
Proceedings on Privacy Enhancing Technologies ; 2020 (3):175–203

Thien-Nam Dinh*, Florentin Rochet*, Olivier Pereira, and Dan S. Wallach

Scaling Up Anonymous Communication with
Efficient Nanopayment Channels
Abstract: Tor, the most widely used and well-studied
traffic anonymization network in the world, suffers from
limitations in its network diversity and performance.
We propose to mitigate both problems simultaneously
through the introduction of a premium bandwidth mar-
ket between clients and relays. To this end, we present
moneTor: incentivizing nodes to join and support Tor by
giving them anonymous payments from Tor users. Our
approach uses efficient cryptographic nanopayments de-
livered alongside regular Tor traffic. Our approach also
gives a degree of centralized control, allowing Tor’s man-
agers to shape the economy created by these payments.
In this paper, we present a novel payment algorithm as
well as a data-driven simulation and evaluation of its
costs and benefits. The results show that moneTor is
both feasible and flexible, offering upwards of 100% im-
provements in differentiated bandwidth for paying users
with near-optimal throughput and latency overheads.

Keywords: Tor, cryptocurrency, payment channels

DOI 10.2478/popets-2020-0048
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
Anonymous traffic routing through Tor remains one of
the most popular low-latency methods for censorship
evasion and privacy protection [1]. In this setup, clients
protect both their TCP/IP metadata and content by
routing their traffic through an onion-encrypted path
with three randomly selected volunteer relay nodes, re-
ferred to as a circuit. The Tor network presently con-
sists of ≈ 6, 400 relays contributing over 160 Gbit/s of
bandwidth globally [2]. While Tor has proven to be a

*Co-Primary and Corresponding Author: Thien-Nam
Dinh: Sandia National labs, E-mail: thidinh@sandia.gov
*Co-Primary and Corresponding Author: Flo-
rentin Rochet: UCLouvain Crypto Group, E-mail: flo-
rentin.rochet@uclouvain.be
Olivier Pereira: UCLouvain Crypto Group, E-mail:
olivier.pereira@uclouvain.be
Dan S. Wallach: Rice University, E-mail: dwallach@rice.edu

highly effective option for privacy-seeking users, it suf-
fers from two important issues that are relevant to this
work. First, Tor is vulnerable to a broad variety of traf-
fic correlation attacks [3, 4], where an attacker, control-
ling multiple nodes or network vantage points, will have
a significant chance of occupying key roles in a circuit,
making deanonymization possible. Second, Tor has scal-
ability issues, leading to traffic congestion [2, 5].

While it may be possible to improve the engineer-
ing of Tor’s cryptographic protocols [6] or scheduling [7],
such measures are only a stopgap if the Tor network can-
not add capacity quickly enough to support its users’
growing demands. Consequently, it is straightforward
to see Tor’s issues as an economic question: how do we
incentivize people to add more servers to the Tor net-
work? Running a network server fundamentally entails
real-world costs for the hardware, electricity, and band-
width. That money has to come from somewhere.

To address this, we present moneTor: a monetary
design which allows relays to offer a premium bandwidth
product to Tor users in exchange for cryptographic cur-
rency tokens. These payments create incentives for op-
erators to add additional capacity to the Tor network.
Of course, the whole concept of onion routing requires
Tor relay and exit nodes not to know the identity of
the sender, so moneTor adds mechanisms to maintain
the anonymity of these payments. We will demonstrate
that this is possible while maintaining standard proper-
ties that should be expected of any cryptocurrency (e.g.,
scarcity, fungibility, divisibility, durability, and transfer-
ability) [8, p.3].

Tor also has the curious property that it is not fully
decentralized. Even though Tor nodes, themselves, are
located around the world and operated by many dif-
ferent organizations, The Tor Project centrally tracks
the health of the Tor network, provides software distri-
butions, and publishes lists of active Tor nodes. This
partial centralization creates opportunities for a “fiscal
policy” to manage these cryptographic payments. For
example, the Tor Project could impose “taxes” for a va-
riety of purposes, such as providing a baseline of finan-
cial support to all Tor node operators, and could evolve
these rules over time in response to changing needs.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 176

Our work aims to solve the challenge of building
moneTor in the presence of the following constraints:

– Anonymity: The payment system may not, in any
way, compromise Tor’s primary mission to protect
user anonymity.

– Payment Security: The payment system must sat-
isfy common security properties expected of any
cryptographic currency scheme.

– Efficiency: The payment system must be
lightweight, low-latency, and scalable, to accom-
modate the dynamic and bursty nature of Tor
traffic.

We recognize that the addition of monetary incen-
tives into Tor would involve sensitive legal, economic,
and sociopolitical considerations. Exact fiscal policy rec-
ommendations are beyond the scope of our work, but we
do discuss the risk, merits, and versatility that moneTor
could provide in Section 7.

Contributions. This work describes a full-stack frame-
work for tokenized Tor incentives. MoneTor addresses
the challenge of applying theoretical advances in cryp-
tocurrency research to the concrete constraints and
complexities of the live Tor network. We introduce
highly-efficient payment protocols which facilitate the
novel concept of locally transparent nanopayment chan-
nels. During data exchange, our distributed payment
processing procedure completely shifts expensive CPU
operations off of the critical path, incurring negligible
computational costs (a single hash operation) per pay-
ment. State-of-the-art throughput is made possible by a
global payment infrastructure that utilizes trustless in-
termediaries to handle the added CPU load, potentially
in exchange for monetary rewards. The moneTor scheme
adheres to the standard Tor security model and con-
forms to our domain-specific constraints of Anonymity,
Payment Security, and Efficiency.

We provide a prototype of our payment layer and
an extension to the existing routing protocol, result-
ing in approximately 15k lines of new C code within
the Tor codebase. Our networking experiments demon-
strate thousands of transactions per second, avoid-
ing any additional latency through mechanisms includ-
ing preemptive channel creation. We also discovered,
through experimental simulations, that scheduling ap-
proaches [9, 10] from previous Tor incentives systems
do not adequately provide differentiated service for pri-
oritized traffic. Consequently, we present a new prior-

itization mechanism that achieves our traffic shaping
objectives by changing the size of control-flow windows.

Our Github repository [11] contains all of the data
and code necessary to reproduce our research results.

2 Background
Traffic Analysis. Tor’s threat model assumes an ad-
versary who passively observes some fraction of the en-
crypted Tor network traffic as well as operating some
fraction of Tor’s onion routers, creating opportunities
to observe and manipulate user streams. Introducing de-
lays, in particular, can give these adversaries significant
power to deanonymizing traffic flows (see, e.g., [12, 13]).
Tor does not implement explicit countermeasures for
this class of attack, since most countermeasures would
introduce additional latency.

Increasing the number and diversity of Tor nodes
reduces the power of these adversaries. While our work
is not explicitly targeted at defending Tor against traffic
analysis, if it creates incentives for more nodes to par-
ticipate, it would additionally improve Tor against this
class of attacks.

Circuit Handling on Tor Clients. An important en-
gineering goal of Tor is to reduce latency. In engineer-
ing moneTor, we face the same challenge—ensuring that
any communication or computation added by moneTor
has a minimal impact on latency. Tor, itself, addresses
these issues by doing work in advance of when it’s
needed. For example, Tor will construct its overlay cir-
cuits in advance and keep those circuits idle. When a
user application wants to communicate, an idle circuit
will be ready to go, leading to a fast user experience.
MoneTor piggybacks on this design, building preemp-
tive payment channels to ensure that payments can be-
gin immediately.

Flow Control. Another engineering goal of Tor is to
manage and optimize flow rates to ensure fair sharing of
the available bandwidth. Tor uses a sliding-window flow
control system, similar to that used by TCP/IP, but the
window size is fixed. This helps control Tor’s maximum
use of bandwidth, but can have a substantial impact on
network performance. A variety of research efforts have
worked to characterize and improve this situation (see,
e.g., [14, 15]). MoneTor must also make changes to Tor’s
flow control system to provide prioritized service to paid
traffic, yet still preserve fairness.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 177

Payment Channels. MoneTor requires efficient and
anonymous micropayment channels, potentially making
tiny incremental payments alongside every transmitted
network cell. Many common cryptocurrency protocols
can support only tens of transactions per second [16],
which is clearly inadequate for our use case. One popular
workaround is an off-chain approach popularly known as
“Lightning Networks” [17]. In this setup, two parties—A

and B—each create a special escrow transactions on the
ledger to setup a simple payment channel between them.
These parties may then proceed to make bidirectional
micropayments to each other without ledger interaction
through the exchange of signed “I Owe You” tokens. A
related variant, called a “tripartite payment channel”
adds a mutually-trusted intermediary I, avoiding any
need for A to trust B or vice-versa. Such schemes are
secure if they satisfy the following requirements:

1. At every step of the protocol, all parties possess
proof of execution of the last finalized payment.

2. Given two proofs of payment state, the network can
unambiguously identify the more recent state.

3. When A pays B through I, the payment is atomic.
That is, there is never a situation in which I pays B
but is unable to extract the agreed-upon payment
from A.

Lightning network designs have useful scalability
properties, but moneTor also needs anonymity, since the
Tor middle and exit relays should have no way to lever-
age the payment system to identify the payer associated
with each Tor circuit.

Several recent cryptocurrency designs have both
scalability and anonymity features. Tumblebit is a
channel-like mixing protocol for Bitcoin that allows
fast and anonymous off-chain payments [18]. Malvavolta
et al. [19] also describe a variant on payment chan-
nels providing Tor-like privacy. Their scheme preserves
both sender and receiver privacy, assuming at least one
trusted intermediary. Neither of these schemes is ideal
for our purposes. Tumblebit requires unrealistic syn-
chronization between payment parties for the Tor envi-
ronment. Malvavolta et al. introduces additional parties
who could collude to compromise user privacy.

To satisfy the needs of moneTor, we instead started
with Green and Miers’s Bolt protocol [20]. Bolt is
a tripartite anonymous channel with efficient zero-
knowledge proofs that provide sufficient privacy and an
adequate starting point for scalability. As we describe
in Section 3.2, moneTor introduces an additional layer
to achieve our full scalability requirements.

3 Payment Design

3.1 Ledger

In our payment design, we follow the Bitcoin paradigm
in which all users produce signed statements, using pub-
lic key cryptography, as the basis of making operations
with their wealth [21]. However, our system does not
need to rely on Bitcoin’s decentralized blockchain, or
its energy-intensive proof of work system, to reach a
consensus. Instead, we note that Tor already relies on a
centralized set of authorities to manage Tor, for exam-
ple publishing a list of Tor nodes. Our design extends
this role, having Tor’s central authorities also maintain
the global payment state as a public tamper-evident
database (see, e.g.,Crosby et al. [22]). This design can
also be extended in a variety of ways, for example, dis-
tributing it across several trusted authorities (see, e.g.,
RSCoin [23]). Ultimately, any transition from moneTor
(this research effort) to broader use by real Tor users,
would be able to adopt any of a variety of different
cryptographic payment systems. Instead, the focus of
our research is on designing efficient “off-ledger” pay-
ments, which can be processed at the granularity of data
packets flowing through Tor, and only later reconciled
against the “real” payment system.

3.2 Payment Protocols Overview

In this section, we specify the protocols that comprise
the moneTor payment infrastructure. As first discussed
in Section 2, our chosen model is an implementation of
a “tripartite anonymous payment channel.” Compared
to purely centralized schemes, such channels are a crit-
ical method for scaling, allowing for a theoretically un-
bounded number of off-ledger transactions between any
two parties. However, in a naïve two-party implementa-
tion, the total channel management complexity is on the
order of O(n×m) where n is the number of Tor clients
and m is the number of relays. Our solution is to intro-
duce the Intermediary Relay, a Tor node whose only role
is to provide atomic payment channel services between
clients and relays. By acting as trustless payment hubs
maintaining persistent channels to many users, their ser-
vices reduce the channel complexity to O(n + m). No-
tably, we can adjust the target number of intermediaries
to balance the performance of the payment infrastruc-
ture and the size of the anonymity set for connected
premium users.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 178

Bolt. The basis of our scheme is an extension of Bolt’s
anonymous micropayment channel protocol, which is it-
self a privacy-focused adaption of the Lightning Net-
work [17]. Due to its importance as a starting point for
our work, we first provide a brief outline of the prerequi-
site micropayment channel procedures defined in Bolt.
All protocols are either two or three party interactions
between a subset of the following roles: C (client), R
(relay), E (end-user: either a client or relay), I (interme-
diary), and L (ledger). For our use case, assume that all
communications are anonymously routed through Tor
circuits [20].

KeyGen: Generates a cryptographic keypair.
Init-E: E initializes half of a micropayment channel
by escrowing funds on L.
Init-I: I initializes half of a micropayment channel
by escrowing funds on L.
Establish: E and I interact to establish a new mi-
cropayment channel from their respective halves.
Pay: C interacts with I and R to send a single mi-
cropayment to R.
Refund: E closes a channel on L and makes a claim
on the escrowed funds.
Refute: I closes a channel on L and makes a claim
on the escrowed funds.
Resolve: L determines the final balance of funds
awarded to each party.

While anonymous micropayment channels present
a tremendous advance for many applications, the rela-
tively heavy cryptography (37-100 ms) and communica-
tion (7 messages) is prohibitively expensive, especially if
done for every message transmission1. To overcome this
barrier, we present a new payment layer design enabling
far more efficient nanopayments.

moneTor. The moneTor design uses the existing
anonymous micropayment structure to build locally
transparent nanopayments. In this model, clients and
relays extend single micropayment operations into
nanopayment channels through an intermediary (see
Figure 1). These lightweight channels allow the client
to send n unidirectional nanopayments to the relay
through the established Tor circuit. Each payment rep-
resents a fixed value δ, established at the start of the
channel. By locally transparent, we mean that each

1 In addition to concerns regarding global network overhead, it
is also desirable to keep the barrier of entry low for smaller Tor
relay operators.

nanopayment is trivially linkable to all other payments
in the same channel. However, the nanopayment chan-
nels themselves are unlinkable to other nanopayment
channels and micropayment operations. It is by design
that this channel anonymity guarantee fits with Tor’s
existing circuit framework and security model, which
similarly stipulates that messages within circuits are
linkable internally but not externally to other circuits 2.
In essence, the overarching motivation of our work is
to relax the costly anonymity guarantees provided by
Bolt toward the design of a new set of protocols specif-
ically adapted for Tor. Finally, note that establishing
and closing nanopayment channels do not require the
clients or relays to interact with the ledger, resulting in
a far more scalable design than systems which depends
on resource-intensive centralized entities.

Fig. 1. Payment Roles — Dashed lines represent periodic trans-
actions (rare), thin double lines indicate micropayment channels
(used at the beginning and end of circuit lifetime), and thick dou-
ble lines indicate a nanopayment channel (handling nanopayments
during the lifetime of the circuit). The dashed outline around the
intermediary represents a notion of payment anonymity for the
end-users. Connections to the ledger and to the intermediary are
protected by an internal Tor circuit.

We now briefly describe our new protocols. Any two
parties C and R can construct a nanopayment chan-
nel once both have completed Bolt’s Establish with a
common intermediary I. We define the following set of
protocols needed to manage nanopayments:

Nano-Setup: C and I interact to prepare an in-
complete half of a nanopayment channel on top of
their existing micropayment channel.
Nano-Establish: C sends her nanopayment chan-
nel information to R, who interacts with I to com-
plete the second half of the nanopayment channel
on top of R’s existing micropayment channel.
Nano-Pay: C sends a single nanopayment to R.
This is repeatable for up to n operations.

2 In contrast, as discussed in Section 6, some prior works im-
plemented payments schemes which were needlessly unlinkable
from the relay’s viewpoint.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 179

Nano-Close-R: R closes his nanopayment channel
with I.
Nano-Close-C: C closes her nanopayment channel
with I. This step must happen after Nano-Close-R.

We also need a conflict resolution procedure to
ensure secure closure properties for the nanopayment
scheme, because a malicious party can force a closure
(i.e., abort) at any time. We must ensure that these ac-
tions result in a consistent result (i.e., never penalizing
honest parties). As such, we must extend our protocol
to allow L to resolve disputes:

Nano-Refund: E closes the channel on L.
Nano-Refute: I closes the channel on L.
Nano-Resolve: L makes a final determination on
both outstanding micropayment and nanopayment
balances.

Our nanopayment scheme is inspired by the classic
Payword two-party micropayment scheme in which pay-
ments are encoded by successively revealed preimages in
a precomputed hash chain [24].

The challenge in using Payword is to securely inte-
grate the hash chain concept into an existing three-party
anonymous micropayment channel setup such that all
parties maintain secure cryptographic ownership of their
funds at all steps. At the same time, we must ensure the
scheme does not leak deanonymizing information out-
side of the nanopayment channel context, a nontrivial
task that requires significant restructuring of the Bolt
protocol to achieve our constraints. Our final solution
incurs an overhead penalty of approximately two mi-
cropayment operations per nanopayment channel, one
at the beginning and one at the end of the channel life
cycle.

3.3 Nanopayment Protocol Details

In this section, we summarize the intuition for the basic
steps in the payment protocol. A more formal, detailed
description of the algorithms is provided in Appendix B.
Security considerations are detailed next in Section 3.4
and formally described in Appendix C.

Nano-Setup At the start of this protocol, C has access
to a micropayment wallet w obtained from Bolt’s Es-
tablish that enables her to operate her micropayment
channel with the Intermediary I as well as a refund to-
ken rt that entitles her to claim her current funds on the
ledger L in the event that I misbehave or goes offline. To

construct a nanopayment channel, C first generates an
array of values hc of length n where hci = H(hci+1) and
hcn is a random number. The root of the hash chain hc0
is used to create a globally unique nanopayment token
nT that encodes the public parameters of the channel
including the length n and the per-payment value δ. C
sends I a commitment to a fresh nanopayment channel
parametrized by nT along with a zero-knowledge proof
of the following statements:

1. The nanopayment wallet nw is well-formed from w.
2. C has ownership of a micropayment channel con-

taining at least n× δ funds.

I verifies these messages and supplies C with a new
signed refund token nrt that entitles C to cash out the
full balance of the micropayment channel using Nano-
Refund if needed. C, now protected against misbehav-
ior by I, agrees to send a revocation token σw, which
revokes her right to use w to create other nanopayment
channels from this micropayment wallet or to use rt to
cash out the micropayment channel before the Nano-
Close is run. I is now protected against double spend-
ing by C and can safely inform C that the nanopayment
channel has been set up successfully.

Nano-Establish: At this point, C sends R the same
nT token used to setup the channel with I. R uses the
token to initiate her end of the nanopayment channel
with I by executing essentially the same procedure that
C used in Nano-Setup. The nanopayment channel is now
fully established and ready to be used. A key observa-
tion is that both ends of the channel (C-I and R-I) are
rooted at the same hash chain root hc0. This design
ensures that any attempts to prematurely close either
channel—which requires revealing hc0 to the network—
would enable parties to close the other channel as well.

Nano-Pay: To make the ith payment, C simply sends
the next hash preimage hci to R. Knowledge of this
preimage hci is sufficient for R to prove possession of
a nanopayment. At any given time, R can broadcast
the tuple (nrt, hci) to L to prove ownership of the cor-
rect balance of funds. Notice that this action simultane-
ously reveals hci to I, who can then claim an equivalent
value of funds from C. As a result, the scheme satisfies
a correct-by-construction property of atomicity whereby
both legs of the protocol are finalized at the same time.

Nano-Close: After some number of payments k < n

has transpired and C wants to close the Tor circuit, both
C and R will generally prefer to close their nanopayment
channels through I. In this process, the R-I leg must be

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 180

closed before the C-I leg. This is due to the unidirec-
tional nature of nanopayment channels. Since payments
are flowing from C to R, I must first determine its debt
to R in order to know how much it can claim from C.

R first sends to I a commitment to a new micro-
payment wallet w′ and a zero-knowledge proof of the
following statements:

1. w′ is well-formed from w (w was either created by
Bolt’s establish phase or by a previous moneTor
Nano-Close).

2. The balance of w′ is equal to the sum of the balance
from the previous wallet w and δ × k.

Once verified, I issues a refund token rt′ on the new
funds. R agrees to invalidate the nanopayment channel
by issuing a revocation token σnw to I. I and R proceed
to create a blind signature on w′ thus validating the
wallet for future use.

Once I has closed his nanopayment channel leg with
R, I and C are free to complete the close protocol. All
parties now revert to the original state preceding Nano-
Setup save for a securely updated balance.

Nano-Refund, Nano-Refute, Nano-Resolve: Hon-
est parties will not typically close active nanopayment
channels on the ledger, opting instead to run Bolt micro-
payment closure procedures when they wish to cash out.
However, in the event of malicious behavior or prema-
ture termination, Nano-Refund and Nano-Refute enable
E and I to withdraw funds on the ledger with the latest
payment information at any time. After a set amount
of time has passed allowing the counterparty to recip-
rocate, the ledger runs Nano-Resolve to make a final
publicly verifiable determination on the final balance.
Correct execution of these procedures allows all honest
parties to claim the correct amount of funds according
to the payment history. In some cases, it might even be
desirable to penalize clearly malicious users by transfer-
ing the full amount of their initial balance to the coun-
terparty.

3.4 Payment Security and Anonymity

Our security model accounts for both privacy and pay-
ment security. The privacy threat model derives from
the local active adversary paradigm ubiquitously stud-
ied in Tor research [1]. Like all cells in Tor, Nanopay-
ment messages are locally linkable by relays participat-
ing in the circuit. However, since each circuit is only ever
associated with one anonymous nanopayment channel

at any given time, relays and intermediaries cannot link
two nanopayment channels with the same user. Fur-
thermore, Tor circuits protect all communication in the
tripartite nanopayment protocol. Hence, the relation-
ship between client to intermediary, client to ledger, re-
lay to intermediary, and relay to ledger are themselves
anonymized. We provide formal definitions and proofs
for the following theorem in Appendix C.

Theorem 1. The nanopayment channel scheme offers
anonymity (C.1.1, C.1.2) and secure balance (C.1.3)
under the assumptions that the commitment scheme
is secure, the zero-knowledge system is simulation ex-
tractable and zero-knowledge, and the hash function used
to create the hashchain and verify the preimage during
Nano-Pay is modeled as a random oracle.

This theorem fully covers the security and anonymity
characteristics of the protocol leading up to the closing
of a micropayment channel. However, two points must
be made with consideration to potential deanonymiza-
tion after the conclusion of the protocol. First, the price
revealed to the ledger at micropayment close enables a
subtle passive attack by I. By examining the final num-
ber of payments made on each channel in conjunction
with the globally fixed nanopayment cost, I may poten-
tially link all of C’s nanopayment channels.3 To miti-
gate this vulnerability, we stipulate that C must make
at least one micropayment, which has a monetary value
hidden from I, before closing a micropayment channel.
We stipulate that this micropayment should contain a
random value not greater than the channel escrow max-
imum value as stated in the Tor consensus and may be
made to another account owned by C.

Secondly, in the event of a dispute resolution on
the ledger, the two parties on either end of the micro-
payment channel (C-I or I-R), must disclose their on-
ledger identities. However, given an adequately privacy-
preserving choice of an on-ledger transaction protocol
such as Zerocash, even this result would be meaningless
for R [25]. Thanks to the built-in ledger privacy, R can

3 This attack is best illustrated with a trivial example. Suppose
that I facilitates a number of nanopayment channels with the
following number of payments, each of which is known to rep-
resent one unit of money: [58, 839, 356, 881, 23, 89, 561]. Now C

closes her micropayment channel and terminates with exactly
58 + 356 = 414 units of money. Once the micropayment channel
is closed, I must necessarily gain knowledge of the final balance
of funds and can easily link the first and third nanopayment
channels as belonging to the same C.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 181

only link the ledger interaction to its circuit, but not to
the client’s real-world identity.

Having accounted for all privacy considerations
both during and after the protocol, we informally state
the following anonymity guarantees relative to unmod-
ified Tor:

1. Additional parties needed to operate the moneTor
system (i.e., ledgers and intermediaries) cannot ex-
tract any additional information about a given
client than any middle relay.

2. Excluding side channels, circuits do not leak any
information other than the single bit needed to dif-
ferentiate premium and nonpremium users.

Our threat model for payment security is similar
to those found in prior work related to blockchain mi-
cropayment channels [17]. In such models, the user is
protected from malicious intermediaries by the ability to
prove misbehavior to a global ledger. Our protocols also
guarantee that the client would not risk more money
than initially agreed-upon (Balance property, see Sec-
tion C.1.3).

Side-channels on micropayment events. The
moneTor protocol prescribes unlinkable micropayment
events by protocol design. However, a naïve imple-
mentation of this scheme may be susceptible to side-
channel vulnerabilities, most notably, timing attacks.
For instance, a channel-creation policy that immediately
mints a new nanopayment channel after closing of the
previous channel would allow I to trivially link all chan-
nels belonging to C. To mitigate this particular risk, we
require a random delay tr uniform ∈ [0, r]. Since our
scheme specifies the availability of preemptive channels,
such a delay should not adversely impact the user expe-
rience. User privacy with respect to side-channels and
other statistical techniques depend on the number of
users concurrently building channels to the same inter-
mediary. If we require an anonymity set of size N , then
the maximum number of Intermediaries allowed in the
network is E[W]

N where W is a discrete random variable
representing the number of payment events between any
ti, the time at Nano-Close and ti+1, the time of the
next Nano-Setup or Nano-Establish. The number
of these events should be counted within a sliding time
window of size r. Consequently, the number of active In-
termediaries should be a parameter of the system that
the Tor project determines based on the activity of pre-
mium users. Furthermore, clients should maintain chan-

nels with an number of different intermediaries to fur-
ther mitigate any other unexpected side-channel leaks.

3.5 Economic Considerations

In creating the technical scheme, we explicitly consid-
ered several key economic factors. For instance, if de-
ployed, the Tor Project would need to decide how to
assign value to the moneTor tokens, a choice that en-
tails fundamental trade-offs between control, liability,
and social perception. Here, we enumerate three broad
categories of options along with some comments about
the technical implementations:

1. The Tor Project reserves control of monetary supply
for the purpose of enforcing a publicly declared pol-
icy, for instance, to peg the value of tokens against
one or more fiat currencies it that it holds in reserve.
This option would require the Tor Project to reserve
a privileged signing key for minting new moneTor
tokens (e.g., when a user makes a fiat deposit).

2. The moneTor tokens are instantiated as a standard
cryptocurrency whose value fluctuates as a func-
tion of market pressures and the chosen distribution
schedule. As with any cryptocurrency, a node that
rejects the distribution mechanism (e.g., mining in
Bitcoin) would violate the protocol.

3. The moneTor tokens act as a secure wrapper for an
external cryptocurrency such as Bitcoin, Ethereum,
or a future state-backed currency. This option is
made possible by ongoing work in the field of ledger
interoperability protocols [26, 27].

In all three cases, note that the mechanism required
to implement the policy takes place entirely on the
ledger. Consequently, the off-ledger moneTor payment
layer, which is the main contribution of this work, is
compatible with all of these three options.

While the Tor Project provides several acceptable
options for monetary policy, the pricing mechanism for
premium bandwidth should be standardized, since any
price differentiation between circuits will inevitably leak
information. This privacy issue becomes more signifi-
cant with higher granularity payment options. There-
fore, we impose the constraint that all users should pay
a single uniform price for premium bandwidth at any
time t.

It is of course central to make sure that moneTor
serves the goal of advancing of human rights and free-
dom of the Tor Project, which may be quite differ-

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 182

ent from those that would result from a purely profit-
seeking environment. To this end, moneTor includes an
explicit taxation mechanism, which is described in Sec-
tion 3.6. Under this scheme, any time a payment takes
place within the moneTor layer, a tunable fraction of
the revenue is diverted into a special account controlled
by the Tor Project. This is analogous to a secure and
automatic sales tax on premium traffic payments. The
Tor Project can use this fund to shape the topology of
the network towards some notion of desirable diversity
and performance via a transparent policy. The exact
content of such a policy is an active subject of research
that is orthogonal to our paper.4 The tax rate also dic-
tates incentives for nodes seeking to game the system,
perhaps by inserting dummy traffic to collect tokens or
faking bandwidth measurements. We explore such ques-
tions and trade-offs in Section 7.

3.6 Tax Integration

The zero-knowledge setup provides an elegant way to
anonymously handle the tax collection policy. Thus far,
we have treated the nanopayment value δ as symmetric
for both the client and relay leg. In practice, it requires
only a trivial modification to specify separate values of
δC and δR such that the following equality is satisfied.

δC − δR = tax + fee (1)

Here, tax is the portion of every payment that is redi-
rected to the Tor tax authority while fee represents com-
pensation for I’s services. I gradually accumulates these
overhead charges in his balance over the course of run-
ning many nanopayment channels. When it is time for
I to cash out the full micropayment channel, L simply
divides the funds between the I and the tax authority.
Note that this does not mean that L can arbitrarily con-
trol money, as this process is well-defined in the setup
of the network protocol.

3.7 Integration in Tor Circuits

Up to this point, we have described payments that occur
between a single client and a single relay. In practice, it

4 E.g., Waterfilling [28] argues for security by maximum diver-
sity in endpoints of user paths, and TAPS [29] argues for security
by trust policies.

is typical for each client to maintain several active cir-
cuits concurrently,5 each of which requires three streams
of payments to the guard, middle, and exit relays. These
channels must be actively managed to optimize compu-
tational overhead as well as money flow. Furthermore,
connections between the client and the guard relay are
transparent and persistent across the timescale of sev-
eral months. We optimize for this situation by enabling
transparent and direct payment channels between the
client and guard, which considerably reduces the time
needed to establish or close the channel. In contrast,
middle or exit relay channels require the flexibility of
our full tripartite scheme.

4 Network Design

4.1 Pre-built Channels

By default, Tor attempts to pre-build circuits to re-
duce latency once a user wishes to create a data stream.
Much like circuits, moneTor payment channels are high
in initial latency because of the multiple in-out mes-
sages in the protocol. To solve this problem, we exploit
the same circuit build strategy by preemptively setting
up and establishing payment channels on clean pre-built
circuits. This approach dramatically reduces the time-
to-first-payment. Unfortunately, the excessive establish-
ment of preemptive channels introduces network over-
head. Our implementation features a basic prediction
strategy to balance this trade-off by using historical us-
age date to anticipate the required number of channels.
The approach is similar to the way in which Tor antici-
pates the need for a fresh circuit. In Section 5, we ana-
lyze moneTor’s preemptive channels approach and show
that the payment confirmation time matches the round-
trip-time of the client-relay connection, as expected.

4.2 Prioritized Traffic

Traffic scheduling is perhaps the most intuitive mecha-
nism with which to implement prioritization. However,
our preliminary experiments found that local schedul-
ing decisions on each relay for priority do not work well

5 For instance, the popular Tor Browser user application typi-
cally does not share circuits with streams targeting a different
destination address unless those streams come from the same
SOCKS connection.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 183

with the current Tor network, which precludes the use
of out-of-the-box scheduling approaches based on Diff-
Serv [9] and EWMA [10]. Intuitively, this behavior is a
direct result of the evolution of the Tor network capacity
in recent years. The growth in bandwidth across guard
and middle relays produces more congestion between
the exit relay and the final destination. We simulated
Tor’s topology to analyze scheduling and found that
relays were able to instantaneously flush their queues
at each “write” event, rendering any attempt at local
scheduling to be ineffective. These results, detailed in
Appendix D, may suggest the need for a separate com-
prehensive study of network prioritization mechanisms.

Consequently, we turn to the alternative strategy
of prioritizing traffic through Tor’s internal control-flow
window sizes. Unlike scheduling-based approaches, a
window-based approach might be more accurate under
conditions with lower internal congestion [30, 31]. In-
deed, since local decisions inside the scheduler at a par-
ticular relay may fail to achieve priority, we need to
design priority as a global function of the circuit. Re-
call that edge nodes regulate the traffic flux in either
direction using a set of flow control windows. Roughly
speaking, these windows determine the space allotted
to each circuit on a relay’s scheduling queue, which in
turn positively correlates with effective bandwidth. We
implement our prioritization scheme by statically read-
justing the window maximum sizes once according to
the following formula for both Circ window and Stream
window.

window′ = window(1 + α(premium/pr%− 1)) (2)

Here, a circuit is marked as prioritized by the bit
premium ∈ {0, 1}. The tunable priority benefit α ∈ [0, 1]
defines the proportion of the non-premium capacity that
we wish to transfer to premium clients. By accounting
for pr% ∈ [0, 1], the fraction of premium to nonpremium
clients, we can keep the total flow capacity constant. It
follows that the relay memory consumption induced by
processing cells should stay constant too.

Even if most relays can flush all queues at each
“write” event, some relays may still suffer from con-
gestion within the Tor network. In this case, modifying
Tor’s overlay flow control will not achieve priority since
the cells are stuck within the congested relay’s queues.
To overcome this issue, we modify EWMA with a linear
scaling factor that favors paid circuits.

At+∆t = At × 0.5∆t/H (3)

A′t+∆t = At+∆t/β + Ct,t+∆t (4)

Defined in Tang and Goldberg’s original paper [10],
A is a variable score used to sort circuits such that
the circuit with the lowest A is always next on the
scheduling queue. C is the number of cells relayed within
∆t, the time that has passed since the previous obser-
vation, and H is a global parameter representing the
half-life decay interval. Our added term, β ∈ [1, inf),
is a tunable parameter such that Bandwidthpremium =
Bandwidthnonpremium × β for any given circuit under
ideal conditions.

Finally, note that our design focuses on the condi-
tions of the current Tor network, where the vast ma-
jority of traffic exits the network and congestion occurs
primarily at exits. Although it is not inherently incom-
patible with our scheme, we leave the prioritization of
internal onion services, which do not pass through exits,
for future work.

5 Experimental Validation
Understanding typical Tor usage and assessing it ben-
efits from our priority scheme is a crucial requirement.
Appendix A covers a real-world Tor measurement study
that illustrates the importance of token exchange within
the first few seconds of the data stream. Having es-
tablished the empirical context for a channel payment
scheme, we validated our technical design via experi-
ments performed on a prototype software implementa-
tion within the native Tor codebase. The objective is to
prove that we can deliver a qualitatively “significant”
advantage to paid premium users while incurring mini-
mal overhead costs for throughput, memory usage, and
latency within a realistic network environment. Due to
the pre-built payment channel setup and low payment
verification cost, we determine that our scheme supports
the majority of observed short-lived and bursty Tor cir-
cuits in a near-fair-exchange setting.

5.1 Prototype

A substantial contribution of our research is embed-
ded within our implementation of the moneTor frame-
work. The modifications, applied to Tor release version
0.3.2.10, cover approximately fifteen thousand lines of
new code across Tor’s core C software. We emphasize
that the implementation is engineered solely for our ex-
periments. Most notably, expensive cryptographic oper-
ations such as ZKPs and commitments were simulated

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 184

(a) Download Time Overhead - Web + Bulk (b) Throughput - Compared to baseline (c) Simulation Memory

Fig. 2. Global Overhead — Comparison of overhead in pure multicore and singlecore network. Figure 2a shows two sets of time CDF
curves for each file size (2 MiB and 5 MiB), Figure 2b shoes the 5 minute moving average the simulation 10 consensus file ‘2018-02-
03-00-00-00-consensus’.

using methods that account for Shadow’s unique vir-
tual time management [32]. We consider both scenarios
in which the simulated Tor process is running on a mul-
ticore or singlecore processor. In the multicore case, the
cryptographic operations are replaced by an “idle” com-
mand that allows the virtual node to complete other
tasks in parallel. In the singlecore case, cryptographic
operations are simulated by looping through a series of
dummy SHA256 hash operations. Using these methods,
duration of the delays were tuned to conservatively re-
flect real measurements published in prior background
work [20].6 Note that our prototype does not imple-
ment anything that does not help us to answer our re-
search goals, such as coin/wallet management, extension
of the Tor control protocol to manage addition asset
and options, Intermediary information recovery in case
of crash, etc. Instead, the prototype serves the following
purposes:

1. Our implementation handles nuances missing from
the theoretical protocol specification. We show that
there are no unexpected or prohibitive practical con-
flicts with the existing Tor design.

2. Our platform allows us to study the feasibility of
premium circuit prioritization from a networking
perspective.

3. Our platform allows us to obtain a rough factor-
of-two approximation for all bandwidth, computa-
tion, and memory requirements of a real deploy-
ment, both globally and at individual nodes.

6 Extracted values are conservative in the sense that our zero-
knowledge proofs require proving only a subset of the statements
required in each corresponding Bolt zero-knowledge proof.

The first design purpose is clearly qualitative and
we did not discover any insurmountable logical flaws
in the design. To analyze the networking dynamics and
resource consumption, we studied our implementations
through a set of experiments described in the next sec-
tion.

5.2 Methodology

Experiments were conducted using the Tor shadow sim-
ulator tool [32, 33]. We ran two sets of experiments at
different scales from a consensus document published
in early February 2018. The first set featured 100 re-
lays, 1000 clients, 10 intermediaries, and ran for a total
of 90 minutes. These experiments were used to gather
information concerning the system overhead and proto-
col execution times. The second set featured 250 relays,
2500 clients, 25 intermediaries, 80 minutes of total run
time, and was used to measure the performance bene-
fits conferred to premium clients. In both cases, simu-
lated traffic consists of 8% bulk clients who continuously
download 5 MiB files and 92% web clients who periodi-
cally download 2 MiB files.7 The number and behavior
of clients were chosen to satisfy (A) realistic conges-
tion rates measured by a transfer timeout percentage of
approximately 4% [2] and a historical bulk/web global
traffic ratio of about 1:3 [35, 36]. Neither the scale of
our experiments nor the precise configuration of client
nodes are intended to be precise replicas of real-world
conditions. Tor networking is itself a complex area of re-

7 While 5 MiB bulk files are a common standard in Tor bench-
marking [2], 2 MiB web files reflect the approximate size of mod-
ern web pages [34].

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 185

search and, for our purposes, we are content to adopt the
simplest model that will highlight the relatively crude
networking needs of our incentivization scheme.

5.3 Experiments

Our experiments are separated into three groups: global
overhead, payment latency, and network priority. Each
captures a separate characteristic of the scheme.

Global Overhead. First, we attempt to show the total
cost of the moneTor scheme in terms of total network
throughput. To study worst-case performance, we con-
figured a medium-scale experiment consisting of 100%
premium clients which we compared to a baseline trial
with 0% premium clients. The purpose of this experi-
ment was to measure overhead imposed by the payment
scheme without applying any network prioritization in
either control-flow or EWMA. Since our protocol can
benefit from concurrently executed cryptographic oper-
ations, a key parameter to the simulation is the num-
ber of CPU cores available on each relay. Unfortunately,
this information is not publicly available. As a result, we
conducted two trials: one in which all nodes are running
on multi-core hardware and one in which all nodes are
running on single-core hardware. Figure 2 summarizes
the results.

Our findings indicate that even in the worst case sce-
nario, our system incurs statistically negligible overhead
at these scales across the measures of download time
(e.g., less than 2% increase on the mean web download
for the singlecore experiment), throughput, and memory
usage. When examining the raw network messages, we
found corroborating evidence that moneTor contributes
to only a small fraction, less than 1%, of the total net-
work traffic in our experiment, a result which holds true
across all of our trials. By default, we configured a pay-
ment rate of one payment cell for every 1000 data cells
exchanged in either direction. If the network requires
more fairness, it is also possible to increase the pay-
ment rate with negligible CPU cost as long as the net-
work overhead introduced by the control cells remains
under an acceptable fraction of the overall bandwidth.

Payment Latency. Given the results from our exper-
iments, we surmise that payment latency is a crucial
factor in servicing front-loaded clients. To this end, we
measure the distribution of completion times for var-
ious steps in the protocol. To highlight the effects of
native latency in the Tor network, we show payments
split across each relay role of guard, middle, and exit.

Recall that moneTor makes use of high-overhead, low-
marginal cost payment channels (i.e., the channels take
time to build but the client needs them long after they
are built). In other words, the bulk of the cost in our
scheme lies in the execution of Nano-Establish and
Nano-Close protocols as shown in Figure 3a and Fig-
ure 3c.

Notice that nano-close operations take roughly
twice as long to complete as the nano-establish oper-
ations due to the need for the relay to close his half
of the nanopayment channel before the client can com-
plete hers. Figure 3b illustrates the time to first pay-
ment, our most revealing latency metric. This measure
includes the overhead in channel establishment when we
do not have available preemptive channels. In the best
case scenario, when all three payment channels have
been correctly pre-built for the circuit, this measure is
equivalent to a single trip toward each relay. Comparing
this Figure 3b to Figure 3a, we observe the effectiveness
of preemptive channel building. The other observation
supporting the effectiveness of the pre-built strategy is
the recorded time for the “call” versus “send” lines; if no
discrepancy is observed between them, it means that the
pre-build successfully led to fully established channels.

In all protocol phases, we observe that latencies for
guard relays are negligible in comparison to the middle
and exit relays, which is a result of our design decision
to implement directly-paid guard channels. Again, this
is a Tor-specific optimization made possible by the fact
that guards maintain a semi-persistent, transparent re-
lationship with only a small subset of clients.

Network Priority. Our final set of experiments stud-
ies the success of our scheme in delivering prioritized
traffic for premium users. To perform this analysis, we
prepared sets of three small experiments with varying
modifier priorities: α ∈ {0, 0.25, 0.5} and β ∈ {1, 5, 10}.
From a networking perspective, α = 0, β = 1 is equiv-
alent to unmodified Tor. We set the fraction premium
users to be 25%. From Figures 4a, 4b, and 4c, we ob-
serve that, first, variations in our network-wide tunable
parameters do offer differentiation in download speed.
Yet, as we detail in Appendix D, offering bandwidth dif-
ferentiation for the Tor network is more complex than
previously assumed. Indeed, local scheduling priority,
which was historically effective for past Tor topologies,
appears to be ineffective under current conditions where
congestion is concentrated at the exit interface. Second,
the differentiation in bandwidth for α = .25, β = 5 “av-
erages out” to approximately mirror the baseline ex-
periment, indicating little loss in overall network per-

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 186

(a) Nano-Establish - Built after the circuit con-
struction, but before the circuit usage!

(b) First Payment - Should match 1 half RTT if
the preemptive Nano-Establish is perfect

(c) Nano-Close - Happens just before the circuit
is destroyed

Fig. 3. Protocol Execution Time — Time to finish each protocol step split across interactions with each of the three relays. The simu-
lation includes 100 relays, 2 authorities, 1 ledger authority, 10 intermediaries and 1000 Tor clients scaled down from the public consen-
sus file ‘2018-02-03-00-00-00-consensus’.

formance, and confirming our overhead experiment (re-
call 25% of premium users). Nevertheless, our result for
α = 0.5, β = 10 indicates that the performance degrades
faster for nonpremium users when we become too ag-
gressive in procuring gains for premium users. The data
also highlights the complexity in selecting a set of pa-
rameters and techniques to offer efficient prioritization
without degrading the overall throughput of the net-
work. The overarching takeaway is that the network
prioritization mechanism appears to be an even more
complex challenge than the design of the anonymous
payment layer itself.

Note that our analysis of the scheme holds the to-
tal network capacity static. However, the motivation for
any Tor incentivization scheme is to attract new relays
to grow the network which would, in principle, improve
anonymity and censorship resistance for all users. The
effect on performance is less clear. Although adding new
relays will increase the throughput, a faster Tor would
likely attract more users as well. In the absence of a
reliable economic model, it is unclear how incentives
would affect the experience of the average user, and so
we opted to forgo modeling the added capacity.

6 Related Work
This section categorizes previously proposed incen-
tivization schemes into three groups.

Non-transferable benefits. These schemes aim to re-
cruit relays by offering some privileged status intended
for personal use which cannot be securely sold for reim-
bursement of financial investment [37–39].

Transferable benefits. These schemes offer privileged
service or products intended to hold value on a sec-
ondary resale market. These indirect financial incentives
presume to attract a broader demand than in the non-
transferable case. Partial proof-of-work tokens that can
then be redeemed by relays for profit in real cryptocur-
rency mining pools [40] and exchangeable shallots in
TEARS [41] are part of this category.

Monetary payments. These schemes offer rewards
with what might be considered real money that holds
external value. This category would include moneTor.
PAR [42] allows clients to send direct payments to
relays in a hybrid payment scheme which makes use
of inefficient but anonymous Chaumian e-cash proto-
cols [43] and efficient but transparent probabilistic mi-
cropayments. PAR introduces the honest but curious
bank paradigm in which the bank cannot deanonymize
clients but is in control of their deposited financial as-
sets. PAR suffers from scalability issues owing to its
strongly centralized architecture. Other monetary pay-
ments schemes such as XPay [44] and the proposal of
Carbunar et al. [45], which combine an e-cash base with
bipartite hashchains, are limited by the same centralized
banking requirements.

In general, most prior works in this field, including
BRAIDS, LIRA, and each of the cited monetary pay-
ment protocols, suffer from two issues:

1. Scalability limits arising from the need for all nodes
to connect to a single central bank

2. The existence of a trusted banking authority which
can opaquely manipulate the money supply.

Our scheme mitigates 1) by making use of payment
channel networks, eliminating the need for nodes to con-

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 187

(a) Web Download Time (b) Bulk Download Time (c) Total throughput, all clients

Fig. 4. Prioritization Benefit — Performance differentiation between paid and unpaid users. We display results for 25% premium users.
Simulations feature 250 relays, 2 authorities, 1 ledger authority, 25 intermediaries and 2500 Tor clients scaled down from the public
consensus file ‘2018-02-03-00-00-00-consensus’.

nect to the central ledger for every relay interaction.
The second issue is intrinsic to the standard Chaumian
e-cash paradigm adopted by these prior works, in which
“deposit” operations take the form an unblinded token
signed by the trusted bank [43]. Even if all interactions
were committed to a tamper-proof ledger, the network
at large has no way to verify that signed tokens cor-
respond to a valid “withdrawal” operation by another
user. In other words, a malicious bank can mint fraud-
ulent tokens at will. Our system eliminates this concern
by replacing the active honest but curious bank with
the passive public ledger model ubiquitous to modern
cryptocurrencies. Even in the most centralized config-
uration described by Option 1 of Section 3.5, the Tor
Project can only perform minting operations which are
transparently verifiable on the ledger.

These improvements adequately capture compar-
isons between moneTor and other monetary payment
schemes. However, trade-offs with state-of-the-art solu-
tions in the first two categories are more nuanced. We
address several specific works next.

BRAIDS. The BRAIDS scheme introduces tickets to
represent premium status. Users may transfer tickets to
other users, but this transfer must be done through a
trusted-third party. Small numbers of ephemeral tickets
are freely distributed by a central bank to any client
upon request or to relays that have accumulated tickets
spent by clients. Crucially, tickets can only be spent at
a single relay defined at the time of their minting, in
order to circumvent the double spending problem [38].
However, users may exchange accumulated tickets for
tickets from other relays through a central bank within
a set time interval. In addition to the general concerns
listed earlier, BRAIDS raises two more:

3. Verifying a blind signature on the relay side for each
payment is computationally intensive if the rate of
payment is high, and current high-bandwidth Tor
relays are already CPU-bound.

4. Tickets are relay-specific, implying that users must
frequently exchange them for the right relays.

Consequently, users have two costly options as the
network increases: stockpile a large number of tickets for
each relay or interact frequently with the central bank
to exchange tickets.

LIRA. LIRA is an ideological successor to BRAIDS
which improves scalability as well as the efficiency on
the relay-side verification of tickets by a factor ≈ 80.
Clients in LIRA probabilistically “win” premium tick-
ets without any interaction with the bank. While LIRA
improves the efficiency of BRAIDS, and could even of-
fer high fairness (by supporting high payment rates), it
incentivizes client cheating by continuously building cir-
cuits to try to win premium tickets [39, 46]. Depending
on the chosen value for the payment rate, this problem
alone could prevent the scheme from being a realistic
option. If the payment rate is too low, then the incen-
tive to cheat increases since the scheme awards a large
priority bandwidth between guesses to the cheater. If
the payment rate is too high, then guessers would have
difficulty maintaining good guesses through their cir-
cuit lifetime, since the probability of maintaining win-
ning guesses exponentially decreases with payment rate.
As a result, LIRA’s goal of increasing buyer anonymity
through successful guessers loses its efficacy. Moreover,
LIRA does not address Concerns 2) and 4) inherited
from BRAIDS.

In contrast to BRAIDS and LIRA, moneTor pos-
sesses the ability to prevent double-spending with-
out suffering from a centralized exchange process

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 188

(BRAIDS) [46], or from incentives to cheat to gain
premium access and stockpile relay-specific information
(LIRA). Moreover, moneTor offers high fairness with on-
the-fly payment verification that presents an improve-
ment factor of ≈ 6 compared to LIRA (one H operation
as compared to six H + a few XORs and multiplica-
tions) and ≈ 500 to BRAIDS. This procedure does not
account for opening and closing the nanopayment chan-
nel, which happens outside of the data transfer time
window. There, the relay’s costly operation is to per-
form one ZKP (opening) and generate one blind signa-
ture (closing). Finally, and more importantly, moneTor
tokens are not relay-specific, which solves the scalability
problem of either stockpiling or interacting more with
the central bank as the network grows.

TEARS. TEARS introduces a two-layer approach
whereby shallot tokens are awarded by a distributed
semi-trusted bank to participating relays. These shal-
lots can then be redeemed for BRAIDS-style Priority
Passes. While fully exchangeable shallots are an im-
provement over non-transferable privileges in a narrow
economic sense, these tokens are conceptually discrete,
indivisible assets that are not as easily exchanged as
true currency. We expect our ecosystem to be more
user friendly than TEARS, offering arbitrarily high
transferability and divisibility of priority tokens with-
out changing the underlying Tor architecture. In con-
trast to TEARS, which requires a blind signature for
each payment, our granular nanopayment transactions
approximate fair-exchange, a critical property for the
low-bandwidth and short-lived premium Tor circuits
documented in Appendix A. Finally, a major difference
with previous work (TEARS, LIRA, BRAIDS) is that
moneTor does not depend on a relay’s bandwidth au-
dit to distribute tokens. Relays receive some revenue
directly from each client and the rest from the Tor
Project’s tax redistribution. Although the tax redistri-
bution does require bandwidth audits, the incentive to
game the system is only proportional to the tunable tax
rate.

We cannot ignore the fact that direct payments in-
troduce a separate mode of abuse. In principle, exit re-
lays in moneTor have an incentive to inflate network
traffic by injecting junk traffic (e.g., padding cells) or to
conspire with the destination server to send useless data
to the client. Monetor can mitigate this risk by imple-
menting junk traffic monitoring into the existing mea-
surement infrastructure. This can be done by running
premium and non-premium circuits through measured
relays. Junk traffic produced by the exit node is already

a significant issue [13] that has prompted the release of
several patches by the Tor project. 8 However, the con-
spirator problem seems intractable since the junk data
appears legitimate to the Tor circuit layer. As a coarse-
grain mitigation strategy, we can cap the number of
nanopayments available to each circuit.

7 Discussion
In this discussion, we frame the social nuances of incen-
tivization that accompany moneTor. Today, the Tor net-
work owes its success to voluntary contributors. These
relay operators incur hardware, bandwidth, and la-
bor expenses to participate in the Tor network often
for intrinsic reasons, among them: political, philosophi-
cal, and philanthropic. In implementing a system like
moneTor, the Tor Project must consider the conse-
quences of financial incentives on these potentially frag-
ile value systems. Critics have called attention to the
social consequences of incentives [46]. For instance, the
“crowding out effect”, describes a psychological phe-
nomenon whereby the introduction of extrinsic moti-
vations displaces previously dependable intrinsic moti-
vations [47]. At the sociological level, empirical studies
of prosocial behaviour [48] have shown that explicit in-
centives can reduce participation. This means that in
our application, they risk degrading the average social
quality of Tor nodes without necessarily growing the
network. None of this is to say that extrinsic incentives
are always ineffective, [48], only that choosing the right
solution is nontrivial. We do not presume to offer an au-
thoritative opinion on the best social incentive design.
Instead, we show that the versatility of our token-centric
technical design is sufficient to support a wide range of
potential strategies.

By design, we have left many variables to be de-
cided by the Tor Project. Chief among these are the
premium bandwidth price, premium bandwidth advan-
tage, tax rate, monetary policy, and redistribution pol-
icy. Enforcement mechanisms include a combination of
network monitoring, parameter broadcast, ledger con-
straints, and organizational policy. Together, these op-
tions give the Tor Project the freedom to implement a

8 Independently, there may be a need for Tor to centrally mon-
itor exit nodes’ behavior, so abusive exit nodes can be detected
and removed from the network altogether.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 189

large variety of incentivization strategies. We present a
few theoretical paradigms below.

1. Benevolent Ruler: The Tor Project is a nonprofit
with altruistic organizational intentions. In this hy-
pothetical approach, the authorities set the tax rate
to 100%, turning moneTor into a revenue stream for
purely centralized efforts to improve the network.

2. Crypto-Libertarian: On the other end of the
spectrum, a simple naïve strategy is to implement
moneTor as unregulated market where relays sell
bandwidth for money, perhaps trustlessly backed by
a cryptocurrency like Bitcoin or Ethereum.

3. In-Kind Rewards: If financial rewards turn out
to be prohibitive, moneTor can mimic several of
the purely in-kind non-transferable and transferable
schemes described in Section 6 by limiting the num-
ber of on-ledger transactions to zero or one, respec-
tively. For instance, at zero allowed transactions, re-
lays would be unable to use their tokens for any pur-
pose other than to buy premium traffic from other
relays.

4. Subsistence Relaying: Here, although relays
would receive real money, the expected value re-
wards would be limited to the break-even cost of
running a relay. In this paradigm, every relay op-
erator would effectively act as an individual NGO
to avoid the potential liabilities that come with fi-
nancial profit. In practice, moneTor could support
this design by adjusting global parameters such that
the income of any relay does not exceed the cost-
to-bandwidth ratio in the cheapest geographic re-
gion. The tax redistribution policy could cover any
discrepancy from this income floor due to location
or other factors. Previously, studies have indicated
that incentives can be useful when sparingly applied
to “concrete” task [47, 49]. Provided careful public
communication of intent, the same results would be
expected here.

5. Decentralized Grant-making: Finally, the Tor
Project can implement moneTor as a form of altruis-
tic money, which payees can donate to an approved
list of prosocial projects, reminiscent of participa-
tory grant-making and participatory budgeting [50].
Rather than cashing out tokens, the ledger would
only allow relays to contribute to their choice of spe-
cial programs that, for instance, increase the num-
ber of relays in region X, fund research on topic Y ,
or advocate for privacy-related issue Z. The result is
a fully fungible asset that is extrinsically worthless

to profit-driven entities but intrinsically rewarding
for parties invested in Tor’s core mission.

Much future work remains to implement some of
these methods. On the technical side, robust monitoring
must be implemented to mitigate against inflated band-
width for tax redistribution and junk traffic insertion
for direct payments. Economically, we require a better
understanding of location-based incentives and the elas-
ticity of supply and demand for various types of relay
incentives and client premium bandwidth.

The purpose of these paradigms is to illustrate the
versatility moneTor’s technical infrastructure provides.
In practice, the Tor Project can implement nearly any
combination of our listed approaches, and many others
as well. The mindset we wish to instill is this: an overly
flexible design can always be constrained afterward. Un-
til there is a consensus for the optimal social approach
to incentivization, the most useful technical base is one
that can be adapted to many models of human behavior.

8 Conclusion
This work introduces moneTor, a practical system that
uses tokenized payments to incentivize participation in
the Tor network. Like any network, Tor can benefit from
improving its performance and diversifying its partici-
pants. While Tor incentivization has been studied for
almost 10 years, existing implementations have many
technical limitations.

Our work directly addresses these shortcomings. At
the payment level, we leveraged recent advances from
the cryptocurrency research space to inform the design
of our payment system. At the network level, we inves-
tigated a critical issue in the existing scheduling mech-
anism and introduce a new flow-control-based approach
for network prioritization. The resulting scheme features
sufficiently anonymous transactions in the absence of a
trusted third party and considerably greater scalability.
We tested moneTor through extensive simulation efforts
to demonstrate its technical feasibility.

An essential set of questions remain concerning
the legal, political, and social aspects of incentives for
Tor. We certainly do not dismiss the importance of
these issues, which existing literature have discussed at
length [46]. Nevertheless, the ability to show what can
be done, in terms of its technical impact on networking
and security, is a central step toward determining what
should be done.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 190

Acknowledgments
We would like to thanks the anonymous reviewers for
their helpful guidance on the socio-economical questions
raised by our work and for the profoundly positive im-
pact which their thorough reviews had on our work.
We thanks Rob Jansen for providing us helpful com-
ments on issues with the initial results we obtained with
Shadow. We thank the Tor project ethical board for
their guideline towards safer live experimentations. This
work has been funded in part by the Walloon Region
(competitiveness pole Logistics in Wallonia) through the
project Digitrans (convention number 7618). Part of this
work was performed while the third author was a Ful-
bright Scholar at Rice University.

References
[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The

second generation onion router,” in Usenix Security, 2004.
[2] “Tor Performance Metrics,” metrics.torproject.org, accessed:

2018.
[3] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “The

predecessor attack: An analysis of a threat to anonymous
communications systems,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 7, no. 4, pp. 489–
522, 2004.

[4] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of
Tor,” in Security and Privacy, 2005 IEEE Symposium on.
IEEE, 2005, pp. 183–195.

[5] M. AlSabah and I. Goldberg, “Performance and security
improvements for Tor: A survey,” ACM Computing Surveys
(CSUR), vol. 49, no. 2, p. 32, 2016.

[6] J. Reardon and I. Goldberg, “Improving Tor using a TCP-
over-DTLS tunnel,” in Proceedings of the 18th conference
on USENIX security symposium. USENIX Association,
2009, pp. 119–134.

[7] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. F. Syver-
son, “Never Been KIST: Tor’s Congestion Management
Blossoms with Kernel-Informed Socket Transport,” in
USENIX Security Symposium, 2014, pp. 127–142.

[8] T. Crump et al., The Phenomenon of Money (Routledge
Revivals). Routledge, 2011.

[9] C. Dovrolis and P. Ramanathan, “A case for relative differ-
entiated services and the proportional differentiation model,”
IEEE network, vol. 13, no. 5, pp. 26–34, 1999.

[10] C. Tang and I. Goldberg, “An improved algorithm for Tor
circuit scheduling,” in Proceedings of the 17th ACM confer-
ence on Computer and communications security. ACM,
2010, pp. 329–339.

[11] “Account holding monetor code,” https://github.com/
monetor, 2018.

[12] X. Fu, Z. Ling, J. Luo, W. Yu, W. Jia, and W. Zhao, “One
cell is enough to break Tor’s anonymity,” in Proceedings of

Black Hat Technical Security Conference, 2009, pp. 578–
589.

[13] F. Rochet and O. Pereira, “Dropping on the Edge: Flexibil-
ity and Traffic Confirmation in Onion Routing Protocols,”
Proceedings on Privacy Enhancing Technologies, vol. 2018,
no. 2, pp. 27–46, 2018.

[14] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy,
S. Savage, and G. Voelker, “DefenestraTor: Throwing out
Windows in Tor,” in Proceedings of the 11th Privacy En-
hancing Technologies Symposium (PETS 2011), July 2011.

[15] F. Tschorsch and B. Scheuermann, “Mind the gap: Towards
a backpressure-based transport protocol for the Tor net-
work,” in Proceedings of the 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’16),
Santa Clara, CA, Mar. 2016.

[16] “Blockchain info,” https://blockchain.info/stats, 2018, ac-
cessed: April 2018.

[17] J. Poon and T. Dryja, “The Bitcoin lightning network: Scal-
able off-chain instant payments,” draft version 0.5, vol. 9,
p. 14, 2016.

[18] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and
S. Goldberg, “Tumblebit: An untrusted Bitcoin-compatible
anonymous payment hub,” in Network and Distributed Sys-
tem Security Symposium, 2017.

[19] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and
S. Ravi, “Concurrency and privacy with payment-channel
networks,” in Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM,
2017, pp. 455–471.

[20] M. Green and I. Miers, “Bolt: Anonymous payment channels
for decentralized currencies,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 473–489.

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” URL: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.221.9986&rep=rep1&type=pdf ,
2008.

[22] S. A. Crosby and D. S. Wallach, “Efficient Data Structures
For Tamper-Evident Logging,” in USENIX Security Sympo-
sium, 2009, pp. 317–334.

[23] G. Danezis and S. Meiklejohn, “Centrally banked cryptocur-
rencies,” Proceedings on Privacy Enhancing Technologies,
2016.

[24] R. L. Rivest and A. Shamir, “PayWord and MicroMint: Two
simple micropayment schemes,” in International workshop
on security protocols. Springer, 1996, pp. 69–87.

[25] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza, “Zerocash: Decentralized anony-
mous payments from Bitcoin,” in Security and Privacy (SP),
2014 IEEE Symposium on. IEEE, 2014, pp. 459–474.

[26] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timon, and P. Wuille, “Enabling
Blockchain Innovations with Pegged Sidechains,” URL:
https://blockstream.com/sidechains.pdf , 2014.

[27] J. Poon and V. Buterin, “Plasma: Scalable Autonomous
Smart Contracts,” White paper, 2017.

[28] F. Rochet and O. Pereira, “Waterfilling: Balancing the Tor
network with maximum diversity,” Proceedings on Privacy
Enhancing Technologies, vol. 2017, no. 2, April 2017.

metrics.torproject.org
https://github.com/monetor
https://github.com/monetor
https://blockchain.info/stats
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.9986&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.9986&rep=rep1&type=pdf
https://blockstream.com/sidechains.pdf

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 191

[29] A. Johnson, R. Jansen, A. D. Jaggard, J. Feigenbaum, and
P. Syverson, “Avoiding the man on the wire: Improving
Tor’s security with trust-aware path selection,” in Proceed-
ings of the Network and Distributed Security Symposium -
NDSS ’17. Internet Society, February 2017.

[30] C. Kiraly, R. Dingledine, G. Bianchi, R. Lo Cigno, and
A. M. Scattolo, “Effect of Tor window size on perfor-
mance,” http://archives.seul.org/or/dev/Feb-2009/
msg00000.html, 2009.

[31] C. Kiraly, G. Bianchi, and R. Lo Cigno, “Solving perfor-
mance issues in anonymization overlays with a l3 approach,”
URL: http://disi.unitn.it/ locigno/preprints/TR-DISI-08-
041.pdf , 2008.

[32] R. Jansen and N. Hopper, “Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation,” in Proceedings
of the Network and Distributed System Security Symposium
- NDSS’12. Internet Society, February 2012.

[33] J. Tracey, R. Jansen, and I. Goldberg, “High performance
Tor experimentation from the magic of dynamic ELFs,” in
11th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 18), 2018.

[34] “HTTP Archive,” https://httparchive.org/, 2018.
[35] R. Jansen and A. Johnson, “Safely Measuring Tor,” in Pro-

ceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS ’16), October 2016.

[36] R. Jansen, M. Traudt, and N. Hopper, “Privacy-preserving
Dynamic Learning of Tor Network Traffic,” in Proceedings
of the 24th ACM Conference on Computer and Communica-
tions Security (CCS ’18), November 2018.

[37] R. Dingledine, D. S. Wallach et al., “Building incentives into
Tor,” in International Conference on Financial Cryptography
and Data Security. Springer, 2010, pp. 238–256.

[38] R. Jansen, N. Hopper, and Y. Kim, “Recruiting new Tor
relays with BRAIDS,” in Proceedings of the 17th ACM con-
ference on Computer and communications security. ACM,
2010, pp. 319–328.

[39] R. Jansen, A. Johnson, and P. Syverson, “LIRA: Lightweight
incentivized routing for anonymity,” in Proceedings of the
20th Network and Distributed System Security Symposium.,
2013.

[40] A. Biryukov and I. Pustogarov, “Proof-of-work as anony-
mous micropayment: Rewarding a Tor relay,” in International
Conference on Financial Cryptography and Data Security.
Springer, 2015, pp. 445–455.

[41] R. Jansen, A. Miller, P. Syverson, and B. Ford, “From
onions to shallots: Rewarding Tor relays with TEARS,” in
7th Workshop on Hot Topics in Privacy Enhancing Tech-
nologies (HotPETs 2014), 2014.

[42] E. Androulaki, M. Raykova, S. Srivatsan, A. Stavrou, and
S. M. Bellovin, “PAR: Payment for anonymous routing,” in
International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 2008, pp. 219–236.

[43] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic
cash,” in Conference on the Theory and Application of Cryp-
tography. Springer, 1988, pp. 319–327.

[44] Y. Chen, R. Sion, and B. Carbunar, “XPay: Practical anony-
mous payments for Tor routing and other networked ser-
vices,” in Proceedings of the 8th ACM workshop on Privacy
in the electronic society. ACM, 2009, pp. 41–50.

[45] B. Carbunar, Y. Chen, and R. Sion, “Tipping pennies? pri-
vately practical anonymous micropayments,” IEEE Transac-
tions on Information Forensics and Security, vol. 7, no. 5,
pp. 1628–1637, 2012.

[46] R. Jansen, “Tor incentives research roundup: Goldstar,
PAR, BRAIDS, LIRA, TEARS, and TorCoin,” https:
//blog.torproject.org/tor-incentives-research-roundup-
goldstar-par-braids-lira-tears-and-torcoin, 2014.

[47] U. Gneezy, S. Meier, and P. Rey-Biel, “When and Why In-
centives (Don’t) Work to Modify Behavior,” Journal of Eco-
nomic Perspectives, vol. 25, no. 4, pp. 191–210, December
2011.

[48] R. Bénabou and J. Tirole, “Incentives and Prosocial Be-
havior,” American Economic Review, vol. 96, no. 5, pp.
1652–1678, December 2006.

[49] J. R. Behrman, P. Sengupta, and P. Todd, “Progressing
through progresa: An impact assessment of a school subsidy
experiment in rural mexico,” Economic Development and
Cultural Change, vol. 54, no. 1, pp. 237–275, 2005. [Online].
Available: http://www.jstor.org/stable/10.1086/431263

[50] T.-N. Dinh, “Universal basic philanthropy: A scalable model
to democratize social impact,” https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=3503969, 2020.

[51] L. Daigle, “WHOIS protocol specification,” URL: https:
//tools.ietf.org/html/rfc3912 , 2004.

[52] S. Williamson and M. Kosters, “Referral whois protocol
(rwhois),” URL: https://tools.ietf.org/html/rfc3912 , 1994.

[53] “Tor research safety board,” https://research.torproject.
org/safetyboard.html, 2018, members: https://research.
torproject.org/safetyboard.html#who.

[54] M. Green and I. Miers, “Bolt: Anonymous payment channels
for decentralized currencies,” https://eprint.iacr.org/2016/
701, 2016.

[55] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson, “KIST: Kernel-Informed Socket Transport for
Tor,” ACM Transactions on Privacy and Security (TOPS),
vol. 22, no. 1, p. 3, 2018.

[56] R. Dingledine and S. J. Murdoch, “Performance im-
provements on Tor or, why Tor is slow and what we’re
going to do about it,” Online: http://www. torproject.
org/press/presskit/2009-03-11-performance. pdf, 2009.

[57] R. Jansen, “BRAIDS github repository,” https://github.com/
robgjansen/braids-tor-simulator, 2010.

[58] R. Dingledine and N. Mathewson, “Tor directory specifi-
cations,” https://gitweb.torproject.org/torspec.git/tree/dir-
spec.txt, accessed: February 2019.

[59] F. Rochet and O. Pereira, “Waterfilling proposal,” https:
//github.com/frochet/wf_proposal, 2017.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525. The views expressed in this article do not necessar-
ily represent the views of Sandia National Laboratories, NTESS,
the U.S. Department of Energy or the United States Govern-
ment.

http://archives.seul.org/or/dev/Feb-2009/msg00000.html
http://archives.seul.org/or/dev/Feb-2009/msg00000.html
http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
https://httparchive.org/
https://blog.torproject.org/tor-incentives-research-roundup-goldstar-par-braids-lira-tears-and-torcoin
https://blog.torproject.org/tor-incentives-research-roundup-goldstar-par-braids-lira-tears-and-torcoin
https://blog.torproject.org/tor-incentives-research-roundup-goldstar-par-braids-lira-tears-and-torcoin
http://www.jstor.org/stable/10.1086/431263
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3503969
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3503969
https://tools.ietf.org/html/rfc3912
https://tools.ietf.org/html/rfc3912
https://tools.ietf.org/html/rfc3912
https://research.torproject.org/safetyboard.html
https://research.torproject.org/safetyboard.html
https://research.torproject.org/safetyboard.html#who
https://research.torproject.org/safetyboard.html#who
https://eprint.iacr.org/2016/701
https://eprint.iacr.org/2016/701
https://github.com/robgjansen/braids-tor-simulator
https://github.com/robgjansen/braids-tor-simulator
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://github.com/frochet/wf_proposal
https://github.com/frochet/wf_proposal

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 192

A Empirical Analysis

A.1 Data Collection

For over two weeks, we deployed a data collection system
to observe empirical temporal information about life-
time and bandwidth consumption in Tor circuits. Our
objective was to have a deeper understanding of typical
Tor usage and whether such usage could benefit from
our channel-based payment system. For example, these
measurements might capture the distribution of type
and magnitude of potential premium traffic. We classify
the traffic type based on the service connection port. In
addition to the standard ports 80 and 443 used for web
traffic, we aggregated data from some other families,
including the WHOIS protocol [51] and RWHOIS [52]
from ports 43 and 4321, respectively. By specifying a
reduced exit policy, we can identify traffic patterns ac-
cording to known types.

Efforts to preserve users privacy
To ensure ethical experimentation, we contacted the Tor
research safety board [53] and used their feedback to
inform our data collection process. We collected data
from five old and stable exit relays with a total band-
width of 50 MiB/s, stripped the origin metadata, ag-
gregated it in memory, and stored it on a central server
into bins of configurable size for each traffic type. The
data only covers circuits that are “active” from the per-
spective of the exit relay, in other words, circuits that
have received a connection request to an IP address on
the internet. Once we collected enough data (1600 cir-
cuits) from a single type, we saved the information on
the disk, cleared the relay memory, and resumed a new
session. Crucially, we did not record information linked
to any single particular user flow on disk. The final re-
sult contained only aggregated data with following two
pieces of information for each pool:

– Time Profile: The total number of inbound and
outbound cells in each 5-second time interval.
Tracking begins after the conclusion of a success-
ful DNS request.

– Total Counts: The total amount of cells processed
by a circuit. We aggregate this information by tak-
ing the mean of fixed-size nearest neighbor bins.

E.g. avoid writing metadata from any specific flow or circuit to
disk.

Observations
Our measurements successfully captured several essen-
tial pieces of information for the design and justification
of moneTor. For example, one crucial task is to deter-
mine the number of potential users that could bene-
fit from paid traffic. From Figure 5a, we observe that
≈ 82% of circuits carrying only web traffic exchanged
less than 1000 cells. While we cannot deduce any state-
ments about users, we can speak to the fraction of cir-
cuits that may benefit from a payment channel in the
Tor network, since around 50% of them do not carry
data and less than 17% of them carry at least one web
page. The remaining 18% would appear to be better
candidates for moneTor.

It is also evident from Figure 5b that most of the
traffic is usually carried within the first few tens of sec-
onds regardless of traffic type. From that result, we be-
lieve that the reliability of payment is critical within
the first few seconds, especially from a relay perspec-
tive. This result highlights our choice to extend Bolt to
offer high fairness. Furthermore, the front-loaded dis-
tribution curve indicates a need to establish available
payment channels as soon as the user opens a circuit.
As a result, we base our design upon a preemptive cir-
cuit build strategy, which effectively eliminates channel
setup/establish latency in the average case.

B Algorithms

B.1 Conventions

We adopt the following conventions in our algorithms.

– Variable subscripts denote a party or role
((I)ntermediary, (C)lient, (R)elay, (E)nd user).

– New nanopayment variables have the character (n)
as a prefix. All other variables reference a value from
the original Bolt scheme, although the name might
be altered somewhat.

– Payment values (ε, δ) are signed integers with re-
spect to the end-user. For example, δC is negative
and δR is positive when a client is paying a relay.

B.2 Variable Index

This section describes the symbols we use to define our
algorithms. In the following list, the left-hand symbol
names a “high-level” bundle of logically related values
that the nodes keep in persistent storage to maintain

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 193

(a) Total Counts — Distribution of circuit size with respect to the total
number of cells processed

(b) Time Profile — Average distribution of traffic across circuit lifetime
beginning with the first DNS request.

Fig. 5. Data collection from 5 old and stable exit relays with a cumulative bandwidth of ≈50 MiB/s

control of their assets. All other symbols name “low-
level” values, which serve as inputs to cryptographic and
accounting operations.

nT = (δC , δR, n, hc
0) — Nanopayment Channel To-

ken — Stores static, public information that defines a
nanopayment channel including the payment values on
both legs, the maximum number of payments, and the
hashchain head. This can be passed around publicly.

ncskC = (nwpkC , nwskC , HC) — Client Nanopay-
ment Secrets — Includes a public/private key pair which
allows the client to setup and close a nanopayment chan-
nel. It also includes a pre-computed hash chain to make
incremental nanopayments

nSC = (k, hck) — Client Nanopayment State —
Stores the mutable, public state of the nanopayment. In-
cludes the current number of completed nanopayments
and the latest sent hash preimage

nrtC — Client Nanopayment Refund — Allows the
client to make a claim to the ledger at any time for
the escrowed money. This refund is signed by the inter-
mediary and conditioned on revealing the latest hash
preimage that the client claims to have sent.

nrcC — Client Channel Closure Message — This is
the final message that the client posts to the ledger to
claim all funds of the micropayment channel. It includes
any completed nanopayments.

nSI = {nT : nanopayment_state} — Intermedi-
ary Nanopayment State — Map of all past and present
nanopayment channels and the corresponding channel
state. Possible states are: ⊥ (failed attempt to setup a
nanopayment channel), setup (channel has been set up
by C), established (channel has been established with
R), or closed||hck (channel has been closed and no fur-
ther payments are allowed).

ncskR = (nwpkC , nwskC ,⊥) — Relay Nanopay-
ment Secrets — Includes a public/private key pair al-
lowing the relay to setup and close a nanopayment chan-

nel. Similar to ncskC except the last field is blank, since
relays cannot make payments.

nSR = (k, hck) — Relay Nanopayment State — See
nSC

nrtR — Relay Nanopayment Refund — See nrtC
nrcC — Relay Channel Closure Message — See

nrcC

SI = {[wpkE |nwpkE] : micropaymentstate} — In-
termediary Micropayment State — Map of all past and
present micropayment channels.

B.3 Algorithms

Algorithm 1 Create Wallet Helper function for cre-
ating a new wallet
1: function Wal(pp, pkpayee, w, ε)
2: parse w as (B,wpk,wsk, r, σw)
3: (wsk′, wpk′)←KeyGen(pp)
4: r′ ←Random()
5: wCom′ ←Commit(wpk′, B + ε, r′)
6: π ← PK{(wpk′, B, r′, σw):
7: wCom′ = Commit(wpk′, B + ε, r′) ∧
8: Verify(pkpayee, (wpk,B), σw) = 1 ∧
9: B + ε ≥ 0}

10: return (wsk′, wpk′, wCom′, π)

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 194

Algorithm 2 Nano-Setup Protocol between a client
and intermediary to create a new nanopayment chan-
nel from an existing micropayment wallet. Run prior to
circuit setup.
1: procedure Client(pp, pkI , wC , δC , n)
2: parse wC as (BC , wpkC , wskC , rC , σ

w
C)

3: if BC + (δC × n) < 0 then
4: Abort() . consider new micropayment channel
5: εC ← δC × n
6: (nwpkC , nwskC , nwComC , nπC)←Wal(pp, pkI , wC , εC)
7: δR ← −(δC + tax) . the tax is a net profit for I
8: HC ←MakeHC(Random(), n)
9: nT ← (δC , δR, n,HC[0])

10: Intermediary.Send(wpkC , nwpkC , nwComC , nπC , nT)
11: procedure Intermediary(pp, skI , SI , nSI)
12: (wpkC , nwpkC , nwComC , nπC , nT)←Client.Receive()
13: parse nT as (δC , δR, n, hc

0)
14: if wpkC ∈ SI ∨ nwpkc ∈ SI ∨ ¬Verify(nπC) then
15: Abort() . invalid wallets
16: if −δC 6= price ∨ δR + δC + tax 6= 0 then
17: Abort() . incorrect payment prices
18: SI ← SI ∪ {wpkC : ⊥, nwpkC : ⊥}
19: nSI ← nSI ∪ {nT : ⊥}
20: nrtC ←Sign(skI , refund||nT ||nwComC)
21: Client.Send(nrtC)
22: procedure Client
23: nrtC ←Intermediary.Receive()
24: if ¬Verify(pkI , refund||nT ||nwComC , nrtC) = 1 then
25: Abort() . invalid refund token
26: nSC ← (0, HC[0])
27: ncskC ← (nwpkC , nwskC , HC)
28: σ

rev(w)
C ←Sign(wskC , revoke||wpkC)

29: Intermediary.Send(σrecv(w)
C)

30: procedure Intermediary
31: σ

recv(w)
C ←Client.Receive()

32: if ¬Verify(wpk, revoke||wpkC , σ
recv(w)
C) = 1 then

33: Abort() . invalid revocation token
34: SI [wpkC]← σ

recv(w)
C

35: nSI [nT]← setup

36: Client.Send(established)

Algorithm 3 Nano-Establish Protocol between a
client, intermediary, and relay to establish the nanopay-
ment channel between the client and relay. Run at the
start of circuit setup.
1: procedure Client(nT)
2: Relay.Send(nT)
3: procedure Relay(pp, pkI , BI:B , wR)
4: nT ←Client.Receive()
5: parse wR as (BR, wpkR, wskR, rR, σ

w
R)

6: parse nT as (δC , δR, n, hc
0)

7: if BI:B − (δB × n) < 0 then
8: Abort() . consider new micropayment channel
9: εR ← δR × n

10: (nwpkR, nwskR, nwComR, nπR)←Wal(pp, pkI , wR, εR)
11: Intermediary.Send(wpkR, nwpkR, nwComR, nπR, nT)
12: procedure Intermediary(pp, skI , SI , nSI)
13: (wpkR, nwpkR, nwComR, nπR, nT)←Relay.Receive()
14: parse nT as (δC , δR, n, hc

0)
15: if wpkR ∈ SI ∨ nwpkR ∈ SI ∨ ¬Verify(nπR) then
16: Abort() . invalid wallets
17: if nSI [nT] 6= setup then
18: Abort (unregistered nanopayment channel)
19: SI ← SI ∪ {nwpkR : ⊥}
20: nSI [nT]← established

21: nrtR ←Sign(skI , refund||nT ||nwComR)
22: Relay.Send(nrtR)
23: procedure Relay
24: nrtR ←Intermediary.Receive()
25: if ¬Verify(pkI , refund||nT ||nwComR, nrtR) = 1 then
26: Abort() . invalid refund token
27: ncskR ← (nwpkR, nwskR,⊥) . match client format
28: nSR ← (0, hc0)

Algorithm 4 Nano-Pay Protocol between the client
and relay to forward a single nanopayment. Run peri-
odically throughout the lifetime of the circuit.
1: procedure Client(nT, ncskC , nSC)
2: parse nT as (δC , δR, n, hc

0)
3: parse ncskC as (nwpkC , nwskC , HC)
4: parse nSC as (k, hck)
5: if k >= n then
6: Abort() . out of nanopayments, setup a new channel
7: nSC ← (k + 1, HC[k + 1])
8: Relay.Send(HC[k + 1])
9: procedure Relay(nT, nSR)

10: hck+1 ←Client.Receive()
11: parse nSR as (k, hsk)
12: if k + 1 >= n ∨Hash(hck+1) 6= hck then
13: Abort() . invalid nanopayment
14: nSR ← (hsk+1, k + 1)

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 195

Algorithm 5 Nano-Close Protocol between an end-
user and an intermediary to close a channel.
1: ∀E ∈ {Client, Relay}
2: procedure EndUser(pp, pkI , wE , nT, ncskE , nSE)
3: parse wE as (BE , wpkE , wskE , r, σ

w
E)

4: parse nT as (δC , δR, n, hc
0)

5: parse ncskE as (nwpkE , nwskE ,_)
6: parse nSE as (k, hck)
7: εE ← δC × k if (EndUser = Client) else δR × k
8: (wpk′

E , wsk
′
E , wCom

′
E , π

′
E) ←

Wal(pp, pkI , wpkB , σ
w
E , BE , εE)

9: Intermediary.Send(wpkE , wCom
′
E , π

′
E , nT, εE , k, hc

k)

10: procedure Intermediary(pp, skI , SI , nSI)
11: (wpkE , wCom

′
E , πE , nT, εE , k, hc

k)←EndUser.Receive()
12: parse nT as (δC , δR, n, hc

0)
13: if εE < 0 ∧ closed 6∈ nSI [nT] then
14: Abort() . client attempting to close before relay
15: if ¬Verify(πE) ∨ nSI [nT] 6= established then
16: Abort() . invalid wallet or channel
17: if k > n ∨ ¬VerifyHC(hc0, k, hck) then
18: Abort() . invalid payment hash chain
19: nSI [nT]← closed||hck

20: rt′E ←Sign(skI , refund||wCom′
E)

21: EndUser.Send(rt′E)

22: procedure EndUser
23: rt′E ←Intermediary.Receive()
24: if ¬Verify(pkI , refund||wCom′

E , rt
′
E) = 1 then

25: Abort() . invalid refund token
26: parse ncskE as (nwpkE , nwskE ,⊥)
27: σ

rev(nrt)
E ←Sign(nwskE , revoke||nwpkE)

28: Intermediary.Send(nwpkE , σ
rev(nrt))

29: procedure Intermediary
30: (nwpkE , σ

rev(nrt)
E)←EndUser.Receive()

31: if nwpkE ∈ SI ∨ ¬Verify(nwpkE , σ
rev(nrt)) then

32: Abort() . unregistered channel or revocation token
33: SI [nwpkE]← σrev(nrt)

34: EndUser.Send(verified)
35: procedure EndUser
36: ver ←Intermediary.Receive()
37: w′

E ←Intermediary.Blindsig(ver, wpk′
E ||BE + εE)

Algorithm 6 Nano-Refund Algorithm by an end-
user to close a micropayment channel and claim ledger
funds.
1: ∀E ∈ {Client, Relay}
2: function EndUser(pp, cskE , wE , nT, ncskE , nSE , nrtE)
3: parse cskE as (_, skE ,_,_,_,_)
4: parse wE as (BE ,_,_,_,_)
5: parse nT as (δC , δB ,_,_)
6: parse ncskE as (nwpkE ,_,_)
7: parse nSE as (k, hck)
8: δE ← δC if (EndUser = Client) else δR

9: mE ← (refund||nT ||nwpkE ||BE + δE ×
n, nrtE , hc

k
E , kE)

10: nrcE ← (mE , Sign(skE ,mE))
11: return nrcE

Algorithm 7 Nano-Refute Algorithm by an inter-
mediary to respond to an end-user’s refund claim by
posting its own channel closure message to the ledger
1: ∀E ∈ {Client, Relay}
2: function Intermediary(pp, TE , SI , nSI , nrcE)
3: parse nrcE as (mE , σ

m
E)

4: parsemE as (refund||nT ||nwpkE ||Bfull
E , nrtE , kE , hc

k
E)

5: . Bfull
E ← balance if nanopayment channel were satu-

rated
6: parse TE as (pkE ,_)
7: if ¬Verify(pkE ,mE , σ

m
E) then

8: Abort() . bad signature, well be rejeced by ledger
9: if ¬Verify(pkI , (refund||nT ||nwpkE ||Bfull

E), nrtE)
then

10: Abort() . unapproved refund token
11: if SI [nwpkE] 6= ⊥ then
12: . E is posting an old token, I should refute
13: σ

rev(nrt)
E ← SI [nwpkE]

14: nrcI ← ((revoked, σrev(nrt)
E), Sign((revoked, σrev(nrt))))

15: . Everything checks out; accept the closure
16: hck ← nSI [nT]
17: nrcI ← ((accepted, kI , hc

k
I), Sign(accepted, kI , hc

k
E))

18: return nrcI

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 196

Algorithm 8 Nano-Resolve Algorithm run by the
ledger (and everyone verifying the ledger) to resolve all
channel closure messages and allocate the appropriate
final balances
1: . Returns the tuple (Bfinal

E , Bfinal
I)

2: function Ledger(pp, TE , TI , nrcE , nrcI)
3: Btotal = Binit

E +Binit
I

4: parse nrcE as (mE , σ
m
E)

5: parse nrcI as (mI , σ
m
I)

6: parsemE as (refund||nT ||nwpkE ||Bfull
E , nrtE , kE , hc

k
E)

7: . Bfull
E ← balance if nanopayment channel were satu-

rated
8: parse nT as (δC , δR, n, hc

0)
9: δE ← δC if (EndUser = Client) else δR

10: if nrcE = ⊥ then
11: . E failed to respond closure request in time
12: return (0, Btotal)
13: if ¬Verify(pkE ,mE , σ

m
E) ∨ ¬Verify(pkI ,mI , σ

m
I) then

14: return ⊥ . messages could not be authenticated
15: if ¬Verify(pkI , refund||nT ||nwpkE ||Bfull

E , nrtE) then
16: return (0, Btotal) . E is attempting to use invalid

token
17: if revoked ∈ mI then
18: parse mI as (revoked, σrev(nrt)

E)
19: if Verify(nwpkE , σ

rev(nrt)
E) then

20: return (0, Btotal) . E is trying to use old channel
21: else
22: return (Btotal, 0) . invalid revocation from I

23: . micropayments settled, now resolve nanopayments
24: parse mI as (accepted, kI , hc

0
I)

25: if kI ≤ kE ≤ n∧VerifyHC(hc0, kE , hc
k
E)) then

26: . E has the highest hash preimage
27: Bfinal

E = Bfull
E − δE × (n− kE)

28: Bfinal
I = Btotal −Bfull

E + δE × (n− kE)

29: if kE ≤ kI ≤ n∧VerifyHC(hc0, kI , hc
k
I)) then

30: . I has the highest hash preimage
31: Bfinal

E = Bfull
E − δE × (n− kI)

32: Bfinal
I = Btotal −Bfull

E + δE × (n− kI)

33: return (Bfinal
E , Bfinal

I)

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 197

C Formal definitions and proofs

C.1 Definitions

Anonymity and balance for nanopayment channel
Our objective in this work is to provide an efficient,
correct, and privacy-preserving payment system for Tor
network bandwidth. Our nanopayment channel is built
on the top of an existing micropayment channel as de-
signed by Green and Miers [20]. Intuitively, we replace
the Pay protocol of their bidirectional channel with
our set of Nano-Setup, Nano-Establish, Nano-Pay and
Nano-Close, protocols to allow high-granularity pay-
ments of up to n iterations at the cost of roughly two Pay
protocols. We require that the intermediary does not
learn more than the number of nanopayments realized
between an unknown Tor client and an unknown relay.
Moreover, we require that the nanopayment protocol
always produce a correct outcome for each valid execu-
tion of the protocol. Informally, the anonymity guaran-
tees provided by the nanopayment channel states that
any relay (except the guard relay) of a circuit learns no
information except that a valid nanopayment channel
establishment, payment, or closure has occurred over
an open micropayment channel with some intermedi-
ary. A particular relay should not be able to link any
two nanopayment channels for separate circuits that it
operates.

We reuse the payment anonymity and balance prop-
erties of Green and Miers [54] for an Anonymous Pay-
ment Channel (APC scheme), but we adapt them for
our tripartite protocol. The scheme requires a privacy
property that holds against the intermediary, a privacy
property that holds against a relay, and a balance prop-
erty to define monetary security. We prove that if there
exists an adversary able to break the anonymity prop-
erty, then this adversary can distinguish the Real ex-
periment from the Ideal experiment of an APC scheme
with a non-negligible advantage. Furthermore, we prove
that the only adversary able to break the balance prop-
erty is an adversary able to break preliminary security
assumptions.

Due to the fact that moneTor nanopayment channels are in-
herently transparent, we do not require unlinkability between
Nano-Setup/Nano-Establish and Nano-Close from the perspec-
tive of the relay and the intermediary.

C.1.1 Payment anonymity with respect to the
intermediary:

Let A be an adversary playing the role of the intermedi-
ary. We consider an experiment involving P customers
(a.k.a. Tor client) and Q relays, each interacting with
the intermediary as follows. First, A is given pp, then
outputs TM. Next A issues the following queries in any
order:

Initialize channel for Ci and Rj. When A makes
this query on input Bcust, Binter, it obtains the com-
mitment T i

C generated as

(T i
C , csk

i
C)←$ InitC(pp,Bcust, Binter)

where the customer might also be a relay. In this case,
the intermediary obtains the commitment T j

R generated
as

(T j
R, csk

j
R)←$ InitR(pp,Brelay, Binter)

Establish channel with Ci and Rj. In this query,
A executes the Establish protocol with Ci (resp. Rj) as

Establish({C(pp, TM, cski
C)}, {A(state)})

Where state is the adversary’s state. We denote the
customer’s output as wi, where wi may be ⊥.

Nano-Setup from Ci. In this query, if wi 6= ⊥,
then A executes the Nano-Setup to escrow ε with Ci as:

Nano-Setup({C(pp, ε, wi
C)}, {A(state)})

Where state is the adversary’s state. We denote the
customer’s output as wi

C , the hashchain root hc0, the
customer’s nanopayment secret ncskC , the customer’s
state nSC and the refund token nrtC , where any may
be ⊥.

Nano-Establish from Rj . In this query, if wj
R and

nT 6= ⊥, then A executes the Nano-Establish to register
the nanopayment channel with the relay Rj as:

Nano-Establish({R(pp, wj
R, nT)}, {A(state)})

Where state is the adversary state. We denote the
relay’s output as wj

R, the refund token nrtR, the relay’s
nanopayment secret ncskR and the state of the relay’s
nanopayment channel nSR.

Nano-Close from Ci and Rj. In this query, if εiC ,
nT , ncskC and nSC 6= ⊥, then A executes the Nano-
Close to close the nanopayment channel and update the

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 198

micropayment wallet with Ci (resp. Rj).

Nano-Close({C(pp, εiC , nT, ncskC , nSC)}, {A(state)})→ wi
C

Where state is the adversary’s state. We denote the
customer’s and relay’s output as wi

C (resp. wj
R), where

it may be ⊥.

Finalize with Ci (resp. Rj). When A
makes this query, it obtains rci

C , computed as
rcC ←$Refund(pp, wi

C).
We say that A is legal if A never asks to spend from

a wallet where wi
C or w

j
R is ⊥ or undefined, and where A

never asks Ci to spend unless the customer has sufficient
balance to complete the spend.

Let pp′ be an auxiliary trapdoor not available to
the participants of the real protocol. We require the
existence of a simulator SX−Y (·)(pp, pp′, ·) such that for
all TM, no allowed adversary A can distinguish the fol-
lowing two experiments with non-negligible advantage:

Real experiment. In this experiment, all re-
sponses are computed as described in our Algorithms.

Ideal experiment. In this experiment, the micro-
payment operations are handled using the procedure
above. However, for the nanopayment procedures, A
does not interact with Ci and Rj but instead interacts
with a simulator SX−Y (·)(pp, pp′, ·).

C.1.2 Payment anonymity with respect to the relay.

Let A be an adversary playing the role of the relay. We
consider an experiment involving P customers (a.k.a.
Tor clients), each interacting with the relay as follows.
First, A establishes a micropayment channel with the
intermediary. Next, A issues the following queries in
any order:

Nano-Establish from Ci. In this query, nT may
be ⊥, then A executes only the part of Nano-Establish
which interacts with Ci:

Nano-Establish({C(pp, nT)}, {A(state)})

Where state is the adversary state. We denote the
customer’s output nT , which may be ⊥.

Nano-Pay from Ci. In this query, nT 6= ⊥ and pk

may be ⊥, then A executes the Nano-Pay protocol for
an amount δ with Ci as:

Nano-Pay({C(pp, δ, pk)}, {A(state)})

Where state is the adversary’s state and pk is the
preimage of the current hash stored in the adversary’s
state or ⊥.

We say that A is legal if A never asks to spend more
than n× δ.

Let pp′ be an auxiliary trapdoor not available to
the participants of the real protocol. We say that a
payment scheme offers anonymity if, for every legal A,
there is a simulator SX−Y (·)(pp, pp′, ·) such that the
following two experiments cannot be distinguished with
a non-negligible advantage:

Real experiment. In this experiment, all re-
sponses are computed as described in our Algorithms.

Ideal experiment. In this experiment, the micro-
payment operations and nanopayment operations with
the intermediary are handled using our algorithms.
However, for the nanopayment procedures between the
Tor client and the adversary relay, A does not interact
with Ci but instead interacts with SX−Y (·)(pp, pp′, ·).

C.1.3 Balance

Let A be an adversary playing the role of the relay. We
consider an experiment involving P honest Tor clients
C1, ..., CP interacting with the relay. We assume the mi-
cropayment channels are properly setup and established
with the intermediary and that the intermediary contin-
ues to interact honestly with the client and relay.

Given the micropayment channel setup and estab-
lished, parties hold funds valued at Bcust and BA. Let
balA ← 0 be the amount of funds the adversary may
claim. Now A may issue the following queries in any
order:

Nano-Establish from Ci. In this query, nT may
be ⊥, then A executes only the part of Nano-Establish
which interacts with Ci:

Nano-Establish({C(pp, nT)}, {A(state)})

Where state is the adversary state. The adversary
obtains nT and establishes the nanopayment channel
with the intermediary.

Nano-Pay from Ci. The nanopayment channel has
been correctly established before. This query can exe-
cuted up to n times before Nano-close is called. For
each execution, nT 6= ⊥ and pk may be ⊥. A executes
the Nano-Pay protocol for an amount δ with Ci as:

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 199

Nano-Pay({C(pp, δ, pk)}, {A(state)})→ pk

If H(pk) matches the hash stored in the adversary’s
state, then balA = balA + δ and H(pk) is stored in the
internal state. If it does not match, we output ⊥.

Nano-Close with intermediary. In this query,
εA ← k×δ for k Nano-Pay executions. nT, ncskA, nSA 6=
⊥, then A executes the Nano-Close protocol to close its
leg of the nanopayment channel and claim funds to the
intermediary.

Nanoclose({A(pp, εiA, nT, ncskA, nSA)},

{Intermediary(state)})→ wi
A

We denote the adversary output wi
A, where it may

be ⊥. The Tor client also closes its leg of the nanopay-
ment channel with the intermediary to transfer k×δ and
update its wallet accordingly. At any point, all parties
have the option to call Nano-Refund to initiate a par-
tial or full refund of their escrowed fund and close the
nanopayment channel. We say that A is legal if it never
agrees to execute the Nano-Pay protocol upon nT = ⊥.
We further restrict A to establish one nanopayment
channel per micropayment channel established with any
Tor client. We say that a scheme guarantees a correct
balance if no A can complete, with non-neglible prob-
ability, the game described above in such a way that
balA > k × δ.

C.2 Theorem

The nanopayment channel scheme satisfies the proper-
ties of anonymity (C.1.1, C.1.2) and security (C.1.3)
under the restriction that the adversary does not abort
before Nano-Close finishes, the restrictions that at most
one nanopayment channel can be open per micropay-
ment channel, the assumptions that the commitment
scheme is secure, the zero-knowledge system is simula-
tion extractable and zero-knowledge, and the hash func-
tion used to create the hashchain and verify the preim-
age during the Nano-Pay is a cryptographic hash func-
tion.

C.3 Proofs

C.3.1 Anonymity

We prove that the nanopayment channel scheme sat-
isfies our anonymity properties using a simulator

SX−Y (·)(pp, pp′, ·) such that no allowed adversary A can
distinguish the Real experiment from the Ideal experi-
ment with non-negligible advantage. The way this proof
proceeds requires honest runs of the appropriate algo-
rithms for the micropayment channel. When Nanopay-
ment channel operations are called, the client side or
relay side of the protocol is emulated by the simulator
for the Ideal experiment. To prove that they are indis-
tinguishable, we borrow Green and Miers’s proof and
extend it to our notion of payment anonymity to the
intermediary and the relay. We start with the Real ex-
periment, and we create Games that modify elements of
the protocol until we match the Ideal experiment con-
ducted with the simulator S. WhenA calls the simulator
S on legal interactions, the simulator emulates the Tor
client or relay part of the protocol, depending on which
step of the protocol we perform.

Let be ν1, ν2 be negligible functions and let
Adv[Game i] be A’s advantage in distinguishing the
output of Game i from the Real Distribution.

Game 0. This is the Real experiment: Nano-
Setup, Nano-Establish, and Nano-Close between cus-
tomers (Tor clients) and the intermediary.

Game 1. This game is identical to Game 0 ex-
cept that we replace NIZK proofs generated by the cus-
tomer at the Nano-Setup and Nano-Close with simu-
lated proofs (we assume the existence of a ZK simula-
tion algorithm which can extract a simulated proof). If
the proof system is zero-knowledge, then Adv[Game
1] ≤ ν1.

Game 2. This game is identical to Game 1 except
that we replace the commitments nwComC , nwComR,
wCom′C and wCom′R by commitments on random mes-
sages. If the commitment scheme is computationally
hiding, then Adv[Game 2] − Adv[Game 1] ≤ ν2.

Game 3. This game is identical to Game 2 ex-
cept that we replace the root of the hashchain HC[0]
with a value generated from Random(). Note that Ran-
dom() was also used for the original value, therefore
Adv[Game 3] − Adv[Game 2] = 0.

Game 4. This game is identical to Game 3 ex-
cept that we replace wpkC , nwpkC , wpkR, nwpkR with
random keys using the KeyGen algorithm described for
anonymous micropayment channels. Since the distribu-
tion is identical to the distribution of original values,
Adv[Game 4] − Adv[Game 2] = 0

We have started with the Real experiment and mod-
ified elements of the protocols from a series of Games to
come up with a computationally indistinguishable ex-
periment conducted by S from the Real experiment.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 200

Since A cannot distinguish the real experiment from
the Ideal experiment obtained in Game 4. with non-
negligible advantage, the interaction between customers
and intermediary is anonymous.

Now, we have to prove the indistinguishablility
between the Real experiment and the Ideal experiment
for the relay’s payment anonymity property. We pro-
ceed with the same logic:

Game 0’. This is the Real experiment: Nano-
Establish and Nano-Pay between Tor clients and relays.

Game 1’. This game is identical toGame 0’ except
that we replace the root of the hashchain HC[0] with a
value generated from Random() in the Nano-Establish
interaction. Note that Random() was also used for the
original value, therefore Adv[Game 1’] − Adv[Game
0’] = 0

Game 2’. This game is identical toGame 1’ except
that we replace the preimage pk sent to the relay by a
value generated from Random(). In the random oracle
model, both the original value and the simulated one
provide from the same distribution, hence Adv[Game
2’] − Adv[Game 1’] = 0

Since Game 2’ is identical in the Ideal experiment,
the interaction between Tor clients and relays is anony-
mous.

By showing that the interaction with the interme-
diary and the interaction with the relay through the
nanopayment algorithms are anonymous, we conclude
that our nanopayment channel is anonymous.

C.3.2 Balance

We prove that the Nanopayment channel guarantees
correct balance if the micropayment channel is itself se-
cure, the hash function behaves like a random oracle,
and the signature scheme is EU-CMA secure (i.e. Exis-
tential Unforgeability under a Chosen Message Attack).

To win, A must claim more money than the agreed-
upon price between an honest client and the adversary.
The adversary must make this claim while running a
protocol that is indistinguishable from the honest pro-
tocol. The Nano-Setup protocol borrows the same struc-
ture as the provably secure Pay protocol. Properties in-
cluded the soundness of the zero-knowledge proof, the
binding property of the commitment scheme, and the
unforgeability of the signature scheme. At this step, the
adversary cannot win against the Tor client and claim
more than k × δ where k is 0 since no Nano-Pay has
been executed yet. For the following steps of the proto-

col, we proceed by showing that A cannot diverge from
the protocol and claim more than k× δ with our classi-
cal security assumptions. If A could succeed this game,
it would mean that there exists an indistinguishable ex-
periment from the Real experiment where A ends up
with more than k × δ.

Game 0. This is the Real experiment.
Game 1. This game is identical to Game 0 except

that we replace hc0 in nT by a value chosen by A from
a hashchain created by A. From this hashchain, A cre-
ates nT ′. If the intermediary is honest, the nanopayment
cannot be established because nT ′ is unknown to the in-
termediary for this micropayment channel. If the inter-
mediary is dishonest, then it can accept nT ′ but cannot
prove, under the assumption that the signature scheme
is unforgeable in the usual sense (EU-CMA secure), that
the client holds a refund token with nT ′ instead of nT .
Hence, Adv[Game 1] ≤ ν1.

Game 2. This game is identical to Game 1 except
that A tries in the Nano-Pay protocol to find herself a
preimage to the stored hashchain, and claim more than
δ. Assuming the hash function is a cryptographic hash
function, then the adversary cannot find a preimage un-
less the Tor client sends it to issue a payment. Hence,
Adv[Game 2] ≤ ν2.

Finally, the Nano-Close protocol borrows the mi-
cropayment Pay protocol to update the micropayment
wallet according to the number k of preimages the ad-
versary received from the Tor client. The Pay protocol
has been proved secure by Green and Miers; hence we
observe that the adversary cannot win the game with a
non-negligible probability (claim more than k × δ).

D Scheduling insights

D.1 background: scheduling

Tor handles multiple queues of cells for each circuit and
writes cells in the outbound connection while favor-
ing “bursty” traffic, involving many smaller files, over
“bulky” traffic, involving a few large files. The network’s
goal is to prioritize circuits handling interactive data
streams, like chats or web browsing. Tor uses a heuris-
tic called EWMA [10] (i.e., computes the exponentially
weighted moving average for the number of cells sent on
each circuit) to decide which circuit to prioritize. Re-
cently, the Kist [7] scheduler improved the efficiency of
EWMA by reducing the congestion on the kernel out-

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 201

Fig. 6. Prioritized Scheduling — CDF download times for super-
imposed web and bulk clients where premium status is enforced
only via scheduling. Almost no priority is observed.

bound queue and pushing back this delicate problem
onto the Tor layer.

In an ideal network, we might expect that traffic
movement is an exclusive function of the raw bandwidth
capacity in each edge connection and the scheduling al-
gorithm implemented at each node. The Tor network
employs EWMA to favor interactive web clients over
continuous bulk clients.

D.2 Obstacles

In moneTor, we originally attempted to modify EWMA
with a simple linear scaling factor that would favor paid
circuits. However, obtaining positive results from the
modified algorithm has proven to be a complex chal-
lenge. Upon failing to achieve meaningful differentiation
with low values of β, we adopted a more blunt policy
which always services premium circuits first and imple-
mented it in a zero-overhead version of moneTor. The
results are displayed in Figure 6. Although we observed
some moderate differentiation, the difference falls well
short of the benefit needed to incentivize paid users.
The same observation holds even under heavy levels of
induced congestion.

This result is a serious issue since all previous works
use strategies that make local scheduling decisions on
each relay serve premium bandwidth. Our experiments
indicate that offering bandwidth priority based on local
decisions would be ineffective.

This ideal version of moneTor strips away all payment opera-
tions and instead passes a single signal through the network to
distinguish premium circuits.

Fig. 7. Queue Temporal Profile (60 seconds) — Size of the
scheduling buffer over time at a single exit relay in terms of num-
ber of cells. Colors group cells belonging to the same circuit.

D.3 Investigation and discussion

Our negative results indicate that scheduling is not the
most decisive factor in determining performance. To ver-
ify this hypothesis, we studied the incoming queue from
which the scheduler can select new active circuits. Fig-
ure 7 illustrates the temporal load in the queue at a sin-
gle exit relay over one minute. The height of the curve
represents the total number of cells waiting to be ser-
viced at each continuous point in time, while the colors
group quantities of cells that belong to the same cir-
cuit. Figure 8 displays a subset of the same information
within a smaller time interval.

In the figures mentioned earlier, notice that the
queue is only populated for a period of 10 ms before
it is completely flushed, implying the queue spends the
vast majority of its time empty. This 10 ms window is
a product of Tor’s internal event handling framework
and is consistent with data from Jansen et al [55]. We
found in an analysis of the line-by-line observations of
the queue activity that while cells get flushed in the cor-
rect order, they appear in the queue at roughly equal
proportions. In effect, bandwidth in our simulation is
not constrained by the ordering policy of the scheduler
but rather by the rate at which they arrive from the
network. As a consequence, local decisions at a particu-
lar relay for scheduling fall short of offering the expected
priority. Note that Jansen et al. [55] discovered the same
problem, which motivated the deployment of KIST. Our
results show that despite the use of KIST, relays may
still be able to flush all queues at once, eliminating the
effect of the scheduler’s choice.

We now proceed to investigate why local relay
scheduling does not work as expected. Why do we fail to
reproduce the positive results from previous works such

While the graph has the visual appearance of a bar graph, this
is just a function of the striking data pattern. In actuality, the
plot displays a stacked area graph.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 202

Fig. 8. Queue Temporal Profile (2 seconds) — Size of the
scheduling buffer over time at a single exit relay in terms of num-
ber of cells. Colors group cells belonging to the same circuit.

as BRAIDS and LIRA despite using the same method-
ology? One possible explanation is that other network
control mechanisms within the Tor codebase constrain
the flow of cells, rendering the mostly idle scheduler to
be ineffective. Such mechanisms include point-to-point
flow control, connection throttling, or some minimally-
documented threshold embedded in the code. However,
we do not believe that this fully explains our results,
since the Tor code implementing these components has
not meaningfully changed over the years.

Our positive results in Section 5.3, which show that
the performance increases when we increase the circuit
windows, points to a more promising direction. This
finding contradicts previous works exploring the effect of
window sizes [30, 31, 56]. To explore this lead, we found
and verified the following explanation: the constraining
network bottleneck has moved from the Tor network it-
self to the exit relay interface with external servers on
the web. In this scenario, cell queuing within Tor is not
nearly as important as the TCP/IP packet handling at
each exit relay. Both approaches to prioritize flows are
complementary: when the congestion is inside the Tor
network, applying local scheduling policies makes an ef-
ficient priority mechanism, as demonstrated by previous
works. Also, in such a situation, priority based on the
flow-control (that is, a function of the global circuit)
would not be efficient because all cells would spend the
majority of the time waiting in relays’ FIFO queues.
Conversely, if the congestion is outside of the Tor net-
work (between the exit relays and the destination), then
local scheduling policies would fall short of making any
prioritization as shown in Figure 6. Decisions based on
the flow-control would achieve prioritized flows in this
case, as demonstrated in Section 5.3.

The shift of congestion from the internal Tor net-
work to the exit gateways explains why our schedul-
ing results in Figure 6 are different from BRAIDS and
LIRA. Indeed, BRAIDS ran experiments with Tor ver-
sion 0.2.0.35 and a network history from January

A
d
ve

rtis
e
d
 b

a
n
d
w

id
th

C
o
n
s
u
m

e
d
 b

a
n
d
w

id
th

2012 2014 2016 2018

0 Gbit/s

100 Gbit/s

200 Gbit/s

300 Gbit/s

0 Gbit/s

100 Gbit/s

200 Gbit/s

300 Gbit/s

Exit only Guard and Exit Guard only Neither Guard nor Exit

Advertised and consumed bandwidth by relay flags

The Tor Project − https://metrics.torproject.org/

Fig. 9. Evolution of bandwidth aggregated by relay flags.

2010 [57]. This version of Tor was released before Mike
Perry implemented a major change in the path se-
lection mechanism that reduced Tor’s internal conges-
tion problem and greatly improved the performance.
The bandwidth-weights are a set of weights specified
in the directory specifications, section 3.8.4 [58], that
aim at balancing the overall network usage. Those
weights are critical for network performance and also
for anonymity [28, 59]. Importantly, the benefit of Mike
Perry’s bandwidth-weights is proportional to the in-
equalities between the overall bandwidth in-circuit posi-
tions, which has grown rapidly over the years, as shown
in Figure 9.

LIRA’s experiments ran on tor-0.2.3.13-alpha
from March 2012, which benefits from Mike Perry’s
bandwidth-weights. This timeline may explain why
LIRA has a less impressive priority advantage compared
to one exposed in BRAIDS. Experiments in LIRA are
probably less internally congested than the ones from
BRAIDS, a change that appears to be caused by the
significant change in the path selection algorithm. How-
ever, the different congestion status may also be due
to other factors such as a different client usage model
and the local scheduling policies. LIRA used a simulated
environment scaled down from an April 2012 consensus
where ≈ 42% of relays had an Exit flag. Meanwhile, only
≈ 13% of relays in our experiment had an Exit flag. Fig-
ure 10 plots the distribution of bandwidth allocated to
each position and illustrates the different state of the
Tor network, which in turn is reflected in the Shadow
Simulations. More recent consensus data, which we use
in moneTor’s experiments, indicate network conditions
where exit bandwidth is much scarcer [28].

Commit 0ff86042ac16 in September 2010.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels 203

Fig. 10. Bandwidth distribution in consensuses used for BRAIDS,
LIRA and moneTor experiments - BRAIDS does not bene-
fit from bandwidth-weights to refill Middle, LIRA benefits
from bandwidth-weights to offer balance between all positions,
moneTor benefits from bandwidth-weights to balance entry and
middle, yet does not have enough exit nodes to achieve the full
balance

In summary, as the network grows to offer greater
internal bandwidth (Figure 9, Figure 10), LIRA’s and
BRAIDS’s schedulers tend to become less efficient for
providing priority, as demonstrated in our experiments
and shown in Figure 8. We should emphasize that this
observation describes a coarse-grained trend. Since our
experiments ran on a scaled-down topology with sim-
plistic models for user behavior, the results do not nec-
essarily describe the state affairs for all relays in the
real Tor network. What can be said is that networking
as a whole is an immensely complex and unpredictable
domain and that attaining a simulation environment
conducive to effective scheduling is, at the very least,
nontrivial. Any serious deployment of an incentiviza-
tion scheme would require further research into robust
prioritization mechanisms. We leave this task for future
work.

	Scaling Up Anonymous Communication with Efficient Nanopayment Channels
	1 Introduction
	2 Background
	3 Payment Design
	3.1 Ledger
	3.2 Payment Protocols Overview
	3.3 Nanopayment Protocol Details
	3.4 Payment Security and Anonymity
	3.5 Economic Considerations
	3.6 Tax Integration
	3.7 Integration in Tor Circuits

	4 Network Design
	4.1 Pre-built Channels
	4.2 Prioritized Traffic

	5 Experimental Validation
	5.1 Prototype
	5.2 Methodology
	5.3 Experiments

	6 Related Work
	7 Discussion
	8 Conclusion
	A Empirical Analysis
	A.1 Data Collection

	B Algorithms
	B.1 Conventions
	B.2 Variable Index
	B.3 Algorithms

	C Formal definitions and proofs
	C.1 Definitions
	C.1.1 Payment anonymity with respect to the intermediary:
	C.1.2 Payment anonymity with respect to the relay.
	C.1.3 Balance

	C.2 Theorem
	C.3 Proofs
	C.3.1 Anonymity
	C.3.2 Balance

	D Scheduling insights
	D.1 background: scheduling
	D.2 Obstacles
	D.3 Investigation and discussion

