
Proceedings on Privacy Enhancing Technologies ; 2020 (4):220–238

Gunes Acar*, Steven Englehardt*, and Arvind Narayanan*

No boundaries: data exfiltration by third parties
embedded on web pages
Abstract:We investigate data exfiltration by third-party
scripts directly embedded on web pages. Specifically,
we study three attacks: misuse of browsers’ internal lo-
gin managers, social data exfiltration, and whole-DOM
exfiltration. Although the possibility of these attacks
was well known, we provide the first empirical evidence
based on measurements of 300,000 distinct web pages
from 50,000 sites. We extend OpenWPM’s instrumen-
tation to detect and precisely attribute these attacks to
specific third-party scripts. Our analysis reveals invasive
practices such as inserting invisible login forms to trig-
ger autofilling of the saved user credentials, and reading
and exfiltrating social network data when the user logs
in via Facebook login. Further, we uncovered password,
credit card, and health data leaks to third parties due to
wholesale collection of the DOM. We discuss the lessons
learned from the responses to the initial disclosure of
our findings and fixes that were deployed by the web-
sites, browser vendors, third-party libraries and privacy
protection tools.

Keywords: JavaScript, privacy, tracking

DOI 10.2478/popets-2020-0070
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

1 Introduction

The vast majority of websites today embed one or
more third-party scripts in a first-party context, i.e.
without any iframes. This practice is fundamentally in-
secure, because it negates the protections of the Same-
Origin Policy and gives third-party scripts access to vir-
tually all sensitive data on the page. Our goal in this

*Corresponding Author: Gunes Acar: imec-COSIC KU
Leuven, E-mail: gunes.acar@kuleuven.be
*Corresponding Author: Steven Englehardt: Mozilla,
E-mail: senglehardt@mozilla.com
*Corresponding Author: Arvind Narayanan: Princeton
University, E-mail: arvindn@cs.princeton.edu

paper is to discover if third parties are actually abusing
these privileges to exfiltrate sensitive data.

Specifically, we examine three attacks. We chose
these particular attacks because they had not been mea-
sured at scale before and have severe consequences for
users including the leakage of their passwords, health
data and credit card details. The attacks, and the mea-
surement techniques we develop to examine them, are
not exhaustive. Instead, they serve as three specific in-
stances through which we examine the more systemic
problem of loading untrusted JavaScript in a first-party
origin.
1. Login manager misuse. Browsers login managers

automatically fill in previously saved credentials for
known form fields. Scripts may misuse this feature
by inserting invisible login forms into pages to trig-
ger browsers’ login manager and read the inserted
credentials. This attack was known to browser ven-
dors at the time of the measurements, but only some
browsers had mitigations for this attack and they
were imperfect (Section 4).

2. Social data exfiltration. Many websites support
authentication through Facebook Login[1] or simi-
lar federated identity providers. When users login
through these providers, user data held by these
providers may also be accessed and exfiltrated by
third-party scripts. In some, but not all, cases this
happens with the cooperation of the first party (Sec-
tion 5).

3. Whole-DOM exfiltration. To analyze user inter-
actions on websites, certain third-party scripts se-
rialize the entire DOM (Document Object Model,
the tree of objects that constitutes the web page)
and send it to their servers. These are providers
of “session replay” services and their wholesale col-
lection of page data may cause leakage of sensitive
data (Section 6).

We set out to detect these attacks on a large scale,
which required a number of new measurement meth-
ods and improvements to existing methods (Section
3). We built our measurement framework by extending
OpenWPM, an open-source web privacy measurement
tool [2]. First, we added a number of missing features to

No boundaries: data exfiltration by third parties embedded on web pages 221

OpenWPM, including the ability to precisely attribute
behaviors such as reading from DOM to specific third-
party scripts. Second, we created instrumentation code
to detect each of the three attack categories of interest.
This required combined analysis of data from several
different instrumentation domains including JavaScript
function calls, HTTP messages and DOM elements.

Using a full-fledged web browser automated and in-
strumented as described above, we ran a separate crawl
of 300,000 web pages for each of the three attacks. Our
findings show that tracking and analytics scripts engage
in highly questionable practices such as injecting invis-
ible login forms to trigger browser login manager and
exfiltrate personal data (Section 4). Further, collection
of entire DOM by session replay scripts cause unwitting
exfiltration of personal and sensitive information such as
credit card details, medical details and passwords (Sec-
tion 6).

Listing 1 Snippet of the behavioralengine.com code
that inserts an invisible form to trigger browser autofill
and exfiltrates the MD5 hash of the user’s email address.

checkId : function (self) {
var container = document.createElement ('div

');
container.id = 'be - container ';
container.style.display = 'none ';
var form = document.createElement ('form ');
form.attributes.autocomplete = 'on';
var emailInput = document.createElement ('

input ');
emailInput.attributes.vcard_name = '

vCard.Email ';
emailInput.id = 'email ';
emailInput.type = 'email ';
emailInput.name = 'email ';
form.appendChild (emailInput);
var passwordInput = document.createElement (

'input ');
passwordInput.id = 'password ';
passwordInput.type = 'password ';
passwordInput.name = 'password ';
form.appendChild (passwordInput);
container.appendChild (form);
document.body.appendChild (container);
window.setTimeout (function () {

if (self.emailRegexp.test (
emailInput.value))

self.sendHash (self, MD5(
emailInput.value));

document.body.removeChild (container)
}, 1e3)

While we have provided the first empirical evidence
that these attacks are widespread, their possibility is
well known [3], and is highlighted in most web security
guides [4]. We argue that a combination of commercial
and technical reasons are responsible for the limited de-
ployment of defenses against these attacks.

We first publicly released the our findings in 2017-
18 (with the appropriate disclosure to relevant parties,
whenever possible). This time gap gives us a unique op-
portunity to review the effects of a large-scale analysis
and disclosure of web privacy vulnerabilities. Our re-
view shows that the specific vulnerabilities we reported
have largely been addressed, but the root causes of the
problem remain intact. We suggest two potential paths
forward based on this analysis (Section 7).

2 Background and related work

Personally Identifiable Information (PII)
leakage. The ability of third-party trackers to compile
information about users is aided by PII leaks from first
parties to third parties. Such leaks allow trackers to at-
tach identities to pseudonymous browsing histories.

PII leakage can be intentional or inadvertent.
First parties may send PII to third parties for busi-
ness purposes. Alternately, the user’s email address or
user ID may be carelessly embedded in a URL (e.g.,
example.com/profile?user=userID) and thus leak to
third-party servers via the Referer [sic] header. Referer
header leaks are amplified by the availability of the leak-
ing URI via the document.referrer API [5] on subse-
quent page load or in embedded iframes.

Until recently, PII leakage could only be prevented
if a first party took care to ensure no user informa-
tion was included in their site’s URLs. However, the
recent Referrer-Policy standard has made it possible
for browser vendors, extension authors, and sites to con-
trol the scope of the Referer header sent to third-party
servers [6]. The standard allows policies to be specified
to strip Referer headers down to the URL’s origin or
remove it entirely for cross-origin resources.

Measurement studies. Early work by Krishna-
murthy and Wills found that both intentional and un-
intentional PII leakage were common in social networks
[7, 8]. In follow-up studies, Krishnamurthy et al. [9] and
Mayer [10] showed that leakage is common across the
web—around half of the websites studied leaked user
identifiers to a third party. Mayer found PII leaks to
as many as 31 separate third parties on a single site,
and discovered an instance of dating profile intention-
ally leaking profile data to two major data brokers [10].

More recent studies include detection of PII leakage
to third parties in mobile apps [11–13], in enterprise net-
work traffic [14], PII leakage in contact forms [15], and

No boundaries: data exfiltration by third parties embedded on web pages 222

data leakage due to browser extensions [16]. In our paper
we discover PII exfiltration by tracking scripts that mis-
use login managers (Section 4), social APIs (Section 5)
and session replay scripts (Section 6).

Trackers wishing to follow users across multiple
devices have developed deterministic and probabilistic
techniques collectively referred to as “cross-device track-
ing” [17]. PII exfiltration is a plausible route to deter-
ministic cross-device tracking [17]; our work thus con-
tributes to the understanding of cross-device tracking.
IP address and browsing history are often used as prob-
abilistic features [18].

Obfuscated PII. A common problem faced by au-
thors of past work (and by us) is that PII may be ob-
fuscated before collection. When the data collection is
crowdsourced [11, 12] rather than automated, there is
the further complication that the strings that consti-
tute PII are not specified by the researcher and thus not
known in advance. Early work recognizes the possibility
of obfuscated PII, but accepts it as a limitation [7, 8, 10].
Various approaches are taken in the work that follows.
Ren et al. employ heuristics for splitting fields in net-
work traffic and detecting likely keys; they then apply
machine learning to discriminate between PII and other
fields [11]. Hedin et al. [19] and De Groef et al. [20] use
information flow analysis to trace exfiltration of sensi-
tive data. Starov et al. apply differential testing, that is,
varying the PII entered into the system and detecting
the resulting changes in information flows [15]. Brook-
man et al. [17], Starov et al. [16], Ren et al. [21] and
Reyes et al. [13] test combinations of encodings and/or
hashes, which is most similar to the approach we take
in Section 3.4.

3 Methods

3.1 Measurement configuration

To study each attack, we crawled 300,000 pages from
50,000 websites. We sampled the 50,000 sites based on
Alexa rank as follows: all of the top 15,000 sites; a ran-
dom sample of 15,000 sites from the Alexa rank range
[15,000 100,000); a random sample of 20,000 sites from
the range [100,000, 1,000,000). This combination al-
lowed us to observe the attacks on both high and low
traffic sites. On each of these 50,000 sites we visited six
pages: the front page and a set of five other pages ran-
domly sampled from the internal links on the front page.
We limited our sampling to the internal pages from the

same domain. Pages that redirected to other domains
during crawls were excluded from analyses. Since we ran
a separate crawl for each of the three attacks, in total
we visited 900,000 pages. All measurements were taken
between June 2017 and December 2018 on Amazon EC2
servers located in the U.S..

3.2 The bait technique

Our core measurement contribution is the development
of a bait technique, which allows us to inject sensitive
user data into the context of real websites in such a way
that third-party scripts can access and exfiltrate the
data. We program OpenWPM, our measurement tool,
to behave as if it has already interacted with the site, in-
stead of simulating all possible interactions of a real user
with a site—which would require us to perform tasks
that are difficult to automate, such as registering for
an account. The bait technique takes different forms de-
pending on the measurement. To measure login manager
misuse, we use Firefox’s nsILoginManager [22] interface
to automatically add an email address and password
pair as if the user has already saved those credentials
for each page we visit (Section 4). To measure social
data exfiltration, we simulate a user who logged in to
Facebook by replicating the Facebook SDK’s interface
(Section 5). Finally, to measure Whole-DOM exfiltra-
tion, we directly inject PII (email address, name, and
surname) to the page DOM (Section 6).

Our work is conceptually similar to past studies that
have detected privacy leaks to third parties in real user
data [11, 23], but our decision to simulate user data has
several distinct advantages. By simulating user data we
are able to collect detailed measurements without the
risk of compromising user privacy. Further, not having
real users in the loop allows us to run our measurements
at a large scale. A consequence of this is that we may
bait sites in ways that a real user interaction would never
create, such as saving user credentials on a site that has
no account support. Therefore, although our method al-
lows us to automatically identify third parties that have
exfiltration functionality, we need manual verification to
claim that a third party exfiltrates sensitive information
on a specific site.

The bait technique has three core components: (1)
injecting sensitive data into the page context, (2) moni-
toring access to the data and attributing access to a spe-
cific third party, and (3) detecting transmission of the
data to a third-party server. We extend OpenWPM to
carry out the first two components, and provide details

No boundaries: data exfiltration by third parties embedded on web pages 223

on how we do so in the sections below. The third com-
ponent, data exfiltration, is detected using the method
detailed in Section 3.4.

3.3 Instrumentation

We extended OpenWPM’s already existing JavaScript
instrumentation to capture access to a set of DOM prop-
erties and function calls that can be relevant for de-
tecting the attacks. To capture JavaScript stack traces,
OpenWPM throws and catches an Error when an instru-
mented property is accessed, or a monitored function is
invoked [2]. OpenWPM then reads the stack trace from
the “stack” property of the caught Error 1. We extended
OpenWPM by adding support to capture JavaScript
stack traces for HTTP requests, which correspond to
the “Stack trace” column of Firefox’s Network moni-
tor. Capturing stack traces for HTTP requests required
a separate mechanism that we built on top of the ex-
isting HTTP instrumentation [25]. Specifically, for each
HTTP request, we recorded the snapshot of the current
JavaScript call stack using the Components.stack XP-
COM language binding [26]. The recorded JavaScript
call stacks are composed of stack frames that contain
the calling code’s file name (URL), function name, line
and column number. Recording call stacks for requests
allowed us to attribute data exfiltrations with the gran-
ularity of script line and column numbers.

Using our extensive JavaScript instrumentation, we
record script behavior that can be a sign of data exfil-
tration. To that end, we record function calls and prop-
erty accesses including registering listeners for mouse
and form events (e.g. blur, keypress, keyup), read-
ing filled out form data, and triggering HTTP requests
to third-party servers.

Additional instrumentation specific to each attack
is described in the Measurement methods part of each
attack section (i.e., Sections 4, 5 and 6).

3.4 Detecting and attributing data leakage

To detect leaks, we build on the method proposed by
Englehardt et al. [27]. The method searches for encoded
and hashed versions of PII that the crawler injects into
pages. We configure our heuristics to detect up to three

1 This method was adapted from the EFF’s Privacy Badger
Extension [24]

layers of encoding and hashing from a set of ten en-
coding and 16 hash functions such as MD5, SHA-1 and
SHA-256. The full set of supported encodings and hash
functions is given in Appendix C. We search for the
username part of the email address (in addition to the
full email address) to detect leaks by parties who send
username and domain of the email addresses separately.

We searched URLs, Cookie headers, Referer head-
ers of both GET and POST requests. In addition, we
searched the POST request bodies. We exclude first-
party HTTP requests and responses from our analysis.
Some of the crawled pages redirected to addresses that
are not under the same domain (PS+1) as the original
address. For instance many login links collected from
different sites redirect to Twitter’s oAuth page. We ex-
clude these visits from our analysis.

4 Login manager misuse

All major browsers have built-in login managers that
save and automatically fill in credentials to make the lo-
gin experience more seamless. The set of heuristics used
to determine which login forms will be autofilled varies
by browser, but the basic requirement is that a username
and password field be available.

The underlying vulnerability of login managers to
credential theft has been known for years. Much of the
past discussion has focused on password exfiltration by
malicious scripts through cross-site scripting (XSS) at-
tacks [28, 29].

Mechanism. Figure 1 details the attack. First, a
user fills out a login form on the page and asks the
browser to save the login credentials. The third-party
script does not need to be present on the login page.
Then, the user visits another page on the same website
which includes the third-party script. The script inserts
an invisible login form, which is automatically filled in
by the browser’s login manager. The third-party script
retrieves the user’s email address by reading the pop-
ulated form and sends the email hashes to third-party
servers.

Measurement methods. To study password man-
ager abuse, we extended OpenWPM to simulate a
user with saved login credentials and added instru-
mentation to monitor form access. We used Firefox’s
nsILoginManager [22] interface to add credentials as if
they were previously stored by the user. We did not oth-
erwise alter the functionality of the password manager
or attempt to fill login forms.

No boundaries: data exfiltration by third parties embedded on web pages 224

example.com/homeexample.com/home

example.com/login

User visits a non-login page on the same site where the third party script is
present

3. Third-party script reads the email
address from the form and sends
its hashes to third-party servers

1. Third-party script
injects an invisible login
form

User submits a login or registration form, clicks “Save” to store the credentials.

username@exam

username@p...

example.com/home

2. Login manager fills in
user’s email and
password

username@p... ● MD5(email)
● SHA1(email)
● SHA256(email)

Third-party
script is not
present on
the login page

Fig. 1. The process by which a third-party script can extract a
user’s credentials from the browser’s login manager.

The fake credentials acted as bait (Section 3.2). To
detect when the credentials were accessed, we added the
following probes to OpenWPM’s JavaScript monitoring
instrumentation (Section 3.3):
1. Monitor the DOMmutation event DOMNodeInserted

to detect the injection of a new login form or input
elements into the DOM. When this event fires, we
serialize and log the inserted HTML elements.

2. Instrument HTMLInputElement and HTMLFormElement
objects to intercept access to form input fields. We
log the input field value that is being read to detect
when the bait email (autofilled by the built-in login
manager) was read.

3. Store HTTP request and responses to detect when
the username or password is sent to a remote server
using the leak detection method detailed in Sec-
tion 3.4.

For both the JavaScript (1, 2) and the HTTP (3) in-
strumentation we store JavaScript stack traces at the
time of the function call or the HTTP request. We parse
the stack trace to pin down the initiators of the HTTP
request or the parties responsible for inserting and ac-
cessing a form. Specifically, we search for scripts that do
all of the following:
– Inject an invisible HTML element containing a pass-

word field
– Read the email address from an input field that was

automatically filled by the browser’s login manager
– Send the email address, or a hash of it, to a third-

party server

Results. Applying this selection criteria to our mea-
surement data we found two scripts, loaded from Ad-
Think (audienceinsights.net) and OnAudience (behav-
ioralengine.com), which used this technique to extract

Company Script address # sites
sites
(top 1M)

Adthink static.audienceinsights.net/t.js 9 1047
OnAudience api.behavioralengine.com/scripts/be-init.js 7 63

Table 1. We found two scripts that misused the browser login
manager to extract user email addresses. These scripts were found
on 1,110 of the Alexa top 1 million sites in the September 2017
Princeton Web Census crawl [2, 30].

email addresses from login managers. We also repro-
duced the email address collection by manually regis-
tering for websites that embedded these two scripts and
allowed the browser to save the credentials in the pro-
cess. We summarize our findings in Table 1.

We provide code snippets from the two scripts in
Listing 1 and 2. Adthink’s script sent the MD5, SHA1
and SHA256 hashes of the email address to its server
(secure.audienceinsights.net), as well as the MD5 hash
of the email address to the data broker Acxiom (p-
eu.acxiom-online.com). OnAudience’s script sent the
MD5 hash of the email back to its own server. In ad-
dition, OnAudience’s script collected browser features
including plugins, MIME types, screen dimensions, lan-
guage, timezone information, user agent string, OS and
CPU information. OnAudience’s script was most com-
monly present on Polish websites, including newspapers,
ISPs and online retailers. 45 of the 63 sites that embed-
ded OnAudience’s script at the time of measurement
had the “.pl” country code top-level domain.

We also discovered that autofilled credentials were
leaked to third parties on an additional 121 sites where
neither of the two scripts were present. Analyzing such
cases we determined that those leaks happen due to ses-
sion recording and identity tracking scripts, which indis-
criminately monitor and exfiltrate form data (Section 6).
On those sites, login forms are inserted by first-party
scripts or other authentication related scripts for non-
tracking purposes.

At the time of measurement, login form autofill-
ing did not require user interaction; all of the major
browsers would autofill the username (often an email
address) immediately, regardless of the visibility of the
form. Chrome did not autofill the password field until
the user clicks or touches anywhere on the page. The
other browsers we tested did not require user interac-
tion to autofill password fields.

No boundaries: data exfiltration by third parties embedded on web pages 225

5 Social data exfiltration

In this section we investigate the exfiltration of per-
sonal identifiers from websites through “login with Face-
book” social API.

Mechanism. Facebook Login and other social login
systems simplify the account creation process for users
by decreasing the number of passwords to remember.
But social login brings risks: Cambridge Analytica was
found misusing user data collected by a Facebook quiz
app which used the Facebook Login service [31, 32]. We
have uncovered an additional risk: when a user grants
a website access to their social media profile, they are
not only trusting that website, but also third parties
embedded on that site.

When third parties are embedded into a first-party
execution context in which the user has approved a Face-
book login integration, the third-party script will be able
to query the Facebook API with the privileges and ac-
cess of the first-party. This can allow the third-party
script to query any user account information that the
user has granted the first-party access to, which includes
the user’s ID. The user ID collected through the Face-
book API is specific to the website (or the “applica-
tion” in Facebook’s terminology), which would limit the
potential for cross-site tracking. However, at the time
of our measurements it was possible to use these app-
scoped user IDs to retrieve the global Facebook ID,
user’s profile photo, and other public profile informa-
tion, which can be used to identify and track users across
websites and devices [33, 34].

Measurement methods. To study the abuse of
social login APIs we extended OpenWPM to simulate
that the user has authenticated and given full permis-
sions to the Facebook Login SDK on all sites. To spoof
that a user is logged in, we created our own window.FB
object and replicated the interface of version 2.8 of
the Facebook SDK. The spoofed API had the follow-
ing properties:

For method calls that normally return personal in-
formation we spoofed the return values as if the user is
logged in and called the callback functions with neces-
sary arguments. These included FB.api(), FB.init(),
FB.getLoginStatus(), FB.Event.subscribe() for the
events auth.login, auth.authResponseChange, and
auth.statusChange, and FB.getAuthResponse(). For
the Graph API (FB.api), we supported most of the pro-
file data fields supported by the real Facebook SDK.
We parsed the requested fields and return a data object

in the same format the real graph API would return.
For method calls that do not return personal informa-
tion we simply called a no-op function and ignored any
callback arguments. This helped minimize breakage if a
site calls a method we do not fully replicate. We fired
window.fbAsyncInit once the document has finished
loading. This callback function is normally called by the
Facebook SDK during the initialization. The spoofed
window.FB object is injected into every frame on every
page load, regardless of the presence of a real Facebook
SDK. We then monitored access to the API using Open-
WPM’s JavaScript call monitoring. All HTTP request
and response data, including HTTP POST payloads are
examined to detect the exfiltration of any of the spoofed
profile data (including that which has been hashed or en-
coded). Since we did not inject the user’s identity into
the page in this experiment, any personal data accessed
and leaked by scripts must have been queried from our
spoofed API.

We stored the JavaScript stack traces for calls to
window.FB and HTTP requests. We then used these
stack traces to determine which APIs scripts accessed
and when they were sending data back. For some scripts
our instrumentation only captured the API access, but
not the exfiltration. In these cases, we manually de-
bugged the scripts to determine whether the data was
only used locally or if it was obfuscated before being
transmitted. We explicitly note the cases where we could
not make this determination.

Results. We found seven loosely-integrated2 third-
party scripts collecting Facebook user data using the
first party’s Facebook access (Table 2). These scripts
were embedded on a total of 434 of the top 1 million sites
at the time of measurement3. Six of the seven scripts col-
lected the user ID, and two scripts collected additional
profile information such as email and username.

Our leak detection method did not detect leaks
by four of the seven scripts (Augur, ProPS, Tealium,
Forter) displayed in Table 2. We used manual analysis
to check for social API leaks by these four scripts, and

2 We use the following criteria to determine how tightly inte-
grated a third-party script is with a first party: 1) whether the
third-party script initiates the Facebook login process instead
of passively waiting for the login to happen and 2) whether the
third-party script contains the Facebook App ID of the website
it is embedded on. The scripts summarized in this section nei-
ther initiated the login process, nor contained the App ID of the
websites.
3 See, https://gist.github.com/englehardt/
bf976e6b90f44f735749014a7a4a48b6

https://gist.github.com/englehardt/bf976e6b90f44f735749014a7a4a48b6
https://gist.github.com/englehardt/bf976e6b90f44f735749014a7a4a48b6

No boundaries: data exfiltration by third parties embedded on web pages 226

Company Script Domain
Facebook Data
Collected

Leak detected via

OnAudience api.behavioralengine.com
User ID (hashed),
Email (hashed),
Gender

Automated analysis

Augur cdn.augur.io Email, Username Manual analysis
Lytics* d3c. . . psk.cloudfront.net User ID Automated analysis
Nativka p1.ntvk1.ru User ID Automated analysis
ProPS st-a.props.id User ID Unable to verify leak
Tealium tags.tiqcdn.com User ID Unable to verify leak
Forter cdn4.forter.com User ID Unable to verify leak

Table 2. The list of third-party scripts collecting Facebook user
data using the first party’s Facebook access at the time of mea-
surement.
*: The script loaded by Opentag tag manager in-
cluded a code snippet which accessed the Facebook
API and sent the user ID to an endpoint of the form
https://c.lytics.io/c/1299?fbstatus=[...]&fbuid=[...]&[...] This
snippet appears to be a modified version of an example code snip-
pet found on the lytics.github.io website with the description
“Capturing Facebook Events”. The example code appears to pro-
vide instructions for first parties to collect Facebook user ID and
login status.

found leaks by one of them (Augur). Specifically, we used
a combination of the JavaScript Deobfuscator browser
extension [35] and devtools to determine how the data
was used after being collected from the API. We limited
the manual analysis to scripts that send at least one re-
quest after they access the Facebook API. For ProPS,
Tealium and Forter, we were unable to manually verify
that the social API data was transferred to a remote
server.

While we cannot say how these third parties use
the information they collect, or whether they have been
acting on behalf of the first party, we examined their
marketing material at the time of measurement to un-
derstand how they might have been used. OnAudience,
Tealium AudienceStream, Lytics, and ProPS all offered
some form of “customer data platform”, which collects
data to help publishers to better monetize their users.
Forter offered “identity-based fraud prevention” for e-
commerce sites. Augur offered cross-device tracking and
consumer recognition services. Nativka offered traffic
growth and content monetization services.

In Appendix B we present a related tracking vul-
nerability we discovered and responsibly disclosed using
these measurement methods. In particular, we found
a third party using its own social login in embedded
iframes in a way that allowed their users to be tracked
by other parties.

In this study we focused on Facebook Login as it is
the most widely used social SDK on the web [36], but the

vulnerabilities we described are likely to exist for most
social login providers. Indeed, Forter and Nativka, two
scripts listed in Table 2, appear to access user identi-
fiers from the Google Plus API (Forter) 4, and from the
Russian social media site VK’s Open API (Nativka) 5.

6 Whole-DOM exfiltration

In this section we examine third-party scripts that col-
lect the full contents of the DOM (Document Object
Model, the tree of objects that constitutes the web
page), as well as those that monitor all mouse move-
ments and key presses on the page. Scripts may collect
this data to provide analytics services based on users’
clicks and other interactions on the page.

Mechanism. The top-level context’s DOM can
contain sensitive information. When a user logs in to
a site, the site may display her name or email address in
the text of the page. Similarly, users may enter personal
information, such as their address, credit card number,
or social security number into forms on the page. For
some sites this information may be even more sensi-
tive, such as the user’s bank account balance or med-
ical history. Third-party scripts embedded in the top-
level context have access to the same information that
is displayed to the user when she visits the site. Ma-
licious scripts can abuse this access to surreptitiously
collect user information. However, this sensitive infor-
mation can also get scooped up by benign scripts which
collect portions of the DOM as part of the services they
provide to first parties.

There are a number of ways a script can
grab the contents of the DOM, including: reading
outerHTML, innerHTML, or the textContent property
of document.body, looping through all elements in the
DOM and serializing them individually. To monitor user
interactions, scripts can use event listeners for mouse
and keyboard events. Finally, scripts can listen to the
blur or change events, which are fired when a user in-
teracts with input elements on the page.

Detection Method. We took a two-step approach
to detecting whole DOM exfiltration. First, we ap-
pended several unique bait values to the DOM of all
frames present on a page and search for these values in

4 See, https://gist.github.com/englehardt/
9801bef634dc29699116a489f33d850b
5 See, https://gist.github.com/englehardt/
65d2959be03bfafdc1c25d57965f4539

https://gist.github.com/englehardt/9801bef634dc29699116a489f33d850b
https://gist.github.com/englehardt/9801bef634dc29699116a489f33d850b
https://gist.github.com/englehardt/65d2959be03bfafdc1c25d57965f4539
https://gist.github.com/englehardt/65d2959be03bfafdc1c25d57965f4539

No boundaries: data exfiltration by third parties embedded on web pages 227

the resulting network traffic. The values are added by
creating a new div element and adding it directly to
document.body. The div had the style display:none
set to prevent it from altering the layout of the
page. The added values included an email address and
the string Welcome <FirstName> <LastName>!, where
<FirstName> and <LastName> are unique strings. We
chose to include bait values that match the format of
a real users PII to detect if any scripts are parsing in-
formation out of the DOM. We used the HTTP stack
traces and the leak detection method detailed in Sec-
tion 3.4 to discover and attribute leaks of the injected
email address or name.

During our preliminary analysis, we discovered sev-
eral instances where scripts compress and split the page
source over multiple requests, which our standard leak
detection method fails to detect. To capture these in-
stances, we took a different approach:
1. Determine which pages contain scripts that

might be exfiltrating the DOM. For each page,
we summed the total size of data sent to each third
party in POST requests on that page. We then gen-
erated a list of pages where at least one third party
receives a total amount of data larger than the com-
pressed length of the page text6.

2. Re-measure the candidate sites with and
without a large chunk of data appended to
the DOM. For all sites on which we suspect third-
party DOM exfiltration, we re-measured the site
twice: once with a 200 Kilobyte chunk appended di-
rectly to the body element of the DOM, and once
without any data appended to the DOM. We chose
200 Kilobytes as the chunk size because it was large
enough to outweigh small differences in page size
between the crawls (such as a changing headline),
but not so large as to disrupt services that collected
data from the DOM.

3. Measure the difference in payload size for
each third party between the crawls. We
summed the total payload size across all POST re-
quests which occur during a single page visit for each
third party. We then compared the total POST re-
quest size between the two crawls, and flagged any
third-party script that had a difference greater than
the compressed length of the injected chunk of data
(approximately 150 Kilobytes).

6 We used Beautiful Soup [37] and zlib [38] Python libraries to
extract and compress the page text, respectively.

The two detection methods described above provided
a list of scripts which appear to collect data from the
DOM. To better understand how the scripts are moni-
toring interaction with the DOM we used OpenWPM’s
JavaScript call monitoring (Section 3.3) instrumentation
to record the following: calls to innerHTML, outerHTML,
innerText, and outerText on the HTMLBodyElement
and the documentElement. In addition we observed all
event listener registrations on the HTMLBodyElement, the
window.document object, and the window object. We ex-
amined registrations which monitor events that capture
the user’s mouse movements, page interactions, and key
presses.7 We took a script’s use of these events as a sig-
nal that they are monitoring user interaction with the
DOM in addition to scraping the contents of the DOM.

Finally, we used a combination of the presence of
DOM scraping, the registration of event handlers mon-
itoring user interaction, and a manual examination of
the marketing materials of the companies involved to
determine the type of services the third-party script of-
fers. We manually reviewed the third party’s website
and product offerings in early 2018. Scripts that offered
ad injection, affiliate link insertion, or content monetiza-
tion were considered “Advertising”, scripts that offered
session recordings and customer insight tools were con-
sidered “Analytics”, scripts that offered custom support
tools were considered “Support”, and scripts that offered
translation services were considered “Translation”. The
results of this analysis are summarized below.

Results.We found no instances of malicious scripts
parsing the DOM to exfiltrate user data. However, we
did find a number of companies doing full-page scrap-
ing, collecting all of the text on the page or serializing
portions of the DOM. Although these services did not
appear to be built with the intention of collecting PII,
the broad nature of the collection techniques made it
very easy for PII to get scooped up with the rest of the
collected data. We summarize our findings in Table 3.
The majority of the scripts we discovered sent requests
which included the name and email address inserted by
our instrumentation. Eight of the 28 scripts were only
discovered by our chunk injection measurement due to
unsupported payload encodings. In all cases, the data
was transferred to a third-party collection endpoint via
a POST request.

7 The event listener registration events that we monitored
included: mouseup, mousedown, click, auxclick, mousemove,
wheel, dblclick, select, contentmenu, mouseleave, mouseout,
mouseenter, mouseover, keydown, keyup, keypress, and scroll.

No boundaries: data exfiltration by third parties embedded on web pages 228

Service Purpose # sites

Yandex Metrika Analytics 198
FullStory Analytics 55
Hotjar Analytics 48
SkimLinks Advertising 34
Sessioncam Analytics 18
UserReplay Analytics 15
Transifex Translation 9
VWO Analytics 7
Tealeaf Analytics 7
Jornaya Analytics 5
IntelliTXT Advertising 4
Digidip Advertising 4
RedLink Analytics 3
Localizer Translation 2
Viglink Advertising 2
Prosperent Advertising 1
Wovn Translation 1
xclaimwords Unknown 1
Bkred.ru Unknown 1
ABTasty Analytics 1

(a) Services detected by both ID
injection and chunk injection.

Service Purpose # sites

Clicktale Analytics 37
Smartlook Analytics 31
Lucky Orange Analytics 23
Quantum Metric Analytics 11
Inspectlet Analytics 10
Mouseflow Analytics 5
LogRocket Analytics 2
SaleMove Support 1

(b) Services detected only by
chunk injection. Since our chunk
injection measurement was run
on a sample of the 50,000 sites
measured in (a), we expect the
site counts for these services to
be underrepresented relative to
(a).

Table 3. The top companies that we discovered scraping informa-
tion from the DOM at the time of our June or November 2017
measurements. The apparent purpose of data collection includes:
Analytics: heatmaps, session replay, form analytics, Advertis-
ing: mouse-over keyword ads, automatic affiliate link insertion,
Translation: automatic localization, and Support: live customer
support. Scripts grab either the text on the page or a representa-
tion of the DOM, which can range from a complete serialization
to a custom encoding of some elements.

The majority of the companies collect DOM data
to provide analytics services to the first party. Of these,
the most commonly provided service is “session replay”,
which was offered by 16 companies at the time of mea-
surement. Session replay services allow the first party to
observe how their page was rendered for the user and
how the user interacted with their site. All of the ses-
sion replay providers collected some custom encoding of
all nodes and text in the DOM, in some cases including
all of the inline script and CSS content. We believe this
is necessary to allow the recording to accurately reflect
the experience of the user, given that many pages are
built dynamically and may change from user to user.

In the remaining cases, text was extracted from the
DOM and sent to a third party. While we are not able
to measure exactly how the text data is used, we stud-
ied the marketing material of the companies to better
understand how it might be used. Several of the com-
panies provided automatic monetization of product or
retailer references by attaching affiliate links to specific
keywords. For example, a reference to a new model of
Nike shoes would be replaced by an affiliate link to
a store where the user can purchase that shoe. Intel-
liTXT’s advertising product is slight variation of this;

rather than replacing the text with an affiliate link, it
replaces the text with a mouse-over advertisement that
displays in a tooltip next to the text. Finally, three of
the companies offer translation services, which include
automatic localization of site content.

We found no evidence that suggests the scraped
data was used for advertisement personalization or
cross-site tracking by any of the companies analyzed. In
fact, several of the analytics companies explicitly forbid
the collection of sensitive user information using their
services [39, 40], and provide automated and manual fea-
tures that first parties can use to prevent the collection
of sensitive user data. As an example, we observed code
in VigLink and Wovn scripts which filter the contents of
the collected data using regular expressions. VigLink’s
filtering appears to be motivated by a desire to protect
user privacy, as evidenced by the inclusion of references
to pii. Their script prevented the collection of email ad-
dresses and strings of integers between 6 and 18 charac-
ters in length. Wovn’s filtering appeared to be intended
to prevent the collection of non-translatable strings and
included email addresses.

6.1 Case study: the ineffectiveness of
session replay redaction tools

To better understand the effectiveness of the data pri-
vacy features offered by third-party services, we per-
formed an in-depth examination of the redaction tools
provided by six of the companies offering session re-
play services: FullStory, UserReplay, SessionCam, Hot-
jar, Yandex, and Smartlook. Session replay analytics
are meant to provide insights into how users interact
with websites and discovering broken or confusing pages.
However the extent of data collected by these services is
likely to exceed user expectations; text typed into forms
is collected before the user submits the form, and pre-
cise mouse movements are saved, all without any visual
indication to the user.

The replay services offer a combination of manual
and automatic redaction tools that allow publishers to
exclude sensitive information from recordings. However,
in order for leaks to be avoided, publishers would need
to diligently check and scrub all pages which display
or accept user information. For dynamically generated
sites, this process would involve inspecting the under-
lying web application’s server-side code. Further, this
process would need to be repeated every time a site is
updated or the web application that powers the site is
changed.

No boundaries: data exfiltration by third parties embedded on web pages 229

Redacted
Field

FullStory UserReplay SessionCam Hotjar Yandex Smartlook

Name # G# G# # # #

Email # G# G# # # #

Phone # G# G# # # #

Address # G# G# #† # #

SSN # G# G# # # #

DOB # G# G# # # #

Password G# G#

CC Number G#‡ G# G# #

CC CVC G# G# # #

CC Expiry G# G# # #

Table 4. Summary of the automated redaction features for form
inputs enabled by default from each company at the time of mea-
surement in November 2017.
 : Data is excluded; G#: equivalent length masking; #: Data is
sent in the clear. † Hotjar masked the street address portion of
the address field. ‡: UserReplay sent the last 4 digits of the credit
card field in plain text.

To better understand the effectiveness of these
redaction practices, we set up test pages during Novem-
ber 2017 and installed replay scripts from the six com-
panies. All of the companies studied offered some mit-
igation through automated redaction, but the cover-
age offered varied greatly by provider. UserReplay and
SessionCam replaced all user input with an equivalent
length masking text, while FullStory, Hotjar, and Smart-
look excluded specific input fields by type. We summa-
rize the redaction of other fields in Table 4.

Automated redaction is imperfect; fields are
redacted by input element type or heuristics, which may
not always match the implementation used by publish-
ers. For example, FullStory redacted credit card fields
with the autocomplete attribute set to cc-number, but
collected any credit card numbers included in forms
without this attribute. Indeed, we discovered credit card
data leaking to FullStory from input fields that lacked
autocomplete attributes (see Table 5).

To supplement automated redaction, several of the
session replay companies, including Smartlook, Yandex,
FullStory, SessionCam, and Hotjar allowed sites to fur-
ther specify input elements to be excluded from the
recording. To effectively deploy these mitigations a pub-
lisher would need to actively audit every input element
to determine if it contains personal data. A safer ap-
proach would have been to mask or redact all inputs by
default, as was done by UserReplay and SessionCam,
and allow whitelisting of known-safe values. Even fully
masked inputs provide imperfect protection. For exam-
ple, the masking used by UserReplay and Smartlook at
the time of measurement leaked the length of the user’s
password.

Several of the session replay companies also offered
redaction options for displayed content, i.e. content that
would be collected through scraping the DOM. Unlike
user input recording, none of the companies appeared
to provide automated redaction of displayed content by
default; all displayed content on our test page ended up
leaking. Instead, session replay companies expect sites
to manually redact all personally identifying informa-
tion included in the DOM. Sensitive user data has a
number of avenues to end up in recordings, and small
leaks over several pages can lead to a large accumulation
of personal data in a single session recording.

To understand how well the manual redaction fea-
tures work in practice, we manually examined around 50
of the top sites on which we found session replay scripts.
We discovered several categories of sensitive informa-
tion leaks during our interactions, including: passwords,
medical information, student data, credit card data, and
purchase information. Table 5 summarizes our findings.

We observed password leaks on three of the sur-
veyed websites. On two of the sites, propellerads.com
and johnlewis.com, the password leak was caused by the
way the sites implemented a “show password” feature.
In both instances, the sites stored the user’s password
in two input elements: one of type password and one
of type text. When the user interacts with the “show
password” feature, the sites would swap the two input
elements, causing the user’s password to become visible.
Both FullStory’s and SessionCam’s automated redaction
rules failed to capture the input element of type text8.
In the third case, the password leak was caused by a bug
in the way FullStory’s manual redaction feature applied
to input fields of type password. We disclosed the pass-
word leaks to respective first and third parties, and we
were informed by the third party services that the issues
were later fixed (Section 7).

With the exception of walgreens.com, the remainder
of the leaks largely appeared to be caused by a sparse
use of redaction on those pages. Walgreens made exten-
sive use of display content redaction, but the user’s name
and prescription choices appeared on subsequent pages
of the checkout process. Similarly, the identity verifica-
tion page asked several multiple choice questions con-

8 Browser extensions such as Show Password [41] and Unmask
Password [42] implement the same “show password” feature by
swapping the password field with a cleartext field. We found that
on certain websites including Lenovo.com, FullStory will inad-
vertently collect passwords when the Show Password Chrome
extension is in use.

walgreens.com

No boundaries: data exfiltration by third parties embedded on web pages 230

First party Third party Data Leaked Cause

walgreens.com FullStory
prescriptions,
name, identity

unredacted display data

propellerads.com FullStory passwords “show password” feature
johnlewis.com SessionCam passwords “show password” feature
wpengine.com FullStory passwords bug in FullStory redaction
gradescope.com* FullStory student data unredacted display data
lenovo.com FullStory billing information unredacted display data
bonobos.com FullStory credit card data unredacted input data

Table 5. A sample of sensitive data leaks to session replay com-
panies that we observed during a manual inspection of sites be-
tween November 2017 and February 2018.
*: We discovered the leak on Gradescope thanks to an external
tip.

taining sensitive user data—the radio buttons for the
questions were redacted from recordings, but the mouse
traces would still reveal the user’s answers.

To recap, we identify three main causes of unin-
tended collection of sensitive data by session replay
scripts:
1. Automated redaction heuristics that are

based on unrealistic assumptions: Automated
redaction heuristics make assumptions about input
elements’ type and attributes, but websites may im-
plement an interface (e.g. a password box) in dif-
ferent ways that these assumptions may not cover.
For example, the assumption that passwords are
only stored in input fields of type password did not
hold on propellerads.com and johnlewis.com, which
caused passwords to leak on those sites.

2. Manual redaction rules that fail to cover all
sensitive data: Building and maintaining manual
redaction rules that cover all sensitive data can be
an error-prone task especially for complex and dy-
namic websites. Leaks due to unredacted student
data on gradescope.com, and billing information on
lenovo.com are two examples of this type of failure.

3. Interactions between first and third-party
scripts, and browser extensions affect both
automated redaction heuristics and manual redac-
tion. It is difficult for publishers and third par-
ties to foresee all possible interactions between dif-
ferent scripts. The password leak we identified on
lenovo.com (when the Show Password Chrome ex-
tension is in use) shows even the extensions installed
on users’ browsers need to be taken into account.
Since extensions may modify the DOM in arbitrary
ways, anticipating all potential failures is not feasi-
ble.

7 A retrospective look

We first publicly released the findings reported here
in 2017-18 (whenever possible, we notified affected par-
ties before public disclosure) [54, 58–61]. This gives us
an unusual opportunity for a retrospective look at the
effects of a large-scale analysis of privacy vulnerabili-
ties. We find that the specific vulnerabilities we reported
have largely been addressed; however, the root causes of
the problem remain intact, with the likelihood that new
vulnerabilities are regularly being created. Based on this
analysis, we suggest two potential paths forward.

7.1 Review of responses to our findings

The publication of our findings resulted in several pri-
vacy fixes and improvements to browsers, websites, third
parties and privacy protection tools. Table 6 provides an
overview. In this section we summarize the changes that
resulted from our work9, and examine how the fixes—
while improving the status quo—often fail to address
the underlying vulnerabilities.

Login Manager misuse. Adthink and OnAudi-
ence10 stopped misusing browser login managers to ex-
tract user email addresses following the publication of
our results [52, 53]. Brave and Safari11 disabled auto-
matic login manager credential filling, and instead re-
quire that the user first interact with the password
field [46, 47]. Our work also inspired Mozilla and
Chrome to reconsider implementing similar changes,
which had been previously proposed [43, 44]. Publishers

9 We determine whether a fix was deployed as a response to
our initial publications based on the references provided in the
bug descriptions or commit messages [43, 44, 47, 49, 50], publi-
cations and quotes from companies in press articles covering our
preliminary publications [52, 55–57], and from personal commu-
nications we received as a response to our disclosures [54, 58].
We explicitly note the cases where the fixes were deployed im-
mediately following our initial publications without an explicit
reference to our findings [46, 51, 53].
10 Immediately following our initial publication [53], OnAudi-
ence removed the part of their script that misuses browsers’ login
manager without referring to our findings.
11 The related CVE [62] involving Safari Login AutoFill was
created five days after the publication of our preliminary find-
ings on login manager misuse [59] without a reference to our
findings. The vulnerability is described as follows: “It allows re-
mote attackers to read autofilled data by leveraging lack of a
user-confirmation requirement.”

No boundaries: data exfiltration by third parties embedded on web pages 231

Party
Attacks

Login Manager Social Integration DOM Exfiltration

Browsers

Chrome Considering restrictions [43] No fix No Fix
Firefox Considering restrictions [44] Proposal [45] Proposal [45]
Safari Require interaction [46] No fix No fix
Brave Require interaction [47] Proposal [48] Proposal [48]

Blocklists
EL/EP* Already Blocked Not blocked† Blocked [49]
Disconnect Blocked [50] Not blocked‡ Blocked [51]

Third parties

Adthink Stopped [52] N/A N/A
OnAudience Stopped [53] Stopped N/A
FullStory N/A N/A Fixed PW leak bug [54]
Facebook N/A N/A Limited [55]
Smartlook N/A N/A Limited [56]
Yandex N/A N/A Limited [56]

First Parties
Walgreens N/A N/A Stopped [57]
Bonobos N/A N/A Stopped [57]
Gradescope N/A N/A Stopped [58]

Table 6. A summary of deployed fixes by browsers, blocklists, and the first and third parties we studied. For the DOM exfiltration at-
tacks we also include two browser proposals that are motivated by the types of attacks examined in this work.
* EL/EP: EasyList and EasyPrivacy. †: No third parties were added to EL/EP due to Social data exfiltration. EL/EP already blocked
three of the seven scripts from Table 2 (ProPS, OnAudience, Nativka) at the time of our measurement and blocked Forter since, but
not as a response to our study. ‡: Disconnect blocked behavioralengine.com due to its Login manager misuse [50]. Augur was already
blocked. Remaining five scripts in Table 2 are not blocked.

can achieve a similar level of protection in all browsers
by isolating login forms on a separate origin (e.g., a sub-
domain of their main domain), which will prevent most
browsers from filling credentials on non-login pages.

These changes reduce the attack surface available
to third parties wishing to exfiltrate user credentials; a
user’s credentials are no longer available on pages other
than the login page. However, third parties embedded
on a site’s login page can continue to extract the user’s
credentials after the user enters them manually or inter-
acts with the browser’s credential manager.

Social data exfiltration. Facebook disabled the
feature to resolve app-scoped user IDs to global
IDs [55]12. This limited the ability of a third party to
collect Facebook’s global identifier for the user through
their SDK. However, third parties integrated into the

12 We received a communication from Facebook indicating that
the fix was deployed as a response to our publication.

main context of a page can continue to query user data
from integrated social media widgets with the same priv-
ileges as the first party. To prevent this vulnerability en-
tirely, first parties must integrate social media widgets
on a separate origin that doesn’t embed any third-party
content. This can greatly increase the engineering com-
plexity of a website, and can limit how tightly integrated
the social media content is with the rest of the user ex-
perience.

Whole DOM exfiltration. Walgreens, Bonobos,
Gradescope stopped using session replay scripts [57, 58].
This fixed the leaks discovered during our manual re-
view, but our 50 site review represents a fraction of
the total number of websites that embed these ser-
vices (99,173 in the Alexa top 1 million, based on the
data from the September 2017 Princeton Web Census
crawl [2, 30]). Similarly, FullStory fixed the bug that
allowed passwords to leak on WPEngine.com or sites
with a similar markup [54]. Finally, Smartlook and Yan-

No boundaries: data exfiltration by third parties embedded on web pages 232

dex committed to prioritizing HTTPS dashboards for
replaying session records [56] 13.

There are a number of steps both first parties and
third parties can take to mitigate some of the risk in-
troduced by these services. Rather than rely on redac-
tion tools, publishers can restrict third-party replay ser-
vices to pages that do not contain any sensitive user
data. Session replay companies can restrict their tools
to recording basic information about mouse movements
and keypresses, and replay those events over DOM data
captured from a public version of the page. Likewise,
session replay companies can restrict their collection to
keypress events, rather then recording actual key values.
These mitigations are imperfect from a privacy perspec-
tive; they also compromise functionality.

Blocklists. Users can protect against all three of
these types of attacks by installing privacy tools that
block tracking resources. The domains we found to mis-
use browser login managers were already blocked by the
EasyPrivacy blocklist at the time of measurement, and
were later added to Disconnect’s blocklist [50]. Simi-
larly, many of the domains used to serve the session re-
play scripts were already blocked by EasyPrivacy at the
time of our measurements, and several more—including
domains from FullStory, Smartlook, and UserReplay—
were added after we released our results [49]. Likewise,
Disconnect added several new session replay scripts to
their lists after we released our results [51]14.

While these results highlight the effectiveness of
measurement and blocking, the types of analyses de-
scribed in this paper would need to be regularly re-run
to keep the list of blocked resources up-to-date. To the
best of our knowledge, these measurements have not
been repeated in the two years since we released our re-
sults. There are a number of challenges facing repeated
measurements, which we further explore in Section 7.2.

7.2 Root causes of failures

To recap: the publication of our findings led to a number
of fixes, but we have shown how these fixes are funda-
mentally reactive—the specific problems that we found
were (mostly) fixed, but it remains possible for similar

13 We have verified that Smartlook and Yandex switched to
HTTPS dashboards for replaying session recordings.
14 The commit message for this update mentions “screen track-
ing services” and adds third parties we detected to their blocklist
one day after we publish our blog post, but it does not refer to
our findings.

but new problems to be introduced. Two years after our
initial findings, there have not been any comprehensive
fixes deployed for these issues. We identify three funda-
mental challenges.

SOP is all-or-nothing. The Same Origin Policy
rests on the assumption that a first party trusts a third
party fully or not at all. Unfortunately, this model does
not capture the range of trust relationships that we see
on the web. Since many of these third parties cannot
provide their services if they are isolated, the first par-
ties have no choice but to give them full privileges even
though they do not trust them fully.

Transitivity of trust. A user may trust a website
and the website may trust a third party, but the user
may not trust the third party. Trust becomes even less
transitive with longer redirect chains. The web’s security
model assumes transitive trust.

Economics. Many third parties advertise the ease
of deploying their scripts and the fact that no techni-
cal expertise is necessary. For example, FullStory’s web
page says: “Set-up is a thing of beauty. To get started,
place one small snippet of code on your site. That’s it.
Forever. Seriously.” [63]. Based on our interactions with
publishers, we believe that this is a key reason for the
popularity of these third parties. The small publishers
that rely on them lack the budget to hire technical ex-
perts internally to replicate their functionality. In fact,
even the careful review of DOM elements needed for
proper redaction ends up being a significant burden to
these first parties, and hence omitted.

Economic considerations may help explain the lim-
ited adoption of technical solutions such as Caja [64] or
ConScript [65] that better capture the partial trust rela-
tionship between first and third parties. Unfortunately,
such solutions require the first party developer to reason
carefully about the privileges and capabilities provided
to each individual third party. We believe that if first
parties possessed this expertise, they would have applied
it to ensure proper configuration of existing tools, and
our study would not have found the widespread leaks
that it did.

7.3 Two potential paths forward

The two classic information security paradigms are the
reactive approach and the preventive approach. Both of
them provide potential paths to addressing the privacy
problems of interest to us, but each approach has its
challenges and limitations.

No boundaries: data exfiltration by third parties embedded on web pages 233

The reactive approach relies on early detection
and mitigation of vulnerabilities. Our work provides ev-
idence that large-scale detection of PII leaks is possi-
ble and that specific vulnerabilities will be addressed
quickly once discovered.

Our work also shows that large-scale detection is
technically challenging, necessitating the time invest-
ment of experts. Our measurement tools require con-
stant maintenance to keep up with browser updates and
interface changes. Similarly, our measurement methods
require manual tuning to respond to adversarial evasion
(i.e., false negatives) and changes to benign scripts (i.e.,
false positives). The data analysis is also not fully auto-
mated; manual script inspection and verification will be
required for each new measurement.

We are not aware of any efforts to regularly repeat
our measurements and, more importantly, look for new
classes of vulnerabilities based on the same root causes.
Researchers tend not to carry out regular web privacy
vulnerability scanning because it does not result in pub-
lishable research. Rather, we suggest that browser ven-
dors, privacy advocacy groups, accountability journal-
ists, or some combination thereof should carry out this
work.

The preventive approach aims to ensure that vul-
nerabilities do not arise in the first place. As discussed
above, fundamental fixes are unlikely to be technical,
and even the available technical solutions have been lim-
ited in adoption for economic reasons. Thus, we suggest
a non-technical preventive approach: regulation that in-
centivizes first parties to take responsibility for the pri-
vacy violations on their websites. This is in contrast to
the reactive approach above which essentially shifts the
cost of privacy to public-interest groups or other exter-
nal entities.

Our findings represent potential violations of exist-
ing laws, notably the GDPR in the EU and sectoral laws
such as HIPAA (healthcare) and FERPA (education) in
the United States. However, it is unclear whether the
first parties or the third parties would be liable. Ac-
cording to several session replay companies, they are
merely data processors and not joint controllers under
the GDPR [66–68].15 In addition, since there are a large
number of first parties exposing user data and each vi-
olation is relatively small in scope, regulators have not
paid much attention to these types of privacy failures.
In fact, they risk effectively normalizing such privacy

15 To the best of our knowledge, this claim has not has been
tested in court.

violations due to the lack of enforcement. Thus, either
stepped-up enforcement of existing laws or new laws
that establish stricter rules could shift incentives, re-
sulting in stronger preventive measures and regular vul-
nerability scanning by web developers themselves.

8 Limitations

Our analysis is based on data collected in 2017 and
2018. As explained in Section 7, several browser ven-
dors, third-party libraries and websites changed their be-
havior in response to the initial publication of our find-
ings. Thus, many of the specific leaks we document are
no longer present. Conversely, we chose to study three
particular attacks, which is not an exhaustive list of
web-based data exfiltration attacks. Despite these limi-
tations, our findings all highlight an underlying problem,
namely, loading untrusted JavaScript in a first-party ori-
gin.

Many session replay services activate their function-
ality only for a sample of users, either as explicitly de-
fined by the publisher site or enforced as part of a daily
recording limit. Thus, it is possible that our bot that vis-
ited the site was not included in the sample, but other
users might be.

In Section 5 we observe certain scripts query the
Facebook API and retrieve the user’s Facebook ID but
we could not verify that the ID is sent to their server due
to obfuscation of their code and some limitations of our
measurement methods such as dealing with obfuscated
payloads. We explicitly note these cases in our results.

Although we have released our crawler and instru-
mentation code, the HTTP request call stack instru-
mentation we developed is now obsolete due to Fire-
fox’s migration from XUL/XPCOM to WebExtensions
API [69]. However, OpenWPM’s maintainers updated
the call stack instrumentation to work with the latest
extension API [70] partly based on our work.

OpenWPM’s method of mapping property accesses
and function calls to script domains may have a
limitation when a script uses “eval” to run another
script’s functions [2]. In addition, OpenWPM may
not capture the complete stack traces when scripts
inject other scripts or invoke other functions asyn-
chronously (e.g., using setTimeout). To avoid mis-
attribution, we complement our automated analysis
with manual analysis (Section 4, Section 5), and we
base our detection on instrumentation data combined
from different sources. This involves intercepting access

No boundaries: data exfiltration by third parties embedded on web pages 234

to form input fields and monitoring DOMNodeInserted
events in Section 4, intercepting calls to our
spoofed Facebook API in Section 5, and intercept-
ing access to innerHTML, outerHTML, textContent,
documentElement, and calls to addEventListener in
Section 6.

We use Firefox’s HTTP related observer
topics such as http-on-modify-request and
http-on-examine-response to capture HTTP request
and responses. Since at the time of the measurements
Firefox did not expose WebSocket and WebRTC con-
nection data through these topics, we might have missed
exfiltration attempts using these protocols.

Our measurements were made from US-based EC2
cloud instances using stateless browsers. This may lead
to differential treatment; for example, some third parties
may not show advertisements to visitors with cloud IP
addresses. Moreover, scripts may try to detect Open-
WPM, and change their behavior to evade detection.
Since each page visit starts with a fresh profile, third
parties may attempt to sync cookies on every visit,
which may not be the case for real users who keep state
in their browsers [71]. In addition, websites may treat
European visitors differently, due to stricter privacy reg-
ulation. Despite these limitations, we note that a recent
study on crawlers’ effect on web measurements found
that OpenWPM (with bot mitigation feature turned on)
results in least amount of server block pages compared
to alternatives [72].

9 Conclusion

We highlighted the risks of third party script inclu-
sions by studying login manager abuse, social data ex-
filtration and whole-DOM exfiltration on 300,000 pages
from 50,000 sites. We developed and used a bait tech-
nique which allowed us to inject sensitive user data into
real websites so that third-party scripts can access and
exfiltrate the data. Our findings show that third-party
scripts engage in highly invasive practices such as insert-
ing invisible login forms into pages to trigger browsers’
login autofill, tapping into social APIs to exfiltrate users’
social network IDs. Moreover, third-party scripts includ-
ing session replay libraries exfiltrate whole DOM to re-
produce users’ detailed interaction with the web page,
while leaking personal and sensitive data including pass-
words, health conditions, prescriptions, credit card and
student data. While the specific vulnerabilities we re-

port have largely been fixed, the underlying root causes
are harder to fix, as they stem from economic or human
factors, or are baked into the security architecture of
the web. We highlight the role of regulation and peri-
odic, large-scale web privacy scanning to preventing and
remedying future vulnerabilities arising from the same
root causes.

10 Code and data

The source code and data from our study are publicly
available at:

https://webtransparency.cs.princeton.edu/
no_boundaries.

Acknowledgments

We thank our shepherd Oleksii Starov for his valuable
feedback, Mihir Kshirsagar for his help with questions
related to regulations, Dimitar Bounov and Sorin Lerner
for bringing Gradescope leaks to our attention. This
study is supported by an NSF grant (CNS 1526353).
Some of our measurements were funded by an Ama-
zon AWS Cloud Credits for Research grant. Gunes Acar
holds a Postdoctoral fellowship from the Research Foun-
dation Flanders (FWO). This work was supported by
CyberSecurity Research Flanders with reference num-
ber VR20192203.

https://webtransparency.cs.princeton.edu/no_boundaries
https://webtransparency.cs.princeton.edu/no_boundaries

No boundaries: data exfiltration by third parties embedded on web pages 235

Appendix A
Code snippets

Listing 2 Snippet of the Adthink code that inserts an in-
visible form to trigger browser autofill. The archived ver-
sion of the script can be accessed at:https://gist.github.
com/gunesacar/6de71057fc15074d94cda5c344b06cbb.

function ea() {
var a = document.createElement ("div");
a.height = "1px";
a.width = "1px";
a.style.position = " absolute ";
a.style.top = " -42px";
a.style.left = " -42px";
a.style.display = "none";
var b = document.getElementsByTagName ("body

")[0];
b || (b = document.documentElement);
b.appendChild (a);
var c = document.createElement ("form");
c.method = "POST";
c.action = "";
a.appendChild (c);
var d = document.createElement ("input");
try {

d.type = "email"
} catch (e) {

d.type = "text"
}
d.name = "email";
d.id = "pus -email";
d.required = !0;
d.autocomplete = "email";
c.appendChild (d);
d = document.createElement ("input");
d.type = " password ";
d.name = " password ";
d.id = " password ";
d.required = !0;
d.autocomplete = " password ";
c.appendChild (d);
t();
setTimeout (function () {

b.removeChild (a)
},
2500)

}

Appendix B
Bandsintown vulnerability

Some third parties use the Facebook Login feature
to authenticate users across many websites: Disqus, a
commenting widget, is a popular example. In a similar
fashion, hidden third-party trackers can use Facebook
Login to track users if they are also a first party that

users visit directly. We found that this is exactly what
the Bandsintown website16 was doing. Worse, they did
so in a way that allowed any malicious site to embed
Bandsintown’s iframe to identify its users.

At the time of measurement, Bandsintown offered
an advertising service called “Amplified”[73], which we
found to be present on many of the top music-related
sites including lyrics.com, songlyrics.com and lyricsma-
nia.com. When a Bandsintown user browsed to a web-
site that embedded Bandsintown’s Amplified advertis-
ing product, the advertising script would embed an in-
visible iframe which connected to Bandsintown’s Face-
book application using the authentication tokens estab-
lished earlier, and would the grab the user’s Facebook
ID. The iframe then passed the user ID back to the em-
bedding script.

We discovered that the iframe injected by Bandsin-
town would pass the user’s information to the embed-
ding script indiscriminately. Thus, any malicious site
could have used their iframe to identify visitors. We in-
formed Bandsintown of this vulnerability and they con-
firmed that it is now fixed [60].

Appendix C
Encoding methods and hash
algorithms used in leak detection

Hash algorithms Adler-32, BLAKE2b, BLAKE2s,
CRC-32, MD2, MD4, MD5, MurmurHash2, Mur-
murHash2 (Unsigned), MurmurHash3 (32/64/128-
bit), RipeMD-160, SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-3(224, 256, 384, 512-bit),
WHIRLPOOL.

Encodings Base16, Base32, Base58, Base64, En-
tity encoding, URL encoding (percent-encoding), yEnc,
DEFLATE, GZIP, ZLIB (RFC 1950).

References
[1] “Facebook login,” 2018. [Online]. Available: https:

//developers.facebook.com/docs/facebook-login/
[2] S. Englehardt and A. Narayanan, “Online tracking: A 1-

million-site measurement and analysis,” in ACM Conference

16 https://www.bandsintown.com/

https://gist.github.com/gunesacar/6de71057fc15074d94cda5c344b06cbb
https://gist.github.com/gunesacar/6de71057fc15074d94cda5c344b06cbb
https://developers.facebook.com/docs/facebook-login/
https://developers.facebook.com/docs/facebook-login/
https://www.bandsintown.com/

No boundaries: data exfiltration by third parties embedded on web pages 236

on Computer and Communications Security, 2016.
[3] A. Fou. (2016) Javascript trackers open security holes

| exchangewire.com. [Online]. Available: https://www.
exchangewire.com/blog/2016/05/19/%E2%80%8Bon-site-
javascript-trackers-open-gaping-security-holes/

[4] J. Weiler. (2016) 3rd party javascript management cheat
sheet - owasp. [Online]. Available: https://www.owasp.
org/index.php/3rd_Party_Javascript_Management_Cheat_
Sheet#Major_risks

[5] Mozilla, “Document.referrer - Web APIs,” https://developer.
mozilla.org/en-US/docs/Web/API/Document/referrer, ac-
cessed: 2019-12-02.

[6] J. Eisinger and E. Stark, “Referrer Policy – W3C Candi-
date Recommendation,” https://www.w3.org/TR/referrer-
policy/, 2017, accessed: 2018-02-01.

[7] B. Krishnamurthy and C. E. Wills, “On the leakage of
personally identifiable information via online social networks,”
in 2nd ACM workshop on Online social networks. ACM,
2009.

[8] ——, “Privacy leakage in mobile online social networks,”
in 3rd conference on Online social networks. USENIX
Association, 2010.

[9] B. Krishnamurthy, K. Naryshkin, and C. Wills, “Privacy
leakage vs. protection measures: the growing disconnect,” in
Proceedings of W2SP, vol. 2, 2011.

[10] J. Mayer, “Tracking the trackers: Where everybody knows your
username,” https://cyberlaw.stanford.edu/blog/2011/10/
tracking-trackers-where-everybody-knows-your-username,
2011.

[11] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes,
“Recon: Revealing and controlling pii leaks in mobile network
traffic,” in Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services.
ACM, 2016, pp. 361–374.

[12] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill, “Apps,
trackers, privacy, and regulators: A global study of the mobile
tracking ecosystem,” in Network and Distributed System
Security Symposium (NDSS). IEEE, 2018.

[13] I. Reyes, P. Wijesekera, J. Reardon, A. E. B. On, A. Razagh-
panah, N. Vallina-Rodriguez, and S. Egelman, ““Won’t some-
body think of the children?” examining COPPA compliance
at scale,” Proceedings on Privacy Enhancing Technologies,
vol. 2018, no. 3, pp. 63–83, 2018.

[14] S. Jain, M. Javed, and V. Paxson, “Towards mining latent
client identifiers from network traffic,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 2, pp. 100–114, 2016.

[15] O. Starov, P. Gill, and N. Nikiforakis, “Are you sure you
want to contact us? quantifying the leakage of pii via
website contact forms,” Proceedings on Privacy Enhancing
Technologies, vol. 2016, no. 1, pp. 20–33, 2016.

[16] O. Starov and N. Nikiforakis, “Extended tracking powers:
Measuring the privacy diffusion enabled by browser exten-
sions,” in Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 1481–1490.

[17] J. Brookman, P. Rouge, A. Alva, and C. Yeung, “Cross-
device tracking: Measurement and disclosures,” Proceedings
on Privacy Enhancing Technologies, vol. 2017, no. 2, pp.
133–148, 2017.

[18] S. Zimmeck, J. S. Li, H. Kim, S. M. Bellovin, and T. Jebara,
“A privacy analysis of cross-device tracking,” in Proceedings
of the 26th USENIX Security Symposium, 2017.

[19] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow:
Tracking information flow in javascript and its apis,” in Pro-
ceedings of the 29th Annual ACM Symposium on Applied
Computing, 2014, pp. 1663–1671.

[20] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens,
“Flowfox: a web browser with flexible and precise information
flow control,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 748–759.

[21] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes,
and N. Vallina-Rodriguez, “Bug fixes, improvements,... and
privacy leaks,” 2018.

[22] “nsILoginManager - Mozilla | MDN,” May 2020,
[Online; accessed 17. May 2020]. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/
XPCOM/Reference/Interface/nsILoginManager

[23] N. Vallina-Rodriguez, C. Kreibich, M. Allman, and V. Paxson,
“Lumen: Fine-grained visibility and control of mobile traffic
in user-space,” 2017.

[24] Electronic Frontier Foundation, “EFForg/privacybadger,”
May 2020, [Online; accessed 16. May 2020]. [Online].
Available: https://github.com/EFForg/privacybadger

[25] G. Acar, “Instrument the stackstrace for the HTTP
requests. · mozilla/OpenWPM@d659792,” October
2016, [Online; accessed 17. May 2020]. [Online].
Available: https://github.com/mozilla/OpenWPM/commit/
d659792766b940755634877cdc1e6a8267fa9eb7

[26] Mozilla, “Components.stack - Mozilla | MDN,” 2017.
[Online]. Available: https://developer.mozilla.org/en-
US/docs/Mozilla/Tech/XPCOM/Language_Bindings/
Components.stack

[27] S. Englehardt, J. Han, and A. Narayanan, “I never signed up
for this! privacy implications of email tracking,” Proceedings
on Privacy Enhancing Technologies, vol. 2018, no. 1, pp.
109–126, 2018.

[28] Bugzilla, “Stealing Firefox saved passwords,” https://bugzilla.
mozilla.org/show_bug.cgi?id=1107422.

[29] ——, “password manager + XSS = disaster,” https://
bugzilla.mozilla.org/show_bug.cgi?id=408531.

[30] “Princeton Web Census Data Release,” 2018, [Online;
accessed 9. Dec. 2019]. [Online]. Available: https://
webtransparency.cs.princeton.edu/webcensus/data-release/

[31] “Revealed: 50 million Facebook profiles harvested for
Cambridge Analytica in major data breach,” https:
//www.theguardian.com/news/2018/mar/17/cambridge-
analytica-facebook-influence-us-election, 2018, accessed:
2018.

[32] I. Facebook, “Zuckerberg Responses to Judiciary Com-
mittee Questions for the Record,” https://www.judiciary.
senate.gov/imo/media/doc/Zuckerberg%20Responses%
20to%20Judiciary%20Committee%20QFRs.pdf, 2018, online;
accessed 2019-02-29.

[33] “De-anonymizing Facebook’s app-scoped ids,” Oct 2015,
[Online; accessed 11. Apr. 2020]. [Online]. Available:
https://snarfed.org/2015-10-25_de-anonymizing-facebooks-
app-scoped-ids

[34] “Graph API Reference v6.0: User Picture - Documentation -
Facebook for Developers,” Apr 2020, [Online; accessed 11.

https://www.exchangewire.com/blog/2016/05/19/%E2%80%8Bon-site-javascript-trackers-open-gaping-security-holes/
https://www.exchangewire.com/blog/2016/05/19/%E2%80%8Bon-site-javascript-trackers-open-gaping-security-holes/
https://www.exchangewire.com/blog/2016/05/19/%E2%80%8Bon-site-javascript-trackers-open-gaping-security-holes/
https://www.owasp.org/index.php/3rd_Party_Javascript_Management_Cheat_Sheet#Major_risks
https://www.owasp.org/index.php/3rd_Party_Javascript_Management_Cheat_Sheet#Major_risks
https://www.owasp.org/index.php/3rd_Party_Javascript_Management_Cheat_Sheet#Major_risks
https://developer.mozilla.org/en-US/docs/Web/API/Document/referrer
https://developer.mozilla.org/en-US/docs/Web/API/Document/referrer
https://www.w3.org/TR/referrer-policy/
https://www.w3.org/TR/referrer-policy/
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username
https://cyberlaw.stanford.edu/blog/2011/10/tracking-trackers-where-everybody-knows-your-username
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsILoginManager
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsILoginManager
https://github.com/EFForg/privacybadger
https://github.com/mozilla/OpenWPM/commit/d659792766b940755634877cdc1e6a8267fa9eb7
https://github.com/mozilla/OpenWPM/commit/d659792766b940755634877cdc1e6a8267fa9eb7
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Language_Bindings/Components.stack
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Language_Bindings/Components.stack
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Language_Bindings/Components.stack
https://bugzilla.mozilla.org/show_bug.cgi?id=1107422
https://bugzilla.mozilla.org/show_bug.cgi?id=1107422
https://bugzilla.mozilla.org/show_bug.cgi?id=408531
https://bugzilla.mozilla.org/show_bug.cgi?id=408531
https://webtransparency.cs.princeton.edu/webcensus/data-release/
https://webtransparency.cs.princeton.edu/webcensus/data-release/
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.judiciary.senate.gov/imo/media/doc/Zuckerberg%20Responses%20to%20Judiciary%20Committee%20QFRs.pdf
https://www.judiciary.senate.gov/imo/media/doc/Zuckerberg%20Responses%20to%20Judiciary%20Committee%20QFRs.pdf
https://www.judiciary.senate.gov/imo/media/doc/Zuckerberg%20Responses%20to%20Judiciary%20Committee%20QFRs.pdf
https://snarfed.org/2015-10-25_de-anonymizing-facebooks-app-scoped-ids
https://snarfed.org/2015-10-25_de-anonymizing-facebooks-app-scoped-ids

No boundaries: data exfiltration by third parties embedded on web pages 237

Apr. 2020]. [Online]. Available: https://developers.facebook.
com/docs/graph-api/reference/user/picture

[35] W. Palant, “palant/jsdeobfuscator: ,” Dec 2017,
[Online; accessed 16. May 2020]. [Online]. Available:
https://github.com/palant/jsdeobfuscator

[36] “Social SDK Usage Distribution in the Top 1 Million Sites,”
May 2020, [Online; accessed 21. May 2020]. [Online].
Available: https://web.archive.org/web/20200507012108/
https://trends.builtwith.com/javascript

[37] “beautifulsoup4,” May 2020, [Online; accessed 17. May 2020].
[Online]. Available: https://pypi.org/project/beautifulsoup4

[38] “zlib — Compression compatible with gzip — Python 3.8.3
documentation,” May 2020, [Online; accessed 17. May 2020].
[Online]. Available: https://docs.python.org/3/library/zlib.
html

[39] FullStory, “Terms & Conditions,” https://web.archive.org/
web/20171115044316/https://www.fullstory.com/legal/
terms-and-conditions/, 2017, accessed: 2018-05-09.

[40] SessionCam, “What information do we collect for our clients?”
https://web.archive.org/web/20171115050443/https://
sessioncam.com/privacy-policy-cookies/, 2017, accessed:
2018-05-09.

[41] “Show Password,” May 2020, [Online; accessed 19. May 2020].
[Online]. Available: https://chrome.google.com/webstore/
detail/show-password/gaichhcdflnpllpkmocfcbkbacefiank

[42] “Unmask Password,” May 2020, [Online; ac-
cessed 19. May 2020]. [Online]. Available:
https://chrome.google.com/webstore/detail/unmask-
password/pmmeddaccflimcipblojlnfandenhicb?hl=en-US

[43] Chromium, “Users can be tracked via password manager,”
https://bugs.chromium.org/p/chromium/issues/detail?id=
798492.

[44] Bugzilla, “Consider making signon.autofillForms = false to be
the default,” https://bugzilla.mozilla.org/show_bug.cgi?id=
1427543.

[45] ——, “Consider imposing restrictions on tracking scripts
running in the first-party context,” https://bugzilla.mozilla.
org/show_bug.cgi?id=1601452.

[46] Apple, “About the security content of Safari 11.1,” https:
//support.apple.com/en-us/HT208695.

[47] A. Tseng, “Disable password autofill on page load,” https:
//github.com/brave/browser-laptop/issues/12489, 2018,
accessed: 2018-05-28.

[48] P. Snyder, B. Eich, and P. Jumde, “privacycg/js-membranes:
JS Isolation via Origin Labels and Membranes,” https:
//github.com/privacycg/js-membranes, [Online; accessed 12.
Mar. 2020].

[49] MonztA, “(Comment) No boundaries: Exfiltration of personal
data by session-replay scripts,” https://freedom-to-tinker.
com/2017/11/15/no-boundaries-exfiltration-of-personal-
data-by-session-replay-scripts/#comment-28428, 2017,
accessed: 2018-05-28.

[50] lukemulks, “Block ad tracking scripts used with password
managers,” https://github.com/disconnectme/disconnect-
tracking-protection/issues/36, 2018, accessed: 2018-05-28.

[51] carbureted, “Add screen tracking services, bitcoin
miners, miscellaneous third party analytics, and
move wishabi.net to content,” https://github.com/
disconnectme/disconnect-tracking-protection/commit/
09c7b279a88c8eda1ae18fe7b405e6cc315d2855, 2017, ac-

cessed: 2018-05-28.
[52] R. Brandom, “Ad targeters are pulling data from your

browser’s password manager,” 2017. [Online]. Available:
https://www.theverge.com/2017/12/30/16829804/browser-
password-manager-adthink-princeton-research

[53] “Diff of the api.behavioralengine.com/scripts/be-init.js script
archived by the Wayback Machine on 28 December
2017 and 3 January 2018.” Jun 2020, [Online; accessed
4. Jun. 2020]. [Online]. Available: https://gist.github.
com/gunesacar/11883c40b4a2def7cee0f5dd757787d6#file-
onaudience_behavioral_engine-diff-L95-L134

[54] S. Englehardt, G. Acar, and A. Narayanan, “No boundaries
for credentials: New password leaks to Mixpanel and Session
Replay Companies,” https://freedom-to-tinker.com/2018/
02/26/no-boundaries-for-credentials-password-leaks-to-
mixpanel-and-session-replay-companies/, 2018.

[55] “Facebook Login Changes to Address Abuse,” Apr 2018,
[Online; accessed 9. Dec. 2019]. [Online]. Available:
https://developers.facebook.com/blog/post/2018/04/19/
facebook-login-changes-address-abuse

[56] “Over 400 of the World’s Most Popular Websites Record
Your Every Keystroke, Princeton Researchers Find,” Nov
2017, [Online; accessed 9. Dec. 2019]. [Online]. Available:
https://www.vice.com/en_us/article/59yexk/princeton-
study-session-replay-scripts-tracking-you

[57] N. Tiku, “The Dark Side of ’Replay Sessions’ That
Record Your Every Move Online,” Nov 2017. [Online].
Available: https://www.wired.com/story/the-dark-side-of-
replay-sessions-that-record-your-every-move-online

[58] S. Englehardt, G. Acar, and A. Narayanan, “Website operators
are in the dark about privacy violations by third-party scripts,”
https://freedom-to-tinker.com/2018/01/12/website-
operators-are-in-the-dark-about-privacy-violations-by-third-
party-scripts/, 2018.

[59] G. Acar, S. Englehardt, and A. Narayanan, “No boundaries
for user identities: Web trackers exploit browser login
managers,” https://freedom-to-tinker.com/2017/12/27/no-
boundaries-for-user-identities-web-trackers-exploit-browser-
login-managers/, 2017.

[60] S. Englehardt, G. Acar, and A. Narayanan, “No boundaries
for Facebook data: third-party trackers abuse Facebook
Login,” https://freedom-to-tinker.com/2018/04/18/no-
boundaries-for-facebook-data-third-party-trackers-abuse-
facebook-login/, 2018.

[61] ——, “No boundaries: Exfiltration of personal data by
session-replay scripts,” https://freedom-to-tinker.com/
2017/11/15/no-boundaries-exfiltration-of-personal-data-by-
session-replay-scripts/, 2017.

[62] Apple Inc., “CVE-2018-4137,” https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-4137, 2018, accessed:
2018-05-28.

[63] FullStory, “Digital Experience Analytics, Session Replay,
Heatmaps | FullStory,” Jan 2019, [Online; accessed 28.
Feb. 2020]. [Online]. Available: https://www.fullstory.com/
features/session-replay

[64] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay,
“Safe active content in sanitized javascript,” Google, Inc.,
Tech. Rep, 2008.

[65] L. A. Meyerovich and B. Livshits, “Conscript: Specifying and
enforcing fine-grained security policies for javascript in the

https://developers.facebook.com/docs/graph-api/reference/user/picture
https://developers.facebook.com/docs/graph-api/reference/user/picture
https://github.com/palant/jsdeobfuscator
https://web.archive.org/web/20200507012108/https://trends.builtwith.com/javascript
https://web.archive.org/web/20200507012108/https://trends.builtwith.com/javascript
https://pypi.org/project/beautifulsoup4
https://docs.python.org/3/library/zlib.html
https://docs.python.org/3/library/zlib.html
https://web.archive.org/web/20171115044316/https://www.fullstory.com/legal/terms-and-conditions/
https://web.archive.org/web/20171115044316/https://www.fullstory.com/legal/terms-and-conditions/
https://web.archive.org/web/20171115044316/https://www.fullstory.com/legal/terms-and-conditions/
https://web.archive.org/web/20171115050443/https://sessioncam.com/privacy-policy-cookies/
https://web.archive.org/web/20171115050443/https://sessioncam.com/privacy-policy-cookies/
https://chrome.google.com/webstore/detail/show-password/gaichhcdflnpllpkmocfcbkbacefiank
https://chrome.google.com/webstore/detail/show-password/gaichhcdflnpllpkmocfcbkbacefiank
https://chrome.google.com/webstore/detail/unmask-password/pmmeddaccflimcipblojlnfandenhicb?hl=en-US
https://chrome.google.com/webstore/detail/unmask-password/pmmeddaccflimcipblojlnfandenhicb?hl=en-US
https://bugs.chromium.org/p/chromium/issues/detail?id=798492
https://bugs.chromium.org/p/chromium/issues/detail?id=798492
https://bugzilla.mozilla.org/show_bug.cgi?id=1427543
https://bugzilla.mozilla.org/show_bug.cgi?id=1427543
https://bugzilla.mozilla.org/show_bug.cgi?id=1601452
https://bugzilla.mozilla.org/show_bug.cgi?id=1601452
https://support.apple.com/en-us/HT208695
https://support.apple.com/en-us/HT208695
https://github.com/brave/browser-laptop/issues/12489
https://github.com/brave/browser-laptop/issues/12489
https://github.com/privacycg/js-membranes
https://github.com/privacycg/js-membranes
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/#comment-28428
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/#comment-28428
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/#comment-28428
https://github.com/disconnectme/disconnect-tracking-protection/issues/36
https://github.com/disconnectme/disconnect-tracking-protection/issues/36
https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855
https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855
https://github.com/disconnectme/disconnect-tracking-protection/commit/09c7b279a88c8eda1ae18fe7b405e6cc315d2855
https://www.theverge.com/2017/12/30/16829804/browser-password-manager-adthink-princeton-research
https://www.theverge.com/2017/12/30/16829804/browser-password-manager-adthink-princeton-research
https://gist.github.com/gunesacar/11883c40b4a2def7cee0f5dd757787d6#file-onaudience_behavioral_engine-diff-L95-L134
https://gist.github.com/gunesacar/11883c40b4a2def7cee0f5dd757787d6#file-onaudience_behavioral_engine-diff-L95-L134
https://gist.github.com/gunesacar/11883c40b4a2def7cee0f5dd757787d6#file-onaudience_behavioral_engine-diff-L95-L134
https://freedom-to-tinker.com/2018/02/26/no-boundaries-for-credentials-password-leaks-to-mixpanel-and-session-replay-companies/
https://freedom-to-tinker.com/2018/02/26/no-boundaries-for-credentials-password-leaks-to-mixpanel-and-session-replay-companies/
https://freedom-to-tinker.com/2018/02/26/no-boundaries-for-credentials-password-leaks-to-mixpanel-and-session-replay-companies/
https://developers.facebook.com/blog/post/2018/04/19/facebook-login-changes-address-abuse
https://developers.facebook.com/blog/post/2018/04/19/facebook-login-changes-address-abuse
https://www.vice.com/en_us/article/59yexk/princeton-study-session-replay-scripts-tracking-you
https://www.vice.com/en_us/article/59yexk/princeton-study-session-replay-scripts-tracking-you
https://www.wired.com/story/the-dark-side-of-replay-sessions-that-record-your-every-move-online
https://www.wired.com/story/the-dark-side-of-replay-sessions-that-record-your-every-move-online
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2018/04/18/no-boundaries-for-facebook-data-third-party-trackers-abuse-facebook-login/
https://freedom-to-tinker.com/2018/04/18/no-boundaries-for-facebook-data-third-party-trackers-abuse-facebook-login/
https://freedom-to-tinker.com/2018/04/18/no-boundaries-for-facebook-data-third-party-trackers-abuse-facebook-login/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4137
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4137
https://www.fullstory.com/features/session-replay
https://www.fullstory.com/features/session-replay

No boundaries: data exfiltration by third parties embedded on web pages 238

browser,” in 2010 IEEE Symposium on Security and Privacy.
IEEE, 2010, pp. 481–496.

[66] “GDPR (General Data Protection Regulation), FullStory, and
You,” Jan 2020, [Online; accessed 13. Apr. 2020]. [Online].
Available: https://www.fullstory.com/resources/gdpr-and-
fullstory

[67] “General Data Protection Regulation (GDPR),” Apr 2020,
[Online; accessed 13. Apr. 2020]. [Online]. Available:
https://www.clicktale.com/company/data-privacy/general-
data-protection-regulation-gdpr

[68] “YANDEX.METRICA DATA PROCESSING AGREEMENT
(DPA) - Legal documents. Help,” Apr 2020, [Online;
accessed 13. Apr. 2020]. [Online]. Available: https:
//yandex.com/legal/metrica_agreement

[69] “Add-on SDK - Archive of obsolete content | MDN,” Feb
2020, [Online; accessed 26. Feb. 2020]. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Archive/Add-
ons/Add-on_SDK

[70] Mozilla, “Restore instrumentation regarding what code is
causing requests · Issue #352 · mozilla/OpenWPM,” Feb
2020, [Online; accessed 26. Feb. 2020]. [Online]. Available:
https://github.com/mozilla/OpenWPM/issues/352

[71] D. Zeber, S. Bird, C. Oliveira, W. Rudametkin, I. Segall,
F. Wollsén, and M. Lopatka, “The representativeness of
automated web crawls as a surrogate for human browsing,”
in The Web Conference, 2020.

[72] S. S. Ahmad, M. D. Dar, M. F. Zaffar, N. Vallina-Rodriguez,
and R. Nithyanand, “Apophanies or epiphanies? how crawlers
impact our understanding of the web,” 2020.

[73] “Bandsintown Amplified,” 2019, [Online; accessed 10. Dec.
2019]. [Online]. Available: https://publishers.bandsintown.
com

https://www.fullstory.com/resources/gdpr-and-fullstory
https://www.fullstory.com/resources/gdpr-and-fullstory
https://www.clicktale.com/company/data-privacy/general-data-protection-regulation-gdpr
https://www.clicktale.com/company/data-privacy/general-data-protection-regulation-gdpr
https://yandex.com/legal/metrica_agreement
https://yandex.com/legal/metrica_agreement
https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Add-on_SDK
https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Add-on_SDK
https://github.com/mozilla/OpenWPM/issues/352
https://publishers.bandsintown.com
https://publishers.bandsintown.com

	No boundaries: data exfiltration by third parties embedded on web pages
	1 Introduction
	2 Background and related work
	3 Methods
	3.1 Measurement configuration
	3.2 The bait technique
	3.3 Instrumentation
	3.4 Detecting and attributing data leakage

	4 Login manager misuse
	5 Social data exfiltration
	6 Whole-DOM exfiltration
	6.1 Case study: the ineffectiveness of session replay redaction tools

	7 A retrospective look
	7.1 Review of responses to our findings
	7.2 Root causes of failures
	7.3 Two potential paths forward

	8 Limitations
	9 Conclusion
	10 Code and data
	A Code snippets
	B Bandsintown vulnerability
	C Encoding methods and hash algorithms used in leak detection

