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Abstract: The Bitcoin network has offered a new way of
securely performing financial transactions over the inse-
cure network. Nevertheless, this ability comes with the
cost of storing a large (distributed) ledger, which has
become unsuitable for personal devices of any kind. Al-
though the simplified payment verification (SPV) clients
can address this storage issue, a Bitcoin SPV client has
to rely on other Bitcoin nodes to obtain its transac-
tion history and the current approaches offer no privacy
guarantees to the SPV clients.
This work presents T 3, a trusted hardware-secured
Bitcoin full client that supports efficient oblivious
search/update for Bitcoin SPV clients without sacrific-
ing the privacy of the clients. In this design, we leverage
the trusted execution and attestation capabilities of a
trusted execution environment (TEE) and the ability to
hide access patterns of oblivious random access machine
(ORAM) to protect SPV clients’ requests from poten-
tially malicious nodes. The key novelty of T 3 lies in the
optimizations introduced to conventional ORAM, tai-
lored for expected SPV client usages. In particular, by
making a natural assumption about the access patterns
of SPV clients, we are able to propose a two-tree ORAM
construction that overcomes the concurrency limitation
associated with traditional ORAMs. We have imple-
mented and tested our system using the current Bitcoin
Unspent Transaction Output (UTXO) Set. Our experi-
ment shows that T 3 is feasible to be deployed in practice
while providing strong privacy and security guarantees
to Bitcoin SPV clients.
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1 Introduction
Over the last few years, we have seen a great inter-
est in public blockchain in the community. The Bit-
coin blockchain offered a way to provide security and
privacy for financial transactions. However, due to the
huge adoption by the community, the size of the Bitcoin
blockchain has become too large for small and resource-
constrained devices such as personal laptops or mobile
phones, raising not only performance but also privacy
concerns in the community. As of October 2018, the size
of the unindexed Bitcoin blockchain is 230 GB.

To this end, Bitcoin’s simplified payment verifica-
tion (SPV) client has become a widely-adopted solu-
tion to resolve a storage problem for constrained de-
vices. Nakamoto [45] sketched the idea of SPV clients
in the Bitcoin whitepaper, and in the Bitcoin improve-
ment proposal 37 (BIP37) [33], Mike Hearn combines
Nakamoto’s idea with Bloom filters to standardize the
design of Bitcoin SPV clients. This design has become
a de facto standard for other SPV clients such as Bit-
coinJ [5] and Electrum [8].

The core of SPV clients is in only downloading and
then verifying part of the blockchain that is relevant to
the SPV client itself. In particular, the SPV client loads
its addresses into a Bloom filter and sends the filter to
a Bitcoin full client, and The Bitcoin full client will use
the filter sent by the client to identify if a block contains
transactions that are relevant to the SPV client, and
once it finds the block, it will send a modified block that
only contains relevant transactions along with Merkle
proofs for those transactions.

However, the current SPV solution relied on Bloom
filters raises security and privacy concerns to the SPV
clients when communicates with potentially malicious
nodes. In particular, Gervais et al. [30] show that it is
possible for a malicious node to learn several addresses
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of the client from the Bloom filter with high probability.
Moreover, if the adversarial node can collect two filters
issued by the same client, then a considerable number
of addresses owned by the client will be leaked.

To provide a strong privacy guarantee for SPV
clients, one needs a solution that can hide wal-
lets/addresses queried by the SPV clients [34]. While
such a system can be built using private information
retrieval (PIR) primitives, the existing cryptographic
PIR solutions [37, 48] are not scalable to handle millions
of Bitcoin users. On the other hand, to gain more effi-
ciency, one can use ORAM and TEE to propose generic
PIR systems [28, 35, 53]. However, as we will see later
in the paper, naively combining ORAM scheme as it is
with TEE makes the practicality of those generic sys-
tems questionable when used in a large network like Bit-
coin due to the lack of concurrency in ORAM as well as
the limitation of TEE with restricted memory.
Our Contributions. This work aims not only to de-
sign a system that provides SPV clients with privacy-
preserving access to the Bitcoin blockchain data but also
to consider other practical aspects on how to scale such
a system to handle client requests in a large-scale. Our
contributions can be summarized as follows:

Firstly, we present a design for a system that can
handle up to thousands of requests per minute from Bit-
coin SPV clients based on a restricted access Oblivious
Random Access Memory (ORAM) and the trusted ex-
ecution capabilities of TEE. In particular, one of the
main contributions of our design is the optimization ac-
cess in the prominent tree-based ORAM schemes that
allow those ORAM schemes to support concurrent ac-
cesses which is essential for handling SPV clients’ re-
quests. In this design, the access privacy guarantee is
still maintained because of our natural assumption that
the rational Bitcoin SPV clients should only query for
their particular transaction once before the arrival of
a new Bitcoin block. Nevertheless, we later show that
even when the SPV clients are irrational then the pri-
vacy for such clients is only compromised for a short
period of time. The security guarantee of T 3 also relies
on the trusted execution capabilities of TEE that al-
lows SPV clients to perform ORAM operations securely
and remotely. Our generic design works with other
blockchains, any tree-based ORAM schemes [54, 55, 60],
and any TEE with attestation capability.

Secondly, we implemented a prototype of T 3 and
evaluated its performance to demonstrate the practi-
cality of our approach. More specifically, we extracted
the unspent transaction outputs set of Bitcoin in Oc-
tober 2018 and used it to measure the performance of

the system when handling clients’ requests. The imple-
mentation of T 3 also adopts standard techniques (i.e.,
oblivious operations using cmov [14, 49, 53]) to be secure
against known side-channel attacks [39, 40, 62]. More-
over, the use of recursive ORAM constructions in T 3

makes the system much more suitable for TEE with re-
stricted trusted memory like Intel SGX. We then show
that the running time of the ORAM read access de-
creases linearly with the number of the threads used.
Our implementation is available at [13].

Finally, we conclude that putting natural restric-
tions on the access patterns on oblivious memory can
lead to significant performance improvement and better
ORAM design. While the applicability of T 3 in cryp-
tocurrencies beyond Bitcoin is apparent, we believe our
work will also motivate further research on oblivious
memory with restricted access patterns.
Comparison. The BITE system [43] is a concur-
rent work that also employs the Oblivious Database
construction for SPV client privacy. The main idea
of the BITE construction is to combine the use of
non-recursive Path-ORAM [55] construction and TEE
(such as Intel SGX) to propose a generic system that
offers SPV client with oblivious access to the database.
However, BITE did not address several shortcomings of
using Path-ORAM as it is and TEE with restricted
memory in practice. In particular, the BITE design did
not consider using recursive ORAM constructions to
reduce the trusted memory usage; therefore, the effi-
ciency of the system will be degraded once the size of
the database gets too large. Moreover, due to the in-
herent lack of concurrency in tree-based ORAM such as
Path-ORAM, naively using Path-ORAM makes BITE
unsuitable for handling thousands of Bitcoin client’s re-
quests per minute as well as thousands of updates ev-
ery fixed period of times (e.g., 10 minutes for Bitcoin).
In this work, we investigate the use of both recursive
Path-ORAM and recursive Circuit-ORAM to under-
stand the actual performance and the actual storage
overhead put on the full node. Importantly, we propose
a two-tree ORAM design to further enhance the perfor-
mance of standard ORAM accesses as well as to allow
concurrent requests from the SPV client.

Charkborti and Sion propose ConcurORAM [19]
that also uses a two-tree design for Path-ORAM to
allow non-blocking eviction procedures, and the system
periodically synchronizes two trees to maintain users’
access privacy. However, it is not suited for TEEs with
limited trusted memory (such as Intel SGX). We elab-
orate on this later in the paper.
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2 Design Goals and Solution
Overview

In this section, we define the system components, out-
line our security goals, and give an overview of how our
system works.

2.1 System Components

There are three key components of this system: the Bit-
coin network, a client, and an untrusted full node. The
Bitcoin network is a set of nodes that maintains the
Bitcoin blockchain, and the network validates and relays
the new Bitcoin block produced by miners. A client is
a Bitcoin simplified payment verification node that re-
motely connects to the secure TEE on the untrusted
full node to perform oblivious searches on the unspent
transaction output (UTXO) set. The client is also able
to connect to the Bitcoin Network to obtain other net-
work metadata such as the latest Bitcoin block header.
A full node is an untrusted entity made up of two
components: an untrusted full node and several trusted
TEEs (i.e., the managing, reading, and writing TEEs).
Moreover, the untrusted full node stores three encrypted
databases which are the read-once ORAM tree, the orig-
inal ORAM tree, and the Bitcoin header chain. The un-
trusted full node hosts a potentially malicious Bitcoin
client (e.g., bitcoind) that handles the communication
with the Bitcoin Network.

2.2 Design Goals

The goal of our system is to leverage the trusted exe-
cution capabilities of a Trusted Execution Environment
(TEE) with attestation to design a public Bitcoin full
node that supports oblivious search and update on the
current Bitcoin unspent transaction output database.
Our system aims to provide data confidentiality and
privacy to Bitcoin SPV clients on a large scale by us-
ing standard encryption and Oblivious RAM techniques
on the current set of unspent transaction outputs. The
main goals that T 3 tries to achieve are:
Privacy. T 3 aims to provide privacy and confiden-
tiality to SPV clients’ requests. In particular, the sys-
tem allows SPV clients to obliviously search its relevant
transactions without revealing their addresses to poten-
tially malicious providers by using TEE to encrypt the

data and using ORAM schemes to eliminate known side
channel leakages [14, 35, 49, 53].
Validity. The SPV client should be able to obtain
valid information based on the provided addresses, and
a malicious adversary should not able to tamper the
Blockchain data with invalid transaction outputs.
Completeness. The system should provide clients
with access to most of its relevant transactions in order
to determine balance or to obtain essential information
to form new transactions.
Efficiency. The system should be practical to de-
ploy. More specifically, the system should be efficient
enough to handle different concurrent SPV clients’ re-
quests without compromising the privacy of the clients.

2.3 Solution Overview

The idea of using ORAM schemes and trusted ex-
ecution environments to construct database systems
that support oblivious accesses has been investigated
by the research community [28, 35, 53]. However, the
efficiency and scalability of those systems are ham-
pered by the lack of concurrency of traditional ORAM
schemes [55, 60].

In this work, we design T 3 to overcome the limi-
tations of efficiency and concurrency plaguing existing
systems. Our design is motivated by the following obser-
vations. The first observation is that each ORAM access
in a standard tree-based ORAM setting is a combination
of two operations: a read-path operation and an eviction
operation. By separating the effects of two operations
into two different trees: a read-once ORAM tree and an
original ORAM tree, one can use read-path operation
on the read-once ORAM tree to handle clients’ requests
simultaneously while performing a non-blocking evic-
tion operation on the original ORAM tree sequentially.

The second observation is that the access privacy
guarantee of this approach relies on the characteristic
of the Bitcoin blockchain. In particular, the Bitcoin net-
work generates new Bitcoin block on average of 10 min-
utes, and if we require T 3 to periodically synchronize
these the two trees, then the privacy of clients’ queries
are preserved. Moreover, if we assume that upon receiv-
ing transactions belonged to its addresses, the rational
client should not query same transactions again until
the next block arrives, the proposed approach on the
separation of read-path and eviction procedure not only
does not affect the privacy guarantees of ORAM access
but also allows T 3 to efficiently handle more clients’
requests. More importantly, we argue that even when
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Fig. 1. Overview of T 3 design. The encrypted ORAM databases are stored in full node’s untrusted memory region. Steps 1 - 6 de-
scribe the flow of the request sent from SPV clients. Steps 1 - 8 show the flow of the update procedure when T 3 receives new block.

the SPV clients are irrational by submitting requests
for the same transaction more than once, the privacy
of those clients is only compromised for a short period
(i.e., 10 minutes for the Bitcoin network) because T 3

will always synchronize the old instance of the read-
once ORAM tree with the more updated instance of the
original ORAM tree. With the intuition of T 3 described
above, we outline the workflow of our design in fig. 1:
Full node Initialization 1 - 8 : Initially, the managing
TEE will initialize a writing TEE that creates an empty
ORAM tree. For each of Bitcoin block obtained from
the network, the managing TEE verifies the proof of
work of the block before passing relevant update data
to the writing TEE in order to populate the ORAM
tree. With the current size of the Bitcoin blockchain,
this operation may take several hours. However, once
the TEEs catch up with the current state of the Bitcoin
blockchain, we expect that the TEE only has to perform
a batch of update accesses on the ORAM tree every
10 minutes. When the initialization is completed, the
managing TEE creates two copies of the ORAM tree
which are the read-once ORAM tree and the original
ORAM tree.
Oblivious read-once Protocol 1 - 6 : To obtain its
unspent outputs, the client first performs the remote at-
testation to the managing TEE. The remote attestation
mechanism allows the client to verify the correctness of
program execution inside the TEE. More importantly,
after a successful attestation, the client can use standard
key exchange mechanism [27] to share a secret session
key with the TEE in order to establish a secure connec-
tion with the managing TEE. Upon receiving client’s

connection requests, the managing TEE creates a read-
ing TEE with its copies of the ORAM position map and
the ORAM stash to handle client subsequent requests.
Next, after having a secure channel, the client will send
his Bitcoin addresses along with the proof of ownership
of those addresses to the TEE. The reading TEE will use
a mapping function to map Bitcoin addresses into the
ORAM block identification number and performs read-
once ORAM access on the ORAM tree. In particular,
those read-once ORAM access do not involve the evic-
tion procedure which requires re-encrypting and remap-
ping the ORAM block. The eviction procedure will be
performed on the original ORAM tree by the writing
TEE.
Oblivious Write Protocol 1 - 8 : The T 3 requires to
update the ORAM tree via batch of write accesses ev-
ery 10 minutes on average. In particular, T 3 will rely
on a standard Bitcoin client to handle the communi-
cation with the Bitcoin network to obtain blockchain
data 1. Thus, T 3 needs to verify the block relayed by a
potentially malicious Bitcoin client before updating the
ORAM tree. More specifically, in the design, T 3 stores
a separate Bitcoin header chain to verify the proof of
work and the validity of all transactions inside a Bitcoin
block. After the verification, the managing TEE forms a
batch of ORAM updates and delegates those updates to
the writing TEE. Once those updates are finished, the
managing TEE will queue up read requests from SPV

1 This feature can be easily included in the future implementa-
tion of T 3.
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clients to allow the writing TEE to finish the eviction
requests from the read TEEs during the updating in-
terval. As soon as the writing TEE finishes performing
those eviction requests, the managing TEE updates the
position map and stash, and makes the ORAM tree used
by the writing TEE become the new ORAM tree used
by reading TEE. At this point, the reading TEE can
use the new tree instance to respond to clients’ requests
while the writing TEE performs the eviction procedure
on another copy of the same ORAM tree.

3 Preliminaries and Threat Model

3.1 Trusted Execution Environment

The design of T 3 relies on a trusted execution environ-
ment (TEE) to prove the correctness of the computa-
tions. In particular, TEE is a trusted hardware that
provides both confidentiality and integrity of compu-
tations as well as offer an authentication mechanism,
known as attestation, for the client to verify computa-
tion correctness. In this work, we chose Intel SGX [23]
to be the building block of our system. However, with
minor modifications, the design of our system can be
extended to any TEE with attestation capabilities such
as Keystone-enclave [10] and Sanctum [24] as other
trusted execution environments might not have the
same strengths/weaknesses as Intel SGX.

Intel SGX is a set of hardware instructions intro-
duced with the 6th Generation Intel Core processors.
We use Intel SGX as a TEE for the execution of an
ORAM controller on the untrusted full node. The rel-
evant elements of SGX are as follows. Enclave is the
trusted execution unit that is located in a dedicated por-
tion of the physical RAM called the enclave page cache
(EPC). The SGX processor makes sure that all other
software components on the system cannot access the
enclave memory. Intel SGX supports both local and
remote attestation mechanisms to allow remote par-
ties or local enclaves to authenticate and verify if the
program is correctly executed within an SGX context.
More importantly, attestation protocols provide the au-
thentication required for a key exchange protocol [23],
i.e., after a successful attestation, the concerned parties
can agree on a shared session key using Diffie-Hellman
Key Exchange [27] and create a secure channel.
Limitations. Intel SGX comes with various limitations
that have been uncovered by the academic community
over the past few years. Some of these limitations are:

– Side-Channel Attacks:While Intel SGX provides
security guarantees against direct memory attacks,
it does not provide systematic protection mech-
anisms against side-channel attacks such as page
table-based [39, 62], cache-based [18], and branch-
prediction-based [40]. Through page table and cache
attacks, a privileged attacker can observe cache-
line-granular (i.e., 64B) memory access patterns
from the enclave program. On the other hand, the
branch-prediction attack can potentially leak all the
control-flow taken by the enclave program.

– Enclave Page Cache Limit: The size of the
Enclave Page Cache (EPC) is limited to around
96MB [15]. Although Intel SGX alleviates this
limitation by supporting page-swapping between
trusted memory region and untrusted memory re-
gion, this operation is expensive due to encryption
and integrity verification [15, 23].

– System Calls: Intel SGX programs are restricted
to ring-3 privileges and therefore rely on the un-
trusted OS for ring-0 operations such as file and
network I/O. Various previous works try to solve
this problem using library OSes [58] and/or other
techniques [35].

Oblivious Operations inside the Enclave. Several
techniques [35, 46, 49, 53] have been introduced to mit-
igate side-channel attacks on the SGX. In this work,
we built our system based on the implementations of
both Zerotrace [53] and Obliviate [14]. Therefore, our sys-
tem inherited standard secure operations from both of
these libraries. In particular, their implementations use
an oblivious access wrapper by using the x86 instruc-
tion cmov as introduced by Raccoon [49]. Using cmov,
the wrapper accesses every single byte of a memory ob-
ject while reading or writing only the required bytes in
memory. From the perspective of an attacker (which can
only observe access-patterns), this is the same as read-
ing or modifying every byte in memory. We refer readers
to [14, 49, 53] for detailed descriptions of these oblivious
operations.

3.2 Oblivious Random Access Machine

Oblivious Random Access Machine (ORAM) was first
introduced by Goldreich et al [31] for software protec-
tion against piracy. The core of ORAM is to hide the
access patterns resulted from reading and writing ac-
cesses on encrypted data. The security of ORAM can
be described as follows.



A Tale of Two Trees: One Writes, and Other Reads 524

Definition 1. [55] Let
→
y= (opi, bidi, datai)i∈[n] denote

a sequence of accesses where opi ∈ {read,write}, bidi
is the identifier, and datai denotes the data being writ-
ten. For an ORAM scheme Σ, let AccessΣ(

→
y ) denote a

sequence of physical accesses pattern on encrypted data
produced by

→
y . We say: (a) The scheme Σ is secure if

for any two sequences of accesses →x and
→
y of the same

length, AccessΣ(→x ) and AccessΣ(
→
y ) are computationally

indistinguishable. (b) The scheme Σ is correct if it re-
turns on input

→
y data that is consistent with

→
y with

probability ≥ 1− negl(|
→
y |) i.e negligible in |

→
y |

Tree-based ORAM schemes. One strategy of de-
signing an ORAM scheme is to follow the tree paradigm
proposed by Shi et al. [54] and Stefanov et al. [55]. In
tree-based ORAM, the client encrypts their database
into N different encrypted data blocks and obliviously
stores those data blocks in a binary tree of height
dlog2(N)e. Each node in the tree is called a bucket, and
each bucket can contain up to Z blocks. The client also
maintains a position map, to indicate which path a data
block resides on. Finally, the client needs to have a stash
to store a path retrieved from the server.

Each access in both ORAM schemes requires two
operations: a ReadPath operation and an Evict opera-
tion. Intuitively, ReadPath takes as input the ORAM
block identifier, bid, accesses the position map, and re-
trieves the path that block bid resides onto the stash, S.
After performing ORAM access (i.e. read/write) on the
identified block, the block is assigned to a different path
and pushed back to the tree via the Evict operation. In
general, the Evict operation takes a stash and the as-
signed path as input, writes back blocks from stash to
the assigned path, and updates the position map.
Path-ORAM/Circuit-ORAM scheme. In this
work, we consider two popular tree-based constructions
of ORAM: Path-ORAM [55] and Circuit-ORAM [60].
While Path-ORAM offers simple ReadPath and
Evict operations, Circuit-ORAM offers a smaller
circuit complexity for the Evict procedure. Thus,
Circuit-ORAM is more efficient when imple-
mented with Intel SGX. As noted in [35, 53, 60],
Circuit-ORAM can operate with Z = 2 compared
to Z = 4 as in Path-ORAM; therefore, the server stor-
age overhead is significantly reduced. Moreover, the size
of stash in Circuit-ORAM is smaller compared to the
size of stash in Path-ORAM; this allows a more effi-
cient performance when scanning the stash as one needs
to scan the whole path and stash to avoid side-channel
leakage.

Recursive ORAM. In a non-recursive tree-based
ORAM setting, the client has to store a position map
of the size O(N) bits. This approach, however, is not
suitable for a resource-constrained client. Stefanov et.
al [55] presented a technique that reduces the size of
the position map to O(1). The main idea of those con-
structions is to store a position map as another ORAM
tree in the server, and the client only store the posi-
tion map of the new ORAM tree. The client recursely
stores the position map into another ORAM tree un-
til the size of the position map is small enough to be
saved on the client’s storage. One main drawback of
those constructions is the increased cost in the commu-
nication between a client and the server. In our setting,
this cost can be safely ignored because the communica-
tion between client and server becomes the I/O access
between TEE and the random access memory.

3.3 Blockchain

The Bitcoin blockchain is a distributed data structure
maintained by a network of nodes. On average of 10
minutes, the network outputs a block which is a combi-
nation of transactions and a block header. Each block
header contains relevant information about the Bitcoin
block such as Merkle root, nonce, network difficulty. The
Merkle root can be used to verify the membership of Bit-
coin transactions, and the nonce and difficulty are used
to check the proof of work. Each Bitcoin transaction
contains a set of inputs and outputs where transaction
inputs are unused outputs of previous transactions.
Unspent Transaction Output Database. In the
Bitcoin network, the balance of a Bitcoin address is
determined by the values of those outputs that have
not been used in other transactions. These outputs are
called Unspent Transaction Outputs (UTXO). More-
over, in the implementation of common Bitcoin nodes
such as Bitcoin core [2], Bitcoin nodes maintain a sepa-
rate database that keeps track of all unspent transaction
outputs and other metadata of the Bitcoin blockchain.
Therefore, we realize that if a full node can securely
update and maintain the integrity of the UTXO set via
while provides SPV clients with oblivious accesses to the
UTXO set, the privacy of the SPV client is preserved.
Bitcoin transaction types. In the Bitcoin, trans-
actions are classified based on the structure of the in-
put and output scripts. In particular, there are five
types of standard script templates which are Pay-to-
Pubkey (P2PK), Pay-to-PubkeyHash (P2PKH), Pay-to-
ScriptHash (P2SH), Multisig, and Nulldata. Intuitively,
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scripting in Bitcoin provides a way to prove the owner-
ship of the coins.

In this work, we only consider two types of trans-
actions: Pay-to-PubkeyHash (P2PKH) transaction and
Pay-to-ScriptHash (P2SH) transaction. According to
[26, 44], those two types of transactions made up of
97-99% of the UTXO set. Also, one can assume that the
Pay-to-Pubkey-Hash transaction is one variant of the
Pay-to-Script-Hash transaction because both transac-
tion types require the spender’s knowledge of the preim-
age of the hash digest before being able to spend those
outputs. For simplicity, from this point on, we assume
that the only information needed to obtain the unspent
output is the public key hash, pkh. All other transac-
tion types such as Multisig and P2PK can be easily
supported in the future.
Block creation interval. The block creation time in
Bitcoin is the time that the network takes to generate a
new block, and block creation time is specified to be 10
minutes on average by the network. We call the waiting
period between the most recent block and a new block,
block creation interval. In this work, we discretize time
as block creation intervals.
Deterministic Wallet. In Bitcoin, a deterministic
wallet [7] is a system that allows the creation of several
public addresses on-fly from a single seed. The main
idea of deterministic wallets is to generate an unlimited
number of addresses for a client to help mitigate the risk
of reusing addresses [1]. Thus, ideally, in Bitcoin, users
are expected to create a new address for each person
who is paying, and after receiving the coin, the address
should never be used again. Therefore, it is reasonable
to expect that the number of unspent outputs for each
address is one.
UTXO-based Blockchains. After the advent of Bit-
coin, the blockchain community has developed different
cryptocurrencies to address the shortcomings of Bitcoin.
While the employed underlying cryptographic primi-
tives are different, the transaction structure of those
cryptocurrencies follows the similar design paradigm as
in Bitcoin: Transactions are formed based on outputs of
previous transactions, and the creation of transactions
forms new unspent outputs, and the notion of balance
in these cryptocurrencies is determined by the values
of those unspent outputs. We called those UTXO-based
cryptocurrencies. Few examples of UTXO-based curren-
cies are Litecoin [11], Dash [6], and Zcash [51]. Thus, as
the design will become apparent in later sections, we
argue that the design of T 3 applies not only to Bitcoin
but also to other UTXO-based blockchains.

3.4 Threat Model

We assume that SPV clients are honest and rational
which means that before during the block creation in-
terval, an SPV client should not request the full node for
transaction outputs of the same public key hash more
than once.

The underlying remote attestation service provided
by TEE is assumed to be secure and trusted. The local
attestation between enclaves is secure. The full node
and its programs are assumed to be untrusted except
for programs running within an enclave.

We assume that the adversary who controls the op-
erating system can read/inject/modify encrypted mes-
sages sent by enclaves. The adversary also can observe
memory access patterns of both trusted and untrusted
memory. Also, the computation power of the adversary
is assumed to be limited. In particular, during the block
creation interval, the adversary should not have enough
computation power to forge a new Bitcoin block that
satisfies the current Bitcoin network difficulty. As the
time of writing, the network difficulty [4] is around
6 × 109; therefore, the expected number of hashes to
mine a Bitcoin block is roughly 272.

The full node’s attacks on availability are out of
scope. More specifically, denial of service (DoS) attacks
by system admin and untrusted operating system are
out of the scope. Otherwise, such adversaries can pre-
vent the enclaves from receiving new bitcoin block by
shutting down the communication channel between the
enclave and the Bitcoin network as the enclave has to
rely on the untrusted OS to perform system calls such
as file and network I/O. On the other hand, for DoS
attacks from the client, we will outline possible DoS at-
tacks and offer solutions to mitigate them in Section 6.

4 Proposed System
In this section, we describe how T 3 stores the UTXO
set by exploring different mappings between the un-
spent transaction outputs and the ORAM blocks. Next,
we demonstrate how Intel SGX can be considered as
a trusted execution unit to access ORAM and perform
read/write operations in an oblivious manner. Finally,
we will describe how the system handles clients’ requests
during a write operation.
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4.1 Storage Structure of the UTXO set

In this part, we show how UTXO set is stored in the
ORAM tree.

4.1.1 Bitcoin unspent transaction output mapping

In the design of T 3, the SPV clients only know his/her
addresses (i.e., the public key hashes); therefore, to re-
turn the outputs belonging to the client’s address, TEE
needs to know the mapping between the address and
the ORAM block identification.

In this work, we propose two secure mappings to
store unspent outputs in the ORAM tree as naive map-
ping may lead to attacks on the system. Both ap-
proaches use standard pseudorandom function (PRF)
along with a secret key generated by the enclave. The
first approach is to map a single Bitcoin address into
a single ORAM block, and the second approach is to
map a Bitcoin address into multiple ORAM blocks. We
will later explain the trade-off between these two ap-
proaches.
Single address into single ORAM block. In this
design, during the initialization, we require the program
inside the enclave to use a PRF to map the public key
hash to ORAM block identification. The secret key of
the PRF is generated inside the enclave; thus, the map-
ping is known only to the SGX. We define the mapping
as follow:
– bid← OBlockMap(pkh, kb): the function takes as in-

put a 20-bytes hash digest pkh and a secret key
kb, it outputs the block identification number bid ∈
{0, . . . , N − 1}.
The PRF approach offers some flexibility when de-

ciding the size of an ORAM blocks and the size of height
of the ORAM tree. These two factors affect the size
of the position map (resp. number of recursive levels)
for non-recursive (resp. recursive) ORAM constructions.
However, since the output domain of OBlockMap(·, ·) is
limited to the size of the ORAM blocks, there will ex-
ist collisions. The following claim gives us a loose upper
bound on the number of addresses that should be stored
inside an ORAM block.

Enclave

pkh

kb

OBlockMap() ORAM bid

Fig. 2. Single address into Single ORAM block.

Lemma 1. (Addresses per ORAM block) Let m be the
number of public key hashes, N be the number of ORAM
blocks. If the OBlockMap() acts as a truly random func-
tion, then the maximum number of addresses in each
ORAM block is smaller than e ·m/N with a probability
1− 1/N .

Proof. This is a standard max-load analysis. We refer
readers to [25] for detailed analysis. We note that there
exists a tighter bound, but we use e · m/N bounds to
simplify the equation.

The second approach of Figure 2 gives us a high level
overview of this approach.
Single address into many ORAM blocks. Map-
ping a single address into a single ORAM block incurs
less work on the full node as it requires a single ORAM
access for an address. However, if one wants to allow
each address to have more than one output, using the
first approach implies that the storage overhead will in-
crease linearly. Thus, we need a different mapping with-
out linear increasing in storage overhead. To fix this
shortcoming, the system needs to assign unspent out-
puts into ORAM block uniformly. One method is to
allow a client to specify the number of ORAM accesses
to obtain all of its unspent outputs as long as the num-
ber of requests does not exceed certain threshold. We
define the mapping as follows:
– {bidi}i∈{0,...,δ−1} ← OBlockMap(pkh, kb, δ): the

function takes as input a 20-bytes hash digest pkh, a
secret key kb, and a number δ where the maximum
value of δ is specified by the system. It outputs a set
of block identification numbers {bidi}i∈{0,...,δ−1} ⊆
{0, . . . , N − 1}.

This approach also introduces some leakage as some ad-
dresses may contain more unspent outputs than oth-
ers. Alternatively, the system can fix the value of δ
ORAM accesses for all addresses with the expense of
performance (i.e., one address incurs constant ORAM
accesses). Similarly, the storage overhead of T 3 can be
computed using the following claim:

Lemma 2. (UTXO per ORAM block) Let m be the
number of unspent outputs, N be the number of ORAM
blocks. If the OBlockMap acts as a truly random func-
tion, then the maximum number of outputs in each
ORAM block is smaller than e · m/N with probability
at least 1− 1/N

The proof is identical to proof of lemma 1. Figure 3
offers an overview of the both approaches.
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kb

OBlockMap()
ORAM bid

δ = 2 ORAM bid
pkh

Enclave
kb

OBlockMap()
ORAM bid
ORAM bid

δ = 2max = 3

Fig. 3. Single Address into One/Many ORAM block(s). One ap-
proach allows the SPV client to specify the number of ORAM
accesses with a maximum threshold. The other approach maps
single address into a constant number of ORAM access

4.1.2 Storage

In this system, we require the untrusted full node to
store three separate databases which are the read-once
ORAM tree, the original ORAM tree, and the block-
header chain. In particular, Read-Once ORAM Tree
serves as a dedicated storage to handle clients’ requests.
The structure of the tree is identical to the standard
ORAM tree. Original ORAM Tree is where all stan-
dard ORAM eviction operations are performed. In this
work, we also require the enclave to maintain the Bit-
coin Header Chain to verify the proof of work of the
bitcoin block sent by other bitcoin clients. The header
chain is stored in the untrusted memory with an in-
tegrity check.

4.2 Oblivious Read and Write Protocols

In T 3, the SPV client is the party who invokes read ac-
cesses, and the Bitcoin network is the party who invokes
write accesses. The TEE in the full node is the one that
performs both of those accesses on behalf of the client
and the Bitcoin network.

4.2.1 Full Node’s System Components

Before explaining how oblivious read and write accesses
work, we first start outlining the different components
of our design. The full node is initialized with different
enclaves: Managing Enclave Em coordinates other
enclaves and to handle requests from the clients. The
managing enclave also handles the communication with
other Bitcoin client or local Bitcoin client (bitcoind) via
request procedure calls (RPC) to obtain Bitcoin blocks.
Upon receiving the Bitcoin block, the managing enclave
also verifies the integrity of the block using a separated
header chain. Reading Enclave Er is a dedicated en-
clave initialized by the managing enclave. It has a copy
of ORAM position map and its own stash. The reading
enclave operates on the read-once ORAM tree. Also, the
reading enclave only performs ORAM ReadPath opera-

Read-once	ORAM Original	ORAM

R-Enclave R-Enclave W-Enclave

Evict	Queue

SPV
Clients

1

2

3

5

6

Managing	Enclave

Secure	Channel

#Read	Steps

4

Fig. 4. The read protocol. Steps 1 - 5 describes how T 3 receives
and responds to the client, and for each request, the writing en-
clave performs the Eviction procedure of ORAM on the original
ORAM tree during step 6 .

tions to obtain data while ORAM Eviction operations
will be handled by the writing enclave. Writing En-
clave Ew performs Eviction procedure for each read
request, and performs ORAM writing accesses when a
new Bitcoin block arrives from the Bitcoin network.

4.2.2 Oblivious read-once Protocol

In this part, we describe how a remote client can per-
form a read access on the UTXO set.
Notation. First, let’s denote Kb to be the block
mapping key, bid to be the ORAM block identification.
We let (Enc,Dec) denote an authenticated encryption
scheme. We assume that the the full node has already
been initialized with a writing enclave, Ew and a man-
aging enclave, Em. The managing enclave has a similar
copy of the position map as the map in the writing en-
clave. Figure 4 presents the oblivious read protocol of
T 3. The oblivious read protocol can be described as fol-
lows:

1. The client establishes a secure channel 2

with the managing enclave 1 : First, the client per-
forms a remote attestation with the secure managing
enclave, Em, and agrees on a session key, Ks. The client
encrypts his address along with the proof of ownership
of that address, and sends the encrypted query to the
full node to be passed to Em. For simplicity, we assume

2 The standard instantiation of a secure channel is using
SSL/TLS channel
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that the plaintext only contains a public key hash, pkh,
that the client is interested in, and the proof of own-
ership of the pkh is φ, C ← EncKs

(pkh, φ). Note that
there are different ways to prove the ownership of pub-
lic key hash/addresses. In Bitcoin, if the public key is
never revealed before, the proof of ownership can simply
be the public key (i.e. φ = pk such that H(pk) = pkh).
Alternatively, the system can enforce a client to provide
the signature and the public key to prove the ownership
of the public key hash.

2. The managing enclave initializes a reading
enclave 2 : after receiving a client’s request, Em ini-
tializes a dedicated reading enclave, Er to handle the
client’s future requests. Also, we require that the en-
claves authenticate each other, and the existence of a
secure channel between enclaves. Moreover, the reading
enclave has its copy of the position map, its own stash,
the block mapping key Kb, and the agreed session key
Ks.

3. The managing enclave identifies and for-
wards ORAM Block ID to both reading and
writing enclaves 2 : After decrypting the ciphertext
(pkh, φ) ← DecKs

(C), Em verifies the proof φ and pkh,
then uses OBlockMap(·, ·) 3 function to learn the ORAM
block ID, bid ← OBlockMap(pkh,Kb) where Kb is the
secret key generated by the enclave during initializa-
tion for mapping purposes. After obtaining the ORAM
id, bid, the managing enclave forwards bid to the writ-
ing enclave for the eviction procedure, and forwards the
(pkh, bid) to the reading enclave.

4. The reading enclave performs read-once
ORAM access on the read-once ORAM tree 3 :
Based on the given bid, the reading enclave performs
ORAM read only accesses on the ORAM tree to obtain
the block. If the block contains the unspent output that
belongs to the public key pkh, the reading enclave adds
outputs into the response R. To mitigate the size leak-
age, the response R is padded with dummy data if there
is no UTXO found.

5. The reading enclave responds to the
Client 4 - 5 : The enclave encrypts the response, R,
using the session key Ks then sends it to the client.

6. The writing enclave performs the eviction
procedure on the original ORAM tree 6 : After
obtaining the bid from themanaging enclave, the update
enclave will perform a standard ORAM read accesses on
the original ORAM tree. The goal of this procedure is

3 for simplicity, we assume that the one-to-one mapping is used
here

Read-once	ORAM	 Original	ORAM

R-Enclave R-Enclave W-Enclave
6
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3

5
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Secure	Channel
Unsecure	Channel

#Update	Steps
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Managing	Enclave

Bitcoin	Block
Header	DatabaseWrite	Queue
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4

Fig. 5. Oblivious write protocol. During steps 1 - 5 , the manag-
ing enclave receives and responds to SPV client request as usual.
During steps 6 - 8 , read requests from clients are queued up,
and the managing enclave resume these requests after updating
the read-once ORAM tree.

to use the Eviction procedure inside standard ORAM op-
eration to rerandomize the location of the actual block.
No actual data is return in this step.

4.2.3 Oblivious Write Protocol

We explain how T 3 handles oblivious write accesses
while handling clients’ requests as follow:

1. The managing enclave verifies a new Bit-
coin block 1 - 3 : Once a bitcoin block arrives to the
system from the Bitcoin network, the managing enclave
Em can obtain it from the Bitcoin client. The enclave
needs to verify the integrity of the new block by com-
puting the Merkle root and verifying the proof of work
to make sure that the block has not been tampered by
the untrusted OS. For the detail of these computations,
we refer readers to [3]. Moreover, as discussed in sec-
tion 4.1, to verify a newly arrived block, the system is
required to keep a separate block headers chain with in-
tegrity check in the untrusted memory. Once Em verifies
the bitcoin block, Em starts pruning the transactions to
obtain relevant information of the transactions’ inputs
and outputs. Then, Em uses OBlockMap(·, ·) to find the
ORAM block identification to queue up ORAM write
requests to the writing enclave. During this process, the
oblivious read protocol performs as normal on the read-
once ORAM tree.

2. The managing enclave sends write re-
quests to the writing enclave 4 : Once the prun-
ing process completes, the Em starts sending write re-
quests based on data extracted from the bitcoin block to
the writing enclave, Ew. On otherhand, for each eviction
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request resulted from SPV client’s requests, Em starts
queuing up those eviction requests.

3. The writing enclave performs write ac-
cesses on the original ORAM tree 4 - 5 : Upon
receiving writing requests from Em, the Ew performs all
writing requests in the writing queue on the original
ORAM tree.

4. The writing enclave finishes all eviction re-
quests queued up on the original ORAM tree 6 -
7 : Once finished updating the tree, the Ew signals Em
to start queuing up clients’ requests and performs all
eviction requests incurred by SPV clients’ read requests
during update interval. Finally, when it finishes, it sig-
nals the Em to update the read-once ORAM tree and
make a copy of the position map.

5. The managing enclave performs an up-
date the read-once ORAM tree and the origi-
nal ORAM tree and enclave metadata 8 : In par-
ticular, Em discards the current copy of the read-once
ORAM tree, and makes 2 identical copies of the most
updated original ORAM tree. One is used as read-once
ORAM tree, and the other is used as original ORAM
tree. Also, the new position map and new stash are up-
dated for the managing enclave. Once this process is fin-
ished, Em starts answering SPV clients’ requests again.
Figure 5 gives us an overview of the oblivious write pro-
tocol.

5 Evaluation and Comparison
In this section, we describe our configuration, our exper-
imental results, and the storage overhead of the system
based on the analysis of the UTXO set on the Bitcoin
blockchain. Moreover, we give a comparison between T 3

and the current existing SPV solution in term of per-
formance and communication overhead. Finally, we ad-
dress the capabilities of T 3 compared to other related
works.

5.1 Configuration

Software. We implemented our system with C++ us-
ing Intel SGX SDK v2.1.3. The implementation of the
ORAM controller is built on top the Zerotrace [53] imple-
mentation. In order to handle the communication with
the Bitcoin network, we have used libjson-rpc-cpp [9]
framework to build C++ wrapper functions to commu-
nicate with the Bitcoin daemon (bitcoind [2]) from in-
side the enclave through JSON-RPC calls. For extract-

ing the UTXO database, we used the bitcoin-tool im-
plementation proposed in [26]. This allows us to save
time during the initialization phase. Finally, we used
python-bitcoinlib [12] to compare the performance of
T 3 with the current existing SPV solution.
Database. To reduce the time of initializing
both ORAM trees from the genesis block, we used
bitcoin-tool implementation proposed in [26] to ex-
tract the Bitcoin UTXO set in February 2019. We have
downloaded a snapshot of the Bitcoin blockchain includ-
ing block 0 to 551, 731, containing a total of 58, 156, 895
Unspent Transaction Outputs (UTXO). Figure 6 shows
the distribution of the unspent transaction outputs per
address. Despite the Bitcoin community’s suggestion [1]
against the address reuse, we find that more than 7%
of the addresses have more than 2 UTXOs. However,
to give one the benefit of doubt, we considered at most
two UTXOs per wallet ID. This results in covering more
than 92% of all the UTXOs per wallet ID. Also, as dis-
cussed in section 4, by using different mapping, one can
cover more percentage of Bitcoin addresses.
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Fig. 6. Number of transactions per wallet ID. By allowing each
address can have up to 2 UTXO, T 3 can cover approximate 92%
of the UTXO set.

Hardware. We evaluated the performance of T 3 on a
desktop which is equipped with Intel(R) Xeon(R) Sil-
ver 4116 CPU @ 2.10GHz, 128GB RAM. Since Intel(R)
Xeon(R) silver 4116 is not SGX-enabled CPU, we obtain
the performance results by running our implementation
in the simulation mode. However, we expect to not have
much of a performance difference when executing in the
two different modes. More specifically, we have tested
the performance of T 3 using a smaller ORAM tree in the
hardware mode on a commodity desktop equipped with
SGX-enabled Intel Core i7. Comparing the hardware
and simulation mode results (i.e., simulation on the In-
tel Core i7 CPU), we see no noticeable difference in the
running time of both read-once and standard ORAM
accesses.
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T 3 (Path-ORAM, Z = 4) T 3 (Circuit-ORAM, Z = 2)
N Block Size read-once Access Standard ORAM access read-once Access Standard ORAM access

220 6528 bytes (96 utxos) 16.34 ms 30.40 ms 2.13 ms 6.45 ms
221 3264 bytes (48 utxos) 9.24 ms 16.58 ms 1.27 ms 3.76 ms
222 2176 bytes (32 utxos) 7.56 ms 12.42 ms 1.05 ms 2.92 ms
223 1088 bytes (16 utxos) 4.12 ms 7.78 ms 0.72 ms 2.09 ms
224 544 bytes (8 utxos) 2.43 ms 5.89 ms 0.64 ms 1.70 ms

Table 1. Performance of two different types of Path/Circuit-ORAM accesses on different block size.

5.2 Experimental Results

We have implemented the proof of concept of T 3 using
multiple threads. As reported in [32, 56], as long as the
total amount of memory used by all threads does not
exceed the EPC limit, the performance gain should be
similar to the use of different enclaves. In this work,
we implemented all functionalities in one single enclave,
and we used multiple threads to concurrently accesses
the ORAM trees.
System parameters We tested our system
with both recursive Path-ORAM and recursive
Circuit-ORAM using different tree size N =
220, 221, 222, 223, 224. We allow each Bitcoin address to
have up to 2 unspent transaction outputs, and we use
the single address into single ORAM block mapping ap-
proach described in section 4.1 to map addresses into
ORAM block. Finally, we use claim 1 to determine the
size of each ORAM block.
Performance of read-once and standard ORAM
accesses. In T 3, the reading enclave performs read-
once accesses to handle client’s requests in an efficient
manner. Table 1 presents an overall performance of
a standard ORAM access as well as the performance
of a read-once access for both Circuit-ORAM and
Path-ORAM. For this experiment, we took the aver-
age running time of 10000 accesses.

As shown in the results, ORAM constructions with
smaller block sizes provide a better performance in both
schemes. The reason is that oblivious operations like
oblivious comparisons and cmov-based stash scan are
more efficient because of a smaller size stash. Moreover,
Circuit-ORAM gives a better performance compared
to Path-ORAM, as it can operate on a smaller block
compared to Path-ORAM, and this requires much
smaller stash size allowing much faster oblivious exe-
cution.
Parallelization. Since there is no race condition in
read-once accesses, the design of T 3 allows different
threads to concurrently perform read-once accesses on
the read-once ORAM tree. Compared to other oblivi-
ous system like Bite [53], T 3 is able to handle bursty

T 3 (Path-ORAM) T 3 (Circuit-ORAM)Number of threads
1 2.43 ms 0.64 ms
2 1.40 ms 0.58 ms
3 0.90 ms 0.43 ms
4 0.73 ms 0.35 ms

Table 2. Performance gain of multiple-thread read-once access on
Path/Circuit-ORAM with N = 224 block size = 544 bytes.

client read requests concurrently while the eviction re-
quests are distributed sequentially during the block cre-
ation interval. To measure this performance gain, we
used multiple threads to access the read-once enclave
and perform read-once access simultaneously on a tree
of size N = 224 and ORAM block of size 544 bytes.
Table 2 shows the performance of T 3 implemented
using multiple threads for both Circuit-ORAM and
Path-ORAM.
Comparison to current SPV solutions. We give a
comparison in term of performance and communication
overhead over several number of requests to the exist-
ing SPV client’s solution and to BITE [43] Oblivious
database.

1. Performance: Figure 7 gives us an overview of
the performance of T 3 compared to the performance of
the current existing SPV with Bloom filter solution and
the performance of BITE Oblivious database. In par-
ticular, it shows the response latency from the client’s
perspective. In this comparison, a request for the SPV
solution with Bloom filter solution means the time the
full node takes to scan one Bitcoin block, and a re-
quest for T 3 and BITE means the time it takes to per-
form an ORAM access on the ORAM tree. For T 3, we
used N = 224 and block of size 544 bytes for both
Path-ORAM with Z = 4 and Circuit-ORAM with
Z = 2. For BITE database, based on our understand-
ing of their construction, we re-implemented BITE us-
ing non-recursive construction of Path-ORAM, and we
used the same ORAM block of size 32kB which leads to
the number of block is N = 217. Also, we also provide an
additional construction of BITE which is implemented
using recursive Path-ORAM and suggested parameters



A Tale of Two Trees: One Writes, and Other Reads 531

0 20 40 60 80 100 120 140 160

Number of requests

100

101

102

103

104

R
u

n
n

in
g

T
im

e
(m

s)
in

lo
g

sc
al

e

T 3 (Recursive PathORAM), Z = 4, N = 224

T 3 (Recursive CircuitORAM), Z = 2, N = 224

BITE (Path ORAM), Z = 4, N = 217

Improved BITE (Recursive PathORAM), Z = 4, N = 224

SPV with Bloom Filter FPR = 1%

SPV with Bloom Filter FPR = 5%

Fig. 7. Performance of T 3 using Path/Cicruit ORAM with
block of size 544B, the current SPV with Bloom filter, Original
BITE oblivious database block of size 32kB, and improved BITE
with block of size 544B. For the SPV client with Bloom filter, we
used the false positive rate of 1% and 5%.

for T 3 where the tree is of size 224 and block of size
544B. Figure 7 gives us the overall performance of three
existing solutions.
The performance of T 3 is better than the performance
of the SPV with Bloom filter solution because T 3 does
not to recompute the Merkle path again for each trans-
action as well as to use Bloom filter to scan the block.
Also, T 3 outperforms BITE oblivious database as the
BITE system does not consider the use of recursive
ORAM construction. Another reason is that the size
of the ORAM block used in BITE is large; hence, the
cost of oblivious operation like cmov-based stash scan
becomes more expensive. Thus, we envision and realize
an improved construction of BITE using recursive con-
struction of Path-ORAM to demonstrate the practical
impact of using recursive ORAM construction on TEE
with restricted memories.

2. Communication Overhead: In term of communi-
cation between client and full node, T 3 offers much lower
communication overhead compared to the existing so-
lution for SPV clients. T 3 does not need to provide the
SPV clients with the Merkle proofs to its relevant trans-
actions because all those proofs are validated by the In-
tel SGX before being added the ORAM tree. Also, due
to the false positive rate used in the Bloom filter, the
traditional full node will send additional irrelevant infor-
mation to the SPV client. Figure 8 shows an overview of
the communication cost of T 3 compared to the current
solution. To give an estimation of the communication
cost of the current SPV solution, we assumed that each
request requires a separate Merkle proof. Moreover, we
set the size of the transaction data is approximately
fpr · BlockSize bytes where the fpr is the false positive
rate and the BlockSize is the size of the Bitcoin block.
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Fig. 8. Communication cost of T 3 and the current SPV solution.
Since both systems return the information of unspent outputs to
the client, the communication overhead of BITE will be equal to
the communication overhead of T 3.

To obtain estiation, we used block 551731 that has the
block size of 1149 KB and contains 3017 transactions.
In practice, we would expect the Bitcoin blocks to have
different sizes which results the communication cost to
be different across blocks. Therefore, the results in fig. 8
is only a pessimistic estimation on the communication
overhead using the current SPV solution. We omit the
comparison to the communication overhead of BITE be-
cause both T 3 and BITE return a fixed amount a data
to the SPV clients.
Storage Overhead As noted in the previous section,
using ORAM incurs a constant size blow up of the stor-
age of the UTXOs (e.g., ≈ 4× for Circuit-ORAM,
6-8× for Path-ORAM). In particular, for Path-ORAM
with Z = 4, the storage cost of ORAM trees is about
≈ 51GB, and for Circuit-ORAM with Z = 2, the stor-
age cost of two ORAM tree is around ≈ 26GB. For in-
tegrity protection, T 3 only requires the full node to store
the Bitcoin header chain with integrity check which is
approximately 44MB in the untrusted region.

5.3 Comparison with Other Oblivious
Systems

We compare T 3 with Bite [43] Oblivious Database
that also uses ORAM and TEE to provide a generic
PIR system for Bitcoin client, ConcurORAM [19]
that provides concurrency access to ORAM clients,
Obliviate [14] that prevents leakage from file system
accesses, and ZeroTrace that proposes an efficient
generic oblivious memory access primitives. section 5.3
compares those systems based on the capabilities of sup-
porting concurrency access, enabling recursive construc-
tion, and preventing side-channel leakage.

For generic trusted hardware-based systems like
Bite oblivious database and Obliviate, while provid-
ing protection against side-channel leakage, those sys-



A Tale of Two Trees: One Writes, and Other Reads 532

Capabilities

System Concurrency Recursive Construction Side-channel Protection

ConcurORAM [19] 3 7 - a

Obliviate [14] 7 7 3

Zerotrace [53] 7 3 3

Bite Oblivious Database [43] 7 7 3

T 3 3 3 3

a ConcurORAM does not aim to provide side-channel protec-
tion for TEE. Hence, we omit this comparison.
Table 3. Comparison between T 3 and other oblivious systems.

tems do not consider the use of recursive ORAM con-
struction to reduce the EPC memory usage. Hence,
the performance of those systems will degrade once
the database becomes too large. Other works that har-
nesses the use of recursive ORAM construction are Ze-
rotrace; however, concurrency is not supported in the
current version of Zerotrace. ConcurORAM is a re-
cent ORAM construction that offers concurrency ac-
cesses from the clients; however, due to more optimized
eviction strategy and complex synchronization sched-
ule, the recursive construction of ConcurORAM in-
troduces implementation challenges.

6 System Analysis

6.1 Security Claims

In order to prove the security properties of T 3’s design,
we put forth six claims, each of which represents the
security of a major component of T 3 in term of privacy
goal.
Claim 1. The managing enclave does not leak
user-related information to an attacker. The
managing enclave is responsible for three tasks — (a)
converting wallet IDs to UTXOs, (b) creating and man-
aging threads which will perform read operations on the
read-once ORAM tree, and (c) handle the updates to
be performed on the original ORAM tree. Firstly, the
conversion of wallet IDs to their respective UTXOs is
private since the channel between clients and the man-
aging enclave is secured by the shared key during the
remote attestation process. When receiving addresses
from a client, the managing enclave uses blockmapping
function (described in 4.1.1) to map each address to a
fixed number of ORAM blocks. This does not reveal in-
formation about the number of outputs belonging to an
address. Secondly, each read thread performs the same
operations irrespective of the wallet ID provided to it,
i.e., each thread simply retrieves an ORAM block using
ORAM accesses implemented with cmov-based oblivi-

ous executions. Lastly, the only thing revealed by the
update process of T 3 is the number of blocks updated
into the Write Tree. However, this is public information
and T 3 does not try to hide it. Each update is performed
using an ORAM access which ensures that the attacker
is unaware of the final position of each block.
Claim 2. The optimized read operations on read-
once ORAM tree do not leak information. As
explained in section 4.2.2, the read-once ORAM tree
is accessed using an optimized read operation which
chooses not to shuffle and write-back the retrieved path
to the read-once ORAM tree. However, as suggested by
the Bitcoin protocol and the analysis of the UTXO set
shown in section 5.1, a majority of the addresses are gen-
erated once only to receive new output from the sender.
Thus, the read operations are secure as each path cor-
responding to a UTXO should only be accessed once
during a read interval and will be shuffled before the
next interval. On the other hand, the leakage happens
only when the client queries the same address again;
however, the client does not need to request again as
there are no new transactions for the next block cre-
ation interval.
Claim 3. The write operations performed on the
original ORAM tree do not leak information.
There are two specific operations performed on the orig-
inal ORAM tree— (a) the UTXOs are updated based
on the updated bitcoin block, and (b) the previously ac-
cessed ORAM blocks are shuffled. However, all of these
updating accesses are standard ORAM operations im-
plemented in a side-channel-resistant manners as previ-
ously done by [14, 53]. Therefore, all write operations
reveal no information about a user’s UTXO.
Claim 4. The data fetched from the untrusted
world to the TEE is correct. There are two major
sources of data transferred from the untrusted to the
trusted world — (a) the updated block fetched from the
Bitcoin daemon after a fixed interval and (b) the ORAM
tree blocks which are fetched from the untrusted world
into the TEE. As mentioned in 4.2.3, Bitcoin blocks are
fetched from outside the enclave. However, T 3 verifies
the integrity of the Bitcoin block based on the proof of
work and the header chain, and since the cost of produc-
ing a valid block is expensive, we argue that T 3 should
be able to obtain valid block from the Bitcoin network.
Also, T 3 maintains a Merkle Hash Tree (MHT) of the
ORAM trees and therefore prevents malicious tamper-
ing by verifying all encrypted data fetched from the un-
trusted memory using the MHT.
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Claim 5. The multiple threads involved do not
create synchronization issues. It is worth-noting
that multiple threads are only involved while accessing
the Read Tree of T 3. Thanks to the optimized read op-
eration, T 3 does not run into synchronization bugs since
there is no memory region that could be simultaneously
written to by more than one thread. In particular, each
thread shares the position map but only reads from the
position map. Each thread contains its own stash mem-
ory which is written to separately by each thread.
Claim 6. The memory interactions within the
enclave are side-channel-resistant. The design
of T 3 incorporates defenses against the side-channel
threats [39, 40, 62] plaguing Intel SGX. In particular,
we used ORAM operations to hide all data access pat-
terns on the untrusted memory region, and we incorpo-
rated similar oblivious operation techniques introduced
in [14, 49, 53] to prevent operations inside the enclave
from leaking sensitive information. Finally, the imple-
mentation of T 3 is also secure against branch-prediction
attacks since each individual operation (e.g., accessing
Read Tree, updating Write Tree etc.) takes the same se-
quence of branches and therefore reveals no information
to the attacker, from the accessed branches.

6.2 Other Goals Achieved by T 3

In this subsection, in addition to the Privacy goal de-
scribe in section 6.1, we explain how T 3 achieves the
other goals mentioned in subsection 2.2.
Validity. Under the assumption that the adversary
does not have enough computational power to form a
new Bitcoin block, the system will only obtain valid
transaction by verifying the Merkle root and the proof
of work of the Bitcoin block.
Completeness. By offering different ways of mapping
between Bitcoin addresses and ORAM block id, we can
offer services to 92− 96% of all clients with some trade-
off between storage overhead and performance.
Efficiency. First, our system is able to handle bursty
requests from client concurrently because of the two-tree
design. Second, we minimize the downtime of the system
by having the writing enclave performed updates on one
tree and reading enclave handled clients’ requests on the
other tree. The full node’s downtime now depends on the
number of requests that the system receives when the
writing enclave performs ORAM updates on the origi-
nal ORAM tree. Finally, by enforcing clients to provide
the proof of ownership of the address, we prevent other
clients from querying addresses that do not belong to

them; hence, we reduce the number of redundant re-
quests from the clients.

6.3 Other attacks and Countermeasures

Denial of Service Attacks from Malicious
Clients. While the design of T 3 is practical, a mali-
cious client can still incur a large processing time on the
full node by creating lots of addresses and sending large
number of requests for those requests. One way to miti-
gate such attack is to apply fees on users of the service.
Another approach to mitigate denial of service attack
is to use a cuckoo filter [29] to load and delete unspent
addresses from the UTXO set upon update. Upon re-
ceiving requests from client, the managing enclave can
verify if the address matches the filter as well as the
proof of ownership of that address before performing
ORAM accesses.
Spectre and Related Attacks [38, 42]. T 3 can
employ any TEE which is vulnerable to digital side-
channels (i.e., access pattern-inference attacks such as
page table, cache, branch prediction, etc.) but is secure
against micro-architectural defects (i.e., reading mem-
ory contents directly from the TEE). Speculative execu-
tion attacks, which fall into the micro-architectural de-
fects category, is a concern; however, Intel has recently
released hardware patches to address those. Therefore,
T 3 can be effectively used alongside patched processors
to provide SPV client protections against digital side-
channel attacks.

7 Related Work

General SGX Systems. Haven [16] is a pioneer-
ing work on SGX computing enabling native applica-
tion SGX porting on windows. Graphene [20] provides
a linux-based LibOS for SGX programs. Ryoan [36]
retrofits Native Client to provide sandboxing mecha-
nisms for Intel SGX. Eleos [47] provides a user-space
extension of enclave memory using custom encryption.
T 3 uses some concepts from Eleos especially in the way
we store the ORAM tree using custom encryption out-
side the SGX enclave.
SGX Side-channels. There are three main memory-
based side-channel vulnerabilities disclosed within In-
tel SGX, namely, page table-based attacks [62], cache-
based attacks [18], and branch-prediction attacks [39].
Furthermore, since SGX relies on the untrusted OS for
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system-call handling, it is also vulnerable to IAGO at-
tacks [21]. Leaky Cauldron [59] presents an overview of
the possible attack vectors against SGX programs. T 3 is
secure against all disclosed memory-based side-channels
since it uses oblivious RAM (ORAM) to protect the
access-patterns. Furthermore, T 3 uses oblivious mem-
ory primitives to secure the runtime ORAM operations
as well as its library.
Oblivious Systems. Raccoon [49] provided a tech-
nique to protect a small part of a user program against
all digital side-channels. Obliviate [14] and Zero-
Trace [53] used ORAM-based operations to protect
files and data arrays respectively inside Intel SGX.
Thang Hoang et al. [35] proposed a combination of TEE
and ORAM to design oblivious search and update plat-
form for large dataset. Eskandarian et al. [28] lever-
aged Intel SGX and Path ORAM to propose oblivious
SQL database management system. ConsenSGX [52]
also used TEE and ORAM to address the scalability
problem in the Tor network by allowing Tor client to
obliviously fetch parts of the network view from the
server for path selection.

Recently, Chakraborti et al. proposed a new paral-
lel ORAM scheme called ConcurORAM [19]. ConcurO-
RAM also uses two-tree structure to propose a non-
blocking eviction procedure, and the system periodi-
cally synchronizes two trees to maintain the privacy
of the user’s access pattern. However, ConcurORAM
cannot be trivially extended to a recursive ORAM con-
struction because of concurrent data structure accesses.
Nevertheless, if ConcurORAM can be implemented into
a recursive ORAM construction, we believe that Con-
curORAM can be an interesting alternate solution for
the ORAM scheme used in the design of T 3. Another
parallel ORAM construction is TaoStore [50]. TaoStore
assumes a trusted proxy that handles concurrent client’s
requests. However, similar to ConcurORAM, the imple-
mentation of TaoStore is limited to the non-recursive
construction of Path ORAM.
TEE for Cryptocurrencies. Obscuro [57] is a Bit-
coin transaction mixer implemented in Intel SGX that
addresses the linkability issue of Bitcoin transactions.
Teechan [41] is an off-chain payment micropayment
channel that harnesses TEE to increase transaction
throughput of Bitcoin. Bentov et al. [17] proposed a new
design that uses Intel SGX to build a real-time cryp-
tocurrency exchange. Another example is the Town-
crier system [63] that uses TEE for securely transfer-
ring data to smart contract. Another prominent exam-
ple is Ekiden [22] which proposed off-chain smart con-

tract execution using TEE. Finally, ZLite [61] system
uses ORAM and TEE to provide SPV clients with obliv-
ious access. However, similar to BITE, ZLite employed
non-recursive Path-ORAM as it is, and thus, the scal-
ability and efficiency of the system is inherently limited.

8 Conclusion
In this paper, we developed a system design that sup-
ports an efficient oblivious search on unspent trans-
action outputs for Bitcoin SPV clients while securely
maintains the state of the Bitcoin UTXO set via an
oblivious update protocol. Our design leverages the
TEE capabilities of Intel SGX to provide strong pri-
vacy and security guarantees to Bitcoin SPV client even
with the presence of a potentially malicious full node.
Moreover, by putting reasonable assumptions on the ac-
cessing frequency of the SPV clients, we present differ-
ent optimizations in standard tree-based ORAM con-
struction that offers both privacy and efficiency to the
clients. We showed that the prototype of the system is
much more efficient than the use of standard ORAM
and TEE construction as it is. Also, our implementa-
tion shows one order of magnitude performance gain
when combining recursive ORAM construction the cur-
rent existing construction to stress the importance of
using recursive ORAM construction in TEE with re-
stricted memory.

Finally, while the applicability of T 3 in cryptocur-
rencies beyond Bitcoin is apparent, we believe our work
will motivate further research on oblivious memory
with the restricted access patterns and other complex
blockchains (i.e. Ethereum) that maintain much bigger
state than the UTXO state.
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