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Abstract: Internet of Things and smart home technolo-
gies pose challenges for providing effective privacy con-
trols to users, as smart devices lack both traditional
screens and input interfaces. We investigate the poten-
tial for leveraging interpersonal communication cues as
privacy controls in the IoT context, in particular for
smart speakers. We propose privacy controls based on
two kinds of interpersonal communication cues — gaze
direction and voice volume level — that only selectively
activate a smart speaker’s microphone or voice recog-
nition when the device is being addressed, in order to
avoid constant listening and speech recognition by the
smart speaker microphones and reduce false device acti-
vation. We implement these privacy controls in a smart
speaker prototype and assess their feasibility, usability
and user perception in two lab studies. We find that
privacy controls based on interpersonal communication
cues are practical, do not impair the smart speaker’s
functionality, and can be easily used by users to selec-
tively mute the microphone. Based on our findings, we
discuss insights regarding the use of interpersonal cues
as privacy controls for smart speakers and other IoT
devices.
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1 Introduction

Internet of Things (IoT) and smart home devices have
gained considerable traction in the consumer market [4].
Technologies such as smart door locks, smart ther-
mostats, and smart bulbs offer convenience and utility
to users [4]. IoT devices often incorporate numerous sen-
sors from microphones to cameras. Though these sensors
are essential for the functionality of these devices, they
may cause privacy concerns over what data such devices
and their sensors collect, how the data is processed, and
for what purposes the data is used [35, 41, 46, 47, 70].
Additionally, these sensors are often in the background
or hidden from sight, continuously collecting informa-
tion. Users may forget about the presence of IoT de-
vices as well as their privacy settings, which can lead to
unexpected privacy invasions [35, 36, 74].

An increasingly common category of smart home
devices are smart speakers with voice assistants, such
as Amazon Echo or Google Home. These speakers allow
users to search for information online, order products,
and control other IoT devices in the home [3]. Addition-
ally, smart speakers can help users with tasks such as
cooking [44], and keeping track of to-do lists [65].

To detect and process voice commands, a smart
speaker’s microphones actively listen for an activation
keyword (e.g., “Alexa”). Once an activation keyword has
been recognized, subsequent commands are streamed to
the device manufacturer’s backend infrastructure for in-
terpretation and processing [7]. This typically means the
device’s microphone is perpetually active, always listen-
ing for an activation keyword, even when the user has
no intention to interact with the device. This has po-
tential privacy implications, such as accidental device
activation, in which case sensitive audio could be trans-
mitted to the manufacturer. Users may be off-put by the
perceived loss of privacy [3, 41], and may thus refrain
from purchasing a smart speaker and enjoying the util-
ity it offers [37, 40, 43]. Moreover, recent smart speakers
come equipped with additional sensors, such as video
cameras and motion sensors (e.g., Amazon Echo Show,
Facebook Portal), which may raise further privacy con-
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cerns. Although smart speakers often have a mute but-
ton to manually deactivate the microphone, users find it
cumbersome to constantly mute and unmute the device,
and thus rarely make use of such privacy controls [37].

We study whether this tension between the need
for continuous sensing and the burden of cumbersome
privacy controls could be overcome by seamlessly inte-
grating privacy controls into the user experience of the
device. More specifically, we propose embedding privacy
functionality into users’ interaction with smart speak-
ers by leveraging interpersonal communication cues to
determine when the device should be active.

When people engage in conversations, they often
naturally and instinctively indicate who they are ad-
dressing through non-verbal cues [19]. For instance, peo-
ple tend to look at the person they are talking to in an
in-person conversation [12, 19]. Similarly, people tend
to whisper or speak quietly when they only want a per-
son close-by to hear them [48]. Prior work has found
that some users personify their smart speakers [56]; they
may therefore be amenable to using similar interper-
sonal communication cues when interacting with the
device. This suggests an opportunity to build more intu-
itive and usable privacy controls for smart speakers that
leverage interpersonal cues. Specifically, we explore how
interpersonal communication cues could be used to let a
smart speaker recognize when it is being addressed, and
only then activate its microphone. Rather than requir-
ing users to manually adjust privacy settings (e.g., by
pressing the mute button), privacy is controlled by dy-
namically limiting sensor activity based on contextual
information [59, 61]. With this approach, the time the
speaker’s microphone is active could be reduced to only
those situations in which the user actually intends to in-
teract with the smart speaker, thus mitigating potential
privacy concerns with constantly listening microphones
and accidental device activation.

We explore this concept with two kinds of inter-
personal communication cues: the user’s voice-volume
level and gaze direction. We created a functional smart
speaker prototype, which allowed us to implement pri-
vacy controls for smart speakers leveraging gaze detec-
tion and voice volume. We evaluated the feasibility and
usability of our privacy control approaches in two lab
studies. Here, feasibility refers to whether the privacy
controls work as intended without impairing the users’
ability to activate the device when needed. — in other
words, is it possible to build these controls in ways that
do not hinder device activation. Usability refers to the
ease, effectiveness, and comfort of using the proposed
privacy controls. We find that both gaze and voice vol-
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ume are feasible cues to control when a smart speaker’s
microphone should be on. This suggests that privacy
controls based on interpersonal communication cues can
be integrated into a smart speaker’s user experience
without impacting the smart speaker’s utility. Further-
more, both privacy controls appear to be usable, i.e.,
our participants could easily and intuitively use these
context-adaptive privacy controls. Participants further
perceived the controls, in particular the voice volume-
based privacy control, as useful and usable.

Based on our findings, we discuss design implica-
tions for privacy controls of smart speakers and IoT de-
vices, as well as further opportunities and challenges for
leveraging interpersonal communication cues to design

context-adaptive and dynamic privacy controls.

2 Related Work

Smart speakers and other IoT technologies have raised
privacy concerns and spurred research on privacy solu-
tions. We first discuss related work on privacy concerns
and perceptions regarding IoT and smart home devices,
then review prior efforts addressing privacy issues.

2.1 10T Privacy Concerns

IoT and smart home devices such as smart meters,
thermostats and wearable fitness trackers are becom-
ing increasingly common, yet the physical environment
in which they are usually placed [14] and the sensitiv-
ity of types of data they collect [47] cause substantial
privacy concerns. These concerns can inhibit their adop-
tion by individuals [43]. For instance, household robots
have been found to have concerning security vulnerabil-
ities, e.g., attackers could easily leverage a built-in video
camera to spy on users’ activities in the bedroom [18].

Research has found that users generally desire
strong privacy protection for IoT devices and request
increased transparency about data practices, especially
when data is collected in intimate spaces, when the
types of data are sensitive, and the party with whom the
data are shared is not perceived as benevolent [46, 47].
Butler et al. [10] found that end-users were concerned
about the privacy and physical harm of teleoperated
robots at home, yet they struggled to accurately antic-
ipate privacy threats introduced by these robots. Simi-
larly, Zeng et al’s study [74] revealed a limited technical
understanding of smart home technologies among users,
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leading to incomplete mental models of potential threats
and risky behaviors. This finding is echoed by Abdi et
al. [1] and Malkin et al. [41], who found that users have
limited knowledge of how smart speakers collect, store,
and process data.

Tensions can further arise between multiple users
with different levels of tech-savviness or control regard-
ing the same device. For end-users of smart homes,
power imbalance occurs when one household member is
in charge of purchasing and setting up the device, hence
having the opportunity to spy on other household mem-
bers at ease [74]. Parents and teenagers may have con-
flicting expectations of what data should or should not
be collected by home surveillance devices (e.g., Internet-
connected locks and camera systems), which negatively
impacts the trust relationships between them [67].

For smart speakers specifically, their microphones,
which continuously listen for activation keywords, cause
privacy concerns [21]. Prior research has shown that
microphones are perceived as one of the most inva-
sive and privacy-violating sensors [9, 53]. Fruchter and
Liccardi’s analysis of online reviews [27] identified key
issues among users’ privacy and security concerns re-
lated to smart speakers, such as the substantial amount
and scope of collected data, and the perceived “creepi-
ness” of these devices overhearing sensitive conversa-
tions. Similarly, Malkin et al’s survey [41] revealed com-
mon concerns among smart speaker users about their
recordings being used for advertising or being accessed
by third-parties, even for benign purposes. Ammari et
al’s study also surfaces concerns about third-party use
of voice recordings, as well as concerns about and ex-
periences with random false activation of smart speak-
ers [3]. Lau et al. [37] further differentiated privacy
perceptions and concerns between smart speaker users
and non-users through their diary and interview study;
they found that non-users generally did not trust smart
speaker companies or did not perceive the utility of
smart speakers, whereas users hold fewer privacy con-
cerns but still report tensions in multi-person house-
holds and with guests. While there is evidence of “pri-
vacy calculus,” i.e., users reporting willingness to trade
off their privacy for the convenience and benefits pro-
vided by these devices [27, 37, 75], this is often paired
with resignation over either having to accept privacy
incursions or forgoing the technology’s benefits com-
pletely, with little opportunity to selectively control a
technology’s features and privacy implications [20, 37].
Liao et al. confirm such differences in privacy attitudes
between voice assistant users and non-users [40].
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2.2 Smart Speaker Privacy Controls

Today’s smart speakers have several types of privacy
controls: activation word, mute button, audio logs,
speaker recognition, among others. Smart speakers lis-
ten for an activation keyword (e.g., “Alexa”). Audio is
processed locally until the activation keyword is recog-
nized, at which point subsequent audio is recorded and
streamed to the device manufacturer’s backend for ex-
traction of voice commands [5]. Some smart speakers
have a physical mute button which can be used to deac-
tivate the microphone when desired. Through compan-
ion apps and websites, smart speaker users can access
and delete past voice recordings [16]. Moreover, Ama-
zon recently launched new voice commands as controls
for the deletion of recorded voice commands, such as
“delete everything I said today” and “delete what I just
said” [33].

However, current privacy controls for smart speak-
ers are problematic. The activation keyword approach
is susceptible to false activation [3, 24], i.e., the smart
speaker is activated when the user had no desire to
activate the device. Few smart speaker users review
or delete their recordings stored by the device’s man-
ufacturer, and many do not even know such option
exists [3, 41]. Similarly, the mute button is rarely
used [3, 37], as it requires a shift in modality [60] com-
pared to normal interaction with the smart speaker (go-
ing to the device and pressing a button versus speaking
to the device [37]). Furthermore, in situations in which
a user wants to use the smart speaker for one task (e.g.,
controlling music playback) while simultaneously having
a private conversation with another person, the mute
button fails because the device cannot be attentive to
requests (e.g., skipping a song) without also actively lis-
tening to the user’s conversation. Even if processing is
done locally, people might still be uncomfortable with
having the microphone on in such situations.

Recent work has investigated privacy solutions for
smart speakers and IoT devices. Chandrasekaran et
al. [11] proposed bolt-on privacy-preserving interven-
tions, which required the user to deploy a remote control
to mute the smart speaker by cutting its power or jam-
ming its microphone. Karmann [32] built an app that
activates the smart speaker using a word or sound de-
fined by the user, and interrupts the microphone oth-
erwise. Other solutions include continuous authentica-
tion [25], deploying sounds that can be recorded by
microphones but remain inaudible to humans [57, 58],
using ultrasound jamming to address stealthy record-
ing [28], providing an acoustic tagging device that helps
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users to track conversation recording in the back-end
system [13], processing voice at the edge without send-
ing the voice commands to the cloud [15], and designing
privacy indicators that more effectively signal a device’s
activity and data collection [22, 46, 55].

Context-aware computing principles [63, 64] have
also been integrated into privacy research, in order to
create systems and devices that dynamically adapt to
changes in context based on available information [50,
59, 61]. For example, Schaub et al. [62] developed a cal-
endar display that dynamically changes its content de-
pending on the people present. Researchers have also
developed solutions to dynamically adjust mobile app
permissions depending on contextual information (e.g.,
where the user is located, or whether the smartphone
is locked or not) [52, 72]. Similar context-aware mecha-
nisms have been explored in smart home settings, e.g.,
to selectively exclude private photos from a slideshow
in presence of other people [34]. We make novel con-
tributions by investigating the application of context
awareness for smart speaker privacy controls, specifi-
cally examining the detection of when a user wants to
speak to a smart speaker, and only then activating the
smart speaker’s microphone.

3 Leveraging Interpersonal Cues
for Privacy

Interpersonal cues, both verbal and nonverbal, play a
important role in helping people understand and navi-
gate the dynamics of human communication [17]. Lan-
guage is a typical example of verbal cues, whereas body
language (e.g., gestures, facial expressions, eye contact)
and haptics are examples of nonverbal cues [31]. Peo-
ple subconsciously leverage interpersonal cues to trans-
mit meaning and communicate effectively in order to
achieve personal and social goals [19]. Interpersonal cues
are often culture-specific, meaning that how they are
used and interpreted varies across cultures (e.g., shaking
one’s head can be a gesture of rejection or affirmation
depending on the culture [45]), but in a specific socio-
cultural context there is generally a consensus over a
cue’s meaning [19]. Interpersonal cues are also used to
indicate if someone is participating in a conversation:
subtle gestures such as who we look at (or don’t look
at) whilst conversing indicates who we are addressing
or who we want (or don’t want) to hear us [12, 19].
Smart speakers are voice-driven, meaning users talk
to, and are talked to by, the smart speaker’s voice assis-
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tant. Users anthropomorphize smart speakers and their
voice assistants [56] likely because of the conversational
nature of interaction and referring to the device with a
personified name (e.g., “Alexa”). This personification of
smart speakers suggests that using interpersonal cues in
interactions with smart speakers may be intuitive and
easy to learn for smart speaker users.

Therefore, given that (1) users are familiar with us-
ing interpersonal communication cues that indicate who
should be participating in a conversation, and (2) smart
speaker interaction is conversational, we propose to use
certain interpersonal cues to indicate to a smart speaker
when it should be listening for activation keywords and
when not. We explore two interpersonal cues specifi-
cally: speaking up to address the device, while speaking
quietly to have a private conversation; and looking at
the device to indicate that it is being addressed. These
are among the most common cues used in interpersonal
conversations [26] and seem amenable to be adopted as
privacy controls for smart speakers. These approaches
are described in more detail in Sections 3.1 and 3.2.

Using interpersonal cues for smart speakers’ privacy
controls means that the smart speaker’s microphone or
voice recognition can be switched off most of the time,
substantially reducing the amount of time the device
could potentially listen to the user’s conversations, e.g.,
due to false activation. In contrast to a physical mute
button, leveraging interpersonal cues means that pri-
vacy control functionality can be integrated into the
user’s interaction with the device rather than requir-
ing a modality shift (e.g., pressing the mute button)
and only require minor changes to how the user inter-
acts with the device. Furthermore, with this approach
a smart speaker can both be attentive to when the user
wants to make a request, while respecting the privacy
of the user’s conversations happening in parallel.

3.1 Regulating Privacy with Voice Volume

The volume level of speech has been shown to play
many roles in interpersonal communication [71]. Speak-
ing loudly can communicate anger and aggression [54].
In conversation, matching the volume of conversational
partners can increase social desirability [49]. The pitch
and energy of speech are also reliable indicators of emo-
tional conversation [73]. Of particular interest for pri-
vacy is how voice volume levels are used to indicate the
sensitivity of a conversation: people generally speak in
lower volumes when talking about confidential topics
they do not want others to overhear [48]. Conversely,
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people speak loudly when they want to broadcast infor-
mation and be heard by others.

Voice is already a common method for controlling
TIoT devices, but voice volume has typically not been
considered so far. In addition to general voice interac-
tion, other features of voice, such as pitch and tone [23],
or non-verbal manifestations (e.g., humming) [66] have
been studied to control cursors [66], video games [30],
and musical instruments [23], often aiming to enhance
accessibility or usability.

As voice volume indicates a conversation’s sensitiv-
ity and the extent of one’s desire to be heard, we can
leverage this to control privacy aspects of a system. A
privacy control based on voice volume would dynam-
ically activate or deactivate a smart speaker’s speech
recognition functionality based on how loudly or qui-
etly the user is speaking. This could be accomplished
with a loudness sensor (i.e., a decibel meter or low-
grade microphone) rather than a microphone capable of
recording speech. When the user wants to address the
smart speaker, they would speak slightly louder than
normal, akin to calling out for someone. Only when the
voice volume level surpasses a defined threshold would
the smart speaker’s speech recognition be activated to
enable listening for the activation keyword. If the user
does not intend to address the smart speaker, they can
talk in normal volume, or at a quieter level, depending
on how the activation threshold is set. In that case, the
activation threshold would not be reached and speech
recognition would remain inactive.

A potential challenge in realizing this approach is
the definition of a volume level activation threshold that
allows private conversations at a reasonable volume,
without requiring the user to yell at the smart speaker
when wanting to use it. Furthermore, distinguishing be-
tween conversation and other ambient noise based on
volume level may be challenging. Very loud environ-
ments may accidentally activate the smart speaker’s
speech recognition functionality; so might people hav-
ing a loud argument. However, a voice-volume based
privacy control approach would still constitute a sub-
stantial improvement over the status quo: current smart
speakers are always listening for the activation keyword.
A voice-based privacy control would only activate the
smart speaker’s speech recognition functionality. Once
speech recognition is activated, the smart speaker’s ac-
tivation keyword would still need to be detected before
audio is recorded and transferred from the device to
the manufacturer’s backend for voice command recog-
nition. Moreover, the activation threshold for voice vol-
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ume could be customized to users’ needs and their en-

vironments.

3.2 Regulating Privacy with Gaze

Another important interpersonal communication cue is
eye contact. Eye contact and gaze direction play many
roles in interpersonal communication [19, 26], such as in-
dicating status, establishing what relationship exists be-
tween participants, and establishing closeness. Eye con-
tact is used to determine who is participating in a con-
versation, and to what degree. When someone speaks,
for example, they tend to look at the person they are
talking to [12, 19]. Vertegaal et al. [69] found that gaze
is a reliable and accurate measure to determine who is
meant to be speaking and listening in a conversation,
and leveraged this to create a conversational agent that
more accurately estimates when it is being addressed
and when it should respond. Gaze direction and eye con-
tact have also been used to control IoT devices, such as
lamps [42], household appliances [68], and smart devices
that display email notifications to users [2].

We make a novel contribution by integrating eye
contact into privacy mechanisms for smart speakers, giv-
ing users the agency to control their privacy through
gaze. In our approach, when a user wants to address
the smart speaker, they would look at the device. Upon
recognizing that the user is facing the device, our gaze-
based privacy control activates the smart speaker’s mi-
crophone, thus enabling the smart speaker to listen for
the activation keyword. Once the user moves their at-
tention away from the smart speaker, i.e., they are no
longer looking at the device, the smart speaker’s micro-
phone is deactivated again.

Such a gaze-based privacy control would require a
camera sensor, which carries its own privacy concerns—
camera sensors are perceived as particularly sensi-
tive [38, 53]. However, this approach would be partic-
ularly suitable for smart speakers that already include
a camera, such as the Amazon Echo Show! and Face-
book Portal.2 This camera could be leveraged to rec-
ognize faces and gaze direction, such as through head
orientation or eye tracking, and thus determine when a
person is looking at the smart speaker, at which point
the microphone would be activated. To limit the privacy

1 https://www.amazon.com/All-new-Echo-Show-2nd-
Gen/dp/BO7T7SXWSRP
2 https://portal.facebook.com/
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risks of our proposed system, image processing should
be performed locally on the device and in real-time with-
out recording the camera feed. The only information re-
quired is whether a person is looking at the device or
not. Moreover, the camera can be isolated from all net-
work connections, to minimize the risk of camera images
being transmitted to external entities, and requiring an
explicit command for other camera functionality involv-

ing video streaming, such as video calls.

3.3 Prototype

We realized the proposed voice-volume-based and gaze-
direction-based privacy controls in a functional proto-
type, shown in Figure 1. Our prototype is based on a
Rasberry Pi 3% with a Matrix Creator shield,* provid-
ing a microphone array. Using Sensory.ai® and Amazon

Alexa Voice Services,’

our smart speaker processes and
responds to voice commands in the same way a commer-
cial Amazon Echo device does. We 3D-printed a case
for our prototype, so that our device resembles a smart
speaker, including buttons to mute the microphone and
to adjust the volume, modelled after Amazon Echo’s
buttons.

We used the Matrix Creator’s ring of programmable
LEDs to provide visual feedback about the device state.
The LEDs are red when the speaker’s microphone is
deactivated. The LEDs are green when the speaker’s
microphone is active, signalling that the smart speaker
is listening for the activation keyword. The LEDs are
blue when the speaker’s microphone is on and the voice
assistant is engaged (i.e., the activation keyword has
been recognized).

3.3.1 Voice volume detection

To implement the voice-volume-based privacy control,
we used a second microphone instead of leveraging the
Matrix Creator’s microphones. This has multiple advan-
tages: in contrast to the conventional activation key-
word detection method, our approach decouples audio

3 Raspberry Pi 3 Model B: https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/

4 Matrix Creator: https://www.matrix.one/products/creator
5 Sensory.ai Github repository: https://github.com/Sensory/
alexa-rpi

6 Alexa Voice Services Github repository: https://github.com/
alexa/alexa-avs-sample-app
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Fig. 1. Our smart speaker prototype: (a) schematic breakdown
and (b) prototype with Kinect sensor used for voice-volume-based
and gaze-based privacy controls.

processing for the voice-volume-based privacy control
from the smart speaker’s general audio processing of
voice commands. The voice-volume-based privacy con-
trol only needs to measure loudness (in decibels) in
real time. No audio received by this second microphone
needs to be ever recorded or analyzed in other ways.
This decoupling of the two audio processing systems
means that the privacy-related audio sensing and pro-
cessing is self-contained and has low code complexity: it
only compares the second microphone’s loudness value
against a pre-defined activation threshold. If the loud-
ness is above the threshold, the smart speaker’s primary
microphone and speech recognition are activated, oth-
erwise the primary microphone and speech recognition
are deactivated.

In our device, loudness is measured as the energy of
the audio signal. This is calculated as the root mean
square value (RMS) of the audio signal represented
within the range [-Min Energy, 0]. To determine the
initial loudness threshold for our prototype, the authors
engaged in informal pilot testing, speaking to the de-
vice at different volumes to activate it and identifying
what volume level was easy enough to reach without
straining users’ voices but loud enough to clearly differ-
entiate from private conversations. We determined -15
db (RMS) to be an appropriate threshold. This proved
to be a reasonable threshold in our evaluation (see Sec-
tions 4 and 5). The threshold could be user-configurable
to allow fine-tuning to different environments and user
preferences.

The voice-volume-based privacy control integrates
almost seamlessly into the smart speaker’s user interac-
tion, as shown in Figure 2. The only difference is that
when a user wants to interact with the smart speaker
they have to say the activation keyword (e.g., “Alexa”)
loudly enough, so that the decibel level is above the ac-
tivation threshold. We use our prototype’s LED ring to
provide users with real-time visual feedback on loudness,
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i.e., the louder a user is speaking, the more LEDs light
up, getting them closer or above the threshold, which is
indicated on the ring by one blue LED.

When the activation threshold is reached, the smart
speaker’s primary microphone and speech recognition
are activated. This activation is almost instantaneous,
which means that the smart speaker’s microphone is
able to pick up enough of the activation keyword to still
recognize it as such. In a performance evaluation study
(see Section 4), we found the impact of this approach
on smart speaker activation to be negligible. When the
decibel level falls below the activation threshold, the
primary microphone is deactivated. Other loud speech
or ambient noise would also activate the primary micro-
phone and speech recognition, but no command would
be triggered unless the activation keyword is recognized.
Note, that this corresponds to how smart speakers func-
tion ordinarily. Thus, our voice-volume-based privacy
control adds an additional layer of privacy protection:
users can now hold private conversations in vicinity
of the smart speaker by speaking quietly; the smart
speaker only listens for activation keywords when loud-
ness is above the privacy threshold.

3.3.2 Gaze detection

To implement the gaze-based privacy control in our pro-
totype, we used a Microsoft Kinect 2’s depth-camera to
recognize a user’s head orientation, which functions as a
proxy for gaze. We chose the Kinect as a readily avaial-
ble off-the-shelf sensor that can track head orientation
reliably. Eye tracking, though possible with the Kinect,
proved to be too inaccurate to ensure reliable perfor-
mance, but head tracking proved sufficient for our pur-
poses. We use the camera sensor to determine whether a
person is near the device and use head orientation (mea-
sured by pitch, yaw, and roll) to determine whether the
user is looking at the device. If a person is looking at
the device, the smartspeaker’s microphone and speech
recognition are activated; otherwise the microphone is
deactivated. The head orientation is measured by the
Kinect sensor in real time, no video images are recorded
or stored.

Using the smart speaker with the gaze-based pri-
vacy control requires users to look at the device in order
to indicate that they want to talk to the smart speaker.
Triggering voice commands still requires the user to say
the activation keyword (“Alexa”), as shown in Figure 2.
While this constitutes a slight modification in how users
interact with a smart speaker — requiring a line of sight
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between user and device — it effectively reduces the risk
of false activation. The smart speaker would not be able
to analyze audio unless the device is looked at, thus, pre-
venting the device from misinterpreting snippets picked
up from background conversations.

A caveat of the gaze-based privacy control is that
it requires a camera sensor, which may be perceived as
equally or even more intrusive as an always-listening
microphone as shown in prior work [38, 53]. Therefore,
this privacy control approach may be best suited for
smart speakers that are already equipped with cameras
to provide video-based functionality (e.g., Echo Show or
Facebook Portal).

To evaluate the feasibility and usability of our pri-
vacy controls using interpersonal communication cues,
we conducted two user studies. Our first user study as-
sessed feasibility, i.e., whether and to what extent the
addition of voice volume detection or gaze detection im-
pacts users’ ability to activate and interact with the
smart speaker (see Section 4). Our second user study
focused on usability, i.e., how comfortable participants
were with using the proposed privacy controls, and
whether they perceived the controls as having a posi-
tive (or negative) effect on their privacy (see Section 5).
Both studies were approved by the University of Michi-
gan’s Institutional Review Board (IRB).

4 Study: Impact on Smart
Speaker Activation

A concern in leveraging communication cues to deter-
mine the smart speaker’s microphone state is that it
may impact users’ ability to activate and interact with
the device. Our privacy controls may introduce a de-
lay before the speaker’s microphone is activated, or
users might start speaking before they perform the cue
(speaking up or looking at the device). We conducted
a within-subjects lab experiment, in which we assessed
the activation success rate of the voice-volume privacy
control and the gaze-based privacy control. To estab-
lish a baseline, we further tested activation success rate
of the same smart speaker prototype without dynamic
privacy controls and of an Amazon Echo Dot.

Our findings show no significant difference in ac-
tivation performance between the gaze-based or voice-
volume-based privacy controls compared to our smart
speaker prototype without those controls, which indi-
cates that the effect of the proposed privacy controls on
activation keyword detection is negligible, demonstrat-
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Smart speaker
No microphone is not
activated. Light
remains red. Return
to start.

Is privacy
condition
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Smart speaker
microphoneis
activated. Light is
now green.

Continue listening
until wakeword is
detected or privacy
conditionis not met.

Smart speaker
awaits new
commands.

Smart speaker goes

back to sleep mode.

Light no longer blue.
Return to start.

Fig. 2. Interaction diagram for device activation with the two proposed privacy controls. Privacy condition refers to either speaking

above the volume threshold (for the voice-based control) or looking at the device (for the gaze-based control). Any commands spoken
to the smart speaker must adhere to the respective privacy condition (i.e., commands must be spoken loudly in the Voice condition
and while looking at the device for Gaze) else the primary microphone is deactivated and the smart speaker will not hear the com-

mands.

ing the technical feasibility of the proposed controls.
While the commercial smart speaker’s activation per-
formance was better, this was likely due to better mi-
crophones and audio processing logic unrelated to the
proposed privacy controls.

4.1 Study Design and Setup

We evaluated activation performance in a within-
subjects lab experiment with four conditions: our pro-
totype with voice-volume-based privacy control (Voice),
our prototype with gaze-based privacy control (Gaze),
our prototype without the adaptive privacy controls
(Control), and an Amazon Echo Dot (Echo Dot). Our
smart speaker without privacy controls functioned as
an internal control condition, and the Amazon Echo Dot
functioned as an external control condition. All four con-
ditions performed activation keyword detection locally
using the same keyword (“Alexa”). However, the hard-
ware and software used to detect the keyword differed
between the prototype conditions and the Echo Dot.
Our prototype used Sensory.ai and the Matrix Creator
microphones; the Echo Dot used its proprietary hard-
ware and software.

We tested the four conditions in two phases in which
we carefully controlled multiple variables (e.g., distance
and orientation to the device) in order to reliably as-
sess and compare activation performance (see Figure 3).
In the first phase, participants were introduced to the
Voice, Control, and Echo Dot conditions, and asked to
familiarize themselves with the mechanism. Once ready,
participants stood at one of three distances (1.5m, 3m,
and 4.5m) and were instructed to activate the smart
speaker and have it flip a coin by saying “Alexa, flip a
coin.” We recorded the number of activation attempts to
assess activation performance, measured as the number
of times a participant had to say “Alexa, flip a coin” (or
a variant thereof) before the device responded success-
fully (by flipping a coin and reporting the outcome).

The order in which a participant tested the condi-
tions and the order of distances were randomized for
each participant. Participants completed the task for
the Voice, Control, and Echo Dot conditions at the same
distance before moving to the next distance. We chose
this approach to provide participants with a consistent
context for modulating their voice for a given distance
rather than having them frequently move among dis-
tances. After completing all distances, participants re-
peated the cycle two more times (thus doing each dis-
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Device

Fig. 3. Experimental setup for the performance evaluation. Par-
ticipants stood at each X (1.5m, 3m, or 4.5m from the device)

and attempted to activate the device. The red Xs are angled 20
degrees from the device, and were only used for gaze evaluation.

tance 3 times). This resulted in 9 data points (3 repeti-
tions x 3 distances) per condition for each participant.

In the second phase, participants were introduced
to the Gaze condition and asked to familiarize them-
selves with the mechanism. We measured participants’
activation performance at different distances and an-
gles away from the device with different body orienta-
tions, as these are aspects that might affect the reliabil-
ity of gaze detection. There was a total of three distances
(1.5m, 3m, and 4.5m), three angles per distance (0°, 20°,
-20° away from the device), and three body orientations
per angle, with feet and head facing forward, left (i.e., at
a 90° angle from the device), or right (i.e., at a 90° angle
from the device). Participants were instructed to stand
at one of the positions with one of the body orienta-
tions, activate the smart speaker and have it flip a coin
(“Alexa, flip a coin”). Participants were not allowed to
move their feet, but could move their head, torso, and
any other part of their body. After completing all dis-
tances, participants repeated the cycle two more times
(thus doing each distance 3 times). This yielded 81 data
points (3 repetitions x 3 distances x 3 angles x 3 ori-
entations) for each participant in the Gaze condition.

We made the decision to randomize the voice-based
conditions and test the Gaze condition afterwards to
strike a trade-off between a fully randomized experi-
ment and the complexity for participants in adjusting
to different tasks, in favor of ensuring consistent context
for the three voice conditions.

Each session lasted about 1 hour, and participants
were compensated $15 for their time. All tests were per-
formed in the same room to ensure environmental con-
sistency across sessions.
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4.1.1 Recruitment

We recruited participants through mailing lists at our
institution. Pilot testing with participants showed that
the third-party software used to recognize the activa-
tion keyword (and activate the device) was not robust
enough to detect non-native accents saying “Alexa.”
Thus, we decided to recruit only English native speakers
to reduce confounding factors based on accent and pro-
nunciation, given that our goal was to assess the relative
impact of dynamic privacy controls on activation key-
word detection, rather than evaluating the robustness
of the prototype’s speech recognition software.

Ten participants were recruited for this lab study.
Six of them were female, four were male. Their ages
ranged from 18 to 26 years; all were students. While this
constitutes a skewed sample, it did not interfere with
this experiment’s purpose of assessing whether there
were relative differences in activation performance be-
tween a smart speaker with our novel privacy controls
and without, in order to test the approaches’ general
feasibility.

4.2 Results

Overall, the activation success rates of Control, Voice
and Gaze conditions are quite similar to each other.
This means our privacy controls did not seem to in-
terfere with participants’ ability to successfully activate
the smart speaker. However, participants found it eas-
ier to activate the Echo Dot than our prototype condi-
tions, including the prototype-based control condition,
likely due to better microphones and activation keyword
recognition software in the Echo Dot.

In 57% of the measurements, participants managed
to activate the device within one attempt; and within
three attempts for 88% of the measurements. Figure 4
shows how the number of attempts differ across dis-
tances. The farther participants are away from the de-
vice, the more attempts it requires to activate the de-
vice. At 1.5 meters, the median number of attempts is
1 for all conditions. At 3 meters, the median is still 1
for most conditions, except for Gaze (M=2). At 4.5 me-
ters, the median for Echo Dot and Voice remains at 1
attempt and is 2 attempts for Gaze and Control.

We built linear mixed-effect regression models to
further examine the impact of distance on activation
success rate. Using 1.5m as the reference point, the num-
ber of attempts increases as participants move to 3m
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(6=.29, p=.06), and further increases at 4.5m signifi-
cantly (6=.74, p<.001).

We next describe the performance differences be-
tween conditions across all distances. For Gaze, we se-
lected data points at 0° angle and forward body ori-
entation for the cross-condition comparison, since par-
ticipants used the same angle and body orientation for
the other conditions. Using Echo Dot as the reference
point, Voice (5=-.66, p<.001), Gaze (5=.97, p<.001),
and Control (5=.69, p=.001) all required significantly
more attempts to activate the device. This suggests
the commercial smart speaker has better speech recog-
nition technology than our prototypes. When setting
the prototype-based Control as the reference point in-
stead, no significant differences in activation attempts
between Control and Voice (8=-.02, p=.89), or Control
and Gaze (8=
significant negative impact of the privacy controls on

.28, p=.11), were detected, i.e., we find no

activation performance in our study. Furthermore, set-
ting Voice as the reference point and comparing it with
Gaze, the activation attempts in these two conditions
do not differ from each other significantly either (5=.30,
p=.08).

Within the Gaze condition, we also assessed the
number of activation attempts at different angles (-20°,
0°, +20°) and head orientations (left, forward, right)
for each distance in order to assess their impacts on
gaze detection. For angle assessment, using 0° as the
reference point, no significant differences in activation
attempts between 0° and -20° (8=.14, p=.31), or 0° and
20° (B=.15, p=.29), were detected. For body orientation
assessment, using forward as the reference point, par-
ticipants facing left required significantly more activa-
tion attempts (5=.31, p<.05); no significant differences
in activation attempts between forward and right were
detected (5=.17, p=.24).

Because our sample size is relatively small, one
could hypothesize that a larger sample might lead to
statistically significant differences between Voice, Gaze
and our prototype’s control condition. However, the in-
traclass correlation coefficient (ICC) [51] for the ran-
dom effect variable is .97, which means between indi-
vidual participants, their performances across different
distances and conditions followed a fairly consistent pat-
tern. We do not assert that a larger sample will yield
the exact same results, but we expect that the findings
will not be much different.

Although the Echo Dot performed better overall
than our privacy controls, this is most likely due to
its superior microphones and audio processing. Among
the conditions based on our prototype smart speaker
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Fig. 4. Number of attempts to successfully activate the smart
speaker at different distances by condition.

(Voice, Gaze, Control), the number of activation at-
tempts were very similar at the 1.5m and 3m distances.
Based on these findings, our new privacy controls do not
seem to prevent users from successfully activating the
smart speaker. This suggests that leveraging interper-
sonal cues for smart speaker privacy controls is feasible

in practice.

5 Study: Usability and Perceived
Privacy

We conducted a second lab study to examine (1) how
our privacy controls perform in interactive scenarios; (2)
how well participants could use our privacy controls;
and (3) how participants perceived the level of privacy
afforded by our privacy controls. We compared our pro-
posed privacy controls (Voice and Gaze) to a standard
mute button (Control). We wanted to learn how effec-
tively participants could use these privacy controls to
safeguard their privacy in contexts where they would
need to interact with a smart speaker and have sensi-
tive conversations at the same time.

We conducted a within-subjects study where pairs
of participants completed a series of tasks that required
them to both interact with the smart speaker as well
as talk to each other without the smart speaker listen-
ing. Most participants preferred to use Voice over Gaze,
with many participants finding the Voice condition easy
to use. For perceived privacy levels, participants ranked
Control the highest due to its mute button, and Voice
was ranked higher than Gaze. Despite this perception,
many participants remarked that they might forget to
press the mute button. During the study, many partic-
ipants indeed failed to use the Control’s mute button
when required, showing that our privacy controls that
dynamically mute and unmute the smart speaker are
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more effective as they are not susceptible to task com-

pletion errors.

5.1 Study Design

We tested three conditions in this second study: Voice,
Gaze, and Control (our prototype with a physical mute
button). All conditions used local activation keyword
detection with the same keyword (“Alexa”). Since we
had already tested the Echo Dot’s performance in com-
parison to our prototypes (it performed better due to
better hardware/software) and given that it has the
same privacy mechanism as the Control condition, we
did not include the Echo Dot in this study.

5.1.1 Study Protocol

Two participants were randomly paired to complete a
study session together. Participant pairs were seated at
a table with our smart speaker system between them.
They completed one task per condition. The order of the
three conditions and tasks was counter-balanced across
participant pairs (Latin square).

Per condition, participant pairs were first intro-
duced to the privacy control in the condition and fa-
miliarized themselves with it. Next, participants were
given one of three tasks to perform (select a restaurant
and reserve a table; plan a trip to a European city; de-
cide on a movie and a showing time). These tasks were
designed to include segments that had participants in-
teract with the smart speaker, and segments in which
they were instructed to discuss something among them-
selves and keep it private from the smart speaker. For
example, in the restaurant task, participants would first
ask the smart speaker for nearby restaurants; then, they
privately discussed their personal preferences and chose
a restaurant; next, they would ask the smart speaker
for directions to the restaurant and to reserve a ta-
ble. The full task descriptions given to participants are
provided in Appendix A. While artificial, these tasks
were designed to mimic situations in which individuals
have private conversations while also interacting with
the smart speaker, e.g., playing and controlling music
via the smart speaker while in parallel having a private
conversation among family members.

After completing a task, participants were asked in
a post-task interview to rate their experience with the
condition’s privacy control using the System Usability
Scale (SUS) [8] and answer open-ended questions re-
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garding their experience (see Appendix B). SUS is a
reliable and validated scale for measuring perceived us-
ability and comparing it across systems [39], because
it is technology agnostic, it is well suited for evaluat-
ing novel technologies such as ours [6]. The SUS scores,
alongside the open-ended questions, allowed us to both
qualitatively and quantitatively assess the perceived us-
ability of the respective privacy control. Once partici-
pants had completed a task with each of the three con-
ditions and the respective post-task questions, partici-
pants completed a card sorting exercise as part of the
exit interview, in which they ranked the three conditions
in terms of usability and privacy (see Appendix C). For
each ranking, participants were asked to explain their
rationale. This provides additional insights on how par-
ticipants perceived the usability and the privacy level of
the different controls.

All sessions were video-recorded to aid subsequent
analysis. We also logged the smart speaker’s microphone
recordings and analyzed whether the smart speaker’s
microphone was correctly muted during the ‘private’
segments.

5.1.2 Recruitment

We recruited 18 English native speakers who had not
participated in Study 1 as participants (15 female, 3
male) via mailing lists at our institution. Their ages
ranged from 20 to 30 years. Participants were compen-
sated $15 for their time. Sessions lasted 43-57 minutes
(median: 46 min.). While college students may exhibit
high technology affinity, our goal with this study was
to understand how the same individual would perceive
and rank the usability and privacy of the different pri-
vacy controls as an initial determination of the utility
of using interpersonal cues as privacy controls.

5.2 Results

The Voice and Control conditions were rated as equally
usable. Most participants preferred the Voice condi-
tion over the Control’s mute button because they found
Voice more natural and easy to use. Gaze’s usability was
rated lower due to difficulties in determining when the
microphone was muted or unmuted.

For perceived privacy, participants found the physi-
cality and immediate feedback of the mute button reas-
suring; the Voice condition was also perceived as provid-
ing privacy, but was ranked below the mute button; the
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Voice Gaze Mute Button

Fig. 5. System Usability Scale (SUS) score distributions for the
different conditions.

camera in the Gaze condition raised privacy concerns.
Nevertheless, participants were more successful in keep-
ing conversation parts private from the smart speaker
with the Gaze condition than the Control: almost half
the participants in the Control condition forgot to use
the mute button. Although the difference between Voice
and Control was not significant, with Voice, fewer par-
ticipants made errors.

5.2.1 Usability

Figure 5 shows the conditions’ SUS score distributions.
A one-way repeated measures ANOVA showed signif-
icant differences between SUS scores (F(2,30)=7.73,
p<.05, 1712,:.34). Post-hoc pairwise comparisons (Tukey
HSD; Bonferroni corrected) showed that the usability of
Voice (mean SUS=70.5; HSD p<.05) and the Control’s
mute button (mean SUS=71.6; HSD p<.05) were rated
significantly higher than Gaze (mean SUS=50.8).

There was a general consensus that the Voice con-
dition was useful and natural to use. One participant
said “I find it easier to use than a mute button, feels
very natural to me.” Another stated, “I have an Echo
device and I don’t use the button at all. This is so use-
ful!” Some participants suggested that the voice volume
threshold should be adjustable or adjust automatically
to different speakers: “I tend to talk loudly. It would be
great if it adapts to my volume levels;” and “it can be
more streamlined if I can tune the audio level.”

Many participants liked the Gaze control, but some
were concerned that it might limit when they can use
the smart speaker: “It is nice but can be cumbersome, I
can look somewhere else.” and “Often times I am work-
ing on something and I don’t want to always look at ‘her’
every time.” One participant said: “I can’t really say if
the device remains red when I look away.” This denotes
a difficulty with perceiving feedback about the micro-
phone state in the Gaze condition, as the state changes
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Fig. 6. Success rate for keeping conversations private across dif-
ferent conditions.

when looking at the device. One participant was con-
fused about the optimal distance for the gaze detection
to work: “I don’t know how far away I should be from
the device.”

Some participants found the Control’s mute button
“It is
useful, but having to sit by it is very cumbersome” and

less convenient to use than the other controls:

“Cumbersome and have to walk up to it, never used the
button in my Google Home.” One participant said they
“wouldn’t mute the button, would not even think about
the mute button,” underlining that the mute button is
easily forgotten and not integrated well into people’s
interaction with smart speakers [37].

Regarding usability, 12 of 18 participants ranked the
Voice condition highest; and 4 ranked it second high-
est. The Control’s mute button was ranked highest by 5
participants; second highest by 4. Only one participant
ranked the Gaze condition highest; 10 ranked it second.
The most common ranking of the three conditions (8
times) was Voice, Gaze, and Control. The strong pref-
erence for the Voice condition suggests that using voice
volume to control privacy is perceived as intuitive, likely
due to the appropriation of a very familiar interpersonal
communication cue and its integration into the voice-
oriented smart speaker interaction. Gaze, on the other
hand, was rarely ranked first, because having to look
at the device was perceived as limiting and state feed-
back was difficult to see (i.e., whether the device was
muted when looking away). The physical mute button
was perceived as cumbersome by many participants.

This study further confirmed that the dynamic pri-
vacy controls have little to no impact on smart speaker
activation performance. No participants voiced issues
regarding their ability to activate the smart speaker
when desired.
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5.2.2 Ability to Keep Conversations Private

Figure 6 shows the distributions of success rate in keep-
ing the conversations private across conditions. Here,
success rate is defined as the ratio of the instances the
microphone was muted during a private conversation
segment to the total number of private conversation seg-
ments. The median success rates were 90% for Gaze,
80% for Voice, and 80% for the Control’s mute button.
Notably, for the Control condition, in 4 out of 9 sessions
the success rate was 0%, meaning that participants for-
got to press the mute button during the session.

one-way ANOVA with
Greenhouse-Geisser correction shows significant differ-
ences between conditions (F'(1.01,8.10)=5.69, p<.05,
7712,:.42). Tukey HSD post-hoc tests with Bonferroni cor-

A repeated measures

rection reveal a significant difference between Gaze and
Control (p<.05).

Thus, even though Gaze has lower perceived usabil-
ity, it was more effective at helping participants keep
their conversation private than the mute button. Al-
though the differences between the Voice and Control
conditions were not significant, the distributions in Fig-
ure 6 show that with a physical mute button, there is
a risk that users forget to press it, whereas fewer errors
occurred with the Gaze and Voice conditions.

All conditions had similar false positive (smart
speaker wakening when the participants did not desire
to activate it) and false negative rates (smart speaker
not waking up when the participants wanted to acti-
vate it). The median false positive rates were 0 for Voice
(values ranged from 0 to 1), 0 for Gaze (values ranged
0 to 1), and 0 for Control (the only value was 0). This
shows that accidental awakening of the smart speaker
was not an issue for participants in our study. This is
likely because in the private conversations there was lit-
tle reason to use the activation keyword (“Alexa”) or
similar sounding phrases, so even if the microphone was
activated, the keyword would not be said and so the
smart speaker would not wake up.

The median false negative rates were 1 for Voice
(values ranged from 0 to 6), 1.5 for Gaze (values ranged
from 0 to 7), and 0.5 for Control (values ranged from
0 to 10). This suggests that participants occasionally
struggled to activate the smart speaker. Given that false
negative rates were fairly similar across conditions, and
our results from the previous study, false negatives are
likely due to the prototype’s voice recognition capabili-
ties rather than the privacy controls.
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5.2.3 Perceived Level of Privacy

Many participants perceived the Voice condition as pro-
viding a high level of privacy. One participant said “I
like that I don’t have to always look at the device and
control my privacy.” Another participant said that it is
usable but has a learning curve: “It makes me feel pri-
vate, however it needs a little getting used to to under-
stand the volume threshold.” One participant preferred
this control over the other two: “better than having a
camera look at me or press a button.”

For Gaze, in alignment with prior work [38, 53],
many participants were concerned about the camera.
One participant said “Now someone is always listening
and seeing me.” Another participant said “I am more
concerned now, I can get it to trigger without me know-
ing and the camera is always on and watching me.” One
participant noted that the camera sensor affects poten-
tial placement: “I like it, can be really useful but it de-
pends on where I place it.” Due to our study design,
participants directly compared the camera-based con-
trol to non-camera based controls. Future work needs to
explore how a camera-based privacy control is perceived
in the context of a camera-equipped smart speaker (e.g.,
Amazon’s Echo Look) [38, 53].

For the Control, many participants indicated that
they were very comfortable using a physical mute but-
ton, since they felt they have control over it: “overall
yeah it works. The fact that I can control it makes it
more private.” Participants found the associated state
feedback to be reassuring: “I like that I can control it
and be sure it’s off through the color” and “When I press
the button and it turns red, I have a feeling of control.”

Overall, when asked to rank the conditions by per-
ceived level of privacy, 12 participants ranked the Con-
trol’s mute button first, 4 ranked it second. Six partici-
pants ranked Voice first, 7 ranked it second. No partic-
ipant ranked Gaze first, but 7 ranked it second. The
most common ranking (7 times) was Control, Voice,
Gaze. One reason for this order is that many partic-
ipants found the immediate feedback associated with
the physical button reassuring. Yet, our findings show
that many participants forgot to press the physical mute
button when they were supposed to keep information
private from the smart speaker, a problem that did not
occur with the two dynamic privacy controls.
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6 Discussion

Our findings show that using interpersonal communica-
tion cues as privacy controls is a viable approach — they
integrate well into users’ interactions with smart speak-
ers, are intuitive to use, and enhance user privacy. Based
on our findings, we discuss challenges and practical con-
siderations for designing such dynamic privacy controls,
after describing potential limitations of our work.

6.1 Limitations

Our main contribution is exploring the concept of lever-
aging interpersonal communication cues to develop pri-
vacy controls, and validating specific aspects of this
novel approach (impact on activation performance, us-
ability, perceived privacy). We deliberately chose lab
studies to achieve high internal validity and examine
effects of our new privacy controls under controlled con-
ditions. While we took measures to increase external va-
lidity, such as explicitly instructing participants to keep
certain parts of conversations private, we acknowledge
that the artificial lab setting and relatively simple tasks
do not yield findings that are generalizable to all real-
world smart speaker use cases. Despite this, our findings
still demonstrate the general feasibility and utility of the
proposed privacy control approach, laying the ground-
work for future studies with such privacy controls in
different contexts and scenarios.

Related to this, because our participants were all
native English speakers and U.S. college students, we
refrain from making claims about the generalizability
of our findings to other sub-populations or the general
population. Future research may validate our findings
with different populations using larger samples. How-
ever, we observed that in the performance study partic-
ipants across conditions exhibited a consistent pattern,
evidenced by high ICC (.97). Therefore, we believe our
quantitative analysis, even though exploratory rather
than confirmatory in nature, is still rigorous, and we
do not expect a larger sample will lead to significantly
different findings.

Regarding the student sample, students may be
more likely to adopt or be familar with smart speak-
ers due to potentially higher technology savviness and
digital literacy. However, there is little reason to be-
lieve that students are more or less likely to person-
ify smart speakers than the general population, espe-
cially given that personification of smart speakers has
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also been found in non-student populations [56]. We do
not expect other population characteristics to substan-
tially alter our findings. Nevertheless, further research
is needed to better understand whether and how our
approach needs to be adapted to serve more diverse
populations and contexts, including non-native English
speakers, other languages, and other sociocultural con-
texts.

Our prototype poses an additional limitation. In
particular, the Kinect camera was not robust enough to
accurately track eye movement and detect gaze direc-
tion. However, our results show that head orientation
served as a reasonable proxy for gaze for our purposes,
given that people often naturally align their head ori-
entation with their gaze. Future studies could explore
more accurate cameras that track gaze direction.

Another possible limitation has to do with the in-
structions we gave participants to keep conversations
quiet. Given the explicitness of the instructions, partic-
ipants’ behavior might have differed from circumstances
in daily life, i.e., in real world circumstances people
might not have the need for privacy at the forefront
of their minds, and so the privacy controls might not be
as effective. We opted to provide explicit instructions
explicit in order to test whether the privacy controls
worked when users wanted to use them — a necessary
first step in evaluating how effective these controls are.
Future work could examine participants’ real world be-
haviors through field studies to confirm the extent to
which the proposed privacy controls are effective at mut-
ing the microphone when it is not needed under different

conditions.

6.2 Interpersonal Cues as Privacy Controls

Any privacy control implemented in a device requires
some trust from users. Currently, smart speaker users
need to trust that a smart speaker only listens for
the activation word. With our proposed controls, users
need to trust that the sensor which activates the micro-
phone only does so when the interpersonal cue has been
detected before the wake word can even be detected.
While the level of trust needed from users remains the
same, our controls do provide privacy benefits: mitigat-
ing ‘always-listening’ concerns and false activation by
adding a secondary privacy control that shifts device ac-
tivation out of the primary interaction modality (voice
interaction).

Our prototype further demonstrates the promise of
this idea — using interpersonal communication cues as
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privacy controls is feasible and practical. Voice and gaze
privacy controls had a negligible effect on smart speaker
functionality. Furthermore, participants took to these
controls intuitively and easily (especially the Voice con-
trol), with some participants finding our controls more
convenient to use than physical mute buttons. Based on
these findings, our controls demonstrate the potential
to help users keep a smart speaker’s microphones ef-
fectively muted when they are not interacting with the
device. Given the ease and convenience of our privacy
controls, users may be more likely to activate such pri-
vacy controls for their smart speaker. This is a substan-
tial privacy improvement over current smart speakers,
which are continuously listening for their activation key-
word regardless of whether they are needed, and the pri-
vacy controls of which (i.e., the mute button) are rarely
utilized by general users [37], posing unnecessary risks
of surreptitious recording as well as false activation.
Although our study focused on two specific interper-
sonal cues for a specific IoT device (smart speakers), this
approach may also be relevant for building privacy con-
trols— possibly based on different interpersonal com-
munication cues—for other IoT devices. The same
broad principles we leveraged here (users are familiar
with interpersonal communication cues, are amenable to
exhibiting them; cues can be leveraged to detect when
a user wants to interact with a device) may apply to
other cues and devices. For example, one could imagine
a smart toy that can record video and audio” leveraging
interpersonal cues (such as a child’s gestures) to detect
when it is being played with, and automatically cease
audio/video recording when it is not being played with.

6.3 Cues Must Match Context

When developing novel privacy controls for IoT devices,
it is important to keep the device’s context of use in
mind. Although participants used our controls well to
maintain their privacy, situations can be imagined in
which our proposed mechanisms would not work as well.
For example, with voice-volume-based privacy controls,
the microphone could be inadvertently activated by loud
ambient noise (such as a TV), or if two people are en-
gaged in a loud argument. While possible, this would not
automatically result in audio recording, but rather ac-
tivate listening for the activation keyword, which corre-
sponds to the status quo of smart speakers. As a result,

7 Such as the ones sold by https://www.smarttoy.com/
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the voice-volume-based control still offers a privacy im-
provement over current smart speakers as speech recog-
nition would be deactivated for most of the time. Simi-
larly, gaze-based privacy controls only work when users
are in the same room as the smart speaker and have a
line of sight to the device.

Thus, privacy controls that use interpersonal com-
munication cues need to consider the setting the de-
vice will be in, as well as the sociocultural context and
specific cues of people using the device. One approach
for accomplishing this is to allow users to customize
their privacy control configurations, and to have pri-
vacy mechanisms that support multiple cues. For in-
stance, with a voice-based privacy control, the mini-
mum threshold needed to activate the smart speaker
could be set by users, or change automatically based on
background ambience level. Vision-based privacy con-
trols could be combined with other non-vision based in-
terpersonal cues, so that users can interact with a smart
speaker regardless of whether they are in the same room.

Such dynamic privacy controls can further be com-
bined with other privacy mechanisms into a layered
privacy protection approach. For instance, our voice-
volume-based and gaze-based privacy controls each
function well in combination with the device requiring
an activation keyword, yet help to limit and reduce false
activation or surreptitious data collection when the de-
vice is unlikely to be used, in contrast to current smart
speakers which are always listening for activation key-
words and are prone to false activation.

6.4 Need for Privacy Feedback

While participants found the mute button less conve-
nient than the new privacy controls, participants liked
the tangible and immediate feedback it provided. The
consistent state (microphone on or off until button
pressed again) made it easy to determine when the
microphone was muted or unmuted. While our smart
speaker’s visual feedback was modeled after existing
commercial smart speakers, the adaptive nature of the
privacy controls creates uncertainty for some partici-
pants about when the microphone is on or off. For
the gaze-based privacy control in particular, checking
whether the microphone is on or off was inherently dif-
ficult because looking at the device activates the micro-
phone.

Thus, a further research challenge is how to better
convey to users the current state of privacy settings and
when they have changed, in ways that are suitable for
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the specific interpersonal cue used and the user’s con-
text. A potentially promising approach is to use ambient
interfaces [29] that indicate to users when data is being
collected. For example, a smart camera could use ambi-
ent lighting, or emit background white noise, when it is
gathering data, and turn off the ambient lighting or be
silent when it is no longer gathering data.

6.5 Additional Sensors Raise Concerns

A challenge when designing context-adaptive privacy
systems is that they leverage sensors to detect content,
and sensors themselves raise privacy concerns [59, 61].
With our gaze-based privacy control many participants
were concerned about the use of a camera, finding it
to be more invasive than a smart speaker’s microphone,
which we expected based on prior work [38, 53]. In con-
trast, there were less concerns over our voice-volume-
based privacy control, likely due to (a) the voice-based
privacy control not requiring additional sensors beyond
a microphone (which smart speakers already have), and
(b) the data gathered by the voice-based privacy con-
trol (voice volume level) being less sensitive than a
camera feed. Notably, certain smart speakers and other
smart home devices already have cameras integrated,
and camera-based privacy controls might be perceived
differently in the context of such devices.

When additional sensors are needed to detect inter-
personal communication cues or to dynamically adapt
privacy settings, it is important to ensure that data col-
lection is minimal and that the collected data cannot be
compromised. This could be accomplished by local pro-
cessing of data, ensuring that raw sensor streams are
isolated from network access to reduce potential mis-
use, and by making code of privacy control components
open source to allow inspection and instill confidence
that the privacy protection works as advertised. An-
other approach could be the use of low fidelity sensors
that are limited in their data-capturing capabilities, to
determine when higher fidelity sensors should be active.
For our voice-based privacy mechanism, we utilized a
secondary microphone that only detected loudness lev-
els to determine when the smart speaker’s primary mi-
crophone and speech recognition should be activated.
Using a decibel meter instead, which measures loudness
and cannot record audio, would further reduce potential
for unintended data collection.
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7 Conclusion

We propose a novel approach for controlling privacy
around smart speakers: leveraging interpersonal com-
munication cues to dynamically determine when a smart
speaker’s microphone needs to be active and listen for
its activation keyword. We implemented and tested the
feasibility and usability of voice-volume-based and gaze-
based privacy controls. Both approaches have only neg-
ligible impact on the activation performance of a smart
speaker. Additionally, participants found our privacy
controls more easy to use and intuitive than existing
controls (mute button), demonstrating the potential of
these dynamic privacy controls to better safeguard user
privacy and limit false activation.

Our findings provide a promising direction for de-
signing privacy controls for smart speakers and IoT de-
vices that complement and support other privacy mech-
anisms, such as requiring an activation keyword for
voice commands. Further research needs to investigate
the feasibility, utility and usability of privacy controls
leveraging interpersonal communication cues in differ-
ent contexts, as well as opportunities for leveraging
other interpersonal cues beyond voice volume and gaze
direction.
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A Usability Study Task

Descriptions

A.1 Task A

Discuss with your partner and find nearby restaurants

to go out for dinner.

1.

Ask Alexa to show nearby Thai restaurants. You
can have a look at the Alexa app on the smartphone
for a comprehensive list with ratings from Yelp.
Discuss privately with your partner and decide on a
restaurant. Consider including average rating, price,
reputation, food allergies, distance into account for
making a decision. The voice assistant should not
learn your preferences, and you should keep your
conversation private from the smart speaker’s mi-
crophone.

Now ask Alexa for available tables by saying “Alexa,
find me a table for 2 at ‘Restaurant name’ for dinner
tonight.”

A.2 Task B

You and your partner are planning a vacation in Europe

for 15 days and would like to cover a minimum of five

cities. Discuss with your partner and decide which city

to visit first. The cities you are considering are Paris,

Venice, Amsterdam, Madrid, and Rome.

1.

You can start discussing privately with your part-
ner now. Take into consideration your mutual inter-
ests in the particular city and consider backing up
your decisions with reasons for choosing that city.
You should keep your conversation private from the
smart speaker’s microphone.

Once you have decided on what city to visit first,
ask Alexa a few questions about the location, local
currency and weather in that city.

Now that you have decided which city to visit first,
ask Alexa to plan a day in that city by saying,
“Alexa open trip planner.” Follow the voice instruc-
tions and request to plan a day at the selected city
when prompted. The trip details can be seen on the
Alexa app on the smartphone.
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A.3 Task C

With the help of the voice assistant, discuss with your
partner and decide on a movie to see this weekend at a
nearby multiplex.

1. Ask Alexa a list of movies playing at the nearest
movie theater for this weekend.

2. Privately discuss with your partner the movie to
watch based on your preferences. Consider includ-
ing preferred genre of movie, average rating for the
movie, showtimes, etc. You should keep your conver-
sation private from the smart speaker’s microphone

3. Once decided, ask Alexa show timings for the se-
lected movie this weekend.

B Usability Study Post-Task
Interview Script

Participants were first given the 10-item System Us-
ability Scale (SUS) to complete,® and then asked open
ended questions:

1. Talk about your experience using the system, what
do you think went well and what went wrong ?

2. Describe your emotions while interacting with the
device, did you get frustrated or annoyed by the
behavior of the device?

3. What was your experience using the privacy con-
trols?

4. Do you trust the privacy controls to be effective /
useful?

C Usability Study Exit Interview
Script

Researcher: “Thank you so much for participating in our
study! Before we go we have one last activity we want
to you to do.”

Researcher hands out 3 cards to each participant:
each card has the name of one of the conditions, “Mute
Button,” “Speak Up,” and “Look at Me.”

R: “If you could take a few moments to rank the
conditions in front of you based on usability — that is,

8 See
system-usability-scale.html

https://www.usability.gov/how-to-and-tools/methods/
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how easy and comfortable you were using the device.
And if you could do this individually please.”

Wait for participants to complete task.

R: “Now if you could walk us through why you or-
dered the cards in that order?”

Discussion takes place.

R: “Thank you so much! Now if you could do the
same thing, but this time, rank the cards in front of you
in terms of privacy — that is, how confident that with the
given control you will be able to maintain your privacy
and keep unwanted conversations from Alexa.”

Wait for participants to complete task.

R: “Now if you could walk us through why you or-
dered the cards in that order?”

Discussion takes place.

R: “Thank you so much!”


https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
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