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Abstract: Through recent years, much research has been
conducted into processing privacy policies and present-
ing them in ways that are easy for users to understand.
However, understanding privacy policies has little util-
ity if the website’s data processing code does not match
the privacy policy. Although systems have been pro-
posed to achieve compliance of internal software to ac-
cess control policies, they assume a large trusted com-
puting base and are not designed to provide a proof of
compliance to an end user. We design Mitigator, a sys-
tem to enforce compliance of a website’s source code
with a privacy policy model that addresses these two
drawbacks of previous work. We use trusted hardware
platforms to provide a guarantee to an end user that
their data is only handled by code that is compliant with
the privacy policy. Such an end user only needs to trust
a small module in the hardware of the remote back-end
machine and related libraries but not the entire OS. We
also provide a proof-of-concept implementation of Mit-
igator and evaluate it for its latency. We conclude that
it incurs only a small overhead with respect to an un-
modified system that does not provide a guarantee of
privacy policy compliance to the end user.
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1 Introduction
Internet users have been habituated to click on a check-
box that says something to the effect of “I have read
and understood the privacy policy” when they register
an account on a website. As these privacy policies are
long and written in legalese, users are effectively ex-
pected to trust that a website follows reasonable data
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handling practices. Earlier works, such as the Platform
for Privacy Preferences (P3P) standard [11], which was
a machine-readable privacy policy format, attempted to
automatically match websites’ privacy policies against
users’ preferences. Browsers would ensure that a web-
site that a user visited had a privacy policy that was
at least as restrictive as the user’s. However, as Cranor
found [12, pp. 296–299], and as noted in the W3C stan-
dard for P3P, it was impossible to enforce that websites’
P3P policies are representative of the websites’ actual
practices and therefore, P3P policies lost their meaning.

More recently, Slavin et al. [27] and Zimmeck et
al. [33] used a model generated by a privacy policy
model generator [2, 7, 16, 31, 32] to check the output of
source-code analysis tools for privacy policy violations.
They identify smartphone apps and third-party libraries
that send users’ information across the network, in vi-
olation of their privacy policies. In light of this, it is
important to ensure that websites’ source code is com-
pliant with respect to their privacy policies.

Indeed, several systems that are variations of the
above basic design have been proposed to assess the
compliance of back-end website source code with for-
mal logic representations of privacy policies [25] or ac-
cess control policies [13, 15]. However, such systems re-
quire an end user to trust that the operating systems
on the website’s back-end machines are free of any vul-
nerabilities. Recent data leaks [30] exemplify poor data
handling practices of organizations and thus it is rea-
sonable for a user to not trust the operating systems on
a website’s server-side machines.

Trusted hardware platforms enable establishing
trust in a small part of the CPU on the remote host
machine, while treating the rest of the hardware and
the OS of the remote host as untrusted and compro-
mised. Although several approaches [6, 20, 29] have used
trusted hardware platforms to reduce the trusted com-
puting base for ensuring compliance of server-side code
with privacy policies, they do not provide the following
important properties simultaneously:
1. Not require the users to trust the OS.
2. Protecting users’ data end to end, from its point

of generation in the browser to where it is being
processed on the trusted hardware platform.
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3. Providing users with a verifiable guarantee of the
above end-to-end protection.

4. Ensuring that noncompliant applications do not
abort in a production environment, thereby avoid-
ing poor user experiences with the service.

5. Supporting web applications that perform various
operations on users’ data such as sharing data, using
it for a given purpose, and so on.

In this work, we leverage trusted hardware platforms to
present a design, named Mitigator, that satisfies all of
the above properties. In particular, Mitigator provides
a cryptographic guarantee to a user not only that the
website code has been checked by the aforementioned
verifier program to be compliant with the privacy policy,
but also that user’s data will only be handled by code
that has been checked by the verifier program.

Organizations have several incentives to deploy an
implementation of Mitigator. Such an implementation
can increase the transparency of their data handling
practices to users, while minimizing the trust assump-
tions that users are required to make, from including
the entire OS to just a small trusted hardware mod-
ule and a set of libraries to support it. The implemen-
tation can thus be used as a differentiating feature of
their online products and services, in order to draw in
privacy-conscious users. In addition, it can also be used
to illustrate that their code has certain verified proper-
ties that are required in applicable legislation.

In this paper, we start start with providing relevant
background and related work in Sections 2 and 3, and
outline our threat model in Section 4. We then present
the following three contributions within the subsequent
sections:
1. We present Mitigator, a cryptographic design that

securely uses underlying trusted hardware platform
primitives to provide the aforementioned properties
(Section 5).

2. We briefly describe a proof-of-concept implementa-
tion of Mitigator on the Intel SGX trusted hardware
platform (Section 6).

3. We evaluate our proof-of-concept implementation,
in terms of overheads compared to an otherwise
identical setup that runs on an untrusted operat-
ing system and does not provide Mitigator’s privacy
guarantees (Section 7).

2 Background
The Mitigator design combines existing work on privacy
policy model generation and static source-code analysis
to check the website back-end code for compliance with
the privacy policy. Our novel contribution lies in build-
ing cryptographic protocols on top of trusted hardware
platforms to provide a guarantee to end users that their
data, from the time it leaves the browser, is only ever
handled by code that passed this check. In this section,
we first focus on trusted hardware platforms and de-
scribe which properties are needed for Mitigator. We
then proceed to briefly describe source code analysis
tools and modern policy model generation tools.

2.1 Trusted hardware platforms

Trusted hardware platforms have been designed to solve
the secure remote computation problem: a developer
wishes to run a program on a remote untrusted ma-
chine and obtain an assurance of the confidentiality of
the program state and integrity of the program. Two
prominent trusted hardware platforms include Intel’s
Software Guard Extensions (SGX) platform [17] and
AMD’s Secure Encrypted Virtualization (SEV)/Secure
Memory Encryption (SME) [1].

We note that although we focus on the Intel SGX
trusted hardware platform, our design can be imple-
mented on other trusted hardware platforms, such as
AMD’s SEV/SME. To this end, we outline desirable
properties of a trusted hardware platform for it to be
used to implement our design.

The Intel SGX programming interface involves par-
titioning native C/C++ applications into trusted and
untrusted executables. Specifically, C-style functions in
the application that may perform confidential opera-
tions or whose integrity needs to be guaranteed should
be included in a trusted executable known as the en-
clave. The developer can deterministically compute a
specific hash of the enclave executable, known as the en-
clave measurement. The developer then signs over this
enclave measurement to produce a signature token. The
enclave executable and the signature token are then sent
to an untrusted remote host. The developer can also eas-
ily compute a hash of the verification key corresponding
to the signing key used to sign the enclave; this value is
known as the signer measurement.

On the untrusted host, enclaves are loaded into pro-
tected pages in the memory, known as the Processor Re-
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served Memory (PRM). The untrusted OS cannot read
these pages as it does not have the relevant hardware-
bound keys. This gives us the aforementioned property
of confidentiality of the program state. Further, the un-
trusted OS cannot load a different enclave into memory
without changing its enclave measurement, thus result-
ing in integrity of the program. Finally, unless the en-
clave’s signature can be verified by the verification key
in the signature certificate, the trusted hardware plat-
form will not produce the correct signer measurement.
We will be using the enclave and signer measurements
within our design.

In addition to the above guarantee over the correct-
ness of enclave and signer measurements, the Intel SGX
trusted hardware platform provides sealing and attesta-
tion guarantees, as follows, which we use in our system:
1. Sealing: An enclave can save long-term secrets to

disk such that the untrusted OS cannot obtain the
plaintext secrets or modify them without being de-
tected by the enclave, in a process known as sealing.
Such a secret can be sealed such that only enclaves
with an identical enclave measurement can unseal it,
or only ones with an identical signer measurement,
or only the sealing enclave itself.

2. Attestation: Attestation corresponds to an enclave
on a given machine proving to either another en-
clave on the same machine (local attestation) or to
a remote client (remote attestation), that it is in-
deed a particular SGX enclave. The proof for local
attestation can only be verified by the participating
enclaves if they are on the same machine, whereas in
remote attestation, the client needs verification from
Intel that the proof given by the enclave is valid.
In addition, attestations result in a secure (AEAD)
channel being established between the two enclaves
(local) or the enclave and the client (remote). We
remark that both styles of attestation are conducted
in the presence of an untrusted OS that can observe
and modify messages between enclaves or between
an enclave and the client.

2.2 Source code analysis tools

Information flow analysis has been used by security re-
searchers to analyse server-side scripts to detect vul-
nerabilities such as SQL injection and XSS attacks: if
any user-specified inputs are passed to output functions
without being sanitized first, then a vulnerability may
exist. Jovanovic et al. [18] propose Pixy, an open-source
static PHP taint analysis tool that uses the above ap-

proach for automatically identifying vulnerabilities due
to a lack of sanitization in server-side PHP code. Sub-
sequently, Backes et al. [5] proposed PHP-Joern to con-
duct scalable, automated analyses of PHP scripts to de-
tect a wider range of security vulnerabilities, such as
control flow-related vulnerabilities. Owing to its sim-
plicity and ease of integration into Mitigator’s imple-
mentation as a simple stand-alone unit, we currently
use Pixy within Mitigator to analyze PHP source code
files. However, other source code analysis tools, possibly
for a different back-end scripting language, can easily be
used in place of Pixy.

2.3 Modelling natural language privacy
policies

With recent advances in natural language processing,
textual privacy policies can be translated into accu-
rate models, which have then been used to check source
code for compliance. Andow et al. [2] and Harkous et
al. [16] present PolicyLint and Polisis respectively, both
of which automatically generate a model of a given pri-
vacy policy for a given website using NLP and ma-
chine learning techniques. Polisis and PolicyLint can be
adapted to form a model of the privacy policy text that
contains information types and operations at a sufficient
granularity to configure the source code analysis tool.
For instance, Sen et al.’s [25] first-order logic represen-
tation of privacy policies, named Legalease, uses finite
lattices to represent values—Polisis and PolicyLint can
be extended to automatically generate Legalease repre-
sentations for the verifier program.

3 Related work
Related work in this area has several different goals and
therefore, we first present the following five criteria (re-
flected in Table 1) to meaningfully compare existing
work with Mitigator.
1. Low TCB: Systems that do not require trusting

the OS to be free of vulnerabilities are categorized
as requiring a low trusted computing base (TCB).
Even systems using trusted hardware platforms can
be categorized as having a high TCB if their design
allows the OS to observe users’ data in plaintext.

2. End-to-end: Akin to Saltzer and Schroeder’s con-
cept of complete mediation, we expect systems to
guarantee that users’ data is handled as per their
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policies, from the point where it is collected in the
browser to the point where it enters an enclave or
the data-processing program.

3. User guarantee: Systems that do protect users’
data end to end should also provide the users’ client
with a verifiable guarantee that it is functioning cor-
rectly.

4. Static: Systems that use information flow analy-
sis to determine whether the server-side program
is compliant with some policy can be static or dy-
namic. Static analysis tools make this decision at
compile time, and therefore the verified applications
are never denied access to users’ data at runtime.
For this reason, we prefer static tools. Dynamic tools
make the decision at runtime and can thus verify a
larger subset of language features, but can result in
applications failing or aborting at runtime.

5. General operations support: The system should
support checking a range of operations that applica-
tions tend to perform on user data, such as sharing
users’ data, determining whether all operations on
users’ data meet a set of acceptable purposes, en-
suring data is not retained for a longer time, etc.,
rather than just checking for a specific operation.

Furthermore, like these past approaches, we remark that
our design has two other features that are useful for
deployability. First, it does not have a single point of
failure. In other words, Mitigator does not require a
single authority to participate by being online during
the compliance checks of all Mitigator-supporting web-
sites. Second, as website providers may have proprietary
code running on their back-end systems, we also do not
require them to publish their code for another party
to check its compliance. Indeed, in Mitigator, back-end
code changes are never exposed to users, as long as the
code remains compliant with the privacy policy. We be-
gin with discussing related literature with static designs
and then proceed to discuss works with dynamic de-
signs.

Static systems. Sen et al. [25] present Legalease,
a first-order representation of privacy policies that cap-
tures a range of operations, such as using data for a
given purpose, data retention, sharing data, and so on.
They also bootstrap an information flow analysis tool
named Grok, which performs static analysis across an
entire distributed system and outputs its results to a
policy checker. The policy checker then compares this
output against the Legalease encoding of the privacy
policy to report programs that violate the latter. Inter-
estingly, of all the works that we analyze in this section,

Table 1. Comparison of related work within policy compliance:
indicates no support, and indicates full support. Refer to the

criteria in Section 3 for a description of column headers.

System Low
TCB

End-to-
end

User
guarantee

Static General
ops.

Grok [25]
Thoth [13]
SDC [23]
SGX Use
Privacy [6]
SafeKeeper [20]
SDP [19]
Riverbed [29]
Mitigator (this
work)

Grok is the only system that we know of that has a
large-scale deployment (within Microsoft’s Bing search
engine back end [25]). This shows that static analysis
tools have enough expressiveness for use in a real-life
compliance checker. However, Sen et al.’s system only
guarantees compliance of data that is already within an
existing distributed data store, rather than protecting
it from when it leaves the users’ browser and it is thus
not an end-to-end system. Second, they do not provide
users with any verifiable guarantees.

Most closely related to Mitigator in the context of
privacy-preserving browser extensions is Krawcieka et
al.’s [20] SafeKeeper. The authors cater to the problem
of protecting passwords against compromised servers.
SafeKeeper, like Mitigator, provides evidence of its in-
tegrity to a remote user through the use of an authen-
ticated trusted hardware enclave on the server side. Be-
fore they leave the browser, users’ passwords are en-
crypted to this server-side enclave and thus their system
is end-to-end. However, their core design involves inten-
tionally modifying passwords in an irreversible manner
and cannot be trivially extended to support checking
general operations on users’ data. Mitigator generalizes
SafeKeeper in the sense that general operations on in-
coming encrypted data from clients are supported, as
long as these operations are compliant with the dis-
played privacy policy. Finally, SafeKeeper does not per-
form any static or runtime checks on the website source
code or the privacy policy and so it trivially satisfies
our static criterion, whereas Mitigator explicitly checks
compliance of varying code against a possibly varying
privacy policy.

Dynamic designs. An alternative to static infor-
mation flow analysis is checking code at runtime using
a reference monitor. Reference monitors keep track of
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data items or types that an application has accessed in
the past and use this information to determine whether
future access to a given datatype will allow the applica-
tion to make inferences that violate a given policy. The
reference monitor will deny noncompliant applications
access to users’ data at runtime and as a result, in con-
trast with static designs such as ours, these designs run
the risk of aborting users’ logged-in sessions.

Elnikety et al.’s Thoth [13] enables implementing ac-
cess control policies that are derived from user-specified
settings across various unmodified server-side applica-
tions. Users’ data is augmented with these policies when
it is created and Thoth thus protects users’ data end to
end, starting at the browser. Thoth’s reference monitor
mediates all file-related system calls made by server-side
applications and denies applications access to data, at
runtime, if it violates the policy. However, Thoth is not
designed to provide any guarantees to end users and it
has a large TCB, as it requires the end user to trust the
reference monitor, a kernel module, and the rest of the
OS. Thoth is also not designed to provide any verifiable
guarantees to an end user.

In their Secure Data Capsules framework, Maniatis
et al. [23] envision running a reference monitor-based de-
sign similar to Elnikety et al.’s Thoth within a trusted
hardware platform. As users are assumed to be running
the applications locally, the SDC framework mediates
the data from end to end. However, Maniatis et al. also
do not provide a verifiable guarantee to end users. Fur-
thermore, they do not implement their design, and thus
fail to highlight subtleties in running unmodified appli-
cations within a trusted hardware platform.

Birrell et al. [6] implement a similar system that
follows the use-privacy model, wherein acceptable pur-
poses of use of a given data type are determined through
a social process. Their reference monitor, which runs
within an SGX enclave, mediates applications’ access to
a data store. Birrell et al.’s model assumes users’ data
is in this data store and is therefore exposed to the OS
when it is being collected or sent to the data store. Their
system thus does not mediate users’ data in an end-to-
end manner. Simply performing attestation between the
reference monitor and the user’s client does not address
this leakage, as the attestation only guarantees that the
reference monitor runs as expected, not that users’ data
has been protected from exposure (to the OS or other-
wise). Furthermore, akin to Thoth and SDC, Birrell et
al. do not propose any mechanisms to provide verifiable
guarantees to the users. Therefore, Birrell et al.’s scheme
cannot be extended trivially to mediate users’ data in
an end-to-end manner, let alone satisfying the verifi-

able guarantee criterion. Finally, their design allows the
untrusted OS to observe plaintext data in transit, and
therefore, despite using a trusted hardware platform, it
does not meet our criterion of a low TCB.

Kannan et al.’s Secure Data Preservers [19] allow
users to run their own implementations of various sub-
service interfaces, known as preservers, on their own
data and configurable policies, within trusted hardware
platforms. A reference monitor also runs within the
trusted hardware platform and ensures that the poli-
cies are followed. Users perform remote attestation with
this reference monitor, and thereafter install their pre-
server on that machine. Therefore, users can obtain a
verifiable guarantee that their preserver is running as
expected. Although their system supports different pre-
servers, such as aggregating or filtering preservers, as a
preserver is created for each user, this design requires
significant memory: using the authors’ self-reported fig-
ures for the preserver size, as the PRM is very limited
in size (90MB), only a few preservers can be run on the
same machine.

Wang et al.’s Riverbed [29] supports checking the
compliance of web applications against user-specified
policies, within a tamper-resistant TPM module. The
TPM only provides integrity guarantees for the boot-
loader, the OS, and the software stack (including the
Riverbed components) and does not provide confiden-
tiality over the executed program, in contrast with
trusted hardware modules such as Intel SGX. Hence,
as Wang et al. assume that the OS is free of exploitable
bugs and include its hash within the integrity measure-
ment of the module, they follow a weaker threat model
than ours. Although their instrumented interpreter does
terminate noncompliant web applications at runtime
(and thus does not satisfy our static feature), Riverbed
reduces the number of users affected at runtime to only
those whose policy is violated. When a user first loads
a page, the Riverbed client conducts remote attestation
with the server application and checks that the mea-
surement matches the expected one. Thus Riverbed can
assure its users that the server-side machines are run-
ning the Riverbed runtime. Riverbed then forwards the
users’ data along with its policy, and thus, Riverbed
mediates users’ data in an end-to-end manner.

If a static analyzer were to be included in Riverbed,
then in order to provide an end-to-end guarantee to
users, apart from authenticating the target binary
through remote attestation, the client would need to
authenticate that the analyzer indeed analyzed the at-
tested current target binary. We thus expect that ex-
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tending Riverbed to support static analysis tools with
a low TCB would result in a design similar to ours.

4 Threat model
Mitigator only requires users to trust a small hardware
module and the software that runs within it, but not the
complete operating system. In particular, employees of
the website provider on the server-side machines may
run privileged or unprivileged processes in an attempt
to undermine the guarantees provided by Mitigator. We
encapsulate this by treating the operating system itself
as a privacy-policy-violating adversary whose intent is
to obtain the user’s plaintext form field data and use it
in violation of the privacy policy. Such an adversarial OS
can also manipulate the filesystem and return values of
system calls to whatever it desires. As the TLS connec-
tion may reasonably be terminated outside the enclave,
the OS can modify any HTML content before display-
ing it to the client as well as replay any content en-
crypted by the client to a server-side enclave. (Although
Aublin et al. [4] propose TaLoS to terminate TLS con-
nections within the enclave, this requires the TLS pri-
vate key be generated within the enclave and not ex-
ported elsewhere—a possible drawback for deployment.)
Moreover, we restrict any attacks by an adversarial OS
to exclude all side-channel based attacks [8, 22, 28]:
much recent literature surrounding trusted hardware is
directed at preventing these attacks [10, 21, 24]. We also
assume that the adversary is bounded by the hardness
of cryptographic problems.

Additionally, any tools on the client side, such as
the browser extension, are assumed to be run correctly.
In particular, we assume that the browser extension is
being run without any manipulations of its source code
in the browser. That is, an attacker cannot deceive a
user by manipulating the user’s machine into falsely dis-
playing a noncompliant website as a Mitigator-approved
website. The user should expect a positive signal of com-
pliance from the Mitigator browser extension and im-
portantly, should treat the lack of a positive signal of
compliance as noncompliance. We mentioned previously
that we assume that the website provider has incentives
to deploy Mitigator, such as increasing its transparency
to users. Therefore, it is not in their interests to perform
any denial-of-service (DoS) attacks on their own deploy-
ment of Mitigator. We also assume that in case the at-
tacks occur due to unforeseen circumstances, the orga-
nization will attempt to identify and stop them, so that

their users can continue to see their Mitigator client’s
positive signal of compliance.

5 Design
We start with a program, called the verifier, that is run
within an enclave, known as the verifier enclave. We
refer to this execution of the verifier enclave as making
up the verification stage of Mitigator. Given the privacy
policy file and source code files for the target website
as inputs, the verifier checks the source code files for
compliance with the privacy policy text, as shown in
Figure 1.

Following that, the verifier constructs an enclave
called the target enclave containing the aforementioned
files and the webserver executable. It uses a long-term
signing-verification keypair (SKV ,VKV ) to produce a
signature the target enclave, only if it verifies compli-
ance. The valid target enclave may now be executed
using a trusted hardware platform.

Importantly, as the verifier statically analyses the
target website’s files, we do not need to run checks on
user data passed to the deployed target program. Con-
sequently, the verifier does not need to be running when
the target enclave has been deployed. Whenever the tar-
get enclave source code or privacy policy changes, the
verifier enclave needs to be re-run on the new target
enclave. The new signed target enclave can then be de-
ployed.

We assume that this verifier program is sound, but
not complete. In other words, it will only produce a sig-
nature over the target if it is compliant with the privacy
policy. The verifier program (but not necessarily the tar-
get website source code) is open-sourced, and its sound-
ness can be checked by any party. We assume that as the
organizations deploying an implementation of Mitigator
have incentives to deploy it, the developers can struc-
ture or annotate their code such that the verifier does
not falsely flag it as noncompliant, thereby navigating
around the incompleteness of the verifier.

5.1 Strawman design

We motivate Mitigator’s stages after verification by first
explicating a strawman protocol. In the strawman pro-
tocol, before loading the webpage, the client performs
two remote attestation handshakes with the verifier and
target server-side enclaves to authenticate them. The
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Verifier
Source-code
analysis

Model
generator

Source
code
files

Privacy
policy
file

Compliance
check

Yes
/
No

Fig. 1. An abstraction of the components used in existing liter-
ature to check compliance of source code with a privacy policy
model. We discuss existing literature for source code analysis
tools in Section 2.2 and generation of privacy policy models from
their text in Section 2.3.

Target

Decryptor Verifier

Client

Server-side enclaves

Fig. 2. A high-level block diagram of Mitigator. The component
in the dotted box will be online in the verification stage. The
dashed arrows indicate interactions occurring in the deployment
stage, which are detailed in Figure 3. The solid arrows indicate
interactions occurring in the runtime stage, which are detailed in
Figure 4. The verifier essentially implements the algorithm shown
in Figure 1, except that it runs within an enclave, and it signs
the target enclave containing the source code files if they comply
with the privacy policy.

client first performs remote attestation with the verifier
enclave, ensuring that it has an enclave measurement
equal to the one that the client expects from its open-
sourced version. The verifier enclave sends the expected
signer measurement of the target enclave through the re-
mote attestation secure channel to the client. The client
then performs a remote attestation handshake with the
target enclave and authenticates it based on the signer
measurement it obtained from the verifier enclave. The
client finally sends its data over the remote attestation
secure channel to the target enclave.

We outline two aspects of our strawman protocol
that we improve upon in the Mitigator final design.
First, we observe that the client learns whether the
target enclave has been changed from the client’s pre-
vious visit through its enclave measurement, which is
included in the attestation report. As mentioned previ-
ously, website providers may be unwilling to expose the
frequency of changes to their back-end code to clients.
Second, the above scheme would require the client to
perform two remote attestations the first time it vis-

its a website and one attestation with every subsequent
visit—namely, with the target enclave—until the veri-
fier enclave changes its long-term keypair. We observe
that through the second remote attestation, the client
essentially authenticates the target enclave, based on
its signer measurement that it obtains from the verifier
enclave through the secure channel established from the
first remote attestation with the latter. Through this ob-
servation, we present a more efficient scheme that only
requires the client to perform one asynchronous remote
attestation that is valid as long as the corresponding
server-side enclave keeps its long-term keypair. It does
not require any further remote attestations per web-
site visit, and never exposes the target enclave’s enclave
measurement to the client.

5.2 Mitigator’s final design

In Mitigator, we offload this task of authenticating
the target enclave to another enclave on the website
provider, which we refer to as the decryptor enclave. We
thus have three server-side enclaves in our design, which
we depict in Figure 2. We have two stages following the
verification stage. In the first such stage (the deployment
stage), the decryptor enclave conducts local attestation
with the verifier enclave in order to learn the expected
signer measurement of the target enclave. It then per-
forms local attestation with the target enclave and au-
thenticates the latter using this measurement. The de-
cryptor maintains the resulting secure channel with the
target enclave for the third, runtime stage. (We remark
that the three enclaves do not have to be co-located on
the same server-side machine. They can be on different
machines and in that case inter-enclave local attestation
is replaced by remote attestation.)

In contrast to the strawman design, where the client
performed remote attestation with the target and veri-
fier enclaves, in the runtime stage of our final design the
client performs remote attestation only with the decryp-
tor enclave. All Mitigator-supporting websites share the
same decryptor enclave code and it does not change with
improvements in the verifier code (with better privacy
policy model generators or information flow analysis
tools) or the target website’s code. Indeed, it is designed
to change the most infrequently in comparison to the
latter two codebases, and thus the client only needs to
perform this attestation whenever the decryptor’s code
changes, rather than with every page load [20], or even
when the website’s code changes (strawman design).
Therefore, although our design could include the ver-
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Verifier Decryptor Target

Local attestation Accept all
(MREncV , MRSigV )
Shared key kDV

Accept all
(MREncD, MRSigD)
Shared key kDV

A = EnckDV
(D)P = Hash(VKV )

Q = Hash(PP )‖〈Hash(Formi)〉i
D = P‖Q

DeckDV
(A) = D

Gen. (pkD, skD)
M = MREncV ||pkD||Q
H = M ||SigSKD

(M)

Local attestationMRSigT
?= P

Shared key kDT

Accept all
(MREncD, MRSigD)
Shared key kDT

B = EnckDT
(H)

H = DecDT (B)

Fig. 3. Deployment stage. After the verifier enclave signs over a compliant target enclave with the keypair (SKV , VKV ), it initiates
a local attestation request with the decryptor enclave. (The decryptor enclave accepts all initiating enclaves.) The verifier sends the
expected enclave measurement of the target enclave and Q (a hash of the privacy policy text and a hash of the structure of each com-
pliant form on the site) to the decryptor enclave over the local attestation channel. The decryptor generates a token M that consists
of the initiating enclave’s enclave measurement, its own ephemeral public key, and Q. It signs over it using its long-term signing key
to obtain the token H. The target enclave then initiates a local attestation request to the decryptor enclave. The decryptor only ac-
cepts the target’s request if the latter’s signer measurement is the same as the one sent by the verifier earlier. If so, then the decryptor
establishes a secure channel, which has the symmetric key kDT , with the target. The decryptor then sends the token H over this chan-
nel to the target. These steps occur before any client connects to the website and enable the target enclave to forward the token H to
the client.

ifier and the decryptor’s functionalities within one en-
clave, our modular design supports auditability of both
codebases and requires fewer remote attestations. Fur-
thermore, the client only uses the secure channel es-
tablished through remote attestation to obtain the de-
cryptor’s long-term verification key rather than to send
users’ data directly over it.

Following remote attestation, in the runtime stage,
the client obtains a token, signed by the decryptor en-
clave, that includes the decryptor’s current public en-
cryption key, as well as the enclave measurement of
the verifier enclave. The client ensures that this en-
clave measurement corresponds to that of a sound open-
source verifier. It then encrypts form fields to the de-
cryptor enclave’s public key, which are submitted to the
webserver running in the target enclave, which forwards
them to the decryptor enclave over the aforementioned
secure channel. Finally, as its name suggests, the decryp-
tor enclave decrypts the form field data and returns it
back to the target enclave over the secure channel. We
detail each of these three stages below.

Verification stage. This stage only requires the
verifier enclave to be online. We remind the reader that
in this stage, the verifier enclave uses its long-term
signing-verification keypair (SKV ,VKV ) to sign over the

website’s source code and privacy policy, only if the for-
mer is compliant with the latter. We note here that the
verifier enclave seals this keypair to disk using its en-
clave measurement, so that the untrusted OS, or any
other enclave, cannot modify or access it.

Deployment stage. In this stage, all three en-
claves need to be online. As above, the decryptor enclave
generates and persists its long-term signing-verification
keypair SKD,VKD using its enclave measurement to
seal it. Mitigator’s client obtains the verification key-
pairs of decryptors of various Mitigator-supporting web-
sites. The decryptor enclave should have a remote at-
testation service open for clients to connect to it for
the next stage. After setting up its long-term signing-
verification keypair and the above service, the decryp-
tor enclave starts listening for local attestation requests.
This stage involves the verifier enclave and then the
target enclave conducting local attestation and secure
communication with the decryptor enclave. A sequence
diagram of messages sent and received in this stage is
shown in Figure 3.

Importantly, we remark that neither the verifier nor
the decryptor enclaves need to be signed with keys be-
longing to the client or any other party. As these en-
claves will be executed on the website providers’ ma-
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chines, they can be signed using a keypair generated
by the adversarial OS. We illustrate through our design
that this does not diminish the security of our system.

Verifier ↔ decryptor: After signing the compliant
target enclave, the verifier enclave conducts local attes-
tation with the decryptor enclave and establishes a se-
cure channel with it. (Although the decryptor does not
check the enclave or signer measurement of the initiating
enclave, it stores its enclave measurement, MREncV ,
and sends it to the client in the second part of this
stage.) Over this channel, it sends the following values:
the expected signer measurement over the source code
files (i.e., a hash Hash(VKV ) of the verification key),
and a list of hashes Q that consists of a hash of the pri-
vacy policy, and hashes of each verified form structure.
(The structure of a form is a canonical representation of
its DOM, excluding pre-filled field values.)

Upon receiving these values, the decryptor gener-
ates a short-term keypair (pkD, skD) and a token M that
consists of the verifier’s enclave measurement MREncV ,
the list of hashes Q, and the short-term public key pkD.
The decryptor enclave signs the token M using its long-
term signing key SKD. The decryptor enclave then con-
catenates the token and the signature to form the token
H = M ||SigSKD

(M). The decryptor enclave then ter-
minates the secure channel with the verifier enclave and
waits for a second local attestation request. The token
H will be sent to the client in the runtime stage. (The
verifier needs to include the hash of the privacy policy
and the hashes of the verified form structures to enable
the client to detect an attack we discuss in the runtime
stage description below.)

Target ↔ decryptor: The target enclave then initi-
ates a local attestation request to the decryptor enclave.
During the local attestation, the decryptor enclave en-
sures that the initiating enclave’s signer measurement
is the same as the one it received from the verifier en-
clave, that is, hash(VKV ), and terminates in case it is
not. If this check succeeds, the decryptor enclave con-
cludes this local attestation handshake to establish the
symmetric encryption key kDT with the target enclave.
This check ensures that the target enclave that obtains
users’ data in the runtime stage has been signed by
the first enclave that performed local attestation with
the decryptor enclave. When combined with the client’s
check in the runtime stage, that the latter enclave is
indeed a valid verifier enclave, we obtain the composite
guarantee that the users’ data is only handed over to a
compliant target enclave. In the final step, the decryp-
tor enclave sends the token H under the aforementioned
secure channel to the target enclave. The decryptor now

waits for further data along the secure channel with the
target enclave.

Runtime stage. In the runtime stage, the decryp-
tor and target enclaves need to be online and one or
more clients may attempt to connect to the website de-
ployed within the target enclave. First, the target en-
clave sends the token H with the response to each HTTP
GET or POST request to a page with forms on the web-
site. With a page load, the client checks for and retrieves
the token H and verifies its integrity. For each Mitigator-
supporting website, Mitigator’s client is responsible for
encrypting form fields to the decryptor enclave behind
the website. It sends these encrypted fields to the target
enclave in the place of the plaintext fields. The target
enclave then sends these fields to the decryptor enclave
over the secure channel established through local attes-
tation. The decryptor enclave returns the plaintext form
fields over the same channel. We next discuss commu-
nication between the client and the target enclave and
subsequently discuss communication between the target
and the decryptor enclave. We also illustrate the entire
exchange of messages that occur in this stage in Fig-
ure 4.

Client↔ target: The client performs three checks on
the integrity of the signed token H as follows. First, it
checks that this token consists of another token M con-
catenated with a signature over M , such that the sig-
nature can be verified using the decryptor’s long-term
verification key VKD. If this check fails, then the ad-
versarial OS on the remote host may have modified the
token in transit. If the check succeeds, then the client
expects the internal token M to contain the following
values concatenated together: the verifier’s enclave mea-
surement, a list Q of hashes of the verified files (includ-
ing the privacy policy and the form structures), and the
decryptor’s short-term public key.

In the second check, the client verifies that the
enclave measurement contained in that token corre-
sponds to that of a genuine open-sourced verifier en-
clave checked as sound. If the second check fails, then
the adversarial OS has attempted to run a malicious or
lazy verifier, which, for instance, simply signs over the
target enclave without checking it. In other words, the
website source code cannot be said to have been checked
for compliance if the second check fails.

Finally, the client should check that the hash of the
privacy policy linked on the website and the hash of the
form structure, are contained in Q. Again, if this check
fails, then the adversarial OS may have served to the
client a different privacy policy or a form with a dif-
ferent structure from the one that the verifier enclave
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Decryptor Target Client

HTTP Request:
Form page

HTTP Response Body: Form
Response Header: H

Verify SigSKD
(M) using VKD from L1

Verify MREncV is in L2

Hash(PP ), Hash(Form)
?
∈ Q

Gen. (pkC , skC)
Gen. kDC using (skC , pkD)

User fills in form
HTTP Request: CT

Header: pkC CT = EnckDC
(PII; Hash(Form))

CT ′ CT ′ = EnckDT
(pkC‖CT‖F)

CT = DeckDT
(CT ′)

Gen. kDC using (skD, pkC)
PII = DeckDC

(CT ;F)
CT ′′ = EnckDT

(PII) CT ′′

PII = DeckDT
(CT ′′)

Fig. 4. Runtime stage. Clients load a web page containing a form and receive a header containing the token H. In order to verify the
integrity of the token H, the client obtains the decryptor enclave’s long-term verification key VKD from list L1 and the verifier en-
clave’s expected enclave measurement from list L2. It also computes hashes of the privacy policy and of the structure of the form
page and checks they are in the signed token. If all checks are successful, it encrypts the user’s form field data P II to the decryptor
enclave, including the hash of the form structure it receives Hash(F orm) as the associated data in the encryption. It sends the cipher-
text value CT and its public key pkC to the target enclave instead of the plaintext value. The target enclave then forwards these re-
quests, along with its own knowledge of the hash F of its form structure, to the decryptor enclave along the established secure channel
with the symmetric key kDT . The decryptor enclave uses the client’s public key to derive its session key kDC with the client, decrypts
the ciphertext CT using F as the assoiated data, to obtain the plaintext value P II. It then re-encrypts this value back to the target
enclave (CT ′′).

checked the source code against. (The adversarial OS
may change the output HTML files shown to the client
as the TLS connection may terminate outside the en-
clave.) Specifically, the adversarial OS may attempt to
return a more restrictive privacy policy, which may in
turn give the users a false sense of security. Therefore, to
prevent this attack, the verifier sends Q to the decryptor
enclave and the client performs this check.

If any of the three checks fails, then the client treats
the website as if it did not support Mitigator and thus
does not present the user with a positive signal of com-
pliance. If all checks are successful, the client then sig-
nals to the user that the form has been successfully vali-
dated by Mitigator against the displayed privacy policy.
The client then obtains the users’ plaintext data and
encrypts it to the decryptor enclave. The specific tech-
nique used to securely obtain the users’ plaintext data
through the browser may vary across implementations;
we detail our specific strategy in Section 6.

To facilitate the first two checks, the client contains
two lists: a list L1 of hard-coded long-term verification
keys of decryptors for each Mitigator-supporting web-
site URL, and a list L2 of valid verifier enclave mea-
surements. We describe in Section 6 how the client can
obtain, in a trustworthy manner, the expected enclave
measurement of the verifier and decryptor enclaves and
the verification key of the decryptor enclave behind each
Mitigator-supporting URL. The third check, however,
does not require any additional state to be maintained
by the client. The client may simply compute the re-
quired hashes and check that they are in the signed
token.

The client then generates its own short-term keypair
(pkC , skC). It then uses the decryptor’s short-term pub-
lic key pkD and its own short-term private key skC to
generate the shared secret and derive a symmetric key
kDC . Whenever a user clicks to submit the form, this
key is used to encrypt the form field values, which may
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contain their personally identifiable information and are
thus denoted by PII. This (AEAD) encryption also in-
cludes a hash of the form structure as associated data,
so that a malicious OS cannot redirect the client’s form
submission to a different, albeit verified, form on the
target server. The client sends the resulting ciphertext
values CT instead of the plaintext values in the sub-
sequent HTTP request to the website. The client also
sends its newly generated short-term public key pkC in
the above HTTP request. This enables the decryptor to
derive the shared secret and symmetric encryption key
kDC .

Target ↔ decryptor: The target enclave obtains the
client’s short-term public key pkC with each HTTP
GET or POST request by the client for pages with form
fields. It obtains HTML form field data after decrypt-
ing with the TLS session key, as usual. However, for
Mitigator-supporting websites, these HTML form fields
are not plaintext data. They are ciphertexts (CT ) that
are encrypted to the decryptor’s short-term public key
pkD. The target enclave then sends the client’s pkC , the
client’s ciphertext, and its own knowledge of the hash
F of its own form structure, along the secure channel to
the decryptor enclave and waits for a response.

Upon obtaining any data from the target enclave
along the secure channel, the decryptor enclave removes
the first (secure channel) layer of encryption, to obtain
the ciphertext form fields sent by the client (CT ), along
with its short-term public key pkC . The decryptor en-
clave generates the shared secret and derives the sym-
metric encryption key kDC , using its own private key
skD and the client’s public key pkC . Using this key, it
(AEAD) decrypts the ciphertext fields CT with F as
the associated data to obtain the plaintext form fields
PII. Finally, the decryptor enclave sends these plaintext
fields back to the target enclave, along the secure chan-
nel. Again, upon obtaining any data from the decryptor
enclave along the secure channel, the target enclave re-
moves the secure channel encryption and obtains the
plaintext form field data (PII).

5.3 Security analysis

As mentioned in Section 4, our threat model includes
an adversarial OS that wishes to perform operations on
users’ data that are not permitted by the privacy policy.
In this subsection, we explore such attacks. We remark
that this is not a formal proof of security, which is be-
yond the scope of this work. We show that these attacks
are either detected by Mitigator or are limited to the OS

performing denial-of-service (DoS) attacks on its own
Mitigator deployment. As we mentioned in Section 4,
we assume that the website provider has incentives to
stop DoS attacks against their own Mitigator setup.

While we do not trust the OS, we do trust the code
running inside enclaves to function correctly and se-
curely (without side channels, for example), as well as
the enclave hardware itself. We therefore assume that
any secrets generated by an enclave and stored in its
state are not revealed to the adversarial OS. As the ver-
ifier’s and decryptor’s long-term signing keys are sealed
using their enclave measurement as an input to the seal-
ing algorithm, malicious verifiers or decryptors will not
be able to unseal these keys to forge a signature as they
will not have the needed enclave measurement. As a
sound verifier would only sign over a compliant target
enclave, the adversarial OS cannot obtain a valid sig-
nature over a noncompliant enclave by running a sound
verifier. As all messages between the verifier and the
decryptor enclaves are authenticated encryptions, the
adversarial OS cannot fool the decryptor enclave into
accepting a signer measurement of a noncompliant tar-
get enclave. Furthermore, an adversarial OS that at-
tempts to run a lazy or unsound verifier that simply
signs over any target enclave will be rejected by the
Mitigator client in the runtime stage as the enclave mea-
surement of such a verifier will be different from that of
a genuine verifier.

We have discussed how an adversarial OS cannot
spawn a noncompliant target enclave to obtain a client’s
plaintext data without being detected by the client. It
could, however, attempt to obtain the client’s ciphertext
data before it reaches the target enclave, to modify or re-
play it. (This is even possible only if the TLS connection
was terminated outside the enclave.) In case the adver-
sarial OS modifies the client’s public key or ciphertext
values, the decryptor enclave will reject the modified ci-
phertexts. An adversarial OS whose intent is to replay
the same ciphertext to initiate a false transaction on be-
half of the user is out of our threat model. However, the
decryptor enclave may protect against such an attack by
recording all ciphertexts (PII1) that it received since it
last changed its encryption key pkD and rejecting any
repeated ciphertexts.

6 Implementation overview
In this section, we describe the components used to im-
plement each of the three enclaves on an Intel SGX-
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supporting machine. We also discuss the implementa-
tion of Mitigator’s client through a browser extension.

6.1 Decryptor enclave

The decryptor enclave includes code to interact with the
verifier and target enclaves. We expect the complexity
of its codebase to be independent of the verifier and tar-
get enclaves and we expect its codebase to not change
much, unless the deployment or runtime stage protocols
themselves change. We have thus developed it within
the traditional SGX SDK setup, partitioning its code
into an untrusted application (∼1K hand-written LOC
and ∼8K Protobuf auto-generated LOC) and a trusted
enclave (∼1K LOC). We reiterate that our client-side
implementation only needs to conduct remote attesta-
tion with the decryptor enclave when the decryptor’s
source code changes.

6.2 Verifier enclave and target enclaves —
Graphene-SGX

The target and the verifier both consist of running com-
plex native applications; namely, a webserver applica-
tion and a source code analysis tool adapted to perform
a compliance check for a simple policy model. For this
reason, Mitigator’s verifier and target enclave programs
are run on top of a shim library, named Graphene-
SGX [9], in order to seamlessly support system calls
within the unmodified applications, allowing them to
run within an SGX enclave. We remark that other ap-
proaches, such as Shinde et al.’s Panoply [26] and Arnau-
tov et al.’s Scone [3], also address the problem of running
general-purpose applications within trusted hardware
platforms. However, as the Graphene-SGX implemen-
tation supported easily running unmodified applications
within enclaves, we chose to use Graphene-SGX.

Graphene-SGX allows applications’ dynamic li-
braries and configuration files to be included in the
enclave measurement, and specified in a manifest file.
At runtime, Graphene’s dynamic loader prohibits any
such libraries or files whose hash is not present in the
manifest file. Thereby, it supports applications that are
linked against dynamic libraries or that read configura-
tion or other files. We extended Graphene-SGX to sup-
port attestation and sealing by including portions of the
corresponding SGX SDK libraries.

Verifier enclave. We proceed to discuss the ver-
ifier enclave implementation. As mentioned previously,

we utilize Pixy within Mitigator. In particular, we mod-
ify Pixy to support identifying a simple privacy-relevant
violation: passing users’ data unencrypted to files; that
is, not encrypting users’ data at rest. Any plaintext data
that the webserver obtains from the decryptor enclave
is tracked to ensure that the above policy holds; that
is, such plaintext data should not be written to disk.
Our implementation currently uses Pixy’s configuration
setup for listing unacceptable output functions for this
data as a simplified privacy policy model. The simpli-
fied model is not a limitation of our design; as mentioned
previously, other tools like Harkous et al.’s Polisis [16]
or Andow et al.’s PolicyLint [2] could be used to au-
tomatically extract relevant models that can be used
to configure source code analysis tools for compliance
checking.

Target enclave. Graphene-SGX allows us to run
a native, unmodified webserver within an Intel SGX en-
clave. We use Graphene-SGX to run an Apache web-
server (serving PHP pages) and a PHP extension that
implements the runtime stage interactions with the
client. Mitigator’s PHP extension is responsible for
three tasks. First, it should perform local attestation
with the decryptor enclave once when the server is set
up to establish a secure channel with that enclave. Sec-
ond, after the PHP extension has performed local at-
testation, any PHP scripts should be able to call into
the extension to obtain the token H that is to be sent
with every HTTP response. This token H is then sent
by the calling PHP script to the client through a cus-
tom header. Finally, Mitigator’s client implementation
would encrypt form field data to the decryptor enclave
and send in the client’s public key pkC through an-
other custom header. The PHP extension should enable
any calling PHP scripts to pass this key, the client’s
ciphertext data, and its form structure hash, and ex-
pect plaintext client form fields in response. Mitiga-
tor’s PHP extension implements these three function-
alities; our source code can be accessed at https://git-
crysp.uwaterloo.ca/miti/mitigator.

6.3 Browser extension

Mitigator’s browser extension implements a Mitigator
client’s functionalities. First, the browser extension is
responsible for sending and receiving Mitigator-specific
tokens to and from the PHP extension through custom
headers. Second, it verifies the integrity of the server-
side Mitigator token that it receives by performing the
three checks outlined in Section 5.2. It uses a list of

https://git-crysp.uwaterloo.ca/miti/mitigator
https://git-crysp.uwaterloo.ca/miti/mitigator
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long-term decryptor verification keys for the decryp-
tor enclave behind each Mitigator-supporting URL (L1)
and a list of expected enclave measurements for sound
verifiers (L2). List L1 can either be maintained by the
client itself by performing remote attestations with each
site’s decryptor enclave, or it can trust some entity to
maintain this list of remotely attested decryptor enclave
public keys. This list need only change when new sites
add support for Mitigator, when the decryptor code it-
self (very infrequently) changes, or when existing sites
change the physical hardware used to run the decryp-
tor enclave. (Even if Mitigator were extended to a load-
balanced setting where each server machine has a target
and decryptor enclave, then the client may be required
to conduct a synchronous RA with a decryptor enclave
if it encounters one behind a new server. In any case, the
number of client-decryptor RAs scales with the number
of different servers, rather than the number of page loads
done by the client.)

List L2 is maintained by an entity that is trusted
to conduct audits of the verifier source code, to ensure
its soundness. This entity could be the same or differ-
ent as the one above; it could, for instance, simply be a
decentralized group of open-source developers. Impor-
tantly, this entity never needs to see the source code
of the target enclave—the website business logic—itself,
and this list need only be updated when improvements
to the verifier program are made, not when the website
code is updated. Finally, the maintainers of L1 and L2
are not involved in the runtime stage. For these rea-
sons, they are not a single point of failure for processing
Mitigator-protected forms and do not ever learn what
websites clients are visiting.

Finally, the browser extension should encrypt form
field data to the site’s decryptor enclave, and send the
ciphertext instead of plaintext form field data. In our
proof-of-concept implementation, the user simply enters
their form field data into the webpage itself. When the
user finishes typing their text, they can press the form
submit button, as usual. This button click now results in
the entered text fields to be encrypted to the decryptor
enclave for the given website.

We remark that our current implementation, which
takes in users’ data from the website’s original form, al-
lows dynamic Javascript code to change the appearance
or structure of the webpage. This leaves it vulnerable
to user interface attacks similar to those pointed out
by Freyberger et al. [14]. To avoid such attacks, a de-
sign such as that proposed by Krawcieka et al. [20] for
SafeKeeper can be used instead, which only allows user-

driven interaction with the browser extension’s pop up
to fill the form.

7 Evaluation
In order to gauge whether websites or users would ac-
tually want to deploy or use a Mitigator implementa-
tion, a detailed user study would be required. We leave
such a study to future work. Even if users would like
to use a Mitigator implementation, it is desirable that
it should not incur a large overhead in comparison to
an identical system without Mitigator’s guarantees, so
as to not dissuade users through a time overhead. We
conduct a set of experiments to measure the latency of
a website that runs Mitigator at runtime in comparison
to a website run without Intel SGX. We remark that
the verification and deployment stages incur a one-time
latency overhead; the latter only occurs once during the
deployment process, and so we do not expect the laten-
cies of these stages to hinder Mitigator’s incorporation
into an iterative software development lifecycle. We do
not test latencies during these stages further as these la-
tencies do not impact the runtime latency experienced
by users.

7.1 Performance evaluation

We set up our server-side system on a four-core Intel
i5-6500 CPU that supports Intel SGX. The machine
runs Ubuntu 16.04.4. We set up and installed the In-
tel SGX SDK and Graphene-SGX on this machine. The
target enclave runs an Apache server executable within
Graphene-SGX which links to the Mitigator PHP ex-
tension and serves three PHP files: the privacy policy
file, the form page, and its action page. Once the user
fills out the form page, they are directed to the action
page, which simply uses the PHP extension for the de-
crypted, plaintext form field values, and prints them.
This Apache server is known as the Mitigator server.
Apart from running the target enclave, we also run an-
other Apache server within Graphene-SGX that does
not load the PHP extension and differs in the second
PHP file. This file just prints the values of any POST
array variables that it receives. We refer to this server
as the Graphene-SGX server. Finally, we run another
Apache server outside of the SGX platform that does
not load the PHP extension, and we refer to it as the
control server. We remark that we do not set up any of



Mitigator: Privacy policy compliance using trusted hardware 217

the aforementioned three servers with TLS support; in
practice, a deployment could choose whether to termi-
nate TLS outside of the target enclave or within it, as
in TaLoS [4].

Server-side computational latency. Our first
experiment consists of measuring the server-side latency
from a headless client on the same machine as the
servers. This setup effectively measures the total compu-
tational latency as the network latency is very small. We
modified the browser extension to generate n requests,
each consisting of encryptions of random alphanumeric
plaintext form fields of a given size to the decryptor
enclave, and to send each request to each of the three
servers. We vary the form field size in logarithmic in-
crements and we thus have n requests for each form
field size in our experiments. We also modify the exten-
sion to log these requests in order to test latencies from
headless clients. We instrumented the Mitigator server’s
form action page to measure the wall clock time required
for the target and decryptor enclaves. We also instru-
mented each of the latter enclaves to measure the wall
clock time required to handle each request. We start by
presenting the latencies we measured in this setup.

In Figure 5, we plot the averages and standard error
bars for the following wall clock times, for n = 50 as
the length of the single form field increases: the total
network round-trip time for each of the three servers,
the time spent within the PHP script for the Mitigator
server, the time spent within the PHP extension, and
the time spent solely within the decryptor enclave.

We draw the following conclusions from Figure 5:
1. The Mitigator server’s RTT is significantly higher

than that of the control server. However, the dif-
ference in the total network round-trip time for the
Mitigator server (blue) and for the Graphene-SGX
server (orange) is almost equal to the total computa-
tion time spent within the PHP script (red), imply-
ing that we add a small computational overhead on
top of that concomitant with running the Graphene-
SGX shim library. It is evident, therefore, that our
work would greatly benefit from advances in run-
ning unmodified applications within Intel SGX with
minimal increase in latency.

2. Our computational overhead on top of the
Graphene-SGX server includes the sum of the de-
cryptor enclave latency and the PHP extension la-
tency (the sum is shown in purple). Each of the
latter is at most 10% (0.25ms out of 2.5ms) of the
Mitigator round-trip time when the client is situated
on the localhost interface of the server’s machine.

Fig. 5. Measurement of server-side latency from the localhost in-
terface as the size of a form field increases: the length of a single
form field was doubled in steps from 32 to 1024 and we measured
the round-trip times (RTT) from the localhost interface for each
of the Mitigator, Graphene-SGX, and control servers. This plot
shows the average RTTs and in-enclave latencies over 50 requests
for each form field length. Note that the plot in purple includes
the sum of the plot in brown and the latency due to the PHP
extension. Similarly, the plot in red includes the sum of both the
extension and the decryptor enclave latencies as well as the PHP
script latency.

3. The decryptor and target enclave times do not
change significantly as the size of the form field
increases. This is to be expected as both enclaves
simply perform symmetric-key cipher operations on
longer plaintexts or ciphertexts.

4. We remark that the increase in the average round-
trip time for all three servers for requests with a
form field of length 1024 is because the HTTP re-
quest is split over two TCP packets instead of just
one.

Server-side network and computational latency.
In light of the first observation above, we hypothe-
size that under realistic network conditions, the com-
putational overhead due to Mitigator is very small
in comparison to the network overhead. To confirm
our hypothesis, we repeat both aforementioned sub-
experiments from a machine on another network, which
we refer to as remote machine 1. (The round-trip time
reported by the curl tool for an HTTP request from
this machine to the control server machine was found
to be about 6ms.) We plot the average in-enclave laten-
cies and RTTs in Figure 6.

From Figure 6, we can observe that the total com-
putation time within enclaves does not observably in-
crease with the amount of PII data being encrypted,
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Fig. 6. An identical setup to that in Figure 5, with the exception
that the round-trip times are measured from a headless client on
another machine. The standard error bars for most values in this
dataset are too small to be seen on this graph.

and is much smaller than even a small network over-
head, as is the case for a client on our remote machine.
This shows that a server-side Mitigator implementation
will be responsive and will incur a very small overhead
with respect to the two aforementioned server imple-
mentations.

End-to-end latency. In the above experiments,
we measured the average runtime latency for server-
side Mitigator components; that is, for the decryptor
and target enclaves. However, a typical user running
Mitigator incurs additional latencies due to Mitigator’s
client-side components. We now proceed to measure the
end-to-end latency of Mitigator as follows: we repeat the
above experiment with the exception that the requests
are also sent by the browser extension running on a
network with higher latency and not a headless client.
(The round-trip time reported by the curl tool for an
HTTP request from this machine to the control server
machine was found to be about 10ms.) We instrument
the browser extension to measure the wall clock time
that it takes to encrypt a given message and the end-
to-end network round-trip time for each of the three
servers. We note that these network RTTs form a lower
bound on what a user would expect to see as they ex-
clude the time required to render the page; this time is
very small in our case as the form action page only con-
sists of HTML text. In Figure 7, we present the mean
and standard errors for the latencies we obtained from
sending n = 10 requests for each field size to each server.

Again, we find that the average server-side enclaves’
latencies are negligible in comparison to network laten-
cies, as measured from a browser extension on a remote

Fig. 7. An identical setup to that in Figure 5, with the exception
that requests are sent from a browser extension, instead of a
headless client, on another remote machine with higher network
latency, and n = 10 requests are sent for each data point. The
bottom three lines are all indistinguishable at the bottom of the
graph.

machine. Second, the average encryption latency (shown
in pink) remains less than 50ms and is also smaller, by a
factor of 2, than the average end-to-end latencies to any
of the three servers. Finally, we remark that the average
Mitigator server latencies are not discernibly different
from those for the Graphene-SGX or control servers; the
browser’s internal processes add add so much noise as to
completely mask the small additional latency added by
Mitigator. We can thus safely conclude that the Mitiga-
tor implementation’s end-to-end latency is largely im-
pacted by the network latency, rather than server-side or
client-side computational latency and we have grounds
to believe that users may not perceive a Mitigator im-
plementation to be adding a significant latency to their
normal browsing experience.

8 Future work
There are many aspects of our design and implemen-
tation that can can be improved upon in future work.
First, integrating a privacy policy model generator with
a source code analysis tool is essential and challenging
for implementing a verifier for any non-trivial website
codebase and privacy policy. On the other hand, our
work also opens up an interesting possibility of using
the output of a static source code analysis tool to guide
developers to forming a fine-grained privacy policy that
reflects the back-end source code, such as the system
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currently being developed by Zimmeck et al. [34] for
smartphone apps and policies. Extending our proof-of-
concept implementation to a distributed setting, that is,
to cater for multiple decryptor and target enclaves on
different machines, would make Mitigator more robust
and deployable in real-world organizations.

Mitigator does not provide users guarantees over
client-side code, however, modern websites use dynamic
Javascript code to process users’ data on their machines.
Assuring compliance of client-side code remains a very
relevant adjacent problem, especially as users may rea-
sonably have a mental model that expects a Mitiga-
tor implementation to provide its guarantees over such
dynamic, client-side code as well. Last but not least,
conducting a thorough usability study to determine
whether different users, developers, and website own-
ers want to use or support a Mitigator implementation,
and if so, if it is usable or user-friendly, is thus a relevant
line of future work.

9 Conclusion
In this work, we sought to enforce compliance of a web-
site’s source code with its privacy policy and signal the
presence of this compliance in a trustworthy manner
to users. We have provided a design called Mitigator,
and outlined a proof-of-concept implementation for it.
Additionally, we have evaluated the performance of our
system through latency analysis and have found that
its end-to-end latency is largely impacted by network
latency rather than server-side or client-side computa-
tional latency. We hope that Mitigator opens up fur-
ther opportunities for research and development of pro-
totypes to enable users to be assured that source code
that processes their data is compliant with the written
claims that are provided to them.
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