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Abstract: Differential privacy (DP) provides formal
guarantees that the output of a database query does
not reveal too much information about any individual
present in the database. While many differentially pri-
vate algorithms have been proposed in the scientific lit-
erature, there are only a few end-to-end implementa-
tions of differentially private query engines. Crucially,
existing systems assume that each individual is associ-
ated with at most one database record, which is un-
realistic in practice. We propose a generic and scalable
method to perform differentially private aggregations on
databases, even when individuals can each be associated
with arbitrarily many rows. We express this method as
an operator in relational algebra, and implement it in an
SQL engine. To validate this system, we test the utility
of typical queries on industry benchmarks, and verify
its correctness with a stochastic test framework we de-
veloped. We highlight the promises and pitfalls learned
when deploying such a system in practice, and we pub-
lish its core components as open-source software.
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1 Introduction
Many services collect sensitive data about individuals.
These services must balance the possibilities offered by
analyzing, sharing, or publishing this data with their
responsibility to protect the privacy of the individuals
present in their data. Releasing aggregate results about
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a population without revealing too much about indi-
viduals is a long-standing field of research. The stan-
dard definition used in this context is differential privacy
(DP): it provides a formal guarantee on how much the
output of an algorithm reveals about any individual in
its input [10, 11, 14]. Differential privacy states that the
distribution of results derived from private data cannot
reveal “too much” about a single person’s contribution,
or lack thereof, to that data [12]. By using differential
privacy when analyzing data, organizations can mini-
mize the disclosure risk of sensitive information about
their users.

Query engines are a major analysis tool for data
scientists, and one of the most common ways for an-
alysts to write queries is with Structured Query Lan-
guage (SQL). As a result, multiple query engines have
been developed to enable data analysis while enforcing
DP [2, 21, 27, 34], and all of them use a SQL-like syntax.

However, as we discuss in Section 2, these differen-
tially private query engines make some implicit assump-
tions, notably that each individual in the underlying
database is associated with at most one database record.
This does not hold in many real-world datasets, so the
privacy guarantee offered by these systems is weaker
than advertised for those databases. To overcome this
limitation we introduce a generic mechanism for bound-
ing user contribution to a large class of differentially pri-
vate aggregate functions. We then propose a design for
a SQL engine using these contribution bounding mech-
anisms to enforce DP, even when a given individual can
be associated with arbitrarily many records or the query
contains joins.

Our work goes beyond this design and accompa-
nying analysis: we also describe the implementation of
these mechanisms as part of a SQL engine, and the
challenges encountered in the process. We describe a
stochastic testing framework that generates databases
on which we test for differential privacy to increase our
level of trust into the system’s robustness. To aid in
replicability of our work and encourage wider adoption
of differential privacy, we release core components of the
system as open-source software.
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1.1 Requirements and contributions

To be useful for non-expert analysis, a differentially pri-
vate SQL engine must at least:
– Make realistic assumptions about the data, specifi-

cally allowing multiple records to be associated with
an individual user.

– Support typical data analysis operations, such as
counts, sums, means, percentiles, etc.

– Provide analysts with information about the accu-
racy of the queries returned by the engine, and give
them clear privacy guarantees.

– Provide a way to test the integrity of the engine and
validate the engine’s privacy claims.

In this work, we present a differentially private SQL
engine that satisfies these requirements. More precisely:
– We detail how we use the concept of row ownership

to enforce the original meaning of differential pri-
vacy: the output of the analysis does not reveal any-
thing about a single individual. In our engine, mul-
tiple rows can be associated with the same “owner”
(hereafter referred to as a user, although the owner
could also be a group), and the differential privacy
property is enforced at the user level.

– We implement common aggregations (counts, sums,
medians, etc.), arbitrary per-record transforms, and
joins on the row owner column as part of our engine.
To do so we provide a method of bounding query
sensitivity and stability across transforms and joins,
and a mechanism to enforce row ownership through-
out the query transformation.

– We detail some of the usability challenges that arise
when trying to productionize such a system and in-
crease its adoption. In particular, we explain how
we communicate the accuracy impact of differential
privacy to analysts, and we experimentally verify
that the noise levels are acceptable in typical condi-
tions. We also propose an algorithm for automatic
sensitivity determination.

– We present a testing framework to help verify that
ε-DP aggregation functions are correctly imple-
mented, and can be used to detect software regres-
sions that break the privacy guarantees.

Overall, this work contributes to research on differen-
tial privacy by proposing a method of bounded contri-
butions and exploring the trade-offs in accuracy in a
testable and verifiable way. Additionally, this work can
increase the appropriate adoption of differential privacy
by providing a usable system based on popular tools

used by data analysts. For reproducibility and adoption,
we release the new SQL aggregation operations and the
stochastic tester as open-source software.

1.2 Related work

Multiple differentially private query engines have been
proposed in the literature. In this work, we mainly com-
pare our system to two existing differentially private
query engines: PINQ [34] and Flex [21]. Our work dif-
fers in two major ways from these engines: we support
the common case where a single user is associated with
multiple rows, and we support arbitrary GROUP BY state-
ments.

In these systems a single organization is assumed to
hold all the raw data. Query engines can also be used in
other contexts: differential privacy can be used in con-
cert with secure multiparty computation techniques to
enable join queries between databases held by different
organizations, e.g., DJoin [39] and Shrinkwrap [2].

A significant amount of research focuses on improv-
ing the accuracy of query results while still maintaining
differential privacy. In this work, for clarity, we keep the
description of our system conceptually simple, and ex-
plicitly do not make use of techniques like smooth sen-
sitivity [40], tight privacy budget computation meth-
ods [22, 35], variants of the differential privacy defi-
nition [6, 8, 37], adjustment of noise levels to a pre-
specified set of queries [30], or generation of differen-
tially private synthetic data to answer arbitrarily many
queries afterwards [5, 26, 27].

The testing framework we introduce in Section 5.3
is similar to recent work in verification for differential
privacy [4, 9], but approaches the problem in a generic
way by testing a diverse set of databases that are ag-
nostic to specific algorithms.

Our work is not the first to use noise and thresh-
olding to preserve privacy: this method was originally
proposed in [17, 25] in the specific context of releas-
ing search logs with (ε, δ)-DP; our work can be seen
as an extension and generalization of this insight. Dif-
fix [15] is another system using similar primitives; how-
ever, it does not provide any formal privacy guarantee;
so a meaningful comparison with our work is not fea-
sible. In Section 4, we provide a comparison of query
accuracy between our work, PINQ, and Flex.
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1.3 Preliminaries

We introduce here the definitions and notations used
throughout this paper. Let R be an arbitrary set of
records, and U an arbitrary set of user identifiers. A
row is a pair (u, r) for some u ∈ U and r ∈ R, and a
database is a multiset of rows. A user u is said to own
the rows (u, r) for all r ∈ R. We denote D the space of
all databases.

Definition 1 (Distance between databases). We de-
note row-level change the addition or removal of a sin-
gle row from a database, and user-level change the ad-
dition or removal of all rows associated with a user.
Given two databases D1 and D2, we denote ||D1 −D2||
the minimum number of row-level changes necessary to
transform D1 into D2, and ||D1 −D2||u the minimum
number of user-level changes necessary to transform D1
into D2.

We recall the definitions of (ε, δ)-differential privacy and
of global L1-sensitivity.

Definition 2 ((ε, δ)-Differential Privacy). A random-
ized mechanism f : D → Rd satisfies row-level (ε, δ)-
DP if for all pairs of databases D1, D2 ∈ D that satisfy
||D1 −D2|| = 1, and for all sets of outputs S, we have:

Pr[f(D1) ∈ S] ≤ eε Pr[f(D2) ∈ S] + δ

f satisfies user-level DP1 if the above condition holds
for all pairs of databases D1, D2 ∈ D such that
||D1 −D2||u = 1. ε-DP is an alias for (ε, 0)-DP.

Note that this notion is technically unbounded differen-
tial privacy [24], which we use for simplicity throughout
this work. Up to a change in parameters, it is equivalent
to the classical definition, which also allows the change
of one record in the distance relation between databases.

Definition 3 (L1-Sensitivity). The global L1-
sensitivity of a function f : D → Rd is defined by:

∆f = max
D1,D2∈D:||D1−D2||=1

||f(D1)− f(D2)||1

where ||.||1 denotes the L1 norm. The user-global L1-
sensitivity of f is defined by:

∆uf = max
D1,D2∈D:||D1−D2||u=1

||f(D1)− f(D2)||1

1 A similar notion in the context of streaming data, pan-
privacy, is introduced in [13].

2 A simple example: histograms
Before describing the technical details of our system we
first give an intuition of how it works using a simple
example: histogram queries. Consider a simple database
that logs accesses to a given website. An analyst wants
to know which browser agents are most commonly used
among users visiting the page. A typical query to do so
is presented in Listing 1.

SELECT browser_agent , COUNT (*) AS visits
FROM access_logs
GROUP BY browser_agent ;

Listing 1. Simple histogram query

How would one make this simple operation ε-
differentially private? One naive approach is to add
Laplace noise of scale 1/ε to each count. This solution
suffers from several shortcomings.

2.1 First pitfall: multiple contributions
within a partition

The naive approach will correctly hide the existence of
individual records from the database: each record of the
access log will only influence one of the returned counts
by at most 1, and it is well known [12] that this mecha-
nism will provide ε-DP. However, it fails to protect the
existence of individual users: the same user could have
visited the example page many times with a particular
browser agent, and therefore could have contributed an
arbitrarily large number of rows to visits for a partic-
ular GROUP BY partition, violating our assumption that
query sensitivity is 1.

In PINQ and Flex, the differential privacy definition
explicitly considers records as the privacy unit. Because
we instead want to protect the full contribution of users,
we need to explicitly include a notion of a user in our
system design. In this work, we do this via the notion
of a user identifier, hereafter abbreviated uid.

Because Listing 1 has unbounded sensitivity, adding
noise to counts is not enough to enforce differential pri-
vacy; we need to bound user contribution to each par-
tition. This can be addressed is by counting distinct
users, which has a user-global sensitivity of 1, instead
of counting rows. Although this modifies query seman-
tics, we chose this approach to keep the example simple.
We present the modified query in Listing 2.

SELECT browser_agent ,
COUNT ( DISTINCT uid) + Laplace (1/ε)
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FROM access_logs
GROUP BY browser_agent ;

Listing 2. Partition level contribution bounding

In other contexts it might make more sense to allow
a user to contribute more than once to a partition (e.g.
we count up to five visits from each distinct user with
each distinct browser agent); in this case we would need
to further modify the query to allow multiple contribu-
tions and increase sensitivity to match the maximum
number of contributions.

2.2 Second pitfall: leaking GROUP BY
keys

Even if we bound contribution to partitions and adapt
noise levels, the query is still not ε-DP. Suppose that the
attacker is trying to distinguish between two databases
differing in only one record, but this record is a unique
browser agent BAunique: this browser agent does not
appear inD1, but appears once inD2. Then, irrespective
of the value of the noisy counts, the GROUP BY keys are
enough to distinguish between the two databases simply
by looking at the output: BAunique will appear in the
query output for D2 but not for D1.

A simple solution to this problem was proposed in
[25]: the idea is to drop from the results all keys associ-
ated with a noisy count lower than a certain threshold
τ . τ is chosen independently of the data, and the re-
sulting process is (ε, δ)-DP with δ > 0. We call this
mechanism τ -thresholding. With a sufficiently high τ ,
the output rows with keys present in D2 but not D1
(and vice-versa) will be dropped with high probabil-
ity, making the keys indistinguishable to an attacker. A
longer discussion on the relation between ε, δ and τ can
be found in Section 3.5. This approach is represented in
SQL in Listing 3.

SELECT browser_agent ,
COUNT ( DISTINCT uid) + Laplace (1/ε) AS c

FROM access_logs
GROUP BY browser_agent
HAVING c >= τ ;

Listing 3. GROUP BY filtering

PINQ and Flex handle this issue by requiring the
analyst to enumerate all keys to use in a GROUP BY op-
eration, and return noisy counts for only and all such

keys2. This enforces ε-DP but impairs usability: the
range of possible values is often large (potentially the
set of all strings) and difficult to enumerate, especially
if the analyst cannot look at the raw data.

Some data synthesis algorithms have been proposed
to release histograms under ε-DP [32], but are limited,
for example to datasets subject to hierarchical decom-
position. Our approach is simpler and more generic, at
some cost in the privacy guarantee.

2.3 Third pitfall: contributions to multiple
partitions

Finally, we must consider the possibility of a user con-
tributing to multiple partitions in our query. Imagine
a user visiting the example page with many different
browsers, each with a different browser agent. Such a
user could potentially contribute a value of 1 to each
partition’s count, changing the sensitivity of the query
to be the number of partitions, which is unbounded!

Because both PINQ and Flex consider records as the
privacy unit, this is not an issue for their privacy mod-
els. So long as they are only used on databases where
that requirement holds true, and where the sensitivity
and stability impact of joins (and related operations)
are carefully considered, they will provide adequate DP
guarantees. However as shown in [33], these conditions
are not always true.

Instead of adding strict requirements on the nature
of the underlying database and on how joins are used,
we introduce a novel mechanism for bounding user con-
tribution across partitions. Concretely, we first choose a
number Cu, and for each user, we randomly keep the
contributions to Cu partitions for this user, dropping
contributions to other partitions. This operation allows
us to bound the global sensitivity of the aggregation:
each user can then influence at most unique Cu counts,
and we can adapt the noise level added to each count,
by using Laplace noise of scale Cu/ε.

The final version of our query is shown in Listing 4.
It uses a non-standard variant of the SQL TABLESAMPLE
operator, which supports partitioning and reservoir
sampling, to represent the mechanism we introduced.
This final version satisfies (ε, δ)-differential privacy for
well-chosen parameters.

SELECT browser_agent ,

2 The open-source implementation of Flex [20], however, does
not appear to implement this requirement.
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COUNT( DISTINCT uid) + Laplace (Cu/ε) AS c
FROM ( SELECT browser_agent , uid

FROM access_logs
GROUP BY browser_agent , uid)

TABLESAMPLE RESERVOIR
(Cu ROWS PARTITION BY uid)

GROUP BY browser_agent
HAVING c >= τ ;

Listing 4. An (ε, δ)-DP query

In the remainder of this paper, we formalize this
approach, and adapt it to a larger set of operations. In
particular, we extend it to arbitrary aggregations with
bounded sensitivity, and we explain how to make this
model compatible with joins.

3 System model and design

3.1 Overview

As suggested in Section 1.3, we assume that there is
a special column of the input database that specifies
which user owns each row. The system is agnostic to
the semantics of this special column. In principle, it can
be any unit of privacy that we need to protect: a device
identifier, an organization, or even a unique row ID if
we want to protect rows and not users. For simplicity
of notation we assume that this special column is a user
identifier. Users may own multiple rows in each input
table, and each row must be owned by exactly one user.
Our model guarantees (ε, δ)-DP with respect to each
user, as defined in Definition 2.

We implement our DP query engine in two com-
ponents on top of a general SQL engine: a collec-
tion of custom SQL aggregation operators (described
in Section 3.2), and a query rewriter that performs
anonymization semantics validation and enforcement
(described in Section 3.3). The underlying SQL engine
tracks user ID metadata across tables, and invokes the
DP query rewriter when our anonymization query syn-
tax is used on tables containing user data and any ap-
plicable permission checks succeed. Listing 5 provides
an example of a SQL query accepted by our system.

SELECT WITH ANONYMIZATION
T1.cohort , ANON_SUM (T2.val , 0, 1)

FROM Table1 T1 , Table2 T2 USING(uid)
GROUP BY T1. cohort ;

Listing 5. Anonymization query example

The query rewriter decomposes such queries into
two steps, one before and one after our introduced

DP aggregation operator, denoted by SELECT WITH
ANONYMIZATION. The first step begins by validating that
all table subqueries inside the DP operator’s FROM clause
enforce unique user ownership of intermediate rows.
Next, for each row in the subquery result relation, our
operator partitions all input rows by the vector of user-
specified GROUP BY keys and the user identifier, and ap-
plies an intermediate vanilla-SQL partial aggregation to
each group.

For the second step, we sample a fixed number of
these partially aggregated rows for each user to limit
user contribution across partitions. Finally, we compute
a cross-user DP aggregation across all users contributing
to each GROUP BY partition, limiting user contribution
within partitions. Adjusting query semantics is neces-
sary to ensure that, for each partition, the cross-user
aggregations receive only one input row per user.

3.2 Bounded-contribution aggregation

In this section, we present the set of supported ε-DP
statistical aggregates with bounded contribution. These
functions are applied as part of the cross-user aggrega-
tion step, discussed in Section 3.3. Importantly, at this
step, we assume that each user’s contributions have been
aggregated to a single input row - this property is en-
forced by the query rewriter.

For a simple example for bounded contribution,
COUNT(DISTINCT uid) counts unique users. Adding or
subtracting a user will change the count by no more
than 1.

For more complex aggregation functions we must
determine how much a user can contribute to the result
and add appropriately scaled noise. A naive solution
without limits on the value of each row leads to un-
bounded contribution by a single user. For example, a
SUM which can take any real as input has an unbounded
L1-sensitivity by Definition 3.

To address this, each ε-DP function accepts an ad-
ditional pair of lower and upper limit parameters used
to clamp (i.e., bound) each input. For example, denoting
the lower and upper bounds as L and U , respectively,
consider the anonymized sum function:

ANON_SUM(col, L, U)

Let sumU
L : D → R be the function that transforms

each of its inputs x into x′ = max(min(x, U), L), and
then all x′ are summed. The global sensitivity for this
bounded sum function is:

∆sumU
L = max(|L|, |U |)
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and thus, ANON_SUM can be defined by using this func-
tion and then adding noise scaled by this sensitivity. For
all functions, noise is added to internal states using the
well-known Laplace mechanism [14, 16] before a differ-
entially private version of the aggregate result can be
released.

For ANON_AVG, we use the algorithm designed in Li
et al. [31]: we take the quotient of a noisy sum (bounded
as in ANON_SUM, and scaled by sensitivity |U − L|/2)
and a noisy count. ANON_VAR is similarly derived; we
use the same algorithm to compute a bounded mean
and square it, and to compute a mean of bounded
squares. ANON_STDDEV is implemented as the square root
of ANON_VAR.

Lastly, ANON_NTILE, is based on a Bayesian binary
search algorithm [3, 23], and can be used to define
max, min, and median functions. The upper and lower
bounds are only used to restrict the search space and
do not affect sensitivity. Each iteration of the internal
binary search alters counts with a noise-adding mecha-
nism scaled by sensitivity 1.

For the rest of this paper, we assume that contri-
bution bounds are specified as literals in each query to
simplify our presentation. Setting bounds requires some
prior knowledge about the input set. For instance, to
average a column of ages, the lower bound could be rea-
sonably set to 0 and the upper bound to 120. To enhance
usability in the case where there is no such prior knowl-
edge, we also introduce a mechanism for automatically
inferring contribution bounds, described in more detail
in Section 5.1.1.

The definition of sensitivity given in Definition 3
assumes deterministic functions. From here, we will say
that the global sensitivity of a ε-DP aggregate function
is bounded by M if the global sensitivity of the same
function with no noise added is bounded by M . Due to
the contribution bounding discussed in this section, we
can determine such boundsM for our ε-DP aggregation
functions.

Table 1 lists our suite of aggregate functions and
their sensitivity bounds, proven in Appendix F. These
bounds assume that the aggregation is done on at least
one user; we do not consider the case where we compare
an empty aggregation with an aggregation over one user.
This last case is considered in Section 3.5. Note that the
bounds shown here are loose; we mostly care about the
boundedness, and the order of magnitude with respect
to U and L.

Table 1. ε-DP aggregate functions

Function Sensitivity Bound

ANON_COUNT(col) 1
ANON_SUM(col, L, U) max(|L|, |U |)
ANON_AVG(col, L, U) |U − L|
ANON_VAR(col, L, U) |U − L|2

ANON_STDDEV(col, L, U) |U − L|
ANON_NTILE(col, ntile, L, U) |U − L|

3.3 Query semantics

In this section, we define our (ε, δ)-DP relational opera-
tor, denoted by χ. To do so, we use some of the conven-
tional operators in relational algebra, a language used
to describe the transformations on databases that occur
in a query:
– Πs(R): Project columns s from R.
– σϕ(R): Select from R satisfying the predicate ϕ.
– gGa(R): Group on the cross products of distinct keys

in the columns in g. Apply the aggregations in a to
each group.

– R ./θ
cond

S: Take the cross product of rows in R and S,

select only the rows that satisfy the predicate cond.

Let s (select-list), g (group-list), and a (aggregate-list)
denote the attribute names s1, . . . , si, g1, . . . , gj , and
a1, . . . , ak, respectively. Assume a is restricted to only
contain the ε-DP aggregate function calls discussed in
Section 3.2. Our introduced operator, gχa, can be in-
terpreted as an anonymized grouping and aggregation
operator with similar semantics to gGa.

Let T be a table subquery containing any additional
analyst-specified operators that do not create any in-
termediate objects of shared ownership (as defined in
Section 3.3.1). Let R be an input table with each row
owned by exactly one user. R must have a denoted user-
identifying uid attribute in the schema for the query to
be allowed. We use T (R) as the input to our proposed
operator χ. Then, we can define our query Q:

Q := Πs(gχa(T (R)))

Our approach represents the general form of this
relational expression using augmented SQL:

SELECT WITH ANONYMIZATION s, a

FROM T (R)
GROUP BY g;

The query rewriter discussed in Section 3.1 trans-
forms a query containing χ into a query that only con-
tains SQL primitives, minimizing the number of changes
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to the underlying SQL engine. We define the following
in order to express our rewriter operation:
– Let uid be the unique user identifier associated with

each row. Let f(uid) compute the additional privacy
risk for releasing a result record. f represents the τ -
thresholding mechanism introduced in Section 2.2
and its nature is discussed in more detail in Sec-
tion 3.5.

– Let a′ be the corresponding non-ε-DP partial aggre-
gation function of a. For example, if a is ANON_SUM,
a′ would be SUM.

– Let mTn behave like a reservoir-sampling SQL
TABLESAMPLE operator where m is the grouping list
and n is the number of samples per group. In
other words, the operation mTn(R) partitions R by
columns m. For each partition, it randomly samples
up to n rows. We use T as the stability-bounding
operator and discuss its implications in Section 3.4.

When the query rewriter is invoked on the following
relational expression containing χ:

Q := Πs(gχa(T (R)))

it returns the modified expression, with χ expanded:

U := Πuid,g,a′(uidTCu(uid,gGa′(T (R)))
S := Πsσf(uid)<δ(gGf(uid),a(U))

Effectively, the rewriter splits Q into the two-stage
aggregation U and S. U groups the output of T (R) by
the key vector (uid, g), applying the partial aggregation
functions a′ to each group. Cu rows are then sampled
for each user. The first aggregation enforces that there
is only one row per user per partition during the next
aggregation step. S performs a second, differentially pri-
vate, aggregation over the output of U . This aggregation
groups only by the keys in g and applies the ε-DP ag-
gregation functions (f(uid), a). These functions assume
that every user contributes at most one input row. A
filter operator is applied last to suppress any rows with
too few contributing users.

3.3.1 Allowed subqueries
In this section, we introduce the constraints imposed
by χ on the table subquery T . Our approach requires
that the relational operators composing T do not create
any intermediate objects of shared ownership, that is,
no intermediate row may be derived from rows owned
by different users. A naive application of certain rela-
tional operators violate this requirement. For example,
for the aggregation operator, rows owned by distinct

Table 2. Allowed Table Subquery Operators

Operator Basic Form Required Variant

Projection Πa(R) Πuid,a(R′)
Selection σϕ(R) σϕ(R′)
Aggregation gGa(R) uid,gGa(R′)
Join R ./θ

cond
S R′ ./θ S′

cond∧r.uid=s.uid

users may be aggregated into the same partition. Then
the resulting row from that partition will be owned by
all users whose data are contributed to the group. For
the naive join operator, two rows from distinct users
may be joined together, creating a row owned by both
users.

This restriction limits our system since some queries
cannot be run. We observed that in practice, most use-
cases can be fit within these constraints. We leave ex-
tensions to a wider class of queries for future work. This
might require a different model than the one presented
here, but changing query semantics will always be nec-
essary for queries with unbounded sensitivity.

We address the shared ownership issue by restrict-
ing each operator composing T such that, for each row
in that operator’s output relation, that row is derived
only from rows in the input relation that have matching
uid attributes. We enforce this rule for aggregate oper-
ators by requiring that the analyst additionally groups-
by the input relation’s uid attribute. For join operators,
we require that the analyst adds a USING(uid) clause
(or equivalent) to the join condition. Additionally, each
operator of T must propagate uid from the input rela-
tion(s) to the output relation. In queries where this is
unambiguous (i.e., the analyst does not refer to uid in
the query), we can automatically propagate uid.

Allowed alternatives for each basic operator are
listed in Table 2. They are enforced recursively during
the query rewrite for each operator that composes T .

3.3.2 Example: two-step aggregation
Consider the following query, counting the number of
employees per department with at least one order:

SELECT WITH ANONYMIZATION
dept , ANON_COUNT (*, 0, 5) as c

FROM Employee E, Order O USING (uid)
GROUP BY dept;

Note that including bounds on ANON_COUNT(*, L, U)
is shorthand for using ANON_SUM(col, L, U) in the
cross-user aggregation step. We can express this query
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in relational algebra using our DP operator, χ:

Q := Πdept,c(deptχanon_count(∗,0,5) as c(E ./θ
E.uid=O.uid

O))

Expand χ into the two-stage aggregation, U and S.
T is a table subquery. Our query can then be written
as:

T := Πdept,uid,c2(dept,uid,Gcount(∗) as c2(E ./θ
E.uid=O.uid

O))

U := Πdept,uid,c2(uidTCu(U))
S := Πdept,c σc3≥τ (deptG(anon_sum(c′,0,5) as c,

anon_count(∗) as c3)(T ))

Note that we add an additional user counting ε-
DP function, aliased as c3, which is compared to our
threshold parameter, τ , to ensure that the grouping does
not violate the (ε, δ)-DP predicate, to be discussed in
Section 3.5. In this case c3 is the number of unique users
in each department.

In Figure 1, we illustrate the workflow with example
tables Employee and Order, τ = 2, and Cu = 1.

3.4 Query stability and sensitivity
3.4.1 Bounding stability
We adapt the notion of query stability from [34].

Definition 4 (Global Stability). Let T be a function
T : D → D. We say that T has c-stability if for all
D1, D2 ∈ D:

||T (D1)− T (D2)|| ≤ c||D1 −D2||.

Note that for a user u owning k rows in D and a c-stable
transformation T , there may be k · c rows derived from
rows owned by u in T (D).

Our privacy model requires the input to the cross-
user aggregation to have constant stability. Simple SQL
operators have a stability of one. For instance, each
record in an input relation can only be projected onto
one record. So an addition or a deletion can only af-
fect one record in a projection; thus projections have
a stability of one. The same logic applies for selection.
Other operators, such as joins, have unbounded stabil-
ity because source records can be multiplied. Adding
or removing a source record can affect an unbounded
number of output records. When SQL operators are se-
quentially composed, we multiply the stability of each
operator to yield the entire query’s overall stability.

We can compose an unbounded transform T with a
stability-bounding transform TCu to yield a composite

Cu-stable transform:

||TCu(T (D1))− TCu(T (D2))|| ≤ Cu ||D1 −D2||

For TCu , we use partitioned-by-user reservoir sam-
pling with a per-partition reservoir size of Cu, which
has a stability of Cu. Reservoir sampling was chosen for
its simplicity, and because it guarantees a strict bound
on the contribution of one user. Non-random sampling
(e.g. taking the first Cu elements, or using systematic
sampling) risks introducing bias in the data, depending
on the relative position of records in the database. Sim-
ple random sampling does not guarantee contribution
bounding, and all types of sampling with replacement
can also introduce bias in the data.

Joins appear frequently in queries [21], so it is im-
perative to support them in order for an engine to be
practical. Since joins have unbounded stability, a stabil-
ity bounding mechanism is necessary to provide global
stability privacy guarantees on queries with joins. We
can thus support a well bounded, full range of join op-
erators.

3.4.2 Bounding sensitivity
In this section, we show that the user-global sensitivity
of any allowed query in our engine is bounded. Sensitiv-
ity is bounded due to the structure of our two-stage ag-
gregation, the bounded-contribution aggregation func-
tions, and the stability-bounding operator T .

Theorem 1. Consider an anonymization query in the
form h(R), where R is the input table and h is the query
transformation. Then there exist constantsM , which de-
pends on h, and an engine-defined constant Cu, such
that the user sensitivity satisfies ∆uh ≤ CuM .

Proof. Appendix B.

3.5 Minimum user threshold

In this section, we outline a technique proposed in [25] to
prevent the presence of arbitrary group keys in a query
from violating the privacy predicate: the τ -thresholding
mechanism. For example, consider the naive implemen-
tation in Listing 6:
SELECT col1 , ANON_SUM (col2 , L, U)
FROM Table
GROUP BY col1;

Listing 6. Leaking GROUP BY keys

Suppose that for the value col1 = c, only one user
u contributed to the sum. Then querying without data
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Fig. 1. Example workflow of anonymized query. Note that in the last step, the IT department gets dropped from τ -thresholding.

from u would reveal the absence of the output row cor-
responding to group col1 = c. It would be revealed with
certainty that user u has value c for col1.

To prevent this, for each grouping or aggregation
result row we first calculate an ε-DP count of unique
contributing users. If that count is less than some min-
imum user threshold τ the result row must not be re-
leased. τ is chosen by our model based on ε, δ, and Cu
parameter values. In the example above, the output row
for group col1 = c would not appear in the result with
some probability.

Theorem 2. Let ε, δ, Cu > 0 be privacy parameters.
Consider a SQL engine that, for each non-empty group
in a query’s grouping list, computes and releases an
ε/Cu-DP noisy count of the number of contributing
users. For empty groups, nothing is released. A user may
not influence more than Cu such counts. Each count
must be τ or greater in order to be released. We may set

τ = 1− Cu log(2− 2(1− δ)1/Cu)
ε

to provide user-level (ε, δ)-DP in such an engine.

The proof to Theorem 2 is supplied in Appendix C.
Our engine applies τ -thresholding after the per-user ag-
gregation step. Thus, we can generalize Theorem 2 to
our engine by using composition theorems for differen-
tial privacy.

3.6 User-level differential privacy

In this section, we show that our engine satisfies user-
level (ε, δ)-DP, as defined in Definition 2.

Suppose that a query f has aggregate function list
a = {a1, . . . , aN} and grouping list g = {g1, . . . , gJ}. Let
the privacy parameter for aggregation function ai be εi.

Consider any set of rows owned by a single user in
the input relation of our anonymization operator, gχa.
We first partition and aggregate these rows by the key
vector (uid, g), before sampling up to Cu rows for each
partition by (uid).

The result for a group j is reported if the τ -
thresholding predicate defined in Section 3.5 is satisfied.
Computing and reporting the comparison count for this
predicate is ε′j-DP. For D1, D2 ∈ D, such that they differ
by a user’s data for a single group j, consider each aggre-
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gation function ai as applied to group j. By composition
theorems [22] and Theorem 2, we provide (ε′j +

∑
εi, δj)

user-level (ε, δ)-DP for that row.
However, there are many groups in a given query.

Due to our stability bounding mechanism, a single user
can contribute to up to Cu groups. The Cu output
rows corresponding to these groups can be thought of
as the result of Cu sequentially composed queries. Let
D1, D2 ∈ D such that ||D1−D2||u = 1. Let ε be the sum
of the Cu greatest elements in the set {ε′j+

∑
εi}j=1,...,J .

By composition theorems in differential privacy [22], we
conclude that for any output set S, and some δ > 0, we
have

Pr[f(D1) ∈ S] ≤ eε Pr[f(D2) ∈ S] + δ

This shows that given engine-defined parameters ε,
δ, and Cu, it is possible to set privacy parameters for
individual ε-DP functions to satisfy the query (ε, δ)-
DP predicate. In reality, we conservatively set ε′j , εi =

ε
Cu(N+1) for all i and j. δ is enforced by the derived pa-
rameter τ as discussed in Section 3.5. Both user-privacy
parameters ε and δ can therefore be bounded to be ar-
bitrarily small by analysts and data owners.

Note that the method we use to guarantee user-
level differential privacy can be interpreted as similar
to row-level group privacy: after the per-user aggrega-
tion step, we use the composition theorem to provide
group privacy for a group of size Cu. Alone, row-level
group privacy does not provide user-level privacy, but
in combination to user-level contribution bounding, this
property is sufficient to obtain the desired property.

4 Accuracy
In this section, we explore the accuracy of our system by
running numerical experiments and provide analytical
reasoning about the relationship between accuracy and
various parameters.

4.1 Experimental accuracy

We assess accuracy experimentally using TPC-H [7], an
industry standard SQL benchmark. The TPC-H bench-
marks contains a database schema and queries that are
similar to those used by analysts of personal data at
real-world organizations. In addition, the queries con-
tain interesting features such as joins and a variety of ag-
gregations. We generate a TPC-H database with the de-
fault scale factor of 1. We treat suppliers or customers as

“users”, as appropriate. Our metric for accuracy is me-
dian relative error, the same one used in [21]; a smaller
median relative error corresponds to higher utility.

4.2 Aggregation functions

We compute the median relative error of 1,000,000 runs
for our model over TPC-H Query 1 using three different
aggregation functions and ε = 0.1 in Table 3. We com-
pare our results to 1,000,000 runs of Flex over the same
query, and 10,000 runs (due to performance considera-
tions) of PINQ over the same query. To present a fair
comparison, we disabled τ -thresholding and compared
only one result record to remove the need for Cu stabil-
ity bounding. In addition, each run of the experiment
was performed using a function of fixed sensitivity, con-
trolled by supplying the function with a lower bound of
0 and an upper bound of the value in the ∆uQ1 column.
The bounds were fixed to minimize accuracy loss from
contribution clamping.

For our experiments with PINQ and Flex, we also
set sensitivity to our previously determined ∆uQ1 listed
in Table 3. The results are close to our model’s results,
but because neither PINQ nor Flex can enforce contri-
bution bounds for databases with multiple contributions
per user, incorrectly set sensitivity can result in query
results that are not differentially private. Such incor-
rectly set bounds can be seen in experiments in Johnson
et al. [21] and McSherry’s analysis [33], and in the last
row of Table 3, where PINQ and Flex report errors far
below what are required to satisfy the ε-DP predicate.

With correctly set sensitivity bounds our model’s
results are comparable to PINQ’s results for count and
average. Implementation differences in our median func-
tion mean that our error is lower by a factor of 2. Both
PINQ and our model outperform Flex’s result for count
by around an order of magnitude. We don’t report er-
rors for average and median for Flex because Flex does
not support those functions.

4.3 Aggregations with joins

We present the results of running our system over a
selection of TPC-H queries containing joins in Table
4. Similarly, we report the median relative error of
1,000,000 runs for each query using ε = 0.1. We report
the impact of τ -thresholding (the ratio of suppressed
records), suggesting that our model is (ε, δ)-DP. δ was
set with δ = n−ε logn [11], where n is the number of dis-
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Table 3. TPC-H Query 1 errors comparison with others (ε = 0.1)

Function ∆uQ1 Our model PINQ Flex

ε-COUNT(*) 373 0.00175 0.00179 0.0197
ε-AVG(l_extendedprice) 100000 0.00181 0.00181 ∗

ε-MEDIAN(l_extendedprice) 100000 0.00189 0.00349 ∗

ε-COUNT(*) 1† 0.993 4.727× 10−6 2.70× 10−5

∗ Unsupported functions
† Intentionally incorrect sensitivity to demonstrate contribution bounding

Table 4. Selected TPC-H join query results (ε = 0.1)

Query ∆uQ Cu Experimental error τ -thresholding rate δ

Q4 5 5 0.0339 5.40× 10−5 6.78× 10−7

Q13 1 1 0.00677 0.309 6.78× 10−7

Q16 1 5 11.3∗ 0.9999606 2.07× 10−4

Q21 1 1 1.60∗ 0.999796 2.07× 10−4

∗ Results uninterpretable due to high levels of τ -thresholding

tinct users in the underlying database: either customers
or suppliers, depending on the query.

Q4 represents how our system behaves when very
little τ -thresholding occurs. Q16 and Q21 demonstrate
the opposite, both queries exhibit a very large error
that differs from the theoretical error due to most par-
titions being removed by the threshold because of their
small user count. Indeed, this is by design: as partition
user counts approach 1, the ratio of τ -thresholding ap-
proaches (1 − δ)1/Cu . Finally, Q13 represents a more
typical result, a query containing mostly medium user
count partitions with a long tail of lower count par-
titions. A moderate amount of τ -thresholding occurs
which increases error compared to Q4, but the results
are still quite accurate.

4.4 Impact of parameters on utility

In this section we explore the relationship between util-
ity and various parameters, which must be adjusted to
balance privacy and utility [1].

4.4.1 Effect of ε
The privacy parameter ε is inversely proportional to the
Laplace scale parameter used by anonymous functions
to add noise. Hence, an increase in ε leads to a decrease
in utility. The median error from noise, x, satisfies:

x = log(2)∆u

ε

where ∆u is the sensitivity (Appendix D). When a single
query contains many aggregations, the privacy budget
is split equally among them. In the presence of N aggre-
gations, each aggregation will satisfy (ε/N)-differential
privacy. Thus, utility degrades inversely with the num-
ber of aggregations.

4.4.2 Effect of δ and Cu

For a fixed ε, varying δ causes the threshold τ to change,
which changes the number of records dropped due to
thresholding. Similarly, changing Cu modifies the num-
ber of records dropped due to contribution bounding.
We first perform experiments on TPC-H Query 13 with
ε = .1 and varying δ to quantify the impact on parti-
tions returned: Figure 2 displays the results. The figure
shows that as δ increases exponentially, the proportion
of partitions thresholded decreases somewhat linearly.

10-8 10-7 10-6 10-5
δ

0.29

0.30

0.31

0.32

0.33

Proportion of Partitions Thresholded
Effect of δ on Thresholding Rate

Fig. 2. Partition thresholding rates on Q13 induced by various δ.
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Next, we analyze the effect of Cu for a specific artifi-
cial query. Consider the following query after rewriting.

SELECT ANON_COUNT (*)
FROM ( SELECT uid , ROW_NUMBER () as rn

FROM Table1
GROUP BY uid , rn)

TABLESAMPLE RESERVOIR
(Cu ROWS PARTITION BY uid );

Let U be the set of users in Table, and suppose
that there are N users. Suppose each user u ∈ U has a
number of rows distributed according to Du. Then the
distribution of the error in the count due to reservoir
sampling is:

ErrorCu =
∑
u∈U

Du − (Du|Du ≤ Cu)

We divide the median of ErrorCu by the total ex-
pected count

∑
u∈U E[Du] to obtain the median percent

error. Figure 3 shows the effect of Cu on median per-
cent error with N = 1000 and various distributions Du.
All distributions have similar behavior as Cu increases,
but the median percent error declines at different speeds
based on distribution shape.

Fig. 3. Median percent error induced by Cu for various
distributions centered at 100.

4.4.3 Effect of clamping
We analyze the effect of clamping on accuracy using
model input distributions. Since clamping occurs at the
ε-DP aggregation level, we focus on input sets that have
at most one row per user.

Consider finding ANON_AVG(S, l, u), where S is
size N and uniformly distributed on [a, b]. For symmet-
ric input distribution, symmetric clamping will not cre-
ate bias, so we clamp only one end: consider clamping
bounds (l, u) such that l = a and a < u < b. We analyze
expected error since median error is noisier when run-
ning experiments, and the behavior of both metrics are
similar.

We plot the impact of the upper clamp bound on to-
tal expected error for uniform S with (a, b) = (50, 150) in
Figure 4. We used lower bound l = −200, N = 100, and
various ε. The optimal point on each curve is marked
with a circle. To maximize accuracy, overestimating the
spread of the input set must be balanced with restrict-
ing the sensitivity. Analysis with the other aggregation
functions yields similar results.

Fig. 4. Total median error for various ε.

We perform further clamping analysis with multiple
distributions in Appendix G.

5 Practical considerations
Designing a differentially private query engine for non-
expert use requires a number of considerations beside
the design and implementation of the system described
in the previous section. In this section, we highlight a
few of these concerns, and detail the approaches we have
taken to mitigate them.

5.1 Usability

In this section, we present the ways we improved the
system’s usability.

5.1.1 Automatic bounds determination
One major difference between standard SQL queries
and queries using our differentially private aggregation
operator is the presence of bounds: e.g., when using
ANON_SUM, an analyst must specify the lower and up-
per bound for each sum input. This differs from stan-
dard workflows, and more importantly, it requires prior
knowledge of the data that an analyst might not have.

To remove this hurdle, we designed an aggregation
function which can be sequentially composed with our
previously introduced ε-DP functions to automatically
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compute bounds that minimize accuracy loss. Call this
function APPROX_BOUNDS(col).

Without contribution bounds, the domain of an ε-
DP function f in our model spans R. Finding differen-
tially private extrema over such a range is difficult. For-
tunately, we can leverage two observations. First, inputs
to f are represented on a machine using finite precision;
typically 64-bit integers or floating point numbers. Sec-
ond, bounds do not need to be close to the real extrema:
clipping a small fraction of data will usually not have
a large influence on the aggregated results, and might
even have a positive influence by removing outliers.

Consider an ANON_SUM operation operating on 64-
bit unsigned integers where bounds are not pro-
vided. We divide the privacy budget in two: the first
half to be used to infer approximate bounds using
APPROX_BOUNDS(col); the second half to be used to cal-
culate the noisy sum as usual. We must spend privacy
budget to choose bounds in a data-dependent way.

In the APPROX_BOUNDS(col) function, we instantiate
a 64-bin logarithmic histogram of base 2, and, for each
input i, increment the dlog2 ieth bin. Laplace noise is
then added to the count in each bin, as is standard for
differentially private histograms [14]. Then, to find the
approximate maximum of the input values, we select the
most significant bin whose count exceeds some threshold
t, calculated using parameters B and P :

t = 1
ε

log(1− P
1

B−1 )

where B is the count of histogram bins and P is the
desired probability of not selecting a false positive. For
example, B = 64 for unsigned integers. For the deriva-
tion of the threshold t, see Appendix E.

When setting P , the trade-offs of clipping distribu-
tion tails, false positive risk, and algorithm failure due
to no bin count exceeding t must all be considered. Val-
ues on the order of (1 − 10−9) for P can be suitable,
depending on ε and the size of the input database.

The approximate minimum bound can similarly be
found by searching for the least significant bin with
count exceeding t. We generalize this for signed num-
bers by adding additional negative-signed bins, and for
floating point numbers by adding bins for negative pow-
ers of 2.

5.1.2 Representing accuracy and privacy
A ubiquitous challenge for a DP interface is the fact that
acceptable accuracy loss is data-dependent. We address
this by giving analysts a variety of utility loss measures
to make an informed decision.

For each result, we attach a confidence interval (CI)
of the noise that was added. The CI can be calculated
from each function’s contribution bounds and share of
ε. The CI does not account for the effect of clamping
or thresholding. In addition, during automatic bounds
determination (Section 5.1.1), the log-scale histogram
gives us an approximate fraction of inputs exceeding the
chosen bounds; this can also be returned to the analyst.

For queries with a long tail of low user count parti-
tions that do not pass τ -thresholding, we can combine
all such partitions into a single partition. If the com-
bined partition now exceeds the τ -threshold, we may re-
turn aggregate results for the "leftovers" partition. This
will allow analysts to estimate data loss.

To represent privacy, there are well-established tech-
niques [19, 28, 29, 38] and perspectives [41] in the liter-
ature.

5.2 Manual testing

Testing is necessary to get a strong level of assurance
that our query engine correctly enforces its privacy guar-
antee. We audited the code manually and found some
implementation issues. Some of these issues have previ-
ously been explored in the literature, notably regarding
the consequences of using a floating-point representa-
tion [36] with Laplace noise. Some of them, however, do
not appear to have been previously mentioned in the
literature, and are good examples of what can go wrong
when writing secure anonymization implementations.

One of these comes from another detail of
floating-point representation: special NaN (“not a num-
ber”) values. These special values represent un-
defined numbers, like the result of 0/0. Impor-
tantly, arithmetic operations including a NaN are al-
ways NaN, and comparisons between any NaN and
other numbers are always False. This can be ex-
ploited by an attacker, for example using a query
like ANON_SUM(IF uid=4217 THEN 0/0 ELSE 0). The
NaN value will survive naive contribution bounding
(bounds checks like if(value > upper_bound) will re-
turn False), and the overall sum will return NaN iff the
condition was verified. We suspect that similar issues
might arise with the use of special infinity values, al-
though we have not found them in our system (such
values are correctly clamped).

From this example, we found that a larger class of
issues can appear whenever the user can abuse a branch-
ing condition to fail if an arbitrary condition is satisfied
(by example, by throwing a runtime error or crashing
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the engine). Thus, in a completely untrusted environ-
ment, the engine should catch all errors and silently ig-
nore them, to avoid leaking information in the same
way; and it should be hardened against crashes. We do
not think that we can completely mitigate this prob-
lem, and silently catching all errors severely impedes
usability. Thus, is it a good idea to add additional risk
mitigation techniques, like query logging and auditing.

Interestingly, fixing the floating-point issue in [36]
leads to a different issue when using the Laplace mech-
anism in τ -thresholding. The secure version of Laplace
mechanism requires rounding the result to the near-
est r, where r is the smallest power of 2 larger than
1/ε. If the τ -thresholding check is implemented as
if (noisy_count >= tau), then a noisy count of e.g.
38.1 can be rounded up to e.g. 40 (with r = 4). If the
threshold τ is 39, and the δ calculation is based on a
theoretical Laplace distribution, then a noisy count of
38.1 shouldn’t pass the threshold, but will: this leads
to underestimating the true δ. This can be fixed by us-
ing a non-rounded version of the Laplace mechanism for
thresholding only; as the numerical output is never dis-
played to the user, attacks described in [36] don’t apply.

5.3 Stochastic testing

While the operations used in the engine are theoreti-
cally proven to be differentially private, it is crucial to
verify that these operations are implemented correctly.
Since the number of possible inputs is unbounded, it is
impossible to exhaustively test this. Thus we fall back
to stochastic testing and try to explore the space of
databases as efficiently as possible. This does not give
us a guarantee that an algorithm passing the test is dif-
ferentially private, but it is a good mechanism to detect
violations.

Note that we focus on testing DP primitives (ag-
gregation functions) in isolation, which allows us to re-
strict the scope of the tests to row-level DP. We then
use classical unit testing to independently test contri-
bution bounding. We leave it as future work to extend
our system to handle end-to-end user-level DP testing.

Our testing system contains four components:
database generation, search procedure to find database
pairs, output generation, and predicate verification.

5.3.1 Database generation and testing
What databases should we be generating? All DP aggre-
gation functions are scale-invariant, so without loss of
generality, we can consider only databases with values

in a unit range [−r, r]. Of course, we can’t enumerate
all possible databases [−r, r]S , where S is the size of the
database. Instead, we try to generate a diverse set of
databases. We use the Halton sequence [18] to do so.
As an example, Figure 5 plots databases of size 2 gen-
erated by a Halton sequence. Unlike uniform random
sampling, Halton sequences ensure that databases are
evently distributed and not clustered together.

Fig. 5. 256 points over a [−0.5, 0.5]2 unit square: Halton sequence

A database is a set of records: we consider its power
set, and find database pairs by recursively removing
records. This procedure is shown in Figure 6.

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

{}

Fig. 6. Database Search Graph for a database {e1, e2, e3}

5.3.2 DP predicate test
Once we have pairs of adjacent databases, we describe
how we test each pair (D1, D2). The goal is to check
that for all possible outputs S of mechanism f :

Pr[f(D1) ∈ S] ≤ eε Pr[f(D2) ∈ S] + δ.

By repeatedly evaluating f on each database, we
estimate the density of these probability distributions.
We then use a simple method to compare these distri-
butions: histograms.

We illustrate this procedure in Figure 7a and Fig-
ure 7b. The upper curves (in orange) are the upper DP
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(a) Passing test (b) Failing test

Fig. 7. Histogram examples for DP testing, given one pair of
databases

bound, created by multiplying the probability estimate
of each bin for database D1 by eε and adding δ. The
lower curve (in blue) is the unmodified probability esti-
mate of D2. In Figure 7a, all blue buckets are less than
the upper DP bound: that the DP predicate is not vio-
lated. In Figure 7b, 3 buckets exceed this upper bound:
the DP predicate is been violated. For symmetry, we
also repeat this check with D1 swapped with D2.

It is sufficient to terminate once we find a single pair
of databases which violate the predicate. However, since
the histogram is subject to sampling error, a correctly
implemented algorithm can fail this test with non-zero
probability. To address this, we relax our test by using
confidence intervals as bounds [42]. We can also param-
eterize the tester with a parameter α that tolerates a
percentage of failing buckets per histogram comparison.

5.3.3 DP stochastic tester algorithm
The overall approach is an algorithm that iterates over
databases and performs a DFS on each of the database
search graphs, where each edge is a DP predicate test.
See Appendix A for more details.

5.3.4 Case study: noisy average
We were able to detect that an algorithm was imple-
mented incorrectly, violating DP. When we first imple-
mented ANON_AVG, we used the Noisy Average with Ac-
curate Count algorithm from [31]: we used our ANON_SUM
implementation to compute the noisy sum and then di-
vided it by the un-noised count. Our first version of
ANON_SUM used a Laplace distribution with scale |U−L|ε ,
where U and L are the upper and lower clamping
bounds, which is the correct bound when used as a
component of ANON_AVG. However, this was not correct
for noisy sum in the case when adjacent databases dif-
fer by the presence of a row. We updated the scale
to max(|U |,|L|)

ε , as maximum change in this case is the
largest magnitude. This change created a regression in
DP guarantee for ANON_AVG, which was detected by the
stochastic tester.

Fig. 8. Example histogram comparison for the Noisy Average
algorithm with incorrect noise.

Orange: eεPr[f({−0.375,−0.055, 0.3})]
Blue: Pr[f({−0.375,−0.055})]

Figure 8 shows a pair of datasets where the
stochastic tester detected a violation of the DP pred-
icate: {−0.375,−0.055, 0.3} and {−0.375,−0.055}. We
can clearly see that several buckets violate the predi-
cate. Once the stochastic tester alerted us to the error
we quickly modified ANON_AVG to no longer depend on
ANON_SUM so that it could use the correct sensitivity.

6 Conclusion and future work
We presented a generic system to answer SQL queries
with user-level differential privacy. This system is able
to capture most data analysis tasks based on aggrega-
tions, performs well for typical use-cases, and provides a
mechanism to deduce privacy parameters from accuracy
requirements, allowing a principled decision between re-
identification risk and the required utility of a particu-
lar application. All implemented mechanisms are tested
with a stochastic checker that prevents regressions and
increases our level of confidence in the robustness of
the privacy guarantee. By releasing components of our
system as open-source software after we validated its vi-
ability on internal use-cases, we hope to encourage fur-
ther adoption and research of differentially private data
analysis.

The algorithms presented in this work are relatively
simple, but empirical evidence show that this approach
is useful, robust and scalable. Future work could in-
clude usability studies to test the success of the methods
we used to explain the system and its inherent accura-
cy/privacy trade-offs. In addition, we see room for sig-
nificant accuracy improvements: using Gaussian noise
and better composition theorems is a natural next step.
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There might also be opportunities to compensate the
data loss due to contribution bounding and threshold-
ing, optimize the algorithms used for specific sets of
queries, ore use amplification by sampling. We did not
attempt to cache results to allow people to re-run the
queries, but further work could also explore the usability
and privacy impact of such a method.

More generally, we believe that future work on DP
should consider that realistic data typically includes
multiple contributions for a single user: we believe that
contribution bounds can be built into many other DP
mechanisms that are not SQL-based.
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A Stochastic tester algorithm
We present our algorithm putting all the pieces together
in Algorithm 1. For simplicity, we abstract away the
generation of databases by including it as an input pa-
rameter here, which can be assumed to be generated by
the Halton sequence as we described in Section 5.3.1.
We also do not include the confidence intervals or α pa-
rameter described earlier for dealing with the approxi-
mation errors. It is also possible to adaptively choose a
histogram bin width, but we put an input parameter K
here. The general idea is a depth-first search procedure
that iterates over edges of the database search graph.

Our actual implementation includes all of the above
omissions, including an efficient implementation of the
search procedure that caches samples of databases al-
ready generated.

B Proof of Theorem 1
Restatement of Theorem 1. Consider an
anonymization query in the form h(R), where R is
the input table and h is the query transformation. Then
there exist constants M , which depends on h, and an
engine-defined constant Cu, such that the user sensitiv-
ity satisfies ∆uh ≤ CuM .

Proof. Recall Definition 3:

∆uf = max
D1,D2∈D:||D1−D2||u=1

||f(D1)− f(D2)||1

Let h be some allowed query transformation in our
privacy model. Since h must return a vector of aggre-
gate values as the output, we can write h = F ◦ f ,
where F : D → D and f : D → Rd. In other words, F is
a database-to-database transformation while f takes a
database and returns a vector of real numbers. Suppose
that F has stability c. Then for any D1, D2 ∈ D such
that ||D1 −D2|| = k, we have ||F (D1)− F (D2)|| ≤ kc.

Suppose the maximum number of rows any user
owns in the database is k. Then for our query h, the

https://github.com/frankmcsherry/blog/blob/master/assets/Synth-SIGMOD.pdf
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Input: A random mechanism f , privacy
parameters (ε, δ), databases D, number
of samples N , number of histogram
buckets K

Output: Decision on whether f is differentially
private

1 foreach Dr ∈ D do
2 S ← {root node Dr} // Initialize

search stack
3 while S 6= ∅ do
4 A← pop(S)
5 S ← S ∪ {succ(A)}
6 foreach B ∈ succ(A) do

// Generate samples

7 XA ← {x
(i)
A ∼ f(A) | i = 1, . . . , N}

8 XB ← {x
(i)
B ∼ f(B) | i = 1, . . . , N}

// Determine histogram buckets
9 Hmin, Hmax ←

min(XA ∪XB),max(XA ∪XB)
10 h← Hmax−Hmin

K

11 B← {Bk =
[Hmin + (k − 1) · h,Hmin + k · h]

12 | k = 1, . . . ,K}
13 foreach Bk ∈ B do

// Check DP condition using
approximate densities
over Bk

14 if 1
N

∑N
i 1(x(i)

A ∈ Bk) >
15 eε 1

N

∑N
i 1(x(i)∈Bk)

B + δ then
16 return f is not differentially

private
17 end
18 end
19 end
20 end
21 end
22 return f is differentially private

Algorithm 1: DP Stochastic Test

addition or deletion of a single user from a database
D1 creates at most k · c changes in F (D1). Thus, our
user-global sensitivity is bounded by:

∆uh ≤ max
D1,D2∈D:||F (D1)−F (D2)||=kc

||f(D1)− f(D2)||1

The databases F (D1) for all D1 ∈ D is a subset of
all databases D, so

∆uh ≤ max
D1,D2∈D:||D1−D2||=kc

||f(D1)− f(D2)||1,

which, by the definition of global sensitivity, can be
bounded as

∆uh ≤ kc ∆h.

Now, consider in addition that:

∆h = max
D1,D2∈D:||D1−D2||=1

||f(F (D1))− f(F (D2))||1.

Again, since F (D1) for all D1 ∈ D is a subset of D,

∆h ≤ max
D1,D2∈D:||D1−D2||=1

||f(D1)− f(D2)||1 = ∆f,

from which we conclude that

∆uh ≤ kc ∆f.

Our per-user sensitivity is unbounded if at least one
of k, c, or ∆f are unbounded. Our privacy model, how-
ever, is formulated so that we can bound the product.

Since h is an allowed query for our privacy model,
we know that f = (f1, . . . , fi) must be a finite vector
of bounded-contribution aggregation functions, as dis-
cussed in Section 3.2. Therefore, for each i, the per-row
global sensitivity of fi is bounded and listed in Table 1.
Each sensitivity is function-dependent, so call itMi. The
sensitivity of f is then bounded by the sum of these sen-
sitivities M =

∑
Mi.

The operator T bounds stability by sampling a fixed
number of rows per user after the per-user aggregation
stage. Call this number Cu. Then the number of rows
owned by a user in the transformed database, previously
k · c, is now bounded by Cu.

Putting it all together, for each user there can only
be Cu contributing rows to f , each with a bounded con-
tribution of M , as determined by the analyst-specified
clamp bounds in Table 1. We can conclude that for
model-defined constants Cu and M , we have

∆uh ≤ CuM,

concluding the argument.
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C Proof of Theorem 2
Lemma 1. Consider a database D containing one row.
The probability that an ε-DP noisy count of the number
of rows in D will yield at least τ for any τ ≥ 1 is

ρτ = 1
2e
−(τ−1)ε

Proof. This is a special case of Section 5.2 in [25]: the
noisy count is distributed as the Laplace distribution
centered at the true count of 1 with scale parameter
1/ε. Evaluating the CDF at τ yields ρτ .

Restatement of Theorem 2. Let ε, δ, Cu > 0 be pri-
vacy parameters. Consider a SQL engine that, for each
non-empty group in a query’s grouping list, computes
and releases an ε/Cu-DP noisy count of the number
of contributing users. For empty groups, nothing is re-
leased. A user may not influence more than Cu such
counts. Each count must be τ or greater in order to be
released. We may set

τ = 1− Cu log(2− 2(1− δ)1/Cu)
ε

to provide user-level (ε, δ)-DP in such an engine.

Proof. Let f be the SQL engine operator. Consider any
pair of databases D1, D2 such that ||D1 − D2||u = 1
and such that the set of non-empty groups from D1 is
the same as that for D2; call this set G. The ε/Cu-
DP noisy count will get invoked for all groups in G

for both databases, and the τ -thresholding applied. For
all groups not in G, no row will be released for both
databases. A change in the user may affect a maximum
of Cu output counts, each of which is ε/Cu-DP, so by
differential privacy composition rules [22],

Pr[f(D1) ∈ S] ≤ eε Pr[f(D2) ∈ S]

Next, consider empty database D3. Let U be the
set of all outputs and let E be the output set containing
only the output “no result rows are produced”. Then we
have Pr[f(D3) ∈ U \ E] = 0. It remains to show that
for database D4 containing a single user, Pr[f(D4) ∈
U \ E] ≤ δ. The ε-DP count is computed by counting
the number of rows, and then adding Laplace noise with
scale Cu/ε. Database D4 contains values for a maximum
of Cu groups; it is only possible to produce an output
row for those groups. For each groups, the probability
that the noisy count will be at least τ is ρτ = 1

2e
− (τ−1)ε

Cu ,
by Lemma 1. Then:

Pr[f(D4) ∈ E] = 1− (ρτ )Cu

so we need to satisfy:

Pr[f(D4) ∈ U \ E] = (ρτ )Cu ≤ δ.

Solving for τ in the expression (ρτ )Cu ≤ δ:

τ ≥ 1− Cu log(2− 2(1− δ)1/Cu)
ε

.

Lastly, consider SQL engine operator f and
databases D5, D6 such that D6 is D5 with the addition
of a single user. It remains to consider the case where D5
and D6 do not have the same set of non-empty groups.
Since they differ by one user, D6 may have a maximum
of Cu additional non-empty groups, each containing 1
unique user; call this set of groups G. Call the set of
the remaining groups G′. Split the rows of D5 into two
databases: the rows that correspond to groups in G and
G′, respectively. Call the rows of D6 that correspond to
groups G as D0

6 and the rows that correspond to groups
G′ as D1

6. Note that D5 only contains rows correspond-
ing to groups G′. Now, split the operator f into two
operators f0 and f1: f0 is f with an added filter that
only outputs result rows corresponding groups in G; f1
is the same for G′.

We have decomposed our problem into the previ-
ous two cases. The system of f0, D5, and D0

6 is the
case where the pair of databases have the same set of
non-empty groups, G′. The system of f1, the empty
database, and D1

6 is the case where the non-empty
database contains a single user. Each system satisfies
the DP predicate separately. Since they operate on a
partition of all groups in D5 and D6, the two systems
satisfy the DP predicate when recombined into f , D5,
and D6.

We have shown that for two databases differing by a
single user, the DP predicate is satisfied. Thus, we have
shown that our engine provides user-level (ε, δ)-DP.

D Laplace median error
We find the theoretical median noise of a Laplace distri-
bution. Divide the theoretical median noise by the exact
result to obtain the theoretical median error.

For instance, the ANON_COUNT function applies
Laplacian noise with parameter ∆u /ε. Let xcount be
the theoretical median noise. Then xcount satisfies:

1
4 = CDFLaplace(xcount)−CDFLaplace(0)

= (1− 1
2e
−xcountε

∆u )− 1
2
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And thus:

xcount = log(2)∆u

ε
.

E Automatic bounding threshold
In this section we will derive the internal threshold used
in the APPROX_BOUNDS(col) function described in Sec-
tion 5.1.1.

We argue that for privacy parameter ε, the num-
ber of histogram bins B, and the probability of a false
positive P , we should set the threshold t to be

t = 1
ε

log(1− P
1

B−1 )

Recall that in the automatic bounding algorithm,
we create a logarithmic histogram of input values, and
apply Laplace noise to the count in each histogram bin.
The probability that a given bin produced a count of x
if its true count is zero is

Pbin = e−xε

Suppose we are looking for the most significant bin
with a count greater than t. In the APPROX_BOUNDS(col)
function, we iterate through the histogram bins, from
most to least significant, until we find one exceeding t.
In the worst case, the desired bin is the least significant
bin. This means B− 1 bins with exact counts of 0 must
not have noisy counts exceeding t. Thus, the probability
that there was not a false positive in this worst case is

P = (1− e−tε)B−1

Solving for t, we obtain the desired threshold.

F Aggregation sensitivity bounds
The definition of a bounded-sensitivity aggregate func-
tion is given in Section 3.2. We will show that the sen-
sitivity bounds listed in Table 1 are valid. Some of the
bounds are very loose. Note that in each of these, we
only consider cases where the two databases compared
in the definition of DP have one or more rows: the case
we compare a empty database with a database having
only one row is tackled by the τ -thresholding, detailed
in section Section 3.5.

Lemma 2. ANON_COUNT(col) is bounded by sensitivity
1.

Proof. Adding any row only changes the count by 1.

Lemma 3. ANON_SUM(col, L, U) is bounded by sensi-
tivity max(|L|, |U |).

Proof. Consider adding a clamped input x. Since L ≤
x ≤ U , we have |x| ≤ |L| and |x| ≤ |U |.

Lemma 4. ANON_AVG(col, L, U) is bounded by sensi-
tivity |U − L|.

Proof. The average of a clamped set of inputs whose
elements are on [L,U ] will always lie on [L,U ]. Then
the change in the average when adding or removing an
element must be bounded by |U − L|.

Lemma 5. ANON_VAR(col, L, U) is bounded by sensi-
tivity |U − L|2.

Proof. Consider clamped input set Z of size N with
average µ. The following is the variance.∑

z∈Z(z − µ)2

N

The values z, µ ∈ [L,U ], so the magnitude difference
between them must be bounded by |U − L|. Then the
variance is bounded by∑

z∈Z |U − L|
2

N
= |U − L|2

Lemma 6. ANON_STDDEV(col, L, U) is bounded by
sensitivity |U − L|2.

Proof. This follows directly from taking the square root
of the bound in the proof of Lemma 5.

Lemma 7. ANON_NTILE(col, L, U) is bounded by sen-
sitivity |U − L|.

Proof. The search space is bounded by [L,U ] so the re-
sult is in the interval. Thus, sensitivity can never exceed
the interval width.

G Clamping analysis
Consider the problem described in Section 4.4.3. The
unclamped expected mean of S is a+b

2 .; for S clamped
between [l, u], it is

(2au− a2 − u2)
2(b− a)
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Thus, the expected error of the clamped mean is

(b− u)2

2(b− a) .

Compare the expected error to the median noise
added by ANON_AVG(S, l, u), which is approximately
log(2)(u−l)

Nε (Appendix D). In particular, the clamping er-
ror grows quadratically with (b−u) while the noise error
only grows linearly with |u− l|. Behavior for other dis-
tributions is similar: Figure 9 displays the clamping ex-
pected error as a function u for clamping bounds (l, u).
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Fig. 9. Clamping error for distributions centered at 100.
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