
Proceedings on Privacy Enhancing Technologies ; 2020 (2):209–229

Phillipp Schoppmann, Lennart Vogelsang, Adrià Gascón, and Borja Balle
Secure and Scalable Document Similarity on Distributed
Databases: Differential Privacy to the Rescue
Abstract: Privacy-preserving collaborative data anal-
ysis enables richer models than what each party can
learn with their own data. Secure Multi-Party Compu-
tation (MPC) offers a robust cryptographic approach
to this problem, and in fact several protocols have been
proposed for various data analysis and machine learn-
ing tasks. In this work, we focus on secure similarity
computation between text documents, and the applica-
tion to k-nearest neighbors (k-NN) classification. Due
to its non-parametric nature, k-NN presents scalability
challenges in the MPC setting. Previous work addresses
these by introducing non-standard assumptions about
the abilities of an attacker, for example by relying on
non-colluding servers. In this work, we tackle the scal-
ability challenge from a different angle, and instead in-
troduce a secure preprocessing phase that reveals dif-
ferentially private (DP) statistics about the data. This
allows us to exploit the inherent sparsity of text data
and significantly speed up all subsequent classifications.

Keywords: text analysis, document similarity, multi-
party computation, differential privacy

DOI 10.2478/popets-2020-0024
Received 2019-08-31; revised 2019-12-15; accepted 2019-12-16.

1 Introduction
Aggregating data held by different organizations has the
potential to unlock novel data analysis applications. By
increasing either the amount of training data or its di-
mensionality, more accurate models than the ones each
organization could build using only its local dataset can

Phillipp Schoppmann, Lennart Vogelsang:
Humboldt-Universität zu Berlin and Alexander von Hum-
boldt Institute for Internet and Society, Berlin, Ger-
many. Emails: schoppmann@informatik.hu-berlin.de,
lennart.vogelsang@hiig.de.
Adrià Gascón: Work done while at the Alan Turing Institute,
London, UK. Now at Google, London, UK. Email: adriagas-
con@gmail.com.
Borja Balle: Work done at Amazon Research, Cam-
bridge, UK. Now at DeepMind, London, UK. Email:
borja.balle@gmail.com.

be obtained. However, organizations often have conflict-
ing interests in such scenarios: while collaboration would
result in more accurate predictions, disclosing their pro-
prietary datasets might be undesirable or infeasible from
competitive and legal standpoints. Such constraints rule
out solutions involving an external trusted party, thus
presenting a scenario outside the scope of most classical
approaches to privacy-preserving data analysis.

Multi-Party Computation (MPC) is an area of cryp-
tography that addresses this challenge, while providing
cryptographic guarantees under several natural threat
models. Applied to distributed data analysis, MPC pro-
vides formal guarantees ensuring that no additional data
about the inputs can be inferred from the protocol exe-
cution beyond what is already revealed by the outputs
provided to each party. This has lead to several spe-
cialized MPC protocols for linear and logistic regression
training [28, 47, 51], neural network training [47] and
evaluation [11, 37, 42], matrix factorization [50], prin-
cipal components analysis [6], as well as evaluation of
decision trees and naive Bayes classifiers [14].

While MPC provides strong security guarantees, it
comes at the cost of running times several orders of
magnitude higher than conventional analysis. This mo-
tivates relaxed security notions for MPC, where the
parties obtain some information beyond the desired re-
sult while still provably quantifying and limiting the in-
curred privacy leakage. For the latter, Differential Pri-
vacy (DP) [23] is a natural candidate which has led to
recent works exploring variants of MPC with differen-
tially private leakage [31, 34, 44]. Protocols under such
relaxed definitions may reveal additional information, as
long as that information leakage adheres to DP.

In this paper, we follow a similar approach and ap-
ply it to secure classification of text documents with
k-NN on a standard TF-IDF feature representation. In
k-NN, a query document is assigned a class by taking
a majority vote among the k most similar documents
in the training database. Despite its simplicity, k-NN
enjoys remarkable theoretical properties [17] and pro-
vides competitive accuracies in a wide range of applica-
tions [26]. This power comes at the price of scalability:
due to its non-parametric nature k-NN requires similar-
ity computations against the whole dataset at predic-
tion time. It is therefore crucial to reduce the time for
each similarity computation as much as possible. Our

mailto:schoppmann@informatik.hu-berlin.de
mailto:lennart.vogelsang@hiig.de
mailto:adriagascon@gmail.com
mailto:adriagascon@gmail.com
mailto:borja.balle@gmail.com

Secure and Scalable Document Similarity on Distributed Databases 210

main observation is that if we allow a one-time precom-
putation of differentially private statistics about the dis-
tributed dataset, we can significantly speed up classifica-
tion time by using a novel sparse inner product protocol.
We review our contributions and how they compose to
a full k-NN protocol in the following subsection.

1.1 Our Contributions

The core of our paper consists of two novel contribu-
tions: (i) a secure two-party protocol for sparse inner
products, and (ii) a mechanism for extracting differ-
entially private IDF coefficients from text documents,
and a corresponding two-party implementation. Both
protocols are tailored to exploit inherent sparsity and
word frequency properties commonly found in text data.
These are composed to obtain a three-party protocol for
distributed k-NN classification capable of withstanding
arbitrary collusions. All the protocols presented in this
paper are formally secure in the semi-honest model (cf.
Appendix A).

Secure Document Similarity from Sparse Inner Prod-
ucts (Section 3). Our first contribution is a novel pro-
tocol for secure sparse inner product. It allows two par-
ties holding private sparse vectors to compute additive
shares of their inner product, while revealing nothing
except an upper bound on the number of non-zero en-
tries. As described in Section 3, this can be used to com-
pute similarities between sparse representations of text
documents. We also propose a batched version of our
protocol to improve the scalability of computing many
inner products in parallel. In Section 6.1.1, we experi-
mentally evaluate the running time of our protocol for a
wide range of parameters, and show that it outperforms
its state-of-the-art dense counterparts by at least one
order of magnitude.

Differentially Private IDF Coefficients (Section 4). Sec-
ondly, we develop a mechanism for extracting Inverse
Document Frequency (IDF) coefficients from a dis-
tributed database of text documents, while guarantee-
ing Differential Privacy (DP). We show why a standard
approach based on adding Laplace noise to each coeffi-
cient fails at this task, and formally prove privacy and
accuracy guarantees for our custom mechanism. While
our proposal is already of interest in the centralized set-
ting, we further show how to instantiate it for generic
circuit-based MPC, thus achieving Multi-Party Compu-
tational Differential Privacy (MPC-DP) [11]. To that
end, we rely on a method for oblivious sampling with-

out replacement that has, to the best of our knowledge,
not been reported in the academic literature before. Our
experiments (Section 6.2.4) showcase the advantage of
having access to privatized data-dependent IDFs over
a vanilla data-independent Term Frequency (TF) rep-
resentation, and demonstrate that the noise introduced
by our DP protocol incurs only a small accuracy loss.
Finally, we implement our protocol for the special case
of two parties holding a databases of secret documents
and show that it scales to real-world vocabulary sizes
(Section 6.1.2).

Application to Secure k-NN (Section 5). While both of
the above are of independent interest, we show how in
combination they allow us to implement an efficient k-
Nearest Neighbors protocol in a three-party setting with
two servers and one client. Here, the two servers each
hold a collection of labeled documents, and the client
would like to classify a document against the union of
the servers’ datasets. Our protocol achieves this by com-
bining the two sub-protocols for IDF precomputation
and secure inner products with a generic MPC phase
for top-k selection. Apart from the final classification,
our full protocol releases differentially private statistics
about the dataset (i.e., IDF coefficients) as a one-time
precomputation. We formalize this as differentially pri-
vate leakage similar to previous work [31, 44] and prove
security of our protocol in that model. We emphasize
that these differentially private IDF coefficients need to
be computed only once, and can then be reused in any
subsequent classifications.

Unlike previous work on distributed k-NN (cf. Sec-
tion 7), our protocol withstands arbitrary collusions
among the three parties, and therefore also captures set-
tings where there is only one server, or where the client
is one of the two servers. We also stress that we are
the first to even consider the feature extraction phase
as part of a distributed k-NN protocol. Previous work
starts directly with feature vectors as inputs and there-
fore implicitly assumes feature extraction can be done
locally by the parties, which is not the case for TF-IDF.
Thus, the fact that our protocol releases differentially
private IDF values in fact strengthens the privacy guar-
antees compared to previous work.

We implement our k-NN protocol and show that it
scales to real-world dataset sizes. For example, the time
needed for a classification of a query document against
a database of 28K documents is less than 40 minutes.

Secure and Scalable Document Similarity on Distributed Databases 211

2 Background

2.1 Multi-Party Computation

The protocols we present in Sections 3 and 4 are in
the two-party setting of secure computation. We use
the standard cryptographic notion of security against
semi-honest adversaries [30, 40], which we repeat in Ap-
pendix A. Intuitively, this definition guarantees that the
information obtained by any adversary is the same in-
formation that is revealed in an idealized setting where
a trusted party performs the whole computation and
returns the result to the parties.

For our full k-NN protocol (Section 5), we need to
account for the fact that we rely on the precomputation
of differentially private IDF coefficients that are given to
the client in addition to the classification result. Unlike
previous work on MPC with DP leakage [31, 34, 44], this
is a one-time preprocessing step that is used as input to
subsequent classification queries. We account for this
in our definition of security with differentially private
leakage in Section 5.1.

2.2 TF-IDF Features

Throughout this paper, we work on text document data.
Before being able to process this data it is necessary to
construct a vectorial representation for each document.
Here, we rely on the term frequency–inverse document
frequency (TF-IDF) feature representation, which is one
of the most common encodings for text data. For exam-
ple, 83% of text-based document search and recommen-
dation systems in digital libraries use TF-IDF [10].

The TF-IDF feature representation of a text doc-
ument is defined with respect to a fixed vocabulary
and a database of documents. Let V be a fixed vocabu-
lary – e.g., V might be all the words in a given dictio-
nary – and consider a database Z of documents over the
common vocabulary V. Given an arbitrary document
x with words in V, its TF-IDF representation is a |V|-
dimensional vector ψ(x) ∈ RV where each coordinate
corresponds to a word v ∈ V. The vth coordinate ψ(x)(v)
of this vector is the product of two terms: the term fre-
quency (TF) φtf(v, x) = |x|v of v in x (i.e., the number of
times v occurs in x) and the inverse document frequency
(IDF) φidf(v, Z) = log((|Z| + 1)/(|Z|v + 1)) + 1 of v in
Z (where |Z|v counts the number of documents in the
database that contain the word v). By taking the prod-
uct ψ(x)(v) = φtf(v, x) · φidf(v, Z), the TF-IDF repre-

sentation ensures that coordinates corresponding to fre-
quent words in the document are larger (TF term), while
also down-weighting words that are frequent across the
dataset (IDF term) and therefore not representative of
a particular document.

Two properties of TF-IDF are particularly relevant
to this work. First, since the TF component is zero for
all words that do not appear in a document, TF-IDF
vectors are very sparse. In Section 3, we use this fact
to efficiently compute similarity scores between TF-IDF
vectors of documents. Second, observe that the IDF com-
ponent depends on the whole dataset, not only the docu-
ment being encoded. It is therefore non-trivial to encode
a document without access to the entire database. How-
ever, we will see in Section 4 that we can precompute
differentially private IDF coefficients, which then can
be safely released to allow parties to locally compute
TF-IDF embeddings of their documents.

3 Sparse Inner Products and
Secure Document Similarity

Similarity computation is a common task in the evalua-
tion of non-parametric models such as k-NN, but also for
example in information retrieval, clustering, and collab-
orative filtering. Common similarity metrics include the
Euclidean distance, Pearson’s correlation coefficient, or
the cosine similarity. All three of these can be computed
in two-party settings using only secure inner products.
Here, we focus on cosine similarity, which is commonly
used for text documents with TF-IDF features [43]:

simcos(a,b) = 〈a,b〉
‖a‖‖b‖ .

When each of the feature vectors a,b is held by one
of the two parties, the denominator can be computed
using a single secure multiplication [9, 29], while the
numerator requires a secure inner product. As described
in Section 2.2, the feature vectors a and b are sparse
when encoding text documents using TF-IDF. Hence,
in this section, we present a secure two-party protocol
for inner products that is optimized for sparse inputs.

Our protocol takes as input private vectors a and b
– each provided by one party – and compute an additive
secret share of their inner product 〈a,b〉. Here, the ele-
ments of a and b are taken from Zq, where q is usually
chosen as 2σ for some bit width σ. Rational numbers
can be used by relying on an appropriate fixed-point en-
coding [28, 47]. Since in practice, many similarity scores

Secure and Scalable Document Similarity on Distributed Databases 212

need to be computed at once, we generalize our protocol
and propose a batched version for computing multiple
inner products simultaneously; in this case the goal is
to compute AB given private matrices A and B which
are respectively row and column sparse. Since the sin-
gle inner product case corresponds to the multiplication
of a one-row by a one-column matrix, for simplicity we
sometimes use matrix notation to denote properties that
apply to both the single and batched inner product case.

As discussed in Section 2.1, we work in the standard
simulation-based paradigm of security, and our proto-
cols are secure in the semi-honest model. In the dense
case, there are multiple protocols [28, 37, 47] for inner
products in this threat model, and we make use of them
as a sub-protocol in our sparse version. While our proto-
col neither reveals the non-zero indexes in each party’s
inputs, nor their values, we require an upper bound on
the number of non-zeros to be known. In the next sub-
section, we will see that such a bound on the sparsity
is naturally a available in many real-world scenarios, in-
cluding text classification.

3.1 Sparsity in Real-World Data

In the context of data analysis, sparsity is frequently
induced by the feature representation used. For exam-
ple, the well-known bag-of-word representations of doc-
uments, where a document is represented as a vector of
(possibly normalized) word counts, is sparse. The TF-
IDF representation is a special case of this. Furthermore,
in datasets of genomic variants, individuals are repre-
sented as a set of deviations (index-value pairs) from
a common reference. Compared to the 3.2 billion base
pairs in the human reference genome, these deviations
only make up a small fraction (∼5M sites [4]), and so
this representation is also very sparse. A third example
can be found in recommender systems, where users are
represented by the vector of their rated items, which
again amount to a tiny percentage of the total number
of available items.

In all of the above applications, an upper bound
on the sparsity is readily available. For genomics, upper
bounds can be derived from public information about
the distribution of variants [4]. In recommender systems,
the input comes in the form of a list of (item, rating)
pairs for each user. The length of a list directly trans-
lates to the sparsity of the corresponding vector. We
note that existing recommendation protocols based on
secure matrix factorization reveal the sparsity as the in-
put size [49, 50]. Finally, for text documents, the input

length does not directly give the exact sparsity (words
can be repeated in a document), but it provides an up-
per bound on it.

Our protocol can therefore be applied to all of the
settings described here. We now formally describe secret
sharing and introduce some notation, before we present
our protocol for sparse inner product in Section 3.3.

3.2 Notation and Terminology

Additive Secret Sharing. As mentioned above, our pro-
tocols’ outputs are secret-shared, namely they produce
matrices C1,C2 over Zq that are chosen uniformly at
random under the constraint that C1 +C2 = AB. Since
Party i obtains only Ci, and each share individually can-
not be distinguished from a random matrix, this does
not leak any information about C = AB. This tech-
nique is generally used to hide the values of intermedi-
ate results, and it is the basis of various MPC proto-
cols [9, 20, 47]. We will refer to values shared in this
way as additively shared and call the individual parts
additive shares.

Index Sets. For any sparse vector v, we write Iv to
denote the set of indexes where v is non-zero, and call
its cardinality lv := |Iv|. We further denote the k-th
element of this set (using canonical ordering) by (Iv)k.

For a matrix M, we write Coli(M) to denote the i-th
column vector of M, and Rowj(M) for the j-th row. In
analogy to vectors, we write ICol

M := {i | Coli(M) 6= 0}
for the set of indexes corresponding to non-zero columns
of M, likewise for rows.

3.3 Secure Sparse Inner Products

We now present our protocol for computing a sparse
inner product. This serves as a stepping stone towards
our batched variant, which we introduce in Section 3.5
and which is the one that we use in practice.

Here, we consider two sparse vectors a,b, where a
is owned by Party 1 and b by Party 2. The goal of
our protocol is to compute additive shares c1, c2, such
that c1 + c2 = 〈a,b〉. To develop intuition, let us first
discuss an insecure solution where the parties reveal to
each other their respective non-zero indexes Ia and Ib.
Then each party can simply compute locally the set of
common non-zero indexes and construct vectors ã, b̃
of shorter length |Ia ∩ Ib| containing only the values
of common indexes in some canonical order, such that

Secure and Scalable Document Similarity on Distributed Databases 213

〈ã, b̃〉 = 〈a,b〉. Then the inner product of ã and b̃ can
then be computed using a standard non-sparse MPC
protocol [28, 47].

While this insecure approach would greatly increase
efficiency by exploiting the sparsity of a and b, it is also
clear that it leaks too much, as Ia and Ib are private. In-
stead, the solution we propose avoids this leakage while
retaining the efficiency of this insecure solution by as-
suming upper bounds on |Ia| and |Ib| are public.

For clarity, we now describe our solution assuming
the availability of a trusted third party. The parties first
create vectors â, b̂ containing the values at indexes in
Ia and Ib, respectively, padded with zeroes to length
la + lb. Then, the third party receives â and b̂ from the
parties, and returns permutations π1 and π2 to party
1 and party 2, respectively, such that 〈π1(â), π2(b̂)〉 =
〈a,b〉. Note that padding with zeroes is crucial so that
such permutations exist, as intuitively all they have to
do is make indexes in Ia∩Ib end up in the same position
in both permuted vectors, while all others get matched
to a zero. Now, if the permutations πi are such that they
do not reveal anything about â or b̂ to the parties, this
protocol would be secure.

While we relied on a trusted third party for explana-
tory purposes, such a third party is not available in prac-
tice. Instead, we will now present a 2PC-sub-protocol
that replaces such a party, i.e., it generates correlated
permutations π1, π2 with the required property. We call
this functionality FPerm and describe it formally in the
next section.

3.4 Secure Correlated Permutations

Note that we only require the output to each party alone
to be a uniformly random permutation. Thus, FPerm

can generate one of the permutations randomly, and
derive the other from it. A detailed description of FPerm

is given in Functionality 1.
By the construction of ρ in Step 2, it is clear that

the condition from Figure 1, that matching indexes get
mapped to the same position, holds for π1 and π2. We
now prove that the outputs to both parties are indeed
random permutations.

Theorem 1. For any input sets I1 and I2 of size l1
and l2, and any party i ∈ {1, 2}, πi = FPerm

i (I1, I2) is
a uniformly random permutation of {1, . . . , l1 + l2}.

Proof. If i = 1, then by the definition in Step 2 in
Functionality 1, ρ is constructed by selecting l1 differ-

Functionality 1: Correlated permutations
(FPerm)

Parties: 1, 2.
Input: Party 1: I1, Party 2: I2, public

parameters l1 = |I1|, l2 = |I2|
Output: Permutations π1 and π2

1: Choose a permutation π of {1, . . . , l1 + l2}
uniformly at random.

2: Compute the function

ρ : {1, . . . , l1} → {1, . . . , l1 + l2},

ρ(i) =

{
π(j) if

(
I1
)
i

=
(
I2
)
j
,

π(l2 + i) if no such j exists.

3: Extend ρ to a random permutation π1 of
{1, . . . , l1+l2} by mapping all elements i > l1
to uniformly random unmapped elements of
its codomain.

4: Output π1 to Party 1 and π2 = π to Party 2.

ent mappings from a uniformly random permutation.
Clearly, each of the (l1 + l2)! / l2! possible functions is
selected with equal probability. The extension of ρ in
Step 3 reduces to selecting a uniformly random permu-
tation of l2 elements. Thus, our functionality produces
(l1 + l2)! / l2! · l2! = (l1 + l2)! different permutations, each
with equal probability. Together with the observation
that there are exactly (l1 + l2)! possible permutations of
[l1 + l2], the claim follows. If i = 2, the claim follows
immediately from Step 1 and π2 = π.

We use Yao’s Garbled Circuit protocol [59] to imple-
ment FPerm. Our circuit design for this functionality is
inspired by the Private Set Intersection (PSI) protocol
of Huang et al. [35], also known as the Sort-Compare-
Shuffle approach to PSI. Essentially, our circuit com-
putes the set I1 ∩ I2 in O((l1 + l2) log2(l1 + l2)) – using
Batcher’s sorting network [8] – as a Boolean array of
length l1 + l2, and constructs ρ and π1 from it using a
permutation network [56] of size O((l1 + l2) log(l1 + l2)).
Thus, our protocol for the FPerm functionality runs in
O((l1 + l2) log2(l1 + l2)), and exploits efficient implemen-
tations of sorting/permutation networks.

Since we operate in the semi-honest model, we can
further employ the following optimizations:

1. Instead of choosing π inside the Garbled Circuit, we
let Party 2 choose it locally and use it as an input.
Note that this is trivially simulatable since π = π2
is Party 2’s output.

Secure and Scalable Document Similarity on Distributed Databases 214

2. Similarly, we reveal ρ to Party 1 and let it perform
Step 3 locally. Again, simulating ρ it trivial by re-
stricting π1 to {1, . . . , l1}.

Together with the security of Yao’s protocol in the semi-
honest model [41], security of our implementation of
FPerm follows.

An important observation is that the cost of FPerm

is independent of the range of the values in the vec-
tors u, v in the overall inner product protocol. In the
next section, we show how this, and previous observa-
tions, extend to matrix multiplications for batched inner
products, and provide formal proofs of correctness and
security for our two-party protocols.

3.5 From Inner Products to Sparse Matrix
Multiplication

We will now consider computing additively shared ma-
trix products C1 +C2 = AB, where the matrices A and
B are owned by Party 1 and 2 respectively. We assume
these matrices exhibit the sparsity patterns correspond-
ing to batched sparse inner products, i.e., A has many
zero columns, and B many zero rows. This is a common
sparsity pattern in machine learning computations, as,
for example, TensorFlow has a dedicated matrix repre-
sentation for this case, called IndexedSlices [5].

A naive solution is to run the protocol from the pre-
vious section |AB| times. In the rest of this section we
focus on improving this by leveraging the sparsity pat-
terns in the matrices to avoid the quadratic cost of the
naive solution. The advantage of our solution is not only
in asymptotic cost, but is also confirmed experimentally
in Section 6, using real-world data.

The entire sparse matrix multiplication protocol is
depicted in Figure 1, and goes as follows. Party 1 lo-
cally computes ICol

A := {i | Coli(A) 6= 0}, and Party 2
computes IRow

B := {j | Rowj(B) 6= 0}. These index sets
are then used as inputs to the functionality for gener-
ating correlated permutations, FPerm, which generates
two correlated permutations π1, π2 that map elements
of ICol

A ∩IRow
B to the same indexes. Note that, up to this

point, the secure computation is independent of the in-
ner (resp. outer) dimension of A (resp. B). This has an
important effect on efficiency, and follows from the re-
mark above about FPerm in the inner product protocol
being independent of the domain size of the values in
the vectors. In fact, intuitively we can think of multiply-
ing A and B as computing sparse inner product where
values are vectors, instead of scalars. Next, Ã and B̃ are

Party 1 MPC Party 2

ICol
A ← {i | Coli(A) 6= 0}

Send lA ←
∣∣ICol

A

∣∣ to
Party 2.

Input: A ∈ Zl×m
q

IRow
B ← {j | Rowj(B) 6= 0}

Send lB ←
∣∣IRow

B

∣∣ to
Party 1.

Input: B ∈ Zm×n
q

ICol
A IRow

B

Choose a random pair of correlated permu-
tations π1, π2 of {1, . . . , lA + lB} such that
for all k1 ∈ {1, . . . , lA}, k2 ∈ {1, . . . , lB}:(
ICol

A

)
k1

=
(
IRow

B

)
k2
⇔ π1(k1) = π2(k2).

FPerm

π1 π2

Â← 0l×(lA+lB)

For i = 1 to lA:
i′ ←

(
ICol

A

)
i

Coli(Â)← Coli′ (A)
Ã← permuteCols(Â, π1)

B̂← 0(lA+lB)×n

For j = 1 to lB:
j′ ←

(
IRow

B

)
j

Rowj(B̂)← Rowj′ (B)
B̃← permuteRows(B̂, π2)

Choose random C1,C2 ∈ Zl×n
q such that

C1 + C2 = Ã · B̃

FMult
Ã B̃

C1 C2

Fig. 1. Secure sparse matrix multiplication. For details on the
implementations of FMultand FPerm, see Appendix B.2 and
Section 3.4, respectively.

computed by first padding non-zero columns/rows with
zeroes, and then applying π1 and π2, just like ã and b̃
in Section 3.3. The result is again obtained by using a
standard MPC protocol for secure matrix multiplication
with Ã and B̃ as inputs.

Theorem 2 (Correctness). For any A ∈ Zl×mq , B ∈
Zm×nq , let Ã, B̃ be constructed according to the protocol
described in Figure 1. Then AB = ÃB̃.

Theorem 3 (Security). Given public sparsity values
lA, lB and implementations of FMult and FPerm that
are secure against semi-honest adversaries, the proto-
col in Figure 1 implements FMult with security against
semi-honest adversaries.

We prove Theorems 2 and 3 in Appendices C and D.
In order to compute similarities between documents

using the protocol described in this section, each data
holder must know the feature representation of their
documents. This becomes a challenge when trying to
use data-dependent feature representations such as TF-
IDF. We tackle the problem of private feature extraction
for this particular case in the next section.

Secure and Scalable Document Similarity on Distributed Databases 215

4 Private Feature Extraction
Feature extraction is a fundamental pre-processing step
in any data processing pipeline, including those used
in machine learning, data mining, information retrieval,
computer vision and natural language processing. The
goal of feature extraction is to convert raw data (e.g.
text documents, RGB images, etc.) into a vectorial for-
mat suitable for downstream applications. The same fea-
ture representation is often useful for many different ap-
plications, and the most effective feature representations
are typically tailored to the dataset at hand. This poses
a challenge in scenarios where datasets containing sensi-
tive records are distributed among multiple parties, as
obtaining an adequate feature representation requires
a privacy-preserving distributed computation, and the
resulting feature representation might leak information
about the dataset on which it was computed.

In this section we address this challenge for the well-
known term frequency–inverse document frequency (TF-
IDF) feature representation for text documents (cf. Sec-
tion 2.2). Our contribution is a two-party protocol for se-
curely computing IDF coefficients on a distributed docu-
ment database and releasing them under differential pri-
vacy. As in the previous section, we work in the standard
simulation-based paradigm of security (see Section 2.1
and Appendix A) and our computation is secure against
semi-honest adversaries. At the same time, its output
preserves differential privacy with respect to changing
one document in the distributed dataset. Using the out-
put of this protocol, multiple parties can locally com-
pute a TF-IDF representation of their documents. This
representations will be compatible across parties, and
can then be used in any subsequent privacy-preserving
computation. In Section 5.1, we formalize this as secure
computation with differentially-private leakage. Before
diving into the details of our protocol, we first review
the formal privacy definition in the distributed setting
we consider.

4.1 Multi-Party Computational
Differential Privacy

Differential privacy (DP) is a technique for privacy-
preserving disclosure [23–25]. It prevents a potential ad-
versary observing the output of a computation from re-
covering information about individual input data points,
i.e., individual document in our case. This is made for-
mal by saying that two datasets Z and Z′ are neighbors

if they only differ in one data point; this relation is de-
noted by Z ' Z′. We say that a randomized algorithm
A : Z → W is (ε, δ)-DP if for any indicator function
χ :W → {0, 1} we have

∀Z ' Z′ : E
[
χ(A(Z))

]
≤ eεE

[
χ(A(Z′))

]
+ δ .

When δ = 0 we also say that A is ε-DP. This definition
models the setting where a curator owns the input Z,
executes the computation A, and discloses the output
A(Z).

For the purpose of providing DP in a multi-party
setting one needs to modify the above definition to ac-
count for the fact that Z is distributed among several
parties. Additionally, implementing DP inside an MPC
protocol requires a further modification to account for
the information that could be obtained by a coalition of
adversarial parties involved in the computation who try
to break the cryptography used in the MPC protocol.
This leads to the definition of multi-party computation-
ally differential privacy [11, 24, 46].

Suppose the input dataset is distributed among n

parties Z = (Z1, . . . , Zn) and write Z 'i Z′ if Zi '
Z′i and Zj = Z′j for i 6= j. Suppose A : Zn → W is
an n-party protocol and let view−i(A(Z)) denote the
information observed by all parties except the ith one
during the execution of A(Z). Then we say that A is
(ε, δ)-MPC-DP if for all i and all Z 'i Z′ we have

E
[
χ
(
view−i(A(Z))

)]
≤ eεE

[
χ
(
view−i(A(Z′))

)]
+ δ

for any {0, 1}-valued polynomial time algorithm χ. In
this work we focus on MPC based on computational
security, as opposed to information-theoretic MPC, and
hence resort to the variant of MPC-DP studied in [46].
The following key result states that implementing a DP
algorithm inside an MPC protocol yields an MPC-DP
protocol.

Theorem 4 (informal). If A is (ε, δDP)-DP with re-
spect to Z ' Z′, then an MPC implementation of
A where is Z distributed among n parties is (ε, δDP +
δMPC)-MPC-DP, where δMPC is a negligible function of
|Z| obtained from standard cryptographic assumptions.

4.2 Differentially Private IDF
Computation

One standard approach for making the output of a com-
putation private is the Laplace mechanism [25]. It works
by adding noise drawn from the Laplace distribution

Secure and Scalable Document Similarity on Distributed Databases 216

to the output of a deterministic function, where the
amount of noise is proportional to the l1-sensitivity of
that function and the inverse of the privacy parameter ε.
This poses a challenge when it comes to computing the
vector of IDF coefficients φidf(·, Z) ∈ RV : since we want
to provide privacy to whole documents and there is no
a-priori knowledge about which words may occur in an
arbitrary document, replacing a document might result
in a change in several entries of the vector of IDF coef-
ficients. Thus, for a fixed ε, the amount of noise needed
for each IDF value using the Laplace mechanism would
need to be proportional to the size of the vocabulary,
which can be very large.

To avoid this problem, instead of releasing every sin-
gle IDF value using the Laplace mechanism, we design
our mechanism to only release them where they matter
most, and resort to outputting a default value every-
where else. The key observation to justify this approach
is that, in a corpus of documents Z, the distribution of
the values of |Z|v for all v ∈ V typically follows a power-
law distribution [53]. This means there are few very fre-
quent words and lots of infrequent words. The blue bars
in Figure 2 exemplify such a typical scenario. The red
curve in Figure 2 shows how the IDF values quickly
converge to the maximum as the document frequency
decreases. We can therefore obtain a good approxima-
tion across IDFs over all words by releasing differentially
private IDFs for the L most frequent words, and assume
a default value c0 for all other words. In this way the
noise added to the IDFs of the most frequent words will
only be proportional to L, as opposed to V.

What remains is to make sure the selection of the L
most frequent words is also private. To achieve this, we
do not release the L most frequent words exactly, but
instead release a selection of words that with high prob-
ability has a large overlap with the top L. This sampling
is done using the exponential mechanism [45], which is
a standard construction for differentially private top-L
selection [7].

The pseudo-code of our mechanism is given as Func-
tionality 2. It takes as input the absolute frequencies of
each word in each party’s dataset Zi. It then proceeds to
aggregate these into frequencies across the whole dataset
Z, yielding cv = |Z|v for each v ∈ V. The counts are used
in a private top-L selection step to find L words with
the largest frequencies. The mechanism then releases
privatized counts c̃v for each of the selected words using
the Laplace mechanism. For unselected words the mech-
anism outputs a default public value c̃v = c0 which is
independent of the true word count.

Functionality 2: Differentially Private IDFs
(FDP-IDF)

Public Inputs: n, V, c0, L, ε
Private Inputs: Counts {|Zi|v}v∈V for i ∈ [n]
Output: Privatized values {c̃v}v∈V
foreach v ∈ V do

Compute cv =
∑n
i=1 |Zi|v.

end
for ` = 1, . . . , L do

Sample v ∈ V with probability ∝ exp
(
εcv
2L
)
.

Sample η from Lap
(2L
ε

)
.

Release c̃v = cv + η.
Remove v from V.

end
For each v ∈ V release c̃v = c0.

Word v

C
ou

nt
c v

L

≈ IDF0

≈ c0

1. Sample
∝ exp

(
εcv
2L

)

2. Reveal c̃v = cv + Lap
(2L
ε

)

Fig. 2. Graphical representation of our differentially private IDF
computation functionality FDP-IDF. Term counts following a
power law distribution are depicted in form of a histogram, and
the corresponding IDF values are drawn as a solid line. It can
be seen that as cv decreases, the IDF values quickly converge
towards IDF0 = log(|Z| + 1) + 1. Steps 1 and 2 are repeated L

times in a loop (cf. Functionality 2).

Theorem 5. FDP-IDF (Functionality 2) is ε-DP.

We prove Theorem 5 in Appendix E. Note that using the
advanced composition theorem [23, Theorem 3.20] one
can also show that FDP-IDF is (O(ε

√
log(1/δ)/L), δ)-DP

for any δ > 0. However, in this paper we will stick to the
ε-DP guarantee given above for the sake of simplicity.

4.3 Implementing FDP-IDF

By Theorem 4, we can obtain an MPC-DP protocol
from Functionality 2. We propose a circuit-based im-
plementation of FDP-IDF which can be ran using any
generic circuit-based MPC framework. While our proto-

Secure and Scalable Document Similarity on Distributed Databases 217

col in theory supports any number of parties, we limit
our implementation (Section 6) and the description in
the remainder of this section to two parties.

The main challenge lies in securely generating noise
for the Laplace mechanism, and sampling words from
the exponential mechanism. Next we describe how to
implement both steps.

4.3.1 Laplace Mechanism

For the Laplace Mechanism, we use a standard inversion
sampling approach. Given a uniform real number x ∈
(0, 1), a Laplace sample with mean 0 and scale b can be
computed using

Lap(b) =
{

b log(2x) if x ≤ 1/2,
−b log(2− 2x) otherwise.

The required uniform sample can be cheaply computed
by adding up two such samples computed locally by each
party inside the MPC, and subtracting 1 if the result is
larger than 1. Note that this ensures that knowledge of
one of the summands reveals nothing about the resulting
uniform sample. For all the other operations, including
the logarithm, there are circuits that give exact results
up to the precision of floating-point numbers. Note that
in general, floating-point computation in circuit-based
MPC can be quite expensive. However, because we only
need to sample L times and L � |V|, this only has a
minor impact on the running time of our protocol.

4.3.2 Exponential Mechanism

Implementing the exponential mechanism is more chal-
lenging since we need to sample words without replace-
ment. However, we will see that this can be done in
the same asymptotic time as sampling with replace-
ment, using a Bernoulli tree that gets refreshed after
each sample. First, we compute the sampling probability
pv = exp(ε0cv)/

∑
v exp(ε0cv) of each word v ∈ V once

and write them to the leaves of a balanced binary tree.
Next, we traverse this tree bottom-up, labeling each in-
ner node with the sum of the labels of its children. Now,
to sample a word v ∈ V, we traverse the tree starting
from the root. At each node, we perform a Bernoulli trial
and descend into each sub-tree with probability propor-
tional to the label at the corresponding child (i.e., the
sub-tree’s root). Once we arrive at a leaf node, we re-
turn the word associated with it. Since the binary tree
is balanced, it has depth O(log |V|), so one sample can

be computed using O(log |V|) coin tosses and array ac-
cesses. The advantage of this approach is that we can
refresh our Bernoulli tree using also just O(log |V|) steps:
after returning a leaf v, we subtract pv from all nodes
on the path from the root and set pv to 0. This ensures
that each leaf is reached at most once. Note that the
updated labels do not need to be normalized as we take
that into account when descending the tree and com-
pute the probabilities accordingly. An example of our
sampling method and the refresh step is shown in Fig-
ure 3.

The final piece is the implementation of oblivious
reads and writes in the nodes of the Bernoulli tree as a
circuit. This is needed in order to hide the order in which
nodes are accessed, which could leak their associated
probabilities and thus counts of individual words. Here,
the asymptotically best choice is a generic ORAM con-
struction, which has poly-logarithmic overhead for each
access [57]. However, in terms of concrete efficiency, the
optimal choice depends on the level of the tree at which
we are reading or writing. In particular for levels with
few nodes, asymptotically sub-optimal solutions such as
linear scans still outperform generic ORAMs. In practice
(cf. Section 6), we switch between linear scans, square-
root ORAM [61], and FLORAM [22], depending on the
level of the tree we are accessing. The cutoff points be-
tween those are informed by the measurements provided
in [22].

4.4 Utility Analysis

We now give a utility result about the mechanism in
Functionality 2 for computing differentially private IDFs
on a dataset of documents. While we motivated our
mechanism FDP-IDFusing the observations that the dis-
tributions of words in a document corpus typically fol-
lows a power law, we cannot assume this holds for any
possible dataset. Thus, in our utility analysis, we make
the much weaker assumption that the documents in
Z are sampled i.i.d. from some unknown distribution.
Here we present only an informal statement of our re-
sult. A more concrete statement together with the rel-
evant proofs are provided in Appendix F. The result
bounds the relative error between the true vectors of
IDFs φidf and the privatized vector φ̃idf computed using
the counts released by Functionality 2.

Theorem 6. For any large enough m = |Z| there exists
c0 = Θ(

√
m) such that with high probability

Secure and Scalable Document Similarity on Distributed Databases 218

1

0.7

0.4

v1

0.3

v2

0.3

0.2

v3

0.1

v4

0.7

0.4

0.4

v1

0

v2

0.3

0.2

v3

0.1

v4

0.7

0.4

0.4

v1

0

v2

0.3

0.2

v3

0.1

v4

Fig. 3. Example run of our MPC protocol for the exponential mechanism. (Left) The left node gets selected on the first level (prob-
ability 0.7/1), and the right node on the second level (probability 0.3/0.7 ≈ 0.43). The sampled word is v2. (Middle) Refresh step:
pv2 = 0.3 is subtracted from all nodes on the path to the root, then pv2 is set to zero. (Right) A second sample is drawn with up-
dated probabilities. On the first level, the right node is selected (probability 0.3/0.7), on the second level it is the left node (probability
0.2/0.3 ≈ 0.67). The result is v3.

‖φidf − φ̃idf‖1
‖φidf‖1

≤ Õ
(

L2

εm|V|
+
(

1− L

|V|

)
log
(
m− L

ε

))
.

Note how this result highlights an important trade-off
in the choice of L since the first term grows with L while
the second term becomes smaller for larger L. Addition-
ally, the first terms decreases quickly with m, while the
second term increases slowly withm. In our experiments
we did not observe this growth of the error with m,
which suggests that, for well-behaved datasets where the
power-law assumption holds, the O(log(m)) term could
be removed. We leave this as an open problem for future
work.

5 Secure Document Classification
In Section 3, we have introduced a protocol that can ex-
ploit sparse feature representations to compute similar-
ities, and that is particularly efficient when computing
many similarities at once. In Section 4, we have shown
that such sparse features can be computed even if they
depend on a whole database distributed among multi-
ple parties, by revealing differentially private IDF coef-
ficients. While each of these protocols is of independent
interest, we will now show how they can be securely
composed to form higher-level functionalities. We focus
on k-Nearest Neighbors classification for the remainder
of the paper. However, we stress that our protocols can
also be used to implement other functionalities, for ex-
ample document rankings.

We assume a two-server setting, where each of the
servers holds a database of labeled text documents. The
labels are the target classes of the classification task. A
third party, the client, holds a single unlabeled docu-
ment x she wants to classify. A k-Nearest Neighbors

classification algorithm can be used to achieve this. In
general, it consists of the following steps: (1) for each
document j in the full database, compute the similar-
ity score sj(x) between x and j; (2) compute the la-
bels ŷ1, . . . , ŷk corresponding to the documents with
the top k scores; and, (3) return the majority vote
ŷ = majority(ŷ1, . . . , ŷk). This process is formally de-
scribed in Functionality 3.

5.1 Security with Differentially Private
Leakage

We define security of our combined protocol in a similar
fashion as previous work [31, 44]. That is, in addition
to the output of the ideal functionality, we allow for a
randomized leakage L that depends on the input data.
However, said leakage must be differentially private with
respect to individual records. Unlike [31, 44], we addi-
tionally allow that the output of our functionality may
depend on L. This captures the fact that using the differ-
entially private IDFs from Section 4, we do not compute
the exact result, but instead an approximation that de-
pends on the privatized IDFs. Note that this setting is
also suitable for scenarios where one wants to transfer
differentially private hyper-parameter tuning [18, 27] to
multi-party learning settings.

Let F be an n-party functionality with inputs
x̄ ∈ ({0, 1}∗)n, additional input l ∈ {0, 1}∗, and out-
puts

(
F1(x̄, l), . . . ,Fn(x̄, l)

)
. Let L denote a random-

ized leakage function with domain ({0, 1}∗)n. We write
F̃(x̄,L) =

(
F(x̄,L(x̄)),L(x̄)

)
to denote the function

F with leakage L, and for any I ⊆ [n], we write
F̃I(x̄,L) :=

(
FI(x̄,L(x̄)),L(x̄)

)
, where FI is defined as

in Appendix A. We say a protocol Π securely computes
F with (ε, δ)-differentially private leakage L if L is (ε, δ)-
differentially private with respect to individual records

Secure and Scalable Document Similarity on Distributed Databases 219

Functionality 3: k-NN Classification
Public Inputs: n, V, k, {c̃v}v∈V
Server i Inputs: Document database Zi, and

labels lx for each x ∈ Zi
Client Input: Query document q

foreach x ∈
⋃
i∈[n] Zi ∪ {d} do

Compute φtf(x, v), the number of
occurrences of v in x.

end
foreach v ∈ V do

Compute IDF coefficient
φidf(v, Z) = log((|Z|+ 1)/(c̃v + 1)) + 1.

end
Compute query vector
ψ(q) =

(
φtf(q, v)φidf(v)

)
v∈V .

foreach x ∈
⋃
i∈[n] Zi do

Compute ψ(x) =
(
φtf(x, v)φidf(v)

)
v∈V , and

similarity score sx = simcos(ψ(x), ψ(q)).
end
Compute lq as the label most common among
the k documents x with the highest scores sx.

Reveal lq to the client.

in each xi, and there exists a PPT simulator S such that
for any I ⊆ [n]:{(

S
(
I, xI , F̃I(x̄,L)

)
, F̃(x̄,L)

)}
x̄∈({0,1}∗)n

c≡{(
viewΠ

I (x̄), outputΠ(x̄)
)}

x̄∈({0,1}∗)n
(1)

Note that the additional argument l to F captures
the fact that the output may depend on the leakage. If F
does not depend on l, i.e., F(x̄, l) = F(x̄,⊥) for all l, and
n = 2, we get back the definition from [44]. Also observe
that in order to prove security with leakage of a protocol
Π, it is enough to define F̃ and L, show that Π securely
computes F̃ according to the definition in Appendix A,
and show that L is (ε, δ)-differentially private.

In the next section, we describe a 2-server imple-
mentation of the k-NN functionality Fk-NN (Function-
ality 3) that uses the protocols from Sections 3 and 4
and show that it satisfies this notion of secure computa-
tion with differentially private leakage.

5.2 Our Protocol

Figure 4 shows the protocol that we use to imple-
ment Functionality 3 in our distributed setting with two
servers. There are four phases, two of which correspond

(a)

(b, c) (b, c)

(d)

Fig. 4. Diagram of our example application for k-Nearest Neigh-
bors classification of text documents. Each of the two servers
holds a collection of labeled text documents, while the client
holds an unlabeled document she wants to classify. The protocol
has four stages. (a) The servers precompute and release private
IDF values for their joint database (Section 4). Note that this is
a one-time setup step. (b) With each of the servers, the client
performs a secure batched similarity computation via a secure
sparse matrix-vector multiplication (Section 3), where the server
inputs a sparse matrix with rows corresponding to documents,
while the client inputs a single sparse document vector. (c) Using
the similarity shares from the previous step, the client computes
with each server shares of the labels and similarities of the k most
similar documents to her query. (d) The shares from step (c)
are used as inputs to a three-party computation that selects the
top k documents overall. The label for the query document is
computed by a majority vote among those.

to the preceding sections: In a precomputation phase (a),
the two servers perform a two-party computation that
implements FDP-IDF from Section 4.2. Then, the client
and each of the servers run the secure matrix multiplica-
tion protocol from Section 3 to obtain shares of the sim-
ilarities of their respective documents. What remains is
to select the top k labels and perform a majority vote in
a secure way. While so far we were able to split up the
entire protocol into two-party components, we need a
generic three-party computation for the top-k selection.
However, we can ensure its running time only depends
on k and not on the number of documents: observe that
each document in the top k overall must also be among
the top k of the server that owns this particular docu-
ments. Therefore, we can compute shares of the top k

on each server using cheap two-party computation (c),
and then only need 2k inputs to the three-party phase.

Theorem 7. The protocol Πk-NN described in Figure 4
securely computes Fk-NN with ε-differentially private
leakage.

Proof. Let L = FDP-IDF, and let F̃k-NN be defined as
the functionality running L and then using the output

Secure and Scalable Document Similarity on Distributed Databases 220

{c̃v}v∈V as input to Fk-NN. Note that F̃k-NN has the
structure required by eq. (1). By the definition from Sec-
tion 5.1, it suffices to show that (i) L is ε-differentially
private, and (ii) Πk-NN computes F̃k-NN with secu-
rity against semi-honest adversaries. (i) follows directly
from Theorem 5. As for (ii), observe that for any subset
of the parties, intermediate outputs are either secret-
shared (and can therefore be simulated by uniformly
random values), or part of the final output. Thus, secu-
rity of Πk-NN reduces to the security of the individual
phases (Theorem 3 for Step (b), [41] for (a, c) and [20]
for (d)) and modular composition in the semi-honest
model (see for example Canetti [16]).

Note that our security definition does not explicitly cap-
ture how L is implemented, and therefore does not re-
quire the notion of MPC-DP (Section 4.1). However,
Theorem 4 states that any ε-DP functionality imple-
mented as an MPC protocol yields a (ε, δMPC)-MPC-
DP protocol. In our concrete case, this means that pro-
tocol Πk-NN securely computes Fk-NN with ε-DP leak-
age FPerm (as in the definition from Section 5.1), while
at the same time the output of the sub-protocol imple-
menting FPerm satisfies (ε, δMPC)-MPC-DP.

A distinctive feature of our k-NN application is the
fact that our security definition allows for a dishonest
majority, and thus the client’s query remains secure even
if both servers collude. This is in stark contrast to previ-
ous work, as we discuss in Section 7. We also note that
in principle, our protocol can be extended to more than
two servers, by implementing Protocol 2 (Step (a) in
Figure 4) using a generic semi-honest MPC protocol, as
for example given by Ben-Efraim et al. [12].

6 Experiments
We will now experimentally evaluate our protocols. We
do so from two perspectives. First, we evaluate the run-
ning time for both of our main protocols, secure matrix
multiplication (Section 3) and private IDF precompu-
tation (Section 4), in a simple two-party setting. Then,
we explore how our protocols scale when applied to a
real-world classification task. To that end, we implement
the k-nearest neighbors classification protocol from Sec-
tion 5 and evaluate it on real data. That is, measure the
running time taken for similarity computation and top-
k selection, taking into account characteristics of real-
world data; and we measure the effect our privatized
IDF values have on the classification accuracy.

Implementation. We implement our protocols in C++,
using Obliv-C [60] and MP-SPDZ [3, 20] for generic
two-party and multi-party computation, respectively.
We implement the dense matrix multiplication protocol
from [47] using Eigen [32] for the online phase, and the
EMP toolkit [58] for the offline phase. For the ORAMs
needed for the private IDF precomputation, we rely
on the implementations of square-root ORAM [61] and
FLORAM [22] by Doerner [21]. For our accuracy ex-
periments, we re-implement the private IDF protocol
(Section 4) in Python, and evaluate it in the clear using
Scikit-Learn [52].

Experimental Setup. Our timings were obtained on
Azure DS14v2 instances, each having 32 vCPUs and
110 GB of RAM. For WAN experiments, we placed the
instances in two different regions, East US and West
Europe. For all of our experiments, we set the number
of features (i.e., the inner dimension for matrix multi-
plication experiments, and the number of words for DP-
IDF computation), to 150000. We chose that number
because it is about the size of Aspell’s en_US-large dic-
tionary [1]. For our matrix multiplication experiments,
we set the bit width to 64 bits. All the times we re-
port are total running times, i.e., we do not distinguish
between offline- and online phase for dense matrix mul-
tiplication (cf. Appendix B.2).

6.1 Running Time

6.1.1 Sparse Matrix Multiplication

In this section, we want to measure the improvement
of our sparse matrix multiplication protocol over the
dense case, and explore trade-offs that occur by tuning
different parameters. As we have seen in Section 3, our
sparse matrix multiplication protocol is an extension of
our inner product protocol. By processing multiple rows
at once, we reduce the number of calls to FPerm needed.
On the other hand, we possibly increase the number
of non-zeros in each such batch of rows, as we have to
consider all columns that are non-zero in at least one
row.

This results in an interesting trade-off between spar-
sity and batch size, which we explore here. To that end,
we fix some of the parameters. In particular, we only
evaluate matrix-vector products Ab, and we fix the
number of rows of A to 2048. Then, we measure the
time taken for this sparse matrix-vector multiplication
using different batch sizes and different sparsity levels.

Secure and Scalable Document Similarity on Distributed Databases 221

0 50 100 150 200 250
Nonzeros per row

30s

1m

5m

10m

30m

1h

Ti
m

e

Batch size = 1 (sparse)
Batch size = 4 (sparse)
Batch size = 16 (sparse)
Batch size = 64 (sparse)
Batch size = 256 (sparse)
Batch size = 1024 (sparse)
Batch size = 2048 (sparse)
Dense

(a) Running time of a sparse
matrix-vector multiplication (LAN).

1 2 4 8 16 32 64 128
Number of non-default values L

1m

2m

5m

10m

30m

1h

2h

Ti
m

e

WAN
LAN

(b) Running time of the private IDF
precomputation.

Fig. 5. Evaluation of the running times of our protocols from
Sections 3 and 4.

We also measure the time taken using only dense multi-
plication and use it as a baseline.

The results are shown in Figure 5a. We can see
that for the range of parameters we tested, batches of
size 16 or 64 give the best running times, depending on
the sparsity level. It also becomes apparent that for a
suitably chosen batch size, our protocol from Section 3
consistently outperforms the dense baseline by at least
an order of magnitude. However, note that the running
time of our sparse matrix-vector multiplication inher-
ently depends on the assumed public upper bound on
the sparsity (number of nonzeros per row). As the num-
ber of nonzeros approaches the total number of columns,
the dense baseline will eventually become more efficient
than our sparse protocol, due to the overhead of gener-
ating correlated permutations in the latter.

6.1.2 Private IDF Precomputation

We also evaluate the time needed for our second proto-
col, the differentially private IDF generation from Sec-
tion 4. Recall that this protocol is intended to be used as
a one-time precomputation step. Once the private IDF
are computed and released, all parties can use them to
perform feature extraction locally (cf. Section 5).

For our evaluation, we fix the vocabulary size to
150000, which corresponds to a large english dictio-
nary [1]. We then run the precomputation phase for dif-
ferent values of L, i.e., the number of non-default IDF
values selected. The results are shown in Figure 5b. In
the LAN setting, the running times stay below 10 min-
utes. This increases to up to two hours in the WAN
setting. Still, as this protocol needs to be only run once
per dataset, this is certainly practical in real-world set-
tings.

10 20 30 40 50 60
Number of neighbors k

30s

1m

2m

5m

10m

30m

1h

2h

To
ta

lr
un

ni
ng

tim
e

(s
)

WAN
LAN

(a) Running time the top-k
selection phase, i.e., Steps (c) and

(d) from Figure 4.

64 128 256 512 1024 2048 4096 8192
Batch Size

5m

10m

30m

1h

2h

5h

Ti
m

e

WAN
LAN

(b) Running time of sparse
matrix-vector multiplication on

real-world data.

Fig. 6. Running times of our private k-NN classification proto-
col from Section 5. The times correspond to a single classifica-
tion run with 28000 documents consisting of Amazon product
reviews [2]. Overall, we can do a full classification run on this
dataset in less than 40 minutes for any k ∈ [1, 60].

6.2 Secure Document Classification

Until now, while we chose the dimensions of the inputs
in the previous section to match the ones found in text
data, we have not used any features of specific datasets
in our evaluation. Here, we explore how our protocols
scale when applied to real data. To that end, we evaluate
our implementation of the k-NN application described
in Section 5.

First, we evaluate the time needed for the top-k se-
lection phase (Steps (c) and (d) in Figure 4). We then ex-
plore how the sparsity characteristics of real-world data
affects the running time of sparse matrix multiplication.
And finally, we look at how our differentially private
IDF values affect the accuracy of an end-to-end k-NN
classification.

6.2.1 Datasets

We used two publicly available datasets to set up a multi-
class document classification tasks. The first dataset is
a repository of Amazon product reviews spanning May
1996 to July 2014 [2, 33]. We used the 5-core version
of the dataset containing only products with at least
five reviews. From the entire dataset we extracted re-
views for products in four different categories: “Cloth-
ing, Shoes and Jewelry”, “Toys and Games”, “Tools and
Home Improvement”, and “Grocery and Gourmet Food”.
We use these product categorizations to set up a docu-
ment classification problem with four classes. To con-
struct the dataset we randomly selected 28K reviews
from the four classes with a uniform class distribution.

Secure and Scalable Document Similarity on Distributed Databases 222

This resulted in a dataset with approximately 40K dis-
tinct words, where documents contain an average of
86 words and a maximum of 3300 words. The second
dataset is the RCV1 corpus of Reuters newswire stories
produced between August 1996 and August 1997 [38].
Documents in this dataset come annotated with mul-
tiple hierarchical labels related to topic, industry and
geography. To set up a multi-class classification prob-
lem we selected all documents with a single label under
topic “Government/Social (GCAT)” and removed any
topic with less than five documents, resulting in a total
of 19 classes. From the resulting corpus we randomly se-
lected 28K via stratified sampling. Performing this pro-
cess with the tokenized version of the dataset released
with [38] resulted in a dataset with approximately 70K
distinct words (tokens), where documents contain an av-
erage of 158 words and a maximum of 2746 words.

6.2.2 Running Time of top-k Selection

We implement steps (c) and (d) in Figure 4 using Obliv-
C [60] and MP-SPDZ [3]. We then evaluate their run-
ning time on the Reviews dataset [2]. The results are
shown in Figure 6a. It can be seen that top-k selection
does impact the overall running time, while the majority
of the computation time for a full classification is still
spent on similarity computation.

6.2.3 Effect of Sparsity Distribution on Running Time

For the sparse matrix multiplication experiments in Sec-
tion 6.1.1, we chose the locations of non-zero values in
each row of the matrix uniformly and independently at
random. This does not reflect the distribution of words
in real-world texts, which usually follows a power-law
distribution [53]. Therefore, we re-run our matrix-vector
multiplication experiment, this time fixing the sparsity
for each batch size to the average sparsity of batches of
that size in our first real-world dataset [2]. We also set
the number of rows in the matrix to the number of docu-
ments in our dataset, i.e., 28000. In Figure 6b, we show
the results. While previously (Figure 5a), the optimal
batch size was 16 in most cases, it is 512 when con-
sidering the distribution of real data. This shows that
our protocol is particularly well equipped to handle real-
world inputs.

Overall, for any k ∈ [1, 60], a full classification run
on the reviews dataset takes less than 40 minutes in
total time. For comparison, the same computation using

only dense matrix multiplication would take more than
8 hours, leading to an improvement of at least 12x.

6.2.4 Accuracy of Differentially Private IDFs

To evaluate the effect of DP on the privacy-preserving
IDF computation described in Section 4.2 we used the
resulting feature representations in two document clas-
sification tasks using a k-NN classifier.

Baselines. To quantify the effect on the accuracy of
the resulting k-NN classifier of using a TF-IDF feature
representation with differentially private IDFs (DP-TF-
IDF), we compare our approach against the following
baselines: TF where documents are only represented by
their TF vector, which can be computed locally; TF-
IDF where we use true IDFs computed without DP; Lap-
TF-IDF where differentially private IDFs are released
using the naïve application of the Laplace mechanism
sketched at the beginning of Section 4.2; Trunc-TF-IDF
where truncated IDFs computed as in Functionality 2
but without noise (i.e. the setting ε =∞).

Hyper-Parameter Tuning. To assess the predictive per-
formance of the different feature representations, we
further split the data into 70% for training, 15% for
validation, and 15% for testing while maintaining the
class proportions in each of the subsets. When testing
the effect of the amount of training data on the over-
all accuracy of the model we further subsample the
∼ 20K training examples to obtain a smaller training
set. For each training size and privacy parameter, we
tune the hyper-parameters of each algorithm separately
by optimizing the accuracy on the validation set, and
then report the resulting accuracy on the test set. Since
differential privacy introduces randomness in the com-
putation, each accuracy measure is obtained by aver-
aging over 20 independent runs. The hyper-parameter
ranges over which the optimization is performed are
as follows: number of neighbors k ∈ [1, 60], number of
non-default IDFs L ∈ {32, 64, 128}, and default values
c0 ∈ {16, 32, 64, 128}. These ranges were selected after
an initial data exploration phase.

Results. The results of these experiments are displayed
in Figure 7. In Figure 7a and 7c we compare the accu-
racy of k-NN classification as a function of the size of
the training dataset using the TF-IDF representation
obtained with our method (for ε = 1) and the baselines
described above. We observe that IDFs are necessary
to obtain good accuracies, as the TF baseline performs
poorly on both datasets. Additionally we observe that

Secure and Scalable Document Similarity on Distributed Databases 223

2500 5000 7500 10000 12500 15000 17500 20000
Training Size (m)

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

TF
TF-IDF
Trunc-TF-IDF
DP-TF-IDF (ε = 1.0)

(a) Reviews – Baselines Comparison

2500 5000 7500 10000 12500 15000 17500 20000
Training Size (m)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Trunc-TF-IDF
DP-TF-IDF (ε = 0.1)
DP-TF-IDF (ε = 0.5)
DP-TF-IDF (ε = 1.0)
DP-TF-IDF (ε = 5.0)

(b) Reviews – Effect of ε

2500 5000 7500 10000 12500 15000 17500 20000
Training Size (m)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

TF
TF-IDF
Trunc-TF-IDF
DP-TF-IDF (ε = 1.0)
Lap-TF-IDF (ε = 1.0)

(c) RCV1 – Baselines Comparison

2500 5000 7500 10000 12500 15000 17500 20000
Training Size (m)

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Trunc-TF-IDF
DP-TF-IDF (ε = 0.5)
DP-TF-IDF (ε = 0.1)
DP-TF-IDF (ε = 1.0)
DP-TF-IDF (ε = 5.0)

(d) RCV1 – Effect of ε

Fig. 7. Results of accuracy vs. training size experiments for k-NN with differentially private TF-IDF

Lap-TF-IDF is better than plain TF, but worse than our
DP-TF-IDF. On the reviews dataset the Trunc-TF-IDF
baseline has the same performance as standard TF-IDF,
while in the RCV1 dataset the former is slightly better.
Finally, our method is slightly worse than not using DP
on the reviews dataset, but performs identically to the
best baseline on the RCV1 dataset.

In Figures 7b and 7d we explore the effect of the
privacy parameter ε on DP-TF-IDF compared to the
best baseline (Trunc-TF-IDF). On the reviews dataset
we see that increasing ε leads to a better feature repre-
sentation, with ε = 1 incurring a 3% accuracy loss with
respect to the best non-private feature representation.
On the other hand, on the RCV1 dataset, DP-TF-IDF
is quite insensitive to the choice of ε and matches the
behavior of the best baseline for all the values we tried
(ε ∈ {0.1, 0.5, 1, 5}).

7 Related work
As mentioned in the introduction, while several recent
works have proposed MPC protocols for machine learn-
ing tasks, none of them exploit the input distribution
for efficiency. This is in contrast with computation in
the clear, where dedicated algorithms and data struc-
tures have been developed for different kinds of sparsity
patterns. Moreover, all of these protocols assume that
feature extraction has been already performed. This is
reasonable for settings where that step can be computed
locally by each party. However, as in the case of TF-
IDF, several powerful feature extraction techniques and
normalization steps may require data held by different
parties.

Regarding our more concrete contributions, several
secure 2PC protocols for matrix multiplication have
been recently proposed [28, 37, 47]. These protocols op-

erate over explicit matrix representation, and thus are
not tailored to exploit sparsity. On the other hand, com-
binations of MPC with DP have been proposed before in
the context of limiting leakage of access patterns in se-
cure computation [44], private set intersection [31], and
protocols for private record linkage (see [34] and refer-
ences therein). He et al. [34] use an indistinguishability-
based definition that is limited to deterministic func-
tionalities. In contrast, we define security with DP leak-
age in the simulation-based paradigm that is also used
by [31, 44], but unlike these works we allow the output of
the final computation to depend on the leakage. The ad-
vantage of a simulation-based definition is the fact that
it allows for straight-forward composition, which we use
in our security proofs (see for example Appendix D).

Regarding our application in private text analysis,
related work can be found in the context of similar docu-
ment detection [13, 15, 36, 48]. Another trend of related
work is in privacy-preserving nearest neighbors compu-
tation [19, 39, 54, 55]. However, a remarkable difference
between these existing works and ours is in the threat
model. In all the contributions mentioned above, either
the computation is delegated to two non-colluding par-
ties – sometimes referred to as the two-server model in
MPC – or only involves two parties (for example, one
server and one client). In contrast, our threat model
allows the database to be distributed among multiple
servers who might collude with each other or the client.

8 Conclusion
Our MPC protocol for k-NN classification achieves prov-
able security in the distributed setting with possibly
colluding servers, which has not been reported in aca-
demic literature before. At the same time, our evalua-
tion shows that it scales to real-world dataset sizes and

Secure and Scalable Document Similarity on Distributed Databases 224

is viable in both LAN and WAN settings. We show that
by precomputing differentially private statistics, perfor-
mance can be improved by an order of magnitude, while
providing a principled way to trade off between accuracy
and privacy.

Apart from classification, our private k-NN algo-
rithm can be easily adapted to support other types
of queries on distributed datasets, for example private
duplicate detection, or query answering. Additionally,
other document similarity measures can be implemented
atop our protocol for secure two-party sparse matrix
multiplication. Moreover, our protocol for sparse matrix
multiplication is general in that it works on arithmetic
sharings, and hence can be directly used as a building
block in other applications. The latter might be of inde-
pendent interest to the MPC community. In future work
we plan to address some of its applications, and study
further improvements using recent results on Private Set
Intersection.

Beyond our concrete contributions, this work shows
that hybrid solutions combining MPC and DP are a
promising venue for privacy-preserving data analysis
on distributed data, as carefully designed DP mecha-
nisms for approximated functionalities can enable effi-
cient MPC protocols.

Acknowledgements
Phillipp and Lennart were supported by the German
Research Foundation (DFG) through Research Training
Group GRK 1651 (SOAMED). Adrià was supported by
the EPSRC grant EP/N510129/1, and funding from the
UK Government’s Defence & Security Programme in
support of the Alan Turing Institute. Server and Client
icons in Figure 4 are from www.flaticon.com. Server
icon designed by Smashicons, Client icon designed by
Freepik.

References
[1] Aspell dictionary creation. http://app.aspell.net/create.
[2] Amazon Product Data. http://jmcauley.ucsd.edu/data/

amazon/.
[3] Multi-protocol SPDZ. https://github.com/data61/MP-SPDZ,

2018.
[4] 1000 Genomes Project Consortium et al. A global reference

for human genetic variation. Nature, 526(7571):68, 2015.
[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/.
Software available from tensorflow.org.

[6] M. Al-Rubaie, P. Y. Wu, J. M. Chang, and S. Kung. Privacy-
preserving PCA on horizontally-partitioned data. In DSC,
pages 280–287, 2017.

[7] M. Bafna and J. Ullman. The price of selection in differential
privacy. In COLT, pages 151–168. PMLR, 2017.

[8] K. E. Batcher. Sorting Networks and Their Applications.
In AFIPS Spring Joint Computing Conference, volume 32,
pages 307–314, 1968.

[9] D. Beaver. Efficient Multiparty Protocols Using Circuit
Randomization. In CRYPTO, pages 420–432, 1991.

[10] J. Beel, B. Gipp, S. Langer, and C. Breitinger. Paper recom-
mender systems: a literature survey. International Journal on
Digital Libraries, 17(4):305–338, 2016.

[11] A. Beimel, K. Nissim, and E. Omri. Distributed private data
analysis: Simultaneously solving how and what. In CRYPTO,
pages 451–468. Springer, 2008.

[12] A. Ben-Efraim, Y. Lindell, and E. Omri. Optimizing Semi-
Honest Secure Multiparty Computation for the Internet.
In ACM Conference on Computer and Communications
Security, pages 578–590, 2016.

[13] C. Blundo, E. D. Cristofaro, and P. Gasti. EsPRESSo: Effi-
cient privacy-preserving evaluation of sample set similarity. In
DPM/SETOP, pages 89–103, 2012.

[14] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. In NDSS, 2015.

[15] S. Buyrukbilen and S. Bakiras. Secure similar document
detection with simhash. In Secure Data Management, pages
61–75, 2013.

[16] R. Canetti. Security and composition of multiparty crypto-
graphic protocols. J. Cryptology, 13(1):143–202, 2000.

[17] K. Chaudhuri and S. Dasgupta. Rates of convergence
for nearest neighbor classification. In Advances in Neural
Information Processing Systems, pages 3437–3445, 2014.

[18] K. Chaudhuri and S. A. Vinterbo. A stability-based validation
procedure for differentially private machine learning. In NIPS,
pages 2652–2660, 2013.

[19] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. P. Razen-
shteyn, and M. S. Riazi. SANNS: scaling up secure approx-
imate k-nearest neighbors search. IACR Cryptology ePrint
Archive, 2019:359, 2019.

[20] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryption.
In CRYPTO, volume 7417, 2012.

[21] J. Doerner. The Absentminded Crypto Kit. URL https:
//bitbucket.org/jackdoerner/absentminded-crypto-kit/.

[22] J. Doerner and A. Shelat. Scaling ORAM for Secure Compu-
tation. In CCS, pages 523–535, 2017.

[23] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. Foundations and Trends in Theoretical
Computer Science, 9(3–4):211–407, Aug. 2014.

www.flaticon.com
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/freepik
http://app.aspell.net/create
http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
https://github.com/data61/MP-SPDZ
http://tensorflow.org/
https://bitbucket.org/jackdoerner/absentminded-crypto-kit/
https://bitbucket.org/jackdoerner/absentminded-crypto-kit/

Secure and Scalable Document Similarity on Distributed Databases 225

[24] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our Data, Ourselves: Privacy Via Distributed Noise
Generation. In EUROCRYPT, pages 486–503, 2006.

[25] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Cali-
brating Noise to Sensitivity in Private Data Analysis. In TCC,
pages 265–284, 2006.

[26] A. Efros. How to stop worrying and learn to love nearest
neighbors. NIPS workshop on Nearest Neighbors for Modern
Applications with Massive Data, 2017.

[27] M. Fanaeepour and B. I. P. Rubinstein. Histogramming
privately ever after: Differentially-private data-dependent
error bound optimisation. In ICDE, pages 1204–1207. IEEE
Computer Society, 2018.

[28] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Do-
erner, S. Zahur, and D. Evans. Privacy-Preserving Distributed
Linear Regression on High-Dimensional Data. Proceedings
on Privacy Enhancing Technologies, 2017(4):345–364, Oct.
2017.

[29] N. Gilboa. Two party RSA key generation. In CRYPTO,
pages 116–129. Springer, 1999.

[30] O. Goldreich. The Foundations of Cryptography – Volume 2,
Basic Applications. 2004.

[31] A. Groce, P. Rindal, and M. Rosulek. Cheaper private set
intersection via differentially private leakage. PoPETs, 2019
(3):6–25, 2019.

[32] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.
tuxfamily.org, 2010.

[33] R. He and J. J. McAuley. Ups and downs: Modeling the
visual evolution of fashion trends with one-class collaborative
filtering. In WWW, pages 507–517. ACM, 2016.

[34] X. He, A. Machanavajjhala, C. J. Flynn, and D. Srivastava.
Composing differential privacy and secure computation:
A case study on scaling private record linkage. In ACM
Conference on Computer and Communications Security,
pages 1389–1406, 2017.

[35] Y. Huang, D. Evans, and J. Katz. Private set intersection:
Are garbled circuits better than custom protocols? In NDSS,
2012.

[36] W. Jiang, M. Murugesan, C. Clifton, and L. Si. Similar
document detection with limited information disclosure. In
ICDE, pages 735–743, 2008.

[37] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
Gazelle: A Low Latency Framework for Secure Neural Net-
work Inference. IACR Cryptology ePrint Archive, 2018:73,
2018.

[38] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. Journal
of machine learning research, 5(Apr):361–397, 2004.

[39] F. Li, R. Shin, and V. Paxson. Exploring privacy preservation
in outsourced k-nearest neighbors with multiple data owners.
In CCSW, pages 53–64, 2015.

[40] Y. Lindell. How to simulate it - A tutorial on the simulation
proof technique. In Tutorials on the Foundations of Cryp-
tography, pages 277–346. Springer International Publishing,
2017.

[41] Y. Lindell and B. Pinkas. A Proof of Security of Yao’s
Protocol for Two-Party Computation. J. Cryptology, 22(2):
161–188, 2009.

[42] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural
network predictions via minionn transformations. In CCS,

pages 619–631, 2017.
[43] C. Manning, P. Raghavan, and H. Schütze. Scoring, term

weighting and the vector space model. In Introduction to
information retrieval, pages 100–122. 2008.

[44] S. Mazloom and S. D. Gordon. Secure computation with
differentially private access patterns. In ACM Conference
on Computer and Communications Security, pages 490–507,
2018.

[45] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In FOCS, pages 94–103, 2007.

[46] I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan.
Computational differential privacy. In CRYPTO, pages
126–142, 2009.

[47] P. Mohassel and Y. Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In IEEE Symposium on
Security and Privacy, pages 19–38, 2017.

[48] M. Murugesan, W. Jiang, C. Clifton, L. Si, and J. Vaidya.
Efficient privacy-preserving similar document detection.
VLDB J., 19(4):457–475, 2010.

[49] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft,
and E. Shi. GraphSC: Parallel secure computation made easy.
In IEEE Symposium on Security and Privacy, pages 377–394.
IEEE Computer Society, 2015.

[50] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh. Privacy-preserving matrix factorization.
In ACM Conference on Computer and Communications
Security, pages 801–812. ACM, 2013.

[51] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regres-
sion on hundreds of millions of records. In IEEE Symposium
on Security and Privacy, pages 334–348, 2013.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[53] D. M. W. Powers. Applications and explanations of zipf’s law.
In CoNLL, pages 151–160, 1998.

[54] M. S. Riazi, B. Chen, A. Shrivastava, D. S. Wallach, and
F. Koushanfar. Sub-linear privacy-preserving search
with untrusted server and semi-honest parties. CoRR,
abs/1612.01835, 2016.

[55] H. Rong, H. Wang, J. Liu, and M. Xian. Privacy-preserving
k-nearest neighbor computation in multiple cloud environ-
ments. IEEE Access, 4:9589–9603, 2016.

[56] A. Waksman. A permutation network. J. ACM, 15(1):
159–163, 1968.

[57] X. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM: On
Tightness of the Goldreich-Ostrovsky Lower Bound. In ACM
Conference on Computer and Communications Security,
pages 850–861, 2015.

[58] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://github.com/
emp-toolkit, 2016.

[59] A. C.-C. Yao. How to Generate and Exchange Secrets
(Extended Abstract). In FOCS, pages 162–167, 1986.

[60] S. Zahur and D. Evans. Obliv-C: A Language for Extensible
Data-Oblivious Computation. IACR Cryptology ePrint
Archive, 2015:1153, 2015.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://github.com/emp-toolkit
https://github.com/emp-toolkit

Secure and Scalable Document Similarity on Distributed Databases 226

[61] S. Zahur, X. S. Wang, M. Raykova, A. Gascón, J. Doerner,
D. Evans, and J. Katz. Revisiting Square-Root ORAM:
Efficient Random Access in Multi-party Computation. In
IEEE Symposium on Security and Privacy, pages 218–234,
2016.

A Security
The following definition of security against semi-honest
adversaries for multi-party computation was adapted
from [30, Definition 7.5.1]. See also [40].

For any number of parties n ≥ 2, a probabilistic
n-party functionality is a function F : ({0, 1}∗)n →
({0, 1}∗)n. Let Fi(x1, . . . , xn) denote the i-th element
of F(x1, . . . , xn). For each party i ∈ [n], Fi takes all
parties’ inputs x̄ := (x1, . . . , xn) and returns the output
Fi(x̄) to Party i. Let Π be a protocol that computes F .
Let outputΠ(x̄) denote the combined output of Π. Addi-
tionally, each party has a view on the protocol execution
that is denoted by viewΠ

i (x̄) and contains Party i’s in-
puts, internal random state, and all received messages.
For any subset of parties I = {i1, . . . , it} ⊆ [n], let
xI = (xi1 , . . . , xit), FI(x̄) :=

(
Fi1(x̄), . . . ,Fit(x̄)

)
, and

viewΠ
I (x̄) :=

(
I, viewΠ

i1(x̄), . . . , viewΠ
it(x̄)

)
.

Now, a simulator S is a probabilistic polynomial-
time algorithm that takes as arguments the set I, the
inputs xi1 , . . . , xit of all parties in I, and their outputs
from the functionality, i. e. FI(x̄). Using these, S sim-
ulates a view for the parties in I. If such a simulator
exists, and for each I satisfies{(

S
(
I, xI ,FI(x̄)

)
,F(x̄)

)}
x̄∈({0,1}∗)n

c≡{(
viewΠ

I (x̄), outputΠ(x̄)
)}

x̄∈({0,1}∗)n
(2)

then Π privately computes F [30]. Here, c≡ denotes com-
putational indistinguishability as defined in [30, 40]. In
the two-party case, we write Si

(
xi,F(x1, x2)

)
instead

of S
(
{i}, (xi),F(x1, x2)

)
to denote the simulator for the

view of Party i ∈ {1, 2}.

B Baseline Protocol

B.1 Remarks on notation

Given a set of parties S ⊆ {1, . . . , n} and a value v ∈
Zq, we write [[v]]S to denote that v is additively shared
among the parties in S, as defined in Section 3.2. We

Protocol 4: Dense Mult
Parties: 1, 2.
Input: Party 1: A ∈ Zl×mq ; Party 2: B ∈ Zm×nq

Output: Party i : [[AB]]i ∈ Zl×nq

1: Party 1 computes U, [[UV]]1 ← FOff(l,m, n)
and sends E = A−U

2: Party 2 computes V, [[UV]]2 ← FOff(l,m, n)
and sends F = B−V

3: Party 1 sets [[AB]]1 = EF + UF + [[UV]]1
4: Party 2 sets [[AB]]2 = EV + [[UV]]2;

identify the shared value with the collection of shares
and write [[v]]S = ([[v]]Si : i ∈ S) where [[v]]Si is known
only to the ith party. When S is clear from the context
we shall just write [[v]] and [[v]]i.

B.2 Dense Matrix Multiplication

We use the matrix multiplication protocol of Mohassel
and Zhang [47], which we show in Protocol 4 and state
its correctness with respect to the two-party matrix mul-
tiplication functionality FMult in Theorem 8.

The protocol works in the so-called preprocessing
model, a common paradigm in MPC which delegates
part of the computation to a data-independent offline
phase, denoted by FOff. In Protocol 4, this refers to the
computation of U, V and [[UV]]i, which can be done in
advance without knowledge of A or B.

Theorem 8 ([9, 47]). Assuming a secure implementa-
tion of FOff, Protocol 4 implements FMult with security
against semi-honest adversaries.

C Proof of Theorem 2
Theorem 2. For any A ∈ Zl×mq , B ∈ Zm×nq , let Ã, B̃
be constructed according to the protocol described in Fig-
ure 1. Then AB = ÃB̃.

Proof. By construction of Ã, for all i ∈ {1, . . . , l} and
all j ∈ {1, . . . , n},

(ÃB̃)ij =
lA+lB∑
k=1

ãik b̃kj =
lA+lB∑
k=1

âiπ−1
1 (k)b̂π−1

2 (k)j .

From the definition of FPerm, one of the following
cases holds for any pair (k1, k2) :=

(
π−1

1 (k), π−1
2 (k)

)
, k ∈

{1, . . . , lA + lB}:

Secure and Scalable Document Similarity on Distributed Databases 227

Case 1 k1 ≤ lA and k2 ≤ lB. Then there is a unique
k′ ∈ {1, . . . ,m} such that

(
ICol

A
)
k1

=
(
IRow

B
)
k2

= k′

and âik1 b̂k2j = aik′bk′j .
Case 2 k1 > lA or k2 > lB. Then âik1 or b̂k2j are zero,

and thus âik1 b̂k2j = 0.

On the other hand, for any k′ ∈ {1, . . . ,m} with
aik′bk′j 6= 0, there is a pair (k1, k2) with (ICol

A)k1 =
(IRow

B)k2 = k′ and thus a unique k ∈ {1, . . . , lA + lB} s.t.
π1(k1) = π2(k2) = k. Therefore,

(ÃB̃)ij =
∑

k′∈ICol
A ∩I

Row
B

aik′bk′j = (AB)ij .

D Proof of Theorem 3
Theorem 3. Given public sparsity values lA, lB and
implementations of FMult and FPerm that are secure
against semi-honest adversaries, the protocol in Figure 1
implements FMult with security against semi-honest ad-
versaries.

Proof. We only give the proof for the view of Party 1.
By symmetry, the proof for Party 2 follows analogously.
Our proof uses the standard simulation paradigm for
cryptographic protocols (see [30, 40] and Appendix A).
For a functionality F and a protocol Π, we denote the
output to player i of an execution with inputs x, y by
Fi(x, y) and outputΠi (x, y), respectively.

We present our proof in the (FPerm,FMult)-hybrid
model. That is, we construct a simulator SΠ

1 for the
view of party 1 assuming ideal functionalities for FPerm

and FMult. Security in the standard model then follows
immediately from the security of the corresponding pro-
tocols and the modular composition theorem [16].

Our simulator SΠ
1 in the ideal model simulates the

view of Party 1 on the Protocol in Figure 1, i.e.,

viewΠ
1 (A,B) =

(
A,FPerm

1 (ICol
A , IRow

B),FMult
1 (Ã, B̃)

)
.

Upon receiving input A and output FMult
1 (A,B), the

simulator SΠ
1 :

1. samples a permutation π′1 of {1, . . . , lA + lB} uni-
formly at random,

2. outputs
(
A, π′1,FMult

1 (A,B)
)
.

By Theorem 1, FPerm
1 (ICol

A , IRow
B) outputs a uniformly

random permuation of lA + lB. Similarly, FMult
1 (Ã, B̃)

is a uniformly random matrix. Finally, by Theorem 2,
FMult

1 (Ã, B̃)
)
is identically distributed to FMult(A,B).

Therefore(
viewΠ

1 (A,B), outputΠ(A,B)
)
≡(

SΠ
1
(
A,FMult

1 (A,B)
)
,FMult(A)

)
.

In practice, we implement FMult using the multiplica-
tion protocol of Mohassel and Zhang [47] (where the
offline phase is provided by Gilboa’s multiplication pro-
tocol [29]), and FPerm using Yao’s Garbled Circuits [41].

E Proof of Theorem 5
Theorem 5. FDP-IDF (Functionality 2) is ε-DP.

Proof. Let ε0 = ε/(2L). Note that for any pair of neigh-
boring datasets Z ' Z′ and any word v ∈ V we have
|cv−c′v| ≤ 1. Thus, the analysis of the exponential mech-
anism [23, Theorem 3.6] implies that releasing each se-
lected word v is ε0-DP. Furthermore, the analysis of the
Laplace mechanism [23, Theorem 3.10] implies that re-
leasing c̃v for each selected word is ε0-DP. Note also that
the values released for the words which are not selected
are independent of the dataset Z. Thus, the result fol-
lows by applying the standard composition theorem of
differential privacy 2L times [23, Theorem 3.14].

F Proof of Theorem 6
Theorem 6. For any large enough m = |Z| there exists
c0 = Θ(

√
m) such that with high probability

‖φidf − φ̃idf‖1
‖φidf‖1

≤ Õ
(

L2

εm|V|
+
(

1− L

|V|

)
log
(
m− L

ε

))
.

Throughout the proof we write V = |V| and ε0 =
ε/2L for convenience. Recall that as input our mech-
anism receives counts {cv : v ∈ V} estimated on a Z

database with m labeled documents x1, . . . , xm over vo-
cabulary V of size V = |V|. For the utility analysis we
will assume a distribution D over documents such that
the xi are i.i.d. Using D we can define the word occur-
rence probabilities pv = Px∼D[v ∈ x] so that the ex-
pected counts can be written as E[|Z|v] = E[cv] = mpv.
Using these probabilities we can define an order on
the vocabulary V = {v1, . . . , vV } in such a way that

Secure and Scalable Document Similarity on Distributed Databases 228

pv1 ≥ pv2 ≥ · · · ≥ pvV . To simplify our notation
throughout the proof we define φv = φidf(v, Z) and
φ̃v = φ̃idf(v, Z).

We start by splitting the vocabulary V into two
parts: the set of words Vs selected by the exponential
mechanism, and the set of not selected words Vs̄ = V\Vs.
Note that by definition we have |Vs| = L. The main idea
behind our analysis of the error between the private and
the non-private IDFs is to consider the words in Vs and
Vs̄ separately. The error for words in the former depends
on Laplace noise added to cv, while the error for words
in the latter depends on the difference between the de-
fault value c0 and the true count cv. The first source of
error can be controlled by bounding the noise added by
the Laplace mechanism. To control the second source of
error we will need to make sure that most of the words
in Vs̄ have counts not too far from c0.

We start by recalling well-known facts about the
Laplace and the exponential mechanism.

Lemma 1. With probability at least 1−γl we have |cv−
c̃v| ≤ ∆l simultaneously for all words v ∈ Vs, where
∆l = log(L/γl)/ε0.

Proof. See [23, Theorem 3.8].

Lemma 2. Let c(L) denote the Lth greatest word count
in {cv : v ∈ V}. With probability at least 1−γe, if v ∈ Vs,
then cv ≥ c(L) −∆e, where ∆e = 2 log(LV/γe)/ε0.

Proof. The proof follows the same structure as the clas-
sical utility analysis for the exponential mechanism [45,
Lemma 7].

Lemma 3. With probability at least 1 − γL we have
c(L) ≥ mpvL −∆L, where ∆L =

√
2m log(L/γL).

Proof. First note that by definition of c(L) we have

P[c(L) < mpvL −∆L] ≤ P
[

min
i∈[L]

cvi < mpvL −∆L

]
≤
∑
i∈[L]

P[cvi < mpvL −∆L] .

Since E[cvi] = mpvi ≥ mpvL for any i ∈ [L], by the
Chernoff bound we have

P[cvi < mpvL −∆L] ≤ P[cvi < mpvi −∆L]

≤ exp
(
−

∆2
L

2mpvi

)
≤ γL

L
.

Lemma 4. Suppose we have cv ≥ mpvL −∆L −∆e for
every word v ∈ Vs. Then with probability at least 1− γl

we have the following:∑
v∈Vs

|φv − φ̃v| ≤
L∆l

mpvL −∆L −∆e −∆l
.

Proof. Note that by the expression for the smoothed
IDFs, for any v ∈ V we have |φv − φ̃v| =

∣∣∣log
(
c̃v+1
cv+1

)∣∣∣.
Now, by combining the assumption cv ≥ mpvL−∆L−∆e

and Lemma 1 we see that with probability at least 1−γl
the following is simultaneously satisfied for all v ∈ Vs:

c̃v ≥ cv −∆l ≥ c(L) −∆e −∆l

≥ mpvL −∆L −∆e −∆l .

Thus, using that for 0 ≤ y < x we have log(x)− log(x−
y) ≤ y/(x− y), we get∣∣∣∣log

(
c̃v + 1
cv + 1

)∣∣∣∣ ≤ log
(

cv + 1
cv −∆l + 1

)
≤ ∆l

cv −∆l

≤ ∆l

mpvL −∆L −∆e −∆l
.

The result follows from noting that |Vs| = L.

Lemma 5. Suppose m is large enough to satisfy the
following inequality:

m ≥
(

1
pvL−pvL+1

(√
3pvL+1 log((V − L)/γs̄)

+
√

2 log(L/γL)

+ 2 log(LV/γe)/ε0
√
m
))2

.

With probability at least 1 − γs̄ we have cvi < mpvL −
∆L −∆e for every i > L.

Proof. First note that an application of the Chernoff
bound together with a union bound shows that simulta-
neously for all L < i ≤ V we have, with probability at
least 1− γs̄:

cvi < mpvi + ∆s̄ ≤ mpvL+1 + ∆s̄ ,

where ∆s̄ =
√

3mpvL+1 log((V − L)/γs̄). The result fol-
lows by plugging in the definitions of ∆L and ∆e and
observing that the constraint on m implies

mpvL+1 + ∆s̄ ≤ mpvL −∆L −∆e .

Note that the constraint on m above is satisfied by tak-
ing

m = Ω̃
(

log(LV)
ε0(pvL − pvL+1)2

)
, (3)

where the notation Ω̃(·) hides constants and logarithmic
terms in 1/γs̄, 1/γL, and 1/γe.

Secure and Scalable Document Similarity on Distributed Databases 229

Lemma 6. Suppose we have cv < mpvL −∆L −∆e for
every word v ∈ Vs̄. Then

∑
v∈Vs̄

|φv − φ̃v| is bounded by

O

(
(V−L) max

{
log(c0), log

(mpvL −∆L −∆e

c0

)})
.

Proof. Recall that for every word v ∈ Vs̄ the mechanism
outputs c̃v = c0. Furthermore, by assumption we have
0 ≤ cv < mpvL −∆L −∆e, which yields:

|φv − φ̃v| =
∣∣∣∣log

(
c0 + 1
cv + 1

)∣∣∣∣
≤ max

{
log(c0 + 1), log

(
mpvL −∆L −∆e + 1

c0 + 1

)}
= O

(
max

{
log(c0), log

(
mpvL −∆L −∆e

c0

)})
.

The result follows by noting that |Vs̄| = V − L.

Theorem 9. Suppose m satisfies (3) and c0 =√
mpvL −∆L −∆e. Let γ = γl + γe + γL + γs̄. With

probability at least 1− γ we have

‖φidf − φ̃idf‖1
‖φidf‖1

≤ Õ
(
L

V

1
ε0m

+
(

1− L

V

)
log
(
m− 1

ε0

))
.

Proof. By decomposing the L1 distance according to the
partition V = Vs ∪ Vs̄ and plugging the bounds from
Lemmas 4 and 6 we get

‖φidf − φ̃idf‖1 =
∑
v∈Vs

|φv − φ̃v|+
∑
v∈Vs̄

|φv − φ̃v|

≤ L∆l

mpvL −∆L −∆e −∆l

+ (V − L)O
(

log(mpvL −∆L −∆e)
)
.

Note that the conditions to apply these lemmas hold
simultaneously with probability at least 1 − γ by Lem-
mas 1, 2, 3, and 5. Next we observe that by the definition
of φidf(v, Z) we have ‖φidf‖1 ≥ V . The result now fol-
lows by plugging the expression for ∆l, ∆e, and ∆L into
the bound above, and using the notation Õ(·) to hide
constants and logarithmic terms not involving m.

	Secure and Scalable Document Similarity on Distributed Databases: Differential Privacy to the Rescue
	1 Introduction
	1.1 Our Contributions

	2 Background
	2.1 Multi-Party Computation
	2.2 TF-IDF Features

	3 Sparse Inner Products and Secure Document Similarity
	3.1 Sparsity in Real-World Data
	3.2 Notation and Terminology
	3.3 Secure Sparse Inner Products
	3.4 Secure Correlated Permutations
	3.5 From Inner Products to Sparse Matrix Multiplication

	4 Private Feature Extraction
	4.1 Multi-Party Computational Differential Privacy
	4.2 Differentially Private IDF Computation
	4.3 Implementing FDP-IDF
	4.3.1 Laplace Mechanism
	4.3.2 Exponential Mechanism

	4.4 Utility Analysis

	5 Secure Document Classification
	5.1 Security with Differentially Private Leakage
	5.2 Our Protocol

	6 Experiments
	6.1 Running Time
	6.1.1 Sparse Matrix Multiplication
	6.1.2 Private IDF Precomputation

	6.2 Secure Document Classification
	6.2.1 Datasets
	6.2.2 Running Time of top-k Selection
	6.2.3 Effect of Sparsity Distribution on Running Time
	6.2.4 Accuracy of Differentially Private IDFs

	7 Related work
	8 Conclusion
	A Security
	B Baseline Protocol
	B.1 Remarks on notation
	B.2 Dense Matrix Multiplication

	C Proof of Theorem 2
	D Proof of Theorem 3
	E Proof of Theorem 5
	F Proof of Theorem 6

