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Abstract: We describe and evaluate an attack that re-
constructs the histogram of any target attribute of a
sensitive dataset which can only be queried through a
specific class of real-world privacy-preserving algorithms
which we call bounded perturbation algorithms. A defin-
ing property of such an algorithm is that it perturbs
answers to the queries by adding zero-mean noise dis-
tributed within a bounded (possibly undisclosed) range.
Other key properties of the algorithm include only al-
lowing restricted queries (enforced via an online inter-
face), suppressing answers to queries which are only sat-
isfied by a small group of individuals (e.g., by returning
a zero as an answer), and adding the same perturbation
to two queries which are satisfied by the same set of in-
dividuals (to thwart differencing or averaging attacks).
A real-world example of such an algorithm is the one
deployed by the Australian Bureau of Statistics’ (ABS)
online tool called TableBuilder, which allows users to
create tables, graphs and maps of Australian census
data [30]. We assume an attacker (say, a curious an-
alyst) who is given oracle access to the algorithm via
an interface. We describe two attacks on the algorithm.
Both attacks are based on carefully constructing (differ-
ent) queries that evaluate to the same answer. The first
attack finds the hidden perturbation parameter r (if it is
assumed not to be public knowledge). The second attack
removes the noise to obtain the original answer of some
(counting) query of choice. We also show how to use this
attack to find the number of individuals in the dataset
with a target attribute value a of any attribute A, and
then for all attribute values ai ∈ A. None of the attacks
presented here depend on any background information.
Our attacks are a practical illustration of the (informal)
fundamental law of information recovery which states
that “overly accurate estimates of too many statistics
completely destroys privacy” [9, 15].
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1 Introduction
We consider online privacy-preserving algorithms that
return noisy answers to queries on sensitive data, where
the zero-mean noise is strictly bounded between an in-
terval parameterised by a perturbation parameter. Our
focus is restricted to algorithms that (privately) answer
counting queries. An example counting query is: “How
many people in the dataset are aged 25 and live in the
suburb of Redfern in New South Wales, Australia?” An
example of such privacy-preserving algorithms is the
perturbation algorithm employed by the TableBuilder
tool from the Australian Bureau of Statistics (ABS),
which allows access to the Australian population census
data.1 We shall call this algorithm the TBE algorithm
named after its authors [30]. The TBE algorithm and
similar bounded perturbation algorithms are built on cer-
tain principles to address privacy and utility concerns,
outlined below.

– Access to sensitive data is only allowed through
a restricted query interface. This limits the types
of queries that can be executed via the underlying
(privacy-preserving) algorithm, therefore minimiz-
ing information leakage by ensuring that the (ef-
fective) query language is not rich enough. A rich
query language would require query auditing to en-
sure privacy; such auditing may not even be pro-
grammable [14].

– The noise added to the queries is bounded within a
predetermined range, say ±3 of the actual answer.

Dali Kaafar: Macquarie University, Australia, E-mail:
dali.kaafar@mq.edu.au

1 See http://www.abs.gov.au/websitedbs/censushome.nsf/
home/tablebuilder. At the time of this writing, there are three
flavours of TableBuilder. The first two are TableBuilder Basic
& Pro, which require registration (the latter being a charged
product). After the registration request is approved, the user
can login to use the TableBuilder tool. The third flavour is
for guests, called TableBuilder Guest. This can be accessed by
users without registration and provides access to fewer variables
from the census data. The attacks mentioned in this paper are
applicable to all flavours.

http://www.abs.gov.au/websitedbs/censushome.nsf/home/tablebuilder
http://www.abs.gov.au/websitedbs/censushome.nsf/home/tablebuilder
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From a privacy angle this adds uncertainty if the
(adversarial) analyst is trying to run a query on
certain attributes in the dataset to infer some in-
formation about a target individual. From a utility
point of view, the bounded noise ensures that the
noise never overwhelms the true statistics.

– The algorithm suppresses low non-zero counts (e.g.,
by returning 0). This makes it hard for an analyst
to know if certain characteristics (combination of
attributes or fields in the dataset) are shown by its
target individual(s) or not. For instance, a 0 count
could be an actual 0 or a 1 in the original dataset.

– The algorithm adds the exact same noise if the an-
swers returned by two queries are contributed by the
same set of contributors. A contributor to a query is
any individual that satisfies the query. This is a de-
fence against averaging attacks [19], where the ana-
lyst cannot pose multiple, possibly differently struc-
tured, queries with the same set of contributors to
reduce noise by averaging to find the true count.

Contributions. We show an attack that retrieves the en-
tire histogram of a target attribute from a dataset which
can only be queried through the TBE algorithm.2 Our
attack relies on carefully constructing queries that yield
the same (true) answer and averaging them over all
queries to eliminate noise. Furthermore, in cases where
it may be argued that the perturbation parameter is
not public information, we show an attack that retrieves
the exact (hidden) perturbation parameter. We remark
that the attacks presented do not depend on any back-
ground knowledge about individuals in the dataset, i.e.,
they are dataset independent, and hence applicable to
any underlying dataset.3 We discuss several mitigation
measures, and argue that the most sound strategy is to
add noise as a function of the number of queries. This
follows from the bound on the success probability of
our attack, and is consistent with the amount of noise
required via the notion of differential privacy [11].

Results. For both attacks, i.e., finding the hidden per-
turbation and removing noise, we derive exact expres-
sions for the success probabilities as a function of the
perturbation parameter and the number of queries to
the algorithm. We also evaluate the noise removing at-

2 An example of an attribute is ‘Age’, and its histogram is the
number of people of each age.
3 Barring a few mild assumptions on the domain of the dataset,
e.g., the existence of an attribute with more than 2 attribute
values (Section 4.1).

tack on a synthetic dataset queried through an API to
the TBE algorithm. Our results (both theoretical and
experimental) show that any perturbation parameter
less than or equal to 10 can be retrieved with probability
≈ 0.90 with only up to 1,000 queries. Furthermore, we
are able to recover a smaller perturbation parameter (5),
which is desirable for utility, with only 200 queries with
a probability of more than 0.95. Using the same API,
with the perturbation parameter 2, we retrieve an entire
histogram of a target column of the synthetic dataset
with more than 107 attribute values through only 400
queries per attribute value (via the noise removing at-
tack). The attack also successfully retrieves suppressed
counts (low counts returned as 0), and hence distin-
guishes between actual zeros and suppressed zeros.

Application to the ABS TableBuilder. Our use of the
API to query the TBE algorithm simulates the set-
ting of the ABS TableBuilder tool providing access to
the Australian census data. The TableBuilder tool does
not currently have a programmable API, and can only
be accessed via a web interface. The attack in prac-
tice can still be launched by either manually querying
TableBuilder to construct tables or more realistically,
by crafting web queries through scripts to directly query
the JavaScript programs behind the web interface. We
chose to use the simulated setting for a quicker illustra-
tion of the attack and more importantly due to ethical
considerations; the census data being highly sensitive.

Privacy Implications of Our Attacks. Our main attack
removes noise in the answers returned by the TBE al-
gorithm. This is specifically problematic for low counts,
e.g., counts of 1. For instance, assume that there is a sin-
gle individual in the dataset gendered male and within
age bracket 30-39 who lives in the suburb Newtown.
Since the true answer is 1, TBE will return the sup-
pressed answer 0. Our attack enables the analyst to re-
trieve the true count 1 by cleverly constructing queries
that return larger counts (cf. Section 4.2.2). Once the
true count is revealed, the analyst having the background
knowledge (male, 30-39, Newtown) can successfully re-
identify the person in the dataset. Thus, true counts en-
able other privacy attacks such as re-identification and
inference (cf. Section 2.2). Note that it is to avoid such
attacks that the TBE algorithms employs the aforemen-
tioned principles to hide true counts. We remark that
some international government agencies such as Statis-
tics Sweden have expressed interest in the use of Table-
Builder for disclosure control of frequency tables [2, 27],
although it is acknowledged that further evaluation of
the technique is necessary [2]. Moreover, there are plans
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to expand the use of TableBuilder to other Australian
national government agencies and datasets. Thus our
results have implications beyond the ABS use of Table-
Builder.

2 Preliminaries
We model the database D as a set of rows of data, each
belonging to a unique individual from a finite set of
individuals U . Thus, the size of the dataset is the same
as the size of the set U , i.e., |D| = |U |. The data from
an individual u ∈ U is represented as a row x ∈ D. We
denote the link by x = data(u). The row x is a member
of some domain D.

2.1 Definitions: Queries and Contributors

Definition 1 (Query). A query q : D → {0, 1} is de-
fined as a predicate on the rows x ∈ D. Note that
this is in fact the definition of a counting query. The
queries in this document are restricted to counting
queries. The query’s result on the dataset D is defined
as q(D) =

∑
x∈D q(x). For any two queries q1 and q2,

we denote by q1 ∧ q2 the predicate that evaluates to 1
on a row if and only if both q1 and q2 evaluate to 1
on the row. Likewise we denote by q1 ∨ q2 the predicate
that evaluates to 1 if either q1 or q2, or both evaluate to
1.

We will often omit the argument of q, i.e., D, since we
are concerned with a single dataset in this document.

Definition 2 (Contributors). A contributor of a query
q is any individual u ∈ U such that q(x) = 1, where x =
data(u). The set of contributors of a query q, denoted
C(q) is defined as

C(q) = {u ∈ U : q(x) = 1, where x = data(u)}

Two queries q1 and q2 are said to have the same con-
tributors if C(q1) = C(q2). Otherwise they are said to
have different contributors.

Note that having different contributors does not mean
that C(q1) and C(q2) are necessarily disjoint. Further-
more, it is possible for two different queries (different
predicates) q1 and q2 to have the same contributors (de-
pending on the dataset). We assume the dataset D to
be vertically divided into attributes. Let A denote one
such attribute, and let |A| denote its cardinality, i.e.,

the number of attribute values of A. Let a ∈ A be an
attribute value. We assume that the data of each u ∈ U
takes on only one value from A. The query qa is de-
fined as the predicate which evaluates to 1 if the row
has value a under A. Let A′ ⊆ A, then qA′ is defined
as qA′ = ∨a∈A′(qa). We shall call this query, the total
query, as it returns the total number of counts that sat-
isfy each of the attribute values a ∈ A′. We also denote
the trivial query q∅, which evaluates to 1 on every row.
Hence q∅(D) = n. Also, note that qA(D) = n for ev-
ery attribute A of D. Clearly, in both cases the set of
contributors is the entire user set U .

Table 1. An example database D with |U | = 6 users.

U Suburb Age Gender
1 Redfern 20-29 M
2 Redfern 20-29 M
3 Newtown 30-39 F
4 Redfern 20-29 F
5 Surry Hills 40-49 M
6 Darlinghurst 70-79 F

Example 1. Table 1 shows a dataset D with 6 users.
We have three different attributes: Suburb, Age and
Gender. The attribute U is just shown for illustra-
tive purposes. It is otherwise forbidden to be queried.
The attribute Suburb has 4 attribute values, Age has
5 attribute values and Gender has 2 attribute val-
ues. Queries qRedfern and q20-29 both evaluate to 3.
Also note that C(qRedfern) = C(q20-29) = {1, 2, 4}, and
thus the two queries have the same set of contribu-
tors. On the other hand, C(qRedfern) 6= C(qM). We have
(qRedfern ∧ qM)(D) = 2, and (qRedfern ∨ qM)(D) = 4. Let
A′ = {Redfern,Newtown}. Then the total query qA′(D)
has answer 4.

2.2 Background on Privacy Attacks

We briefly describe some known categories of privacy
attacks. For ease, we assume a database D with n users
and three attributes U , A and B. As in Table 1, U rep-
resented unique user identities. We can further assume
A to be the attribute Suburb, and B to be the attribute
Age in the database of this table. Queries q are defined
on D as in the previous section. We assume that the
database can be queried via a mechanismM only, which
is possibly randomized. To define the various attacks, we
shall take example mechanismsM.
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We first assume an adversary who has some back-
ground knowledge of some user u ∈ U . In particular, the
adversary knows that the user has some attribute value
a ∈ A. Consider a mechanismM which simply strips the
attribute U and releases exact answers to queries on at-
tribute A and/or B. Suppose qa(D) = 1, i.e., only one
individual takes on a ∈ A in the dataset D. Then this
mechanism is susceptible to a re-identification attack.
The adversary knowing a ∈ A has re-identified u’s data
in the database. The adversary can further launch an in-
ference attack by asking the queries qa∧qb for all b ∈ B,
thus inferring what value is taken by the user u in the at-
tribute B. It is usually argued that for re-identification
to be successful the attribute a should also be unique in
the population, and not just in the dataset. However, if
the attribute A is replaced with a large enough set of
attributes as background knowledge, then the resulting
attribute-value tuple is likely to be unique in the pop-
ulation as well [29]. Thus, any mechanism that returns
exact answers is susceptible to re-identification attacks.
We also note that the success of the inference attack
is not necessarily tied to successful re-identification. In-
deed, qa(D) might be greater than 1, but the adversary
can still ask the queries qa ∧ qb for all b ∈ B and learn
which values b are not taken by its target.

To mitigate re-identification, we can redefine the
mechanism to suppress low counts: any query answer
less than a suppression parameter s ≥ 0 is clipped to 0.
However, this mechanism is susceptible to a differencing
attack. The adversary defines the subset A′ = A − {a},
asks the queries qA and qA′ , and subtracts the answer
to the second query from the first. If both qA(D) and
qA′(D) are greater than s, then the difference in the
two answers reveals qa(D). To thwart the differencing
attack, we can design a mechanismM which, instead of
suppression, perturbs all answers by adding fresh ran-
dom noise from the set {−1, 0, 1}. In this case, the at-
tacker can launch an averaging attack. In particular, the
attacker asks for the answer of qa a total of t times, and
then averages the answers. With increasing t, the prob-
ability that the average deviates from the true answer
approaches 0. A solution is to add the same noise if the
same query is asked again, or if the same contributors
satisfy the query, as is done, for instance, in the TBE
algorithm.

Yet another form of attack is database reconstruc-
tion, where the adversary reconstructs a target col-
umn of a dataset, e.g., corresponding to attribute A.
In other words, the adversary attempts to exactly re-
trieve the values taken by each user under A in the
dataset. The database reconstruction attacks in the lit-

erature [7, 9, 12, 16, 24] require some form of queries
that can select rows corresponding to different subsets
of users U . An example of such queries are subset sum
queries. Previous work shows that any mechanism that
returns noisy answers to subset sum queries where the
noise scale is bounded by a constant is susceptible to
database reconstruction attacks. Alternatively, the at-
tack can be launched by using a set of attributes (in-
stead of U) such that each user in the dataset takes a
unique attribute-value tuple in the dataset. See [16, §3]
for more details.

Our main proposed attack is an averaging attack,
which in combination with a differencing attack, results
in a histogram reconstruction attack. Namely, For any
given a ∈ A, we construct exact answers to the queries
qa∧qb, for all b ∈ B. It is not clear how a database recon-
struction attack can be launched on the TBE algorithm,
as its query interface is very restrictive.

3 Privacy Algorithms
Our focus is on a particular privacy algorithm (mech-
anism) that returns (perturbed) answers to queries q
on the database D, where the queries are as defined in
Definition 1. We call the algorithm the Bounded Noisy
Counts algorithm. The algorithm returns the answer
to a query q by adding bounded noise e from the uni-
form distribution over the set of integers in the interval
[−r, r], where r is some positive integer, i.e., the pertur-
bation parameter. We shall denote the set of integers in
[−r, r] by Z±r and the (discrete) uniform distribution
over Z±r by U±r. The algorithm also has two excep-
tional cases:

1. If the answer to q is less than a suppression param-
eter s ≥ r, then the answer returned is exactly 0.

2. If two queries q1 and q2 have the same contributors,
then the noise e added to the two queries is the
same.

The algorithm therefore is a stateful algorithm where
the state consists of a dictionary of subsets of contrib-
utors and the corresponding noise. We denote this al-
gorithm by Mr,s and on any input query q denote its
output as Mr,s(q). The algorithm is described in Al-
gorithm 1. We remark that the noise distribution can
be any admissible distribution, which we define in Sec-
tion 6. Bounded uniform random noise is one example.
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Input: The query q, perturbation parameter r,
suppression parameter s ≥ r.

State : A noise dictionary, denoted nd, with
keys from subsets of U and values in
Z±r.

1 Evaluate C(q) and let n = q(D).
2 if n ≤ s then
3 return 0.
4 else
5 if C(q) ∈ nd then
6 obtain noise e← nd(C(q)).
7 return n+ e.
8 else
9 sample e ∼ U±r.

10 add entry nd(C(q)) = e.
11 return n+ e.
Algorithm 1: The Bounded Noisy Counts Algo-
rithmMr,s.

From now on, we shall drop the subscripts r and
s, and denote the algorithm simply as M. Following
properties are direct consequences of the algorithm.

Proposition 1. Let α←M(q) be the answer returned
by M on some query q. Let n = q(D). Then
(a) α ≥ 0,
(b) n− s ≤ α ≤ n+ r.
(c) If α > 0 then C(q) 6= ∅.

Proof. See Appendix A.

The above algorithm is used as a subroutine by another
algorithm which we call the Attribute Analyser. This
algorithm helps the querier analyse multiple attribute
values under an attribute at once. Let B denote a tu-
ple of (one or more) attributes in D. Let b ∈ B de-
note the vector of attribute values whose ith entry is
one of the attribute values of the ith attribute in B.
Let qb denote the predicate that evaluates to 1 if and
only if the row satisfies all values in b. This models a
target sub-population in the dataset D. The Attribute
Analyser takes an attribute value vector b ∈ B, and a
subset of attribute values A′ ⊆ A, where A /∈ B. Let
|A′| = m. The algorithm then runsM on (i) each of the
queries qb ∧ qai where ai ∈ A′, i ∈ {1, . . . ,m} obtaining
answers αi, and (ii) on the total query qb ∧ qA′ , obtain-
ing the answer αA′ . It then returns the answer vector
(α1, . . . , αm, αA′).

Note that A′ can be possibly empty, in which case
qA′ = q∅, and the algorithm returns the answer to
qb ∧ q∅ = qb only. Likewise, B can be possibly empty,

Input: Attribute value vector b ∈ B, attribute
subset A′ ⊆ A of cardinality m (where
A /∈ B).

1 for i = 1 to m do
2 Let ai be the ith element in A′.
3 Obtain αi ←M(qb ∧ qai).
4 Obtain αA′ ←M(qb ∧ qA′).
5 return (α1, . . . , αm, αA′).

Algorithm 2: The Attribute Analyser Algorithm.

meaning that qb = q∅, in which case we are analysing
A′ over the whole dataset D (rather than over a sub-
population).

Example 2. Consider the dataset from Table 1. Let
B = (Suburb,Gender). Furthermore, let b ∈ B be
(Redfern,M). Thus, we are interested in the sub-
population of people who are male and living in the sub-
urb of Redfern in the dataset. Thus qb = qRedfern ∧ qM.
Let A = Age, and A′ ⊆ A be {20-29, 30-39}. Then α1
corresponds to qb ∧ q20-29 (true answer 2), α2 corre-
sponds to qb ∧ q30-39 (true answer 0), and αA′ corre-
sponds to qb∧qA′ = (qb∧q20-29)∨ (qb∧q30-39) (true an-
swer 2). If on the other hand, we have B = Suburb and
b = Redfern, A = Gender and A′ = {M,F}, then we get
(qb∧qM)(D) = 2, (qb∧qF)(D) = 1, and (qb∧qA′)(D) = 3.
Note that C(qb ∧ qM) 6= C(qb ∧ qF) 6= C(qb ∧ qA′). Thus,
M would add fresh noise values to each of these true
counts. If the suppression parameter s is set to 1, then
the answer to qb ∧ qF would be fixed to 0.

4 Privacy Attacks
We assume an attacker (say, a curious analyst) who is
given oracle access to the Attribute Analyser (which
in turn uses the Bounded Noisy Counts algorithm as a
subroutine). The attacker does not know the parameter
r. We describe two attacks on the algorithm. The first
attack finds the hidden perturbation parameter r. The
second attack removes the noise to obtain the original
count n = q(D) of some query of choice q. We also show
how to use this attack to obtain the value qa(D) for some
target attribute value a ∈ A, and then for all attribute
values a ∈ A. We reiterate that none of the attacks de-
pend on any background information. For simplicity, we
assume that s = r. Our fundamental unit of measure-
ment will be the number of queries t submitted to the
Bounded Noisy Counts algorithm.
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4.1 Attack 1: Finding the Perturbation
Parameter r

Let b ∈ B be an attribute value and let A 6= B be an
attribute with only two attribute values a1 and a2, e.g.,
the Gender attribute with values male and female. Let
n = qb(D), n1 = (qb ∧ qa1)(D) and n2 = (qb ∧ qa2)(D).
Consider the sequence of inputs (b, {a1}), (b, {a2}) and
(b, ∅) to the Attribute Analyser. As output, we obtain
n1 + e1, n2 + e2 and n+ e3, where ei are the noise terms
added by Bounded Noisy Counts. Clearly, n = n1 + n2.
Furthermore,

Lemma 1. If n1, n2 > r, then e1, e2 and e3 are inde-
pendent samples from the distribution U±r.

Proof. See Appendix A.

Lemma 2. Let b1, . . . , bm be different attribute values
from one or more attributes. If M(qbi

) 6= M(qbj
) then

C(qbi
) 6= C(qbj

), for all i, j ∈ [m], i 6= j.

Proof. See Appendix A.

Now, define the random variable

Z = (n1 +E1)+(n2 +E2)−(n+E3) = E1 +E2−E3 (1)

where Ei are i.i.d. random variables with distribution
U±r. Since Ei ≤ r, we have Z ≤ 3r, which would hap-
pen if E1 = E2 = r and E3 = −r. Our attack can be
summarised as follows:

1. Find an attribute A with only two attribute values
a1 and a2 (e.g., gender).

2. Find m different attribute values b1, . . . , bm from
any number of attributes such that M(qbi

∧ qa1)
and M(qbi

∧ qa2) are greater than 0 implying that
M(qbi

) > 0. This ensures the condition of Lemma 1.
Furthermore, ensure that the contributors of all
queries qbi

are different. Lemma 2 shows how to en-
sure this.

3. For the ith attribute value (bi) obtain zi which is
an instance of the random variable Z in Eq. 1.

4. Let zmax be the maximum of the m values. We then
return d zmax

3 e as the guess for r.

We can in fact do better by also keeping track of the
minimum values. Let zmin be the minimum of the m
values. Notice that Z ≥ −3r. Our guess for r is then
max{−d zmin

3 e, d
zmax

3 e}. The guess for r would be correct
as long as either −zmin or zmax is greater than 3(r− 1).
The exact algorithm is described in Algorithm 3.

Input: m distinct attribute values b1, . . . , bm,
attribute A of cardinality 2 with
attributes a1 and a2, all satisfying
M(qbi

∧ qa1),M(qbi
∧ qa2) > 0 and

M(qbi
) 6=M(qbj

), for i, j ∈ [m], i 6= j.
1 Set zmin ←∞ and zmax ← −∞.
2 for i = 1 to m do
3 Run Attribute Analyzer with inputs

(bi, {a1}), (bi, {a2}) and (bi, ∅) and get
outputs z1, z2 and z3, respectively.

4 Set z = z1 + z2 − z3.
5 if z > zmax then
6 zmax ← z.
7 if z < zmin then
8 zmin ← z.
9 Let r′ = max{−d zmin

3 e, d
zmax

3 e}.
10 Output r′.
Algorithm 3: The Perturbation Finder Algorithm.

We will show that the algorithm returns the correct
perturbation r with high probability, depending on a
suitable choice for m.

Lemma 3. Let r ≥ 1, and let E1, E2 and E3 be vari-
ables that take values in Z±r. Out of the (2r + 1)3

possible values of the tuple (E1, E2, E3), there are pre-
cisely 20 that satisfy E1 + E2 + E3 > 3(r − 1) or
E1 + E2 + E3 < −3(r − 1).

Proof. See Appendix A.

Proposition 2. Let r′ be the output of Perturbation
Finder. Then

Pr[r′ = r] = 1−
(

1− 20
(2r + 1)3

)m

Proof. See Appendix A.

For a given probability of success, larger perturbations
require more queries to M (through the Perturbation
Finder algorithm). However, note that larger values of
r are not desirable from a utility point of view. For each
attribute value, the Attribute Analyser makes 3 calls
to Bounded Noisy Counts M. Thus, for a total of m
attributes we have t = 3m queries toM. Figure 1 shows
the number of queries t required for a given probability
of success. Note that smaller values of r, i.e., ≤ 5, which
are desirable from a utility point of view need less than
t = 600 for a 95% success rate.
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Fig. 1. Probability of successfully finding the perturbation param-
eter r as a function of the number of queries t to Bounded Noisy
Counts in the Perturbation Finder algorithm. Higher perturba-
tions require a much larger number of attribute values m (and
hence number of queries).

Remark 1. We have assumed for simplicity that A is
an attribute with exactly two attribute values. In general,
the attack is applicable to any attribute with at least
two attribute values. In this case, we run the Attribute
Analyser with inputs corresponding to the two selected
attribute values, plus the input (bi, A

′).

Remark 2. Again for simplicity, in the ith iteration
of Algorithm 3, we run the Attribute Analyser on three
different inputs. These can be replaced by a single in-
put (bi, A

′), where A′ = {a1, a2} ⊆ A. The output of
Attribute Analyser will by definition return (noisy) an-
swers to the queries qb ∧ qa1 , qb ∧ qa2 and qb ∧ qA′ as
desired (step 5 of Algorithm 2). Thus, while this consti-
tutes 3 queries to Bounded Noisy Counts, this is only a
single query to the Attribute Analyser. The latter resem-
bles the TableBuilder tool interface. The results sum-
marised in Section 1 are with respect to the Attribute
Analyser, which simulates the TableBuilder interface.

4.2 Attack 2: Removing Noise

Consider again a tuple of attributes B (possibly empty)
from D, and let b ∈ B denote a vector of attribute
values from B defined as before. Consider an attribute
A with m attribute values a1, . . . , am. In this section,
we will show an attack that finds the exact answer to
qb ∧ qA by using the Attribute Analyzer as a black box.
We will then show how to use this algorithm to find
the true answer to any target query qb∧qai . Continuing

on, we can find the true answers to all queries qb ∧ qai ,
i ∈ [m]. We will first assume that M(qb ∧ qai) 6= 0
for all i, for simplicity. Later on we will show that this
assumption can be relaxed as long as we have somem′ <
m attributes from A satisfyingM(qb ∧ qai) 6= 0.

We begin with a simple observation on A. Recall
that a two-partition of a set A is a partition of A with
exactly two subsets of A.

Lemma 4. There are exactly 2m−1 − 1 two-partitions
of the set A.

Proof. See Appendix A.

We will let PA denote the set of all two-partitions of
A. The following result shows that all sets in PA have
different contributors.

Lemma 5. Assume M(qb ∧ qai) 6= 0, for all i ∈ [m].
Let A be a two-partition in PA, and let A′ ∈ A be any
of the two sets in A. Let A′′ be either the other set in A
or any of the two sets from any other partition in PA.
Then, C(qb ∧ qA′) 6= C(qb ∧ qA′′).

Proof. See Appendix A.

Example 3. Consider the dataset in Table 1. Let A =
Suburb. Then A has m = 4 attribute values: D = Dar-
linghurst, N = Newtown, R = Redfern and S = Surry
Hills. The 2m−1 − 1 = 7 two-partitions of A are as fol-
lows:

A1 {D} {N} {R} {S} {D, N} {D, R} {D, S}
A2 {N, R, S} {D, R, S} {D, N, S} {D, N, R} {R, S} {N, S} {N, R}

Let B = ∅ and hence b = ∅. Then qb ∧ qai = qai for
all ai ∈ A, i ∈ {1, 2, 3, 4}. Also, from Table 1, C(qai) 6= ∅,
for all ai ∈ A. Let A′ be any of the 14 sets in the table
above, and let A′′ 6= A′ be any of the remaining 13 sets.
Then, according to Lemma 5, C(qA′) 6= C(qA′′). One
can easily verify through Table 1 that this is indeed
true.

Let n = |C(qb)| = |C(qb ∧ qA)|, which we seek to find
through the attack. Consider a partition {A1, A2} in PA,
and note that (qb ∧ qA1)(D) + (qb ∧ qA2)(D) = n. Now
consider the queries (b, A1) and (b, A2) to the Attribute
Analyser. In return, among other answers, we get αA1

and αA2 , which are the noisy answers to the two (to-
tal) queries mentioned above. Adding the two, we have
z = n + e1 + e2, where e1 and e2 are unknown error
terms from Z±r. Our attack is as follows: for each of
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the k = 2m−1 − 1 partitions in PA, query the Attribute
Analyser with the two sets in the partition, add the an-
swers, and average them over all k. The algorithm is
shown in Algorithm 4.

Input: A vector of attribute values b ∈ B,
attribute A with m different attribute
values and set PA of two-partitions of
A.

1 Initualize z ← 0.
2 for each two-partition {A1, A2} in PA do
3 Query the Attribute Analyzer with inputs

(b, A1) and (b, A2) and obtain αA1 and
αA2 .

4 Update z ← z + αA1 + αA2 .
5 Let k = 2m−1 − 1 and obtain z ← z/k.
6 Output bze.
Algorithm 4: The Noise Remover Algorithm.

Notice that in each loop the Attribute Analyser
queries Bounded Noisy Counts M twice. Therefore
there are a total of t = 2k = 2m − 2 queries toM.

4.2.1 Success Probability

Let Zi denote the random variable denoting the sum
in Step 4 of the algorithm for the ith partition, where
i ∈ [k], k = 2m−1 − 1. We have

Zi = n+ E
(i)
1 + E

(i)
2 , (2)

where E(i)
1 and E(i)

2 are the noise variables.

Lemma 6. For each i ∈ [k], E(i)
1 and E

(i)
2 are i.i.d.

random variables with distribution U±r. Furthermore,
Z1, . . . , Zk as defined by Eq. 2 are i.i.d. random vari-
ables.

Proof. See Appendix A.

Now define Z = 1
k

∑k
i=1 Zi. The success probability of

the Noise Remover is then given by Pr
(∣∣Z − n∣∣ < 0.5

)
.

Define Yi = E
(i)
1 + E

(i)
2 and Y = 1

k

∑k
i=1 Yi.Then

Pr
(∣∣Z − n∣∣ < 0.5

)
= Pr

(∣∣∣∣∣Y + 1
k

k∑
i=1

n− n

∣∣∣∣∣ < 0.5

)
= Pr

(∣∣Y ∣∣ < 0.5
)

Thus, we will attempt to find Pr
(∣∣Y ∣∣ < 0.5

)
. We will

first show a lower bound on this probability and then
an exact expression.

Lower Bound on the Success Probability. Using Cheby-
shev’s inequality, we see that

Pr
(∣∣Y − E(Y )

∣∣ ≥ ε) ≤ Var(Y )
ε2

. (3)

By setting ε = 0.5, and putting in k = 2m−1 − 1, and
the values of E(Y ) and Var(Y ) (see Appendix A.1), we
get

Pr
(∣∣Y ∣∣ < 0.5

)
≥ 1− 8r(r + 1)

3(2m−1 − 1) . (4)

Figure 2 shows lower bounds on the success prob-
abilities against different perturbation parameters as
a function of t = 2k, i.e., the number of queries to
Bounded Noisy Counts.
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Fig. 2. Lower bounds on the probability of successfully retrieving
the actual count n = (qb ∧ qA)(D) through the Noise Remover
algorithm. Here m = 12 and hence t = 2k ranges from 2 to
2(2m−1 − 1) = 4094.

Remark 3. Figure 2 shows that we do not need to use
all the two-partitions in PA to achieve a given proba-
bility of success. Furthermore, since each iteration calls
the Attribute Analyser twice (one for each partition), we
have a total of 2k calls to Attribute Analyser. Thus, if
we were to run this algorithm on the TBE algorithm via
the TableBuilder tool, this would require running the tool
a total of 2k times.

Exact Success Probability. Consider the sum∑k
i=1E

(i)
1 + E

(i)
2 . Simplifying notation, we can view

this as the sum of 2k i.i.d. random variables Ei (due to
Lemma 6). The probability mass function of each Ei is
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given by

fE(x) =

{
1

2r+1 if x ∈ Z±r

0 otherwise
.

In Appendix A.2, we show that

Pr
(∣∣Y ∣∣ < 0.5

)
=

∑
x∈(−k/2,k/2)

fX2k
(x), (5)

where X2k is the sum of 2k i.i.d. random variables Ei.
Thus, we can evaluate Eq. 5 to find the exact success
probability of the Noise Remover algorithm to obtain
the answer n = (qb ∧ qA)(D). Figure 3 shows these suc-
cess probabilities. Comparing this with Figure 2, we see
that the actual success probability is higher for much
smaller values of t = 2k.
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Fig. 3. Probability of successfully retrieving the actual count n =
(qb ∧ qA)(D) through the Noise Remover algorithm. Here t = 2k

ranges from 2 to 2000.

4.2.2 Broadening the Scope of Attack 2

We now show that our attack can be used much more
broadly.

Relaxing the Non-Zero Outputs Assumption. We as-
sumed in the previous section that all m attribute val-
ues of A satisfyM(qb∧qai) 6= 0, i ∈ [m]. First note from
Figure 3 that we do not need all the two-partitions of
A to find qb ∧ qA. The only requirement is to have a
sufficient number of two-partitions t to “average out” n.
Thus, as long as we have m′ ≤ m number of attribute
values whose corresponding queries have non-zero an-
swers (via Bounded Noisy Counts), we can use them

to find the answer to the aforementioned query in the
following way. Let a1, . . . , am′ , am′+1, . . . , am denote the
m attribute values of A, and assume (w.l.o.g.) that only
upto am′ haveM(qb∧qai) > 0. ThereforeM(qb∧qai) is
0 for all m′ < i ≤ m. Let A′′ denote the set of attribute
values am′+1, . . . , am. Note that C(qb∧qA′′) can be pos-
sibly empty. We first construct all two-partitions of the
set A′ = A− A′′, resulting in 2m′−1 − 1 two-partitions.
Denote this by PA′ . Then in each two-partition we add
A′′ to any one (but not both) of the two sets in the
partition. It is easy to see that the resulting set is a
set of two-partitions of A (not necessarily the set of
all two-partitions of A). Furthermore, we still ensure
that Lemma 6 holds. For, if C(qb ∧ qA′′) is empty, then
Lemma 6 automatically holds due to construction of
PA′ . On the other hand, if C(qb ∧ qA′′) is not empty,
then we are adding a set of new contributors which
are not in A′. Adding these contributors means that
Bounded Noisy Counts adds fresh noise to the corre-
sponding query (on the particular set in the given two-
partition in which A′′ is added). Thus, Lemma 6 follows
due to Lemma 5 in this case. We shall call A′ a subset
of A with non-zero answers.

Removing the Noise on a Target Attribute Value. Let
us now assume that we are interested to know the value
qb∧qa for some target attribute value a in A. We take a
subset A′ of A with non-zero answers such that a /∈ A′.
We first run the Noise Remover on the set of two-
partitions PA′ of A′, obtaining count n′. We then con-
struct PA′∪{a}, and run the Noise Remover algorithm
again to obtain the count as n′′. The answer to the
above query is then n′′ − n′. If M(qb ∧ qa) = 0 then
we can use the trick mentioned above to construct two-
partitions of A′ ∪ {a}. Let pnr denote the probability of
success of Noise Remover. Then, through a simple ap-
plication of the union bound, the success probability is
given by 1− 2(1− pnr). This requires around 2(2k) = 4k
calls to the Attribute Analyser, and hence t = 4k calls
to Bounded Noisy Counts.

Removing the Noise on the Attribute Histogram. Con-
tinuing on with the previous example we can in fact find
answers to qb ∧ qai corresponding to all m attributes
of A. We first construct a subset A′ of A with non-
zero answers (with m′ number of attributes), and use
Noise Remover once to find qb ∧ qA′ . For any attribute
a ∈ A−A′ we follow the methodology defined above to
retrieve the answer. Thus, a further m−m′ calls to the
Noise Remover. On the other hand, for any target at-
tribute value a′ ∈ A′, we run the Noise Remover on two-
partitions of A′ − {a′} (instead of A′ ∪ {a′} = A′). This
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means a further m′ calls to the Noise Remover. By the
union bound, the overall probability of success is given
by 1−(m−m′+1+m′)(1−pnr) = 1−(m+1)(1−pnr). This
requires 2k(m+ 1) calls to the Attribute Analyser, and
hence 2k(m+ 1) queries to Bounded Noisy Counts. Fig-
ure 4 shows the success probability in finding all queries
corresponding to all attribute values in some target at-
tribute A. Here we have used k = 800 (t = 1600), and
thus |A′| has to be ≥ 12. Recall that k cannot be greater
than 2m′−1 − 1. While m′ = 11 would suffice to find all
attribute values in A − A′, we require m′ = 12 so that
we can find the attribute values within A′ as well. Note
that this result is obtained through the union bound,
and the actual success probability is likely to be much
better.
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Fig. 4. Probability of successfully retrieving all actual counts of
the queries (qb ∧ qai )(D) of an attribute A with m different
attribute values. Here k = 800 and hence t = 1600.

5 Experimental Evaluation on the
TBE Algorithm

5.1 Synthetic Dataset

We ran Attack 2 on a synthetic dataset accessed via an
API built on top of the TBE algorithm. The API mim-
ics the functionality of the TableBuilder tool from ABS.
Our privacy algorithms represent an abstract mathe-
matical model of the TBE algorithm. As such there is
one significant simplification used in our mathematical
model that needs specific mention. Since the TBE algo-
rithm is meant to answer queries on-the-fly, it maintains

a pre-computed table of noise (instead of freshly gener-
ated noise for queries with a new set of contributors).
Since the number of queries can be much larger than
the dimension of the table, a mechanism is introduced
that deterministically accesses the relevant noise entry
in the table. The entries in the table are themselves
derived from an admissible distribution that maximises
entropy subject to utility constraints [26]. In the next
section (Section 6), we show that the discrete uniform
distribution over Z±r is one such distribution, and any
other choice of admissible distribution is still suscepti-
ble to our attack. Thus, the cells in the table of noise
can be safely assumed to be uniform random entries
from Z±r. To ensure that same contributors receive the
same noise, the contributors (users) in the dataset are
assigned unique keys. When combining different con-
tributors, the keys are XORed and then given as input
to a pseudo-random number generator which in turn
maps it to a perturbed value in the table [20, 26]. We see
that with a big enough perturbation table, our model is
a good approximation. As we shall see, the results of our
attack confirms this. The aforementioned API uses the
perturbation parameter r = 2. Furthermore, it returns
the output “suppressed” for counts of ≤ 4. However,
for the sake of our attack, we assume that the returned
count is 0 (which is a more difficult problem).

We fix a target attribute in the synthetic dataset.
The attribute has 107 different attribute values. Details
of the synthetic dataset including how it was generated
and the resulting counts are given in Appendix B. We
then run the Noise Remover on each attribute value
with different values of k (number of two-partitions).
The results are shown in Table 2. As an example, with
k = 200, the probability that all 107 attribute values
are returned correctly is at least 0.959 (according to the
analysis above, using a union bound). In practice with
k = 200 and k = 255 all attribute values are returned
exactly without any error. We see that even with k = 50
(which amounts to t = 2k = 100 queries to Bounded
Noisy Counts per attribute value), we have only a 7.48%
of attribute values with an incorrect answer.

A few observations are in order: (a) First, even for
the cases where the actual count returned is incorrect,
the level of noise is reduced (i.e., it is ±1 instead of
±2). (b) Secondly, in some cases the noise returned is
−1. By the properties of the algorithm, we can fix this
to 0. This results in even less percentage of erroneous
attribute values: 3.74% error for k = 50 and 0.9% (only
one incorrect guess) for k = 127. (c) A final observation
is that the probabilities reported in Figure 4 are for the
entire column. If the target is only one specific set of
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Table 2. Results of running Attack 2 to retrieve a target column of the synthetic dataset. Cells labeled * means that some instances
had negative counts which were floored to 0. There were four such instances for k = 50, and one instance for k = 127. In all cases the
returned count was −1.

Count (c) True Total Correctly Retrieved
Instances k = 50 k = 127 k = 200 k = 255

c = 0 56 55∗ 56∗ 56 56
0 < c ≤ 4 (suppressed) 6 6 6 6 6

4 < c ≤ 100 8 8 7 8 8
100 < c ≤ 44865 37 34 37 37 37

Total 107 104 106 107 107
Success Percentage - 97.2% 99.1% 100% 100%

attribute values (corresponding to a target individual),
then the probabilities are higher, i.e., 0.9996 for the case
of k = 200.

In Appendix C, we experimentally analyse the suc-
cess probability of the Noise Remover by varying the
number of attribute values whose corresponding queries
have non-zero outputs, and discuss some workarounds
when this number is low.

5.2 Adult Dataset

We also ran the attack on a real-world dataset. For this,
we used the Adult dataset [10], which is an extract from
the 1994 US Census information.4 The dataset consists
of 32,561 rows, each containing an individual’s data. We
extract the age column for the attack. This column con-
tains all ages in the integer range [17..88] and the age 90.
We augment this by including ages 10 to 16 inclusive,
age 89, and ages 91 to 120 inclusive, each obviously hav-
ing a count of 0. Thus, there are a total of 111 values
for the age attribute to be queried via the TBE API.
The breakdown of true counts is as follows:

Count (c) True Instances
c = 0 38

0 < c ≤ 4 (suppressed) 4
4 < c ≤ 100 16

100 < c ≤ 898 53
Total 111

We used the set of 10 attribute values A′ =
{17, 18, . . . , 27} as the base set. All of the attribute
in this set have a true count of ≥ 395, and hence
their noisy counts would not be suppressed by Bounded
Noisy Counts for any reasonable perturbation param-

4 More specifically, we use the adult.data file from https://
archive.ics.uci.edu/ml/datasets/Adult.

eter value. We then used 1,000 two-partitions out of
the possible 1, 023 two-partitions from A′ to find qA′

through the Noise Remover. We denote this query an-
swer by n′. Then for each age a /∈ A′ we create the set
A′′ = A′ ∪ {a}, and use the Noise Remover with k two-
partitions to find the answer to qA′′ as n′′. The answer
to qa is then obtained as n′′ − n′. For an age a ∈ A′,
we create the set A′′ = A′ − {a}, and again use k two-
partitions to find the answer to qA′′ via Noise Remover
as n′′. The answer to qa in this case is n′ − n′′.

Notice that only for the base set do we use a to-
tal of 1,000 two-partitions, since this will be done only
once. The number k of two-partitions used to com-
pute the answers to qA′′ for each A′′ is from the set
{50, 100, 200, 250}. For each k, we run the experiment a
total of 100 times. The average success rate is then re-
ported. For this experiment we use three different per-
turbation parameters: r = {2, 3, 5}. The results are sum-
marised in Table 3. We see that even with r = 5, the
attack successfully recovers the true count of more than
93% of attribute values with k = 250 two-partitions used
per attribute value, i.e., t = 2k = 500 queries per at-
tribute value to Bounded Noisy Counts.

6 Some Inherent Limitations
The noise distribution for the TBE algorithm is re-
quired to maximise disclosure control subject to util-
ity constraints [26]. We call such a distribution, an ad-
missible distribution. More precisely, given a finite set
of integer perturbation values Π, an admissible distri-
bution E can be obtained by maximising the entropy
−
∑

e∈Π p(e) log2 p(e) subject to the constraints

1. It should be a probability distribution:
∑

e∈Π p(e) =
1.

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult
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Table 3. Results of running Attack 2 to retrieve the age column of the Adult dataset against different perturbation parameter values.
Negative counts were ceiled to 0. For each k ∈ {50, 100, 200, 250} (number of two-partitions) the average of 100 runs is reported.

Perturbation Total Total Correctly Retrieved
r k = 50 k = 100 k = 200 k = 250

±2 111 103.2 110.1 111.0 111.0
- 93.0% 99.2% 100.0% 100.0%

±3 111 89.8 103.9 110.0 110.8
- 80.9% 93.6% 99.1% 99.8%

±5 111 70.2 88.0 98.2 103.6
- 63.3% 79.3% 88.4% 93.4%

2. It should be unbiased, i.e., E(E) = 0, where E is the
random variable distributed as E .

3. It should have bounded variance, i.e., Var(E) ≤ v,
for some threshold v.

These properties are stated in [26], except that we have
excluded the condition that the noise values should not
be less than 0 or a positive value, as we expect this to
be handled by the suppression parameter. The method
of Lagrange multipliers [5, p. 707] can be used to solve
the above problem to find the distribution E given the
set Π [26].

We call E non-trivial if it is any distribution other
than p(0) = 1. An immediate consequence of constraint
2 is that any non-trivial distribution requires the set Ω
to have at least one negative and one positive integer.
Also, if we let v ≥ r(r+ 1)/3 in constraint 3, then given
the set Π = Z±r, we get the discrete uniform distribu-
tion U±r as the unique solution to the above optimisa-
tion problem (recall that r(r+1)/3 is the variance of the
discrete uniform distribution U±r). This is the distribu-
tion that we have used in this paper. Other admissible
distributions include, the zero-mean truncated normal
distribution, the zero-mean truncated Laplace distirbu-
tion, and in general any truncated zero-mean symmet-
ric distribution. Samples from these distributions can
be rounded to nearest integers to fall in the set Π.

A natural question to ask is whether any other
admissible distribution makes the attack significantly
harder. The answer to this question is negative. The
clue lies in Eq. 3. First, if we let v < r(r + 1)/3, then
the resulting distribution will have variance less than
U±r, and through Eq. 3, the variance of the average
of t = 2k such variables will be less than its uniform
counterpart, and as a result the attack requires fewer
queries (given by t) to remove noise. We can in fact
derive the minimum condition required of the perturba-
tion to withstand the attack. First, from Section 4.2.1,
we see that Var(Y ) = 1

k2

∑k
i=1 Var(Yi) = 1

kVar(Y ),

where Y is the random variable denoting the sum of
two random variables distributed as E , and k is the
number of two-partitions. The two being i.i.d., we get
Var(Y ) = 2

kVar(E), where E is distributed as E . Since
E(E) = 0, we have that

Var(E) =
∑
e∈Π

e2p(e) ≤
∑
e∈Π

c2p(e) = c2,

where c = max{|e| : e ∈ Π}, i.e., the maximum absolute
perturbation. Thus, we get Var(Y ) ≤ 2c2

k = 4c2

t , where
t = 2k is the number of queries to the Bounded Noisy
Counts algorithm. Now, Eq. 3 shows that for the at-
tack to be unsuccessful, we should have Var(Y ) = Ω(1).
Together with the previous result, this implies that, we
require

c = Ω(
√
t). (6)

Thus, the amount of perturbation needs to be of or-
der
√
t to thwart the attack, where t equals the num-

ber of queries. This result is consistent with the results
from linear reconstruction attacks [9]. Incidentally, this
is also the level of noise required by any differentially
private algorithm to answer t queries (without coordi-
nated answers to queries) [13, 31]. For instance, if the
privacy budget ε is a small constant, then adding zero-
mean Gaussian noise of standard deviation

√
t to each

of the t queries satisfies concentrated differential pri-
vacy [15]. Obviously, the noise is of scale O(

√
t). Like-

wise, to achieve the notion of (ε, δ)-differential privacy,
with a constant ε and negligible δ, one can answer O(t)
arbitrary counting queries with noise of scale O(

√
t) via

the Laplace mechanism using the advanced composition
theorem [28],[31, Theorem 7.2.7]. A consequence of the
above result is that any perturbation algorithm with
bounded (constant) noise is eventually expected to suc-
cumb to our noise removing attack.
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7 Mitigation Measures
We briefly discuss possible mitigation measures against
the two attacks separately.

7.1 Mitigation Measures against
Perturbation Finder

Recall that the attack algorithm on finding the pertur-
bation value relies on identifying an attribute with at
least two attribute values. Assume this to be the at-
tribute gender, with attribute values male and female.
The attack involves submitting queries on the number of
males, the number of females, and the combined number
of males and females (total query).

Query Auditing. A first defence mechanism is to audit
queries to check if an analyst is attempting to find the
perturbation parameter. This measure needs to iden-
tify all possible query combinations that can be used to
narrow down the possible range (of the perturbation pa-
rameter). The specific construction of queries (outlined
above) in our attack is one possible way. However, there
may exist other combination of queries which could be
used to find the perturbation parameter. This requires
an exhaustive analysis. Furthermore, it is difficult to
detect if there is malicious intent behind a given series
of queries, as they can be contextually benign, e.g., an
analyst might very well be checking the gender distribu-
tion across different occupations in a geographic area.
In general, query auditing is a difficult problem [14].

Query Throttling. Another alternative is to throttle the
number of queries. This can be done by introducing a
“cap” on the number of queries allowed to an analyst.
However, in light of our results, this would be too small
a number, e.g., not allowing more than 200 queries if
r = 5 is used as the perturbation parameter.

Eliminating the Total Query. Recall that the attack al-
gorithm works by examining the difference between the
noisy count of the total query versus the sum of noisy
counts of the sub-queries. Thus one way to mitigate the
attack is to not add “fresh” noise to the total query
(and instead report the sum of the noisy counts from
the sub-queries). Unfortunately, this significantly im-
pacts utility. For instance, if an analyst is interested
in the number of people living in a certain geographic
area (say the suburb Redfern), then the only way to ob-
tain this answer would be to add the answers obtained
from the number of males and the number of females

living in the area. The problem is further exacerbated
by the fact that there might be multiple attributes with
two attribute values under the same geographic area.
And thus the attack can be (slightly) modified to in-
stead equate the sums obtained from multiple pairs of
attribute values.

Disclosing the Perturbation Parameter. In light of the
shortcomings of the above mentioned defence measures,
an inevitable choice is to make the perturbation parame-
ter public. Apart from having a negligible impact on (in-
dividual) privacy, this is beneficial from a utility point
of view as well. The analyst now knows the degree to
which an answer is possibly perturbed, and can factor
this amount into his/her calculations.

7.2 Mitigation Measures against Noise
Remover

Recall that the attack on removing noise relies on cre-
ating two-partitions of a target attribute, and the fact
that fresh noise is added to the answers to the total
queries from the two-partitions.

Query Auditing. Automated checks could be applied to
see if a significant number of queries correspond to dif-
ferent two-partitions of the same sub-population. Sev-
eral issues make this a less than ideal solution. First,
malicious queries might not be successively submitted; a
clever attacker might inject these queries in between sev-
eral innocuous queries. In general, query auditing can be
computationally infeasible; indeed, it is NP-Hard to de-
tect maliciously crafted queries via query auditing [25].
In fact, the need to dispense with query auditing is one
of the motivations behind the rigorous definition of dif-
ferential privacy [14]. Secondly, we could modify the at-
tack to include three-partitions instead of two-partitions
(with a corresponding increase in the number of queries
required to remove noise). Lastly, while we have demon-
strated one way in which multiple answers can be com-
bined together and averaged to remove noise, we have
not checked and confirmed whether there exist other
query combinations which could do the same.

Query Throttling. Placing a cap on the allowed number
of queries is another option, with the obvious drawback
that it limits the analyst to a much smaller number of
queries. The attacks described in this paper as well as
prior work on reconstruction attacks [9] suggest that this
is unavoidable if bounded noise mechanisms are deemed
indispensable. A technical difficulty is proposing a quan-
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titative bound on the number of queries allowed. For
instance, our results show that even 100 queries remove
the noise for most attributes with a perturbation pa-
rameter of r = 2.

Eliminating the Total Query. The noise removing algo-
rithm relies on the fact that answer to the total query
adds fresh noise, which can be compared against the
sum of the noisy counts of queries corresponding to the
two-partitions. If the total query does not add fresh
noise, the sum would be noisier and as a result would re-
quire a larger number of queries to eliminate noise. How-
ever, as discussed before, this is not desirable from a util-
ity point of view. For instance, if the analyst wishes to
know the number of people in a sub-population with age
greater than 50, then the only way to obtain this would
be to add the result obtained from each age grouping
(and thus obtain a noisier answer). We do note that
there are techniques to construct differentially private
histograms which maintain consistency [4, 23], with of-
ten the output being much more accurate [23]. Here
consistency, for instance, means that the noisy answer
to the total query and the total after summing the noisy
counts of per-attribute value queries are the same. These
approaches rely on optimization via post-processing. For
instance, one way to maintain consistency is to add
noise to queries on attribute value tuples from all the
attributes in the dataset, and answer queries on fewer
attributes from these [4, §3.1]. Thus, there are better
ways to answer the total query than the one outlined
above.

Provably-Private Alternatives. Our attack is another
example of a series of attacks demonstrating that ex-
tremely high accuracy cannot be guaranteed for too
many queries due to privacy concerns. For instance,
prior results have shown that noise needs to be cal-
ibrated according to the number of queries to avoid
database reconstruction attacks [9, 16]. In Section 6, we
showed that this is needed to prevent our attacks as well.
Thus, a safe way of releasing noisy answers is to scale
the noise as a function of the number of queries asked.
Differential privacy [11, 14] is a privacy definition and
framework that allows to do this. The parameter ε in
differential privacy determines the noise added to query
answers and can be tweaked to find a balance between
privacy and utility. Furthermore, this parameter can be
safely disclosed without effecting privacy. However, this
suggests that answering too many queries will result in
noise that badly affects utility. This is an inherent limi-
tation of any privacy-preserving mechanism. In particu-
lar, there is growing amount of evidence (including this

work) that suggests that any meaningful guarantee of
privacy cannot allow extremely accurate answers to an
unlimited number of queries.

7.3 Lessons Learned

We summarise some of our recommendations:

– Parameters used in the privacy algorithms, e.g., the
perturbation parameter, should not be kept secret.
It is easy to retrieve them if hidden, and, further-
more, disclosing them upfront is helpful for analysts.

– Ad hoc workarounds to mitigate averaging attacks,
e.g., by adding same noise to same queries or same
contributors, only marginally impede them. At best
they inform us where fresh noise should not be
wasted, e.g., if same query is repeated.

– Mitigating attacks with specific patches, e.g., elimi-
nating the total query, may not prevent other ways
of carrying out these attacks.

– Adding fresh noise to query answers is not a privacy
problem as long as the noise scale is a function of
the number of queries.

– Differential privacy provides a framework which al-
lows to add noise to queries in a way that mitigates
averaging or other attacks. Often the scale of noise
required is optimum in order to avoid privacy catas-
trophes, e.g., reconstruction attacks.

8 Discussion
We reiterate that due to ethical reasons we did not
demonstrate the attack on real census data, but rather
showed the vulnerability of the perturbation method
by applying it on a synthetic dataset. Thus, the ac-
tual TableBuilder tool is vulnerable to our attack and
remains at risk from similar attacks. Notice that even
though the TableBuilder tool is not equipped with an
API the attack could still be performed in an automated
way, e.g., one could use web-based scripts to query the
tool.

We communicated the vulnerability to ABS. They
acknowledged that the attack relates to TableBuilder.
In response, we were told that the ABS is bringing
some upcoming changes to the TableBuilder tool. These
include applying user-specific cap on the number of
queries (users will have to re-apply once their query
quota expires), only allowing highly aggregated data
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to TableBuilder Guest (which can be accessed without
registration), and monitoring/auditing of TableBuilder
usage logs. We believe that a more controlled access
to TableBuilder is definitely a step in the right direc-
tion. For instance, only allowing access to trusted users.5

As mentioned above, however, query capping/throttling
and auditing are mitigation measures that are difficult
to implement and impose. It is not clear exactly how
many queries are safe (if noise is not a function of the
number of queries), and as far as auditing is concerned,
it is extremely difficult to determine if a series of queries
is launched to carry out an attack or not (our attack or
others).

As we have demonstrated, our attack crucially re-
trieves low counts as well. Most importantly, it re-
trieves counts of 1 (which are suppressed by the TBE
algorithm). Extracting such “uniques” is linked to re-
identifying individuals. Some may argue that finding a
unique is not the same as identifying a real person in
the population exhibiting those attribute values. How-
ever, maintaining this flimsy distinction between the
two cases provides little solace; once uniques are iden-
tified, a little background information is enough to link
them to real persons in the population [29].

Finally, we would like to draw attention to a simi-
lar data usage scenario relating the United States (US)
Census Bureau who seek to publish some aggregated
form of the 2020 Census of Population and Housing [22].
The Bureau has internally investigated the applicabil-
ity of database reconstruction attacks [9, 12, 16, 24] on
the 2010 (aggregated) census data and has come to the
conclusion that given the amount of information leaked
per person, there is a “theoretical possibility” that the
census data could be reconstructed. We first note that
these reconstruction attacks are also applicable to noisy
data (where noise is significantly less than the amount
of statistics released). Secondly, our averaging attack
can also be seen as a form of reconstruction attack,
where the attacker can reconstruct target columns of the
underlying dataset. Based on their findings, Garfinkel,
Abowd and Martindale [22] conclude:

Faced with the threat of database reconstruction, statistical
agencies have two choices: they can either publish dramat-

5 One may wonder if the user is trusted, why, then, use a per-
turbation mechanism at all? One reason provided to us is that
the user may wish to publicly release information obtained from
TableBuilder, e.g., a journalist. However, in such cases the in-
formation that the user wishes to publish, and only this infor-
mation, can always be “sanitised” before publication.

ically less information or use some kind of noise injection.
Agencies can use differential privacy to determine the min-
imum amount of noise necessary to add, and the most effi-
cient way to add that noise, in order to achieve their privacy
protection goals.

These recommendations for the US census data are in-
line with our suggestions for the Australian census data.

9 Related Work
Our attacks are not the only attacks reported on the
TBE algorithm. A differencing attack on the TBE al-
gorithm has been documented before, through which
some information about a target individual can be in-
ferred [6, 27]. The attack essentially relies on some back-
ground knowledge. For instance, suppose that we know
that n out of n + 1 individuals in a particular group,
identified by a vector of attributes b ∈ B, satisfy a par-
ticular attribute value a ∈ A, where A /∈ B. Further
assume that the (n+1)th individual, the target, has the
same background, i.e., takes on the values b, and we
would like to know if the individual also exhibits a ∈ A.
By querying the TBE algorithm on b, and then b + a,
we can tell if the individual does not exhibit a if the
two answers returned by the TBE algorithm are differ-
ent. However, notice that this attack is fundamentally
different than our attacks. One major difference being
that our averaging attack does not rely on any back-
ground information about other individuals.

A somewhat similar attack that exploits the use of
suppression is highlighted in [8]. Although the attack is
in relation to the application of a differentially private
mechanism to release histograms of transport data [3],
it can also be applied to the TBE algorithm. For in-
stance, suppose that the query answer qa1 is larger than
the suppression parameter, and the query answer qa2 is
lower, for a1, a2 ∈ A, for some attribute A. The TBE al-
gorithm will return a noisy count for qa1 and 0 for qa2 .
However, the query answer qa1 ∧ qa2 is higher than the
suppression parameter. If the answer returned by TBE
is different than qa1 , then the analyst learns that qa2 is
not zero. Indeed, this is the observation used by us in
Section 4.2.2.

As noted before, there is a specific class of at-
tacks known as linear reconstruction attacks that seeks
to reconstruct a whole (target) column of a sensitive
dataset [9, 12, 16, 24] based on linear programming. Al-
gorithms that allow overly accurate answers to too many
linear queries are susceptible to these attacks. More pre-
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cisely, algorithms which return noisy answers with noise
bounded within o(

√
n), where n is the number of rows

(individuals) in the dataset, succumb to these attacks.
However, it is not clear how linear reconstruction at-
tacks can be applied to the TBE algorithm due to the
restricted query interface. Linear reconstruction attacks
use random subset sum queries which requires the abil-
ity to query random subsets of rows of the underlying
dataset [7]. The restricted interface in TBE does not
allow such queries.

Diffix [17, 18] is another disclosure control mecha-
nism that is built on some principles similar to TBE. In
particular, Diffix also uses the concept of sticky noise,
e.g., same query, same answer. However, the authors
in [17] note that a naive application of sticky noise is
susceptible to a split averaging attack. The attack is sim-
ilar to our attack: ask queries on attribute values and
their negations (e.g., a and NOT a), and then average
over multiple attribute values. Due to this and other at-
tacks, Diffix uses the idea of layered sticky noise, using
a combination of static noise (depending on the query
conditions, e.g., gender being female) and dynamic noise
depending on both the query conditions and the set of
contributors [17, 18]. We note that the split averaging
attack is different from our attack, as the TBE interface
does not accept negated queries. We instead need to rely
on two-partitions and the use of the total query. Fur-
thermore, we give a detailed analysis on success proba-
bilities as a function of the number of attribute values
with non-zero counts returned by the algorithm.

Interestingly, Diffix circumvents our proposed at-
tack by including per query condition sticky noise. For
instance, assume the attacker wants to know the exact
answer to qb ∧ qA, where b is an attribute value of some
attribute B, and A is the target attribute. Let {A1, A2}
be a two-partition of A. Then the noise added to qb∧qA1

and qb ∧ qA2 has a noise component added due to the
contributors of the two queries, plus noise added due
to the conditions qb, qA1 , and qA2 . The noise added to
the last two changes per two-partition and hence can be
averaged out, but qb remains “sticky.” Hence the result
of the averaging attack will not average this noise term
out. The obvious drawback is that more noise is added
per query. More details of the multi-layer noise in Diffix
is given in [17, §5.2].

Gadotti et al. [21] propose a different averaging at-
tack on Diffix, which circumvents the layered sticky
noise by first removing the static noise component and
then uses averaging to distinguish between two proba-
bility distributions, one with the sensitive attribute set
to 1 and the other where it is set to 0. The attack re-

lies on knowing whether the target record is unique in
the dataset, which is likely to be true for a significant
fraction of records in the dataset [21]. A more involved
attack, called cloning attack, uses “dummy” conditions
in queries to obtain the same set of contributors [21].
However this attack relies on the richness of the query
language.

There are also reconstruction attacks reported on
Diffix [7], which rely on the ability to select random
“enough” rows from the underlying dataset by exploit-
ing the rich query interface of Diffix. In the most recent
version of Diffix, the attack has been seemingly miti-
gated by restricting queries that would isolate individ-
uals in the dataset [1, 21]. As mentioned before, the
TableBuilder interface is highly restrictive, and it is not
clear how such reconstruction attacks could be carried
out on the TBE algorithm.

10 Conclusion
We have shown an averaging attack that retrieves actual
values exhibited by an attribute (or one or more of its
attribute values) in a dataset which can only be accessed
via a privacy-preserving algorithm that adds bounded
uniform noise to the answers. In line with previous re-
search on linear reconstruction attacks (see e.g., [16]),
we show that if the number of allowed queries are above
a given mark, the algorithm fails to provide privacy. We
have demonstrated the attack on a synthetic dataset ac-
cessed via the TBE algorithm used for the ABS Table-
Builder. While the TBE algorithm might be patched to
resist the particular attack mentioned in this paper, we
would like to stress that this may not be the only attack
possible. A better alternative is to scale noise according
to the number of queries allowed to minimise informa-
tion leakage from a theoretical point of view [9]. This
will guarantee that privacy is maintained in practice.
We also restate that we have only considered one sub-
set of queries (counting queries), and the attack may be
applicable to other types of queries, e.g., range queries
on continuous data.
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A Proofs
Proof of Proposition 1

Proof. Let e be the noise added byM. (a) First assume
n > s. Then since e ∈ [−r, r], α = n+e ≥ n−r ≥ n−s >
0. Here we have used the fact that s ≥ r. If n ≤ s, then
α = 0 (step 2 of the algorithm). (b) Again, first assume
n > s. Then n − r ≤ α ≤ n + r ⇒ n − s ≤ α ≤ n + r.
Now, if n ≤ s, then α = 0. Trivially, n − s ≤ 0 = α.
(c) If C(q) is empty, then |C(q)| = 0 < s, and henceM
should always return a 0 in this case.

Proof of Lemma 1

Proof. Since n1 and n2 are both greater than r, the
noisy answers returned by Bounded Noisy Counts are
non-zero. Furthermore, since n1, n2 > r > 0, we see that
{C(qb ∧ qa1), C(qb ∧ qa2)} is a partition of C(qb). Hence,
the two have necessarily different contributors: C(qb ∧
qa1) 6= C(qb ∧ qa2). Therefore, Bounded Noisy Counts
adds independent noise to the corresponding queries.
Furthermore, C(qb) 6= C(qb ∧ qa1) and C(qb) 6= C(qb ∧
qa2), since the cardinality of both are greater than r, and
hence cannot be equal to the total. Therefore, there is
independent noise added to n as well.

Proof of Lemma 2

Proof. Assume the contrapositive for some i and j.
Then since C(qbi

) = C(qbj
), the Bounded Noisy Counts

algorithm should add the same noise to qbi
and qbj

, and
henceM(qbi

) =M(qbj
); a contradiction.

Proof of Lemma 3

Proof. First let us consider the number of permutations
whose sum is greater than 3(r−1). Note that none of the
Ei’s can be less than r−3. To see this, note that if r = 1,
then any of the Ei’s cannot be equal to r−3 = −2. Let us
assume that r > 1, then if any of the Ei’s is ≤ r−3, then
the maximum possible sum is ≤ r− 3 + r+ r = 3(r− 1),
which is our threshold. Thus, we enumerate all possible
permutation of values of the Ei’s, such that Ei ≥ r − 2
and E1 + E2 + E3 > 3(r − 1). This is shown below.

E1 E2 E3

r r r

r r r − 1
r r r − 2
r r − 1 r

r r − 1 r − 1
r r − 2 r

r − 1 r r

r − 1 r r − 1
r − 1 r − 1 r

r − 2 r r

There are exactly 10 such values. By symmetry, the
same holds for E1 + E2 + E3 < −3(r − 1).

Proof of Proposition 2

Proof. From Lemma 3, there are exactly 20 possible
values of the tuple (z1, z2, z3), for which z in step 4
of the algorithm has sum greater than 3(r − 1) or
less than −3(r − 1).6 Through Lemma 1 the variables
zi are i.i.d. The probability that z for the ith set of
queries to the Attribute Analyzer is within the interval
[−3(r − 1), 3(r − 1)] is given by 1 − 20/(2r + 1)3. The
result follows for all m attributes, since the ith z in step
4 is independently distributed due to Lemma 2.

Proof of Lemma 4

Proof. There are 2m elements in the power set of A. Out
of these, two are ∅ and A itself. Out of the remaining
2m− 2 elements (subsets of A), we can construct a two-
partition by choosing any element as the first subset, say
A′, and A−A′ as the other subset. Since A−A′ is also in
the power set, we have counted each two-partition twice.
Thus, dividing 2m − 2 by 2 gives us the result.

Proof of Lemma 5

Proof. Let S = A′∆A′′.7 Then, since A′ 6= A′′, S 6= ∅.
Also, since M(qb ∧ qai) 6= 0 for all i ∈ [m], it follows
from Proposition 1, that C(qb ∧ qA′) and C(qb ∧ qA′′)
are non-empty sets. Now, assume to the contrary that
C(qb ∧ qA′) = C(qb ∧ qA′′). Since any contributor (user)

6 Note that even though the lemma applies to the sum z1 +
z2 + z3, it is easy to see that it also holds true for z1 + z2 − z3.
7 For any two sets A and B, A∆B denotes their symmetric
difference.
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can have only one attribute value in A, it must fol-
low that for this contributor to be in both sets of con-
tributors, the attribute value should be in the inter-
section of both A′ and A′′. Since the two sets of con-
tributors are equal, this means that any attribute value
a /∈ A′∩A′′ = S is not taken by any contributor. There-
fore, (qb ∧ qa)(D) = 0, for all a ∈ S, which means that
Bounded Noisy Counts outputs M(qb ∧ qa) = 0. But
this contradicts the assumption.

Proof of Lemma 6

Proof. Fix an i. The the two error variables E(i)
1 and

E
(i)
2 are noise terms added to the two sets of the

corresponding two-partitions. Since by assumption all
counts from Bounded Noisy Counts are non-zero, the
queries corresponding to the two sets have non-zero set
of contributors (Proposition 1). Since the two queries
are on disjoint partitions, they also have different con-
tributors (in fact, mutually exclusive). Therefore, the
Bounded Noisy Counts algorithm adds independent
noise with distribution U±r. Now consider, Z1, . . . , Zk.
By Lemma 5 the query corresponding to every set
in the set of two-partitions PA has different contribu-
tors. Hence E(i)

j are i.i.d. with distribution U±r, where
j ∈ {0, 1}, i ∈ [k]. The result follows.

A.1 Lower Bound on the Success
Probability of Noise Remover

It is easy to see that E(E(i)
j ) = 0. And by the variance

of the discrete uniform distribution

Var(E(i)
j ) = (r − (−r) + 1)2 − 1

12 = r(r + 1)
3 .

By the linearity of expectation

E(Yi) = 0,

and by Lemma 6,

Var(Yi) = 2r(r + 1)
3 .

Again through linearity of expectation

E(Y ) = 0,

and by Lemma 6,

Var(Y ) = 1
k2

k∑
i=1

2r(r + 1)
3 = 2

3
r(r + 1)

k
.

Using Chebyshev’s inequality, we see that

Pr
(∣∣Y − E(Y )

∣∣ ≥ ε) ≤ Var(Y )
ε2

.

By setting ε = 0.5, and putting in the values of E(Y )
and Var(Y ), we get

Pr
(∣∣Y ∣∣ ≥ 0.5

)
≤ 8

3
r(r + 1)

k
.

Thus,

Pr
(∣∣Y ∣∣ < 0.5

)
≥ 1− 8r(r + 1)

3(2m−1 − 1) .

A.2 Exact Success Probability of Noise
Remover

Let X1 = E1, and define Xi = Xi−1 + Ei, for i ∈
{2, . . . , 2k}. Then the probability mass function of X2
is given by

fX2(x) =
+∞∑

y=−∞
fX1(y)fE(x−y) =

+∞∑
y=−∞

fE(y)fE(x−y),

and for every i

fXi
(x) =

+∞∑
y=−∞

fXi−1(y)fE(y − x).

Thus, we can iteratively find fX2k
, the probability mass

function of X2k. Now,

Pr
(∣∣Y ∣∣ < 0.5

)
= Pr

(∣∣∣∣X2k

k

∣∣∣∣ < 0.5
)

= Pr
(
−1

2 <
X2k

k
<

1
2

)
= Pr

(
−k2 < X2k <

k

2

)
=

∑
x∈(−k/2,k/2)

fX2k
(x).

B Synthetic Data Details
The synthetic dataset used in our experimental eval-
uation in Section 5 was generated by first fixing n =
600, 000 rows. Next we generated n normally distributed
samples with mean 25 and standard deviation 5. The
resulting samples were then binned into their nearest
integer bins labelled 1 to 51. We assumed an attribute
A with 107 different attribute values. We assigned the
counts in the bins 1 to 51 to the attribute values a = 1
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Table 4. The distribution of counts in the target column in the synthetic dataset against each attribute value a ∈ {1, 2, . . . , 107}.
“Counts” represents true counts, and “TBE” represents noisy counts from the TBE algorithm with parameter r = 2.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Counts 1 3 6 12 33 53 114 199 372 677 1075 1837 2884 4388 6496 9136 12694 16893 21513 26566
TBE 0 0 6 12 34 52 116 197 373 678 1074 1838 2883 4389 6495 9137 12692 16892 21515 26564

a 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Counts 31854 36741 40268 43426 44865 44812 43054 40259 35698 31534 26103 20953 16539 12430 8977 6297 4283 2715 1775 1085
TBE 31853 36739 40267 43427 44867 44813 43053 40258 35696 31532 26105 20955 16537 12431 8975 6296 4284 2713 1774 1084

a 41 42 43 44 45 46 47 48 49 50 51 52-107
Counts 614 377 196 93 53 24 14 3 4 1 1 0
TBE 615 378 195 95 52 25 15 0 0 0 0 0

to 51, respectively. Attribute values 52 to 107 were fixed
at 0. For our attack evaluation, we only used this one
column, where the counts are normally distributed. Ta-
ble 4 shows the counts in the target column used in our
experimental evaluation together with the noisy counts
retrieved via the TBE algorithm with perturbation pa-
rameter r = 2.

C Constraints on the Dataset
The Noise Remover algorithm requires a minimum num-
ber of attribute values with non-zero counts returned
by the Bounded Noisy Counts for a given probability
of success. Abusing terminology, we call them attribute
values with non-zero outputs. For an attribute A with
m attribute values with non-zero outputs, the proba-
bility of successfully determining the query answer qA

can be determined via Eq. 5. Recall that m attribute
values with non-zero outputs enables k = 2m−1−1 two-
partitions (cf. Section 4.2.2). The higher the number of
two-partitions available, the closer we get to the true
answer as a function of the number of queries t ≤ 2k
to Bounded Noisy Counts. We are interested in evalu-
ating the success probability when m is small. To do
this, we ran an experiment where we vary the number
of attribute values of an attribute A with non-zero out-
puts from 2 to 11. Then for each m, we run the Noise
Remover with all the k = 2m−1 − 1 two-partitions, and
obtain the result as the guess for qA. We ran the ex-
periment 10,000 times for each perturbation parameter
r in the range 2 to 10. The results are shown in Fig-
ure 5. Note that m = 2 means that we have only 1
two-partition. In this case, the noise remover’s success
rate is simply 1/(2r+ 1), the probability of guessing the
true answer. For small parameters, r ≤ 5, we need 9 at-
tribute values with non-zero outputs for the attack to be
successful with more than 90 percent success rate. This
reaches to 11 for the perturbation parameter r = 10.
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Fig. 5. Probability of successfully retrieving the count of the
query qA(D) of an attribute A with m different attribute val-
ues a1, . . . , am such that the answers returned by Bounded Noisy
Counts is non-zero for all qai .

However, there are several workarounds when we
have less than the ideal number of attribute values with
non-zero outputs. We discuss two of them. First, we note
that the attack can still be launched if we have only two
attribute values with non-zero outputs. Let us assume
the attribute A = {a1, a2, e1, . . . , em}. Assume that the
queries on attribute values a1 and a2 have non-zero out-
puts. Further assume that the answers to the queries
qei , for i ∈ [m], is zero from Bounded Noisy Counts,
but they have non-empty contributors. We denote this
subset by A′. Then, first we can compute 2m−1−1 two-
partitions of A′. In each partition, we add a1 to the first
set and a2 to the second set. Then it is easy to see that
the resulting 2m−1 − 1 partitions can be used to launch
the noisy removing attack, as the corresponding query
answers will not be suppressed and will have fresh noise
added. Of course, for this to work we need to confirm if
the true answers to the qei ’s are indeed non-zero. This
can be done by using a = a1 or a = a2 and obtain-
ing answers to qa and qa ∧ qei . If the two noisy answers
are different, then necessarily C(qei) is non-empty. The
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probability that the answer would be different is given
by 1− (2r + 1)−2.

Second, the attack can still be launched by
adding/removing attribute values from other attributes.
For instance, if we are interested in knowing qa for some
attribute a ∈ A, and we have another attribute B, with
m attribute values with non-zero outputs, we can cre-
ate two-partitions of B. Then for each two-partition
{B′, B′′}, we can sum the noisy query answers qa ∧ qB′

and qa ∧ qB′′ .
Thus, while a minimum number of attribute values

with non-zero outputs in the target attribute makes the
attack simpler, there are other ways to carry out the
attack. This means that the attack cannot be rendered
ineffective simply because the target attribute has a low
number of attribute values with non-zero outputs.
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