
Proceedings on Privacy Enhancing Technologies ; 2020 (4):196–219

Osman Biçer and Alptekin Küpçü

Anonymous, Attribute Based, Decentralized,
Secure, and Fair e-Donation
Abstract: E-cash and cryptocurrency schemes have been
a focus of applied cryptography for a long time. How-
ever, we acknowledge the continuing need for a crypto-
graphic protocol that provides global scale, decentral-
ized, secure, and fair delivery of donations. Such a pro-
tocol would replace central trusted entities (e.g., charity
organizations) and guarantee the privacy of the involved
parties (i.e., donors and recipients of the donations). In
this work, we target this online donation problem and
propose a practical solution for it. First, we propose
a novel decentralized e-donation framework, along with
its operational components and security definitions. Our
framework relies on a public ledger that can be realized
via a distributed blockchain. Second, we instantiate our
e-donation framework with a practical scheme employ-
ing privacy-preserving cryptocurrencies and attribute-
based signatures. Third, we provide implementation re-
sults showing that our operations have feasible compu-
tation and communication costs. Finally, we prove the
security of our e-donation scheme via formal reductions
to the security of the underlying primitives.

Keywords: anonymous donation, attribute based signa-
ture, blockchain, anonymous credentials

DOI 10.2478/popets-2020-0069
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

1 Introduction
Since the first secure e-cash scheme was proposed by
Chaum [21], digital currencies have been a center of at-
tention in applied cryptography. One development of
practical importance has been the invention of Bitcoin
[54], which combines the ideas of conventional e-cash,
proof of work [25], distributed systems, and game the-
ory for a decentralized electronic payment scheme. The
emergence of Bitcoin has not only contributed to state-
of-the-art cryptocurrency schemes, but also brought to
attention the blockchain, which is a decentralized and
unalterable public ledger. Informally, a public ledger is

Osman Biçer: Koç University, obicer17@ku.edu.tr
Alptekin Küpçü: Koç University, akupcu@ku.edu.tr

an append-only bulletin board, where new data can be
added only if it satisfies a predetermined criterion. The
proposed Bitcoin and blockchain mechanism depends
on only proof of work (PoW) [25] instead of requir-
ing a trusted third party for maintenance. PoW can be
briefly described as a race among blockchain miners for
computing brute-force solutions to a cryptographic puz-
zle with ever-changing parameters. Recent blockchain
and Bitcoin research has focused on novel applications
[2, 4, 6, 8, 40, 44, 45, 58], improved security [28–30, 39],
and enhanced privacy [51, 60]. In this paper, we focus
on the novel problem of anonymous decentralized online
donations as a public ledger application.

The context that we consider is similar to the “help-
ing a stranger” described in CAF 2018 World Giving
Index [36]. There, international charity organizations
(ICO) match the donor and recipients based on the for-
mer’s attribute choices. The size of the charity organi-
zations is usually underestimated. In fact, they have a
grand sector of its own with numbers as high as more
than 180,000 organizations only in United Kingdom [11]
and more than 2 out of 3 people donate in countries
like Indonesia, Australia, New Zealand, America, Ire-
land, United Kingdom [36]. We acknowledge this high
demand for charity, and differentiate our work from this
traditional setting by being decentralized, i.e., by elim-
inating ICOs to carry out the donation process. Our
work enables donors to choose recipients based on their
attributes in one compact system, providing fairness1

of donation distributions by allowing each recipient to
obtain a limited amount in each time period.

In an online donation scheme, a donor (Alice)
chooses a recipient (Bob) based on his attributes with-
out meeting him in person. Alice picks an attribute pol-
icy (e.g., the recipient should be “a high school stu-
dent” AND “a person whose family’s monthly income is
lower than $750 per month”), and publishes it in a pub-
licly visible venue (the Ledger) along with the donation
amount. She might go offline afterwards. Assume that
Bob meets this criteria, and has obtained attribute to-
kens from the authorities (e.g., student certificate from
his school, and low income certificate from the min-
istry). Upon seeing this donation on the Ledger, Bob

1 For a further discussion on fairness, see Section 7.

e-Donation 197

Fig. (1) The flow of the online donation scheme that we propose. 1© Bob obtains his attribute token from an attribute authority. 2©
Alice publishes the donation and the attribute policy on a publicly seen medium. She might go offline afterwards. 3© Upon seeing the
donation, Bob claims the donation by showing the proof of his conformity to the attribute policy that he generated via the attribute
token. 4© Bob then spends the donation amount, according to his wish.

proves his conformity to this attribute policy via the
obtained attribute tokens to claim the donation. Figure
1 shows the flow of the online donation scheme. The
identities of all the parties involved remain anonymous
and their actions remain unlinkable during the whole
process. Further, the protocol ensures that Bob will not
be able to claim more donations (even if he satisfies their
policies) than a publicly set amount from the system in
a time period for fairness to the other people. The sys-
tem also ensures that someone (who does not meet the
attribute policy that Alice picked), cannot claim any
money from her donation. We list the aspects that an
e-donation scheme needs to satisfy as follows:
- donor privacy: it should prevent the leakage of
Alice’s identity and linkage between multiple dona-
tions by her.

- recipient privacy: it should prevent linking be-
tween donations that Bob has received and leakage
about his identity.

- fair distribution of donations: it should not al-
low Bob to receive more than a publicly determined
amount of donation from the system in a given time
period for fairness to other potential recipients.

- decentralization: it should not require trusted
third parties (e.g., charity organizations) for the do-
nation process.2

2 We observe that trusted authorities are inevitable for checking
recipient attributes (e.g., being a student), but they are not

- always-on: it should not require Alice and Bob to
remain and interact online, in particular, it should
allow Alice to go offline after sending her donation
money and the recipient attribute policy.

- security: it should protect the overall balance of
the involved parties.

- scalability: it should be supporting multiple at-
tribute authorities for issuing attributes to multiple
recipients and multiple donors, and Bob should be
able to receive a donation from any geographical
location as long as he satisfy its policy.

- accountability: donations should be binding such
that Bob should indeed receive a donation if he
proves his conformity to the associated policy.3

- revocability: it should allow revocation of at-
tributes or users.
We note that some of these aspects may not be nec-

essary in all cases. For example, some donors may choose
not to be anonymous or may like to see the recipients
of their donations. In our solution, we choose to pro-
vide the most capable and privacy-preserving solution
that we could, and some aspects of our solution is pre-
sented in a modular way such that they can be removed
for obtaining a more efficient but less capable solution.

required for monetary transactions or for each donation (they
are used only for issuing attributes per user not per transaction).
3 Without this property, the scheme would allow an unethical
opportunity of data collection via fake donations, without the
attacker losing any money.

e-Donation 198

donor
privacy

recipient
privacy

fair dis-
tribution

decentra
lization

always-
on

secu-
rity

scala-
bility

accoun-
tability

revoca-
bility

ICO X* X* X* X* X* X* X* X*
NCC X X X X X

ACC X X X X X X X

PSC X X X X X X X

Our scheme X X X X X X X X X

Table (1) Comparison of traditional international charity organizations (ICO), the non-anonymous cryptocurrency (NCC) schemes
(e.g., Bitcoin [54] and Ethereum [13]), the anonymous cryptocurrency (ACC) schemes (e.g., Monero [52], Zerocoin [51], and Zerocash
[60]), the private smart contract (PSC) schemes (e.g., Hawk [42], Arbitrum [37], Zether [12], ZEXE [10], and Enigma [1]) and our e-
donation scheme (see Section 4 in terms of adequacy of e-donation requirements. Xdenotes satisfaction of a requirement. By X*, we
refer the facts that the traditional ICOs can only provide donor and recipient privacy in a limited way, as they do learn the identities
of the parties (but they may choose to hide this information when trusted); and that fair distribution of donations in these schemes is
limited, as recipients can obtain donations from various ICOs; and that their security, being always-on, scalability, accountability, and
revocability depend on the honesty of a single organization for all these tasks to be carried out.

Table 1 provides a comparison of various possible solu-
tions with respect to our e-donation requirements. We
highlight that the traditional ICOs can only provide
donor and recipient privacy in a limited way as they
do learn the identities of the parties. Also, fair distribu-
tion of donations in this scheme is limited, as recipients
may obtain donations from various ICOs. Furthermore,
their security, being always-on, scalability, accountabil-
ity, and revocability depend on the honesty of a single
organization for all these tasks to be carried out. The
motivation behind our proposed profile relies on the re-
port of [11], showing that the donor behavior tends to
be simplistic with few attribute choices in recipients and
caring more about fast delivery and ease of the donation
process than finding the best fitting recipient.

System Model. In our framework, in each state
or region there is a top level authority identity provider
(e.g., Census Bureau or State Authority) that user in-
teracts when he joins the system to generate his user
token. Thus, upon joining the system, each user has an
identity attribute (e.g., national identity number or so-
cial security number). This is required for preventing
Sybil attacks [61]. There are also attribute authorities
for issuing attributes of users. An attribute authority
can provide tokens for various attributes, and an at-
tribute can be issued by more than one authority. We
highlight that the system should prevent different users
from combining their attributes. For a further discus-
sion on possible authority architecture improvements,
see Section 7.

We trust identity providers and attribute authori-
ties (e.g., school districts) for honest issuing of user and
attribute tokens by checking identities and eligibility of
the users for attributes (e.g., high school student). The
only malicious actions that authorities can take are is-

suing tokens to the undeserving users and revealing the
identity of the users that applied to them for tokens,
which can happen in any donation system. Yet, none
of the authorities can donate or claim on behalf of a
user, nor can they carry out the whole donation pro-
cess as an ICO. They do not have monetary transaction
abilities, and are not involved in each donation; rather,
they are required only once per person while obtaining
the attribute. Even the authorities collectively cannot
identify a user from her transactions. Other than those
potential malicious actions, no authority can deduce a
user’s secret key or sign on behalf her. Besides, even the
authorities cannot identify a user from her signature.

Failed Approaches. One might imagine a triv-
ial online solution to the secure donation problem as
follows. First, the donor publishes the attribute policy
that she prefers the recipient to conform to. Next, a po-
tential recipient and the donor together run an anony-
mous credential protocol (e.g., [18]), where the recipient
proves his eligibility to the donor. Then, the donor di-
rectly pays the donation money to the recipient using an
anonymous e-cash scheme to preserve privacy. However,
although this scheme seems applicable, it can hardly sat-
isfy some of the above-mentioned requirements, namely,
online decentralization (due to the need for a trusted
third party in the e-cash scheme), scalability (since it is
not easy for every donor to always have secure access to
all valid authority certificates and potential recipients),
revocability (again, since secure access to all revocation
lists or keys may be hard for every donor), and account-
ability (since once the recipient proves his conformity,
the donor can still choose not to send the e-cash). More-
over, this trivial solution requires the recipients and the
donors to remain online and to interact directly, not
allowing decentralization in its full sense as described

e-Donation 199

PrivateDonate PrivateClaim

Ledger

BaseCash PrivCashMint PrivCashSpendClaimDonate

Fig. (2) The flow of transactions in our e-donation scheme. The PrivCashMint and Donate transactions are made by the donor (to-
gether called PrivateDonate), while the Claim and PrivCashSpend transactions are made by the recipient of the donation (together
called PrivateClaim). The BaseCash tuples referenced by the PrivCashMint transaction (leftmost ones) belong to the donor, whereas
the output of the PrivCashSpend transaction belongs to the final payee(s). The straight arrows represent direct referencing of the
transaction (linkable), while the dashed arrows represent the use of the outputs (unlinkable). We note that the block boxes are placed
arbitrarily.

above. Lastly, in such a setting, enforcing fair distri-
bution seems impossible. In our solution, we employ a
distributed ledger together with proper novel crypto-
graphic tools to deal with these issues, and provide the
first definition and instantiation for the anonymous fair
e-donation paradigm.

The anonymous decentralized e-cash schemes [51,
60] cannot be directly applied for the e-donation pur-
pose, as they do not provide a mechanism for anony-
mous attribute-based money transfer between donors
and recipients who are non-privy to each other. Also, it
is non-trivial to directly combine these with the existing
anonymous attribute proving techniques (e.g., anony-
mous credentials [14, 15, 17, 18, 23, 31, 48]), attribute
based signatures [19, 26, 32, 49, 56, 67], group signa-
tures [5, 16, 27, 35, 55, 62, 71]), while satisfying the
above-mentioned requirements. We note that even let-
ting ICOs use anonymous cryptocurrencies (e.g., Zero-
cash [60]) does not help with all of our e-donation re-
quirements. While such a trivial scheme may increase
donor and recipient privacy, it can hardly distribute do-
nations fairly. Further, the above-mentioned shortcom-
ings of ICOs still prevail.

An existing private smart contract scheme (e.g.,
Hawk [42], Arbitrum [37], Zether [12], ZEXE [10], and
Enigma [1]) would also not solve the online donation
problem itself, since it does not achieve fair distribution
of donations. We show that combining a decentralized
e-cash scheme or a private contract scheme with an at-
tribute based signature scheme (e.g, VABS of [7]) would
achieve e-donation.

Overview of Our Techniques. In this work, we
employ a public ledger for decentralization and account-
ability. We highlight that according to the flowchart
presented by NIST [69, Fig. 6], the use of blockchain
in our application is appropriate. We highlight that al-
though e-donation fits better to blockchain-based ledger
applications, there is no limitation for using it with con-
ventional e-cash schemes, as we abstract out the ledger
implementation. The ledger can be maintained by a
trusted party (e.g., the issuer of the e-cash), and all
its security guarantees still hold.

Our scheme is based on three cryptographic build-
ing blocks: an underlying BaseCash scheme (i.e., our ab-
straction of decentralized e-cash such as Bitcoin [54])
that provides the amount of donations, an anonymized
PrivCash scheme (i.e., our abstraction of decentral-
ized anonymous e-cash such as Zerocash [60]) and an
attribute-based signature scheme called VABS [7] that
provides usage limitation, revocability, and decentral-
ization features. PrivCash scheme basically has two op-
erations, PrivCashMint for minting PrivCash (e.g., in Ze-
rocash a Mint operation for converting the amounts in
t-addresses into the ones z-addresses) and PrivCashSpend
for spending minted PrivCash (e.g., in Zerocash a Pour
operation by converting the amounts in z-addresses into
the ones in t-addresses). A PrivateDonate transaction
made by the donor consists of two main actions: one
for minting some PrivCash (i.e., PrivCashMint) and one
for sending it to some attribute policy (i.e., Donate) as
a spending transaction. Similarly, a PrivateClaim trans-
action made by the recipient consists of two main ac-
tions: one for claiming a previous donation (i.e., Claim)

e-Donation 200

signed with a VABS for proving attribute policy confor-
mity and one for spending it to a separate payee (i.e.,
PrivCashSpend). Once the donor makes a donation to an
attribute policy, the donation is fixed on the Ledger as a
PrivateDonate transaction tuple, and the donor no longer
needs to be involved in its delivery. The donations on
the Ledger are delivered in a first-come-first-served ba-
sis. Any qualified recipient (adhering to the attribute
policy) can claim a donation with a PrivateClaim trans-
action tuple, as long as the donation (partially) remains
unclaimed on the Ledger. Furthermore, for fair distri-
bution of the donations, we limit the total amount of
donations that a recipient can claim in a given time
period. Figure 2 shows the flow of transactions in our
e-donation scheme.

Our Contributions. We list the overall contribu-
tions of this paper as follows:
1. In Section 3, we propose a novel, secure, and decen-

tralized e-donation framework. Our generic frame-
work is ledger-based, therefore, it can be realized on
top of a distributed blockchain. We scrupulously de-
fine the component algorithms and transaction tu-
ples of the framework. We further provide formal
game-based definitions for its security properties,
(1) unforgeability and balance, (2) fair distribution
of donations, (3) donation and recipient privacy.

2. In Section 4, we instantiate our e-donation frame-
work with a practical and provably secure scheme.
Our scheme is based on two cryptographic building
blocks: an anonymized PrivCash scheme (i.e., our ab-
straction for decentralized anonymous e-cash such
as Zerocash [60]) and a recent attribute-based sig-
nature scheme called VABS [7]. In Appendix A, we
formally prove that our proposed scheme satisfies
the security requirements of the e-donation frame-
work, if the underlying building blocks are secure.

3. In Section 6, we provide efficiency information for
our e-donation scheme, showing that our operations
have reasonable computation and communication
costs (i.e., for many cases, donating takes less than
1.7 min and 6 kB, while receiving donations takes
around 1.7 min and less than 90 kB).

2 Preliminaries
Notation.Throughout this paper,
- a � B denotes that a gets a value from the set B
sampled uniformly at random,

- a ← B denotes that a gets the output of a proba-
bilistic polynomial time algorithm (PPT) B,

- a := b denotes that a gets the value of b,
- A(a) → b denotes that A is a PPT taking as in-
put a and outputting b (A may output values non-
deterministically), and

- A{B1(b1), B2(b2)} → (c1), (c2) denotes that B1 and
B2 are two parties executing the protocol A on their
inputs b1 and b2, respectively, and A outputs c1 and
c2 to parties B1 and B2, respectively (A may output
values non-deterministically to both parties).
Ideal Public Ledger. We now briefly describe an

ideal public ledger functionality based on the public
ledger functionality definition of [40]. Any party can se-
curely read the current LedgerC, while only the Ledger
writer is allowed to write on it by appending some data.
Any transaction4 handed to the Ledger writer is written
to the Ledger, if it satisfies a validation function f , i.e., a
commonly determined polynomial time function taking
as input a transaction, and outputting either 1 (satis-
fied) or 0 (unsatisfied).

Two commonly known realizations of the Ledger
functionality are via a blockchain or via a trusted party.
In [29] and [30], the authors show that the Bitcoin
protocol provides the requirements of a public ledger,
based on the assumptions that the number of min-
ers are constant, and that the majority of the hashing
power belongs to the honest miners. However, existing
blockchains, in practice, have issues such as connectiv-
ity problems or Eclipse attacks on the peer-to-peer net-
work of blockchain. Therefore, when realizing the Ledger
functionality as a blockchain, such issues should be con-
sidered. Further, blockchains do not offer network layer
anonymity themselves as required by the Ledger func-
tionality, but this can be provided via an additional re-
source such as using the TOR network [65].

BaseCash scheme. Our e-donation framework re-
quires an underlying BaseCash scheme that functions as
the value of the donations. A BaseCash is a tuple (v, p),
where v is a value determining the amount and p is a
public key of the owner who also has a related secret
key s. We note that each BaseCash tuple has a unique
reference number r given by the Ledger writer when it
is written on the Ledger. In Zerocash, BaseCash corre-
sponds to Bitcoin or a coin belonging to t-addresses
in Zerocash [60]. Yet, we do not separate these tuples
and refer both as BaseCash. We note that BaseCash may
have setup, transaction generation, and verification al-

4 We use the term “transaction” to refer to any information
string that conforms to some predefined rules.

e-Donation 201

gorithms, but are abstracted out for simplicity. The key
generation algorithm for (s, p) is part of a digital signa-
ture scheme that is assumed to satisfy existential unfor-
geability under an adaptive chosen-message attack [38].

PrivCash scheme. Based on the decentralized
e-cash definitions of Zerocash [60], we now describe
a generic decentralized anonymous payment scheme
PrivCash, which we utilize for donor and recipient pri-
vacy in our e-donation scheme. Yet, our description
is simplified as including three types of operations
PrivCashKeyGen, PrivCashMint, and PrivCashSpend. Also,
it differs from the one in [60] by inclusion of a unit
BaseCash amount u of each transaction (we require
this for fair distribution of donations in our e-donation
scheme) and exclusion of details (e.g., Merkle root in-
puts to spending operations) that are not generalizable.
We note that similar ideas exist in [51] or other “mix-
ing” based currencies [9, 59, 68, 72]. At the start of the
PrivCash scheme execution, the Ledger writer runs the
setup algorithm, obtains and publishes the global setup
parameters pparams. The operations PrivCashKeyGen,
PrivCashMint, and PrivCashSpend of the PrivCash scheme
are defined as follows.

PrivCashKeyGen(pparams)→ (s, p): This is executed
by a user for generating the user’s private/public key
pair (s, p). The user can publish the public key p, but
needs to keep s as secret.

PrivCashMint(r, s, s, p, LedgerC, pparams)→ (c,
TXPrivCashMint): This is executed by a user (with at least
u amount of BaseCash referenced as r with the corre-
sponding secret key s) for hiding the coins that will be
spent. It takes as input the user’s private/public key
pair (s, p), the current ledger LedgerC, and the setup pa-
rameters pparams. The algorithm outputs the minted
PrivCash c and a transaction TXPrivCashMint. The user
sends the output TXPrivCashMint to the Ledger writer and
keep c as secret spending information.

PrivCashSpend(c, s, p, info, p, LedgerC, pparams) →
TXPrivCashSpend: This is executed by a user for spending
her private coin. It takes as input a previously minted
PrivCash c, the user’s private/public key pair (s, p), a
public information info the receiver BaseCash public key
p, the current ledger LedgerC, and the setup parameters
pparams. The user sends the output TXPrivCashSpend
(including info as plaintext) to the Ledger writer. As a
result, u amount of PrivCash is deducted from the user’s
balance and added to the recipient’s one as BaseCash.

Each transaction TXX also has a corresponding ver-
ification algorithm (X.Vrfy) so that the Ledger writer can
verify that they are structured correctly. The Ledger
writer also keeps a serial number database to pre-

vent double-spending. We note that each PrivCashSpend
transaction has a unique reference number r given by
the Ledger writer when it is written on the Ledger,
whereas a PrivCashMint transaction is only referenced
implicitly (by spending the minted coin by it). We
also note that in case Zerocash is used as PrivCash,
PrivCashKeyGen, PrivCashMint and PrivCashSpend cor-
respond to their CreateAddress, Mint, and Pour with
the following slight modifications for generality, respec-
tively. s of PrivCashMint is used for signing the output
transaction of Mint for verification with the related pub-
lic key in BaseCash. PrivCashSpend is adjusted so that the
output address is BaseCash public key, and p1 and info of
PrivCashSpend are written to info part of the Pour trans-
action. We assume that BaseCash tuples and PrivCash
transactions existing on a single Ledger for simplicity,
yet in reality they may be on separate ledgers (e.g., Bit-
coin and Zerocash). We assume that PrivCash satisfies
correctness, balance and non-malleability (see Appendix
B), and ledger indistinguishability (see Appendix C).

Attribute-based Signature (ABS) scheme.
For our e-donation construction we need a scheme that
enables non-interactive proving of suitability to an at-
tribute policy while keeping the signer’s identity anony-
mous (i.e., other than what the attribute policy reveals).
Attribute-based signatures (ABS) are the generic tools
that allows this. However, since we want fair distribution
of donations, our design requires the number of signa-
tures that a signer can generate in a time period to be
limited. Therefore, most of the existing ABS schemes
do not provide all features for our target in one pack-
age (see Section 5 for further discussion). Fortunately, a
recent proposal VABS [7] provides a versatile attribute-
based signature definition and construction. The versa-
tility comes from additional features on top of standard
ABS solutions: they provide decentralization, usage lim-
itation, revocation, threshold traceability, and author-
ity hiding. We utilize the anonymity, signature unforge-
ability, and signature soundness definitions in VABS [7]
for our security proofs, and provide those definitions in
Appendix D for completeness. We omit the traceability
related definitions, as the design of [7] is modular.

The system model of [7] requires a top level author-
ity (i.e., an identity provider) in each state or region for
each user to interact before joining the system. Via this
interaction, the user generates an identity token that
will be used while obtaining each of her other attribute
tokens for attribute authorities. The identity token is
also used in each of her signatures. Therefore, this would
protect against Sybil attacks or collusion. We acknowl-
edge that this requires a central authority, but we only

e-Donation 202

trust this authority, for issuing only one distinct identity
token for each user.

The setup operation takes place once in the sys-
tem setup to obtain the parameters vparams, and can
be executed as an algorithm or as a multi-party pro-
tocol. VABS.IdPJoin and VABS.AuthJoin operations are
for the identity providers and attribute authorities to
join the system. Similarly, the VABS.UserJoin opera-
tion enables a user to enter the system via interacting
with an identity provider to generate her identity to-
ken. To obtain their attribute tokens, users should run
VABS.AttrIssue with the attribute authorities. VABS.Sign
and VABS.Verify algorithms are to sign documents while
only revealing attributes and verify the given VABSs,
respectively. During verification, n-times periodic usage
limitation can be enforced. Moreover, VABS.UserRevoke
and VABS.AttrRevoke operations are provided for re-
vocation of users and their attributes by entitled au-
thorities. Here we provide the shortened descriptions of
VABS.Sign and VABS.Verify in [7]. We omit the defini-
tions of others and refer the reader to [7] for further
details related to them, as their use in our e-donation
scheme is straightforward.

VABS.Sign(m,S, β,Σβ , IAP, t, J, vparams) → σ: Be-
ing executed by a user, it takes as input a message m,
a secret key S, an attribute policy β, an attribute token
set Σβ that proves that the owner of S conforms to the
attribute policy β, the public key set IAP of the identity
providers and authorities, the time period indicator t,
a signature counter J , and the global setup parameters
params. The output of the algorithm is a VABS σ on
m. Upon execution, the user increments the counter J
for verification of his next signatures.

VABS.Verify(m,σ, β, IAP, t, SDB, vparams) → b:
Executed by a verifier, it takes as input a message m, a
VABS σ, an attribute policy β, the public key set IAP
of the identity providers and authorities, the time pe-
riod indicator t, the current signature database SDB,
and the global setup parameters vparams. The output
of the algorithm is a bit b defined as 1, if verification
succeeds. Otherwise, it is defined as 0. If the algorithm
output is 1, the signature database is updated by the
addition of σ (i.e., SDB := SDB||σ).

3 E-Donation Framework
In this section, we define the properties and security no-
tions of an e-donation scheme, along with the games re-
lated to them. Our framework requires a Ledger scheme

(as described in Section 2) that can be instantiated by
a trusted third party or a distributed system, and is
publicly available for read access. No one can directly
write on the Ledger except for the honest Ledger writer.
The Ledger is characterized as permanent, i.e., whatever
is written on it remains unalterable afterwards. The e-
donation framework is built on top of a BaseCash scheme
that makes donations worthy.

3.1 Operations

We define the e-donation operations, GlobalSetup,
IdPJoin, AuthJoin, UserJoin, RecipJoin, AttrGen, Private-
Donate, and PrivateClaim, as follows.

GlobalSetup(1λ)→ (dparams): This operation is run
by the Ledger writer at the start of the protocol. It takes
as input a unary security parameter 1λ, and outputs
global setup parameters dparams. The Ledger writer
may also update dparams using this operation. We note
that if the Ledger writer is a distributed system (as in
blockchain), this operation might run as a multi-party
protocol where all involved parties have the same input
1λ, and obtain dparams at the end.

IdPJoin(dparams) → (is, ip): This operation is
run by an identity provider for generation of its pri-
vate/public key pair (is, ip).

AuthJoin(dparams) → (as, ap): This operation is
run by an attribute authority for generation of its pri-
vate/public key pair (as, ap).

UserJoin(dparams) → (s, p): This operation is run
by a user (a donor or a recipient) for generation of its
private/public key pair s, p.

RecipJoin{User(uid, ip), Identity Provider(uid, is, ip)}
→ (S), (⊥): This operation is a two-party protocol be-
tween a user (a potential recipient) and an identity
provider for generating the user’s secret key S that
will be used receiving donations. The identity provider
has a secret key is, and both parties know the user
identity uid and the identity provider public key ip.
The algorithm outputs to the user the secret key S that
is tied to uid.

AttrGen{User(uid,S, ap, ω),Attribute Authority(uid,
as, ap, ω)} → (σω), (⊥): This operation is a two-party
protocol between a user and an attribute authority for
issuing the attribute token to the user. The user has a
secret S obtained from RecipJoin, the authority has a
secret key as, and both parties know the user identity
uid, the authority public key ap, and the attribute
ω that the user wishes to get approved upon. The
algorithm outputs to the user the attribute token σω

e-Donation 203

that proves the conformity of the user with secret key
S to the attribute ω.

PrivateDonate(r, s, s, p, β, dparams, LedgerC) →
(TXDonate,1, . . . ,TXDonate,k): This operation is run by a
donor for casting the donation to an attribute policy. It
takes as input some BaseCash r with a total of at least
a unit amount donation5 u with the corresponding
secret key s, the donor’s private/public key pair (s, p),
an attribute policy β about the recipient, and the
system parameters dparams. The algorithm outputs a
tuple (TXDonate,1, . . . ,TXDonate,k) of k transactions. At
least one of these transactions publishes β. We call the
transaction tuple (TXDonate,1, . . . ,TXDonate,k) belonging
to the same PrivateDonate operation as a transaction
TXPrivateDonate. We note that the amount u is deducted
from the donor’s balance, and is added to the claimable
amounts with the policy β as a result.

PrivateClaim(r, S,Σβ , IAP, s, p, p, dparams, LedgerC)
→ (TXClaim,1, . . . ,TXClaim,h): This operation is run by a
recipient for claiming an unclaimed donation. It takes
as input a reference previous TXDonate,k transaction r on
the current LedgerC, the recipient’s secret key S for re-
ceiving donations, an attribute token set Σβ for proving
conformity to β of the referenced TXDonate,k issued by
attribute authorities, the set IAP of identity provider
and attribute authority public keys, the recipient’s key
pair (s, p), the BaseCash public key p of the payee6, and
the system parameters dparams. The algorithm outputs
a tuple (TXClaim,1, . . . ,TXClaim,h) of h transactions. At
least one of these transactions publishes p. We call the
transaction tuple (TXClaim,1, . . . ,TXClaim,h) belonging
to the same PrivateClaim operation as a transaction
TXPrivateClaim. We note that the amount u is deducted
from the claimable amounts with β, and is added to
the payee’s balance as a result.

Each transaction also has a corresponding verifica-
tion algorithm, and is written to the Ledger after the
Ledger writer verifies it. The public outputs of IdPJoin
and AuthJoin can be written to Ledger for authentic-
ity. We enforce each PrivateDonate and each PrivateClaim
to have the same unit amount u determined by the
Ledger writer (as a public system parameter, for fair dis-

5 We set the unit donation amount for achieving fair distribu-
tion of donations (see Section 3.2) via VABS [7]. Yet, for further
improvements it can be removed. We allow the reference to have
total amount more than u for possible donation fees charged by
the Ledger writer.
6 The payee is not the recipient of the e-donation, but one to
whom the recipient pays the e-donation. PrivateClaim operation
not only ensures the privacy of the recipient but also hides the
final payee of a donation, who may be the same as or different
from the recipient.

tribution of donations). This issue will become clearer
when we present our construction. We note that some
e-donation constructions may not support revocation.
Therefore, we do not formalize the related operations,
yet in our e-donation construction we achieve revoca-
tion via use of VABS implicitly. Also, we note that both
k and h would ideally, be set as 1 for better efficiency.
Yet, currently this causes issues in privacy, which will
be clearer in the privacy definition in Section 3.2.

3.2 Security Definitions

In this section, we provide the security requirements
in an e-donation scheme Π = (Ledger,BaseCash,Global-
Setup, IdPJoin,AuthJoin,UserJoin,RecipJoin,AttrGen,Pri-
vateDonate,PrivateClaim). We provide our unforgeability
and balance game building on top of the conventional
existential unforgeability games, the Balance of [51], and
the TR-NM game of [60] (see Appendix C). We propose
a fair distribution of donations definition, which we
prepared building upon the soundness of n-times
unlinkable scheme of [17], applying that to e-donation.
Our privacy notions for donation and recipient privacy
follows similar ideas to the transaction privacy in the
decentralized anonymous e-cash scheme [60].

Unforgeability and Balance. The unforgeabil-
ity and balance property of an e-donation scheme en-
sures that each donation has a valid donor who owns
some BaseCash with enough amount, and that the re-
cipient of a donation conforms to the attribute pol-
icy chosen by the donor. Our following definition im-
plies that any forging or imbalance attempt within
an e-donation scheme will be detected with one mi-
nus negligible probability. In fact, we cover four dif-
ferent possibilities of dishonest attempts (i.e., posting
TXPrivateDonate using another party’s BaseCash, posting
imbalanced TXPrivateDonate (or modification of one gener-
ated by an honest user as a forged donation to a different
attribute policy7), posting TXPrivateClaim that references
TXDonate,2 for a user that does not satisfy the related
attribute policy, and posting imbalanced TXPrivateClaim)
(or modification of one generated by an honest user as
a forged claim to a different payee7) by an active ad-
versary. Here, we combine these four attacking possibil-
ities in a single definition, since their definitions would
be overlapping if we had defined them separately. For-
mally, for an e-donation protocol Π, a PPT adversary
A, a challenger C who also controls the Ledger writer,
7 This is important in case of Blockchain use for Ledger instan-
tiation for security against malicious network participants.

e-Donation 204

and a security parameter λ, consider the following un-
forgeability experiment eDonForgeu,n,δA,Π (λ):
1. C gives to A the security parameter 1λ, the

system parameters dparams obtained by running
GlobalSetup(1λ), and read access to all Ledger con-
tent. A is also given the unit donation amount
u ∈ poly(λ), the total donation amount D = n · u
that can be received by a recipient in a given time
period where n ∈ poly(λ), and the duration δ of a
time period8. Time period counter t is initialized as
t := 1, and is started.

2. At any step,
(a) A is allowed to generate identity providers and

attribute authorities and issue secret keys and
attributes from those authorities. A shares au-
thority public keys with C so that it would be
able to verify the transactions. Similarly, A can
ask C to generate authorities by IdPJoin and
AuthJoin operations, respectively. In this case,
C shares authority public keys with A, and pro-
vides RecipJoin and AttrGen oracle access to A.

(b) A can generate users by running UserJoin and
run RecipJoin with any identity provider to up-
grade any of those users to a recipient. Also, A
can generate polynomially-many different trans-
action tuples of TXPrivateDonate or TXPrivateClaim or
BaseCash employing users under its control, and
give the tuples to C for writing to the Ledger.
Similarly, A can ask C to generate users by
UserJoin and to upgrade any user to a recipi-
ent by RecipJoin with any identity provider. In
this case their public keys are given to A. In
this case their public keys are given to A. A can
also ask C to generate transactions for users un-
der C’s control and write them to the Ledger. In
any case, only the transactions verified by the
verification algorithm are written to the Ledger.

3. C generates BaseCash tuples (v1, p1), . . . , (v`, p`)
where ` ∈ poly(λ) with A’s request, writes them
to the Ledger, and keeps the related secret keys
s1, . . . , s` private.

4. A eventually returns an attribute ω (that was not
queried to AttrGen oracles) to C. We note that ω
can only be verified by the (honest) authority pub-
lic keys generated by the challenger. If A queries an
attribute authority oracle for ω, the attribute is is-
sued but is immediately revoked. If the scheme does

8 We define δ as a quantized value, i.e., a multiple of computa-
tion steps of A.

not support revocation, definition simply says that
such an attribute assignment request will be denied.

5. A eventually returns (at least) one of the following:
(1) a transaction tuple TXPrivateDonate whose refer-
ences include a subset of the {(v1, p1), . . . , (v`, p`)}
(as if a malicious user is spending some honest user’s
coins), (2) a transaction tuple TXPrivateDonate with-
out the deduction of the amount u from the donor’s
balance, or without the addition of u to the bal-
ance of unclaimed donations with the same pol-
icy, or with the alteration of the balance of another
party or of unclaimed donations with another pol-
icy, or that can replace an existing transaction tuple
TX′

PrivateDonate with a different policy on the Ledger
generated by a user under C’s control (and the veri-
fication algorithm verifies all the transactions on the
Ledger upto and including TXDonate,k) (3) a transac-
tion tuple TXPrivateClaim that references a TXDonate,2
with a policy β ∧ω for any β (as if claiming a dona-
tion without satisfying the attribute), (4) a transac-
tion tuple TXPrivateClaim that has a final payee that
receives more amount than u without the deduction
of the amount u from the donations with the same
policy β that are unclaimed, or without the addition
of u to the payee’s balance, or with the alteration of
the balance of any other party or of unclaimed dona-
tions with another policy, or that can replace an ex-
isting transaction tuple TX′

PrivateClaim on the Ledger
with a different payee generated by a user under C’s
control (and the verification algorithm verifies all
the transactions on the Ledger upto and including
TXClaim,k). A sends the generated tuples to C. The
output of the game is defined as 1 (i.e., A wins), if
any such transaction tuple is written to the Ledger.
Otherwise, the output of the game is defined as 0
(i.e., A loses).

Definition 1 (Unforgeability and Balance). An e-
donation scheme Π is unforgeable and balanced, if
∀u, n, δ ∈ poly(λ), for every PPT adversary A, there
exists a negligible function n(·) such that

Pr[eDonForgeu,n,δA,Π (λ) = 1] < n(λ)

Fair Distribution of Donations. By fairness in do-
nation distribution, we refer to the objective that none
of the recipients would be allowed to claim too many
donations even if she satisfies their policies. To achieve
this, we limit the total donation amount that can be
received by a recipient within a time interval. Our def-
inition ensures that any adversarial attempt within an
e-donation scheme for obtaining more than the allowed
amount within a time period will be detected with one

e-Donation 205

minus negligible probability. For an e-donation protocol
Π, a PPT adversary A, a challenger C who also controls
the Ledger writer, and a security parameter λ, consider
the following fair distribution of donation experiment
FairDistu,n,δA,Π (λ):
1. C gives to A the security parameter 1λ, the

system parameters dparams obtained by running
GlobalSetup(1λ), and read access to all Ledger con-
tent. A is also given the unit donation amount
u ∈ poly(λ), the total donation amount D = n · u
that can be received by a recipient in a given time
period where n ∈ poly(λ), and the duration δ of a
time period. Time period counter t is initialized as
t := 1, and is started.

2. At any step,
(a) A is allowed to generate identity providers and

attribute authorities and issue secret keys and
attributes from those authorities. A shares au-
thority public keys with C so that it would be
able to verify the transactions. Similarly, A can
ask C to generate authorities by IdPJoin and
AuthJoin operations, respectively. In this case,
C shares authority public keys with A and pro-
vides RecipJoin and AttrGen oracle access to A.

(b) A can generate users by running UserJoin and
run RecipJoin with any identity provider to up-
grade any of those users to a recipient. Also, A
can generate polynomially-many different trans-
action tuples of TXPrivateDonate or TXPrivateClaim or
BaseCash employing users under its control, and
give the tuples to C for writing to the Ledger.
Similarly, A can ask C to generate users by
UserJoin and to upgrade any user to a recipi-
ent by RecipJoin with any identity provider. In
this case their public keys are given to A. In
this case their public keys are given to A. A can
also ask C to generate transactions for users un-
der C’s control and write them to the Ledger. In
any case, only the transactions verified by the
verification algorithm are written to the Ledger.

3. A eventually returns to C a transaction tuple for
TXPrivateClaim,A whose recipient with secret key S has
claimed at least D amount in the current time pe-
riod. The output of the game is defined as 1 (i.e.,
A wins), if the transaction tuple is written to the
Ledger. Otherwise, the output of the game is defined
as 0 (i.e., A loses).

Definition 2 (Fair Distribution of Donations). An e-
donation scheme Π provides fair distribution of dona-
tions, if ∀u, n, δ ∈ poly(λ), for every PPT adversary A,

there exists a negligible function n(·) such that

Pr[FairDistu,n,δA,Π (λ) = 1] ≤ n(λ)

Donation and Recipient Privacy. Our privacy
notion includes hiding the identities of the donor and
recipient of a donation and its final payee. We note that
payee privacy is also very important for ensuring the pri-
vacy of a recipient, as the payee is likely to be recipient
himself or someone with a relationship to him.

To cover the above-mentioned privacy issues, we
propose a strong privacy definition similar to the ledger
indistinguishability of [60]. Formally, for an e-donation
protocol Π, a PPT adversary A, a challenger C who also
controls the Ledger writer, and a security parameter λ,
consider the following donation and recipient privacy-
experiment Privacyu,n,δA,Π (λ):
1. C gives to A the security parameter 1λ, the

system parameters dparams obtained by running
GlobalSetup(1λ). A is also given the unit donation
amount u ∈ poly(λ), the total donation amount
D = n · u that can be received by a recipient in
a given time period where n ∈ poly(λ), and the du-
ration δ of a time period. Time period counter t is
initialized as t := 1, and is started.

2. At any step,
(a) A is allowed to generate identity providers and

attribute authorities and issue secret keys and
attributes from those authorities. A shares au-
thority public keys with C so that it would be
able to verify the transactions. Similarly, A can
ask C to generate authorities by IdPJoin and
AuthJoin operations, respectively. In this case,
C shares authority public keys with A and pro-
vides RecipJoin and AttrGen oracle access to A.

(b) A can generate users by running UserJoin and
run RecipJoin with any identity provider to up-
grade any user to a recipient. Similarly, A can
ask C to generate users by UserJoin and to up-
grade any user to a recipient by RecipJoin with
any identity provider. In this case their public
keys are given to A.

3. C picks a bit b� {0, 1}. It also initializes two ledger
writer oracles O0 and O1 which writes to ledgers
Ledger0 and Ledger1, respectively.

4. A is read access to the ledgers Ledgerleft and
Ledgerright, where Ledgerleft := Ledgerb and
Ledgerright := Ledgerb̄.

5. A sends its queries to C. Each query Q must be in
the form of a pair of subqueries (Q0, Q1). C forwards
one of them to O0 and the other one to O1. Al-
lowed types of subqueries are BaseCash, (Donate, i)

e-Donation 206

The challenger C The adversary A

Picks . Initializes two ledgers Ledger0 and Ledger1, and

two oracles O0 and O1 that writes to them, respectively. Defines

ledgers Ledgerleft = Ledgerb and Ledgerright = Ledgerb.

 read access to Ledgerleft and Ledgerright and query access

A may query polynomially-many times as pairs of subqueries subject to

given restrictions to deter trivial de-anonymization.

If query type is Insert, forwards to O0 and to O1.

Otherwise, forwards to Ob and to O b. Eventually, outputs a bit 𝑏′. Wins, if 𝑏 = 𝑏′. Otherwise, loses.

𝑑𝑝𝑎𝑟𝑎𝑚𝑠,𝑢,𝐷, 𝛿,

𝑏 {0,1}

𝑄0 𝑄1 𝑄0 𝑄1

Fig. (3) A high level description of the Privacyu,n,δA,Π (λ) game.

for i ∈ (1, . . . , k), (Claim, i) for i ∈ (1, . . . , h), and
Insert. Insert queries are for the BaseCash tuples and
transactions generated by the users under A’s con-
trol, while the other ones are for those under C’s
control. The format of and the oracle’s consequent
action for each type should be as follows.
– (BaseCash, v, p): v is the amount and p is the

public key of the owner. If p is among the public
keys of the users under C’s control the oracle
generates a BaseCash = (v, p).

– (PrivateDonate, r, p, β): r is the referenced
BaseCash, p is the public key of a user, and β

is an attribute policy. If no previous transaction
has referenced r, p is among the users under C’s
control generated by UserJoin, and β is a validly
structured attribute policy, the oracle assigns a
unique donate identifier qidD to the query, gives
qidD to A, and records the query and its qidD.

– (Donate, i, qidD) for i ∈ (1, . . . , k): qidD is the
referenced PrivateDonate query. If no previous
transaction TXDonate,i referencing qidD is writ-
ten on the oracle’s Ledger, the oracle generates a
TXDonate,i transaction by executing the related
transaction generation algorithm using the in-
puts of the related PrivateDonate query.

– (PrivateClaim, r, p, p): r is the referenced
TXDonate,k, p is the public key of a user, and p

is the public key of the payee. If no previous
transaction has referenced r, p is among the
users under C’s control generated by UserJoin,
and p is a validly structured public key, the
oracle assigns a unique claim identifier qidC
to the query, gives qidC to A, and records the
query and its qidC .

– (Claim, i, qidC) for i ∈ (1, . . . , h): qidC is the
referenced PrivateClaim query. If no previous

transaction TXClaim,i referencing qidC is writ-
ten on the oracle’s Ledger, the oracle generates
a TXClaim,i transaction by executing the related
transaction generation algorithm using the in-
puts of the related PrivateClaim query.

– (Insert,TX/BaseCash) where TX is any type of
transaction among TXDonate,i for i ∈ (1, . . . , k)
and TXClaim,i for i ∈ (1, . . . , h). If the query input
includes BaseCash or the verification algorithm
verifies the transaction, the oracle accepts.

Insert type of queries are for directly writing to the
ledgers. Therefore, in this case, the subqueries Q0
and Q1 are forwarded to Ob and Ob̄ by C, respec-
tively. Other queries are for generation of the cor-
responding transactions. Therefore, in this case, C
forwards Q0 to O0 and Q1 to O1. We require the fol-
lowing restrictions (defined similarly to public con-
sistency of [60]) for each query Q = (Q0, Q1) to
deter trivial de-anonymization.
– Q0 and Q1 must be of the same type.
– If both oracles generate transactions as a re-

sult, each oracle writes the generated trans-
action to the corresponding ledger. Otherwise,
both transactions are dropped.

– If both oracles accept as a result of Insert, each
oracle writes the accepted BaseCash to the cor-
responding ledger. Otherwise, both transactions
are dropped.

– If the type is Donate, i for i ∈ (1, . . . , k), there ex-
ists two cases. If the attribute policies are being
published with the resulting transactions, the
policies in both referenced PrivateDonate queries
by qidD,0 (belonging to Q0) and qidD,1 (belong-
ing to Q1) must be the same. Otherwise, the ref-
erenced Basecash r and the related public key

e-Donation 207

p in both referenced PrivateDonate queries by
qidD,0 and qidD,1 must be the same.

– If the type is Claim, i for i ∈ (1, . . . , h), there
exists two cases. If the payee public keys are
being published with the resulting transactions,
the public keys in both referenced PrivateClaim
queries by qidC,0 (belonging to Q0) and qidC,1
(belonging to Q1) must be the same. Otherwise,
the referenced Donate, k r in both referenced
PrivateDonate queries by qidC,0 and qidC,1 must
be the same.

6. Eventually, A outputs a bit b′. If b = b′, the output
of the game is defined as 1 (i.e., A wins). Otherwise,
the output of the game is defined as 0 (i.e., A loses).

Definition 3 (Donation and Recipient Privacy). An
e-donation scheme Π provides donation and recipient
privacy, if ∀u, n, δ ∈ poly(λ), for every PPT adversary
A, there exists a negligible function n(·) such that

Pr[Privacyu,n,δA,Π (λ) = 1] < 1
2 + n(λ)

Figure 3 provides a high level description of this game.
Remark 1. Consider schemes with k = 1 or h = 1.
Regarding PrivateDonate, the resulting transactions need
to include the referenced BaseCash and the attribute pol-
icy β. Having them together in one transaction directly
shows whose BaseCash is donated to a particular policy.
Regarding PrivateClaim, the resulting transactions need
to include the referenced TXDonate,k and the public key
p of the payee. Having them together in one transaction
would directly show which claimed donation (along with
the published attribute policy) is spent to a particular
payee. Therefore, in our construction, we achieve secu-
rity with k = 2 and h = 2, by splitting the PrivateDonate
and PrivateClaim transactions into two steps, disasso-
ciating the referenced BaseCash from the attribute pol-
icy, and disassociating the referenced donation from the
payee, respectively.

4 Our e-Donation Scheme
In this section, we propose the first e-donation scheme
Π = (Ledger,GlobalSetup,BaseCash, IdPJoin,AuthJoin,
UserJoin,RecipJoin,AttrGen,PrivateDonate,PrivateClaim)
that achieves the security requirements of the generic
e-donation framework, namely unforgeability and
balance, fair distribution of donations, and donation
and recipient privacy. Our scheme also provides
multi-authority attribute issuing for recipients. We

do not propose or enforce a specific choice of the
Ledger instantiation, i.e., it can be a decentralized
blockchain that utilizes any consensus methodology
(such as proof-of-work, proof-of-stake, or Byzantine
agreement, or a combination of multiple ledgers9). Our
PrivateDonate and PrivateClaim instantiation utilizes as
building blocks a VABS scheme defined as in [7] and a
PrivCash scheme such as Zerocash [60]. We highlight
the necessity of the VABS scheme, because it is the
only known ABS scheme that enables both anonymous
attribute policy proving and limiting the number of
signatures that a signer can generate in a time period
(see Section 5 for further discussion). In what follows,
we describe our e-donation scheme proposal in detail.

In GlobalSetup of our e-donation scheme, the setup
operations of the BaseCash, PrivCash, and VABS schemes
are executed by the Ledger writer. It also generates
a BaseCash private/public key pair (ṡ, ṗ) for indicat-
ing e-donation operations and completness. The Ledger
writer then sets dparams := (vparams, pparams, ṡ, ṗ).
In our proposed scheme IdPJoin and AuthJoin oper-
ations are obtained by authorities via execution of
VABS.IdPJoin and VABS.AuthJoin operations, respec-
tively. Likewise, UserJoin is obtained by users via ex-
ecution of PrivCashKeyGen. Further, for RecipJoin and
AttrGen, the user and the authority simply run the
VABS.UserJoin and VABS.AttrIssue operations, respec-
tively. It should be noted that the VABS scheme of [7]
also requires each user to run VABS.UserJoin with an
identity provider, before obtaining her attribute signa-
tures, when they first join the system.

Algorithms 1 and 2 present our PrivateDonate and
PrivateClaim operations run by a donor and a recipi-
ent respectively. A PrivateDonate transaction employs
PrivCashMint and PrivCashSpend transactions to main-
tain unlinkability, while adding the attribute policy.
A PrivateClaim transaction utilizes again PrivCashMint
and PrivCashSpend transactions to maintain unlinka-
bility, and a VABS.Sign operation to prove adherence
to the attribute policy. We note that the resulting
TXDonate,1, TXDonate,2, TXClaim,1, and TXClaim,2 transac-
tions in Algorithms 1 and 2 correspond to PrivCashMint,
Donate, Claim, and PrivCashSpend transactions given in
Overview of Our Techniques in Section 1.

9 BaseCash and PrivCash schemes, in practice, might have sep-
arate ledgers (e.g., Bitcoin and Zerocash). Here, we treat the
whole system as written on a single ledger for simplicity. In
case Zerocash is used for implementation, e-donation operations
might be written on the ledger of Zerocash with a modification
on its Ledger writer (e.g., miners’ code for verifying VABS).

e-Donation 208

Algorithm 1: PrivateDonate executed by
donors
input: some BaseCash r on the current LedgerC with a
total amount of at least u, the related secret key s to the
BaseCash, the donor’s private/public key pair (s, p), an
attribute policy β, and the global setup parameters
dparams = (vparams, pparams, ṡ, ṗ)
output: a tuple TXPrivateDonate = (TXDonate,1,TXDonate,2)

(c,TXDonate,1)←
PrivCashMint(r, s, s, p, LedgerC, pparams)

Send TXDonate,1 to the Ledger

TXDonate,2 ←
PrivCashSpend(c, s, p, β, ṗ, LedgerC, pparams)

Send TXDonate,2 to the Ledger

Algorithm 2: PrivateClaim executed by recip-
ients
input: a previous unclaimed transaction TXPrivCashMint
referenced with r on the current LedgerC, the recipient’s
secret key S for receiving donations, a set of authority
signatures Σβ for proving conformity to the attribute
policy β, the recipient’s key pair (s, p), the BaseCash
public key p of the payee, the set IAP of identity

provider
and attribute authority public keys, the global setup
parameters dparams = (vparams, pparams, ṡ, ṗ), and a
PrivateClaim counter J
output: a tuple TXPrivateClaim = (TXClaim,1,TXClaim,2)

Obtain the attribute policy β from donation r
Obtain the time period t from LedgerC
(c,TXClaim,1′)←

PrivCashMint(r, ṡ, s, p, LedgerC, pparams)
σ ← VABS.Sign(TXClaim,1′ , S, β,Σβ , IAP, t, J, vparams)
Send TXClaim,1 := (TXClaim,1′ , σ) to the Ledger

TXClaim,2 ← PrivCashSpend(c, s, p, ∗, p, LedgerC, pparams)
Send TXClaim,2 to the Ledger

For verification of TXDonate,1, TXDonate,2, TXClaim,1,
and TXClaim,2 transactions, the Ledger writer runs Al-
gorithm 3. SDB is a database on a dedicated portion
of the Ledger. The Ledger writer keeps there the VABSs
obtained from each Claim transaction.We highlight that
some portion (e.g., SDB can also be used) of the Ledger
is dedicated to storing the identity provider and at-
tribute authority public keys to ensure their authen-
ticity via a public key infrastructure as in [4, 43, 70].
This would be useful as the VABS scheme [7] also allows
an authority to join the system at anytime via a valid
certificate that demonstrates its qualification. Further-
more, the Ledger writer can dismiss an authority from
issuing some (or all) attributes by excluding its public
key from verification.

Algorithm 3: Verification by the Ledger
writer
input: the current LedgerC and the global setup parame-
ters dparams = (vparams, pparams, ṡ, ṗ)
output: updated LedgerC

On receiving a TXDonate,1 transaction:
if PrivCashMint.Vrfy(TXDonate,1) = 1 then

LedgerC := LedgerC||TXDonate,1
On receiving a TXDonate,2 transaction:

if PrivCashSpend.Vrfy(TXDonate,2) = 1 then
LedgerC := LedgerC||TXDonate,2

On receiving a TXClaim,1 transaction:
Parse (TXClaim,1′ , σ) := TXClaim,1
if PrivCashMint.Vrfy(TXClaim,1′) = 1 and VABS.Verify(
TXClaim,1′ , σ, β, IAP, t, SDB, vparams) = 1 then

LedgerC := LedgerC||TXClaim,1
SDB := SDB||σ

On receiving a TXClaim,2 transaction:
if PrivCashSpend.Vrfy(TXClaim,2) = 1 then

LedgerC := LedgerC||TXClaim,2

Theorem 1. If the underlying PrivCash satisfies the
PrivCash balance and non-malleability (see Appendix B),
and the ledger indistinguishability [60] (see Appendix C)
properties, the digital signature scheme utilized for sign-
ing PrivCashMint is existentially unforgeable under an
adaptive chosen-message attack [38], and the underlying
VABS protocol satisfies anonymity, signature unforge-
ability, and signature soundness all defined in [7] (see
Appendix D); then our e-donation scheme is secure (i.e.,
it provides unforgeability and balance, fair distribution
of donations, and donation and recipient privacy).

Proof Intuition. We reduce (1) the unforgeability and
balance of our e-donation scheme to the balance and
non-malleability of the underlying PrivCash, existential
unforgeability of the digital signature scheme under an
adaptive chosen-message attack, signature unforgeabil-
ity and dynamic revocation of the underlying VABS,
(2) the fair distribution of donations in our e-donation
scheme to the signature soundness of the underlying
VABS, (3) the donation and recipient privacy of our e-
donation scheme to the ledger indistinguishability [60] of
the underlying PrivCash and the anonymity of underly-
ing VABS. Full security proofs are in the Appendix.

5 Related Work
Blockchain and Cryptocurrencies. Inspired by Bit-
coin [54], many blockchain based cryptocurrencies (e.g.,
Ethereum [13], Litecoin [47]) are proposed and imple-

e-Donation 209

mented. For blockchain or Ledger instantiation, differ-
ent consensus protocols (such as proof of work [25],
proof of stake [41], proof of validation [33], or Byzan-
tine fault tolerance [46]) would also be used. Further-
more, blockchain is not the only known decentralization
method in cryptocurrencies, e.g., IOTA [57] using “The
Tangle” (based on a directed acyclic graph), Phantom
[64] and Spectre [63] using “blockDAG” (i.e., a directed
acyclic graph of blocks). One may employ all these dif-
ferent techniques for Ledger instantiation.

Transaction Privacy. For PrivCash instantia-
tion, many Bitcoin-like solutions depending only on
pseudonyms for user privacy and not preventing link-
ability between transactions are not usable. Zerocash
[60] can be utilized to instantiate PrivCash. For utiliza-
tion of Zerocoin [51] as a PrivCash scheme, it needs
to be shown to be or further improved for satisfying
the balance and transaction malleability (see Appendix
B), and ledger indistinguishability of (see Appendix C).
Further, mixing based schemes (e.g., CryptoNote [68],
Mixcoin [9], CoinShuffle [59], CoinParty [72]) also pro-
vide transaction privacy. Nevertheless, an analysis [53]
on Monero [52] (i.e., a CryptoNote based cryptocur-
rency) shows that these type of cryptocurrencies are
vulnerable to “chain-reaction analysis”. To completely
avoid these type of attacks, the anonymized transac-
tions in these protocols should use all of the previously
blinded coins during mixing, which decreases their effi-
ciency due to zero-knowledge proofs. Also, without this,
these schemes do not satisfy the L-IND definition (in
Appendix C) that we expect PrivCash to satisfy. Private
smart contract schemes (e.g., Hawk [42], Arbitrum [37],
Zether [12], ZEXE [10], and Enigma [1]) enable smart
contract computations on private data. There exists no
restriction for their utilization as PrivCash basis.

Limited Times Anonymous Attribute Policy
Authentication. Our e-donation scheme essentially
requires a non-interactive anonymous, multi-authority,
and revocable attribute policy signature protocol, where
the number of signatures in a period can be limited. We
briefly mention the candidate solutions in the literature.
A line of work that can be useful is anonymous creden-
tial schemes [3, 14, 15, 17, 18, 23, 31, 48] that can be
utilized for proving conformation to some attribute pol-
icy while keeping the anonymity. However, they cannot
be trivially modified for directly providing all require-
ments of the e-donation at once (e.g., fair distribution of
donations among recipients). Group signature schemes
[5, 16, 27, 35, 55, 62, 71] may seem as a reasonable
place to start. Some group signature schemes allow re-
vocability [27, 55]. On the other hand, again, the use

of keys in those schemes cannot be easily bounded by a
fixed value n. Attribute based signature (ABS) schemes
[7, 19, 24, 26, 32, 49, 56, 67] are non-interactive sig-
nature solutions for anonymous attribute policy prov-
ing. They provide binary attribute policy authentication
(including Boolean relations). In particular, the exist-
ing multi-authority and decentralized ABS schemes of
[7, 19, 24, 26, 56] might be modified to achieve periodic
n-times usability and revocability.

Gitcoin10. Gitcoin is a system to fund open-source
software projects via cryptocurrencies (e.g., Ethereum
[13]). It allows a developer to join the system by show-
ing only her skills, while all parties remain anonymous.
Although the flow of Gitcoin is similar to e-donation,
apart from targeted audience (developers vs. general),
their operational differences are as follows: (1) The for-
mer requires a centrally managed issue advertisement
and accountability system while in the latter, the whole
system achieve these in a decentralized way. (2) For
skills, the former does not require proofs from authori-
ties, while the latter require these proofs for attributes.
(3) In the former, there exists no fairness in distribution
of salaries, while the latter ensures fair distribution of
donations. Although the matters (2) and (3) with Git-
coin can be resolved via updates, the matter (1) with
it (i.e., system being centralized) would not be trivially
improved.

6 Efficiency
We conclude with the efficiency analysis of our solution
based on the state-of-the-art PrivCash scheme Zerocash
Sapling [34] and the VABS scheme [7].

Test Setup. We have run our tests using the given
implementation of [22] for “Output” and “Spend” trans-
actions described in [34]. We note that the former di-
rectly corresponds to PrivCashMint, while the latter cor-
responds to PrivCashSpend. For our Claim operation, we
have tested a prototype code for Sign and Verify algo-
rithms of [7] via the given implemented primitives in
the Cashlib cryptographic library [20, 50]. We have run
our test on a machine with Intel(R) Core(TM) i7-7600U
CPU @ 2.80GHz 2.90 - dualcore and 8GB RAM. The
RSA and discrete logarithm moduli are set as 2048 bits,
and SHA-256 is used as the random oracle. Our tests are
repeated 10 times and results are averaged. The results
are combined to obtain an overall cost output for our
PrivateDonate and PrivateClaim operations.

10 https://medium.com/gitcoin

e-Donation 210

(a) Computation time and transaction size of PrivateDonate (b) Computation time and transaction size of PrivateClaim

Fig. (4) Computation time and total transaction size estimates for (a) PrivateDonate and (b) PrivateClaim transactions based on the
number of referenced BaseCash tuples and the number of attributes in the referenced policy, respectively.

Cost of PrivateDonate. Figure 4a provides cost
estimates for PrivateDonate operations with varying
number of BaseCash tuples referenced (on which the
cost linearly depends). We highlight that PrivateDonate
operation is efficient enough in large majority of prac-
tical cases, since according to statistics of Nonprofits
Source11, the average monthly online donation of United
States of America citizens is $52 in 2017, correspond-
ing to 2 Zerocashes referenced as of March 2020, taking
around 1.7 min and 5.4 kB. We note that the overhead
is mainly due to costly operations in Zerocash.

Cost of PrivateClaim. Figure 4b provides cost es-
timates for PrivateClaim operations with varying number
of attributes to be proven (on which the cost linearly de-
pends). Indeed, while the attribute-based signature cost
scales linearly with the number of attributes, we do not
see this behavior in computation cost clearly, since VABS
takes a few hundred milliseconds while Zerocash takes
more than a hundred seconds. We highlight that the
PrivateClaim operation is efficient enough in large ma-
jority of practical cases, since the donor behaviour tends
to be simplistic with usually less than 5 attributes [11],
taking around 1.7 min and 45 kB. The overhead in size
compared to PrivateDonate is due to the included VABS.

7 Conclusion and Future Work
In this work, we proposed a novel e-donation frame-
work, where donors donate to recipients by only select-
ing them via their attributes without meeting in per-

11 https://nonprofitssource.com/online-giving-statistics/

son. Our framework requires unforgeability and balance,
fair distribution of donations, and donation and recip-
ient privacy. Then, we constructed the first e-donation
scheme that provably satisfies the requirements of the
framework. We now propose some future directions for
improvement of the e-donation framework and protocol.

Fairness. Our notion, fair distribution of dona-
tions, is based on equality of receivable donations by
each user. Our work leaves improved definitions of fair-
ness (e.g., adjustments based on location) as future
work. We acknowledge that complete achievement of
fairness requires replacing all ICOs with an e-donation
system. This is unlikely to occur all at once in the near
future and likely to require a gradual transition period.

Attribute Authorities. In this work, as a design
choice, we do not distribute the task of issuing an at-
tribute (e.g., threshold issuing) among multiple author-
ities due to the trade-off of the added benefit vs. re-
quiring a user to have multiple interactions for each
attribute (resulting in lower efficiency), and to reveal
his identity to multiple authorities (increasing the risk
of identity disclosure). We leave as future work design
of e-donation frameworks and schemes that do not rely
on single authorities, yet still achieve fine efficiency and
privacy features.

Efficiency. The efficiency of our e-donation scheme
is mainly affected by the underlying PrivCash and VABS
schemes. Besides efficiency gains from relaxations of the
framework requirements, improvements on both compu-
tation time and bandwidth use in both primitives will
directly improve the efficiency of our scheme. Moreover,

https://nonprofitssource.com/online-giving-statistics/

e-Donation 211

it may be possible to design a more efficient e-donation
protocol that is independent of these building blocks.

Acknowledgements
We acknowledge the support of TÜBİTAK (the Sci-
entific and Technological Research Council of Turkey)
project number 119E088. We also thank Markulf
Kohlweiss for very insightful comments and helpful dis-
cussion.

References
[1] 2019. Enigma Web Site. https://enigma.co/. Accessed:

2020-03-05.
[2] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L.

Mazurek. 2016. Secure Multiparty Computations on Bitcoin.
Commun. ACM 59, 4 (March 2016).

[3] M. H. Au, W. Susilo, Y. Mu, and S. S. M. Chow. 2013.
Constant-Size Dynamic K-Times Anonymous Authentica-
tion. IEEE Systems Journal 7, 2 (2013), 249–261.

[4] L. Axon and M. Goldsmith. 2017. PB-PKI: A Privacy-aware
Blockchain-based PKI. In SECRYPT ICETE ’17.

[5] M. Bellare, H. Shi, and C. Zhang. 2005. Foundations of
Group Signatures: The Case of Dynamic Groups. In CT-RSA
’05.

[6] I. Bentov and R. Kumaresan. 2014. How to Use Bitcoin to
Design Fair Protocols. In CRYPTO ’14.

[7] O. Biçer and A. Küpçü. 2019. Versatile ABS: Us-
age Limited, Revocable, Threshold Traceable, Au-
thority Hiding, Decentralized Attribute Based Signa-
tures. Cryptology ePrint Archive, Report 2019/203.
https://eprint.iacr.org/2019/203.

[8] E.-O. Blass and F. Kerschbaum. 2017. Strain: A Secure
Auction for Blockchains. Cryptology ePrint Archive, Report
2017/1044. https://eprint.iacr.org/2017/1044.

[9] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll,
and E. W. Felten. 2014. Mixcoin: Anonymity for bitcoin
with accountable mixes. In FC ’14.

[10] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H.
Wu. 2020. ZEXE: Enabling Decentralized Private Compu-
tation. In IEEE SP. IEEE Computer Society, Los Alamitos,
CA, USA.

[11] Beth Breeze. 2013. How Donors Choose Charities: The
Role of Personal Taste and Experiences in Giving Decisions.
Voluntary Sector Review 4 (07 2013), 165–183. https:
//www.kent.ac.uk/sspssr/philanthropy/documents/How%
20Donors%20Choose%20Charities%2018%20June%202010.
pdf.

[12] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan
Boneh. 2019. Zether: Towards Privacy in a Smart Contract
World. Cryptology ePrint Archive, Report 2019/191.

[13] Vitalik Buterin. 2013. Ethereum White Paper: A next-
generation smart contract and decentralized application

platform. (2013).
[14] J. Camenisch, M. Drijvers, and J. Hajny. 2016. Scalable

Revocation Scheme for Anonymous Credentials Based on
N-times Unlinkable Proofs. In ACM WPES ’16.

[15] J. Camenisch and T. Groß. 2012. Efficient Attributes for
Anonymous Credentials. ACM Trans. Inf. Syst. Secur. 15, 1
(March 2012).

[16] J. Camenisch and J. Groth. 2005. Group Signatures: Bet-
ter Efficiency and New Theoretical Aspects. In Security in
Communication Networks.

[17] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyan-
skaya, and M. Meyerovich. 2006. How to Win the
Clonewars: Efficient Periodic N-times Anonymous Authenti-
cation. In ACM CCS ’06.

[18] J. Camenisch and A. Lysyanskaya. 2003. A Signature
Scheme with Efficient Protocols. In Security in Communi-
cation Networks. Springer Berlin Heidelberg.

[19] D. Cao, B. Zhao, X. Wang, and J. Su. 2012. Flexible Multi-
authority Attribute-based Signature Schemes for Expressive
Policy. Mob. Inf. Syst. 8, 3 (July 2012).

[20] Cashlib 2010. https://github.com/brownie/cashlib. Ac-
cessed: 2020-02-15.

[21] D. Chaum. 1983. Blind Signatures for Untraceable Pay-
ments. In CRYPTO ’82.

[22] Electric Coin Company. 2018. Zcash “Sapling” cryptogra-
phy. https://github.com/zcash-hackworks/sapling-crypto.
Accessed: 2020-02-28.

[23] D. Derler, C. Hanser, and D. Slamanig. 2015. A New Ap-
proach to Efficient Revocable Attribute-Based Anonymous
Credentials. In IMACC ’15.

[24] Constantin-Cǎtǎlin Drǎgan, Daniel Gardham, and Mark
Manulis. 2018. Hierarchical Attribute-Based Signatures.
In CNS ’18.

[25] C. Dwork and M. Naor. 1993. Pricing via Processing or
Combatting Junk Mail. In CRYPTO ’92.

[26] A. El Kaafarani, E. Ghadafi, and D. Khader. 2014. Decen-
tralized Traceable Attribute-Based Signatures. In CT-RSA
’14.

[27] K. Emura, T. Hayashi, and A. Ishida. 2017. Group Signa-
tures with Time-bound Keys Revisited: A New Model and
an Efficient Construction. In ASIA CCS ’17.

[28] I. Eyal and E. G. Sirer. 2018. Majority is Not Enough: Bit-
coin Mining is Vulnerable. Commun. ACM 61, 7 (June
2018).

[29] J. A. Garay, A. Kiayias, and N. Leonardos. 2015. The Bit-
coin Backbone Protocol: Analysis and Applications. In EU-
ROCRYPT ’15.

[30] J. A. Garay, A. Kiayias, and N. Leonardos. 2017. The Bit-
coin Backbone Protocol with Chains of Variable Difficulty. In
CRYPTO ’17.

[31] C. Garman, M. Green, and I. Miers. 2014. Decentralized
Anonymous Credentials. In NDSS ’14.

[32] B. Hampiholi, G. Alpár, F. v. d. Broek, and B. Jacobs.
2015. Towards Practical Attribute-Based Signatures. In
Security, Privacy, and Applied Cryptography Engineering.

[33] Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur
Özkasap. 2019. LightChain: A DHT-based Blockchain
for Resource Constrained Environments. arXiv preprint
arXiv:1904.00375 (2019). http://arxiv.org/abs/1904.00375

https://enigma.co/
https://www.kent.ac.uk/sspssr/philanthropy/documents/How%20Donors%20Choose%20Charities%2018%20June%202010.pdf
https://www.kent.ac.uk/sspssr/philanthropy/documents/How%20Donors%20Choose%20Charities%2018%20June%202010.pdf
https://www.kent.ac.uk/sspssr/philanthropy/documents/How%20Donors%20Choose%20Charities%2018%20June%202010.pdf
https://www.kent.ac.uk/sspssr/philanthropy/documents/How%20Donors%20Choose%20Charities%2018%20June%202010.pdf
https://github.com/brownie/cashlib
https://github.com/zcash-hackworks/sapling-crypto
http://arxiv.org/abs/1904.00375

e-Donation 212

[34] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan
Wilcox. 2020. Zcash Protocol Specification. https:
//raw.githubusercontent.com/zcash/zips/master/protocol/
protocol.pdf.

[35] J. Hwang, L. Chen, H. Cho, and D. Nyang. 2015. Short
Dynamic Group Signature Scheme Supporting Controllable
Linkability. In IEEE TIFS, Vol. 10.

[36] CAF (2018) World Giving Index. 2018. https://www.
cafonline.org/docs/default-source/about-us-publications/
caf_wgi2018_report_webnopw_2379a_261018.pdf?sfvrsn=
c28e9140_4.

[37] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew
Weinberg, and Edward W. Felten. 2018. Arbitrum: Scalable,
Private Smart Contracts. In USENIX (SEC’18).

[38] J. Katz and Y. Lindell. 2007. Introduction to Modern Cryp-
tography (2nd ed.). Chapman & Hall/CRC.

[39] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselek-
ounis. 2016. Blockchain Mining Games. In ACM EC ’16.

[40] A. Kiayias, H.-S. Zhou, and V. Zikas. 2016. Fair and Robust
Multi-party Computation Using a Global Transaction Ledger.
In EUROCRYPT ’16.

[41] Sunny King and Scott Nadal. 2012. PPCoin: Peer-to-Peer
Crypto-Currency with Proof-of-Stake.

[42] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou.
2016. Hawk: The Blockchain Model of Cryptography and
Privacy-Preserving Smart Contracts. In IEEE SP.

[43] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar. 2018. Cer-
tLedger: A New PKI Model with Certificate Transparency
Based on Blockchain. arXiv preprint arXiv:1806.03914
(2018). http://arxiv.org/abs/1806.03914.

[44] R. Kumaresan and I. Bentov. 2014. How to Use Bitcoin to
Incentivize Correct Computations. In ACM CCS ’14.

[45] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan.
2016. Improvements to Secure Computation with Penalties.
In ACM CCS ’16.

[46] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982.
The Byzantine Generals Problem. ACM Trans. Program.
Lang. Syst. 4, 3 (July 1982).

[47] Litecoin 2011. https://litecoin.org/. Accessed: 2020-01-15.
[48] W. Lueks, G. Alpár, J.-H. Hoepman, and P. Vullers. 2015.

Fast Revocation of Attribute-Based Credentials for Both
Users and Verifiers. In ICT Systems Security and Privacy
Protection.

[49] H. K. Maji, M. Prabhakaran, and M. Rosulek. 2011.
Attribute-Based Signatures. In CT-RSA ’11.

[50] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A.
Lysyanskaya. 2010. ZKPDL: A Language-based System
for Efficient Zero-knowledge Proofs and Electronic Cash
(USENIX Security ’10).

[51] I. Miers, C. Garman, M. Green, and A. D. Rubin. 2013.
Zerocoin: Anonymous Distributed E-Cash from Bitcoin. In
IEEE SP ’13. http://zerocash-project.org/media/pdf/
zerocash-extended-20140518.pdf.

[52] Monero 2014. https://www.getmonero.org/. Accessed:
2020-01-15.

[53] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Sri-
vastava, K. Hogan, J. Hennessey, A. Miller, A. Narayanan,
and N. Christin. 2018. An Empirical Analysis of Traceability
in the Monero Blockchain. PoPETs (2018).

[54] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system, http://bitcoin.org/bitcoin.pdf.

[55] M. Nisansala, S. Perera, and T. Koshiba. 2017. Fully secure
lattice-based group signatures with verifier-local revocation.
In IEEE, AINA ’17.

[56] T. Okamoto and K. Takashima. 2013. Decentralized
Attribute-Based Signatures. In PKC ’13.

[57] S. Popov. 2017. The Tangle.
http://www.iota.org/IOTA_Whitepaper.pdf.

[58] N. Roby. 2017. Application of Blockchain technology in on-
line voting. https://www.rsaconference.com/writable/files/
About/application_of_blockchain_technology_in_online_
voting.pdf.

[59] T. Ruffing, P. Moreno-Sanchez, and A. Kate. 2014. Coin-
Shuffle: Practical Decentralized Coin Mixing for Bitcoin. In
ESORICS ’14.

[60] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. 2014. Zerocash: Decentralized
Anonymous Payments from Bitcoin. In IEEE SP ’14.

[61] F. R. Schreiberr. 1973. Sybil. Warner Books.
[62] D. Slamanig, R. Spreitzer, and T. Unterluggauer. 2014.

Adding Controllable Linkability to Pairing-Based Group Sig-
natures for Free. In Information Security.

[63] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar.
2017. SPECTRE : Serialization of Proof-of-work Events :
Confirming Transactions via Recursive Elections.

[64] Yonatan Sompolinsky and Aviv Zohar. 2018. PHANTOM ,
GHOSTDAG : Two Scalable BlockDAG protocols.

[65] Paul Syverson, R Dingledine, and N Mathewson. 2004. Tor:
The second generation onion router. In Usenix Security.

[66] Florian Tramèr, Dan Boneh, and Kenneth G. Paterson.
2020. Remote Side-Channel Attacks on Anonymous Trans-
actions. Cryptology ePrint Archive, Report 2020/220.

[67] M. Urquidi, D. Khader, J. Lancrenon, and L. Chen. 2016.
Attribute-Based Signatures with Controllable Linkability. In
Trusted Systems.

[68] N. v. Saberhagen. 2013. CryptoNote v 2.0,
https://cryptonote.org/whitepaper.pdf.

[69] D. Yaga, P. Mell, N. Roby, and K. Scarfone. 2018.
Blockchain Technology Overview. Technical Report. NIST.
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf.

[70] A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and
R. State. 2018. A Blockchain-Based PKI Management
Framework. IEEE/IFIP NOMS ’18.

[71] G. Yang, S. Tang, and L. Yang. 2011. A Novel Group Signa-
ture Scheme Based on MPKC. In ISPEC ’11.

[72] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and
K. Wehrle. 2015. CoinParty: Secure Multi-Party Mixing of
Bitcoins. In ACM CODASPY ’15.

A Security Proof of Our Scheme
We now show that our e-donation scheme satisfies the
security requirements of our e-donation framework, and
prove Theorem 1 by providing partial proofs for each
of unforgeability and balance, fair distribution of do-

https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://www.cafonline.org/docs/default-source/about-us-publications/caf_wgi2018_report_webnopw_2379a_261018.pdf?sfvrsn=c28e9140_4
https://www.cafonline.org/docs/default-source/about-us-publications/caf_wgi2018_report_webnopw_2379a_261018.pdf?sfvrsn=c28e9140_4
https://www.cafonline.org/docs/default-source/about-us-publications/caf_wgi2018_report_webnopw_2379a_261018.pdf?sfvrsn=c28e9140_4
https://www.cafonline.org/docs/default-source/about-us-publications/caf_wgi2018_report_webnopw_2379a_261018.pdf?sfvrsn=c28e9140_4
https://litecoin.org/
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://www.getmonero.org/

e-Donation 213

nations, and donation and recipient privacy definitions
given in the generic e-donation framework in Section 3
via formal reductions to the security assumptions on the
underlying primitives.

A.1 Proof of Unforgeability and Balance

Lemma 1. If the underlying PrivCash satisfies the
balance and non-malleability property (see Appendix
B), the digital signature scheme utilized for signing
PrivCashMint is existentially unforgeable under an adap-
tive chosen-message attack [38], and the underlying
VABS protocol satisfies signature unforgeability defined
in [7] (see Appendix D); then our e-donation scheme is
unforgeable and balanced.

Proof. Applying the definition of unforgeability and bal-
ance to our scheme, the adversary can win by generating
one of the following transactions:
- a TXDonate,1 whose references include at least one of
the transactions (v1, p1), . . . , (v`, p`) of honest users(
corresponding to the winning condition (1)

)
,

- a TXDonate,2 that spends a PrivCash other than an
unspent one of the donor of the related TXDonate,1, or
that can replace an existing transaction TX′

Donate,2
with a different policy on the Ledger generated by
a user under C’s control (and the verification al-
gorithm verifies all the transactions on the Ledger
upto and including TXDonate,2)

(
corresponding to

the winning condition (2), since the amount of the
minted PrivCash by TXDonate,1 cannot exceed the to-
tal amount of its referenced BaseCash due to the
scanning check by the Ledger writer and the output
only adds to the donations with the related β

)
,

- a TXClaim,1 that references a TXDonate,2 with policy
β ∧ω

(
corresponding to the winning condition (3)

)
,

- a TXClaim,2 that spends a PrivCash other than an un-
spent one of the recipient of the related TXClaim,1,
or that can replace an existing transaction tuple
TX′

Claim,2 on the Ledger generated by a user un-
der C’s control such that TX′

Claim,2 6= TXPrivateDonate
(and the verification algorithm verifies all the trans-
actions on the Ledger upto and including TXDonate,k)(
corresponding to the winning condition (4), since
the amount of the minted PrivCash by TXClaim,1
cannot exceed the total amount of its referenced
TXDonat2,2 due to the scanning check by the Ledger
writer and the output only adds to the balance of
the payee p

)
.

If a PPT adversary Â wins the game eDonForge
with non-negligible probability, we can utilize it to con-
struct a PPT algorithm B̂ who wins the signature ex-
istential unforgeability game (Sig-forge in [38]) or the
BalanceTNM game or the VABSForge game with non-
negligible advantage. In eDonForge, Â plays the role of
A, and B̂ plays the role of C. In Sig-forge, BalanceTNM,
and VABSForge games, B̂ plays the role of A. We de-
note the honest challengers of them as Ĉf , Ĉb, and Ĉa,
respectively.
1. In Sig-forge, using the security parameter 1λ, Ĉf gen-

erates a key pair (p, s). It then gives 1λ, p, and access
to signing oracle with s to B̂.

2. In BalanceTNM, B̂ receives 1λ (assumed to be the
same as in Step 1 above), the unit donation amount
u, pparams, and query access to O, from Ĉb.

3. In VABSForge, B̂ receives 1λ (assumed to be the
same as in Step 1 above), n, δ, vparams (Step 1
of VABSForge).

4. In eDonForge, B̂ generates (ṡ, ṗ) gives to Â the values
1λ, dparams := (vparams, pparams, ṡ, ṗ), and read
access to all Ledger content. B̂ gives u, D := n · u,
and δ to Â (Step 1 of eDonForge).

5. In eDonForge, B̂ follows Step 2 of the game with
Â in the exact same way as an honest C would
do, except for the following: Whenever Â requests
from B̂ an identity provider or attribute author-
ity oracle generation, in VABSForge, B̂ requests
an authority from Ĉa. B̂ obtains the public key
of the authority from Ĉa, and gives it to Â as
response. Further, if Â request him to generate
users, Â queries Ĉb with PrivCashKeyGen, and for-
wards the output to Â. Whenever Â queries AttrGen
or RecipJoin oracle, B̂ queries the related author-
ity in VABSForge (Step 2 of VABSForge). B̂ ob-
tains the output, and returns it back to Â. We
note that B̂ keeps a table that matches each user
public key generated by PrivCashKeyGen query in
BalanceTNM and the secret key generated by B̂
for RecipJoin. For generation of BaseCash by the
users under B̂’s control, B̂ generates them itself,
and queries O with Insert of BaseCash. For gener-
ation of TXDonate,1, TXDonate,2, and TXClaim,2 by the
users under B̂’s control, B̂ straightforwardly queries
O with types PrivCashMint, PrivCashSpend (with ṗ),
and PrivCashSpend, respectively. It then writes the
transactions generated on the Ledger of BalanceTNM
to the Ledger of eDonForge. Regarding generation
of TXClaim,1, first B̂ queries O with PrivCashMint
(with . . . s), and obtains the resulting transaction

e-Donation 214

as TXPrivCashMint. B̂ then generates VABS σ′ on
TXPrivCashMint, and writes the resulting transaction
(TXPrivCashMint, σ

′) to the Ledger of eDonForge. The
transactions BaseCash, TXDonate,1, TXDonate,2, and
TXClaim,2 generated by Â are inserted (i.e., via Insert
queries) to the Ledger of BalanceTNM as BaseCash
PrivCashMint, PrivCashSpend, and PrivCashSpend, re-
spectively. Regarding Insert with TXClaim,1, first B̂
drops VABS, and then queries O for Insert of the
resulting transaction (Step 1 of BalanceTNM).

6. In eDonForge, B̂ generates some BaseCash tuples
(v1, p), (v2, p2), . . . , (v`, p`) with Â’s request, and
writes them to the Ledger, while keeping the secret
keys private (Step 3 of eDonForge).

7. In eDonForge, Â returns ω to B̂ (Step 4 of
eDonForge).

8. In VABSForge, B̂ gives ω to Ĉa (Step 3 of VABSForge).
9. Step 4 of VABSForge is conducted by B̂ by forward-

ing messages between Ĉa and Â.
10. In eDonForge, Â eventually outputs a transac-

tion TXDonate,1 whose references include a sub-
set of {(v1, p), (v2, p2) . . . , (v`, p`)}, or a transaction
TXDonate,2, or a transaction TXClaim,1 that references
a TXDonate,2 with policy β ∧ ω, or a transaction
TXClaim,2. Â sends this transaction to B̂ (Step 5 of
eDonForge).
(a) If this transaction is a TXDonate,1, assuming that

it particularly references (v1, p), in Sig-forge, B̂
parses TXDonate,1 for the digital signature σ and
the signed transcript (TXDonate,1′), possible as
TXDonate,1 is obtained via a plain PrivCashMint
operation.

(b) If this transaction is a TXDonate,2 or TXClaim,2, it
is output as the transaction TX′

PrivCashSpend in
BalanceTNM (Step 2 of BalanceTNM).

(c) If this transaction is a TXClaim,1, in VABSForge,
B̂ parses (TXClaim,1′ , σ′) := TXClaim,1 and out-
puts (TXClaim,1′ , β∧ω, σ′) (Step 5 of VABSForge).

Regarding the case (a), the output of the game Sig-
forge is exactly the same as that of eDonForge. Namely, B̂
wins Sig-forge with non-negligible advantage, if Â wins
eDonForge with non-negligible advantage.

Regarding the case (b), if Â can win eDonForge with
non-negligible probability, then it succeeds in casting
an imbalanced TXDonate,2 or TXClaim,2 whose amount
exceeds the balance of BaseCash tuples referenced, or
in forging an existing one of its type. The output
of the game BalanceTNM is exactly the same as that
of eDonForge. Namely, B̂ wins BalanceTNM with non-

negligible advantage, if Â wins eDonForge with non-
negligible advantage.

Regarding the case (c), due to direct referencing and
check by the Ledger writer, Â cannot generate an invalid
Claim whose amount exceeds u. The only way for Â to
win eDonForge with non-negligible probability is claim-
ing a TXDonate,2 without having the policy requirement.
The output of the game VABSForge is exactly the same
as that of eDonForge. Namely, B̂ wins VABSForge with
non-negligible advantage, if Â wins eDonForge with non-
negligible advantage.

All in all, if Â wins eDonForge with non-negligible
advantage, then B̂ wins Sig-forge, or BalanceTNM, or
VABSForge with non-negligible advantage, concluding
the proof.

A.2 Proof of Fair Distribution of
Donations

Lemma 2. If the underlying VABS protocol satisfies
signature soundness defined in [7] (see Appendix D),
then our e-donation scheme provides fair distribution
of donations.

Proof. We now reduce the fair distribution of donations
in our e-donation scheme to the signature soundness of
the underlying VABS.If a PPT adversary Â wins the
game FairDist with non-negligible advantage, then we
can utilize Â to construct a PPT algorithm B̂ who wins
the game VABSSound with non-negligible advantage. In
the FairDist game, Â and B̂ play the roles of A and C,
respectively. B̂ also plays the role ofA against the honest
challenger Ĉ in VABSSound.
1. In VABSSound, B̂ receives 1λ, n, δ, and vparams

from Ĉ (Step 1 of VABSSound).
2. In FairDist, B̂ itself picks an arbitrary u ∈ poly(λ)

and generates pparams and (ṡ, ṗ) using 1λ. B̂ gives
to Â the values 1λ, D := n · u, δ, dparams :=
(vparams, pparams, ṡ, ṗ), and read access to all
Ledger content (Step 1 of FairDist).

3. In FairDist, B̂ follows Step 2 of the game with
Â in the exact same way as an honest C would
do, except for the following: Whenever Â requests
from B̂ an attribute authority oracle generation, in
VABSSound, B̂ requests an attribute authority from
Ĉ. B̂ obtains the public key of the authority from Ĉ,
and gives it to Â as response. Similarly, whenever Â
queries AttrGen oracle, B̂ queries the related author-

e-Donation 215

ity in VABSSound (Step 2 of VABSSound). B̂ obtains
the output, and returns it back to Â.

4. In FairDist, if Â wins (i.e., Â comes up with a trans-
action tuple for PrivateClaimÂ whose recipient with
secret key s has claimed at least D amount in the
current time period, and the transaction tuple is
verified for being written to the Ledger), B̂ parses
each TXClaim,1 = (r, c, σ) transaction that is writ-
ten to the Ledger as (r, c) and VABS σ (Step 3 of
FairDist).

5. In VABSSound, B̂ gives the message (r, c) and VABS
σ pairs to Ĉ for verification (Step 3 of VABSSound).
If Â can win FairDist with non-negligible probability,

then it succeeds in minting (via TXClaim,1 transactions)
more than n ·u amount PrivCash for a specific user (i.e.,
signing more than n messages with the same s that gets
verified). The output of the game VABSSound is exactly
the same as that of FairDist, since Verify algorithm run
on the message and ABS pairs of those TXClaim,1s out-
puts 1. Namely, B̂ wins VABSSound with non-negligible
advantage if Â wins FairDist with non-negligible advan-
tage.

A.3 Proof of Donation and Recipient
Privacy

Lemma 3. If the underlying PrivCash satisfies the
ledger indistinguishability of [60], and the underlying
VABS protocol satisfies anonymity defined in [7] (see
Appendix D); then our e-donation scheme provides do-
nation and recipient identity privacy.

Proof. We utilize the following deductions from the
Lemma 3. Its contrapositive:

If our e-donation scheme does not provide donation
and recipient privacy; then the underlying PrivCash does
not satisfy the ledger indistinguishability of [60], or the
underlying VABS protocol does not satisfy anonymity
defined in [7] (see Appendix D).

From the above form of Lemma 3, we can obtain:
If our e-donation scheme does not provide donation

and recipient privacy, and the underlying VABS proto-
col satisfies anonymity defined in [7] (see Appendix D);
then the underlying PrivCash does not satisfy the ledger
indistinguishability of [60].

Assuming that the underlying VABS satisfies
anonymity of [7], we now reduce the donation and recipi-
ent privacy of our e-donation scheme to the ledger indis-

tinguishability of the underlying PrivCash. If a PPT ad-
versary Â wins the donation and recipient privacy game
Privacy with non-negligible advantage, then we can uti-
lize Â to construct a PPT algorithm B̂ that wins ledger
indistinguishability game L-IND with non-negligible ad-
vantage. In the game Privacy, Â and B̂ play the roles of
A and C, respectively. In the L-IND game, B̂ plays the
role of A against an honest challenger Ĉ.

1. In L-IND, Steps 1, 2, and 3 of the game are followed
between B̂ and Ĉ.

2. In Privacy, B̂ gives to Â 1λ that is obtained in
L-IND. B̂ runs the setup operation of VABS to
generate vparams and generates (ṡ, ṗ). Then, B̂
sets dparams = (vparams, pparams, ṡ, ṗ) and gives
dparams to Â. A is also given the unit donation
amount u obtained in L-IND, the total donation
amount D = n · u that can be received by a re-
cipient in a given time period where n ∈ poly(λ),
and the duration δ of a time period. Time period
counter t is initialized as t := 1, and is started (Step
1 of Privacy).

3. In Privacy, B̂ generates all the authorities and runs
their oracles itself. Regarding UserJoin for the users
under B̂’s control B̂ queries both Q0 and Q1 as
PrivCashKeyGen in L-IND. Regarding RecipJoin for
the users under B̂’s control, B̂ generates the recipi-
ent secret key S itself. B̂ keeps a table that matches
each user public key generated by PrivCashKeyGen
query in L-IND and the secret key generated by B̂
for RecipJoin (Step 2 of Privacy).

4. In Privacy, B̂ sets Ledgerleft and Ledgerright essen-
tially as Ledgerleft and Ledgerright of L-IND (Step 3
of Privacy).

5. B̂ forward Donate, 1, Donate, 2, and Claim, 2 queries
in Privacy as PrivCashMint, PrivCashSpend (with
ṗ), and PrivCashSpend queries to Ĉ in L-IND
without changing the order of (Q0, Q1), respec-
tively. B̂ then writes to Ledgerleft and Ledgerright
in Privacy the resulting transaction on Ledgerleft
and Ledgerright in L-IND, respectively. Regarding
BaseCash queries for the users under B̂’s con-
trol, B̂ generates them itself, and queries in L-IND
with Insert of BaseCash without changing the or-
der of (Q0, Q1). Regarding Claim, 1 queries, first
B̂ queries them in L-IND as PrivCashMint with ṡ

without changing the order of (Q0, Q1). B̂ ob-
tains the resulting transactions TXPrivCashMint,left
and TXPrivCashMint,right in L-IND. B̂ then gener-
ates VABSs σ′

left and σ′
right on TXPrivCashMint,left

and TXPrivCashMint,right, and writes the resulting

e-Donation 216

transactions TXClaim,left := (TXPrivCashMint,left, σ
′
left)

and TXClaim,left := (TXPrivCashMint,right, σ
′
right) to the

Ledgerleft and Ledgerright of Privacy. The transac-
tions BaseCash, TXDonate,1, TXDonate,2, and TXClaim,2
inserted (i.e., via Insert queries) by Â to the
Ledger of Privacy are inserted to the Ledger of L-
IND as BaseCash PrivCashMint, PrivCashSpend, and
PrivCashSpend, respectively. Regarding Insert with
TXClaim,1s, first B̂ drops VABSs, and then queries for
Insert of the resulting transactions in L-IND without
changing the order of (Q0, Q1) (Step 4 of Privacy).

6. B̂ eventually outputs in Privacy the bit that Â even-
tually outputs in Privacy.

In the above scenario, B̂ does not directly pick a bit,
but implicitly sets it as the bit that is picked by Ĉ. We
highlight that Ledgerleft and Ledgerright of Privacy and
those of L-IND given here are only different in terms of
VABSs of the transactions TXClaim,2. As the underlying
VABS scheme is assumed to satisfy anonymity of [7], if
Â wins the game Privacy, then B̂ wins the game L-IND.
If Â wins the game Privacy with 1/2 plus non-negligible
probability, then B̂ wins the game L-IND with 1/2 plus
non-negligible probability. We note that in case the un-
derlying Privacy scheme is assumed to satisfy L-IND, it is
trivial to utilize an adversary obtaining non-negligible
advantage in Privacy in construction of one obtaining
that in VABSAnonym.

We note that our security definitions and construction
do not model timing attacks (e.g., the ones in [66] for de-
anonymization), as in Zerocoin [51] and Zerocash [60].
Although a full solution to such side channel attacks is
out of scope of this paper, one needs to ensure to have
resolved them before deployment of e-donation.

B Balance and Non-Malleability
of PrivCash

The definition we provide here combines the “balance”
definition of [51] (we also make this adaptive) and the
“transaction non-malleability” definition of [60]. Also it
is simplified, as we require a fixed unit amount u for each
transaction and by omitting Receive operation (for gen-
erality, as Receive does not result in a transaction on the
Ledger) and nested PrivCash spending (i.e., the output
of Pour cannot be some PrivCash but some BaseCash).
Given a PPT adversary A, a challenger C, a PrivCash

scheme, and a security parameter λ, consider the fol-
lowing BalanceTNM game:
1. A is given 1λ, the unit donation amount u, read ac-

cess to the Ledger, and the global setup parameters
pparams. A is also given query access to a Ledger
writer oracle O for which the allowed query types by
A and the oracle’s consequent actions are as follows:
– PrivCashKeyGen: O generates a user with pri-

vate/public key pair s, p by running the algo-
rithm PrivCashKeyGen. It gives p to A and keeps
s private.

– (PrivCashMint, r, s, p): r is the referenced
BaseCash, s is the related private key to the
referenced BaseCash, and p is the public key
of a user under C’s control generated by
PrivCashKeyGen. If r is unspent, O generates a
TXPrivCashMint transaction referencing r.

– (PrivCashSpend, r, p): r is a reference to the re-
lated TXPrivCashMint and p is the public key of
the recipient. If no previous transaction has ref-
erenced r, O generates a TXPrivCashSpend trans-
action referencing r spent to the recipient p.

– (Insert,TX/BaseCash) where TX is any type
of transaction among TXPrivCashMint and
TXPrivCashSpend.If the query input includes
BaseCash or the verification algorithm verifies
the transaction, O accepts.

O generates transactions as a result of A’s BaseCash,
PrivCashMint, and PrivCashSpend type of queries and
writes them to the Ledger. If the type of a query
is Insert and the result of O’s action is accept, the
related BaseCash or transaction is written to the
Ledger.

2. Eventually, A returns to C a transaction
TX′

PrivCashSpend. A wins (i.e., the game output
is defined as 1), if one of the following two
conditions holds: (1) the verification algorithm
verifies TX′

PrivCashSpend with the current LedgerC
and the union of TX′

PrivCashSpend and inserted
TXPrivCashSpend transactions (via Insert queries) on
the Ledger exceeds the total amount of inserted
TXPrivCashMint transactions (via Insert queries)
on the Ledger, or (2) TX′

PrivCashSpend spends a
previously spent PrivCash of a user under C’s
control by a transaction TX′′

PrivCashSpend such
that TX′′

PrivCashSpend 6= TX′
PrivCashSpend, and the

verification algorithm verifies TX′
PrivCashSpend with

the portion of Ledger preceding TX′
PrivCashSpend.

Definition 4 (Balance and Non-Malleability). A
PrivCash scheme satisfies the balance and non-

e-Donation 217

malleability property, for all PPT adversaries A, there
exists a negligible function n(·) such that

Pr[BalanceTNM = 1] < n(λ)

For the sake of simplicity, our e-donation proof utilize
the definition given here.

C Ledger Indistinguishability of
PrivCash

Regarding ledger indistinguishability, we use the game
of [60]. Yet, we have simplified the definition of [60],
since some features (e.g., Receive, and nested Pour oper-
ations, and referencing multiple coins in spending) come
by Zerocash are not generalizable to other decentral-
ized anonymous e-cash schemes, and are not utilized in
our definitions. Yet, the complete Zerocash scheme sat-
isfies our core security proofs as well. Given a PrivCash
scheme, a challenger C, a PPT adversary A, and a se-
curity parameter λ, consider the following L-IND game:
1. C picks a bit b� {0, 1}. It also initializes two ledger

writer oracles O0 and O1 which writes to ledgers
Ledger0 and Ledger1, respectively.

2. A is given 1λ, the global setup parameters pparams,
and the unit PrivCash amount u ∈ poly(λ). A
is also given read access to the ledgers Ledgerleft
and Ledgerright, where Ledgerleft := Ledgerb and
Ledgerright := Ledgerb̄.

3. A sends its queries to C. Each query Q must be
in the form of a pair of subqueries (Q0, Q1). C for-
wards one of them to O0 and the other one to O1.
Allowed query types by A and the forwarded oracle
O’s consequent actions are as follows:
– PrivCashKeyGen: O generates a user with pri-

vate/public key pair s, p by running the algo-
rithm PrivCashKeyGen. It gives p to A and keeps
s private.

– (PrivCashMint, r, s, p): r is the referenced
BaseCash, s is the related private key to the
referenced BaseCash, and p is the public key
of a user under C’s control generated by
PrivCashKeyGen. If r is unspent, O generates a
TXPrivCashMint transaction referencing r.

– (PrivCashSpend, r, p): r is a reference to the re-
lated TXPrivCashMint and p is the public key of
the recipient. If no previous transaction has ref-
erenced r, O generates a TXPrivCashSpend trans-
action referencing r spent to the recipient p.

– (Insert,TX/BaseCash) where TX is any type
of transaction among TXPrivCashMint and
TXPrivCashSpend. If the query input includes
BaseCash or the verification algorithm verifies
the transaction, O accepts.

Insert type of queries are for directly writing to
the ledgers. Therefore, in this case, the subqueries
Q0 and Q1 are forwarded to Ob and Ob̄ by C, re-
spectively. Other queries are for generation of the
corresponding transactions. Therefore, in this case,
C forwards Q0 to O0 and Q1 to O1. We require
the following public consistency restrictions of [60])
for each query Q = (Q0, Q1) to deter trivial de-
anonymization.
– Q0 and Q1 must be of the same type.
– If both oracles generate transactions as a re-

sult, each oracle writes the generated trans-
action to the corresponding ledger. Otherwise,
both transactions are dropped.

– If both oracles accept as a result of Insert,
each oracle writes the accepted transaction or
BaseCash to the corresponding ledger. Other-
wise, both transactions are dropped.

– If the type is PrivCashMint, the reference r and
the public key p must be the same in Q0 and
Q1.

– If the type is PrivCashSpend, the the recipient
p and the public information info must be the
same in Q0 and Q1.

4. Eventually,A outputs a bit b′.A wins (i.e., the game
output is defined as 1), if b = b′. Otherwise, the A
loses (i.e., the game output is defined as 0).

Definition 5 (Ledger Indistinguishability). A
PrivCash scheme satisfies the ledger indistinguisha-
bility property, if for all PPT adversaries A, there
exists a negligible function n(·) such that

Pr[L-IND = 1] < 1
2 + n(λ)

For the sake of simplicity, our e-donation proof utilize
the definition given here.

D Security Definitions of VABS
We provide the anonymity, signature unforgeability, and
signature soundness definitions of [7] for completeness.

Given a VABS scheme Π, a PPT adversary A, a
challenger C, a unary security parameter 1λ, and a
limit n for a time period duration δ, anonymity of

e-Donation 218

a user is defined using the following anonymity game
VABSAnonymΠ,A(λ):
1. C runs the setup operation and obtains the global

setup parameters vparams. C then gives 1λ, n, δ,
and vparams to A. The time period counter t is
initialized as t := 1, and is started.

2. At any step, A can generate polynomially-many au-
thority keys, but is required to give the public keys
to C. A can also ask C to generate authorities. Then,
C would honestly generate them, and share their
public keys with A. A can generate polynomially-
many users under its control or can ask C to gener-
ate honest users, and has the ability to run for those
users VABS.UserJoin or VABS.AttrIssue with any au-
thority. A can demand revocation of any user or any
attribute belonging to any user. A can adaptively
request C to sign any message as any user under its
control with any attribute policy that the user sat-
isfies. If A outputs any string to C other than what
is explicitly written in protocol steps as expected
from A, then C just ignores it.

3. C generates two secret keys S0 and S1. C runs
VABS.UserJoin and VABS.AttrIssue for s0 and s1 with
authorities of A’s choice.

4. A is given access to the signature oracles
of both users: VABS.Sign(m̃,S0, β̃, ∗) and
VABS.Sign(m̃,S1, β̃, ∗); where the message m̃

and the attribute policy β̃) are chosen by A as
part of its queries. Each oracle stops responding to
further queries during that time period when the
number of queries reach n− 1.

5. A gives C an attribute policy β. A gives two mes-
sages m0 and m1 to C.

6. C picks a random bit b. C signs both messages as sb
by running σ0 ← VABS.Sign(m0, sb, β, ∗) and σ1 ←
VABS.Sign(m1, sb̄, β, ∗). C then gives σ0 and σ1 to A.

7. A eventually returns a bit b′. The output of the
game is defined as 1 (i.e., A wins), if b = b′. Other-
wise, the output of the game is defined as 0 (i.e., A
loses).

Definition 6 (Anonymity). A VABS scheme Π pro-
vides anonymity, if ∀n, δ ∈ poly(λ), for each PPT ad-
versary A, there exists a negligible function n(·) such
that

Pr[VABSAnonymA,Π(λ) = 1] ≤ 1
2 + n(λ)

Given a VABS scheme Π, a PPT adversary A, a chal-
lenger C, a unary security parameter 1λ, and a limit n for
a time period duration δ, signature unforgeability is
defined using the following VABSForgeA,Π(λ) game:

1. C runs the setup operation and obtains the global
setup parameters vparams. C then gives 1λ, n, δ,
and vparams to A. The time period counter t is
initialized as t := 1, and is started.

2. At any step, A can generate polynomially-many au-
thority keys, but is required to give the public keys
to C. A can also ask C to generate authorities. Then,
C would honestly generate them, and share their
public keys with A. A can generate polynomially-
many users under its control or can ask C to gener-
ate honest users, and has the ability to run for those
users VABS.UserJoin or VABS.AttrIssue with any au-
thority. A can demand revocation of any user or any
attribute belonging to any user. A can adaptively
request C to sign any message as any user under its
control with any attribute policy that the user sat-
isfies. If A outputs any string to C other than what
is explicitly written in protocol steps as expected
from A, then C just ignores it.

3. A returns an attribute ω to C. ω must not be queried
before as VABS.AttrIssue to the authorities under C’s
control for users under A’s control.

4. The game restricts A in that A’s queries to an at-
tribute authority oracle as VABS.AttrIssue with ω for
users under A’s control, the attribute is issued but
is immediately revoked.

5. A eventually generates a message m (not queried
for signing to the users under C’s control for an at-
tribute policy β ∧ ω) and a VABS σ, where A may
choose any policy β. The output of the game is de-
fined as 1 (i.e., A wins), if VABS.Verify(m,σ, β ∧
ω, . . .) = 1. Otherwise, the output of the game is
defined as 0 (i.e., A loses).

Definition 7 (Signature Unforgeability). A VABS
scheme Π provides signature unforgeability, if
∀n, δ ∈ poly(λ), for each PPT adversary A, there
exists a negligible function n(·) such that

Pr[VABSForgeA,Π(λ) = 1] ≤ n(λ)

Given a VABS scheme Π, a PPT adversary A, a chal-
lenger C, a unary security parameter 1λ, and a limit
n for a time period duration δ, soundness is defined
using the following soundness game VABSSoundA,Π(λ):
1. C runs the setup operation and obtains the global

setup parameters vparams. C then gives 1λ, n, δ,
and vparams to A. The time period counter t is
initialized as t := 1, and is started.

2. At any step, A can generate polynomially-many au-
thority keys, but is required to give the public keys
to C. A can also ask C to generate authorities. Then,

e-Donation 219

C would honestly generate them, and share their
public keys with A. A can generate polynomially-
many users under its control or can ask C to gener-
ate honest users, and has the ability to run for those
users VABS.UserJoin or VABS.AttrIssue with any au-
thority. A can demand revocation of any user or any
attribute belonging to any user. A can adaptively
request C to sign any message as any user under its
control with any attribute policy that the user sat-
isfies. If A outputs any string to C other than what
is explicitly written in protocol steps as expected
from A, then C just ignores it.

3. The output of the game is defined as 1 (i.e., A wins),
if A generates at least n+1 message and VABS pairs
within some time period for the same user s such
that honest executions of the VABS.Verify algorithm
on at least n+1 of those pairs within the same time
period output 1. Otherwise, the output of the game
is defined as 0 (i.e., A loses).

Definition 8 (Soundness). A VABS scheme Π provides
soundness, if ∀n, δ ∈ poly(λ), for each PPT adversary
A, there exists a negligible function n(·) such that

Pr[VABSSoundA,Π(λ) = 1] ≤ n(λ)

	Anonymous, Attribute Based, Decentralized, Secure, and Fair e-Donation
	1 Introduction
	2 Preliminaries
	3 E-Donation Framework
	3.1 Operations
	3.2 Security Definitions

	4 Our e-Donation Scheme
	5 Related Work
	6 Efficiency
	7 Conclusion and Future Work
	A Security Proof of Our Scheme
	A.1 Proof of Unforgeability and Balance
	A.2 Proof of Fair Distribution of Donations
	A.3 Proof of Donation and Recipient Privacy

	B Balance and Non-Malleability of PrivCash
	C Ledger Indistinguishability of PrivCash
	D Security Definitions of VABS

