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Abstract: Vehicular data-collection platforms as part of
Original Equipment Manufacturers’ (OEMs’) connected
telematics services are on the rise in order to provide
diverse connected services to the users. They also allow
the collected data to be shared with third-parties upon
users’ permission. Under the current suggested permis-
sion model, we find these platforms leaking users’ lo-
cation information without explicitly obtaining users’
permission. We analyze the accuracy of inferring a vehi-
cle’s location from seemingly benign steering wheel an-
gle (SWA) traces, and show its impact on the driver’s
location privacy. By collecting and processing real-life
SWA traces, we can infer the users’ exact traveled routes
with up to 71% accuracy, which is much higher than the
state-of-the-art.
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1 Introduction

Modern vehicles are generating a massive amount of
data and becoming more connected and autonomous. A
recent CNN article [1] argued that data collected from
autonomous and connected cars are becoming very valu-
able. By capitalizing on car data collected from every-
day driving, vehicle OEMs wish to provide better service
to their customers and create new businesses. A Q&A
article from Associated Press [2] predicts cars equipped
with data-collection platforms to rise up to 75% by 2020,
while this figure was around 20% in 2016. For instance,
BMW launched a new platform called CarData [3] in
May 2017 which allows their approximately 8.5 million
ConnectedDrive users to collect certain telematics data.
This data is stored on BMW servers and processed by
ConnectedDrive services. Upon explicit users’ permis-
sion, BMW also allows the collected data to be shared
with third-party service providers through a business-
to-business (B2B) interface. Third-parties can submit
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apps to the OEM app store which are published af-
ter passing the OEM’s review. The third-parties must
explicitly request certain telematics data, such as the
odometer reading or vehicle speed, which is then se-
curely collected from the in-vehicle network and up-
loaded to the service providers’ server which can then
process the data in any way they desire. A concrete use-
case will be presented later as part of the threat model.

The goal of this paper is to uncover a new threat
model brought by the new vehicular data-collection
platforms and address the associated privacy issues.
In particular, we will show how an installed malicious
third-party app from the OEM’s app store can infer ve-
hicle locations or a trip route merely using the steering
wheel angle (SWA) traces. This SWA data is processed
to derive the road curvatures of the traveled route and
then matched against the curvatures of roads in a cer-
tain area which can be obtained from publicly available
online map APIs.

This attack becomes feasible due to vulnerabilities
in the design of data-collection platforms, especially the
coarse-grained permission model which is partly caused
by insufficient and lax privacy regulations for vehicular
data-collection platforms, as well as users’ comfort in
sharing vehicular sensor data as shown in our survey
in Sec. 3. An attacker can pose as a malicious third-
party and submit an app to the app stores of car data-
collection platforms with the goal of acquiring the vehi-
cle’s location at any point during the trip. Since privacy
concerns have already been raised for data collection
from vehicles [4], the Alliance of Automobile Manufac-
turers (AAMs) — consisting of nearly all North Amer-
ican OEMs — recently developed some privacy guide-
lines [5]. These guidelines require explicit user consent
for collection of sensitive data, such as geolocation. As
a result, the attacker will provide an app with seem-
ingly harmless sensor permissions, such as SWA which
users are more likely to grant permission to than GPS
according to our sensitivity survey results.

Another reason for choosing SWA is the submission
process with the OEM which may deny publication of
the app if it is obviously over-privileged, i.e., if too many
(sensitive) permissions are requested for the stated use-
case of the app. BMW, for instance, states that an app
submission from a third-party will be reviewed before
publication in the app store. Furthermore, according to
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Table 1. Comparison of SPy with existing approaches
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Nal6 [6] Mil5 [7] Zh17 [8] Gal4 [9] Del3 [10] SPy
Data Source Phone IMU Phone Power Speed from Speed from Speed from GPS  Vehicular Data
Sensors Consumption OBD-Il Device OBD-II Device Tracking Unit Collection
Platform
Reference Maps Prerecorded Maps Maps Time Stamp + Maps
Source Power Profiles Speed +
for Each Phone Distance
Traveled
Pre-processing Easy Hard Easy Easy Medium Easy
#Apps in App Android: 3.5M Android: 3.5M N/A N/A N/A BMW: 90 (Jan
Market (12/17) iOS: i0S: 2.2M '18)
2.2M (01/17)
Matching Turn Angle HMM HMM, DFS Elastic Pathing DFS Road Curvature
Method Similarity + Matching
Curve Similarity (RoCuMa)
+ Travel Time
Similarity
No Starting v X X X X v
Point
Assumption
Accuracy of 13-38% 45% (of full 70% in Top 30 14% (less than 37% 71%
Estimating route) Candidate 250m error)
Entire Road Routes

the aforementioned privacy regulations for vehicles, the

use of SWA does not even require explicit permission at

installation time of the app and would thus be available
in any installed app without user consent.

Location privacy is a trending and well-researched
area. [t has been shown that location data can be used
to accurately identify users by using a combination of
their home and workplace which are the easiest iden-
tifiable locations in a GPS trace [11]. There are sev-
eral related studies of inferring location on smartphones
from sensor data [6, 7]. Their threat models exploit de-
sign vulnerabilities in mobile operating systems’ permis-
sion model (i.e., using zero-permission data for location
inference) whereas we uncover a new threat model in
an unexplored but rapidly growing domain (i.e., con-
nected/autonomous cars). Our work differs in multiple
ways from mobile location privacy studies as shown in
Table 1.

Specifically, we propose SPy (Steering Privacy) that
constitutes several important contributions:

— Discovery of a new threat model based on mali-
cious third-party apps running on vehicular telem-
atic platforms. A malicious third-party app from the
OEM app store can be used to perform an offline at-

tack to infer user location by collecting SWA traces
which are available without explicit user consent.
This is due to the weak design of current permis-
sion models as discussed in Sec. 4 and lack of aware-
ness/sensitivity of drivers towards the collection of
vehicular sensor data as shown in a survey in Sec. 3.
Development of novel Road Curvature Matching
(RoCuMa). It takes the road curvature derived from
the victim’s SWA trace and matches it against a
ground truth database of road curvatures obtained
from publicly available maps if area is roughly
known.

Achieving much higher accuracy in inferring a vic-
tim’s location trace than state-of-the-arts. Note that
this accuracy only holds for areas with moder-
ately curvy roads. We will discuss this limitation
of RoCuMa in Sec. 7.1.
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Table 2. Frequently-used input streams for data collection (adapted from [12])

Oil level RPM Outside

Avg. speed Trip number temperature
Throttle position Injector circuit Tire pressure
Start/end malfunction Check engine light
odometer VIN on

Distance Battery level Timestamp
Odometer Max. speed Car weight

Fuel consumption Event threshold Latitude

Hard braking

Steering wheel
angle

ABS

Windshield/
wiper information
Longitude
Make/model/year
Airbag status
Accelerometer

Ignition status
DTC code
detection

Speed

Fuel level

Seat belt status
Positional quality
Volumetric
sensors
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2 Background

2.1 Data Collection from Vehicles

We briefly introduce how vehicular data is collected. Ve-
hicular sensor data is collected from a set of Electronic
Control Units (ECUs) of the vehicle. ECUs are usually
interconnected with each other by an on-board com-
munication bus, or in-vehicle network (IVN), with the
Controller Area Network (CAN) being the most popu-
lar in current vehicles. CAN data can be collected from
ECUs using aftermarket dongles which are plugged into
the OBD-II port, such as ELM327 or OpenXC [13, 14].

In recent years, wireless connectivity in vehicles has
been gaining popularity. According to [15], 250M vehi-
cles will be connected to the Internet of Things (IoTs)
by 2020. Existing connected vehicles’ (CVs’) functionali-
ties comprise infotainment, safety, diagnostics efficiency,
navigation and payments [16]. In the next phase of CVs
— which is starting now — cars will connect to third-
party services using a built-in data connection, intro-
ducing novel vehicular data-collection platforms, such
as BMW CarData [3, 17]. Already 78M vehicles are con-
nected to the web, with 98% of all new vehicles sold in
the US and Europe are expected to have cellular con-
nections by 2021 [18].

A recent Frost&Sullivan study [19] gives an
overview of frequently-used input streams for vehicular
data-collection systems as summarized in Table 2.

2.2 Privacy Regulations

The rise of car data-collection platforms also raises pri-
vacy concerns; the US Government Accountability Of-
fice (GAO) released a document in July 2017 address-
ing this issue [4]. 13 of 16 selected automakers in the
GAQ’s review reported collecting, using and sharing

data from connected vehicles such as geolocation. Fur-

thermore, the Alliance of Automobile Manufacturers

(AAM) recently developed the Consumer Privacy Pro-

tection Principles: Privacy Principles for Vehicle Tech-

nologies and Services (“Consumer Privacy Protection

Principles”) [5] which went into effect January 2, 2016.

Among other principles, these voluntary guidelines en-

courage affirmative consent for sensitive data called

"covered information" which are listed as:

— Driver Behavior: Information about how a per-
son drives a vehicle. Concrete examples stated in
that document are vehicle speed, seat belt use, and
information about braking habits. Information used
only for safety, diagnostics, warranty, maintenance,
or compliance purposes are explicitly ruled out.

— Geolocation: Information about the precise geo-
graphic location of a vehicle.

— Biometrics: Information about an owner’s or reg-
istered user’s physical or biological characteristics
that can be used to identify the person.

As a result, the aforementioned platforms for vehicu-
lar data collection have to ask users for their explicit
consent before requesting this sort of data from them.
These voluntary guidelines are a good starting point to
address the issues with the permission models of data-
collection platforms, but are currently not binding.

3 Sensitivity Survey

Since vehicular data-collection platforms are proliferat-
ing and a vast variety of sensor data can be collected,
we are interested in how sensitive consumers are to this
new technology. More specifically, we would like to study
how comfortable users would be in sharing their vehicle
data with their OEM or any third-party apps. To this



end, we conducted a survey (N = 100) on Amazon Me-

chanical Turk (AMT). We obtained an approval from

our university’s IRB (Registration No. IRB00000245)
to conduct this survey.

All participants — qualified for the Masters require-
ment — were paid $1 per survey and were given a max-
imum of 30 minutes to complete the survey. The mean
and median times to complete this survey were 7 min-
utes 54 seconds and 5 minutes 2 seconds, respectively.
For further information about the time distribution, see
Fig. 10. Accounting for the average completion time, our
$1 payments to the participants were above the federal
minimum wage in the U.S. We included demographics
questions in the survey, including gender, their coun-
try of residence, whether they work in a highly tech-
nical field and are familiar with car telematics. 61%
of the participants were male (39% female) and 85%
came from the United States (13% from India, 2% from
Canada). Only 26% of the respondents self-identified as
tech-savvy, but 39% were familiar with car telematics.

We chose 20 of the most frequently collected sen-
sors (see Table 2) and asked the participants two ques-
tions (Q1 and Q2). For better understanding of these
20 sensors by the readers of this paper, we included their
descriptions and potential privacy implications in Ap-
pendix A. We introduced a five-point Likert scale for
these 20 sensors ranging from 1 (strongly disagree) to 5
(strongly agree), as well as an option Not familiar, and
asked them the following two questions:

Q1. How comfortable would you be of sharing the fol-
lowing data types with an OEM? If you are not
familiar with a term/sensor, please choose "Not fa-
miliar".

Q2. How comfortable would you be with sharing the
following data types with a third-party appli-
cation provider? If you are not familiar with a
term/sensor, please choose "Not familiar".

To analyze the survey results, we checked model as-
sumptions and used a mixed-effect linear model with
a fixed effect on data source (OEM vs. third-party) and
random effects on individual participants and car sen-
sor variables [20], as shown in Eq. 1. By using a ran-
dom effect on the sensor variable, we can obtain an es-
timate, with 95% confidence interval (CI), of the aver-
age response for each sensor while pooling all estimates
towards the global average response for regularization.
By adopting this estimation approach, we avoid using
multiple comparison correction on a large number of
variables (20 sensors) if we had employed null hypothe-
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sis statistical testing [21]. The Likert scale responses are
treated as numeric values from 1 to 5.

response ~ datasource + (1|sensor) + (1|participant) (1)

The average response for sharing data with OEM was
3.63, 95% CI = [3.33,3.93], between “Neutral”(3) and
“Comfortable”(4). The average response for third-party
sharing was 3.12, 95% CI = [3.06, 3.18]. Participants
might be more comfortable with sharing their car sensor
data with OEMs than sharing with third-parties. The
result for individual sensors, relative to the average for
all responses, are shown in Fig. 1. The participants were
least willing to share their GPS sensor data, while they
are most comfortable with sharing the outside temper-
atures of their cars. Location-related parameters such
as GPS Location, Maximum Speed, and Current Speed
were the most sensitive, their response well below the
average on the comfort scale. Steering Wheel Angle is
observed to have a middling response with its CI over-
lapping with 0 (the average), meaning that participants
were not particularly uncomfortable with sharing this
sensor.

Overall, participants are uncomfortable with shar-
ing their GPS locations, while they did not suspect
Steering Wheel Angle for any harmful purpose such as
possible location inference as stated in its description
(see Appendix A). We note that speed information,
which has been leveraged for location inference in re-
lated studies [8-10], was already a sensitive parameter
(Current Speed, Average Speed and Mazimum Speed).
On the other hand, using Steering Wheel Angle readings
to infer location is a more likely attack than previously
conceived, and shows the feasibility of such an attack
within our threat model.

4 Threat Model

In Sec. 2, we discussed existing privacy regulations in
the automotive domain which are relatively lax due to
their non-binding nature. In Sec. 3, we presented a user
survey showing that participants were not very sensitive
about sharing their steering wheel angle (SWA) read-
ings with other parties. In order to fully understand the
threat model and feasibility of the proposed privacy at-
tack, one has to understand the permission model of a
vehicular data-collection platform. In the following, we
present a concrete example derived from BMW CarData
[3].
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Fig. 1. Estimation of response for individual sensor reading from both OEM and third-parties (details in Equation 1). Error bars are
95% confidence intervals. The steering wheel angle is marked with a diamond.

The driver of a vehicle equipped with aforemen-
tioned data-collection platform wants to install a third-
party app which makes use of the SWA sensor. The
app has to be submitted to the OEM’s app store by
a third-party entity which passes an initial review by
the OEM. The OEM has the right to revoke data ac-
cess to the third-party whenever it detects a violation of
its terms of service, i.e., the third-party using the data
for other purposes than intended/stated [22]. Since the
OEM does not have any influence on the data at the
third-party [22], it is essential for the OEM to catch
third-parties with malicious intents at the review stage,
albeit it could only perform a superficial review due to
lack of access to the source code which is a proprietary
IP of the third-party entity. As a result, the chance of
getting the app published in the OEM’s app store would
be high if the app is not “obviously” over-privileged (for
instance, using GPS permission for a fuel-consumption
tracking app) or requesting permission for sensors which
the app is unrelated to.

An example workflow for data collection and distri-
bution to third parties is shown in Fig. 2. Alice finds
an interesting third-party app from the malicious third-
party entity, Mallory, which she wants to install. BMW’s
CarData platform [3] gives Alice an overview of sensors
the app requests for proper functioning together with
the purpose of the app, akin to app permissions shown
at installation time in a mobile phone app store. Sup-
pose this app requests SWA readings (which we will
later use to infer location) besides other sensors. Unlike
the Android Play Store where users can selectively check
permissions they want to give to the app, The OEM

only allows users to completely agree or decline [22].
If agreed, the OEM transmits a copy of the collected
telematics data to Mallory’s server via their business-to-
business (B2B) interface, but as previously mentioned,
does not have any influence on what happens afterwards
with the data. The OEM is committed to only accept
trustworthy service providers as business partners for
their platform, such as insurance companies. If Mallory
has a valid use-case for their app using SWA readings,
the OEM might approve Mallory as a trustworthy en-
tity. Since the user and OEM do not have any technical
control on what happens to the data after giving Mal-
lory permission to run that application, she can use the
SWA readings as she likes, including inferring location
as we will show in this paper.

Alice wants to install Mallory’s third-
party app from her OEM’s app market

App Permissions

Mallory offers third-
party app

o Speed
o Acc. Pedal Position
Brake Pedal Position
o Odometer

. GPS

o Steering Wheel Angle
o Fuel Level

Mallory obtains a copy of the
requested data for processing
from OEM’s B2B interface

Telematics
data to OEM
server

App not
installed Does Alice
authorize the

dn app?

_—

Fig. 2. Example workflow of installing a third-party app in an
OEM data-collection platform



The major reason for this risk/vulnerability, besides
the relay of data to remote third-party servers just based
on user consent, is the weak permission model of those
data-collection platforms, due partly to lax regulation.
Any sensors that are not covered by the three cate-
gories in the aforementioned guidelines [5] can be even
regarded as zero-permission, comparable to the use of
this concept in mobile phone operating systems. The
SWA sensor is not clearly assigned to the list of "cov-
ered information". One might argue that SWA can be
regarded as part of driving behavior information which
is part of the "covered information" list. Although we
agree and cannot explicitly rule out this sensor from
the list, SWA could rather fly under the radar during
the design of permission models and can thus be used as
zero-permassion. After all, the guidelines are merely vol-
untary and each OEM is free to design the permission
model stricter or looser.

The feasibility of a location inference attack ex-
ploiting SWA is a combination of three factors: (i)
Weak /insufficient architecture design by the OEM re-
garding third-party apps, (ii) users being comfortable
sharing SWA data, and (iii) lax privacy regulation. Even
if an OEM decided to classify SWA as part of "cov-
ered information", we believe that a location inference
attack exploiting SWA would still happen with a high
likelihood. This holds especially when compared to data
collected from GPS or speed sensors. As shown in our
survey results from Fig. 1, these two data sources are
highly sensitive and the chance of a user installing an
app with these permissions less likely. In fact, it has
already been shown in literature [8-10] that location
inference by using speed information is possible, albeit
with less feasibility as discussed in this section and lower
accuracy as shown below.

5 System Design

We present the system design of SPy which infers loca-
tion from SWA sensor data. For this purpose, we need
to estimate road curvature as an intermediate step to-
ward location estimation using a novel technique, called
RoCuMa (Road Curvature Matching). A deeper look into
SWA readings — one of the most frequently collected
data according to [19] — shows that these values are
highly correlated to the road curvature. Fig. 3 (a) shows
an example plot for SWA readings and the road curva-
ture among a busy road in the mid-sized US city of
Ann Arbor where all experiments have been conducted.
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The cross-correlation for all roads is found to be always
above 0.8, and 0.93 for this specific example.

Since this looked promising, we continued explo-
ration of the high correlation to infer location from SWA
readings. Fig. 3 (b) shows a system block diagram. The
first step is to derive road curvature from SWA read-
ings collected by a malicious third-party app from the
victim’s vehicular data-collection platform. The ground
truth road curvature can be calculated from publicly
available sources, such as OpenStreetMap (OSM). By
matching the road curvature from the attack with the
ground truth curvature, we will infer the traveled route
of the victim for its trip and thus its location.

We will first (in Sec. 5.1) introduce the dataset used
finding SWA traces for the attack. Then, we will detail
how to build ground truth road curvature from OSM in
Sec. 5.2. Finally, Sec. 5.3 and Sec. 5.4 cover the location-
privacy attack. Specifically, we will first show how to
derive road curvature from SWA data and then infer
location from road curvatures (RoCuMa).

5.1 Input Data

Our data source is a dataset collected by researchers
in our group using the OpenXC platform [14] during
their daily driving. The entire dataset consists of 58
trips/attack traces collected from several drivers and
vehicles, with 41 recorded in a 2016 Ford Explorer, 10
in a 2017 Lincoln MKZ, 5 in a 2017 Ford Escape and
1 each in a 2016 Ford Focus Hatchback and 2017 Ford
Fiesta, respectively. An overview of vehicle sensor pa-
rameters available in the dataset is provided in Table 5
of Appendix B. The dataset includes GPS coordinates
as well as SWA readings. The former are used in Sec. 6
as ground truth to compare against the derived location
trace and thus evaluate the accuracy of SPy. The latter
are used as attack traces. Finally, we use the Open-
StreetMap (OSM) API to derive road curvature and
build our ground truth road curvature database.

5.2 Building the Ground Truth Road
Curvature Database

Our goal is to derive ground truth road curvature for all
roads in a selected area. We exported a rectangular area
around our test city Ann Arbor. The obtained file in-
cludes nodes that contain longitude and latitude values.
OSM defines ways as an ordered list of nodes represent-
ing roads. Based on this representation, we apply spline
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Fig. 3. (a) Smoothed SWA readings vs. road curvature to depict correlation (b) Block diagram of system design

interpolation to the list of nodes of each way since we
want to calculate that road’s curvature in the next step.
Given z and y as longitude and latitude (2’ and z”
denoting their first and second derivatives), respectively,
the signed road curvature k [23] is defined as
. z/y// _ y/x;/ ' (2)
($/2 + y/2)§
The curvature data is stored for each road together with
the SWA readings. An example for a stored road is given
in Fig. 3(a). Both the SWA and curvature values are de-
picted over the mile marker of the road. Note that the
definition of the start and end mile of a road are de-
liberate and that we store each road in both directions.
A traveled path usually consists of multiple road sec-
tions of different roads, i.e., the driver will turn onto
another road at some point during the trip. In order to
consider this, we have to split the roads in the ground
truth database into multiple road segments. We define
a road segment as a road portion between two intersec-
tions. A road section, which depicts the road fragment
between two turns, can consist of one or multiple road
segments (since the driver does usually not turn at each
intersection). In order to achieve this, we calculate the
intersection points between roads from OSM. An inter-
section point can be a four-way or a three-way (also
called T-intersection). The intersection points are then
mapped to the mile marker of each road which is then
split into multiple road segments between two intersec-
tions by a simple rectangular window. Our naming con-
vention for the road curvature ground truth is G_x_y
with x denoting the ID of the road and y the ID of the
road segment on that road.

5.3 Road Curvature from SWA Readings

As shown in next subsection, location will be inferred
from road curvature. Below we will briefly describe how
road curvature can be calculated from SWA readings. In
the previous subsection, we stored road curvature values
for each road segment. We also have SWA readings from
the 58 attack traces that we collected from multiple cars.
Based on our motivation that these two variables are
highly correlated, we tried to find the line of best fit
between these. We obtained the best fit for a polynomial
of first degree. All other polynomials of higher degree
and sinusoidal regression models returned higher RMSE
values. In order to build a robust and accurate model,
we concatenated the data points of all SWA readings
and their respective curvatures from the ground truth
database.

As a result, the relationship between steering wheel
angle (swa) and road curvature (curv) can be expressed
through the following equation, using linear regression
with Bisquare weights:

curv = 15.76 - swa — 4.923 (3)

Despite the attempt to find the most optimal pa-
rameters for the linear model, we just want to show
the linear relationship between steering wheel angle and
road curvature. The absolute values of scale and offset in
Eq. (3) can be ignored in our map-matching technique
RoCuMa (see Sec. 5.4) since the ground truth and attack
curvatures are being normalized and the very small in-
tersection of Eq. 3 barely affects the relation between
SWA and curvature. As a result, even SWA readings
themselves could be used as input since we show that
only the temporal sequence of these values turn out to
be relevant. Nevertheless, we will still use predicted road
curvature values from SWA readings in order to stay as
accurate as possible.



5.4 Location from Road Curvature

After obtaining the ground truth road curvature and
learning the relation between SWA readings and road
curvature, the victim’s location can be inferred from
their collected SWA readings. We call this novel map
matching RoCuMa (Road Curvature Matching) which is
detailed next.

5.4.1 Step 1: Pre-processing

According to our threat model, the victim installs a
malicious third-party app on their connected vehicular
data-collection platform and agrees to share their SWA
readings with the third-party service provider. After the
victim has completed their trip, the attacker has access
to the entire SWA trace of the victim and can process
this data offline. The SWA trace merely consists of SWA
readings with the corresponding time stamps. In order
to eliminate noise, the readings are smoothed by a mov-
ing average filter.

SWA readings offer numerous insights into the road
geometry. For instance, turns can be easily detected by
analyzing the trace. We want to automatically detect
left and right turns along the victim’s route so we can
divide the entire trace into multiple road sections (not
to be confused with our definition of road segments).
Each section denotes a single road that the victim has
traversed. Turns are detected by SWA values exceeding
a specific threshold. The latter depends on the steer-
ing ratio for each individual car. Since all experiments
from our dataset were conducted using the same vehicle
model, the steering ratio and thus threshold were the
same (90° in this case).

Since RoCuMa cannot detect U-turns or roundabouts,
we are limited to conventional turns. At a turn event,
a new road section is added and stored together with
the type of turn (left or right). The general idea is to
find an initial section and to match this against the
entire ground truth data and then match the previous
and following sections in a smaller search space. The
most salient or distinct section is chosen as initial sec-
tion. We define the most salient section as the curviest,
i.e., the section with the maximum absolute SWA value.
The reason for this choice is to increase the chance to
match this section correctly against the entire ground
truth which is the search space in this step. Since the
majority of roads in our dataset have none to very small
curvature (87.9%), the likelihood of matching a straight
section correctly is very small. Matching this initial sec-
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tion correctly will also determine the accuracy of RoCuMa
for the most part. Our evaluations in Sec. 6 show lit-
tle error in matching the remaining sections due to a
smaller search space.

5.4.2 Step 2: Matching

The initial section may consist of multiple road seg-
ments since drivers usually do not turn at every intersec-
tion. Nevertheless, the initial section is bounded by an
integer number of road segments by their definition. We
do not know how many road segments the initial section
consists of, and hence we need to match it against all
single road segments as well as combinations of multiple
adjacent road segments.

Alg. 1 describes the matching process of the initial
section against the entire search space in pseudocode.
First, the initial section is matched against all single
road segments in the ground truth database (in both
directions). For quantifying the similarity between two
segments, we use Dynamic Time Warping (DTW). This
algorithm calculates the Euclidean distance between the
curvature signals after stretching them to a common
set of instants so that the distance is minimized. The
reason for choice of DTW in our case is simple: the
ground truth road curvature is stored with respect to
location (mile marker) whereas the attack road curva-
ture has been calculated from SWA readings with re-
spect to time. With the knowledge of vehicle speed, we
could have easily converted road curvature against time
to road curvature against location, but our threat model
does not assume the collection of the speed parameter.
With certain options of the DTW algorithm, we will
later see in Sec. 6 that this method works well for com-
paring two segments with each other without the knowl-
edge of speed.

In Alg. 1, ¢ denotes the attack road curvature we
obtained from the SWA readings and s the road seg-
ment or combination of road segments (s_R being the
road segment in reverse direction) which it is matched
against. These curvatures have to be z-normalized first
which is commonly used with the DTW algorithm. Since
the amplitude of the calculated attack curvature dif-
fers from the amplitude of the curvatures in the ground
truth and we are more interested in the structural sim-
ilarities of these values, calculating the z-score is essen-
tial. This step converts all values in the curvature vector
to a common scale with an average of zero and standard
deviation of one with u denoting, respectively, the mean



and o the standard deviation of the sample:

curv — i

(4)

Due to normalization, the absolute value of the

CUTVporm = ZSCORE(curv) = o

slope of the linear relationship we derived does not affect
the matching process anymore as discussed before.

foreach road € roads do

dist, dist_ R <« 0;

foreach road segment s € G do

score <— DTW (ZSCORE(c),ZSCORE(S));
score_ R <— DTW(zSCORE(c),ZzSCORE(s_R));
dist(road).append(score);

dist_ R(road).append(score_R);

end

istM, distM_ R « 0;

for ke {2,...,N —1} do

sM <« all s succeeded by k segments;

sM_ R <« all s_ R preceded by k segments;
score <— DTW/(zSCORE(c),ZSCORE(sM));
score__R + DTW(zSCORE(c),zSCORE(sM__R));
distM(road).append(score);

distM_ R(road).append(score_R);

o

end
end
overall_min + ARGMIN([dist, dist_R, distM,
distM_ R]);
first__segment, combo <« find_segment(overall _min);

Algorithm 1: Matching the initial section

Alg. 1 first calculates the DTW score for comparing
the attack road curvature with each single road segment
in both directions since we do not know which way the
victim took. All these values are appended to an array
with DTW scores. Then, the attack curvature (initial
section) is matched against all possible combinations ad-
jacent road segments, starting with two combined road
segments up to N — 1 combined road segments, where
N denotes the number of road segments of a particular
road. Thus, the total number of comparisons for match-
ing the salient section is w and the computational
complexity stands at O(N?). Again, all the DT'W scores
are combined in an array in both directions. This pro-
cedure is repeated for each road in the ground truth
database.

Finally, the minimum score is calculated for all these
arrays and the minimum score is chosen which is also
the most likely segment in the ground truth that our
initial section matches to. Together with the minimum
score, we also know the initial road segment and the
number of road segments to follow this initial segment.
We achieve the most crucial part in our matching pro-
cess since we have to match the initial section against
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the entire ground truth. We append the matched seg-
ments to the output array of GPS coordinates of this
particular road section.

After matching the initial road section, we have to
check if the segmentation of the SWA trace from Step 1
returned other section preceding or succeeding the ini-
tial section. If there are more sections, we need to obtain
the intersection of the initial section with the adjacent
sections. Since intersection points are stored with the
ground truth, we can easily see which roads the initial
section intersects with. We distinguish between a four-
way and a three-way intersection (T-intersection). Any-
way, we know the type of turn (left or right) thanks to
the characteristics we derived earlier from SWA traces.
The only remaining challenge is to find the first segment
of the new road section the victim turns to.

G 2 19
lat > lat;
611 P, P, = (lat, lon;) 6113
_1_ N 1
lat < lat;
G 2 18

Fig. 4. Finding the first segment on a new road section

For an example four-way intersection, this proce-
dure is depicted in Fig. 4. The turn angle © is defined
as the four-quadrant inverse tangent with P, being a
point on the segment of the road the victim is coming
from (in this case the initial section) and P; being a
point on the road section to turn on. P is the inter-
section point. x and y are its latitude and longitude,
respectively. This angle can be calculated by:

e = tcmil(Pg.y - Pl.y,PQ..Z‘ - Plﬂl‘)
—tan"Y(P3.y — P1.y, Py.x — Pi.z). (5)

After calculating this angle for both possible road
segments of the intersecting road (in the T-intersection
case, this would not be necessary if the victim has only
one turn possibility), we compare the sign of the an-
gle with the turn type and determine the first segment
of the new road and the driving direction. Suppose the
victim comes from G__1_ 12 (the next segment would be
G_1_13) and turns right onto G_2_18. If the victim
turned left, they would have ended up on G_2_ 19. In
order to determine the first road segment on the new



road (G_2_18), we use a GPS point P, on G_1_12
(which we already have matched), the intersection point
P; and a point Pson G_2_ 18 and G_2_ 19 respectively
using the trigonometric relationship from Eq. 5 to cal-
culate the angle ©. Based on the sign of that angle and
the type of turn, we will determine that the first road
segment of the new section will be G_2_ 18 R since the
road will be traversed in the reverse direction.

Now, a simpler version of the same procedure from
Alg. 1 can be repeated to match the previous and suc-
ceeding sections of the SWA trace. Since we already
know the first road segment of the new road section,
the search space will be much smaller. We only have to
match p times where p is the number of remaining road
segments from the new section (p < N). The minimum
DTW score will yield the matched segments which we
can append to the output. This process is repeated as
long as there are sections in the SWA trace available.
Once there is no section left, the output will consist of
the GPS coordinates of the victim’s SWA trace.

6 Evaluation

In what follows, we will evaluate multiple metrics of SPy
to give a complete picture of the feasibility of privacy
attack with SWA traces. We will cover the accuracy,
memory footprint, complexity as well as applicability to
other cities. Note that the latter is mostly a qualitative
discussion since actual driving data in the other cities
are not available.

6.1 Attack Trace Subset of a Single Road

First, we want to evaluate how well a subset of a road
is matched to its corresponding positions. In this case,
our ground truth database consists of only one road and
the attack SWA trace represents part of this road.

We did not evaluate the performance of this test-
case on a large number of attack traces since our goal
is matching the SWA trace on multiple roads as de-
tailed in the next subsection. In particular, we want to
point out an issue of short traces we faced in order to
improve Alg. 1. DTW comes with a width adjustment
window ensuring that the warping compares sections of
similar length and does not overfit. The effect of this
parameter is shown in Fig. 5 where the blue and red
lines/signals depict the attack and ground truth curva-
tures, respectively. The matching on the right side of
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this figure yields a smaller DTW distance which would
make it an optimal candidate. Nevertheless, the match-
ing on the left side is correct as one can see from the
original signals on the top, but yields a higher DTW
distance because of overfitting, i.e., the DTW algorithm
with no width adjustment window set tries to perfectly
align the signals which are similar as a temporal se-
quence and yields a smaller distance due to a smaller
number of points.

Original Signals Original Signals
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Fig. 5. Width adjustment window not set vs. 30

For a larger trace, this finding does not hold as the
driver may travel at a higher speed so that the case de-
picted on the right might be true. We found through
the analysis of multiple attacks that this observation
mostly holds for less than 4 road segments. For more
than 4 road segments, we do not set the width adjust-
ment window in order not to affect results. Note that
this threshold of 4 road segments does not guarantee
a correct result and that an extensive analysis showed
better results by setting this threshold.

6.2 Attack Trace on Multiple Roads

Next, our system is evaluated for the entire SWA traces
that lie on multiple roads. We now evaluate the overall
accuracy of this system, i.e., the percentage of correctly
classified routes among our test set.

We built the ground truth database in a mid-sized
US city Ann Arbor. The area covered by our ground
truth database consists of 236 roads and 2776 road seg-
ments. For the attack traces, we used our own dataset
introduced in Sec. 5.1 which only contains trips taken in
Ann Arbor. Table 6 in Appendix B shows statistics of
the 58 attack traces. Trip length distribution statistics
including a histogram and CDF are also provided in the
same appendix.

We used all recorded 58 trips from our dataset as
different attack traces. As Table 6 shows, we use attack
traces of different lengths and avoid only having short



trips since we also want to evaluate the performance
of RoCulMa on longer trips. An important pre-processing
step was to manually discard the first and last one or
two segments in each attack trace since they consisted of
events, such as pulling out or into the driveway which
would have made the matching process difficult. Note
that this can be automated by a further signal analysis,
but is not in the scope of this paper.

Eq. (6) defines the overall accuracy and Table 3
summarizes the results. We evaluate the full route
match, i.e., how many trips are classified correctly over
their full length.

# correctly matched attack traces
# all attack traces
(6)

overall__accuracy =

Table 3. Evaluation of overall accuracy with respect to trip
length

Maximum Trip Length (mi)  Full Route Match

All attacks 19.85 70.7%
20-percentile 1.12 72.7%
50-percentile 2.80 72.4%
75-percentile 5.03 69.8%
90-percentile 10.19 73.1%

Our system was able to match 41 of 58 attack traces,
achieving 70.7% accuracy overall. Furthermore, we want
to know how the accuracy is affected by the length of the
attack trace. Fig. 6 summarizes our findings. For short
trips up to 1.2 miles, the accuracy rises quickly up to
75%, but then experiences a small drop and fluctuates
between 67% and 75%. Even for longer trips, the ac-
curacy stays constant slightly above 70% and does not
decrease significantly. We, therefore, conclude that the
accuracy of RoCuMa is not greatly affected by the length
of the trips. This conclusion can also be validated by
the accuracy evaluation for percentiles in Table 3.

Finally, we also analyzed in how many cases we
could match the initial (salient) section: 44 cases over
the entire 58 attack traces. Thus, the critical part of
RoCuMa is matching the initial section due to a very large
search space. Only in 3 cases, the algorithm was unable
to match the full trace despite obtaining the correct ini-
tial section. This explains why the accuracy does not
drop significantly for longer trips. Once the initial sec-
tion has been classified correctly, the chance of matching
the remaining segments also correctly is high and thus
does not affect the accuracy of the full route match.
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Fig. 6. Impact of trip length on overall accuracy

We analyzed the 3 mis-classified initial sections and
found a common pattern why the salient section could
not be matched. An example of this is depicted in Fig. 7.
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Fig. 7. Example of mis-classified salient section

The figure on the left shows the correctly matched
initial section, but has a slightly higher DTW distance
than the matched section on the right. The correspond-
ing map area for this example is depicted in Fig. 8.
Instead of matching until the correct intersection with
Road 2, it matches up to the intersection. The reason
for this is that the last part of the section until the false
intersection is very straight, such as the road segment
between the false and correct intersection. This addi-
tional road segment adds some distance in the DTW
algorithm and leads to mis-classification. Salient sec-
tions with some curvature before the intersection with
another road are all classified correctly.

6.3 Memory Footprint

An important metric to assess the feasibility of the pro-
posed attack is the memory footprint of the ground
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truth database. The malicious third-party has to possess
a ground truth database of road curvatures to match
the collected SWA trace. Road curvatures are stored
for each road segment in a file with the format (cur-
vature, latitude, longitude). The extended area of city
Ann Arbor where we conducted experiments consists of
approximately 540 miles of roads and its ground truth
files take 29.8MB of storage. This translates to roughly
55.2kB of storage per mile and 10.6kB per road segment.

An attack is usually limited to a city level and only
the ground truth of a city has to be stored. Neverthe-
less, an attacker might want to keep a ground truth
database for a larger area which they can scale down
to the area of interest later when mounting the attack.
For instance, let us consider the Detroit metropolitan
area of over 5 million inhabitants with 184,950 unique
roads that subsumes Ann Arbor. Using linear extrap-
olation, we can estimate the required storage for this
entire area to approximately 26 GB. It is reasonable for
this metric and shows that the proposed attack again
is feasible with regards to the memory footprint of the
ground truth database.

6.4 Complexity and Computation Time

Since our system does not track the driver in real-time
during their trip, but matches their SWA traces after
the collection of entire trip data, the computation time
is not a major issue for the performance of our system.
Nevertheless, we wanted to see if the matching could be
done in a reasonable time.

All attacks were implemented and run on a Win-
dows 10 mobile workstation running MATLAB R2018a
with an Intel Core i7-8650U CPU (quad-core using up to
eight threads running at 1.90GHz) and 16GB of RAM.
The maximum time an attack trace took was less than
19 min which is reasonable on a low-end setting for an
offline attack. It is also worth mentioning that the DTW
algorithm took more than 90% of the entire computa-
tion time for each of the 58 traces.
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Furthermore, we would like to assess how this attack
would scale with respect to time if the search space, i.e.,
the geographical area of the given ground truth, was
larger than the mid-sized US city Ann Arbor we used.

As mentioned earlier, the main computation of
this algorithm comes from matching the initial sec-
tion against the entire ground truth database, incurring
O(N?) computation cost for N road segments. Matching
the remaining sections will only cost O(N) and is thus
negligible as our timing analysis shows: only 0.5% of the
entire time is spent on average for matching the remain-
ing sections while more than 99% is used for matching
the initial section.

Scaling this attack in space has already been dis-
cussed in Sec. 6.3. In terms of time scalability, we can
roughly estimate the required time with the knowledge
of road segments in a city and the time spent in our test
city. Table 4 summarizes the number of road segments in
our reference city Ann Arbor and other selected cities.
Given the worst-case time of 19 min for an attack in
Ann Arbor, an attack in the entire geographical area
of a major US city like Boston would take less than 4
hours. Under the same assumption, an attack in a ma-
jor European city such as Munich would take slightly
over 9 hours. Note again that for these experiments, we
used a less powerful laptop and a malicious third-party
is likely to have better equipment to run the attacks at
a much faster speed.

As a result, even for larger cities around the globe,
an offline attack can be considered feasible in terms of
time. Finally, we also have to consider how scalable this
attack is in different cities/areas with respect to the the
curviness of the roads as well as the size of the ground
truth database.

6.5 Applicability to Other Cities

Since RoCuMa relies heavily on curvature of the roads and
matching the initial section is the crucial part in infer-
ring the correct route, it will not work in areas which are
on the grid, such as Manhattan. Nearly all roads there
are straight and thus have close to zero curvature. Since
all segments will look similar, the choice of the salient
section will be unsuccessful. This drawback will also be
discussed in Sec. 7. Since we want to justify the accu-
racy of the evaluation in the previous subsections, we
need to introduce a measure of road curvature for the
area where we conducted experiments, and compare it
with other cities.



To this end, we selected eight cities in the US and
Europe to show and discuss the curviness of their roads
using an open-source algorithm for calculating the road
curvature of maps obtained from OpenStreetMap [24].
The authors of this algorithm used a measure of road
curvature in the range from 0 to over 20000 which is
different from ours since they used a different approach
and units to calculate the curvature. We processed the
curvature of all roads in these cities that we wanted to
analyze and visualized the distribution of length vs. cur-
vature in Fig. 13 of Appendix C.

Then, we defined the average curvature index to
quantify the curviness of the roads in that particular
city. The following equation shows our rating formula,
with segments being parts of all the roads in that city:
#segments

curv(i) length(i)
i=1 (7)

#segments

S length(j)

j=1

avg__curv_index =

The average curvature indices for our selected cities
are summarized in the Table 4, with the first row being
our reference city Ann Arbor.

Table 4. Number of road segments and average curvature index
for different cities

# Road Segments  Avg. Curv. Index

Ann Arbor, Ml 2776 207.82
Boston, MA 9539 195.25
San Francisco, CA 7515 158.73
Manhattan, NY 1920 92.51
Pittsburgh, PA 10692 248.61
Dublin, Ireland 12977 221.42
Ingolstadt, Germany 2338 225.17
Munich, Germany 15071 152.30

All 58 attack traces are located in a mid-sized US
city Ann Arbor which is relatively curvy compared to
most US cities on the grid such as San Francisco or
Manhattan. European cities on the other hand have a
higher curvature rating than Ann Arbor. As a result,
our overall accuracy of 70.7% found in our experiments
only holds for areas with a similar curvature rating. We
do not have SWA data from trips in those cities, but
the accuracy will likely decrease in cities with a lower
curvature rating.

Table 4 also depicts the number of road segments in
each city. It would be interesting to see how the accu-
racy scales to a larger or smaller area with more or less
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road segments, respectively. The main impact on accu-
racy is the success of matching the initial (salient) sec-
tion as discussed earlier. As a result, the number of road
segments does not necessarily affect the accuracy, but
much more the similarity of highly curvy road segments
(or lack thereof). If the initial section is mis-classified
for another curvy section, the attack will not succeed.
Similarity can be expressed by the standard deviation
o of curvature values. A larger o results from more dis-
tinct and less similar road segments whereas a smaller
o represents more similar road segments.
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Fig. 9. Similarity comparison of curviest segments

To this end, we analyzed the curviest 5%, 10% and
20% of all road segments in the aforementioned eight
cities and calculated the standard deviation o for these
intervals. Fig. 9 shows that San Francisco, Manhattan
and Pittsburgh have more distinct road segments among
their curviest ones than our reference city Ann Arbor.
Together with the notion of curviness of these three
cities, we can thus reason that an attack is more likely to
succeed than in Ann Arbor, whereas Manhattan would
still be difficult due to its geographical layout. Another
relevant observation is that all European cities have a
similar (Dublin, Ingolstadt) or slightly smaller (Munich)
o, and are thus equally or somewhat less distinct in their
curviest segments. This can be explained by the higher
number of curvy segments than, for instance, Manhat-
tan. In the latter, there are only few curvy segments
which are more distinct in their shape. So, the proposed
attack would work equally well in Dublin and Ingol-
stadt, whereas the accuracy would drop in Munich, also
partly due to the smaller average curvature.



Since all these comparisons are theoretical, we
would like to see if these claims hold in a real setting.
So, we decided to define a new "area" that is a subset
of our reference city by only inspecting the performance
of RoCuMa on 15 traces that were collected in that spe-
cific area (i.e., traces that start and end there). This
specific part of the city has a higher average curvature
index (268.73 instead of 207.82 for Ann Arbor) and is
thus a reasonable choice for comparison with different
city topologies. Furthermore, the number of road seg-
ments is only 550 and thus covers a small part of Ann
Arbor. The mean trip length of this subset is 2.2 miles,
compared to 4.28 miles for all 58 attack traces. RoCuMa
was able to match 13 of 15 traces, yielding 86.7% accu-
racy, compared to 70.7% overall accuracy over the entire
dataset. As a result, we saw that a geographical area
with higher average curvature index can yield higher
accuracy and thus we can experimentally validate our
theoretical derivations.

7 Discussion

7.1 Limitations

First, we did not consider lane changes. According to
the National Highway Traffic Safety Administration
(NHTSA), an average lane change event has a change
in steering wheel angle of 8.11 degrees [25]. We can en-
sure that all our traces contained lane changes. Since
we smoothed the SWA data before processing it, these
changes did not affect our performance. Nevertheless,
lane-change events over a large number of lanes would
definitely affect RoCuMa and have to be filtered out.
Second, a major point discussed in Sec. 6 was the
variance of curvature of the roads in our dataset. Since
we solely rely on road curvature, curvier roads in a city
are advantageous for the accuracy of this algorithm.
Many US cities were planned on the grid, i.e., they con-
sist of straight roads with almost zero curvature. As a re-
sult, a victim traveling in Manhattan would not have to
fear of getting their location information compromised
whereas most European and smaller US cities contain
curvier roads, making an attack much more feasible.
Third, we did not consider U-turns or roundabouts.
Although we showed in Fig. 6 that U-turns can be de-
tected, we did not evaluate any trips containing them.
Finally, this privacy attack assumes a rough knowl-
edge of the city or limited geographical area. If our
malicious third-party app can retrieve additional side-
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channel information, such as the Vehicle Identification
Number (VIN), we could query a publicly available
database such as wehiclehistory.com [26] to get infor-
mation about where the car had been serviced recently
and thus limit the location.

7.2 Comparison with Mobile World

Although SPy is similar to mobile device location in-
ferences as summarized in Table 1, one needs to dis-
tinguish between automotive and mobile worlds. Our
threat model is based on the vehicular ecosystem ex-
ploiting vulnerabilities in latest vehicular data collec-
tion and sharing platforms. All previous vehicular loca-
tion inference studies relied on OBD-II dongles without
sharing the data with any third-party developer. So the
threat arising from the latter is very low.

Vehicular and mobile IMU sensors are highly corre-
lated (e.g., speed—accelerometer, SWA—gyroscope) and
it is possible to calculate the former from the latter as
shown in [27]. For this experiment, they simultaneously
collected SWA data from the CAN bus as well as gy-
roscope readings from mounted Google phones. Never-
theless, the SWA estimation from gyroscope readings
resulted in errors. The mean error was reported to be
7.53°. Furthermore, the mean absolute error is not con-
stant, but can deviate with respect to SWA. Vehicular
sensors are more robust due to higher quality. For in-
stance, a commercial steering angle sensor [28] offers an
accuracy of 1.5°. As a result, the faultiness of gyroscope-
based SWA estimations would affect the accuracy of the
attack described in this paper. Vehicular sensors would
be more effective in launching SPy’s privacy attack.

Finally, the threat model requires explicit permis-
sion for speed data whereas the accelerometer is a zero-
permission sensor on mobile phones. This makes the
design of an algorithm leveraging speed data very cum-
bersome and the attacker must use less sensitive param-
eters such as SWA which has also been shown through
our awareness survey in Sec. 3. Hence, previous work fo-
cusing on only speed or a combination thereof is unlikely
to work within our threat model.

7.3 Countermeasures
Since its accuracy is evaluated to be relatively high, SPy

provides a feasible way for malicious third-parties to
infer their users’ location without explicitly requesting



them. OEMs will still have to be responsible for pre-
serving their customers’ privacy.

Two-layer privacy protection, both distorting (e.g.,
Laplace mechanism) and down-sampling the SWA data
on OEM servers upon sharing with the third-party,
might provide a promising approach. The amount of dis-
tortion is bounded by utility requirements of the apps
since too much added noise on the data would make
the third-party app unusable. Intuitively, reducing the
sampling frequency of the original SWA trace will also
reduce the accuracy of SPy reported in Sec. 6.2.

8 Related Work

8.1 Mobile Location Privacy

Location privacy is a well-researched area with several
publications addressing what potential privacy threats
are caused by location leakage and how those can be ad-
dressed or mitigated in their respective applications [29—
31]. It has been shown that tracking user location is very
privacy-sensitive since third-parties can extract various
information from it and monetize the information. For
instance, a third-party company tracking the eating be-
havior of a user in restaurants can sell this information
to their health insurance company which adjusts their
premium according to the healthiness of aforementioned
behavior [32]. As mentioned before, the knowledge of
both the home and workplace location which can be de-
rived easily from a GPS trace can help identify the user
with a high probability [11].

It has been shown that mobile apps using zero-
permission (e.g., IMU) sensors alone can infer user lo-
cation. Han et al. [33] used only accelerometer readings
from smartphones in a vehicle to infer the starting lo-
cation and trajectory of the traveled route to within
a 200m radius of the true location. Narain et al. [6]
inferred users’ routes and locations using basic zero-
permission IMU sensors, such as accelerometer, gyro-
scope and magnetometer on smartphones in moving
cars. Their evaluation showed an accuracy of 30-60% in
a real operational setting. In another case, Michalevsky
et al. [7] showed that monitoring the aggregate power
consumption on smartphones allowed to infer traveled
routes. They used the changing power consumption of
cellular radio on Android phones — which again does
not require any permissions — as a function of the dis-
tance to cell towers to infer the location. Map matching
in this case needed a lot of additional work as they had
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to provide a map with the signal strength of a specific
cellular service provider as ground truth. Their accuracy
accumulated up to 45% in an ideal case without back-
ground noise from other apps on the phone. Mosenia et
al. [34] used several non-sensory and sensory data on
phones such as air pressure, time zone and various IMU
sensors to predict the user’s location during four activi-
ties: walking, traveling on a train, driving, and traveling
on a plane. It yields a high accuracy if the area is nar-
rowed down, but comes with similar drawbacks of SPy
such as curviness-dependency.

Other work focused on inferring location from ve-
hicle speed data using OBD-II dongles [9, 10] or GPS
tracking units installed in vehicles [8].

Furthermore, SPy distinguishes itself from others by
addressing four key weaknesses in these related studies.
First, the accuracy for deploying the attack in a real sce-
nario is too low to be useful. Accuracy is defined as the
percentage of the correct route being in a candidate set
of possible inferred routes. Second, strong/unrealistic
assumptions were made for their threat model, such as
initial starting position of trip routes. Third, location
attacks using phones are launched through a malicious
app in mobile OS’ app stores. Installing such an app is
much less likely than in a vehicular app store due to
the huge number of apps in the app store (see Table 1).
Finally, some related work used other reference sources
than map information to match their data input against.
Scalability using publicly available map information is
very high whereas methods with reference sources that
had to be collected specifically for map matching will re-
quire serious additional effort and be less scalable. SPy
overcomes all these weaknesses; see Table 1 for its com-
parison with related work.

8.2 Vehicular Data and Privacy

To this date, little has been done on automotive data
privacy, especially about inferring user location from
vehicular data because automotive data collection has
never been a main focus of academic research, although
it has always been possible to collect vehicular data for
research through the OBD-II port. For instance, Enev et
al. [35] showed in 2016 how driver fingerprinting based
on data collected from the OBD-II connector can be
done with up to 100% accuracy using readings from
multiple sensors. They showed the feasibility of a pri-
vacy leakage, but did not discuss any countermeasures
against this obvious privacy threat.



9 Conclusion

We have uncovered a new privacy threat model and
shown that by solely using steering wheel angle (SWA)
readings from the victim’s car, it is possible to infer the
victim’s traveled routes with a relatively high accuracy
using a novel technique called RoCuMa. Another contri-
bution of this paper is an awareness survey about par-
ticipants’ sensitivity towards sharing certain vehicular
sensor data with OEMs and third-parties.

Our work is an example of privacy leakage which
results from giving third-party entities access to even
seemingly benign sensors such as SWA. SPy shows that
it is important to develop better permission models for
vehicular data-collection systems such as in the mobile
world and also deploy mitigation techniques to avoid
malicious entities exploiting the drivers’ privacy — es-
pecially considering the rapid growth of these systems
and third-party applications running on them.
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A Survey

The descriptions and privacy implications of the 20 sen-
sors we used in the survey are listed in the following.

Odometer: This is your current odometer reading
which you can also see on your dashboard. It tells you
how many miles you traveled. For each trip, the receiv-
ing party (OEM or 3rd party) can calculate how long
you drove.

Vehicle Identification Number (VIN): This is
a unique identifier which is associated to your vehi-
cle. This number is also engraved into your windshield
(readable from the outside of your car). There are ve-
hicle history services in several countries that help po-
tential car owners use VINs to find vehicles that are
defective or have been written off. The receiving party
can thus see how many owners that vehicle had, if it had
been in accidents or even service records (some garages
submit to the record database) [36].

Outside temperature: This is the outside tem-
perature at the location where you are driving your car.
It is usually the same as displayed on the dashboard
of your car. Theoretically, the receiving party can re-
construct a route if the trip is long and there is a lot
of changes in the outside temperature during this trip.
This is very cumbersome and potentially not precise
though.

Location (GPS): This is the location where your
car is right now. It consists of a pair of two numerical
values (latitude and longitude) which can pinpoint you
pretty exactly where your car is right now. Depending
on how frequently it is collected, the receiving party can
track all your routes.

Current speed: This is the speed your vehicle is
currently driving. The receiving party can reconstruct
your driving behavior by analyzing the acceleration or
deceleration (braking) or even infer your location [8—
10, 37].


https://www.bmw-connecteddrive.co.uk/app/index.html#/portal/faq-and-support?section=cardata
https://www.bmw-connecteddrive.co.uk/app/index.html#/portal/faq-and-support?section=cardata
http://kml.roadcurvature.com/
http://kml.roadcurvature.com/
https://www.vehiclehistory.com/
https://www.vehiclehistory.com/
http://www.methode.com/Documents/TechnicalLibrary/Steering_Angle_Sensor_Data_Sheet.pdf
http://www.methode.com/Documents/TechnicalLibrary/Steering_Angle_Sensor_Data_Sheet.pdf
http://www.methode.com/Documents/TechnicalLibrary/Steering_Angle_Sensor_Data_Sheet.pdf
https://www.itworld.com/article/2752981/mobile/why-location-privacy-is-important.html
https://www.itworld.com/article/2752981/mobile/why-location-privacy-is-important.html
https://www.itworld.com/article/2752981/mobile/why-location-privacy-is-important.html
https://www.autocheck.com/vehiclehistory/autocheck/en/vinbasics
https://www.autocheck.com/vehiclehistory/autocheck/en/vinbasics
https://jalopnik.com/how-electronic-throttle-control-works-499966101
https://jalopnik.com/how-electronic-throttle-control-works-499966101
http://spicerparts.com/calculators/transmission-ratio-rpm-calculator
http://spicerparts.com/calculators/transmission-ratio-rpm-calculator
https://www.edmunds.com/car-care/what-your-check-engine-light-is-telling-you.html
https://www.edmunds.com/car-care/what-your-check-engine-light-is-telling-you.html
http://openxcplatform.com/about/data-set.html
http://openxcplatform.com/about/data-set.html

Average speed: The average speed is usually cal-
culated over a trip. A trip can be the time between
starting your engine and turning it off. The receiving
party can only see a single mean value of your speed
over that trip.

Maximum speed: This is the maximum speed you
reach during a trip. The receiving party can only see a
single value of your speed over that trip.

Fuel consumption: This is how much fuel your car
is consuming at that moment. It can be also displayed
on your dashboard. The receiving party can potentially
analyze your driving behavior since sudden acceleration
can be inferred [38].

Throttle position: The throttle is a device con-
trolling the flow of fuel or power to an engine. Since the
throttle goes up with acceleration, it is possible to make
conclusions about the speed of the vehicle [39].

RPM: The RPM (revolutions per minute) is the
amount the engine rotates the crankshafts per minute.
The higher the speed, the higher the RPM before the
transmission shifts and the RPM goes down again in the
next gear. There is a certain correlation between RPM
and speed and thus, the receiving party might infer your
speeding and acceleration behavior [37, 40].

Steering wheel angle: This is a value which de-
notes the current position of your steering wheel. For
instance, the steering wheel angle is 0° while driving
straight and goes up to 90° when you are making a right
turn. The receiving party can infer of how aggressively
your turns are [37] and it might even be possible to cal-
culate your rough location from it.

Airbag status: This indicates if your airbags are
functioning and especially if they should deploy in case
of an accident for a front seat passenger. The receiving
party can infer if a front seat passenger is traveling with
you.

Seat belt status: This indicates which seat belts
are fastened in the car. In the case of an accident, it is
possible to say if the driver had his seat belt fastened
or not (Well, it might be too late for them anyway...).
Furthermore, the receiving party can know who wears
their seat belt when.

Battery level: This is basically monitoring your
battery health. The receiving party can tell if you need
to replace your battery.

Tire pressure: This sensor is collecting the pres-
sure you have in each of your tires. In your dashboard,
you also have an indicator light which shows up when
at least one of your tires is deflated or inflated and not
in the correct range to operate.
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Hard braking: This indicates the amount of decel-
eration. If the receiving party is an insurance company
for instance, this might look bad for your driving be-
havior and you might get a more expensive premium
[37].

Make/model/year:
stance, 2008 Hyundai Elantra. This can be also read

Self-explanatory. For in-

out from the VIN which has been explained above.

Fuel level: This is the amount of fuel you have left
in your tank. Usually it is calculated as a percentage of
the full tank. The receiving party might infer when and
how frequently you stop at gas stations since this will
result in a spike of fuel level.

Check engine light on: This indicates if there
might be something wrong with some part of your ve-
hicle since the sensors report abnormal data. You can
also see this light indicator on your dashboard. There
might be multiple reasons for it: In a severe case, it
might be your engine misfiring (and you want to get
your car checked out) or it can just be a loose gas cap.
The receiving party can have more information about
the specific error and inform you how to proceed [41].

Oil level: This indicates when your next oil change
is due. You can also see this light indicator on your
dashboard if you should change your oil. The receiving
party can monitor how frequently you change your oil
and if you are neglecting oil changes until the last second
since it can have some negative effects on your engine
with time.

Fig. 10 depicts the distribution of times the partic-
ipants took to complete the survey.

Survey time-to-complete for N=100 participants

# Participants
[9)]

Z»H | "M“M N‘Wﬂﬂ HHN’\HHHHH N

5 10 15 20 25 30
Minutes

Fig. 10. Histogram of Survey Time-to-Complete



SPy: Car Steering Reveals Your Trip Route! = 173

Trip Length Distribution

B Dataset Statistics "

This appendix includes statistics of the dataset we used
in our experiments. 10
Table 5 summarizes the parameters that are avail-

able through the OpenXC platform [42]. g8
; 6
Sensor Units Frequency .
Vehicle speed km/h 10 Hz
Acceleration pedal % 10 Hz 2
Steering wheel deg 10 Hz
angle 0 0 2 4 6 8 10 12 14 16 18 20
Brake pedal Boolean 1 Hz Miles
Parking brake Boolean 1 Hz
Torque Nm 10 Hz Fig. 11. Histogram of trip length distribution
Gear position Categorical 1 Hz
Engine speed RPM 10 Hz
Odometer km 10 Hz
Ignition status Categorical 1 Hz
Fuel level % 2 Hz
Fuel consumption | 10 Hz
Light status Boolean 1 Hz
Door status Boolean 1 Hz
Windshield wiper Boolean 1 Hz
status
GPS Latitude deg 1 Hz
GPS Longitude deg 1 Hz
Table 5. OpenXC dataset parameters
] CDF of Trip Lengths
Table 6 shows statistics of the 58 attack traces. ‘ ‘ ‘
09 1
Table 6. Statistics of used attack traces in our dataset 0.8 1
0.7 - .
Attack traces from dataset (N=58) 06l ,
Mean 4.28 mi §0_5 L |
Median 2.83 mi
Minimum 0.35 mi 04 ¢ i
Maximum 19.85 mi 0.3 1
Standard Deviation 4.03 mi 02l |
0.1F i
0 ‘ | | ‘ ‘ ‘ L ‘ L
Fig. 11 and Fig. 12 depict the histogram and CDF o 2 4 & 8 10 12 14 16 18 20

of the attack trace lengths respectively. Mies

Fig. 12. CDF of trip length distribution



C Road Curvatures in Different

Cities

As explained earlier in Sec. 6.5, Fig.13 in this appendix
shows the curvature values with their corresponding
length of segments (in miles) for the selected eight cities

in the US and Europe.
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Fig. 13. Curvature values with length of segments for 8 selected

cities
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