-art defenses.

6.1 Different WF Attacks

In the results presented above, we show only the high-
est accuracy among the attacks k-NN [66], CUMUL [48],
and k-fingerprinting [30]. The best results against pro-
tected traces among these three attacks are always ob-
tained with k-fingerprinting. In Table 2, we also show
the results obtained with the two other attacks, k-NN
and CUMUL. Each attack is repeated five times and Ta-
ble 2 also presents the standard deviation. The first line
of the table (Orig.) corresponds to the case nor = 6,000
and npr = 0 (the model is trained only on the original
traces). We also show the results with a model trained
on original and protected traces for an attack against
original traces (second line) and protected traces (third
line); we compute the TPR for different values nor = npr
between 6,000 and 42,000 and keep the best result.
For HyWF, k-fingerprinting yields results significantly
better than the other three attacks. Note in particu-
lar that with k-NN and CUMUL, the performance of
the model that works for both protected and original
traces is decreased even when attacking original traces.
Because it uses only the cumulative sum of the packet
sizes as features, CUMUL has already been shown to
perform less well than k-fingerprinting (that uses more
diverse features) when attacking protected traces [30].
k-NN has already been shown to perform less well than
k-fingerprinting and better than CUMUL against pro-
tected traces [30], which is consistent with our results.

We then evaluate our defense against DF [62], one
of the most recent WF attack. It uses deep learning to
break WF defenses. This attack is shown to present bet-
ter performance against state-of-the-art defenses than
the other three attacks (k-fingerprinting, k-NN, and CU-
MUL); in particular, it achieves around 90% accuracy
against AP. Using deep learning makes it also much
more computationally intensive than the other defenses;
in particular, DF requires the use of GPUs and cannot
run on commodity machines. We use a 48-core machine
with 4 GPUs and 256 GB of RAM. Fig. 6 shows the per-
formance of DF against HyWF, where npr is increased

Table 2. Performance (TPR) of different attacks with a model
learned on original traces (Orig. traces), and with a model
learned on original traces and traces protected with HyWF.
Closed-world experiment, Wang dataset.

k-fingerprinting [30] k-NN [66] CUMUL [48]
Orig. 90.7±0.3% 91.0±0.3% 90.2±0.6%
HyWF, orig. 90.8±0.3% 82.6±1.9% 75.9±1.3%
HyWF, prot. 36.3±0.6% 15.3±1.7% 12.4±0.4%
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by applying HyWF several times, as explained in Sec-
tion 5.3. We try both nor = 0 (the adversary knows be-
forehand that the trace is protected) and nor = npr (the
adversary does not know it) with very similar results.
In the rest of the paper, we present results with nor = 0
only.

We first note that DF performs better than
k-fingerprinting and reaches about 49% of accuracy.
HyWF however continues to provide a much better pri-
vacy than AP, against which DF achieves 90% accu-
racy [62]. We also note that DF requires several hun-
dred thousand of protected traces in the training set,
i.e., many more than k-fingerprinting and the other at-
tacks. This means that DF is much more complex to
perform: In addition to requiring a much more pow-
erful machine, it runs in about 14 hours against the
knn dataset, whereas k-fingerprinting requires about an
hour.

k-fingerprinting was used when we needed to evalu-
ate a wide range of design parameters. In the remainder
of the paper, we show results for DF (the most efficient
attack), unless specified otherwise.

6.2 Different Experiments and Datasets

Impact of ncons: In Section 5.4, we evaluated the
impact of the average number of consecutive packets
ncons with the Wang dataset in the closed-world exper-
iment and with k-fingerprinting. Similarly, with other
datasets, in both the closed- and open-world experi-
ments, and against DF, the effect of variations of ncons
is small as long as ncons is in the range 10-40 (see Fig. 16
and Fig. 17 in Appendix). This is an important feature
for the generalization of HyWF, as it means that the
parameter ncons does not need to be fine tuned for a
specific dataset.
HyWF in the Open-world Experiment: We ob-
tained the above results in the closed-world experiment.
We now study open-world experiments (a scenario that
is more practical than closed-world experiments) with
both the Wang and DF datasets. The two datasets are
described in Section 4.1. The performance achieved by
HyWF is reported in Fig. 7, where we show the ROC
curve for HyWF and undefended data for Wang and DF
datasets with the DF attack (k-fingerprinting against
HyWF, denoted by k-fp, is also shown for comparison).
Protecting the traces with HyWF decreases significantly
the TPR and/or increases the FPR, compared to un-
defended traces. Overall, HyWF significantly improves
privacy in the open-world experiment without adding
any traffic overhead.

6.3 Comparison with other Defenses

We also compare HyWF with two other defenses,
AP, already used as a comparison earlier, and
WalkieTalkie [69], a defense that incurs both loading-
time and traffic overhead, but that has been shown to
provide significant privacy improvements [62].
Closed-world: For the closed-world setting, we show
the traffic overhead (T. ov.), the loading-time overhead
(LT. ov.) and the TPR of the DF attack in Table 3.
We see that HyWF achieves a performance similar to
or even slightly better than WalkieTalkie in terms of
TPR. But WalkieTalkie incurs a much higher overhead

Table 3. Performance of the DF attack against HyWF, AP, and
WalkieTalkie. Closed-world experiment, DF dataset.

T. ov. LT. ov. TPR
HyWF 0% 0% 48.6%
AP 64% 0% 90.7%
WalkieTalkie 31% 34% 49.7%
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in terms of traffic and loading-time. We also study the
top-N prediction, in which the attack is successful if the
correct website is among the N highest probabilities.
Using only the top-1 prediction ignores cases where the
adversary confuses pages with only a small set of oth-
ers [41]. WalkieTalkie has been shown to perform badly
against top-2 prediction [62], which we also show in Fig-
ure 8 (the real website is virtually always among the
top-2 websites predicted by DF). In contrast, HyWF
performs much better against top-N prediction. This
means the HyWF confuses the adversary significantly
more than WalkieTalkie, with which the adversary is
able to know with very high probability that the visited
website is one of only two websites.
Open-world: For the open-world setting, we compare
the ROC curves of HyWF, AP and WalkieTalkie (de-
noted by WT) in Fig. 7. We see that HyWF signifi-
cantly outperforms AP, and has a TPR similar to that
of WalkieTalkie. WalkieTalkie, however, has a higher
FPR, because it simulates loading one sensitive and one
non-sensitive page at the same time, which means that
the adversary easily confuses sensitive and non-sensitive
pages. However, similarly as what we showed for the
closed-world experiment, WalkieTalkie is less efficient
against top-2 prediction: In the open-world setting, we
compute the number of times for which the adversary,
when attacking a true sensitive page, tagged the correct
sensitive webpage as the most probable one (even when
the attack decides for a non-sensitive page for the top-1
prediction). For WalkieTalkie, this number is 67.2%; for
HyWF, it is only 36.0%.

Note in addition that, as opposed to AP and
WalkieTalkie, HyWF achieves such a performance with-
out adding any traffic and loading-time overhead,
or requiring any a priori knowledge (traces statistics
for AP, database of sensitive/non-sensitive pages for
WalkieTalkie). In addition, as we show in Section 8,
HyWF can be combined with any existing defense re-

lying on padding and packet delaying, which can only
further improve privacy.

6.4 Complexity of the Attacks against
HyWF

To increase the accuracy of the attack against HyWF
by implicitly inferring the splitting probability, the pro-
tected traces are repeated several times in the training
set. Adding more traces increases the TPR of the at-
tack, but it also significantly increases the complexity
of the learning phase of the model.
k-fingerprinting: In the closed-world experiment, the
running time necessary to carry the k-fingerprinting at-
tack against the Wang dataset increases linearly and
reaches more than one hour (see Fig. 14 in Appendix). In
contrast, when attacking only original traces (npr = 0,
i.e., when the client uses a single network), performing
the attack requires only 8 minutes. In the open-world
experiment, there are twice more original and protected
traces, and the running time of the attack is further in-
creased. It grows linearly from 45 minutes with npr = 0
to 589 minutes with npr = 60,000 (each trace is repeated
five times). When npr > 36,000, a commodity machine
with 8 GB of RAM cannot learn the model anymore,
because it requires too much memory.
DF: As already mentioned, DF is more computation-
ally intensive than k-fingerprinting, and this is even
more true against HyWF, as the dataset needs to be
much larger. Against undefended data (DF dataset), DF
reaches an accuracy of more than 90% in about 30 min-
utes; against HyWF with the same dataset, it requires
14 hours to reach an accuracy of less than 50%.

7 Implementation of HyWF
In this section, we describe a proof-of-concept imple-
mentation of HyWF and evaluate its performance in
terms of privacy and potential loading-time overhead
due to the use of multipath—by design, HyWF adds no
traffic overhead.

7.1 Architecture and Setup

To protect against a local adversary with an easily de-
ployable solution, we use an architecture with a Tor
multipath (MP) bridge, as the one already presented
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in Fig. 2. This approach is easy to deploy by in-
stalling standard (i.e., unmodified) Tor solutions, along
with modified MPTCP modules that implement HyWF
scheduling.

Our testbed (illustrated in Fig. 12 in the Appendix)
consists of two machines, one acting as the client and
one as the MP bridge, both of them physically con-
nected to the DMZ of one of our institutions to en-
sure a proper connectivity to the Tor network. Both
machines are Intel-based PCs equipped with an i7-6700
(3.4 GHz) CPU and 16 GB of RAM, running Ubuntu
18.04. They are connected using two independent paths,
P1 and P2, each path consisting in a different WiFi
802.11g network; the two paths operate on two differ-
ent and non-overlapping channels. The WiFi interfaces
are Asus USB-n10 nano devices, with the bridge also
acting as the WiFi access point for both networks. To
emulate realistic scenarios where the bridge can be lo-
cated “far away” from the client, we introduce an ex-
tra delay between the communication interfaces of the
server and the bridge application, by using the Linux tc
command. More specifically, following typical round trip
time (RTT) figures,7 we added an extra random RTT,
uniformly distributed between 40 ms and 80 ms. The
distribution is similar for both paths, i.e., we assume
that both networks have similar delays. The bridge is
connected to the Tor network via an independent Fast
Ethernet interface, and both the client and the bridge
are provided with an additional control interface to con-
trol the execution of the experiments.

To ensure repeatability and ease of scripting to-
gether with realistic web browsing, all the resources
were requested via a Splash lightweight web browser.
The Tor software provides an HTTP proxy in order for
Splash to request resources through the Tor network.
Both the client and the bridge run MPTCP v.0.9.1 and
Tor v.0.3.3. To implement HyWF, we leave unmodified
the Tor software and implement a novel MPTCP sched-
uler that follows the splitting scheme described in Sec-
tion 5.5 (details on the implementation can be found in
Section A.2 in the Appendix). Our proof-of-concept im-
plementation chooses a new splitting probability p for
each new MPTCP connection, which requires to keep
some per-connection state (as part of our future work we
plan to test other mechanisms, e.g., it has been shown
that it is possible to efficiently split different website
accesses by using a time-based splitting with a fixed
threshold of 1 second [68]).

7 See e.g., https://wondernetwork.com/pings.

7.2 Experimental Evaluation

7.2.1 Privacy

We gather traces from 100 different websites and use
them to carry out a closed-world evaluation of HyWF.
These traces are obtained in different scenarios: with
single-path TCP (shown as reference), MPTCP with
round-robin scheduler (denoted by RR), MPTCP with
default scheduler (denoted by DEF) and HyWF sched-
uler. This dataset is denoted by exp.8 In Table 4, we
show the TPR and the top-2 prediction (as defined in
Section 6.3) of the DF attack for the different scenarios.
For multipath algorithms, we show the maximum TPR
over the two paths.

For HyWF, we present results for different numbers
npr,r of experimentally-obtained traces. The traces for
each scenario are obtained in batches of 10,000 traces:
when npr,r = 30,000, the traces are obtained in three
batches. First, note that off-the-shelf MPTCP sched-
ulers do not bring any significant gain in terms of pri-
vacy. For RR, this is because packets are split deter-
ministically between the two paths (the accuracy of the
attack against the other path is similar). For the default
MPTCP scheduler (MPTCP DEF), this is because the
scheduler aims at minimizing the RTT and typically
sends most of the traffic on a single path, the path with
the lowest RTT (the accuracy of the attack against the
other path is extremely low, around 2%).

The results also confirm that HyWF, in contrast,
offers a significant privacy gain. As opposed to the sim-
ulations of Sections 5 and 6, increasing the number of
traces from npr,r = 20,000 to npr,r = 30,000 does not
improve the accuracy of the attack. This is confirmed
with k-fingerprinting, with which the TPR stays con-
stant from npr,r = 10,000 to npr,r = 30,000, at around
36%. This is because, as opposed to simulated data, net-

Table 4. Performance of the DF attack against HyWF. Closed-
world experiment, exp dataset.

scenario TPR top-2 TPR
single-path TCP 93.4% 97.4%
MPTCP RR 89.6% 94.7%
MPTCP DEF 84.2% 90.9%
HyWF, npr,r = 10,000 44.2% 50.8%
HyWF, npr,r = 20,000 49.2% 54.4%
HyWF, npr,r = 30,000 48.7% 53.8%
HyWF, npr,r = 30,000, npr,s = 1e6 40.5% 46.9%

8 Dataset available at https://github.com/sebhenri/HyWF.git.

https://wondernetwork.com/pings
https://github.com/sebhenri/HyWF.git
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Fig. 9. Box-and-whisker plots of the TTFB (left) and TTLB (right) for single-path TCP (TCP) and different configurations of
MPTCP: default scheduler (DEF), round-robin (RR) and our proposal (HyWF). exp dataset with 10,000 traces per scenario.

work conditions change between batches, which reduces
the accuracy of the attack. This data staleness was al-
ready observed before [35] and is confirmed in our case
when we try to attack data from one batch by train-
ing on another batch gathered at two weeks interval:
the TPR is only 12.6%. Note that we also observe data
staleness for single-path TCP, but it is much less signifi-
cant (85.3% when attacking one batch with data trained
on another batch, vs. 93.4%). To increase the number of
instances without having to run new experiments that
are prone to data staleness, we evaluate a scenario where
npr,s = 1e6 traces are added in the training set by sim-
ulating HyWF from the single-path TCP experiments;
the testing set always consists only of real multipath
traces. This does not help improving the accuracy of
the attack, and even degrades it.

Overall, real experiments are close to the simulation
results and confirm that HyWF significantly improves
privacy. In addition, we have shown in Sections 5 and
6 that to be effective, the attack requires training on a
dataset much larger than with single-path. But getting
this large dataset is challenging in practice because of
data staleness [35].

7.2.2 Performance

We now analyze whether such gains in privacy come at
some cost in terms of performance. By design, HyWF
does not add any traffic overhead, as it only splits pack-
ets between two paths. We consider two performance
metrics to express loading-time overhead and user ex-
perience: the time-to-last-byte (TTLB) and the time-
to-first-byte (TTFB). The former gives the loading time
of the website, and the latter corresponds to the time
elapsed between the first SYN of the initial TCP con-
nection and the first incoming TCP segment with user-
plane data.

As benchmarks for comparison, we consider the fol-
lowing four transport schemes: (i) single-path TCP,
(ii) MPTCP over P1 and P2 with the default MPTCP
scheduler (DEF), and (iii) MPTCP over P1 and P2
with a round-robin MPTCP scheduler (RR). We ana-
lyze performance for each of these schemes and compare
it against our approach (MPTCP over P1 and P2 with
our scheduler HyWF).

In Fig. 9 we show the performance results using box-
and-whisker plots to represent all values collected for
each scheme. We show the TTFB on the left and the
TTLB on the right. We conclude from these results that
multipath and HyWF have no impact on the loading-
time performance: the TTFB and TTLB values are very
close for all schemes. Since HyWF does not add any
traffic overhead, but simply splits the packets between
two paths, we conclude that it is possible to devise an
efficient defense against WF attacks, without incurring
any performance overhead.

8 Combining HyWF with other
Defenses

We now show that HyWF is compatible with other de-
fenses against WF. To improve privacy, the client can
employ link padding, i.e., insert dummy packets to con-
fuse the adversary. Because it does not see the content of
the packets, the adversary is not able to distinguish real
packets from dummy packets. She can also delay some
packets, which cause loading-time overhead but enables
her to shape the traffic to confuse the adversary. Link
padding and packet delaying are the methods used by
the virtually all existing defenses (see Section 2.1.2).
Here, we evaluate HyWF with AP [36, 60], because it
is the defense that is under consideration for addition
to Tor if link padding were to be implemented [5], and
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with WalkieTalkie [69], that has been shown to provide
significant privacy improvements [62]. Despite their lim-
itations (traffic and/or loading-time overhead, require-
ment to know the distribution of inter-arrival times or a
database of sensitive/non-sensitive webpages), AP and
Walkie-Talkie are able to improve privacy when only one
network is available, and we want to evaluate the privacy
gains offered when they are used along with HyWF, the
defense that we describe in Section 5.5.

8.1 Designing HyWF-AP and HyWF-WT

8.1.1 HyWF-AP

As mentioned in Section 2.1.2, AP works on ensuring
that the distribution of the inter-arrival times is the
same for all traces. The packets are never delayed, i.e.,
there is no loading-time overhead. The goal of AP is to
disrupt statistically unlikely delays between packets. In
particular, if an unusually large gap between two pack-
ets is found, AP adds dummy packets to hide this large
gap and to prevent it from being used as a distinguishing
feature. Because the authors notice that bursts of pack-
ets play an important role in identifying websites, AP
mimics bursts of packets when filling the gaps. Details
on AP can be found in the related literature [36, 60]. In
this paper, we use the implementation of AP for WF,
provided by Juarez et al. [36]. With AP, both the client
and the MP bridge use as a parameter some probability
distribution for the inter-arrival times. Here, we use the
default normal distribution provided by Juarez et al.
with their code. With HyWF-AP, packets are split be-
tween the two networks (by following the strategy de-
scribed in Section 5.5) after AP is added to the original
trace.

8.1.2 HyWF-WT

WalkieTalkie [69] is based on two main mechanisms:
half-duplex mode, which means that the client sends
requests only when all previous requests have been sat-
isfied; and decoy page, in which two pages are loaded
at the same time to hide which page is accessed. To re-
duce overhead, WalkieTalkie only simulates loading two
pages at the same time by grouping bursts of packets to-
gether. In the closed-world scenario, it loads two pages
of the 100 websites under study; in the open-world sce-
nario, it loads one sensitive and one non-sensitive page.
The decoy page is chosen to minimize the overhead. This
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Fig. 10. Performance of the DF attack against HyWF, adaptive
padding (AP), WalkieTalkie (WT), HyWF-AP, HyWF-WT, and
undefended data. Open-world experiment, DF dataset.

defense consequently requires access to a database of
websites. With HyWF-WT, packets are split between
the two networks after WalkieTalkie is added to the
original trace.

8.2 Evaluation of HyWF-AP and
HyWF-WT

In this section, we evaluate HyWF-AP and HyWF-WT,
for both closed-world and open-world, with the DF at-
tack and the DF dataset. The number of protected traces
in the training set is always npr = 800,000.

8.2.1 Closed World

In Table 5, we show the TPR and the top-2 TPR of
HyWF-AP and HyWF-WT. For reference, we also show
the performance of HyWF, AP and WalkieTalkie alone.

For the same overhead, combining HyWF with
state-of-the-art defenses significantly improves privacy:
The TPR goes from around 50% with HyWF andWalki-
eTalkie (and more than 90% with AP) to 30% or less.
It is interesting to note that HyWF-WT has a lower
TPR than HyWF-AP, which is in line with the fact
that WalkieTalkie performs better than AP; however,
we have seen in Section 6.3 that WalkieTalkie performs

Table 5. Performance of the DF attack against HyWF, adaptive
padding (AP), WalkieTalkie, HyWF-AP, and HyWF-WT. Closed-
world experiment, DF dataset.

T. ov. LT. ov. TPR top-2 TPR
HyWF 0% 0% 48.6% 57.3%
AP 64% 0% 90.7% 94.1%
WalkieTalkie 31% 34% 49.7% 99.5%
HyWF-AP 64% 0% 30.6% 40.0%
HyWF-WT 31% 34% 27.6% 54.7%
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badly against top-2 prediction, and we see in Table 5
that for this metric, HyWF-AP performs better than
HyWF-WT.

8.2.2 Open World

Finally, we evaluate HyWF-AP and HyWF-WT against
the DF attack in the open-world setting. In Fig. 10, we
show the ROC curve for these two novel defenses as well
as for HyWF, AP, WalkieTalkie, and undefended data.
The results show that combining AP and WalkieTalkie
with HyWF significantly increases privacy without in-
curring a performance cost. This is further confirmed
by looking at the top-2 prediction, as defined in Sec-
tion 6.3 in the open-world case: AP and WalkieTalkie
both perform quite badly for this measure (respectively,
88.5% and 67.2%). In contrast, this measure is reduced
to 25.6% for HyWF-AP, and to 14.4% for HyWF-WT.
This shows that by splitting traffic between two net-
works, HyWF can be combined with other state-of-the-
art defenses, and that doing so further improves privacy.

9 Conclusion
We have presented HyWF, a novel defense against web-
site fingerprinting attacks. HyWF exploits multihoming
and multipath to split the traffic between two networks.
We have shown that a high level of privacy cannot be
reached with off-the-shelf multipath schedulers. He have
designed an algorithm based on random splitting that
achieves a privacy similar to that of state-of-the-art
defenses—without any traffic overhead. We have pre-
sented a proof-of-concept implementation of HyWF and
showed that it does not add any significant loading-time
overhead. HyWF is compatible with other defenses that
rely on link padding or randomized pipelining. Combin-
ing HyWF with another defense further improves pri-
vacy. We have illustrated this by introducing and eval-
uating HyWF-AP and HyWF-WT, two extensions of
HyWF with, respectively, adaptive padding and Walki-
eTalkie defenses. HyWF-AP and HyWF-WT decrease
significantly the accuracy of the website-fingerprinting
attacks, and they do better than all state-of-the-art de-
fenses.
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A Appendix

A.1 Asymmetric Networks

We evaluate the scenario where the client wants to send
a smaller fraction ps < 0.5 of her traffic through one
of the networks (denoted by Network 1), for example
because this network is more costly (e.g., WiFi is typi-
cally cheaper to use than cellular). We evaluate the same
splitting scheme as HyWF, except that p is chosen uni-
formly at random in [0, 2ps], so that the average value
of p along all traces is ps. Fig. 11 shows the TPR of the
attack against Network 1 and Network 2 as a function of
ps. We observe that the relationship between cost (i.e.,
amount of data sent on the costly network) and privacy
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Fig. 11. Performance of the k-fingerprinting attack when the
client sends a fraction ps of its traffic through Network 1, for
different values of ps. Closed-world experiment, Wang dataset.
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Fig. 12. Testbed deployed, with two wireless networks connecting
the client (Tor proxy) and the Tor bridge.

is linear, which makes it simple for a client to decide
how to make the trade-off between the two.

A.2 HyWF Scheduler

Our HyWF scheduler builds on the round-robin sched-
uler provided with the MPTCP implementation and
configured with the full-mesh mode of operation. With
this mode, MPTCP generates one subflow for each IP
address pair (source, destination). Therefore, we set up
some iptables rules to ensure that only the two sub-
flows corresponding to the two links of Fig. 12 are avail-
able (this is queried with the mptcp_rr_is_available
method). Instead of operating in “bursts” of segments,
i.e., picking one of the paths at random with probabil-
ities p for Link 1 and (1 − p) for Link 2, then draw-
ing the consecutive numbers of segments from a geo-
metric distribution with average ncons, we operate for
simplicity on a segment-by-segment basis and use the
following algorithm, equivalent to that described in Al-
gorithm 1. When c is drawn from a geometric distri-
bution, this algorithm forms a two-state Markov chain,
and it is equivalent to do the following for each packet:
When the last packet was sent through Network 1,
the packet is sent through Network 2 with probabil-
ity (1 − p)/ncons and through Network 1 with proba-
bility 1 − (1 − p)/ncons; when the last packet was sent

through Network 2, the packet is sent through Net-
work 1 with probability p/ncons and through Network 2
with probability 1−p/ncons. We code this algorithm in-
side the mptcp_write_xmit method. More specifically,
the next_segment method returns a pointer to the next
link to use, which is determined based on the last link
used (stored in a *sock pointer inside an mptcp_cb
structure) as follows:
• If the last segment was transmitted over Link 1, the
next segment is transmitted over the same link with
probability 1− (1− p)/ncons, and over Link 2 with prob-
ability (1− p)/ncons
• If the last segment was transmitted over Link 2, the
next segment is transmitted over the same link with
probability 1− p/ncons, and over Link 1 with probability
p/ncons.

The parameters ncons and p are also stored in
the mptcp_cb structure, with p randomly chosen on
a per-download basis. Due to the kernel program-
ming constraints (in particular, the lack of float
variables), p is chosen as a random integer in the
range [0, 255] using the get_random_bytes() func-
tion with an unsigned char. The algorithm is then
updated accordingly. Finally, we follow recommen-
dations to improve latency with MPTCP [17, 72]
and we disable the idle restart functionality and the
Nagle algorithm (net.ipv4.tcp_low_latency=1 and
net.ipv4.tcp_slow_start_after_idle=0).

A.3 Additional Tables and Figures
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Fig. 13. Performance of the k-fingerprinting attack on traces
protected with a round-robin scheme, for different values of the
number of consecutive packets ncons. Closed-world experiment,
Wang dataset.
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Fig. 14. Running time to perform the k-fingerprinting attack, for
different sizes of the training set. Experimental values are in blue;
the orange dashed line is the linear fit. Closed-world experiment,
k-fingerprinting attack against HyWF with Wang dataset.

0 6000 12000 18000 24000 30000 36000 42000

Number npr of protected traces in the training set

0

10

20

30

40

50

60

70

80

90

100

T
P
R
(%

)

baseline (original data)

AP

Orig. traces, nor = 6 000

Orig. traces, nor = npr
Prot. traces, nor = 0

Prot. traces, nor = 6 000

Prot. traces, nor = npr

Fig. 15. Performance of the k-fingerprinting attack on original
traces and traces protected with HyWF, for different sizes of the
training set. Closed-world experiment, Wang dataset.
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Fig. 16. Performance of the k-fingerprinting attack on traces
protected with the splitting scheme described in Section 5.4, for
different values of the average number of consecutive packets
ncons. Open-world experiment, Hayes dataset.
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Fig. 17. Performance of the DF attack on traces protected with
the splitting scheme described in Section 5.4, for different val-
ues of the average number of consecutive packets ncons and a
geometric distribution. Closed-world experiment, Wang and DF
datasets, npr = 300,000.
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