
Proceedings on Privacy Enhancing Technologies ; 2020 (2):271–287

Erik Sy*, Tobias Mueller, Christian Burkert, Hannes Federrath, and Mathias Fischer

Enhanced Performance and Privacy for TLS
over TCP Fast Open
Abstract: Small TCP flows make up the majority of web
flows. For them, the TCP three-way handshake induces
significant delay overhead. The TCP Fast Open (TFO)
protocol can significantly decrease this delay via zero
round-trip time (0-RTT) handshakes for all TCP hand-
shakes that follow a full initial handshake to the same
host. However, this comes at the cost of privacy limita-
tions and also has some performance limitations. In this
paper, we investigate the TFP deployment on popular
websites and browsers. We found that a client revisiting
a web site for the first time fails to use an abbreviated
TFO handshake in 40% of all cases due to web server
load-balancing using multiple IP addresses. Our anal-
ysis further reveals significant privacy problems of the
protocol design and implementation. Network-based at-
tackers and online trackers can exploit TFO to track
the online activities of users. As a countermeasure, we
introduce a novel protocol called TCP Fast Open Pri-
vacy (FOP). TCP FOP prevents tracking by network
attackers and impedes third-party tracking, while still
allowing 0-RTT handshakes as in TFO. As a proof-of-
concept, we have implemented the proposed protocol for
the Linux kernel and a TLS library. Our measurements
indicate that TCP FOP outperforms TLS over TFO
when websites are served from multiple IP addresses.

Keywords: TCP Fast Open, Online Tracking, Protocol
Design

DOI 10.2478/popets-2020-0027
Received 2019-08-31; revised 2019-12-15; accepted 2019-12-16.

*Corresponding Author: Erik Sy: University of Hamburg,
E-mail: sy@informatik.uni-hamburg.de
Tobias Mueller: University of Hamburg, E-mail:
mueller@informatik.uni-hamburg.de
Christian Burkert: University of Hamburg, E-mail:
burkert@informatik.uni-hamburg.de
Hannes Federrath: University of Hamburg, E-mail:
federrath@informatik.uni-hamburg.de
Mathias Fischer: University of Hamburg, E-mail:
mfischer@informatik.uni-hamburg.de

1 Introduction
TCP is the standard network protocol for transmit-
ting information on the Internet and a TCP connec-
tion is usually used to establish a subsequent TLS con-
nection. Nowadays about 80% of HTTP web requests
are encrypted [10] Retrieving a popular web page re-
quires HTTPS connections to on average 20 different
hosts [31], which sums up to 20 TCP and 20 TLS hand-
shakes. Especially for short web flows, these handshakes
represents a significant overhead.

To decrease the delay of a TCP handshake, the TCP
Fast Open Protocol (TFO) [5] has been deployed by
the most popular operating systems and browsers, even
though it is not yet actively used by all of them. It short-
ens TCP’s three-way handshake by one round-trip time
for all connections that follow an initial TFO connec-
tion to the same host. With the initial TFO handshake,
the server verifies the client IP address and sends an
identifier (Fast Open cookie) to the client as proof of
this verification. The client can then use this cookie for
all successive TFO connections to the server as long as
its IP address has not changed. However, while provid-
ing significant speedup, this identifier can be used to
link TFO sessions. Thus, an online tracker can exploit
it to collect profiles of users’ browsing behavior. Further-
more, as TFO messages are sent unencrypted, users can
be tracked via passive network monitoring like dragnet
surveillance. Tracking via the TFO protocol is limited
as it requires a matching client and server IP address as
well as a matching server port for reusing cached Fast
Open cookies.

Despite this limitation, tracking via Fast Open
cookies can be more effective than tracking based on
IP addresses. For example, TFO tracking enables to
differentiate between devices sharing the same public
visible IP address, e.g., as a result of Network Adress
Translation (NAT). Furthermore, TFO tracking allows
the attacker to extend the tracking periods compared
to IP addresses tracking in cases where the public IP
address are dynamically assigned. Worse, a TFO track-
ing period is not terminated by a browser restart, nor
is it restricted to the scope of a single application on
that host, but only by a restart of the kernel or the



Enhanced Performance and Privacy for TLS over TCP Fast Open 272

host (as this clears the kernel’s TCP cache). This is es-
pecially worrisome on mobile devices, which are always
on and are seldomly restarted. Moreover, TFO tracking
is independent of conventional tracking practices such
as HTTP cookies or browser fingerprinting [6] that use
other protocols than IP and TCP.

While the most effective countermeasure is to dis-
able TFO entirely, this prevents the round-trip time sav-
ings during connection establishment. To balance the
legitimate needs of online privacy and faster TLS over
TCP connections, we additionally propose the TCP Fast
Open Privacy (TCP FOP) protocol as a countermeasure
to TFO tracking.

In summary, this paper makes the following contri-
butions:
– To the best of our knowledge, we are the first to

describe tracking via TFO cookies. Passive network
attackers and online services can use these cookies
to link website visits to the same user. We find that
the TFO protocol provides no measures to restrict
such a tracking mechanism.

– We found that under real-world conditions, the first
revisit of a website supporting the TFO protocol
fails in 40% of all cases to perform an abbrevi-
ated handshake. The main reason for this is server
load balancing, i.e., the same website is concurrently
served from multiple different IP addresses. This
represents a considerable performance limitation of
TFO.

– We investigate the TFO configuration of popu-
lar browsers and found that the tracking periods
for Chrome, Firefox, and Opera seem to be not
restricted at all. We successfully tracked succes-
sive connections from these browsers for a period
of ten days. Furthermore, tracking is feasible for
the tested setups across private browsing modes,
browser restarts, and even across different browsers
running on the same host. Online trackers can uti-
lize TFO to track users as a third-party across mul-
tiple websites, and even across different websites, as
long as they are served from the same IP address.

– We propose TCP FOP as a cross-layer solution to
overcome the described privacy limitations of TLS
over TFO. Furthermore, TCP FOP allows abbrevi-
ated handshakes for website revisits independently
of the server’s IP address. This significantly im-
proves the performance of website revisits compared
to TLS over the TFO protocol. For that, our solu-
tion uses an encrypted TLS channel to send Fast
Open cookies from the server to the client. We im-
plemented TCP FOP into the Linux kernel and in a

TLS library to demonstrate its real-world applica-
bility. The evaluation of our prototype indicates no
additional delay compared to TFO/TLS connection
establishments.

Note that we responsibly disclosed our privacy concerns
regarding the TFO protocol to the vendors of popular
browsers. As a result of this disclosure, Mozilla depre-
cated the TFO protocol on all branches of Firefox for
all platforms [15]. Furthermore, Microsoft removed sup-
port for TFO from the private browsing mode of the
Microsoft Edge browser [3].

The remainder of this paper is structured as fol-
lows: Section 2 describes the connection establishment
of the TCP Fast Open protocol, its deployment within
the Alexa Top Sites, and evaluates its real-world perfor-
mance limitations. Section 3 reviews tracking via TFO
cookies, privacy threats arising from host-based as well
as network-based attackers, and investigates the feasi-
bility of the presented tracking mechanism for popular
browsers. Section 4 summarizes TCP FOP as well as
its implementation and presents evaluation results. Re-
lated work is reviewed in Section 5. Section 6 concludes
the paper.

2 TCP Fast Open
In this section, we briefly describe the protocol hand-
shake of TCP Fast Open (TFO). Subsequently, we in-
vestigate the deployment of the TFO protocol for the
Alexa Top Million Sites. We also analyze the perfor-
mance impact of real-world load-balancing on the rate of
zero round-trip time (RTT) connection establishments.

2.1 Background on TFO’s Connection
Establishment

TFO is defined in RFC 7413 [5] as an experimental
TCP mechanism. It allows saving up to one round-trip
time compared to the standard TCP handshake [23].
For that, during a successful TFO handshake the client
obtains a cookie from the server, which it can use in
subsequent connections. The TFO cookie is encrypted
and authenticated by the server and opaque to the
client. RFC 7413 does not specify a general construction
scheme for these cookies. However, it has to contain in-
formation about the client’s publicly visible IP address.
Thus, if the client presents a cookie which matches its



Enhanced Performance and Privacy for TLS over TCP Fast Open 273

publicly visible IP address, the server accepts this as
proof that the client can receive messages at the claimed
IP address. The server then does not need to validate the
client’s source address via additional message exchanges
anymore. This allows the client to establish a connection
without waiting for the server’s response. Thus, appli-
cation data can be sent immediately along with the first
client message. Figure 1 shows a schematic of the TFO
handshakes.

Initial handshake: At the beginning, the client
has no information about the server. Similar to a TCP
three-way handshake [23], the client initiates a connec-
tion by sending a SYN to the server as shown in Fig-
ure 1a. This SYN includes a TCP option that requests
a TFO cookie from the server. The server confirms the
connection request with a message containing a SYN-
ACK and a TFO cookie. The client then caches the TFO
cookie for the establishment of subsequent connections.
To complete the three-way handshake, the client sends
an ACK. The now established connection is a standard
TCP connection.

0-RTT handshake: For subsequent connections to
the same server, the client utilizes the previously re-
trieved TFO cookie. For that, it sends the cookie as part
of the SYN message to the server as shown in Figure 1b
and c. Additionally, the client can include application
data as payload within the SYN message. Upon receiv-
ing the client’s connection request, the server validates
the included TFO cookie.

A cookie is valid for a connection request, if the
claimed IP address of the client matches the one asso-
ciated with the cookie. For valid cookies, the server ac-
cepts the connection request with the attached applica-
tion data. As a response, the server sends a SYN-ACK,
which acknowledges the client’s SYN message and the
length of the received application data (see Figure 1b).
This SYN-ACK message can contain application data as
a payload. In total, this abbreviated connection estab-
lishment saves one round-trip time of delay compared
to TCP’s three-way handshake.

In the case of an invalid cookie, the server drops the
application data of the client as shown in Figure 1c. For
that, the server sends a SYN-ACK which only acknowl-
edges the client’s SYN but not the application data.
Moreover, the server generates a new TFO cookie for the
client and attaches this as a payload to the SYN-ACK.
Thereafter, the client replaces the cached cookie_1 with
the fresh cookie_2, which can be used in subsequent 0-
RTT handshakes (see Figure 1c). Note, that a rejected
0-RTT handshake only causes the same delay as a stan-
dard TCP three-way handshake.

2.2 Evaluation

In this section, we first investigate the deployment of
TFO within the Alexa Top Million Sites. This allows
us to determine an upper limit of websites which pos-
sibly deploy TFO to track their visitors. Based upon
a sample size of approx. 30 000 hostnames within the
Alexa Top Million Sites, we then investigate to which
extent changing server IP addresses affects the perfor-
mance gains achievable by TFO.

2.2.1 Deployment of TFO

Major operating systems such as Windows, macOS,
Linux, FreeBSD, Android, and iOS support the TFO
protocol, which is a precondition for its widespread
adoption. However, these implementations do not set
TFO as a default for all TCP connections and thus it
still requires modifications to the client- and server-side
applications to be used. The RFC describing the TFO
protocol was published in 2014 [5]. We thus assume that
our measurement of the TFO deployment investigates
an early-stage in the wide-spread adoption of this pro-
tocol that we expect in the near future.

To approximate the deployment of TCP Fast Open
on the Internet, we investigate the support for TFO
within the Alexa Top Million Sites [1]. For this purpose,
we sent a SYN packet containing a TFO cookie request
to the first IP address mentioned in the DNS record
of the corresponding hostname. In this measurement,
we did not treat hostnames hosted by Content Delivery
Networks (CDNs) differently. Our measurements suc-
ceeded to receive a response from a server for 97.1%
of the investigated hostnames. The remaining 2.9% of
our measurements resulted in errors. In detail, we ob-
served errors in the name resolution for 19 498 domain
names. Furthermore, we did not receive a response to
our TFO connection request from 9254 hosts. If the re-
spective host responded with a SYN-ACK including a
TFO cookie, we consider this site to support the TFO
protocol and the contrary otherwise. We limited our
scans to port 443 on the targeted web server as this is
the standard port for HTTPS web services [24]. We con-
ducted this measurement from an IPv4 address on the
10th of August 2018 using a dedicated Python script.

Table 1 shows the number of hostnames supporting
the TCP Fast Open protocol within different Alexa Top
lists. We find that 60% of the ten most popular host-
names support the protocol. However, this fraction de-
creases with the size of the Alexa Top list. While 28%
among the Top Hundred hostnames still enable TCP



Enhanced Performance and Privacy for TLS over TCP Fast Open 274

Client Server

SYN-ACK + Fast Open cookie_1

ACK + application data

SYN + Fast Open cookie request

regular TCP data
flow can follow…

a) Initial Handshake

Client Server

application dataACK

SYN + Fast Open cookie_1 + application data

regular TCP data
flow can follow…

SYN-ACK (SYN, application data)

b) 0-RTT Handshake

Client Server

ACK + application data

SYN + Fast Open cookie_1 + application data

regular TCP data
flow can follow…

SYN-ACK (SYN) + Fast Open cookie_2

c) Rejected 0-RTT Handshake

Fig. 1. Handshakes in TCP Fast Open protocol.

Table 1. Websites with TFO-support in Alexa Top lists

Alexa Top lists Share of hostnames with TFO-support

Alexa Top 10 60.0%
Alexa Top 100 28.0%
Alexa Top 1K 12.4%
Alexa Top 10K 5.9%
Alexa Top 100K 3.4%
Alexa Top 1M 3.2%

1 2 3 4 5 6 7 8 9 10
Server IP addresses observed during ten connections

0

10

20

30

40

50

60

S
h
ar
e
of

h
os
tn
am

es
su
p
p
or
ti
n
g
T
F
O

[%
]

Fig. 2. Share of hostnames with TFO-support plotted over the
number of observed server IP addresses for ten connections.

Fast Open handshakes, this share decreases to 3.2%
within the Top Million sites. We assume that higher-
ranked websites tend to adopt new protocols such as
TCP Fast Open earlier than other websites.

2.2.2 Performance Limitations of TFO

Repeated connections to a hostname are not necessarily
served from the same IP address due to server load bal-
ancing. However, the TFO protocol instructs to utilize
a cached Fast Open cookie only if the source IP address,
destination IP address, and the destination port match
those of the TCP connection in which the cookie was

issued. As a result, any time the hostname is resolved
to a different IP address, the client experiences a cache
miss even if a Fast Open cookie from that hostname is
stored in the TCP cache. To assess the performance im-
pact of this design, we observe the IP addresses of the
responding servers, while connecting to a hostname sev-
eral times. We conducted this measurement on August
24th, 2018 using a virtual machine in the data center
of our university. We used a dedicated Python script to
send a TFO connection request using a static IPv4 ad-
dress. Subsequently, we observed the server’s response.
When the responded SYN-ACK includes a TFO cookie,
we consider this host to support TFO and the contrary
otherwise. Note, that we did not attempt handshakes
using a previously retrieved cookie. In total, we con-
nected to 32 099 hostnames that we identified in our
previous measurement (see Section 2.2.1) as sites sup-
porting the TFO protocol. We connected to every host-
name ten times with intervals of 45 minutes between
each successive connection and observed the respective
server IP addresses. This time interval was chosen for
reasons of convenience because our test setup required
about 40 minutes to initiate connections to the entire
set of investigated hostnames. Note, that the selected
time interval is significantly larger than the expiration
time of DNS records of popular websites, which mostly
expire within 5 minutes [28]. During this measurement,
we experienced a failure rate of 1.2% that was mainly
caused by unresponsive hosts.

About 94% of the investigated hostnames indicated,
support for the TFO protocol at each of these connec-
tions. The remaining 4.8% can be attributed to host-
names that are served from multiple servers and not all
of them support the TFO protocol. This includes servers
not supporting TFO on a different IP address, but also
on the same address in case anycast is used to reach mul-
tiple physical servers behind the same address. Figure 2



Enhanced Performance and Privacy for TLS over TCP Fast Open 275

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Consecutive connections to hostnames supporting TFO

0

20

40

60

80

100
F
ai
lu
re

ra
te

d
u
e
to

n
ew

IP
ad

d
re
ss
es

[%
]

Fig. 3. Failure rate to conduct abbreviated handshakes due to
fresh server IP addresses plotted over successive connections to
hostnames with TFO-support.

shows the number of observed IP addresses per site for
the 30 218 hostnames always supporting TFO. Our re-
sults indicate, that at least 81% of the tested hostnames
are served from several IP addresses. We also found that
the second connection to a hostname introduces 11 876
new IP addresses compared to the first connection. As
shown in Figure 3, the second TFO connection to a host-
name fails in 39.3% of all attempts due to the fact that
the hostname is served from a different IP address than
the first. For the third connection to a hostname, we ob-
serve an average failure rate of 24.7%. On average, the
tested hostnames are served each from 2.1 different IP
addresses across our measurements. We conclude that
the binding of TFO cookies to a specific server IP ad-
dress presents a significant real-world performance lim-
itation in the context of web browsing.

3 Tracking via TCP Fast Open
In this section, we begin by introducing a basic approach
to track users via the TFO protocol. Based on that,
we describe practical tracking scenarios using this ap-
proach. Afterward, we compare TFO-based tracking to
IP-based tracking. Finally, we evaluate the default con-
figuration of popular web browsers regarding TFO to
assess the real-world impact of the presented tracking
mechanism.

3.1 Basic Tracking Approach

Essential to TFO-based tracking are the cookies that
the TFO protocol uses to authenticate a client upon
consecutive connections to a server. These cookies are
generated by the server and permit the attacker to iden-
tify clients with up to 16 bytes of entropy [5]. They

enable the server to link all connections in which the
same unique cookie is used and to attribute them to the
same client. Moreover, a failed authentication as shown
in Figure 1c allows the server to link the fresh cookie_2
to the same client that was previously using cookie_1.
Following TFO’s specification, the client should then
use the fresh cookie_2 for subsequent connections to
the same server. In total, the server can track its clients
via Fast Open cookies in an essentially similar fashion
as with the widespread HTTPS cookie.

Attacker Model
Our attacker model assumes that the attacker can read
network packets including their IP and TCP headers.
The attacker is capable of extracting Fast Open cookies
from the TCP headers and storing them for future refer-
ence in association with the respective tracking profile.
As a limitation, the attacker is not capable to conduct
user tracking based on any other protocol except for
IP and TCP. The attacker cannot break cryptographic
primitives. Hence, they cannot violate the confidential-
ity or authenticity of the TFO cookie without access to
the respective secret key. The attacker has no direct ac-
cess to a client and cannot violate the integrity of the
software run by the client. Additionally, a host-based
attacker located on the server has access to the secret
key used to encrypt and authenticate TFO cookies and
can thus issue custom TFO cookies.

3.2 Tracking Scenarios

While tracking by a single web server presents a privacy
issue in itself, it is amplified if a tracker can identify
a user across several visited websites. The remainder
of this section, describes third-party tracking, tracking
across virtual domains, and tracking by a network-based
attacker, all of which allow tracking via the TFO pro-
tocol across multiple websites.

Scenario 1: Third-party Tracking
Third-party tracking refers to a practice, where a party
other than the targeted website can link website visits
to the same user. This is a common practice on the In-
ternet considering that Alexa Top 500 websites include
on average 17.7 third-party trackers [7]. The presented
tracking mechanism allows identifying users across all
websites where a corresponding tracker is included as a
third-party resource. However, to distinguish the vari-
ous first-party sites, i.e., referrers, that a user visited,



Enhanced Performance and Privacy for TLS over TCP Fast Open 276

the tracker requires an additional identifier such as an
HTTP referrer or a dedicated URL per first-party.

Scenario 2: Tracking Across Virtual Domains
In virtual hosting, multiple virtual domains are hosted
on a single server or pool of servers. This approach al-
lows sharing resources like the IP address and server
hardware across domains. When domain name A and B
share the same IP address, then a TFO connection to
both websites will contain the same cookie. Hence, an
operator of a virtual hosting platform such as a Content
Delivery Network (CDN) can link visits of the same user
across the hosted virtual domains. In detail, a Fast Open
cookie issued during a connection to domain name A
will be reused by the client when connecting to domain
name B allowing the operator of these hosts to link these
connections based on the same Fast Open cookie to the
same user.

Scenario 3: Tracking by a Network-based Attacker
Since TCP itself provides no confidentiality, a passive,
network-based attacker can observe the content of TCP
headers as long as no protective measure is taken on
lower protocol layers, e.g., IPsec. As a consequence,
the attacker can use TFO cookies for tracking purposes
as described above. This is particularly sensitive if the
network-based attacker is located on the public Internet
and targets a client that is situated in a local network
which uses address translation (NAT). In that case, the
attacker would be otherwise unable to distinguishing
specific users. As a result, this undermines the efforts
of protocols such as TLS 1.3 [26] that aim to protect
against tracking by network-based attackers.

3.3 Comparison to Tracking via IP
Addresses

In this section, we describe how the presented mech-
anism extends the capabilities of tracking via IP ad-
dresses despite TFO’s requirement for matching client
and server IP addresses to reuse cached Fast Open cook-
ies. To illustrate this comparison, we introduce a sce-
nario of devices sharing the same IP address and an-
other scenario where a device is placed behind a Net-
work Address Translator (NAT), whose publicly visible
IP address changes dynamically.

3.3.1 Distinguishing Devices Sharing an IP Address

The Internet is dominated by the use of IP version 4 and
the available address space is already exhausted [14].
This makes the sharing of IPv4 addresses necessary. Fur-
thermore, the transition to IP version 6 is difficult and
it is only supported by about a quarter of the most
popular 10 000 websites and the global Internet users,
respectively [8, 28]. Thus, the sharing of IP addresses
is a common scenario from small home networks up to
large carrier-grade NATs spanning several thousand de-
vices. Tracking based on IP addresses becomes infeasible
when a large number of devices share the same IP ad-
dress as they form a large anonymity set. Tracking via
Fast Open cookies does not have the same limitation.
The tracker can provide each device with a unique Fast
Open cookie. Thus, a client presenting this cookie dur-
ing a future connection request can be clearly linked to
the prior connection that was used to issue the cookie.

3.3.2 Prolonged Identification behind NAT

On the Internet, a significant share of users uses a dy-
namically assigned IP address [32]. Figure 4 shows a
common network topology, where a user’s device is lo-
cated in a private network behind a NAT gateway that
always uses the same local IP address. Furthermore, we
assume that the public IP address of the NAT gateway
changes dynamically. In this setup, user tracking via IP
addresses stops when the NAT gateway receives a new
public IP address because a tracker on the Internet can-
not link the old to the new IP address. In the case of
TFO, the client’s static, local IP address always fulfills
the requirement of a matching client IP address dur-
ing the reuse of cached cookies. Thus, the client device
reuses cached TFO cookies independently of its publicly
visible IP address assigned to the NAT. In total, in the
described setup, tracking via TFO cookies allows ex-
tending the feasible tracking periods compared to when
using only the client’s publicly visible IP address.

Note, that the tracking periods achievable via TFO
are limited by the uptime of an OS, as a restart clears
the corresponding TCP cache. However, especially mo-
bile devices such as smartphones can achieve an uptime
of several days or weeks under real-world conditions and
thus allow for tracking periods of a similar duration. An-
other limiting factor is the TCP cache size, which under
certain circumstances can lead to the eviction of older
entries [2].



Enhanced Performance and Privacy for TLS over TCP Fast Open 277

Private Network

NAT Device

Public Internet

192.168.1.2

192.168.1.3

192.168.1.4
Default Gateway

192.168.1.1
Public IP Address

1.2.3.4

Fig. 4. NAT device used for a private network.

3.4 Evaluation

To explore the real-world feasibility of user tracking
via the TFO protocol, we investigated popular web
browsers on different operating systems. In total, we
conducted eight browser experiments, whose method-
ology and results we present in the remainder of this
section.

3.4.1 Status of TFO on the test systems

The privacy problems of TFO are relevant to all ap-
plications that use this protocol. However, within the
scope of this work, we focus our investigation on popu-
lar web browsers because of their important role to pro-
tect users’ web browsing behavior against online track-
ing without user consent. In our sample of popular
web browsers, we included the Top 3 mobile and the
Top 6 desktop browsers [27]. We tested those browsers
on up-to-date versions of Android, iOS, Linux, macOS,
and Windows 10 and investigated their support for the
TFO protocol by analyzing the network traffic between
browser and server. We find, that the deployment of the
TFO protocol in popular browsers is still at an early
stage. Thus, only Microsoft Edge on Windows 10 sup-
ports TFO by default. Firefox, Chrome, and Opera sup-
port the TFO protocol as an experimental feature on
several operating systems as shown in Table 2. Note,
that TFO is activated by default within Firefox Nightly
and Firefox Beta under macOS and Windows 10, which
indicates preparations to further deploy TFO across the
Firefox platforms. Our tests for iOS 11 and Android
Kernel 4.10 did not reveal any popular browser which
supports TFO. Note, that the TFO implementation of
Microsoft Edge did not work reliably within the IPv4
network stack. To overcome this issue, we tested this
browser with an IPv6 network stack, while all other test
systems deployed IPv4.

3.4.2 Feasible tracking periods

This measurement gives a lower boundary of feasible
tracking periods via the presented approach. For that,
we visited a website that supports TFO. In between
different visits, we closed the browser tab that was in
use and left the browser idle in the background of the
operating system. After one hour, we attempted to re-
visit the same website served from the same IP address.
By a manual analysis of the network traffic between the
browser and the server we observed whether the browser
attempted to use the cached Fast Open cookie from the
first website visit to establish the fresh connection. If
the browser makes use of the cookie, we can then as-
sume that it is feasible to track users with the deployed
test setup and for the duration of our test. Next, we
repeated this measurement with a fresh TCP cache and
increasing the delays between consecutive website vis-
its up to ten days. We found that none of the IPv4-
based test setups indicated a restriction of the feasi-
ble tracking period. Thus, we could track all Chrome,
Firefox, and Opera setups for the entire test period of
ten days as shown in Table 2. Furthermore, this indi-
cates that the tested operating systems do not limit
the feasible TFO tracking periods via the TFO proto-
col. For the Microsoft Edge browser, we were required
to conduct this experiment on an IPv6 network stack,
which diverts from our other browser test setups. We
observed for the Windows 10 default configuration that
the Edge browser utilizes temporary IPv6 addresses [18]
within the available address block. As a privacy feature,
the lifetime of these temporary addresses is limited to
24 hours by Windows 10. Thus, this test setup changes
its global IPv6 address after 24 hours, even when the as-
signed IPv6 address block remains the same. However,
the TFO protocol only uses cached Fast Open cookies
if the source IP address of the test system is the same
as in the TFO connection from which the cookie was
retrieved. As a result, the observed tracking periods ter-
minate with the change of the temporary IPv6 address.

3.4.3 Tracking across third-parties

This measurement investigates the feasibility of third-
party tracking via the TFO protocol. Figure 5 shows a
schematic of the deployed test setup for this experiment.
To conduct this measurement, we require two websites
A and B that include the same third-party T . We vis-
ited website A and validated that the browser received



Enhanced Performance and Privacy for TLS over TCP Fast Open 278

Table 2. TCP Fast Open default configuration of popular browsers. Note, that the experiments with the Edge browser only worked
reliably with IPv6, while all other setups were tested with IPv4. Due to the feature of temporary IPv6 addresses, the default Windows
10 behavior issues a fresh temporary IPv6 address every 24 hours, which is then used by the Edge browser.

Tracking across

Browser/Test system Status Tracking
periods

Third-
parties

Virtual
hosts

IP addr.
changes

Private
browsing
modes

User ap-
plications

Browser
restarts

Chrome v68/Ubuntu 18.04 support unrestricted viable viable blocked viable viable viable
Firefox v61/Ubuntu 18.04 support unrestricted viable viable blocked viable viable viable
Firefox v61/macOS 10.13 support∗ unrestricted viable viable blocked viable viable viable
Firefox v61/Windows 10 support∗ unrestricted viable viable blocked viable viable viable
Edge v42/Windows 10 default 24 hours viable viable blocked viable viable viable
Opera v54/Ubuntu 18.04 support unrestricted viable viable blocked viable viable viable

∗Activated by default within Firefox Nightly and Firefox Beta.

User

Website A
(incl. T)

Website B
(incl. T)

Third-party T

Loading Website A
Loading Website B

Fig. 5. Testbed to measure browser behavior regarding third-party
tracking.

a Fast Open cookie from the third-party T by manually
analyzing the network traffic. After closing the browser
tab in-use, we waited for 30 minutes for open TFO con-
nections to time out [13]. We then visited website B and
investigated the network traffic between the browser and
the third-party T . If the browser attempted to use the
cached Fast Open cookie for the connection establish-
ment with T , we concluded that third-party tracking via
TCP Fast Open is feasible with this browser. As shown
in Table 2, none of the tested browsers applied mech-
anisms to prevent third-party tracking via Fast Open
cookies. Thus, third-parties present on several websites
can track the same user’s visits across all those sites.

3.4.4 Tracking across virtual hosts

This experiment is used to investigate the feasibility of
tracking across virtual hosts. It requires two websites
whose DNS entries direct to the same IP address. We
connected to one of these websites and afterward closed
the browser tab and waited for 30 minutes to ensure
that TCP connections to that website timed out. We
then connected to the second website and monitored

the respective network traffic of this connection. If the
second connection uses the Fast Open cookie, which was
retrieved during the connection to the first website, we
conclude that tracking across virtual hosts is feasible
with the tested browser. Our evaluation indicates that
the investigated browsers do not prevent tracking across
virtual hosts (see Table 2). Therefore, when multiple
websites are served from the same IP address, the ser-
vice operator can identify users across those hosted web-
sites.

3.4.5 Tracking across IP address changes

This test investigates the browser behavior regarding
TFO when the operating system gets a new IP address
assigned. To assess this behavior, we visited a website
and closed the browser tab afterward. While the browser
was running idle in the background of the operating sys-
tem, we assigned a new IP address to the device. Then,
we revisited the website with the tested browser instance
and monitored the network traffic of the connection. If
the browser reuses the cached Fast Open cookie of the
website, we can conclude that tracking across IP address
changes is feasible. We observed, that user tracking is
not feasible across IP address changes of the client as
shown in Table 2. However, considering a common con-
sumer setup, where devices reside in a private network
that is connected to the Internet through a NAT gate-
way, such devices typically keep their local IP addresses
unchanged indefinitely, since DHCP servers determin-
istically reassign the same local IP address based on
unchanging features like the client’s MAC address. In
such a setup, the client’s unchanging local IP address
is independent of the public IP address, which is as-
signed to the NAT gateway. Thus, even after a change



Enhanced Performance and Privacy for TLS over TCP Fast Open 279

of the public IP address, the client will try to connect
using the previously cached Fast Open cookies, which
are bound to the unchanged local sender address. As
a consequence, this allows a tracking server to learn a
client’s new publicly visible IP address and continue its
tracking activities across the IP address change.

3.4.6 Tracking across private browsing modes

This experiment explores whether user tracking via
TFO is feasible across browsers’ default and private
browsing mode. To assess this browser behavior, we vis-
ited a website in the default mode of a browser. Then,
the respective browser tab was closed and the private
browsing mode activated. While monitoring the network
traffic, we then revisited the website. If the connection
establishment in the private browsing mode used the
previously retrieved Fast Open cookie, we could con-
clude that tracking across the browsing modes of the
tested browser is feasible. As indicated in Table 2, all
setups allow a remote online tracker to identify their
user across changes of their browsing mode. This ob-
served behavior presents a breach in the respective pri-
vacy modes, which aim to discard cookies at the end of
each private session [16].

3.4.7 Tracking across browser restarts

This measurement tests whether tracking across
browser restarts is feasible. To investigate this browser
behavior, we first visit a website and retrieve a fresh
Fast Open cookie. Then, we restart the browser and re-
visit the same website while we monitor the respective
network traffic. If the browser reuses the cookie of the
previous browser instance, then we conclude that track-
ing across browser restarts is feasible with the deployed
setup. We find, that none of the tested browsers pre-
vents tracking via Fast Open cookies across a browser
restart.

3.4.8 Tracking across user applications

This experiment explores tracking across different user
applications on the same device. To conduct the exper-
iment, we retrieve a website and leave the respective
browser idle in the background of the OS. Afterward,
we use another application with support for the TCP
Fast Open protocol such as another browser or curl to
retrieve the same website. By monitoring the network
traffic between the website and the operating system,

we find out whether the second application reuses the
TCP Fast Open cookie of the tested browser. If so, then
tracking across user applications is feasible. Our results
indicate, that user tracking across applications on the
same client operating systems is viable for all tested se-
tups (see Table 2).

Summary
As a summary of these browser measurements, we find
that the use of the TFO protocol leads to huge privacy
risks such as unrestricted tracking periods and cross-
browser tracking. Furthermore, our results indicate that
this tracking mechanism is very persistent and cannot
be terminated by browser restarts or a change of the
browsing mode. We recommend browser vendors to re-
frain from deploying the TFO protocol due to the pre-
sented privacy problems.

4 TCP Fast Open Privacy
In this section, we introduce the TCP Fast Open Pri-
vacy (TCP FOP) protocol, that addresses the perfor-
mance and privacy limitations of TLS over TFO. Then,
we describe the implementation of the novel TCP FOP
protocol. Subsequently, we evaluate the privacy and per-
formance provided by the TCP FOP protocol. Finally,
to further substantiate the real-world applicability of
TCP FOP, we analyze the effects of TCP protocol en-
trenchment on the proposed protocol.

4.1 Design of TCP FOP

TCP FOP builds upon the TFO protocol and contin-
ues the approach to use Fast Open cookies to reduce
the latency of the connection establishment. These Fast
Open cookies are generated by the server and sent over
an encrypted channel to the client. Because there is
no encrypted channel within TCP, we propose to use
TLS for this purpose and to create a cross-layer solu-
tion. Our proposal requires an extension to TLS with
an additional message type that allows the client to re-
quest Fast Open cookies and enables the server to pro-
vide such cookies over an encrypted channel. The client
stores a received cookie along with the corresponding
timestamp, the hostname, and a context identifier. The
timestamp is used to limit the period for which a cached
cookie can be used to attempt an abbreviated hand-
shake. The hostname is authenticated within the TLS



Enhanced Performance and Privacy for TLS over TCP Fast Open 280

Client Server

SYN-ACK

ACK

SYN

CHLOFOP

SHLO

encrypted Fast Open cookie

regular TLS data
flow can follow…

Sends 
Fast Open 
cookie
over TLS-
channel

Stores 
cookie
in TLS 
cache

a) Initial Handshake

Client Server

SYN-ACK(SYN, TLS data)

ACK

SYN + Fast Open cookie_1 + + CHLOFOP(PSK) + Request

SHLO + Response

regular TLS data
flow can follow…

Validates
cookie + 
accepts
TLS data

Uses Fast 
Open 
cookie
from TLS 
cache to
connect

encrypted Fast Open cookie_2

b) 0-RTT Handshake using TLS Session Re-
sumption

Fig. 6. Proposed handshakes in TCP Fast Open protocol using TLS 1.3 as a secure channel.

handshake and can therefore be associated with the
cookie. The cached cookies are then used for abbrevi-
ated handshakes for matching hostnames independently
of the server’s IP address. This modification allows TCP
FOP to anticipate the load balancing of websites across
several IP addresses. However, it requires the involved
servers to share the cryptographic secret, that is used to
encrypt/decrypt the corresponding Fast Open cookies.
The context identifier is provided by an application and
marks the context in which the cookie was retrieved.
Thus, a browser can mark for example each Fast Open
cookie from a third-party with the context identifier of
the corresponding first party. As a result, this third-
party cannot track the client across several first party
websites via the Fast Open cookie because the cached
cookie can only be used for an identical context iden-
tifier. By changing the context identifier for events like
browser restarts or changes between browsing modes,
user tracking across these events/contexts is mitigated.
Thus, to restrict user tracking via host-based attackers,
applications need to provide context identifiers to limit
the usage of retrieved Fast Open cookies. Additionally,
Fast Open cookies should not be reused to set up several
abbreviated connections.

In the following, we describe the details of the TCP
FOP handshakes. Figure 6 shows a schematic of the
proposed handshakes that use TLS version 1.3 [26] as
an encrypted channel.

Initial handshake: First, client and server use
a standard three-way handshake to establish a TCP
connection. Second, the client starts the modified TLS
handshake with a client hello message (CHLOFOP) that
indicates support for TCP FOP. The server responds
with a server hello message (SHLO) that completes the

cryptographic handshake and allows sending subsequent
messages over the established TLS channel. Afterward,
the server generates a fresh Fast Open cookie for the
client and sends it over the TLS channel. Finally, the
client stores this message along with a timestamp, the
hostname, and a context identifier in its TLS cache.

0-RTT handshake: To establish a new secure con-
nection to the same website with an abbreviated 0-RTT
handshake, the TLS implementation checks whether a
valid Fast Open cookie is available in its TLS cache. A
Fast Open cookie is valid if it has not yet expired and
the respective hostname and context identifier match.
Assuming a valid cookie, the client then calls a kernel
function with the cookie as a parameter that attempts
to open a TCP FOP connection. Then, the client sends a
SYN message to the server which includes the respective
Fast Open cookie as shown in Figure 6b. Subsequently,
the client starts its TLS handshake without waiting for
the server’s response. Figure 6b shows a 0-RTT TLS
handshake using session resumption for connection es-
tablishment and directly sending an encrypted data re-
quest. The TLS resumption handshake decreases the de-
lay and saves expensive cryptographic operations com-
pared to a full TLS handshake by leveraging key ma-
terial exchanged in an earlier session. Upon receiving
the client’s messages, the server validates the contained
Fast Open cookie before accepting the payload in the
SYN packet. The server then accepts the connection and
the received TLS data by sending a SYN-ACK message
which acknowledges the message of the client. Other-
wise, the server acknowledges the connection only and
drops the TLS data, which leads to a rejected 0-RTT
handshake. Following the flow of an accepted 0-RTT
handshake attempt as shown in Figure 6b, the server’s



Enhanced Performance and Privacy for TLS over TCP Fast Open 281

Table 3. Kernel API changes

API Name Description

TCP_Fast_Open_COOKIE_GEN This server-side API enables an application to retrieve a Fast Open
cookie for a specific client from the kernel.

TCP_Fast_Open_COOKIE_SET This client-side API enables an application to fill the TCP cache with a
specific cookie.

TLS application validates the client’s session resump-
tion data. Assuming this data to be valid, the server
answers by sending a SHLO, a response to the client’s
request and a fresh Fast Open cookie. In total, this pro-
tocol flow (see Figure 6b) allows the client to directly
send encrypted application data without waiting for a
response from the server.

Note, that in TLS version 1.3 [26] the session
resumption mechanism should not reuse identifiers
for connection establishment to prevent tracking by
a network-based attacker. To extend this protection
against this attacker to the TCP layer, a Fast Open
cookie should not be reused for setting up multiple con-
nections.

4.2 Implementation of TCP FOP

To assess the feasibility of TCP FOP, we implemented it
in the Linux 4.18 kernel and in the wolfSSL TLS library.
Our implementation required only minor modifications
of in total about 300 lines of code (LoC) for Linux and
400 LoC for wolfSSL, including comments and debug
output.

4.2.1 Kernel support

The Linux Kernel 4.18 already supports TCP Fast
Open. Thus, we largely reused the available TCP Fast
Open implementation and as a noteworthy change, we
added two new APIs to the kernel as shown in Ta-
ble 3. The API TCP_Fast_Open_COOKIE_GEN en-
ables the server’s TLS application to retrieve a fresh
Fast Open cookie for a specific client connection from
its kernel. For the client, we added the inverted API
call which allows including a Fast Open cookie into the
kernel’s cache before the subsequent connection estab-
lishment.

Our prototype aims to evaluate that the pre-
sented cross-layer approach adds no substantial
complexity to TCP and TLS. The implemented
TCP_Fast_Open_COOKIE_GEN API works in-
dependently of TCP’s connection handling. The

TCP_Fast_Open_COOKIE_SET API provides a
cookie that can be subsequently used within a TCP
handshake. However, this affects only the initialization
of TCP’s connection establishment. This creates no ex-
ternal constraints on the handshake protocol itself. Fur-
thermore, a Linux kernel API to delete specific TCP
Fast Open cookies [2] already exists, which also mod-
ifies the initialization of TCP’s connection establish-
ment. The proposed TCP_FOP_COOKIE_SET API
only provides the logical counterpart to the existing
deletion mechanism. Our implementation of TCP FOP
introduces only lightweight modifications to TCP, which
lead to no external constraints of TCP’s connection han-
dling.

4.2.2 TLS support

We implemented our prototype as part of the open-
source TLS library wolfSSL that provides support for
TLS 1.3. For practicality reasons, we decided to add Fast
Open cookies to the session resumption mechanism of
TLS 1.3. However, for the productive use of TCP FOP
we recommend an implementation as a dedicated TLS
mechanism, i.e., an extension, but leave that for future
work. We use TLS only as a data channel for the cookie
and to place the cookie in the TCP cache during the
establishment of a new connection. Therefore, our im-
plementation does not affect TLS’s cryptographic com-
ponents and its connection handling.

In the following, we briefly describe our workaround
of implementing TCP FOP by adapting the session re-
sumption mechanism of TLS 1.3. On the server-side,
we include a new Fast Open cookie which we gener-
ated with the TCP_Fast_Open_COOKIE_GEN API
into each TLS session resumption ticket. Thus, the TLS
server would subsequently send NewTicket messages
which contain the Fast Open cookie and the original ses-
sion resumption ticket. Upon receiving such a message,
the client stores it along with its own connection state
such as encryption keys within its TLS cache. To estab-
lish a subsequent connection to the same hostname, the
client first validates that a session resumption with that



Enhanced Performance and Privacy for TLS over TCP Fast Open 282

website complies with its privacy configuration. Assum-
ing that this validation was successful, the client ex-
tracts the Fast Open cookie from the cached session re-
sumption ticket and stores it in the kernel’s TCP cache
using the TCP_Fast_Open_COOKIE_SET API. This
API identifies the receiver based on its IP address. Note,
that this approach requires the application to learn the
IP address of a given hostname as it is common for
applications doing their independent DNS lookups. In
case, the application delegates the name resolution to
the kernel, an additional Kernel API would be required
to associate a Fast Open cookie with the resolved IP
address of a given hostname. Subsequently, the client
uses the session resumption ticket to establish a resumed
TLS session over TCP’s Fast Open extension. After this
connection is established, the client deletes the used Fast
Open cookie within the cache. To avoid client identifi-
cation based on session resumption tickets through a
network-based attacker, the client shall not reuse the
same ticket to set up connections with the server. Anal-
ogous, each fresh session resumption ticket is required
to contain a fresh Fast Open cookie, so that a client
cannot be identified by linking cookies.

4.3 Evaluation of TCP FOP

This section starts with an assessment of the privacy
properties of TCP FOP and a subsequent comparison
to the previously existing TFO protocol. Next, a per-
formance evaluation of TCP FOP is presented based
on experiments with the implemented prototype. To in-
vestigate the real-world applicability of TCP FOP, this
section ends with a feasibility analysis studying possible
deployment issues.

4.3.1 Privacy Evaluation

Tracking via Fast Open cookies is independent of al-
ternative tracking mechanisms such as HTTP cookies,
browser fingerprinting, or IP addresses. To protect the
privacy of users, a network-based attacker can observe
each utilized Fast Open cookie only once, namely dur-
ing the 0-RTT handshake of TCP FOP. From the per-
spective of a network-based attacker, these Fast Open
cookies are encrypted and single-use data blocks and
thus cannot be linked to a specific user. Therefore, the
TCP FOP protocol prevents attackers to use Fast Open
cookies to re-identify specific users and to establish user
profiles. Hence, tracking by network-based attackers is

not possible anymore, which is the most important pri-
vacy achievement of TCP FOP.

However, when facing host-based attackers, the
TCP FOP protocol faces a performance versus privacy
tradeoff. The best user privacy is achieved when doing
initial handshakes only, while the best performance is
achieved during sequences of 0-RTT handshakes. How-
ever, host-based attackers can link 0-RTT handshakes
to the same user by linking their Fast Open cookies. In
an initial handshake, the user does not reuse Fast Open
cookies from a prior connection, therefore user track-
ing is prevented. However, an initial TCP FOP hand-
shake requires an additional round-trip time compared
to the 0-RTT connection establishment, which impacts
performance. TCP FOP provides a mechanism to bal-
ance this tradeoff in the context of specific applications.
For that, Fast Open cookies expire after a certain life-
time, which limits the maximum tracking period to this
lifetime. The performance impact of such a lifetime ap-
proach has been studied in prior research work [29]. This
study of users’ browsing behavior indicates that 17.7%
of all revisits of websites can use 0-RTT handshakes, if
the lifetime of Fast Open cookies is set to five minutes.
Increasing this lifetime to 60 minutes allows using 0-
RTT handshakes for 48.3% of all website revisits. Thus,
this approach allows to strictly enforce an upper limit
for the feasible tracking period, while short Fast Open
cookie lifetimes still enable a significant share of 0-RTT
connection establishments.

The second countermeasure of the TCP FOP proto-
col against host-based attackers uses context identifiers
associated with cached Fast Open cookies. These con-
text identifiers are intended to strictly enforce privacy
policies in applications and therefore prioritize privacy
over performance. This approach restricts a client to use
only cached Fast Open cookies for 0-RTT handshakes if
their context identifier is identical to the active context
of the application. Defining the context based on the
visited party, virtual host, IP address, browsing mode,
user application, and browser session logically excludes
the tracking approaches observed in Section 3.4. For ex-
ample, by switching to the private browsing mode, pre-
viously cached Fast Open cookies cannot be used for 0-
RTT handshakes, as they have been retrieved from the
context of a different browsing mode. However, each ad-
ditional dependency on the context identifier causes a
further restriction for the use of cached Fast Open cook-
ies, which will eventually affect the ratio of initial and 0-
RTT handshakes. Table 4 summarizes our findings from
Section 3.4 for the TFO protocol and compares them to
the privacy characteristics of TCP FOP. We find that



Enhanced Performance and Privacy for TLS over TCP Fast Open 283

Table 4. Comparison of privacy characteristics between the TCP Fast Open protocol and our TFO proposal utilizing TLS as a secure
channel.

Privacy characteristic TCP Fast Open Protocol TCP Fast Open Privacy Protocol

Tracking via network-based attacker viable blocked through single-use cookies & encrypted channel
Tracking across third-parties viable blocking possible through context identifier
Tracking across virtual hosts viable blocking possible through context identifier
Tracking across private browsing modes viable blocking possible through context identifier
Tracking across browser restarts viable blocking possible through context identifier
Tracking across user applications viable blocking possible through context identifier
Tracking across IP address changes blocked blocking possible through context identifier
Tracking periods unrestricted restriction possible through expiration of cookies

the TCP FOP protocol can mitigate all privacy issues
of TLS over TFO.

4.3.2 Performance Evaluation

We evaluate the performance of the TCP FOP protocol
in two parts: First, we conduct experiments to investi-
gate whether the usage of the proposed TCP FOP/TLS
incurs a delay overhead compared to connections us-
ing TFO/TLS or standard TCP/TLS. Second, we study
the performance of TCP/TLS, TFO/TLS, and TCP
FOP/TLS in a scenario with real-world load-balancing.

4.3.2.1 Experiment using the TCP FOP Prototype
We compare our implemented prototype of TCP FOP to
implementations of standard TCP and TFO. For that,
we compare the required time to download a small web
page from a single host using one of these three trans-
port protocols in combination with TLS 1.3. For this
experiment, we use two virtual machines, one acting as
web server and the other as client. The virtualization
is realized on the same host using qemu 2.8 and libvirt
3.0.0. This test setup leads to short network latencies
with an average ping of 0.3 milliseconds (ms) between
the virtual machines. The host of the virtual machines
was equipped with an Intel Xeon E5-1660 v4 CPU with
32 GB of RAM and ran Debian stretch. The client and
the server machines were set up with 4 GB of RAM and
were running an Ubuntu 18.10 with our modified Linux
kernel (see Section 4.2.1) that supports the TCP FOP
protocol. The server ran the example server program
shipped with our modified wolfSSL library. The program
responds to a successful connection establishment with
a short string. The client ran the corresponding example
client program of wolfSSL that establishes a TLS session
to the server, waits for the short string from the server
and terminates the TLS session upon its reception. Note

that we used our modified wolfSSL implementation as
described in Section 4.2.2 for this measurement. In our
experiment, we established and resumed a new TLS con-
nection via standard TCP, TFO, or TCP FOP. All of
these TLS connections used the forward-secure cipher
suite TLS_AES_128_GCM_SHA256. The initial TLS
connection uses an initial handshake of the correspond-
ing TCP variant. The 0-RTT TLS resumption hand-
shake uses an abbreviated TCP connection establish-
ment if supported by the respective TCP variant. To
account for skews in the measurements, we repeated
the experiment 1000 times and measured the elapsed
wall-clock time. We conducted our measurements with
the client’s network interface configured to simulate net-
work latencies of 0.3 ms, 50 ms, 100 ms, and 150 ms
with iproute2’s tc program. We recorded and inspected
the network traffic of the virtual network interface to
validate a correct behavior of our evaluation setup.

The results of the measurement are shown in Ta-
ble 5. We find that for minimal network latencies of
0.3 ms TLS over the standard TCP provides the best
performance results, while the usage of TFO/TLS and
TCP FOP/TLS leads to similar values. Especially, in
the case of a resumed handshake the usage of the stan-
dard TCP provides a performance gain of almost ten
percent. We assume that TFO and TCP FOP have a
computational overhead by generating, validating, and
handling the Fast Open cookies that incurs this delay.

In total, our results indicate only small differences
between the performance of the initial handshake mea-
surements that are consistently less than a millisecond
between the investigated TCP variants for the same net-
work latency. For resumed handshakes, the performance
benefits of TFO/TLS and TCP FOP/TLS are signifi-
cant for larger network latencies. These protocols com-
plete the resumption handshake with time savings larger
than 50% for network latencies of 50 ms and above com-
pared to TLS over standard TCP. These benefits ac-



Enhanced Performance and Privacy for TLS over TCP Fast Open 284

Table 5. Mean duration to establish a connection between the client-server pair and to download a small website using TCP/TLS,
TFO/TLS, and TCP FOP/TLS. The standard deviation of the mean duration is denoted in brackets. Initial connections use the initial
handshake of the respective TCP variant and a full TLS 1.3 handshake. Resumed connections utilize a 0-RTT handshake if supported
by the respective TCP variant and a resumed 0-RTT TLS 1.3 connection establishment.

Network TCP/TLS TFO/TLS TCP FOP/TLS

latency [ms] Initial [ms] Resumed [ms] Initial [ms] Resumed [ms] Initial [ms] Resumed [ms]

≈0.3 28.9 (3.6) 20.2 (2.7) 29.9 (3.5) 22.3 (2.9) 29.6 (3.6) 22.2 (2.9)
50 ms 189.8 (2.5) 132.6 (1.7) 190.0 (2.4) 83.7 (1.9) 190.0 (2.6) 83.8 (2.2)
100 ms 340.2 (2.1) 233.1 (1.4) 340.3 (2.1) 135.1 (1.6) 340.7 (2.1) 135.4 (1.6)
150 ms 490.3 (1.8) 332.9 (1.3) 490.7 (1.8) 185.3 (1.4) 491.1 (1.8) 185.7 (1.4)

count for the saved round-trip time of the 0-RTT hand-
shakes of TFO and TCP FOP. Between the performance
of TFO/TLS and TCP FOP/TLS, we find only insignif-
icant differences. As a result of this measurement, we
find that TFO/TLS and TCP FOP/TLS have similar
computational overhead.

4.3.2.2 Simulation considering Load-balancing
Clients using the TCP FOP/TLS associate a retrieved
Fast Open cookie with the hostname of the respec-
tive online service. This allows them to attempt 0-RTT
handshakes with online services with matching host-
names independently of the server’s IP address. Con-
versely, the TFO/TLS is restricted to conduct 0-RTT
handshakes only when the server’s IP address matches
the one associated with the cached Fast Open cookie.
This simulation investigates the performance benefits
of this adapted design of the TCP FOP/TLS protocol
stack.

Our test setup consists of a client, a network link,
and a website. For the network link, we assume a mobile
LTE connection, with a round-trip time of 60 ms as it is
common in the U.S. [20]. Note, that the round-trip time
for 3G and WiFi connections are on average longer than
for LTE connections [19]. Statistically, an average web-
site requires 20 TCP/TLS connections to several hosts
for its retrieval [31]. To resemble a real-world website,
our test website directly links to 19 resources, each of
them on a separate host. From the perspective of a do-
main tree, these 19 hosts are on the same hierarchical
level. Furthermore, we assume that all hosts in this test
setup support the TCP FOP protocol and use on av-
erage the same load-balancing approaches as observed
in Section 2.2.2 for hosts supporting TFO. The client
measures the elapsed wall-clock time to establish con-
nections to all 20 hosts that need to be involved to re-
trieve the website.

Table 6 summarizes the results for successive revis-
its of the test website. As the TCP FOP/TLS protocol
stack can establish 0-RTT connections independently
of the IP address associated with a hostname, it saves
on each revisit of the website two round-trip times com-
pared to the initial website visit. One RTT can be saved
when connecting to the primary host, and another RTT
can be saved by successfully establishing 0-RTT con-
nections to the 19 secondary hosts. For each website
revisit with the TCP FOP/TLS, this reduces the de-
lay overhead for establishing connections to all 20 hosts
by 120 ms compared to the initial website visit. As in-
dicated in Figure 3, the failure rate of the TFO/TLS
protocol stack depends on the number of prior visits to
a website. We used a tree diagram to compute the prob-
abilities of saving zero, one, or two RTT during the con-
nection establishment with all 20 hosts. We find, that for
the first revisit the probability of saving a RTT during
the connection establishment to all hosts is 60.7% and
on average, the delay overhead is reduced by 36.4 ms.
Note, that the saving of the TCP FOP/TLS protocol
stack for the same task is more than three times higher
with 120 ms. For the second and third revisit to the web-
site, the achieved reductions are 45.5 ms and 63.1 ms,
respectively. Thus, we observe that the TCP FOP/TLS
protocol stack significantly outperforms TFO/TLS, if
real-world load-balancing of websites is considered.

4.3.3 Feasibility Analysis

Efforts to deploy alternative TCP versions on the In-
ternet indicate that middleboxes such as Firewalls and
NAT devices modify or block unfamiliar TCP pack-
ets [25]. Hence, even simple changes to TCP require
a long time before they exhibit a significant deploy-
ment [9]. The TFO protocol faces similar problems that
hinder its rapid deployment on the web [5, 21]. The
presented TCP FOP embeds a standard TCP three-



Enhanced Performance and Privacy for TLS over TCP Fast Open 285

Table 6. Analysis of the delay overhead of TFO/TLS and TCP FOP/TLS compared to TCP/TLS. We simulate the retrieval of a sam-
ple website and consider load-balancing as observed in Section 2.2.2. We assume a RTT of 60ms for the LTE connection.

1st Revisit 2nd Revisit 3th Revisit

Simulation TFO/TLS TCP FOP/TLS TFO/TLS TCP FOP/TLS TFO/TLS TCP FOP/TLS

Probability to save zero RTT 39.3% 0.0% 24.6% 0.0% 8.1% 0.0%
Probability to save one RTT 60.7% 0.0% 75.1% 0.0% 78.5% 0.0%
Probability to save two RTT 0.0% 100.0% 0.3% 100.0% 13.4% 100.0%
Mean delay overhead over LTE -36.4 ms -120.0 ms -45.5 ms -120.0 ms -63.1 ms -120.0 ms

way handshake in the initial handshake. This standard
handshake is common on the web and thus will not
cause any issues with middleboxes [25]. The exchanged
messages in TCP FOP’s 0-RTT handshake are identi-
cal to the messages in the TFO protocol (see Figure 1b
and c). Note, that for privacy reasons the cookie_2 of a
rejected 0-RTT handshake should be discarded by the
client and not be used to establish new TCP FOP con-
nections. These identical protocol flows for TFO’s and
TCP FOP’s 0-RTT handshakes avoid further deploy-
ment issues. Thus, middleboxes supporting TFO’s 0-
RTT handshake will by default also support the TCP
FOP protocol. As a result, the deployment of TCP
FOP/TLS on the Internet is not causing additional com-
patibility issues beyond the ones from the TFO/TLS
protocol stack.

Compared to the usage of TFO, the cross-layer op-
timization TCP FOP requires TLS libraries to con-
trol Fast Open cookies. As a drawback, this intercon-
nects TCP and TLS impacting the portability and
maintenance of TCP FOP. However, with Kernel TLS
there exists an implemented example for a performance-
optimization causing a similar drawback between TLS
libraries and Kernel functions [11]. In detail, Kernel TLS
aims to save resources by delegating some expensive
computations from the user space to the kernel space.
Overall, we find that TCP FOP provides sufficient per-
formance and privacy benefits to justify a cross-layer
solution.

Summary
Based on our evaluation, we find that TCP FOP/TLS
significantly improves the privacy and real-word perfor-
mance of TLS over TFO. With respect to privacy, all
identified privacy issues of TLS over TFO can be ad-
dressed by TCP FOP/TLS. From a performance per-
spective, the TCP FOP/TLS protocol stack outper-
formed TLS over TFO in our test scenario that resem-
bles the retrieval of an average real-world website. Fur-
thermore, we conclude that TCP FOP/TLS will expe-

rience fewer deployment issues than TLS over the TFO
protocol.

5 Related Work
To the best of our knowledge, we are the first to re-
port on the privacy aspects of the TFO protocol. While
research work on privacy issues within TCP that al-
lows distinguishing clients or servers based on their TCP
timestamps [17, 22] exists, our reported storage-based
tracking mechanism is unrelated to such tracking ap-
proaches via the TCP timestamps. A similar tracking
mechanism has been reported for the QUIC transport
protocol [30]. However, QUIC’s address validation to-
kens are distributed via an encrypted channel and do
not allow a passive network observer to link different
connections to the same user. Furthermore, TLS ses-
sion resumption mechanisms [29] enable user tracking.
Compared to the TFO protocol, Session resumption in
TLS 1.3 does not enable a passive network observer
to track a user’s online activities. Thus, the TFO pro-
tocol provides substantially lower privacy guarantees
than TLS 1.3. Additionally, prior research includes a
proposed TCP extension which directly allows encrypt-
ing TCP packets [4]. This approach significantly in-
creases the complexity of TCP by including typical TLS
functionality. However, our proposed TCP FOP aims
to be a lightweight protocol modification where Fast
Open cookies are issued via a TLS-encrypted channel.
The limitation of the TFO protocol to anticipate load
balancing with multiple server IP addresses has been
pointed out in prior work [12]. We contributed by inves-
tigating this limitation under real-world conditions and
find that approx. 40% of the first website revisits fail to
establish an abbreviated connection setup. TCP FOP
presents a novel protocol which anticipates web server
load balancing to achieve a higher share of abbrevi-
ated handshakes and fully protects against tracking via
network-based attackers. To the best of our knowledge,



Enhanced Performance and Privacy for TLS over TCP Fast Open 286

we are the first to present such a cross-layer approach
for the TLS over TFO stack.

6 Conclusion
TFO provides considerable latency improvements com-
pared to TCP’s three-way handshake. However, its us-
age on the Internet raises alarming privacy concerns.
Therefore, we urge vendors of operating systems and
browsers to discourage the deployment of the TFO
protocol. To address the privacy problems at hand,
we designed and implemented the TCP FOP protocol.
Our analysis indicates that TLS over TCP FOP pro-
tects against user tracking by network-based attackers.
Furthermore, the protocol can also restrict third-party
tracking, enables each application to control its privacy
properties and to balance the trade-off between lower
delays and privacy protection. To that end, applications
can influence the lifetime of cached Fast Open cook-
ies, which represents the maximum feasible tracking pe-
riod. TCP FOP/TLS not only provides better privacy
protection, but it also provides significant performance
gains in terms of delay compared to TLS over TFO.
TCP FOP/TLS can carry out abbreviated TCP hand-
shakes even when the website is served from multiple
IP addresses, e.g., when being part of server load bal-
ancing. Our measurements indicate that TFO/TLS fails
to establish an abbreviated handshake with a chance of
39.3% during the first revisit of a website. We attribute
this mainly to server load balancing under which TCP
FOP/TLS will always be able to carry out an abbrevi-
ated handshake. We conclude that based on our eval-
uation the proposed TCP FOP protocol leads to sub-
stantial enhancements of the performance and privacy
of TLS over TCP Fast Open.

Acknowledgment
We thank the anonymous reviewers for their insightful
comments and suggestions. We also thank our shepherd,
Alan Mislove, for providing valuable feedback and guid-
ance in the revision process. This work is supported in
part by the German Federal Ministry of Education and
Research under the reference numbers 16KIS0381K and
16KIS0922K.

References
[1] Alexa Internet Inc. Alexa Top 1,000,000 Sites, 2018. URL

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
[2] J. Anastasov. IP-TCP_METRICS, 2018. URL man7.org/

linux/man-pages/man8/ip-tcp_metrics.8.html.
[3] P. Balasubramanian. Privacy problems of TCP Fast

Open, 2019. URL mailarchive.ietf.org/arch/msg/tcpm/
7QtnB9FCF-pKeUpNt64woJ-kCy8.

[4] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and
D. Boneh. The case for ubiquitous transport-level encryp-
tion. 2010.

[5] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast
Open. RFC 7413, Dec. 2014.

[6] P. Eckersley. How unique is your web browser? In PET
Symposium. Springer, 2010.

[7] S. Englehardt and A. Narayanan. Online tracking: A 1-
million-site measurement and analysis. In CCS, 2016.

[8] Google LLC. Google IPv6 Statistics, 2019. URL https:
//www.google.com/intl/en/ipv6/statistics.html.

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Hand-
ley, and H. Tokuda. Is it still possible to extend TCP? In
IMC, 2011.

[10] HTTP Archive. Report: State of the Web, 2018. URL
https://www.httparchive.org/reports/state-of-the-web.

[11] Kernel development community. Kernel TLS, 2019. URL
www.kernel.org/doc/html/latest/networking/tls.html.

[12] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al.
The QUIC transport protocol: Design and Internet-scale
deployment. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2017.

[13] Linux man-pages project. tcp - TCP protocol, 2018. URL
man7.org/linux/man-pages/man7/tcp.7.htmll.

[14] K. McCarthy. OK, this time it’s for real: The last available
IPv4 address block has gone, 2019. URL https://www.
theregister.co.uk/2018/04/18/last_ipv4_address/.

[15] Mozilla Corporation. User tracking via TCP Fast Open,
2018. URL bugzilla.mozilla.org/show_bug.cgi?id=1500224.

[16] Mozilla Foundation. Private Browsing - Use Firefox without
saving history, 2018. URL https://support.mozilla.org/en-
US/kb/private-browsing-use-firefox-without-history.

[17] S. J. Murdoch. Hot or not: Revealing hidden services by
their clock skew. In CCS, 2006.

[18] D. T. Narten, R. P. Draves, and S. Krishnan. Privacy Exten-
sions for Stateless Address Autoconfiguration in IPv6. RFC
4941, Sept. 2007.

[19] OpenSignal. LTE Latency: How does it compare to other
technologies?, 2014. URL opensignal.com/blog/2014/03/
10/lte-latency-how-does-it-compare-to-other-technologies/.

[20] OpenSignal. State of Mobile Networks: USA (July 2018),
2018. URL opensignal.com/reports/2018/07/usa/state-of-
the-mobile-network.

[21] C. Paasch. Network support for TCP Fast Open, 2016. URL
nanog.org/sites/default/files/Paasch_Network_Support.pdf.

[22] L. Polcák, J. Jirásek, and P. Matousek. Comment on" Re-
mote Physical Device Fingerprinting". IEEE Trans. Depend-
able Sec. Comput., 11, 2014.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
man7.org/linux/man-pages/man8/ip-tcp_metrics.8.html
man7.org/linux/man-pages/man8/ip-tcp_metrics.8.html
mailarchive.ietf.org/arch/msg/tcpm/7QtnB9FCF-pKeUpNt64woJ-kCy8
mailarchive.ietf.org/arch/msg/tcpm/7QtnB9FCF-pKeUpNt64woJ-kCy8
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://www.httparchive.org/reports/state-of-the-web
www.kernel.org/doc/html/latest/networking/tls.html
man7.org/linux/man-pages/man7/tcp.7.htmll
https://www.theregister.co.uk/2018/04/18/last_ipv4_address/
https://www.theregister.co.uk/2018/04/18/last_ipv4_address/
bugzilla.mozilla.org/show_bug.cgi?id=1500224
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history
opensignal.com/blog/2014/03/10/lte-latency-how-does-it-compare-to-other-technologies/
opensignal.com/blog/2014/03/10/lte-latency-how-does-it-compare-to-other-technologies/
opensignal.com/reports/2018/07/usa/state-of-the-mobile-network
opensignal.com/reports/2018/07/usa/state-of-the-mobile-network
nanog.org/sites/default/files/Paasch_Network_Support.pdf


Enhanced Performance and Privacy for TLS over TCP Fast Open 287

[23] J. Postel. Transmission Control Protocol. RFC 793, Sept.
1981.

[24] J. Postel and J. K. Reynolds. Assigned Numbers. RFC 1700,
Oct. 1994.

[25] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How hard
can it be? designing and implementing a deployable multi-
path TCP. In NSDI, 2012.

[26] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, Aug. 2018.

[27] StatCounter. Desktop Browser Market Share Worldwide,
2018. URL http://gs.statcounter.com/browser-market-share.

[28] E. Sy. Enhanced Performance and Privacy via Resolver-Less
DNS. arXiv preprint arXiv:1908.04574, 2019.

[29] E. Sy, C. Burkert, H. Federrath, and M. Fischer. Tracking
Users Across the Web via TLS Session Resumption. ACSAC
’18, 2018.

[30] E. Sy, C. Burkert, H. Federrath, and M. Fischer. A QUIC
Look at Web Tracking. PET Symposium, 3, 2019.

[31] E. Sy, M. Moennich, T. Mueller, H. Federrath, and M. Fis-
cher. Enhanced Performance for the encrypted Web
through TLS Resumption across Hostnames. arXiv preprint
arXiv:1902.02531, 2019.

[32] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and
T. Wobber. How Dynamic Are IP Addresses? SIGCOMM
Comput. Commun. Rev., 37(4), Aug. 2007.

http://gs.statcounter.com/browser-market-share

	Enhanced Performance and Privacy for TLS over TCP Fast Open
	1 Introduction
	2 TCP Fast Open
	2.1 Background on TFO's Connection Establishment
	2.2 Evaluation
	2.2.1 Deployment of TFO
	2.2.2 Performance Limitations of TFO


	3 Tracking via TCP Fast Open
	3.1 Basic Tracking Approach
	3.2 Tracking Scenarios
	3.3 Comparison to Tracking via IP Addresses
	3.3.1 Distinguishing Devices Sharing an IP Address
	3.3.2 Prolonged Identification behind NAT

	3.4 Evaluation
	3.4.1 Status of TFO on the test systems
	3.4.2 Feasible tracking periods
	3.4.3 Tracking across third-parties
	3.4.4 Tracking across virtual hosts
	3.4.5 Tracking across IP address changes
	3.4.6 Tracking across private browsing modes
	3.4.7 Tracking across browser restarts
	3.4.8 Tracking across user applications


	4 TCP Fast Open Privacy
	4.1 Design of TCP FOP
	4.2 Implementation of TCP FOP
	4.2.1 Kernel support
	4.2.2 TLS support

	4.3 Evaluation of TCP FOP
	4.3.1 Privacy Evaluation
	4.3.2 Performance Evaluation
	4.3.3 Feasibility Analysis


	5 Related Work
	6 Conclusion


