$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2020 (4):239-254

Chen Chen*, Anrin Chakraborti, and Radu Sion

INFUSE: Invisible plausibly-deniable file system

for NAND flash

Abstract: Protecting sensitive data stored on local stor-
age devices e.g., laptops, tablets etc. is essential for pri-
vacy. When adversaries are powerful enough to coerce
users to reveal encryption keys/passwords, encryption
alone becomes insufficient for data protection. Addi-
tional mechanisms are required to hide the very pres-
ence of sensitive data.

Plausibly deniable storage systems (PDS) are designed
to defend against such powerful adversaries. Plausible
deniability allows a user to deny the existence of cer-
tain stored data even when an adversary has access to
the storage medium. However, existing plausible denia-
bility solutions leave users at the mercy of adversaries
suspicious of their very use. Indeed, it may be difficult
to justify the use of a plausible deniability system while
claiming that no sensitive data is being hidden.

This work introduces INFUSE, a plausibly-deniable file
system that hides not only contents but also the ev-
idence that a particular system is being used to hide
data. INFUSE is “invisible” (identical layout with stan-
dard file system), provides redundancy, handles over-
writes, survives data loss, and is secure in the presence
of multi-snapshot adversaries. INFUSE is efficient. Pub-
lic data operations are orders of magnitude faster than
existing multi-snapshot resilient PD systems, and only
15% slower than a standard non-PD baseline, and hid-
den data operations perform comparably to existing sys-
tems.

DOI 10.2478/popets-2020-0071
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

1 Introduction

Storage technology has advanced rapidly in recent years.
This has resulted in users storing significant amounts of

*Corresponding Author: Chen Chen: Stony Brook Uni-
versity, E-mail: chen18@Qcs.stonybrook.edu

Anrin Chakraborti: Stony Brook University, E-mail: an-
chakrabort@cs.stonybrook.edu

Radu Sion: Stony Brook University, E-mail:
sion@cs.stonybrook.edu

data, including sensitive information, e.g., credit card
details, travel documents etc. on personal storage de-
vices. It is essential to protect this information from
unauthorized disclosure. There are numerous examples
where stolen unprotected devices have led to privacy
breaches of catastrophic proportions [5, 6].

Full Disk Encryption (FDE) is usually the first line
of defense. However, encryption is not enough to protect
against powerful adversaries that can coerce users to
hand over their decryption keys, passwords [9].

In practice, protecting against such powerful ad-
versaries is essential due to increasing instances of
intrusion by unfriendly powerful nation state adver-
saries [15, 21]. This is sometimes a matter of life and
death [23] as documented in numerous cases where in-
formation had to be transferred through checkpoints
manned by hostile adversaries. In a notable example,
the human rights group Network for Human Rights
Documentation-Burma (ND-Burma) carried data prov-
ing hundreds of thousands of human rights violations
out of the country on mobile devices, risking exposure
at checkpoints and border crossings [23]. Similarly in
2012, a videographer smuggled evidence of human rights
violations out of Syria by hiding a micro-SD card in a
wound on his arm [21], again risking his life.

Plausibly-deniable storage systems (PDS) allow
users to to plausibly deny the existence of certain stored
data even when an adversary has access to the storage
medium. This is a key tool in the fight against pow-
erful coercive adversaries and is vital for human rights
activists, whistleblowers in oppressive regimes, govern-
ment agents, law-enforcement officials etc.

An example of a PDS is the successful, yet unfor-
tunately now-defunct TrueCrypt [8]. TrueCrypt divides
a disk into multiple “password-protected” volumes and
allows some of these volumes to be “hidden” in order to
store sensitive data. Password-derived encryption keys
are used to encrypt each such volume. Upon coercion,
a user can plausibly deny the existence of a hidden vol-
ume by simply providing a valid password for one of
the non-hidden ones, thus showing a plausible use for
the disk without revealing the hidden data.

However, TrueCrypt is not secure against adver-
saries that can access the user’s disk at multiple points
in time ("multi-snapshot"). Most realistic adversaries

[®) ov-ne-np |

INFUSE: Invisible plausibly-deniable file system for NAND flash = 240

are ultimately multi-snapshot. Crossing a border twice,
or having an oppressive government collude with a ho-
tel maid and subsequently a border guard, provides easy
and cheap multi-snapshot capabilities to any adversary.
It is obvious that the security of a plausible deniable
system should be resilient to and not break down com-
pletely in the persence of such realistic externalities.

To protect against multi-snapshot adversaries, sev-
eral recent systems [12, 14, 15, 23] have proposed mech-
anisms that plausibly “explain” all device state changes
via public data operations, in effect protecting access
patterns to hidden data.

Yet, all existing PDS feature a critical shortcoming
that renders them insecure in practice and may subject
their users to “rubberhose” attacks: the system is un-
able to hide the fact that a special storage mechanism
is being used which potentially allows the user to hide
data. In particular, the presence of system-specific meta-
data e.g, special indexing structures stored on disk to
track hidden information [12, 14, 15] or other design ar-
tifacts such as non-standard on-disk data layout [23],
ultimately reveal to the adversary that the user is using
a plausible deniable storage system. However, the use of
a PDS can in itself raise suspicion — since why would one
use such a storage system especially if it is slower than
existing standard systems — unless there is something to
be hidden.
Motivation. To mitigate this obvious drawback, we
explore a new class of plausibly-deniable storage sys-
tems, called invisible PDS, which not only hides data
but also all artifacts and telltale signs of the plausible
deniability mechanism — in effect this does not allow the
adversary to learn that a plausible deniability mecha-
nism is in use for potentially hiding data.

This paper presents the design and implementation
of INFUSE, a full-fledged invisible plausibly-deniable
file system for flash devices. INFUSE enables a user to
store public data and a small amount of hidden data
in the same storage disk. Importantly, the on-disk data
storage and access mechanisms in INFUSE do not reveal
to a multi-snapshot adversary that a PDS is being used
to potentially hide data. This is achieved by ensuring
that INFUSE-related on-disk data structures, metadata
and I/0 look identical to a standard file system without
plausible deniability — on coercion the user can simply
claim that a standard file system is being used to store
public data.

INFUSE is based on several key insights —

Hiding Side-
Channels. The first and foremost requirement of
a PDS is to ensure that all changes to the disk be-

Information in Hardware

tween snapshots can be attributed to only public data
state changes. Storing and performing operations on
hidden data while only making observable changes to
public data between snapshots is challenging, since it
requires completely hiding the presence data in informa-
tion channels that are not observable to the adversary.
From an information theoretic point of view, one way
to achieve this is to store hidden information in an
out-of-band information channel.

To this end, in INFUSE, hidden data and meta-
data are completely stored in flash-based hardware side
channels [25, 26]. These side channels operate by ma-
nipulating parameters such as program time, threshold
voltage etc. of a user-chosen group of cells to store addi-
tional (hidden) information. In INFUSE we leverage the
threshold voltage side channel [26], which exploits indis-
tinguishability between operating a flash cell in single
cell (SLC) mode and multi-cell (MLC) mode.
Securely Managing Co-resident Public and Hid-
den Data. Hiding data in out-of-band channels is not
enough — if the presence of hidden data data affects pub-
lic data, metadata etc. stored on-disk, or the data access
mechanisms and bookkeeping operations e.g., garbage
collection appear non-standard to the adversary, then
this would clearly be a telltale sign. To achieve this IN-
FUSE smartly re-designs mechanisms for typical file sys-
tem functionalities e..g., page allocation, garbage collec-
tion etc. while ensuring that hidden data management
does not affect on-disk public data:

1. Public data and metadata is not affected by the
presence of hidden data. This also entails ensuring
that storing and operating on hidden data does not
compromise integrity of public data.

2. The public data access mechanisms are not affected
by the use of the side channel.

3. Hidden data in the side channel is not destroyed by
public data operations or other bookkeeping opera-
tions e.g., garbage collection.

Achieving Compatibility With a Standard File
System. For invisibility, we need to ensure that all
INFUSE-specific on-disk metadata and design artifacts
resemble a standard file system — on coercion the user
can claim that a standard file system is being used to
store public data.

To achieve this, INFUSE incorporates design fea-
tures from YAFFS [7], a widely deployed Linux file sys-
tem for flash devices. INFUSE partitions (even in the
presence of hidden data) have identical on-disk layouts
to YAFFS partitions. Also, all bookkeeping operations

INFUSE: Invisible plausibly-deniable file system for NAND flash = 241

and data access patterns in INFUSE INFUSE look iden-
tical to YAFFS. This also allows INFUSE partitions to
be mounted with YAFFS without any modifications.
Specially, the same disk partition can either be mounted
with INFUSE to reveal both public and hidden data
stored in the side channel, or with YAFFS (when co-
erced by an adversary) to reveal only public data.

INFUSE has been implemented and evaluated on
simulated flash chips, which support manipulating
threshold voltages to desired values for storing addi-
tional bits per cell. Public data operations in INFUSE
are less than 15% slower than a standard non-PDS base-
line, which are faster than existing plausible deniabil-
ity systems against multi-snapshot adversaries. Hidden
data operations are of the same order of magnitude as
those in existing plausible deniability systems.

2 Related Work

Plausibly-deniable encryption (PDE) was first explored
by Canetti et al. [13]. PDE allows a given ciphertext to
be decrypted into multiple plaintexts, by using different
keys. The user reveals the decoy key to the adversary
when coerced and plausibly hides the actual content of
the message. Some examples of PDE enabled systems
are [11, 18]. Unfortunately, PDE schemes are usually
practical for only short messages and not very suitable
for data storage.

For storage devices, Anderson et al. explored the
idea of steganographic file systems in [10]. McDonald
and Kuhn [20] implemented a steganographic file system
for Linux on the basis of the solution proposed in [10].
Pang et al. [22] improved on the previous constructions
by avoiding hash collisions and more efficient storage.

The aforementioned steganographic filesystem only
defend against a single-snapshot adversary. Han et
al. [17] designed a Dummy-Relocatable Steganographic
(DRSteg) filesystem where multiple users can share the
same hidden and runtime relocation of data ensures de-
niability against a multi-snapshot adversary. However,
this does not scale well to practical scenarios. The only
steganographic file systems that protects against multi-
snapshot adversaries and scales well in practice is DEFY
[23], a file system for flash devices that offers plausible
deniability by leveraging secure deletion of data.

At device-level, disk encryption tools such as True-
crypt [8] and Rubberhose [18] provide deniability but
cannot protect against a multi-snapshot adversary.
Mobiflage [24] also provides PD for mobile devices

Application Layer

j/\[
N/
System Layer

(Block FS) C NAND Flash FS)
C Device Mapper/FTL)
jA[
N
Physical Device Layer

(Hard Disk) C NAND Flash)

Fig. 1. Architecture of a storage system. The adversary consid-
ered in this paper targets the physical device layer for user's sensi-

tive data.

against a single-snapshot adversary. One way to achieve
plausible deniability against multi-snapshot adversaries
at the device level is to use an oblivious RAM (ORAM)
[12, 14]. However, due to the overheads introduced by
the ORAM (mainly due to randomization of access pat-
terns), these solutions are not practical. Recently, Chen
et al. [15] introduced a locality-preserving plausible de-
niability solution named PD-DM which eliminates the
randomness introduced by ORAM-based solutions and
significantly increases overall throughput.

3 Model

The data stored on
storage devices is usually managed by system software,

Plausibly-Deniable Storage.

e.g. a file system. A PD storage system comprises of
both the software and the underlying hardware (Figure
1), and provides stronger protection for sensitive data
than disk encryption. In INFUSE, the goal is to elim-
inate all evidence that a PD storage system is being
used to hide data. Thus, this reduces suspicion and the
likelihood of “rubberhose attacks".

3.1 Threat Model

In this paper, we consider adversaries that only probe
the physical device (Figure 1) for sensitive data. This

INFUSE: Invisible plausibly-deniable file system for NAND flash = 242

corresponds to realistic scenarios e.g., officials scanning
devices at border crossings. As with previous work, the
running state of the device and the contents of the
DRAM/caches etc. cannot be observed. This is a rea-
sonable assumption since the multi-snapshot adversary
can access the device only after an unmount when the
in-memory contents will be cleared. Thus, protecting
against a runtime adversary e.g., an adversary that can
install malware/spyware to track user accesses requires
stronger, complimentary protection mechanisms.
On-Event Multi-Snapshot Adversary. The typical
PD storage adversary is considered to be computation-
ally bounded and “rational” [12, 14]. The amount of
information that an adversary can learn about the stor-
age system is related to the frequency of observation.
The adversarial model considered in this paper has two
distinct properties:

— Multi-snapshot: The adversary can inspect the
user’s device multiple times and compare device
“snapshots”. The adversary can also perform foren-
sics or statistical tests etc., e.g., by probing the
threshold voltage levels of individual NAND flash
cells.

— On-event: The adversary can access the device only
after specific “events” such as disk “unmounts”,
graceful power-downs etc. This is a reasonable as-
sumption since the multi-snapshot adversary will be
able to obtain the device only after the user hands
over the device e.g., at border crossings.

As with all existing PD solutions, INFUSE does not
protect against denial of service attacks. Specifically, in
INFUSE, the adversary can overwrite all data on disk
thus destroying hidden data (if any).

3.2 Solution Space

A PD storage system can provide different levels of deni-
ability when coerced by an adversary. This categorizes
the solution space based on the components that the
solution effectively “hides” from an adversary:

— Hiding data contents: Typically, all PD storage sys-
tems hide contents of sensitive data by encrypting
it and claiming that the data is either random data
or remnants of deleted public data.

— Hiding access patterns: Hiding contents is not
enough to explain accesses to hidden data between
snapshots. This is because random data should not

change due to only public accesses. As shown in
[12, 14], achieving plausible deniability against a
multi-snapshot adversary also requires hiding ac-
cesses patterns.

— Hiding PD mechanism: Hiding the presence of any
PD-related component in the system from adver-
saries is critical in real life. Although we can find
various excuses for using a PD system, e.g. for full
disk encryption, it is still suspicious that a storage
system contains PD-related components. In other
words, merely the use of a PD storage system is sus-
picious enough such that adversaries will not stop
asking for more encryption keys.

Table 1 compares existing PD storage solutions
based on their security guarantees. As listed, none of
the existing works hide the existence of a PD solution
from a multi-snapshot adversary. INFUSE is the first
solution to provide deniability of all the three aspects
listed above against multi-snapshot adversaries, and is
thus more secure for real world deployment.

4 Building Blocks

4.1 NAND Flash Device

Unlike the traditional magnetic disk that stores data
by magnetizing the ferromagnetic material on a disk,
NAND flash stores data with a large array of floating-
gate cells. Cells constitute the basic unit of I/O in a
NAND flash, while read and writes are performed at
page-level granularity. However, a block-level erase op-
eration is always required before writing a page. Flash
memory can only withstand a finite number of program-
erase (P/E) cycles.

Bit Storage. In NAND flash memory, a cell stores
one or more bits based on the presence or absence of
charge — one bit per cell for a single-level cell (SLC), and
two or more bits per cell for a multi-level cell (MLC)).
In particular, a specific threshold voltage is required to
be applied to the control gate of each cell to make the
transistor conductive. Charging (programming) a cell
increases the threshold voltage, while “erasing” a cell
removes the charge from the floating-gate and thus de-
creases the threshold voltage instead.

Reading bits stored in a cell is done by comparing
the threshold voltage with certain predefined reference
voltage levels — 2 — 1 levels for a cell storing k bits. In-
stead of programming the threshold voltage to specific

INFUSE: Invisible plausibly-deniable file system for NAND flash = 243

Year of publication | Presence of data | Access pattern of data | PD-related component | Multi-snapshot
Datalair [14] 2017 Yes Yes No Yes
DEFY [23] 2015 Yes No No Yes
HIVE [12] 2014 Yes Yes No Yes
TrueCrypt [8] 2004 Yes No No No
StegFS [20] 1999 Yes No Yes No
StegFS [13] 1997 Yes No No No
INFUSE — Yes Yes Yes Yes

Table 1. Comparison of existing PD solutions and INFUSE about security level.

values, bits are stored in cells by controlling the thresh-
old voltage in certain voltage windows. By changing the
threshold voltage of a cell or the reference voltage levels,
the bit(s) stored in a cell can be interpreted differently.
For example, an SLC with threshold voltage Vi, = 3V
will be interpreted as bit “1” when the reference voltage
level is V. = 3.5V. And its logical value will become “0”
if the reference voltage level is changed to V,, = 2.5V or
the threshold voltage is increased to Vy;, = 4V.

With advances in technology, NAND cells can be
programmed more accurately, resulting in more fine-
grained threshold voltages. In fact, some recent flash
controllers are able to operate the same cell in both SLC
and MLC mode. This allows the design of a flexible flash
file system that performs comparably with SLC devices
and has better storage capabilities [19].

Hiding Bits in Flash Cells. The ability to program
and operate the same cell as an SLC or an MLC provides
an opportunity to hide bits in a flash device — multiple
bits can be stored in a particular cell using an “MLC-
style” encoding but on inspection claim that the cell is
in SLC mode and stores only a single bit. Obviously,
the prerequisite in this case is the SLC mode of op-
eration should be indistinguishable from the MLC-style
mode with respect to the variable parameters of the cell,
e.g., threshold voltage etc. In particular, storing hidden
bits in NAND flash cells may result in modification of
threshold voltages in the respective cells. Fortunately,
the inherent variability of threshold voltages in NAND
flash memories can effectively “cloak” these variations.

In particular, due to variations during the manu-
facturing process, all cells storing the same logical bit
in a flash device will not have the exact same thresh-
old voltage. Instead, the threshold voltage varies among
cells in a single page as well as across pages. This means
that threshold voltage levels in blocks always have
manufacturing-related noise that are unpredictable.

As a workaround, flash devices are designed to toler-
ate some noise while interpreting the threshold voltage
in a cell as bits. Thus, it is possible to explain the bias
of threshold voltages resulting from extra bits stored in
a cell as unavoidable noise. Of course, the bias cannot
exceed the scope of variation.

Zuck et al. [26] use this idea to hide bits in NAND
flash devices by manipulating the threshold voltage of
randomly chosen cells. They propose VT-HI and exper-
imentally verify that a device with hidden bits appears
indistinguishable from a device without hidden bits. As
a result, by simply probing the NAND flash device, an
adversary will not be able to identify how many bits are
actually stored in each cell.

4.2 YAFFS

YAFFS [7] is an open-source highly portable and robust
log-structured flash file system. It typically outperforms
most alternatives [3] and was used as the default file sys-
tem in Android before 2011, in addition to many other
systems. The unit of read/write is called a chunk in
YAFFS, which usually corresponds to a page in NAND
flash hardware. Each page contains an OOB (out-of-
band) area, which can be used to store the related ECC
and some other meta information for a chunk. Every-
thing in YAFFS is an object identified by a unique in-
teger object ID. Objects constitute regular data files,
directories, hard links, symbolic links etc.

There are two modes: YAFFS1 and YAFFS2. The
main difference lies in two aspects. First, YAFFS1 sup-
ports page size of less than 1KB while YAFFS2 allows
larger pages. Second, YAFFS1 deletes a chunk by over-
writing its deletion marker while YAFFS2 doesn’t need
any overwrite and only writes sequentially. The rest
of this paper refers only to YAFFS2 unless otherwise
stated as it is more widely used.

INFUSE

YAFFS writes data in the form of a se-
quential log, and the entry of the log is a chunk. This

Structures.

inherently spreads out the wear. Chunks are written in
strict order in one block, and blocks are assigned with
monotonically increasing sequence numbers at writing
time. There are two types of chunk in YAFFS: data
chunks and object headers. Each chunk has tags asso-
ciated with it. The tags comprise several fields such as
ObjectID, ChunkID and SequenceNumber. The tags indi-
cate — i) which object a chunk belongs to, ii) where a
chunk is within a file, and iii) which chunk is the current
one.

Each object in YAFFS has an object header which
is a descriptor for the object. It contains object details
such as the identifier for the parent directory, the ob-
ject name etc. Data file objects also include a few data
chunks. When a data chunk is updated, the correspond-
ing object header is updated at the same time. With
object headers and tags, no file allocation tables or sim-
ilar structures are needed and the state of file system
can be recreated regardless of the placement of chunks
in NAND. It improves the performance and keeps the
robustness of the file system.

In addition to chunks on the device, YAFFS also

maintains several in-memory data structures which
store information about blocks, objects, file structures,
directory structures etc. This improves the system per-
formance dramatically as metadata accesses can be per-
formed with minimum latency.
Garbage Collection. As a log-structured file system,
YAFFS performs chunk updates out-of-place. Thus, the
storage space is used up gradually since a page can not
be overwritten before the block it belongs to is erased.
To overcome this, YAFFS tracks outdated pages and
erases them accordingly in block granularity to reclaim
space. This process, called garbage collection, copies
useful chunks in one block to somewhere else and erasing
the block for future use.

There are two heuristic ways to determine which
block will be garbage collected next in YAFFS: pas-
sive and aggressive garbage collection. Passive garbage
collection happens when there are still enough erased
blocks available. In this case, only blocks with very few
chunks in use will be garbage collected to minimize data
copies. The whole process can also be spread over many
garbage collection cycles to reduce load and improve
system responsiveness. Aggressive garbage collection is
performed when the available erased blocks are fewer
than a particular threshold. In this case, the “dirtiest”
block has to be collected during one garbage collection

. Invisible plausibly-deniable file system for NAND flash = 244

cycle regardless of the number of chunks in use in that
block.

Mounting YAFFS. During a mount, YAFFS scans
the entire partition unless a previous checkpoint is avail-
able. Generally speaking, the system performs a pre-
scan followed by a backwards-scan. A pre-scan reads
sequence numbers for all blocks and then sorts them
chronologically. Then the tags of all chunks are read
in reverse chronological order to rebuild the in-memory
data structures in the backwards-scan stage. A check-
point mechanism can speed up mounting where a check-
point records the YAFFS runtime state in a few blocks
on the disk during an unmount of a sync. YAFFS
searches for the most recent checkpoint and rebuilds the
file system state based on it during subsequent mounts.

5 Challenges

As discussed above (Section 4.1) NAND flash devices
provide additional “out of band” information encoding
opportunities. It is feasible to undetectably manipulate
threshold voltage levels of randomly selected flash cells
to encode additional bits at the physical level [26]. The
resulting set of variations in cell voltages is indistin-
guishable from random noise to an adversary that does
not know the exact locations of manipulated cells.

It is important however to manage any such hidden
bits securely through upper layers (e.g., file systems)
with careful consideration to avoid leaking information
through inter-layer interactions or from any metadata.

It is the object of this work to take this basic cell-
level encoding mechanism and build a file system that
is “invisible” (identical layout with standard file sys-
tem) and efficient, provides redundancy, handles over-
writes, survives data loss, and is secure in the presence
of multi-snapshot adversaries. This is non-trivial and
faces a number of challenges which we discuss in the
following.

— Hiding the hidden bit-embedding process: Even if
the inherent variation in threshold voltages protects
hidden bits, for a usable file system solution it is es-
sential that the process followed to “embed” hidden
bits in cells is protected from the adversary.
INFUSE hidden bits are stored at randomly se-
lected locations in a block, ensuring that changes
in threshold voltage distribution is distributed uni-
formly across the device data and an adversary can-
not locate “hot patches” — a specific group of cells

INFUSE

with a notably high density of hidden bits. Hid-
den bits in one physical block are organized as vir-
tual hidden pages and written at page granularity.
The increase of cell voltage that an on-event multi-
snapshot adversary can observe is always the result
of both public bits programming and hidden bits
programming, which can always be explained as a
result of writing public bits. (More details in Section
6).

Hiding file system metadata: To track updates to
data, file systems typically store additional meta-
data (directory trees, inodes, time stamps etc.). To
ensure plausible deniability, more metadata may be
required. Metadata for hidden files cannot be visible
to the adversary in a PD file system.

INFUSE manages metadata by storing chunk-
specific tags along with the chunk itself (as in
YAFFS), and uses in-memory directory-structures.
For plausible deniability, the tags can be easily hid-
den in the same way as the chunks themselves, while
the in-memory data structures are not accessible to
multi-snapshot adversaries.

Decoupling file system operations from hidden data:
Except for I/O on public data, flash-specific file
systems also preferably perform additional essential
bookkeeping operations such as garbage collection.
These operations should not depend on the amoun-
t/content of hidden data.

INFUSE ensures that garbage collection is not af-
fected by the presence of hidden data. Specifically,
the choice of garbage collected blocks is unrelated to
the hidden files that use it. Hidden data is relocated
during garbage collection similar to public data in
the collected pages.

Ensuring hidden data integrity: Hidden bits are
stored in the same locations with public bits using
the cell-level bit-embedding mechanism. As the file
system operations are decoupled from hidden data,
we must carefully incorporate mechanisms (without
sacrificing security) to avoid hidden data loss due to
operations to public data.

INFUSE ensures this by including margin hidden
pages and data duplicates. Margin hidden pages
avoid hidden data loss during garbage collection
while data duplicates prevent hidden data loss after
mounting the device as YAFFS.

Managing Publicly-Visible Software Components:
Although, a multi-snapshot adversary typically only
has access to the storage device, in certain cases, it
may be the case that the adversary also inspects the
installed software. In that case, the presence of the

. Invisible plausibly-deniable file system for NAND flash = 245

INFUSE code in the system software stack will ob-
viously leak that a special file system is being used
to manage hidden data.

This is why, to ensure privacy, we design INFUSE in
such a way that the only change to the kernel soft-
ware is the addition of the INFUSE kernel module,
which can be inserted and removed on demand. The
user should uninstall and remove the module and
traces of its installation when there is a possibility of
encountering a coercive adversary e.g., when cross-
ing borders. Note that even without the INFUSE
module, the public data is perfectly accessible as a
standard YAFF'S partition.

6 INFUSE: Detailed Design

INFUSE is a NAND flash file system supporting two
security levels: public and hidden. The files that can
be disclosed to adversaries are stored as public files,
while the files that need to be protected from adver-
saries are stored as hidden files. Hidden files are stored
using the bit-embedding technique described in Section
4.1. Specifically, hidden bits are encoded in a tuning of
the threshold voltage of a cell containing public data.
As we discuss later, over time, for a given addressable
hidden bit, this public cover data can change (due to
garbage collection) and the bit may end up elsewhere.

INFUSE is designed based on YAFFS, an open-
source file system specifically designed for raw NAND
and NOR flash and widely used in embedded systems.
Similar to YAFFS, INFUSE is also a log-structured file
system. Two logs are maintained in INFUSE for the two
security levels respectively. Files are stored as objects on
the device, similar to YAFFS. Public files are stored as
they would be in a YAFFS partition, while hidden files
are stored using the bit-embedding technique discussed
in Section 4.1. Hidden files are replicated throughout
the device for redundancy, so that data integrity can be
preserved even if some pages are overwritten. INFUSE
needs a password from users do derive keys for the en-
coding and encryption of the hidden data.

In addition to the data on the device, INFUSE also
includes a few data structures in memory. The rela-
tionship between INFUSE and YAFFS is illustrated in
Figure 2. The layout of INFUSE on the flash device
appears indistinguishable from a YAFFS partition. In
other words, INFUSE partitions are compatible with
YAFFS partitions. Whenever a INFUSE partition is
mounted as a YAFFS, only operations to all non-hidden

INFUSE: Invisible plausibly-deniable file system for NAND flash = 246

INFUSE

Memory

Memory

Flash device Public | Hidden

Fig. 2. INFUSE vs. YAFFS. Both file systems are composed of
in-memory data structures and data on device. The data orga-
nization in the underlying flash device is identical regardless of
the file system used. However, the in-memory data structures are
different.

files on the device are supported. For the sake of secu-
rity, a user can unmount the device and uninstall the
INFUSE software completely from the system after sen-
sitive data has been written. An adversary in possession
of the device later will be misled to believe that this is
just a YAFF'S partition with only public files inside. The
protected data can be recovered by mounting the device
with INFUSE again in the future.

6.1 Layout

In order to use the bit-hiding technique for NAND flash
devices (Section 4.1), INFUSE is equipped with an “in-
termediate layer” to translate operations on public and
hidden data into operations on physical pages in which
the hidden data is “embedded”. This is detailed below.
Objects and Chunks. INFUSE stores all data as ob-
jects, similar to YAFFS. Objects corresponding to the
data in the hidden level are called hidden objects while
all other objects are public objects. Specifically, a hid-
den file consists of a hidden object header chunk and
a few hidden data chunks, while a public file consists
of a public object header chunk and a few public data
chunks.

Each chunk in INFUSE has a relevant tag which
records the meta information about the chunk, similar
to tags in YAFFS. The size of the tag in INFUSE is
42 bytes. Hidden chunks and their corresponding tags
will be encrypted with authenticated encryption (AES-
GCM) before being written. Thus, INFUSE can verify
whether the data in a hidden chunk has been tampered
with. Further, each hidden chunk is associated with a
96-bit IV (initial vector) [16] and an 128-bit authentica-
tion tag after encryption. The hidden tag, and the corre-

sponding IV and authentication tag are stored alongside
the hidden chunk.

Public Page and Hidden Page. We introduce an
“intermediate layer” in INFUSE between the logical file
system layer and the physical layer, as shown in Fig-
ure 3. In the intermediate layer, public virtual pages
and hidden virtual pages coexist in one block. For the
sake of simplicity, we call them public pages and hidden
pages in the rest of the paper. Without loss of general-
ity, only one public page and one hidden page per block
are presented in Figure 3.

Both public pages and hidden pages consist of a
data area and a spare area (OOB area). The public page
is the same size as a physical page in the flash device,
while the size of a hidden page may vary in order to
judiciously utilize the hidden bits that can be embedded
in the physical device.

INFUSE stores public chunks in public pages and
hidden chunks in hidden pages, respectively. Typically,
a flash memory with 2KB pages (2KB of data area) has
an OOB area of 64 bytes per page. A hidden page in
this case will typically have a data area of the same size
(2KB) and an OOB area of 70 bytes. The size of the
OOB area in a hidden page is the total size of a hidden
tag (42B), a random IV (12B) and an authentication
tag (16B). The size of the data area in a hidden page
can be made smaller if required, based on the number of
hidden bits that can be embedded in one physical block
without violating security .

The example in Figure 3 illustrates how a public
file and a hidden file are stored. Only one public page
and one hidden page per block are presented in Figure 3
for simplicity.Each file is assumed to have only one data
chunk for simplicity. The two chunks with ChunkID 0
are the public object header and hidden object header
respectively. Chunks with the same Object ID belong to
one object, and thus one file.

Moreover, the last hidden page in each block may
be set to be smaller than the others if a block can have
more than one hidden page. YAFFS uses a block sum-
mary mechanism to accelerate the mounting process.
Specifically, the tags of all pages in a block are grouped
together and stored in the last few (typically only one)
page of that block. In this case, instead of reading the
whole block for only the OOB areas, YAFFS only needs
to read the last page of each block during scanning to
rebuild the whole directory structure of the file system.
As there are usually more than 64 pages in one block,
the whole summary page is efficiently utilized. The hid-
den tags in one block cannot be written together with
the public tags into the public summary page lest the

INFUSE: Invisible plausibly-deniable file system for NAND flash = 247

Public file F1 Hidden file F2
File system layer: ObjectID=10 ObjectlID=10
public chunks and hidden chunks ChunkID=0 ChunkiD=1
v Block 1 Block 2
Intermediate layer: ObjectID=10 ObjectID=10
public pages and hidden pages ChunkID=0 ChunkID=1
public page hidden page public page hidden page
Y
Physical layer: Public bits Public bits
physical pages and blocks
Block 1 Block 2

Fig. 3. The INFUSE infrastructure. Physical pages in flash devices are interpreted as public pages and hidden pages (used to store
public files and hidden files respectively) in the intermediate layer. Similar to YAFFS, ObjectIDs and ChunkIDs are used to structure

the file system regardless of the chunk locations.

existence of hidden pages is revealed. Instead, one hid-
den page needs to be used for hidden tag summary in
one block. However, in INFUSE the number of hidden
pages in one block is much less than that of the public
pages. The space required to store the summary infor-
mation of those hidden pages is much smaller than a
whole page. Thus, in order to effectively utilize the “em-
bedded” hidden bits in one block, we assign less bits to
the summary hidden page. The summary function for
the hidden pages can even be disabled by the users with-
out any effect on the public page summary. In this case,
none of the hidden bits in one block is used to store
redundant information.

Physical Layout. Public pages and hidden pages in
the intermediate layer are made up of the public bits
and hidden bits in the device. In INFUSE, each physical
page can now contain both public bits and hidden bits.

The number of public bits is the same as the number
of cells in a physical page, while the number of hidden
bits is restricted to a much smaller number. This is nec-
essary to ensure that variations in threshold voltage as
a result of hiding bits does not exceed the scope of in-
herent variations.

INFUSE organizes the hidden bits in one physical
block as a few hidden pages depending on their num-
ber. The hidden page is aligned with the physical page,
so that all the hidden bits in one physical page belong
to one hidden page and will be programmed together.
A parameter m denotes the number of physical pages
that are needed to store all the hidden bits in one hid-
den page. For example, if one block contains K physical
pages of size 2112B (2KB+64B), p percentage of cells in
each page can be used to encode 2 bits. Consequently,

a hidden page is spread into m = [2118/(2112 % p/100) |
physical pages. In other words, a block contains K pub-
lic pages and at least K/m hidden pages (assuming that
summary for hidden pages is disabled).

How INFUSE read and write a hid-
den page can be described with Algorithm
6.1 and 6.2 vrespectively. The two hardware-
backed operations read__hidden_ bits(M,addr) and

write__hidden__bits(M, addr, data) denotes read and write
the hidden bits from one physical page respectively.
Here, M represents a bitmask indicating the physical
cells selected for storing hidden bits in a physical page.
Specifically, hidden bits are stored in physical devices
by manipulating the voltage of selected physical cells
gradually through a series of up to k partial program-
ming (PP) steps according to [26]. And hidden bits are
read from physical devices by adjusting the reference
voltage using the read retry command supported by
latest NAND flash memory [26]. Importantly note that
the locations of hidden bits are randomly selected —
an adversary cannot identify the cells containing hid-
den data with more than negligible advantage without
having access to the hidden key.

Algorithm 6.1 data=read__hidden__page(BA,PA): Read a

hidden page in the intermediate layer

Input: read_hidden_ bits(M, phyagqdr), m: number of physical
pages across which a hidden page is stored

Ouput: data

=0

while i < m do
phyaddr = BA < offsetp +PAxm +i
Read public data d,,; in physical page phyaqdr

INFUSE: Invisible plausibly-deniable file system for NAND flash = 248

Publicl

Public2 |«----- Public3 ! Hidden3 }
—>» : Children <-» : Sibling

Fig. 4. The directory structure in INFUSE.

5: Generate bitmask M for cells storing hidden bit based
on dpyp and PRNG(Kyig, phyaddr)

6: di = read__hidden__bits(M, phyaq4dr)

7 i=1+1

8: data = {do,dl,.“,dmfl}

Algorithm 6.2 write__hidden__page(BA, PA,dpiq): Write a

hidden page in the intermediate layer

Input: write__hidden_ bits(M, phyaqdr, bitshid), m: number of
physical pages that a hidden page is spread into, I: num-
ber of hidden bits storing in one physical page

1: =0

2: while i < m do

3: phyaddr = BA < offsetp +PAxm + i

4: Read public data dp,p in physical page phyaqdr

5: Select cells storing hidden bit based on d,; and
PRNG(Khid, phyaddr) and generate bitmask M

6: write__hidden_ bits(M, phyaddr, dnidli - 1 : i+ (I +1)))

7 i=1+1

Directory Structure. Objects in different security
levels form independent object sub-trees under the di-
rectory root in INFUSE, as shown in Figure 4. Thus, a
public object will not have a hidden object as its parent,
and vice versa. This follows typical security conventions
such as file system permissions. As a result, public files
are isolated from hidden files in INFUSE, thus ensuring
minimal traces of hidden files in the public level. Note
that, although an object contains information such as
siblings which may link a public object with a hidden
one, this information is maintained in memory only. An
adversary cannot observe the in-memory data structures
when an INFUSE partition is mounted, and thus will be
oblivious to this information.

6.2 Page Allocation

Recall that INFUSE maintains two logs, each corre-
sponding to a particular security level. The page allo-

cation principle for public data in INFUSE follows the
same principle as YAFFS to ensure that adversaries can-
not infer the deployment of INFUSE from the page allo-
cation mechanism. As a log-structured file system, the
public pages in the current block of the log will be allo-
cated one by one for public data. Then the current block
will move to the next available block in the allocation
pool.

For hidden pages, another log head is maintained to
mark the current block for the hidden level. The hidden
log head will always follow the public log head since
the hidden pages cannot be programmed in a particular
block until all public pages in that block are used. For
example, if public files are written to physical block 1,
3, 4 in order, the hidden log will follow this order.

Figure 5 shows how the state of block transforms
during runtime in INFUSE. The five states with solid
border originate from YAFFS and the other two states
in dashed boxes are specific to INFUSE:

— Empty: The block is empty and is ready for alloca-
tion.

— Allocating: The public pages in the block are cur-
rently waiting for allocation by the public chunk
allocator.

— Full: The public pages in the block have been allo-
cated.

— Collecting: The block is undergoing garbage collec-
tion.

— Dirty: Both the public pages and the hidden pages
in the block do not contain any useful information.

— Hid-allocating: The hidden pages in the block are
currently waiting for allocation by the hidden chunk
allocator.

— Hid-full: Both the public pages and the hidden
pages in the block are used up.

It is worth noting that a block may be garbage
collected at full, hid-allocating or hid-full state since
the garbage collection block selection is independent of
the state of hidden pages in blocks in INFUSE (as de-
scribed next). Moreover, the block state can change di-
rectly from full to hid-full and bypass the hid-allocating
state. This scenario corresponds to when INFUSE is un-
mounted. As adversaries have access to the flash device
after the partition is unmounted, a block in full state
cannot go to hid-allocating state anymore. Writing the
hidden pages in the block will change the threshold volt-
ages of cells in the block and reveal the existence of
hidden data to adversaries.

INFUSE: Invisible plausibly-deniable file system for NAND flash = 249

Allocating

Collecting

..........

e -

Fig. 5. The state transition diagram of block state in INFUSE.
The two states with green background color and dashed border
are new states in INFUSE and the other five states are the regu-
lar runtime states in YAFFS.

6.3 Garbage Collection

To ensure that an INFUSE partition looks indistinguish-
able from a YAFFS partition, the garbage collection
heuristics in INFUSE is identical to the one used in
YAFFS. Note that if garbage collection is affected by
hidden data, then the choice of recycled blocks will re-
veal the existence of hidden data. This however presents
several challenges.

First, garbage collection in YAFFS will always in-
crease the number of available pages in the system
since it chooses the dirtiest block with the fewest use-
ful chunks. However, since in INFUSE garbage collec-
tion does not account for the hidden data in the blocks,
there is no guarantee that the number of available hid-
den pages will increase after one garbage collection cy-
cle, particularly when few public pages in the recycled
block are still useful. In the worst case, the number of
available hidden pages may even decrease if all the hid-
den pages in the recycled block are still useful.

To prevent running out of hidden pages and ensure
hidden data integrity, INFUSE defines margin pages as
all the hidden pages between the public log head and
the hidden log head. A warning message will be sent to
users once the number of margin pages is below a cer-
tain threshold. The user should stop writing more hid-
den files until enough margin pages are available again
after a few rounds of garbage collection. Otherwise, the
hidden data may be lost during garbage collection.

Second, a block that is recycled may contain valid
hidden chunks. These need to be relocated before the
block is erased. INFUSE achieves this as follows:

— When there are abundant margin pages, a valid hid-
den chunk in the recycled block will be copied to a

new location during garbage collection, regardless
of the number of copies that already exist. This ef-
fectively duplicates the hidden data.

— When the number of margin pages is below a certain
threshold, INFUSE will copy only hidden chunks
with no duplicates.

More details about the data relocation procedure
are provided in Section 6.5.

6.4 Mount & Unmount

Mounting an INFUSE partition requires a password/en-
cryption key from users. INFUSE searches for avail-
able checkpoint blocks for both public and hidden lev-
els at first. As the location of hidden checkpoint is not
recorded, INFUSE tries to decrypt every hidden page
to locate the checkpoint. If both checkpoints are found,
rebuilding the file system state is straightforward. Oth-
erwise, INFUSE scans the entire partition to rebuild
state, similar to YAFFS.

Unmount in INFUSE is more complicated since it
needs to “close” the hidden level and hide any evidence
of its use. First of all, INFUSE performs an “enforced
garbage collection”. This ensures that the hidden files in
the INFUSE partition will not be destroyed when the
partition is later mounted as a YAFFS partition.

Secondly, INFUSE writes all the available hidden
pages in the hidden allocation pool with backup hidden
chunks. This is detailed in Section 6.5.

Note that the hidden pages in the public checkpoint
blocks are not written in INFUSE. This is because that
the public checkpoint blocks will be dirty as soon as any
writes are performed after mounting the device again.
Instead, INFUSE writes hidden checkpoint to margin
pages. The intuition here is that the probability that the
hidden checkpoint will remain intact after a few YAFFS
writes is high since the checkpoint resides in the most
recently written block, which is expected to contain up-
to-date data and is unlikely to be overwritten soon.

6.5 Data Loss

The flash device will be mounted as a YAFFS image
whenever it is under surveillance of an adversary. Thus,
if a garbage collection is performed after mounting, it is
possible that the hidden data residing in the collected
block will be destroyed when the block is erased. Fur-
thermore, the choice of erased blocks depends only on

INFUSE: Invisible plausibly-deniable file system for NAND flash = 250

the public work load when the device is mounted as
YAFFS. Thus, it is impossible to ensure the integrity
of all hidden data. However, we can take measures to
improve the hidden data survival rate.

Our strategy to reduce the data loss is to make du-
plicates of hidden chunks during unmount. Remember
that there are always several empty hidden pages that
are maintained in the hidden allocation pool (Section
6.2). These pages cannot be used anyway once the par-
tition is unmounted, to prevent the adversary from de-
tecting the voltage threshold changes resulting from hid-
den chunk programming. Thus, we make duplicates for
the hidden chunks to improve the hidden data survival
rate.

There are several rules for this data duplication.
First, the duplicates of the same chunk should not be
relocated in one block since it will not help reducing
the data loss. Secondly, the hidden chunks in the block
with the smallest public sequence number should have
a higher duplication priority. Although the block cho-
sen by garbage collection depends on the public work-
load that invalidates the public chunks, it is also re-
lated to the block sequence number as YAFFS manda-
torily garbage collects the oldest block. Thus, the hidden
chunks in blocks with smaller public sequence numbers
have higher risk of being erased and should be backed
up somewhere else.

A back up chunk has the same chunk ID and ob-
ject ID as its original chunk. If more than one copy of
certain chunk exists when the partition is mounted as
INFUSE, the one with the largest sequence number will
be considered during the device scan to build state.

6.6 Key Management

To detect hidden data tampering, INFUSE deploys au-
thenticated encryption AES-GCM with 96 bit IVs and
128 bit authentication tags. Whenever a hidden chunk
is relocated (for either garbage collection or data redun-
dancy), the chunk is re-encrypted with a new randomly
assigned IV.

INFUSE requires two keys that are derived from a
user password. One is used to encrypt the hidden data.
The other key is used to generate random numbers with
the block sequence number and page number. The gen-
erated random numbers are used to select cells in a page
to store the additional hidden bits. Note that public
data is not stored encrypted (similar to YAFFS) but
additional support can be added if required without af-
fecting the hidden data management..

7 Security Analysis

As detailed in Section 3, PD storage solutions can be
categorized by what they hide in practice. This includes
(i) content of hidden data, (ii) access pattern of hidden
data, and (iii) the evidence of deployment of the PD sys-
tem. INFUSE is the first PD storage solution that hides
all three elements from multi-snapshot adversaries. In
the following, we summarize the security guarantees in
INFUSE and leave formal proofs for future work.
Hiding Contents of Hidden data. To hide contents,
INFUSE leverages the bit-technique proposed in [26] (as
detailed in Section 6). Specifically, [26] shows it is feasi-
ble to undetectably manipulate threshold voltage levels
of randomly selected flash cells to encode more than
one bit. The resulting set of variations in cell thresh-
old voltages is indistinguishable from random noise to
an adversary that does not know the exact locations of
manipulated cells. Effectively, a flash device storing hid-
den data appears indistinguishable to an adversary from
an off-the-shelf flash device. INFUSE stores hidden bits
in randomly selected location based on a keyed cryp-
tographic hash — for a computationally-bounded adver-
sary identifying cells which store hidden data will be as
difficult as inverting a cryptographic hash.

Further, in INFUSE, hidden data is stored en-

crypted with a semantically secure encryption scheme.
This ensures that even if an adversary assumes that all
cells are being used to store hidden bits and uses fine-
grained reference voltages to interpret data (the refer-
ence voltages used for “embedding” hidden bits may be
known to adversaries), the semantic security of the en-
cryption scheme will ensure that the contents appear as
random data.
Hiding Access Patterns. To hide access patterns
INFUSE ensures that all file system specific operations
(e.g., garbage collection etc.) are not affected by the
presence of hidden data. The design features that enable
this in INFUSE are listed below.

— Log-structured design: INFUSE is a log-
structured file system similar to YAFFS. The or-
der in which public pages are written is identical
regardless of the presence of hidden data. The hid-
den pages in each block will be written only if the
public pages in that block have been written after
the latest mount operation (each mount/unmount
may correspond to an adversary gaining access to
a device snapshot). Thus, writing hidden pages has
no effect on the order in which blocks get written.

INFUSE: Invisible plausibly-deniable file system for NAND flash = 251

— Hidden-data-independent garbage collection:
As detailed in Section 6.3, the selection of blocks for
garbage collection in INFUSE does not depend on
the state of hidden pages.

— Attributing voltage changes to plausible pub-

lic operations: For a multi-snapshot adversary
with the capability to take snapshots of the device
state after any unmount operation, any change in
the threshold voltage of flash cells can be detected.
Threshold voltage changes can result from a pub-
lic page write, a hidden page write, or an INFUSE
garbage collection operation.
For security, these changes should be attributable to
only public data writes and garbage collection oper-
ations. Since hidden data is written to blocks that
have been written with public data after an INFUSE
partition is mounted, threshold voltage changes can
always be attributed to public data writes.

Hiding evidence of PD system. To hide evidence
that INFUSE is being used, users can access the de-
vice public data using a standard YAFFS driver under
duress. INFUSE page allocation and garbage collection
principles ensure a partition layout identical to the lay-
out of a standard public data YAFFS partition.

Also all file system operations in INFUSE remain
unaffected by the presence of hidden data (as discussed
above) and, from the point of view of a multi-snapshot
adversary, they are performed identically as in the case
of a YAFFS partition with only public data. As a result,
the device data layout and associated patterns do not
allow an adversary to distinguish between an INFUSE
partition with hidden data and a YAFFS partition con-
taining public data only.

Note that even if an adversary tries to mount a
YAFFS partition with INFUSE (suspecting that a user
has INFUSE installed), the mount will fail. In partic-
ular, to mount, INFUSE requires a secret key. Among
other things, the key determines where hidden data re-
sides. It is also used for encryption and integrity checks.
Given a key, INFUSE will first try to decrypt the latest
hidden checkpoint and verify integrity. If this fails, all
blocks will be checked for hidden data, and if no data
is found/the tags do not match, the mount fails. If an
adversary attempts to mount a YAFFS partition (or
an INFUSE partition with the wrong key) the INFUSE
mount will fail allowing the user to claim that INFUSE
is not being used.

8 Evaluation

8.1 Setup
Hardware. The process of embedding bits in flash
chips [26] requires two hardware primitives — i) par-
tial programming, and ii) read retry. Partial program-
ming allows small adjustment of threshold voltages at
page-level granularity. Read retry is a reference volt-
age control mechanism implemented in modern NAND
flash chips. It is primarily used for bit error correction.
Importantly, since these primitives are not specifically
designed for hiding data, using a flash chip with such
capabilities does not raise suspicion.

These operations are supported by multiple off-the-
shelf flash chips (e.g., Hynix 1x nm NANDs, Samsung
3D NANDs). The granularity of the supported opera-
tions determines the amount of hidden data that can be
stored. Moreover, the interfaces required to use these
primitives are available in standard OS installations
(e.g., provided by the MTD in the Linux Kernel).

However, one hurdle to overcome while implement-
ing INFUSE is receiving exact read-retry specs (usually
not public) from chip manufacturers. And despite ex-
tensive efforts, we have not been able to convince the
hardware vendor to release the voltage specs and asso-
ciated partial programming instructions under an NDA
which allows us to publish results. On the chips we have
received confidential instructions for, we have confirmed
partial programming and read retry indeed work.

Therefore, to benchmark INFUSE in absence of the
NDA, we modelled the timing and behavior of a com-
mercially available flash chip (Hynix 1x nm NAND) in
nandsim [4], a NAND flash simulator using underlying
storage medium such as DRAM or a file. Additionally,
we modified nandsim to simulate partial programming
and the storage of embedded hidden bits. As an added
benefit, using nandsim allows exploring the effects of
hiding capacity (number of cells altered) on overall per-
formance.

Corresponding to actual chip measurements, read,
write and erase latencies are set to be 90us, 1200us and
5ms. The hidden bit programming latency is set to be
6900us. The average number of hidden bits in one physi-
cal pages varies from 512 to 8K, which results in realistic
storage capacities. The NAND flash device size is set to
64GB to reflect a specific hardware chip’s capacity. The
page size is 4KB and the block size is 256KB. Experi-
ments were run on Linux boxes with dual-core i5-3210M
CPUs, 2GB DRAM, and kernel version 3.8.

INFUSE: Invisible plausibly-deniable file system for NAND flash = 252

INFUSE has been implemented as a full
kernel-space file system module for the Linux kernel.

Software.

Typically, flash devices are recognized as Memory Tech-
nology Devices (MTD) in the Linux kernel unlike block
devices. Standard Linux MTD implementations provide
interfaces for partial programming and read retry — the
two primitives required for INFUSE. Therefore, in or-
der to manage hidden data with INFUSE, non-standard
interfaces are not required. The only requirement is the
INFUSE kernel module, which can be inserted (e.g.,
from a USB drive) and removed as needed.

8.2 Benchmark

Comparison with Existing Work. As discussed be-
fore, INFUSE works in a stronger (and also more realis-
tic) security model, where the deployment of a PD sys-
tem is considered a red flag for the adversary. To protect
against this adversary, INFUSE hides not only the data
but also evidence that a PD system is being used. All
previous solutions unfortunately fail to hide the deploy-
ment of a PD system. Thus, comparing INFUSE with
solutions that work in a strictly weaker threat model is
not a fair comparison.

Moreover, comparing INFUSE with existing PD so-
lutions experimentally is also problematic due to the
different deployment settings. All existing PD solutions
are either implemented as file systems equipped with
the ability to “hide” data or block device mappers man-
aging multiple volumes (some equipped with the ability
to hide data). Block device solutions are typically opti-
mized for SSDs [12, 14] and HDDs [15] and cannot be de-
ployed on raw flash devices without additional firmware
such as an FTL. Therefore, these solutions cannot be
directly compared with INFUSE without additional in-
strumentation which may impact overall performance.

The only existing raw flash PD file system is DEFY
[23]. However, its open-source implementation [1] can
only be mounted on very small devices (< 64 MB). With
such small devices, accurate performance is difficult to
estimate, especially in the presence of OS-level caches.

Due to these limitations, we compare INFUSE
against a YAFFS baseline with no plausible deniability
guarantees to get a better idea of throughput overheads.
Throughput. We first benchmark both the sequential
and random I/O throughput of both YAFFS and IN-
FUSE with Filebench [2] on the same device simulated
by nandsim. For this experiment, the number of hidden
pages in one physical block is set to be 4.

It can be seen (in Figure 6) that reading public files
in INFUSE is as fast as reading in YAFFS. Writing pub-
lic files is slightly slower (no more than 15%) since IN-
FUSE needs to take care of the hidden bits that are
embedded in the device. Reading or writing hidden files
sequentially is around 30-40 times slower than that of
public files. As a hidden page is spread across several (16
in our setting) physical pages, it is not surprising that
accessing the hidden files is much slower than accessing
the public files. This throughput is in line with other
existing PD systems with fewer security guarantees.

100 : : . ,
YarFFs [] INFUSE] INFUse NI
mZ ~ Public Hidden

N 10 2

©»

[a1]

2

3 1

=

oo §
§ \

A

A

0.01

Seqread Seqwrite Randread Rand write

Fig. 6. INFUSE throughput comparison with YAFFS (presented

in log scale, higher is better). The throughput is measured with
Filebench. Throughput to the public files in INFUSE is almost the
same or slightly slower than that in YAFFS, while throughput to
the hidden files in INFUSE is 30 — 40 times slower.

We
also explore the relationship between performance and

Throughput vs. Number of Hidden Pages.

the number of hidden bits stored in one physical block
(“hidden data density”). Figures 7 and 8 show how
throughput varies as the number of hidden pages in one
physical block increases from 1 to 32. Since INFUSE
also resiliently manages the (increasing number of) hid-
den bits when writing public data, public throughput
drops with increasing hidden data density (Figure 7).
Hidden write throughput increases and is linearly
correlated to hidden data density. This is not unex-
pected — as more hidden bits are stored in one physical
page, less 1/0 is required to write one virtual hidden
page to the device. However, increasing data density
may also result in a device violating the conditions re-
quired for ensuring indistinguishability from a device
without any hidden bits [26]. In fact, the range of al-
lowable data densities is device-specific since different
devices will have different security-performance trade-

INFUSE: Invisible plausibly-deniable file system for NAND flash = 253

offs for maintaining the required conditions for indistin-

guishability.
24 T T T
Seq write —¢—
235 } Random write
s 23%
[an)]
S 225
§. 22
<
S 25¢
E 21t
205
20

4 8 12 16 20 24 28 32
Hidden pages per physical block

Fig. 7. Public INFUSE write throughput with increasing number

of hidden pages per physical block (higher is better). Since IN-

FUSE also resiliently manages the (increasing number of) hidden
bits throughput drops with increasing hidden data density.

Seq write —¥—

Random write

Throughput (MB/s)

4 8 12 16 20 24 28 32
Hidden pages per physical block

Fig. 8. Hidden INFUSE write throughput (higher is better). As
expected, throughput increases with increasing hidden data den-
sity.

Hidden Data Storage Capacity. An important se-
curity parameter to determine prior to using a flash de-
vice to store hidden data is the amount of hidden in-
formation that can be stored. The parameter will be
necessarily application and chip-specific, and depends
on several factors:

1. Accuracy of Partial Programming: With more pre-
cise partial programming capabilities, more fine
grained threshold voltage levels can be achieved,
and thus more hidden data can be stored since small
threshold voltage variations do not alter the voltage
distribution enough to escape the acceptable noise
band.

2. Read Retry Capabilities: In order to have more fine-
grained voltage, the chip should also have better
read capabilities to detect and interpret the volt-
ages. This depends on the number of read retry
modes supported by the chip.

3. Reference Voltage Levels: As noted in [26], the ref-
erence voltage used for hidden bits determines the
number of bits that can be stored. A lower refer-
ence voltage implies more hidden bits can be stored
without overly skewing the voltage distribution.

Keeping all these factors in mind, Zuck et al. [26]
performed experiments to hide 256 bits per page and
2560 bits per page and evaluated the security implica-
tions. Overall, encoding capacity should be evaluated
based on the partial programming and read retry capa-
bilities, overall chip line characteristics, and acceptable
noise band and associated risks.

9 Conclusion

INFUSE is a flash file system that is “invisible” (device
layouts identical with that of a standard file system),
provides redundancy, handles overwrites, survives data
loss, and is secure in the presence of multi-snapshot ad-
versaries. INFUSE is efficient and its public data oper-
ations are less than 15% slower than standard YAFFS.
Hidden data operation throughputs are of the same or-
der of magnitude as that in existing plausible deniability
systems secure against multi-snapshot adversaries.

10 Acknowledgement

This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors. We would like to thank our shepherd, Alptekin
Kiipcii and the anonymous reviewers for their sugges-
tions on improving the paper.

References

[1] Defy implementation. "https://bitbucket.org/solstice/defy/

[2] Filebench. "https://github.com/filebench".

[3] Flash filesystem benchmarks 3.1. "http://elinux.org/Flash_
Filesystem__Benchmarks_3.1".

"https://bitbucket.org/solstice/defy/"
"https://bitbucket.org/solstice/defy/"
"https://github.com/filebench"
"http://elinux.org/Flash_Filesystem_Benchmarks_3.1"
"http://elinux.org/Flash_Filesystem_Benchmarks_3.1"

(4]
(5]

(6]

(7]
(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

INFUSE: Invisible plausibly-deniable file system for NAND flash = 254

Memory technology devices. "http://www.linux-mtd.
infradead.org/index.html".

Missing thumb drive contains information about portland
jetport employees, pilots. "https://www.pressherald.com/
2016/06/21/missing-thumb-drive-contains-information-
about-portland-jetport-employees-pilots/".

Nasa breach update: Stolen laptop had data on 10,000
users. "https://www.computerworld.com/article/2493084/
nasa-breach-update--stolen-laptop-had-data-on-10-000-
users.html".

A robust flash file system since 2002. "https://yaffs.net/".
TrueCrypt. "http://truecrypt.sourceforge.net/".

Youth jailed for not handing over encryption password.
"https://www.theregister.co.uk/2010/10/06/jail_password__
ripa/".

R. Anderson, R. Needham, and A. Shamir. The stegano-
graphic file system.
Springer, 1998.

D. Beaver. Plug and play encryption. In Advances in Cryp-
tology — CRYPTO'97, pages 75—89. springer.

E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu.
Toward robust hidden volumes using write-only oblivious
ram. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 203-214.
ACM, 2014.

R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable
encryption. In Advances in Cryptology — CRYPTO'97, pages
90-104. Springer, 1997.

A. Chakraborti, C. Chen, and R. Sion. Datalair: Effi-

cient block storage with plausible deniability against multi-

In Information Hiding, pages 73-82.

snapshot adversaries. Proceedings on Privacy Enhancing
Technologies, 2017(3):179-197, 2017.

C. Chen, A. Chakraborti, and R. Sion. Pd-dm: An efficient
locality-preserving block device mapper with plausible de-
niability. Proceedings on Privacy Enhancing Technologies,
2019(1), 20109,

M. J. Dworkin. Sp 800-38d. recommendation for block
cipher modes of operation: Galois/counter mode (gcm) and
gmac. 2007.

J. Han, M. Pan, D. Gao, and H. Pang. A multi-user
steganographic file system on untrusted shared storage. In
Proceedings of the 26th Annual Computer Security Applica-
tions Conference, pages 317-326. ACM, 2010.

R. P. W. J. Assange and S. Dreyfus. Rubber-
hose:cryptographically deniable transparent disk encryption
system. "http://marutukku.org".

S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim. Flexfs: A flex-
ible flash file system for mlc nand flash memory. In USENIX
Annual Technical Conference, pages 1-14, 2009.

A. D. McDonald and M. G. Kuhn. Stegfs: A steganographic
file system for linux. In Information Hiding, pages 463-477.
Springer, 1999.

J. Mull. How a syrian refugee risked his life to bear witness
to atrocities. toronto Star Online, posted 14-March-2012,
2012. "http://www.thestar.com/news/world/2012/03/14/
how__a_ syrian_refugee_ risked__his__life_to_bear_witness_
to_ atrocities.html".

H. Pang, K.-L. Tan, and X. Zhou. Stegfs: A steganographic
file system. In Data Engineering, 2003. Proceedings. 19th
International Conference on, pages 657-667. IEEE, 2003.

(23]

[24]

[25]

[26]

T. Peters, M. Gondree, and Z. N. J. Peterson. DEFY: A
deniable, encrypted file system for log-structured storage. In
22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015, San Diego, California, USA, February
8-11, 2014, 2015.

A. Skillen and M. Mannan. On implementing deniable stor-
age encryption for mobile devices. 2013.

Y. Wang, W.-k. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C.
Kan.
tions: True random number generation and device finger-
prints. In Security and Privacy (SP), 2012 IEEE Symposium
on, pages 33—47. IEEE, 2012.

A. Zuck, Y. Li, J. Bruck, D. E. Porter, and D. Tsafrir. Stash
in a flash. 2018.

Flash memory for ubiquitous hardware security func-

"http://www.linux-mtd.infradead.org/index.html"
"http://www.linux-mtd.infradead.org/index.html"
"https://www.pressherald.com/2016/06/21/missing-thumb-drive-contains-information-about-portland-jetport-employees-pilots/"
"https://www.pressherald.com/2016/06/21/missing-thumb-drive-contains-information-about-portland-jetport-employees-pilots/"
"https://www.pressherald.com/2016/06/21/missing-thumb-drive-contains-information-about-portland-jetport-employees-pilots/"
"https://www.computerworld.com/article/2493084/nasa-breach-update--stolen-laptop-had-data-on-10-000-users.html"
"https://www.computerworld.com/article/2493084/nasa-breach-update--stolen-laptop-had-data-on-10-000-users.html"
"https://www.computerworld.com/article/2493084/nasa-breach-update--stolen-laptop-had-data-on-10-000-users.html"
"https://yaffs.net/"
"http://truecrypt.sourceforge.net/"
"https://www.theregister.co.uk/2010/10/06/jail_password_ripa/"
"https://www.theregister.co.uk/2010/10/06/jail_password_ripa/"
"http://marutukku.org"
"http://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html"
"http://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html"
"http://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html"

	INFUSE: Invisible plausibly-deniable file system for NAND flash
	1 Introduction
	2 Related Work
	3 Model
	3.1 Threat Model
	3.2 Solution Space

	4 Building Blocks
	4.1 NAND Flash Device
	4.2 YAFFS

	5 Challenges
	6 INFUSE: Detailed Design
	6.1 Layout
	6.2 Page Allocation
	6.3 Garbage Collection
	6.4 Mount & Unmount
	6.5 Data Loss
	6.6 Key Management

	7 Security Analysis
	8 Evaluation
	8.1 Setup
	8.2 Benchmark

	9 Conclusion
	10 Acknowledgement

