$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2020 (4):434-460

Nathan Manohar*, Abhishek Jain, and Amit Sahai

Self-Processing Private Sensor Data via

Garbled Encryption

Abstract: We introduce garbled encryption, a relaxation
of secret-key multi-input functional encryption (MiFE)
where a function key can be used to jointly compute
upon only a particular subset of all possible tuples of
ciphertexts. We construct garbled encryption for gen-
eral functionalities based on one-way functions.

We show that garbled encryption can be used to build
a self-processing private sensor data system where af-
ter a one-time trusted setup phase, sensors deployed in
the field can periodically broadcast encrypted readings
of private data that can be computed upon by anyone
holding function keys to learn processed output, without
any interaction. Such a system can be used to periodi-
cally check, e.g., whether a cluster of servers are in an
“alarm” state.

We implement our garbled encryption scheme and find
that it performs quite well, with function evaluations in
the microseconds. The performance of our scheme was
tested on a standard commodity laptop.

Keywords: Secure computation, Functional encryption,
Garbled circuits

DOI 10.2478/popets-2020-0081
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

1 Introduction

Self-Processing Private Sensor Data. Suppose a
coalition of countries (Coalition A) negotiates a 25-year
treaty with Country B, which proposes the deployment
of a set of trusted sensors in Country B, where each
sensor provides an hourly readout of radiation levels.
However, to protect its privacy, Country B is unwilling
to have all raw sensor readings transmitted in their en-
tirety to Coalition A. Country B is only willing to allow
Coalition A to learn some processed form of these sensor

*Corresponding Author: Nathan Manohar: UCLA, E-
mail: nmanohar@cs.ucla.edu

Abhishek Jain: John Hopkins University, E-mail: ab-
hishek@cs.jhu.edu

Amit Sahai: UCLA, E-mail: sahaiQcs.ucla.edu

readings — for example to learn the maximum radiation
level observed at any of 16 sensor locations. Further-
more, Coalition A and Country B are willing to execute
a once-and-for-all ceremony to build these trusted sen-
sors. Indeed, since the sensors are creating the “inputs”
to our system, it is crucial that they be built in a way
that guarantees trust. This could involve physical pro-
tections, as well as computer security tools like secure
multi-party computation. But after this ceremony, and
after the trusted sensors are deployed, how can we en-
sure that Coalition A, in order to protect Country B’s
privacy, learns only the hourly maximum radiation val-
ues, and not more?

The most straightforward solution would be to trust
a third party to honestly process the sensor readings.
However, even if a third party seems trustworthy when
the treaty is signed, it may be unreasonable to assume
that such trust would be maintained over the 25-year
span of the treaty. A more complex solution would be
to have the trusted sensors communicate among them-
selves to compute the maximum every hour and only
transmit this processed information. But this would re-
quire each trusted sensor to be able to reliably receive
communication from other sensors; this may be infeasi-
ble (especially over long durations of time) or simply un-
desirable as being able to receive communication opens
up each sensor to new attack vectors. In this work, we
ask: is it possible to build practical solutions to this
problem where each trusted sensor is only required to
be able to broadcast a short message? Somewhat sur-
prisingly, we show that this is achievable without any
communication between sensors, where the sensors are
only required to store an AES key and broadcast several
AES evaluations each time step.

Hardware Assumptions for Sensors vs. Hard-
ware Assumptions for Receivers. Because sensors
would need to be physically deployed to collect read-
ings, some level of physical trust and verification is es-
sential for both sensor hardware and deployment. This
is reasonable because Country B, as the country being
monitored, would be subject to inspections that would
verify (only!) that sensors have not been tampered with
and remain correctly deployed. However, it is not rea-
sonable to assume any kind of physical trust for the

[®) ov-ne-np |

Self-Processing Private Sensor Data via Garbled Encryption

receivers that should obtain only processed sensor read-
ings: Indeed, there may be many users — hundreds or
even millions of them — that need to be able to moni-
tor processed sensor readings. It would be undesirable
and perhaps infeasible to have inspectors from Coun-
try B verify that receiver hardware has not been tam-
pered with. Such “reverse inspections” — where the tar-
get country inspects the monitoring countries, would
also likely be politically problematic. For these reasons,
we seek solutions to this problem that do not involve
tamper-proof hardware assumptions for receivers.

Real World Applicability. Although the above dis-
cussion dealt with a hypothetical treaty scenario, such
situations arise in the real world. The Iran nuclear deal,
for example, requires that Iran “allow in international
inspectors” [7] to directly observe the state of affairs
on the ground including obtaining raw measurements,
a prospect that it would undoubtedly prefer to avoid.
International environmental treaties, such as the Basel
Convention [1] and the Kyoto Protocol [2], include com-
mitments from many nations to limit their pollution and
other environmentally harmful activities, but without
nations agreeing to direct monitoring of raw data, it may
be difficult to ascertain the extent to which a country is
or is not following the treaty. Such issues are not only
applicable to agreements between nations, but also ex-
tend to situations between governments and companies
as well. After the Volkswagen emissions scandal [6], a
country may wish to sanction Volkswagen in some man-
ner and have a guarantee that its cars meet the emis-
sions standards. A sensor network could be deployed
to ensure that Volkswagen was complying with emis-
sions regulations, while simultaneously ensuring that
the sanctioning government does not gain access to de-
tails of Volkswagen’s operating procedures that it wishes
to remain secret.

An Impractical Theoretical Solution. A theoretical
solution to this problem can be obtained via the notion
of multi-input functional encryption (MiFE) [19]. In a
MiFE scheme, parties can query a key generation au-
thority for multi-input function keys that can be used
to jointly evaluate the function on a tuple of encrypted
plaintexts. MiFE generalizes the notion of (single-input)
functional encryption [13, 29, 31] and can be viewed as
a non-interactive analogue of secure multiparty compu-
tation [18, 33]. If such a primitive could be practically
realized, then in the above scenario, Coalition A and
Country B could generate a multi-input function key
that will output the maximum radiation level observed
in a given hour given appropriate ciphertexts as input.

— 435

Trusted Setup

A —

Self-Processing

Fig. 1. The two steps of a self-processing sensor data scheme.
First, there is the trusted setup after which A has function key
data and B has sensors. Once B deploys the sensors, any user
U with access to the function key data can monitor the sensor
broadcasts and learn the function evaluations.

The deployed sensors could then encrypt their observed
radiation levels along with the time and broadcast these
ciphertexts. Using the MiFE function key, it would be
possible for Coalition A to learn only the hourly maxi-
mum radiation level and nothing more.

Unfortunately, despite extensive research, achieving
full security for MiFE while maintaining usable effi-
ciency has remained quite elusive. In fact, a construc-
tion of secret-key MiFE that supports an unbounded
number of ciphertexts would imply indistinguishability
obfuscation (i0)! [19], which is only currently known
through heavy-duty cryptography and nonstandard as-
sumptions. Furthermore, known constructions of secret-
key MiFE for bounded ciphertexts from standard as-
sumptions [4, 14] require non-black-box use of crypto-
graphic primitives and are therefore unexplored with
respect to implementability and efficiency. Construc-
tions of secret-key MiFE from nonstandard multilinear
maps [25] take 4 minutes running on a 32-core server for
function evaluations on 4.7 GB ciphertexts, while only
achieving security with respect to security parameter
A = 80. As a result, despite its immense potential, MiFE
has so far had limited impact on the security world and
does not give a practical solution to the proposed prob-

lem.

Garbled Encryption. In this work, we give a practi-
cal solution to this problem by introducing, construct-

1 Even a construction of secret-key MiFE that supports only
a bounded number of ciphertexts in each “position,” but an
exponential number of ciphertext combinations, implies iO.

Self-Processing Private Sensor Data via Garbled Encryption

ing, and implementing a new primitive called garbled
encryption. Garbled encryption is built from one-way
functions (in particular, AES) and can support function
evaluations in a few microseconds on modest hardware,
while achieving security with respect to the standard
security parameter value of A = 128.

Our starting observation is that, in practice, one
might not always need the full power of secret-key
MiFE. For example, a function key in secret-key MiFE
needs to be compatible with all ciphertexts, but there
are many natural scenarios where it may only be neces-
sary to evaluate a function on some of the ciphertexts.
To illustrate this, in the treaty problem, we only need
the function key to allow for evaluation on ciphertexts
all encrypted during the same hour. In fact, using MiFE
is actually disadvantageous in this instance, since the
function key will be inherently compatible with all ci-
phertexts, which would require the sensors to encrypt
not only the sensor reading, but also the time of the
reading and the function key to check that the times of
all the ciphertexts are equal.

In order to determine which ciphertexts a function
key is compatible with, it is necessary that the cipher-
texts be labelled. Therefore, in garbled encryption, ev-
ery ciphertext has an associated index, and encryptors
are required to satisfy a promise that no two ciphertexts
have the same index. Instead of querying a key gener-
ation (keygen) authority for a key corresponding to a
function, in garbled encryption, a party queries the key-
gen authority for a key corresponding to a function and
a tuple of indices. The function key issued by the keygen
authority can then be used to evaluate the function on
the tuple of ciphertexts corresponding to those indices.
By introducing this relaxation, we are able to achieve
garbled encryption that supports an unbounded number
of ciphertexts and function keys, using only OWFs (in
particular, AES).

From Garbled Encryption to Self-Processing
Private Sensor Data. Using our new primitive, gar-
bled encryption, we are able to obtain a practical solu-
tion to the self-processing private sensor data problem.
After Coalition A and Country B agree on the treaty,
they execute a one-time trusted setup that generates all
the garbled encryption function keys needed for the du-
ration of the treaty and provides sensors to be deployed
in Country B. After these sensors have been appropri-
ately deployed, they will periodically broadcast cipher-
texts that can be used by Coalition A to learn the out-
put of the desired functionality (for example, the hourly
maximum radiation level). Note that once the sensors

— 436

have been deployed, no additional work is needed on
the part of Coalition A or Country B to keep the sys-
tem running (they can go “offline”). In fact, Coalition
A can make all the function key information public and
any interested user could monitor the system and ob-
tain the function evaluation results. Furthermore, the
ciphertexts in our construction will correspond to sev-
eral pseudorandom function (PRF) evaluations, imple-
mented via AES, so the sensors can be computationally
extremely weak and need only support the most basic
of cryptographic tools. The functionalities (determined
at setup) that are supported by the scheme are quite
general. A function evaluation at time 7’ may be on
data generated at any time from setup until T, with
any number of sensor readings as input coming from as
many or as few different sensors as desired.

1.1 Our Results

Garbled Encryption. We formally define garbled en-
cryption and provide a construction from one-way func-
tions (in particular, a PRF that can be instantiated us-
ing AES) that supports an unbounded number of ci-
phertexts. We, in fact, provide two constructions: a se-
lectively secure scheme in the standard model, and an
adaptively secure scheme in the random oracle model. In
the adaptive security setting, the adversary can adap-
tively observe ciphertexts and function keys in any or-
der, and thus realistically models scenarios where an
adversary may observe broadcast ciphertexts before ob-
taining key material, and then observe additional broad-
cast ciphertexts afterwards. We also provide an imple-
mentation of our adaptively secure garbled encryption
scheme.

A simplified version of our adaptively secure gar-
bled encryption scheme also yields an adaptively secure
garbling scheme [10] where the wire keys are the same
size as in non-adaptive garbling schemes. To the best of
our knowledge, such a garbling scheme was not known
previously. In particular, all previously known adaptive
garbling schemes required larger wire keys (even in the
random oracle model). We believe that our adaptive gar-
bling scheme with short wire keys may be applicable to
other scenarios where such a property is desirable.

Our scheme requires the encryption algorithm to
have a state in a manner which we call inder depen-
dence. This is the constraint that each ciphertext is la-
beled with an index and that no two ciphertexts share
the same index. Since index dependence still supports
parallelism, we don’t view this as a major limitation.

Self-Processing Private Sensor Data via Garbled Encryption

— 437

Table 1. Self-Processing Private Sensor Data via Garbled Encryption Performance Summary

Function # Inputs y2 GE.KeyGen GE.Dec |GE.ct| |GE.sk|
DNF 64 1-bit 27 us l4pus 16B 8.7 kB
Thresh 16 32-bit 523 us 319 us 512 B 42.8 kB
Max 16 32-bit 613 us 38 us 512 B 58.2 kB

* For all settings of parameters, running GE.Setup and GE.Enc took <

1 ps and therefore this information is omitted from the table.

However, by introducing this natural relaxation, we are
able to achieve a practical construction of this primitive
from standard assumptions.

Self-Processing Private Sensor Data and Imple-
mentation. Finally, we give evaluation results for our
adaptively secure garbled encryption scheme. We find
that it performs quite well, with decryptions in the tens
to hundreds of microseconds when run on a standard
commodity laptop. Table 1 gives some of our evaluation
results for self-processing private sensor data via garbled
encryption for a variety of functionalities. Based on our
evaluation results, we observe that our garbled encryp-
tion scheme could be applied to an automated warning
system on 64 sensors that lasts for 10 years and issues
an all clear vs. anomaly detected reading every 10 min-
utes. In such a setup, we find that the trusted authority
need only be online for 14 seconds and that users who
wish to monitor the warning system can do so by down-
loading a few kilobytes of data and performing a 14 us
computation every 10 minutes. Furthermore, for Coali-
tion A and Country B to realize their 25-year treaty,
they would need to perform a 2.2 minute computation
during the setup ceremony to generate the necessary
garbled circuits, which, when handed over to Coalition
A, would allow each country in Coalition A to learn the
maximum radiation levels observed every hour for the
next 25 years by performing a 385 us computation every
hour.

In summary, we believe that garbled encryption
achieves a practical solution for the self-processing pri-
vate sensor data problem and other situations that may
arise requiring computing on encrypted data without
compromising data privacy through leakage or the use
of nonstandard assumptions.

Practical Deployment Challenges. Even though
our performance results show the practicality of our self-
processing private sensor data scheme, there are various

challenges that one would need to address before being
confident in deploying such a system. These include is-
sues such as sensor failure, sensor compromise, and clock
synchronization between sensors. We discuss how to ad-
dress such challenges in Section 8.

2 System Setting and Threat
Model

A self-processing private sensor data system consists of
the following components that are created during a one-
time trusted ceremony.

— Sensors: These are weak computational devices
with small storage (enough to hold an AES key)
that are deployed in the field. Their job is, at each
time step, to take sensor readings, broadcast en-
cryptions of the sensor readings, and update their
stored key for the next time step. They do not com-
municate with each other or any other parties.

— Function Key Data: This information is needed
by any user that wishes to monitor the sensor sys-
tem. For scenarios where anybody is allowed to
monitor the system, these data can be stored in a
publicly accessible location. Observe that the func-
tion key data is generated before any sensor readings
have taken place and the sensors do not have access
to the function key data.

The following entities make use of the self-processing

private sensor data system.

— Private Data Owner: The private data owner
appropriately places the sensors in the field. To
protect their privacy, they are unwilling to divulge
the sensor readings in the clear. However, they have
agreed to allow monitoring users to learn various

Self-Processing Private Sensor Data via Garbled Encryption

functions of the sensors readings.

— Monitoring Users: A monitoring user is any in-
terested party with access to the function key data
that wishes to monitor the sensor system. At each
time step, they receive the encrypted broadcasts
from the sensors and use these, along with the func-
tion key data, to learn predetermined functions of
sensor readings, potentially taken during different
time steps.

2.1 Threat Model

The goal of a self-processing private sensor data system
is to allow monitoring users to learn agreed-upon func-
tions of the sensor readings taken at various time steps,
without violating the privacy of the data owner. An at-
tacker is allowed to observe all broadcasts from sensors
and is given all the function key data. Such an attacker
should not be able to “learn anything” about the data
owner’s private data beyond what they have agreed to
disclose as part of the monitoring process. This notion
is captured formally via an indistinguishability security
game. We also allow an attacker to compromise sensors
at any point during the lifetime of the system and learn
the secret key stored on the sensor. In this event, we
require that the past privacy of the data owner be up-
held. In particular, the adversary should not be able to
“learn anything” about previous sensor readings beyond
what is allowed. We discuss how to handle deployment
challenges outside the threat model in Sec. 8.

3 Preliminaries

Throughout the paper, we denote the security parame-
ter by A. For an integer n € N, we use [n] to denote the
set {1,2,...,n}. We use Dy =, D; to denote that the
distributions Dy, D; are computationally indistinguish-
able. Let bin(n) denote the binary representation of n
and bin(n); denote the ith bit of the binary represen-
tation. We use the symbol O to denote random oracles
and O®)(z) to mean O(O(...(z))), where O is applied

t times.

3.1 Garbling Schemes

We recall the definition of garbling schemes [11, 33].

— 438

Definition 1 (Garbling Schemes [11, 33]). A garbling
scheme GC = (Gen, Grbl, GrbC, EvalGC) defined for a
class of circuits C consists of the following polynomial
time algorithms:

— Setup, Gen(1*): On input security parameter \, it
generates the secret parameters gesk.

— Generation of Wire Keys, Grbl(gcsk): On input
secret parameters gesk, it generates the wire keys
kK = (ki,....k¢), where k; = (9, k}). (Through-
out, we will use the terms wire keys and labels in-
terchangeably when referring to keys given out for
each input bit to a garbled circuit.)

— Garbled Circuit Generation, GrbC(gcsk,C, E)
On input secret parameters gesk, circuit C € C, and
wire keys E, it generates the garbled circuit C.

— Evaluation, EvaIGC(a7 (K7 kgY)):
garbled circuit C and wire keys (ki*, ..., k;*), it

On input

generates the output out.

It satisfies the following properties:

— Correctness: For every circuit C € C of input length
¢, x € {0,1}¢, for every security parameter \ € N,
it should hold that:

~

C(z) + EvalGC(C, (k7*, ..
gesk < Gen(11),
Pro| ((K9,ki),..., (kY k})) < Grbl(gesk),
C «+ GrbC(gesk, C, (K9, k1), ...
oo (K k)
— Security: There exists a PPT simulator SimGC such

that the following holds for every circuit C' € C of
input length £, x € {0,1}¥,

- kg"))

=1

(6, g .,k;”) > SimGC(1*, 6(C), C(x)),

where:
— gesk + Gen(17)
(K9, k1), ..., (KD, k})) + Grbl(gesk)

C + GrbC(gesk, C, (K, k), ..., (KD, k})))
d(C) is the topology of C.

Theorem 1 ([11, 26, 33]). Assuming the existence of
one-way functions, there exists a secure garbling scheme
GC where Grbl outputs wire keys by choosing uniformly
random values over their domain. Furthermore, the
scheme satisfies correctness regardless of the choice of
wire keys provided that k? and kll are distinct for all
i€ .

In our proof of selective security of garbled encryption,
we actually need a stronger notion of security for gar-
bling schemes, which we will refer to as chosen-wire key

Self-Processing Private Sensor Data via Garbled Encryption

security. In this notion of security, the adversary is addi-
tionally allowed to choose the wire keys that correspond
to its chosen input x in the garbled circuit.

Definition 2 (Chosen-Wire Key Security). A garbling
scheme GC 1is said to be chosen-wire key secure if there
ezists a PPT simulator SimGC such that the following
holds for every circuit C € C of input length {, x €
{0,1}¢, and wire keys k = (kq,..., k).

(6, k) =, (SimGC (1%, (C), C (x) k) , k),

where:

— gesk « Gen(1%)

— ((K,KD), ..., (KD, k})) + Grbl(gesk)

— C « GrbC(gesk, C, K)

— ¢(C) is the topology of C

where kK = (kq,... k) with k; = (ki k}) if x; = 0 and
ki = (k‘?,kl) Zfl‘, =1.

Note that in the above definition, the wire keys corre-
sponding to the input z are fixed ahead of time and
the other wire keys (those corresponding to the bitwise
negation of x) are generated by Grbl.

Theorem 2. Assuming the existence of one-way func-
tions, there exists a chosen-wire key secure garbling
scheme GC where Grbl outputs wire keys by choosing uni-
formly random values over their domain. Furthermore,
the scheme satisfies correctness regardless of the choice
of wire keys provided that k? and kll are distinct for all
iell.

We give a proof of Thm. 2 in Appendix B.1.

3.2 Adaptive Garbling Schemes

In order to obtain adaptively secure garbled encryp-
tion, we will need to make use of adaptively secure gar-
bling schemes. Intuitively, an adaptively secure garbling
scheme is secure even if an adversary chooses the input
to evaluate the circuit on after it sees the garbled cir-
cuit. We require a strong notion of an adaptively secure
garbling scheme (referred to as “fine-grained adaptive
security [10]) where the adversary may submit input
queries bit by bit and choose future input queries after
it receives some of the input labels.

Definition 3 (Adaptively Secure Garbling Schemes).
A garbling scheme GC for circuit class C is adaptively
secure if for any PPT adversary A, there exists a PPT

— 439

simulator SImGC and a negligible function p(-) such that
for all sufficiently large \ € N, the advantage of A is

AdvEE =
PrlExptSC(11,0) = 1] — PrExptSC (11, 1) = 1]
< p(A),

where for each b € {0,1} and A\ € N, the experiment

Exptjc(l/\, b) is defined below:

1. Circuit query: A submits a circuit query C € C to
the challenger Chal. Let ¢ denote the length of the
input to C.

2. Ifb=0, Chal computes
— gesk « Gen(17)

— (KD, KD), ..., (K9, k})) < Grbl(gesk)

— O + GrbC(gesk, C, (K9, k1), ..., (KO, k1))

and sends C to A.

If b =1, Chal computes

— €+ SimGC(1*, ¢(C)),

where ¢(C) is the topology of C' and sends C to A.

3. Input queries: The following is repeated at most
? times. A submits an index i and a bit value v to
the challenger. Chal keeps a set of queried indices
S, initially set to O and a value y, initially set to
L. Ifi ¢ []\S, Chal returns L. Else, Chal sets z; to
v and sets S to S U{i}. If |S| = ¢, then Chal sets
xr=1x1...2¢ and sets y = C(x).

If b= 0, then Chal returns k; = k.
If b = 1, then Chal returns k; + SimGC(L,1,|S|) if
|S| < ¢ and k; < SimGC(y, 1, |S]|) if |S| = ¢.

4. The output of the experiment is then set to the out-
put of A.

Theorem 3 ([10]). Assuming the existence of one-way
functions, there exists an adaptive garbling scheme GC
in the random oracle model. This can be obtained by
applying a transformation to any garbling scheme.

Remark 1. Our construction of adaptively secure gar-
bled encryption uses the adaptive garbling scheme from
Thm. 8 in a non-black-box manner. The adaptive gar-
bling scheme from Thm. 8 shows how to transform
a selectively secure garbling scheme into an adap-
tively secure one. This works as follows. Let C and
(Xzb)ie[n],be{o,l} be the garbled circuit and wire keys,
respectively, of the selective secure scheme, with each
XY € {0,1}*. For each i € [n], a uniformly random
mask Z; « {0,1}* is sampled. Set Z = 7, & ... ® Z,.
Let Y; = Z||i. The adaptively secure garbled circuit is
C'=C & O'(Yy) and the wire keys are of length 2\ and
are (X? © O(Y:),Z;) (assume the output lengths of the

Self-Processing Private Sensor Data via Garbled Encryption

random oracles are set appropriately). Correctness fol-
lows since once one has a wire key for each of the n
input wires, one can compute Z and unmask the garbled
ctreuit and wire keys of the selectively secure scheme.
Adaptive security follows from the fact that until one
learns all n wire keys, Z is information theoretically
hidden and so the garbled circuit and wire keys look uni-
form. In the proof of security, the simulator also samples
C’, all the le ’s, and the Z;’s uniformly at random.

3.3 Index Dependence

Throughout, we will require various algorithms to sat-
isfy a notion of statefulness, which we call index depen-
dence.

Definition 4 (Index Dependence). An algorithm A is
said to be index dependent if it maintains a state S of
the form {iq1,ia,...,4¢} with each i; € N. S begins as
the empty set O and on each call to the algorithm, A is
given an index i such thati & S. It then adds i to S and
runs with i as one of its inputs.

An algorithm is said to be q-index dependent if the

indices in the state are all in [q].

Index dependence is necessary in order to ensure that
no two ciphertexts have the same index. In implemen-
tations of our schemes, an encryptor can simply keep a
counter of the next free index and encrypt sequentially.

3.4 Garbled Encryption

Garbled encryption can be thought of as an indexed
version of secret-key MiFE where every ciphertext has
an associated index and the key generation algorithm
takes sets of indices as an additional input and gener-
ates a function key that can only evaluate on ciphertexts
with corresponding indices. As such, we model our def-
inition of garbled encryption in a manner similar to the
definition of MiFE found in the literature [19].

Syntax.

Let X = {X)\}aen and YV = {V) }aen be ensembles where
Xy, YV, are sets each with size dependent on A. Let
F = {Fr}ren be an ensemble where each F) is a fi-
nite collection of n-ary functions. Each function f € F)
takes as input strings zi,...,z,, where each z; € X),

and outputs f(z1,...,2n) € Y. Let Q denote a set of

— 440

sets, where each set @ € Q is a subset of N”. (We note

that our constructions of garbled encryption do not re-

quire all the functions in the function class to have the
same arity. That is, our construction can simultaneously
handle, say a 2-ary and a 3-ary function. However, we
define garbled encryption for fixed arity functions for
notational simplicity throughout.)

A garbled encryption scheme GE for n-ary functions

F and query pattern Q consists of four algorithms

(GE.Setup, GE.KeyGen, GE.Enc, GE.Dec) described below:

— Setup. GE.Setup(1*) is a PPT algorithm that takes
as input a security parameter A and outputs the
master secret key GE.msk.

— Key Generation. GE.KeyGen(GE.msk, f,Q) is a
PPT algorithm that takes as input the master secret
key GE.msk, a function f € Fy, and a set Q € Q. It
outputs a functional key GE.sk; .

— Encryption. GE.Enc(GE.msk,m,) is a PPT algo-
rithm that takes as input the master secret key
GE.msk, a message m € X), and an index i € N.
It outputs a ciphertext GE.ct. GE.Enc is index de-
pendent and the ciphertext GE.ct has an associated
index i. If GE.Enc is asked to encrypt to an index j
to which it has previously encrypted, it will output
1.

— Decryption. GE.Dec(GE.sky g, GE.cty,...,GE.cty,)
is a deterministic algorithm that takes as in-
put a functional key GE.sky o and n ciphertexts
GE.cty,...,GE.ct,. It outputs a value y € Y\ U{L}.

Correctness.

There exists a negligible function negl(-) such that for
all sufficiently large A € N, every n-ary function f €
Fa, set @ € Q, point (j1, ..
(1,...,2n) € XY,

.,Jn) € @, and input tuple

GE.msk + GE.Setup (1/\) ;
GE.sky g < GE.KeyGen (GE.msk, f, Q) ;
Pr | GE.Dec(GE.sky g,
(GE.Enc (GE.msk, z;, ji));i—1)
fx1,...,20)

< negl(\)

where the probability is taken over the random coins of
all the algorithms.

Selective Security.
We model indistinguishability-based selective security
for garbled encryption in a similar manner as that for

Self-Processing Private Sensor Data via Garbled Encryption

MiFE. The difference is that a function query in the
game for garbled encryption consists of both a function
f € F and a set Q € Q and returns a function key
GE.sk¢ g corresponding to (f, Q). We defer the full de-
scription of this game to Appendix A.1.

Adaptive Security.

One can consider a stronger notion of security, called
adaptive security, where the adversary can interleave
the challenge messages and the function queries in any
arbitrary order. We will construct adaptively secure
garbled encryption in the random oracle model. We
defer the full description of this game to Appendix A.1.

In this paper, we will focus on garbled encryption
where Q is taken to be the set containing all sets of
singletons. That is, a valid function query consists of a
,Jn), and the
resulting function key allows for the function evalua-

function f and a tuple of indices (ji,...

tion on the tuple of ciphertexts corresponding to these
indices. We leave constructions of garbled encryption
where Q is defined differently to future work.

3.5 Time-Based Garbled Encryption

Using garbled encryption as defined above, it is possi-
ble to build a self-processing private sensor data system.
However, the system that results does not allow sen-
sors to update their stored keys, which causes all sensor
readings to be compromised if a sensor is compromised
by the attacker. To address this, we propose a more
general version of garbled encryption called time-based
garbled encryption that supports key updates. This will
improve the security of the resulting self-processing pri-
vate sensor data system by preserving the privacy of
past sensor readings in the event of a sensor compro-
mise.

The syntax of time-based garbled encryption is the
same as that of garbled encryption except that it ad-
ditionally has the key generation and encryption algo-
rithms take as input a time offset ¢ € N. Intuitively, a
time offset ¢ corresponds to the number of times that
the sensor will have updated its stored key (by hash-
ing) before encrypting a particular message. A function
key with time offset ¢ is compatible with encryptions
generated with time offset ¢. We define and construct
time-based garbled encryption in Appendix C.

— 441

4 Selectively Secure Garbled
Encryption

We construct a selectively-secure garbled encryption
scheme that supports an unbounded number of cipher-
texts in the standard model from one-way functions.
The idea behind the construction relies heavily on gar-
bled circuits, hence the name garbled encryption. In our
construction, a ciphertext is simply a set of wire keys
corresponding to the message, which can be used to eval-
uate garbled circuits. These wire keys will be derived by
a PRF evaluation that depends on the secret key and the
index j € N of the encryption. Intuitively, there are wire
keys associated with every index j and when we encrypt
to this index, we select the wire keys that correspond
to the message. Since no two ciphertexts have the same
index, only one set of wire keys will ever be revealed for
each index. A function key for a function f and a tuple
of indices (ji,...,Jn) is then simply a garbled circuit
that computes f with wire keys corresponding to the

indices (j1,...,Jn)-

4.1 Construction

Let PRF = (PRF.Gen,PRF.Eval) be a pseudorandom
function family with A-bit keys that outputs in {0,1}*
and let GC = (Gen, Grbl, GrbC, EvalGC) be a garbling
scheme. Our garbled encryption scheme GE for n-ary
functions F and query pattern Q, where Q is the set
containing all sets of singletons, is defined as follows:
Let £ = n - log|X\| denote the input length to cir-
cuits C representing functions f € F. We note that
the indices (i — 1) - log|Xy| + 1,...,i - log|Xy| corre-
spond to the indices of the input x; to C. Letting
r; = (i—1) -log|X\| and £, = log |X)|, we denote these
indices as r; + 1,...,7; + £,
— Setup. On input the security parameter 17,
GE.Setup runs PRF.Gen(1}) to obtain a PRF key
K and outputs GE.msk = K.

— Key Generation. On input the master secret
key GE.msk, a function f € F), and a set Q =
{(J1,---,Jn)} € Q, GE.KeyGen runs as follows:

Let C be a circuit for f. GE.KeyGen runs the garbled
circuit generation algorithm Gen(1}) to obtain the
secret parameters gcsk. It then sets the garbling keys
k; = (k?,k:jl) for j € [{] as follows: For i € [n], it
sets the garbling keys ky, 4o = (k) o,k o) for

Self-Processing Private Sensor Data via Garbled Encryption

a € [by] to be

kY, = PRF.Eval(GE.msk, j;|c||0)
k;, o = PRF.Eval(GE.msk, j||c||1).

Setting k = (k1,...,k¢), it then runs
GrbC(gesk, C,K) to obtain a garbled circuit C.
GE.KeyGen outputs

(C.Q)

as GE.sky g.

— Encryption. On input the master secret key
GE.msk, a message m and an index j € N, GE.Enc
runs as follows: GE.Enc is index dependent and
maintains a state S initialized to the empty set 0.
It first checks that 7 ¢ S. If j € S, it returns L.
Otherwise, it adds j to .S and proceeds.

Defining k0 and k. for a € [¢,,] by

10 = PRF.Eval(GE.msk, j||a]|0)
kl = PRF.Eval(GE.msk, jl|a||1)

as above, GE.Enc computes

K = (k*;i"(m)a o k?jj(m”m)

and outputs
(. k)

as GE.ct. We refer to j as the index of this cipher-
text.

— Decryption. On input a functional key GE.sky o =
(6, Q) and n ciphertexts GE.cty, ..., GE.ct,, GE.Dec
first parses each GE.ct; as (j;,k;) and asserts that
(J1s---,Jn) € Q. If not, it outputs L.

GE.Dec runs

EvaIGC(a7 (k1,...,ky))

to obtain out and outputs this value.

4.2 Correctness

The correctness of our garbled encryption scheme fol-
lows directly from the correctness of the garbling scheme
GC and Thm. 2. Consider any input tuple (z1,...,2,) €
X}, n-ary function f € Fy, and set Q = {(j1,..-,Jn)}
Let GE.skf g denote the function key for (f,Q) and
GE.Ctl, ..
(%n, jn), respectively. GE.sky ¢ is of the form (6, Q) and

.,GE.ct,, denote encryptions of (z1,j1),...,

— 442

ciphertexts GE.ct; are of the form (j;, k;) for ¢ € [n]. If
we let

k=(ki,...,kn),

we see that k is a vector of wire keys of length ¢ and for
i € [n] and « € [{;,], we note that

kr, +o = PRF.Eval(GE.msk, j;||at/|bs)

where b, is the ath bit of z;. But, C is the garbled
circuit obtained by running

gesk < Gen(17),
C « GrbC(gesk, C, (k) k1), ..., (K9, K})))

where
kb .. = PRF.Eval(GE.msk, j;||e||b)

for i € [n],a € [ly]. Since PRF is pseudorandom, it
follows that kY and k! will be distinct for all a € [(]
with all but negl()\) probability, and therefore, by the
correctness of GC and Thm. 2, it follows that GE.Dec
will output

EvalGC(C,k) = C(a1, . ..,zn) = f(z1,. ..

>$n)

with overwhelming probability.

4.3 Security

Theorem 4. Assuming that PRF is a pseudorandom
function family and GC is a chosen-wire key secure gar-
bling scheme implied by Thm. 2, then GE is a selectively-
secure garbled encryption scheme.

We give a proof of Thm. 4 in Appendix B.2.

5 Adaptively Secure Garbled
Encryption

We now describe our construction of adaptively secure
garbled encryption in the random oracle model. A nat-
ural idea for obtaining such a scheme is to instantiate
our construction of selectively secure garbled encryption
in Section 4 with an adaptively secure garbling scheme.
We, note, however, that all known adaptive garbling
schemes require larger wire key sizes than non-adaptive
garbling schemes. For example, wire keys in the scheme
of [10] have size twice that of keys in non-adaptive gar-
bling. If used naively, this would double the size of the

Self-Processing Private Sensor Data via Garbled Encryption

ciphertexts in the garbled encryption scheme, which in
turn increases the amount of information that the sen-
sors need to broadcast in our self-processing sensor data
application.

In order to avoid an increase in the requirements
on the sensors, we build an adaptive garbled encryp-
tion scheme where the ciphertext size remains the same
as in our selectively secure construction; however, the
function key sizes are larger.? We achieve this effect by
using the adaptive garbling scheme of [10] in a slightly
non-black-box manner as well as by making some mod-
ifications to our selectively secure garbled encryption
scheme.

Recall that each wire key in the scheme of [10] is
a tuple of the form ()?f,Zi), where X’f is a “masked”
label, and Z;’s denote the information that is used for
computing the masks. (See Remark 1 in Section 3.2.)
A potential way to ensure that wire keys are of size A
and not 2\ is to decouple the tuple ()Z'zb, Z;) such that
the wire key now consists of)?f and the Z; value (for
every wire key) is added to the garbled circuit descrip-
tion (thereby increasing its size). This, however, has the
effect of prematurely “fixing” the masks which breaks
the proof of adaptive security. To address this issue, we
use another masking layer, i.e., we carefully mask the
Z; values themselves such that the evaluator can obtain
the corresponding masks only once it has fixed its input
to the garbled circuit. Now, we can once again rely on
the adaptive security of the underlying garbling scheme,
with the added benefit that the wire keys are short. We
refer the reader to the formal construction below for
more details.

We note that our adaptively secure garbled encryp-
tion scheme for the simplified case of a single function
key and without any indexing, implies an adaptively se-
cure garbling scheme where the wire key sizes are the
same as in non-adaptive garbling schemes. To the best of
our knowledge, such a garbling scheme was not known
previously. To compare the tradeoff in the size of the
wire keys vs. the size of the garbled circuit, we observe
that for a circuit C' with ¢ inputs, the adaptively se-
cure garbling scheme of [10] has wire keys of size 2.
Our adaptively secure garbling scheme reduces the size
of the wire keys to be A, but increases the size of the
garbled circuit by an additive amount of A+ (4\)¢ com-
pared to the garbled circuit of [10]. If both the garbled
circuit and wire keys are given out together, then this

2 For the self-processing sensor data application, we find this
to be a desirable trade-off.

— 443

tradeoff is not worth it. However, in a self-processing
sensor data scheme, all the garbled circuits are gener-
ated during trusted setup and stored. The sensors then
generate the appropriate wire keys over the lifetime of
the system and broadcast them. In our situation, we
view this tradeoff as desirable since the pro of decreas-
ing the amount of transmitted data outweighs the con of
increasing the amount of initial storage. We believe that
there may be other settings where adaptively secure gar-
bling schemes with short wire keys are also desirable, in
which case, our adaptive garbling scheme would come
in handy.

5.1 Construction

We now proceed to give a formal description. Let Oy :
{0,133 — {0,1}* and Oy : {0,1}** — {0,1}?* be
random oracles. Let PRF = (PRF.Gen, PRF.Eval) be a
pseudorandom function family with A-bit keys that out-
puts in the range {0,1}* and let GC = (Gen, Grbl, GrbC,
EvalGC) be the adaptively secure garbling scheme speci-
fied by Thm. 3. Let O be the random oracle used by the
adaptively secure garbling scheme. Our garbled encryp-
tion scheme GE for n-ary functions F and query pattern
9, where Q is the set containing all sets of singletons,
is defined as follows:

Recall our notation from Section 4. Let ¢ = n -
log |Xy| denote the input length to circuits C' repre-
senting functions f € F. We note that the indices
(i—1)-log |Xx|+1,...,i-log | X| correspond to the indices
of the input z; to C. Letting r; = (i — 1) - log |X\| and
Ly, = log| X[, we denote these indices as r; +1,...,7; +
Lo
— Setup. On input the security parameter 17,

GE.Setup runs PRF.Gen(1}) to obtain a PRF key

K and outputs GE.msk = K.

— Key Generation. On input the master secret
key GE.msk, a function f € F), and a set Q =
{(j1,---,Jn)} € Q, GE.KeyGen runs as follows:

Let C be a circuit for f. GE.KeyGen then runs the

garbled circuit generation algorithm Gen(1*) to ob-

tain the secret parameters gcsk. It then generates a

uniformly random string V € {0,1}*.

It then sets ko, = (KO, kL) for a € [¢] as follows:

For i € [n], it sets the garbling keys k1o =
(k0i+a, k%i_m) for a € [£y,] to be

kY 4o = PRF.Eval(GE.msk, j;||||0)
k. o = PRF.Eval(GE.msk, j;|c|[1).

Self-Processing Private Sensor Data via Garbled Encryption

For a € [{], it sets Z, uniformly at random. Set
Z=71®...® Z. For a € [{], it sets Y, according
to the procedure specified by the garbling scheme of
Thm. 3 and then sets X2 as O1(k2||V]|Z) @ O(Ya).
Let k’ denote the garbling keys as determined by the
Xb’s, Y,’s and Z,’s. It then runs GrbC(gesk, C, k')
to obtain a garbled circuit C. For o € [(],b € {0,1},
let
T = (Zal|0%) ® O (K3 ||V).

For each «, with probability 1/2, swap the values of
T9 and T}.
GE.KeyGen outputs

(67 Vv, {ngv Tzi}ae[l]v Q)

as GE.sky g.

Encryption. On input the master secret key
GE.msk, a message m and an index j € N, GE.Enc
runs as follows: GE.Enc is index dependent and
maintains a state S initialized to the empty set 0.
It first checks that j ¢ S. If j € S, it returns L.
Otherwise, it adds j to .S and proceeds.

Defining k0 and k} for o € [(,,,] by

k0 = PRF.Eval(GE.msk, j||a]|0)
kL = PRF.Eval(GE.msk, j||a||1)

as above, GE.Enc computes
Kk — (kg"”“")a o k;?:“"”m)

and outputs
(J.k)

as GE.ct. We refer to j as the index of this cipher-
text.

Decryption. On input a functional key

GE.skpg = (C,V{T, T } aei: Q) and n cipher-
texts GE.cty,...,GE.ct,, GE.Dec first parses each
GE.ct; as (j;, k;) and asserts that (j1,...,jn) € Q.
If not, it outputs L.

Let k = (ki,...,ky). For o € [¢], GE.Dec recovers
Zo by computing Oa(ka||V) @ TY for b € {0,1} and
setting Z, to be the A-bit prefix of the recovered
value whose last A bits are all 0. Once all the Z,’s
are recovered, GE.Dec computes the Y,’s and Z =
P Z, and then sets X, as O1(kq||V]|Z) ® O(Ya).
It then runs EvalGC on C with the X.’s to recover
the output.

— 444

5.2 Correctness

The correctness of our garbled encryption scheme fol-
lows directly from the correctness of the garbling scheme
GC and Thm. 3. Consider any input tuple (x1,...,2,) €
X7, n-ary function f € Fy, and set Q@ = {(j1,..-,Jn)},
where z; = zy if j; = jy. Let GE.sky g denote the
function key for (f,Q) and GE.cty,...,GE.ct, denote
encryptions of (x1,71),..., (Zn,jn), respectively (where
GE.ct; = GE.ct; if (:L‘i,ji) = (l‘i/,ji/). GE.SkﬁQ is of the
form (C,V,{T? T)}aelq, Q) and ciphertexts GE.ct; are

a) T

of the form (j;,k;) for ¢ € [n]. If we let

k= (kla"'7kn)7

we see that k is a vector of wire keys of length ¢. For a €
[¢], decryption proceeds by computing Oa(ke||V) @ T
and Oz (ko||V) ® TL. For b € {0,1}, we see that

Oa(ka|[V) & TE = Os(kal|V) & (Zal|0™) @ O2(KY||V)

and thus decryption obtains (Z,||0*) when ko = k% and
a uniformly random looking value otherwise. Thus, we
see decryption correctly recovers Z, with overwhelming
probability. Then, we note that O1 (k. ||V]|Z) @ O(Ys) is
the X, used by the garbling algorithm. So, decryption
correctly recovers the labels X, and therefore, by the
correctness of the garbling scheme, EvalGC run on C

and the X,’s will give us f(z1,...,2n).

5.3 Security

Theorem 5. Assuming that PRF is a pseudorandom
function family and GC is the adaptively secure garbling
scheme of Thm. 3, then GE is an adaptively secure gar-
bled encryption scheme.

We give a proof of Thm. 5 in Appendix B.3.

Note on Concrete Security.

For a practical deployment of garbled encryption, one
might be interested in the concrete security of our
scheme. The concrete security depends on and follows
immediately from the concrete security of the under-
lying garbling scheme and the number/size of garbled
circuits released. In our implementation, we used the
garbled circuit implementation of [21], which improves
on the JustGarble [9] garbled circuit implementation by
implementing half-gates [34]. In order to obtain adap-
tively secure garbled circuits, we applied the random

Self-Processing Private Sensor Data via Garbled Encryption

oracle model transformation of [10]. Both [9] and [10]
provide thorough concrete security analysis in the ran-
dom oracle model of the garbled circuit constructions,
and we refer an interested reader to these papers for
further details.

6 From Garbled Encryption to a
Self-Processing Private Sensor
Data System

The garbled encryption constructions of Secs. 4 and 5
immediately give rise to a self-processing private sensor
data system.

Let GE = (GE.Setup, GE.KeyGen, GE.Enc, GE.Dec) be
a garbled encryption scheme. Let n denote the number
of sensors and let T' denote the number of time steps
for the sensors and f; for ¢t € [T] denote the function
to be computed on the sensor readings during the tth
time step (for notational simplicity, we only consider one
function and one sensor reading per time step, but the
scheme can naturally be extended to support multiple
functions and sensor readings per time step). During the
trusted ceremony, a key K < GE.Setup(1") is generated
and stored on each of the sensors. For ¢t € [T], com-
pute GE.sk; + GE.KeyGen(K, ft, (i1, 12, -
(41,42, . ..,iyn) are the indices of the sensor readings that
ft is computed on. The function key data is set to be
(GESkt)te[T]-

Once the trusted setup is completed, at time step t,

.,in)), where

the sensor i takes a measurement m; and broadcasts
GE.Enc(K,m;,i||t). By the correctness of garbled en-
cryption, any monitoring user with access to the func-
tion key data is able to learn the desired function eval-
uation of the sensor readings at every time step. By the
security of garbled encryption, the private data owner’s
privacy is protected against an attacker that does not
compromise the sensors.

Unfortunately, the above self-processing private sen-
sor data system is rendered completely insecure in the
event of a sensor compromise, as an attacker that learns
the key K is able to decrypt all encrypted readings
and learn all the private sensor data. To address this,
we propose having the sensors update their keys at
each time step by hashing them. We formalize this
intuition by defining, constructing, and proving adap-
tive security for time-based garbled encryption in Ap-
pendix C. In the security notion for time-based gar-
bled encryption, the adversary is able to adaptively

— 445

choose a time t at which to compromise the sensors
and learn the key stored on them. In a similar manner,
we can use time-based garbled encryption to instan-
tiate a self-processing private sensor data system. Let
TGE = (TGE.Setup, TGE.KeyGen, TGE.Enc, TGE.Dec) be
a time-based garbled encryption scheme. Let B be a
bound on the maximum number of time steps from
the current time in which a sensor reading will be
used in a function computation. As before, a key
K « TGE.Setup(1?) is generated and stored on each
of the sensors. For t € [T], function keys TGE.sk; <«
TGE.KeyGen(K, ft, (i1,12,...,in),t) are generated. Once
this setup is complete, at time step ¢, the sensor i
storing key K; takes measurement m; and broadcasts
TGE.Enc(K;, my,i||t + j,j) for j = 0,..., B. After that
time step has elapsed, it updates its stored key K; to be
O(Kj;), where O is the random oracle used in the time-
based garbled encryption construction to ratchet keys
forward. Observe that since the key stored on a sensor
at time t is O (K), sensor i’s outputs at time t are
equivalent to if it had run TGE.Enc(K,mg,i||[t+ j,t+ 7).
However, the sensor only knows O®)(K) and not K,
so an attacker that compromises the sensor only recov-
ers O()(K). By adaptive security of time-based garbled
encryption (see Appendix C), the private data owner’s
privacy for past sensor readings is protected against an
attacker that compromises the sensors.

Remark 2. Observe that in the above scheme, if the
attacker compromises one sensor, all sensors are com-
promised. Ideally, one would want only the single sensor
to be compromised. Unfortunately, our approach cannot
achieve this due to the fact that garbled circuits do not
provide any security guarantee if the adversary is able
to learn both wire keys for one of the inputs. Thus, com-
promising a single sensor allows the adversary to learn
both wire keys for a single input, and we can no longer
appeal to garbled circuit security to argue that the other
sensors’ readings remain hidden. Similarly, we require
that all function computations are performed on cipher-
texts that were computed using the same underlying key
(even if the sensor readings were taken at different time
steps). The reason for this is that if ciphertexts were
generated with respect to different keys, then if the ad-
versary compromises the sensors and learns one of the
keys, we will be in a similar situation where the adver-
sary can learn both labels for some of the input wires,
and we will be unable to appeal to garbled circuit se-
curity. To avoid requiring computation only on sensor
readings taken during the same time step, we introduce a
bound B and have the sensors encrypt the same reading

Self-Processing Private Sensor Data via Garbled Encryption

Table 2. Garbled Encryption Evaluation Results*

— 446

Function # Inputs £ GE.KeyGen GE.Dec |GE.ct| |GE.sk| |[selGE.sk|
DNF 64 1-bit 27 ps l4ps 16B 8.7kB 2.0 kB
DNF 128 1-bit 54 ps 28 us 16 B 17.4 kB 4.1 kB
DNF 256 1-bit 107 ps 56 us 16 B 34.8 kB 8.2 kB

Thresh 8 32-bit 129 ps 78 us 512 B 20.9 kB 7.2 kB

Thresh 16 32-bit 523 us 319 us 512 B 42.8 kB 15.4 kB
Max 8 16-bit 77T ps 48 us 256 B 14.2 kB 7.2 kB
Max 8 32-bit 171 ps 107 us 512 B 28.0 kB 14.3 kB
Max 16 32-bit 613 us 38 us 512 B 58.2 kB 30.7 kB

* For all settings of parameters, running GE.Setup and GE.Enc took < 1 us and

therefore this information is omitted from the table. The results in this table are for

adaptively secure garbled encryption except for |selGE.sk|, which is the size of function

keys if we only require selective security.

under future keys in order to use this reading in future
computations. We note that introducing this bound is
only one solution; if the functions f; follow some known
pattern, then the sensors could be programmed to easily
know which time step the sensor reading will be com-
puted upon and encrypt under the key for that time step
by hashing the stored key.

7 Implementation and Evaluation

In order to determine the practical performance of gar-
bled encryption for our self-processing private sensor
data application, we implemented it and ran several
tests on a variety of parameter choices. We implemented
both the selectively secure and adaptively secure vari-
ants, but report on the performance numbers for the
adaptively secure variant.

Our starting point was the garbled circuit imple-
mentation of [21], which improves on JustGarble [9], an
open source library for garbling and evaluating boolean
circuits, by implementing half-gates [34], among other
improvements.

7.1 Implementation Details
The entire implementation was done in C. We used the

standard 128-bit value for the security parameter, set-
ting A = 128. We viewed messages as binary strings and

allowed the length of messages, ¢, and the number of
inputs to be specified by the user. We instantiated the
underlying PRF in our construction using AES128 and
for adaptively secure garbled encryption, used fixed-key
AES as the random oracle. To ratchet keys forward, one
can use SHA256 as the underlying hash function. We
used the JustGarble library to build all circuits needed
in SCD (Simple Circuit Description) format and garble
them. We used the circuits of [23] as building blocks.
Although our scheme is easily parallelizable (different
garbled circuits and wire keys can be computed inde-
pendently), we did not utilize multiple threads and ran
on a single core. Further implementation details of Just-
Garble can be found in [9] and the updated library that
supports half-gates can be found in [21].

The garbling libraries of [21] and JustGarble [9] im-
plement selectively secure garbled circuits. They do not
support chosen wire-keys since the 0 and 1 labels must
XOR to some fixed secret block. For adaptively secure
garbled encryption, it was necessary to use our chosen
wire-key transformation and the transformations of [10]
to obtain a fine-grained adaptively secure garbled circuit
implementation. We then used this adaptively secure
garbled circuit scheme as the building block for our gar-
bled encryption implementation. In our construction,
when we padded by 0’s to ensure correctness of encryp-
tion, we used correctness parameter of 80. With this
parameter setting, a crude union bound for Coalition A-
Country B treaty example gives around a 1/ 253 chance

Self-Processing Private Sensor Data via Garbled Encryption

of a single decryption error at any point over the course
of the 25 years of the treaty.

7.2 Evaluation

All evaluations were ran on a 2012 MacBook Pro laptop
running Ubuntu 16.04 LTS that supports the AES-NI
instruction set. The laptop has a 2.6 GHz Intel Core
i7 processor and 16 GB RAM. Since we did not lever-
age parallelism, all evaluations were performed using a
single core. The evaluation results for our adaptively se-
cure garbled encryption scheme for various functionali-
ties, numbers of inputs, and input lengths can be found
in Table 2. All timings were taken with microsecond
resolution and were the average of 100,000 trials. We
give timings for the functions DNF, Thresh, and Max.
DNF is the function that takes an ¢-bit input, breaks
it into 8 blocks of ¢/8 bits each, computes the AND of
all the bits in each block, and then computes the OR
of all of the AND computations. Thresh is the standard
threshold function that sums all the inputs and outputs
whether the resulting sum is larger than some specified
threshold value. Max is the standard maximum function
that outputs the largest value in a series of input values.
We include the sizes of all ciphertexts and function keys
to give a sense of the amount of data that may need to
be transmitted. Furthermore, we also include the size
of garbled encryption secret keys for the selectively se-
cure variants in Table 2 in order to give a sense of the
amount of space that can be saved if one is satisfied with
the weaker notion of selective security.

7.3 Self-Processing Private Sensor Data
Performance Analysis

Our garbled encryption implementation can be imme-
diately used to build self-processing private sensor data
schemes (see Sec. 6). Looking at the performance of our
implementation (Table 2), we see that setup and en-
cryption are extremely fast (< 1 us) for all parameter
settings and functionalities. Additionally, since the ci-
phertext is simply ¢ 128-bit wire keys, the ciphertexts
are very small, with sizes in the bytes. This is partic-
ularly useful if the data collectors have limited compu-
tational power and cryptographic capabilities, as they
need to only be able to run several AES evaluations and
transmit a few hundred bytes of data. Key generation
and decryption, which correspond to garbling a circuit
and evaluating it, respectively, are also both extremely

— 447

fast, with timings in the tens to hundreds of microsec-
onds. With function keys in the kilobytes, downloading
a function key from a public source is feasible for users
wishing to monitor the system.

From our evaluation results, we observe the prac-
ticality of garbled encryption to the following self-
processing sensor data scenarios:

Scenario 1: Suppose there are 64 sensors, 8 each in
8 different locations, taking pressure readings every 10
minutes. The sensors either report normal pressure (0)
or abnormal pressure (1). We would like to issue a warn-
ing if all of the sensors in an area report abnormal pres-
sure for 4 consecutive measurements, while keeping the
readings hidden as we do not want the public to know
which location has an issue and the sensors may be
prone to false positives, which may cause undue panic
if the data is released in the clear.

This corresponds to evaluating DNF on an input
x1]|...||xs with each z; € {0,1}32, where each x; corre-
sponds to a location and contains the last 4 readings of
all 8 sensors at that location. So, we will need to com-
pute wire keys for these inputs, garble the DNF function,
and then evaluate the garbled circuit to determine the
function output on these inputs.

Based on our results in Table 2, we see that if
we wanted such a warning system to remain online
for 10 years and output a signal (“everything fine” or
“anomaly detected”) every 10 minutes, this would re-
quire generating 525,600 garbled circuits, which could
be done in 56.2 seconds and would take 18.3 GB of
storage. Moreover, once the trusted authority is done
generating these garbled circuits (56.2 seconds into the
10 years), it could go offline forever after it uploaded
the 18.3 GB of garbled circuits, and the system would
function correctly for the next 10 years. Furthermore,
an interested party who wishes to monitor this warning
system needs to download only 34.8 kB of garbled cir-
cuit data and 4.1 kB of ciphertext data every 10 minutes
and perform a 56 us computation. Note that the sen-
sors can be very weak computational devices and need
only be capable of performing a single AES evaluation
and broadcasting 16 bytes every 10 minutes. Addition-
ally, anyone wishing to shut down the warning system
would need to tamper with the sensors deployed in the
field, since after 56.2 seconds, all information necessary
to perform the evaluation (apart from the still to be gen-
erated sensor data and its published AES evaluations)
is publicly available.

Scenario 2: Recalling the example in the introduc-
tion, we saw that a coalition of countries (Coalition A)

Self-Processing Private Sensor Data via Garbled Encryption

Table 3. Self-Processing Private Sensor Data Performance Summary

— 448

Sensors Evaluation Frequency System Duration Trusted Setup Time Data Size/Evaluation Evaluation Time
Scenario 1 64 10 min. 10 years 56.2 seconds 38.9 kB 56 us
Scenario 2 16 1 hour 25 years 2.2 minutes 66.4 kB 385 us

Scenario 1 corresponds to the DNF functionality on 256 1-bit inputs. Scenario 2 corresponds to the Max functionality on 16 32-bit

inputs.

wanted to negotiate a 25-year treaty with Country B
that would allow each country in Coalition A to learn
the maximum radiation level observed every hour at any
of the 16 sensors deployed throughout Country B. As-
suming the radiation measurement can be given as a
32-bit integer, we see from our results in Table 2 that at
the trusted setup ceremony, Country B would need to
generate 219,000 garbled circuits, which could be done
in 2.2 minutes and would take 12.7 GB of storage. Once
the garbled circuits have been given to Coalition A and
the sensors appropriately deployed in Country B, each
member of Coalition A could learn the maximum radi-
ation level observed every hour for the next 25 years by
downloading 8.2 kB of ciphertext data every hour and
performing a 385 us computation.

We summarize these results in Table 3. We observe
that, in general, the trusted setup time scales linearly
with the total system duration divided by the evaluation
frequency, as this corresponds to the number of garbled
circuits that must be generated at setup time. The data
size/evaluation corresponds to the size of the function
key and ciphertext data that will need to be downloaded
to perform a function evaluation. The evaluation time
is simply the time to run GE.Dec. Both of these val-
ues do not depend on the evaluation frequency or the
system duration, but rather only on the complexity of
the function to be evaluated (which, in turn, is depen-
dent on the number of sensors times the bit-length of
the sensor readings as this is the length of the input to
the circuit). We view this as a significant positive, as
increasing the system duration only increases the initial
trusted setup time and the amount of function key data
to be stored, but does not affect the performance of the
system at each time step.

8 Practical Deployment
Challenges

Our garbled encryption implementation is intended as
a proof of concept, and its performance suggests that
our construction could be used to build practical self-
processing sensor data schemes. However, there are var-
ious challenges that would need to be addressed before
one would be confident in deploying such a system.
One desirable property would be for our system to
be robust to sensor failures. As currently described, a
single sensor failure can render the entire system un-
usable. To mitigate this, in practice, one can either (i)
run several trusted setups and deploy the entire sys-
tem several times in parallel or (ii) deploy the sensors
in a redundant manner. If N copies of the system are
deployed according to solution (i), then the amount of
stored function key data increases by a factor of N and
the system stays intact unless one sensor from each of
the N copies fails. If N copies of each sensor are de-
ployed (with different labels, but measuring the same
data), then the amount of stored function key data in-
creases by N™ where m is the arity of the functions
the scheme supports. However, this system remains in-
tact unless all N copies of the same sensor fail. Which
method to employ must be determined based on the
likelihood of sensor failure and the arity of functions
that the scheme intends to support. Additionally, for
systems intended to remain functional for a long period
of time, it may be necessary to periodically replace sen-
sors. This can be done by executing the trusted setup
again every so often, or preferably, having the initial
trusted setup also procure “replacement” sensors to be
installed at an appropriate point in the future.
Another deployment consideration is the potential
compromise of sensors. Indeed, each sensor must be
equipped with a secret key, which, if extracted, compro-
mises the entire system from that point forward. Our
first observation is that the sensors are deployed by the
data owner. That is, in our treaty scenario, Country

Self-Processing Private Sensor Data via Garbled Encryption

B deploys the sensors in its own territory and should
be greatly incentivized to protect them from outside
tampering. However, in situations where Country B is
incentivized to lie about the sensor readings, we want
protection from tampering by Country B itself as well.
To this end, the sensors can be equipped with a tamper-
resistant module [5] to prevent Country B from tamper-
ing with the sensor without destroying the key in the
process. Moreover, the sensors can be equipped with a
trusted platform module (TPM) or a secure hardware
enclave to protect the key, with all encryption opera-
tions carried out in the trusted execution environment.
We can also require Country B to be subject to periodic
inspections that would verify that the sensors remain
correctly deployed and have not been tampered with if
the protection provided by the tamper-resistant module
is not sufficient.

A final concern is that of clock synchronization. In
particular, in order for the system to remain accurate,
we need noncommunicating sensors to have the same
system time. Over the course of the lifetime of the sys-
tem, the various clocks on the different sensors may fall
out of sync. A first observation is that in a variety of sce-
narios (for example, in cases where we are taking a read-
ing every hour), taking the reading exactly on the hour
is not of importance, and we would not expect the clocks
to go out of sync by more than an hour. For situations
with much more frequent readings, clock synchroniza-
tion may be an issue. In such cases, one would use the
various techniques on clock synchronization found in the
literature, which can handle even a limited connectivity
network between the sensors (see, for example, [16]).

9 Conclusions and Related Work

Conclusions

Our garbled encryption implementation was intended
as a proof of concept to show that our construction is
practical for various self-processing sensor data scenar-
ios. We believe that garbled encryption itself is a useful
primitive that may be useful for other applications be-
yond self-processing sensor data.

Garbled Circuits

Garbled circuits were first introduced by Yao [33] and
have been studied extensively over the years. [26] pro-
vides a formal proof and a rigorous treatment of Yao’s
construction and [11] gives abstractions of garbling

— 449

schemes and formal proofs of security. There have been
many works, such as [8, 22-24, 27, 30, 34], dedicated to
reducing the amount of data that must be transmitted
per garbled gate. Additionally, there have been various
implementations (for example, [9, 20, 21, 32, 34]) of gar-
bled circuits.

Multi-input Functional Encryption and Practical FE
MiFE was first introduced in [19]. Constructing such
schemes and variants has been a topic of much research
in recent years [3, 4, 12, 14, 15, 17, 25]. [28] intro-
duced a relaxation of functional encryption, called con-
trolled functional encryption, in order to obtain an im-
plementable variant of FE. While our study of garbled
encryption comes from a similar motivation (namely,
efficient improvements), our approach is quite different.
Specifically, unlike garbled encryption, controlled FE re-
quires a trusted authority to remain online at all times
and issue function keys for a function and ciphertext
pair that depend on the ciphertext. Furthermore, their
work focuses on the single-input setting, whereas we fo-
cus on the multi-input setting.

10 Acknowledgements

We thank David J. Wu for pointing us to the garbled cir-
cuit library of [21] and the anonymous PETS reviewers
for suggesting key evolution to protect the data owner’s
past privacy in the event that a sensor is compromised.

Nathan Manohar and Amit Sahai are supported in
part from DARPA SAFEWARE and SIEVE awards,
NTT Research, NSF Frontier Award 1413955, NSF
grant 1619348, BSF grant 2012378, a Xerox Faculty Re-
search Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Founda-
tion Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects
Agency through Award HR00112020024 and the ARL
under Contract W911NF-15-C- 0205. The views ex-
pressed are those of the authors and do not reflect the
official policy or position of the Department of Defense,
the National Science Foundation, NTT Research, or the
U.S. Government.

Abhishek Jain is supported in part by DARPA Safe-
ware grant W911NF-15-C-0213, NSF grant 1814919,
Samsung research award, Johns Hopkins University
Catalyst award, and NSF CAREER award 1942789.

Self-Processing Private Sensor Data via Garbled Encryption

References

(1]
(2]
(3]

(5]

(7]
(8]

(9]

(10]

(11]

(12]

(13]

[n.d.]. http://www.basel.int/

[n.d.]. https://unfccc.int/process/the-kyoto-protocol
Michel Abdalla, Romain Gay, Mariana Raykova, and
Hoeteck Wee. 2017. Multi-input Inner-Product Functional
Encryption from Pairings. In Advances in Cryptology - EU-
ROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part |I.
601-626.

Prabhanjan Ananth and Abhishek Jain. 2015.
guishability Obfuscation from Compact Functional Encryp-
tion. In Advances in Cryptology — CRYPTO 2015: 35th
Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, Rosario Gennaro
and Matthew Robshaw (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 308-326. https://doi.org/10.1007/978-
3-662-47989-6_15

Ross J. Anderson. 2008. Security Engineering: A Guide to
Building Dependable Distributed Systems (2 ed.). Wiley
Publishing.
BBC. [n.d.].
34324772
BBC. [n.d.]. Iran nuclear deal: Key details.
bbc.com/news/world-middle-east-33521655
D. Beaver, S. Micali, and P. Rogaway. 1990. The Round
Complexity of Secure Protocols. In Proceedings of the
Twenty-second Annual ACM Symposium on Theory of Com-
puting (STOC '90). ACM, New York, NY, USA, 503-513.
https://doi.org/10.1145/100216.100287

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and
Phillip Rogaway. 2013. Efficient Garbling from a Fixed-Key
Blockcipher. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (SP '13). IEEE Computer Society,
Washington, DC, USA, 478-492. https://doi.org/10.1109/
SP.2013.39

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012.
Adaptively Secure Garbling with Applications to One-Time
Programs and Secure Outsourcing. In Advances in Cryptol-
ogy — ASIACRYPT 2012, Xiaoyun Wang and Kazue Sako
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 134—
153.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012.
Foundations of Garbled Circuits. In Proceedings of the 2012
ACM Conference on Computer and Communications Se-
curity (CCS '12). ACM, New York, NY, USA, 784-796.
https://doi.org/10.1145/2382196.2382279

Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai,
Mark Zhandry, and Joe Zimmerman. 2015. Semantically
Secure Order-Revealing Encryption: Multi-input Functional
Encryption Without Obfuscation. In Advances in Cryptology
- EUROCRYPT 2015: 34th Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
1. Springer Berlin Heidelberg, Berlin, Heidelberg, 563-594.
https://doi.org/10.1007 /978-3-662-46803-6_19

Dan Boneh, Amit Sahai, and Brent Waters. 2011. Func-
tional Encryption: Definitions and Challenges. In Theory of

Indistin-

https://www.bbc.com /news/business-

https://www.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

— 450

Cryptography - 8th Theory of Cryptography Conference,
TCC 2011, Providence, RI, USA, March 28-30, 2011. Pro-
ceedings. 253-273.

Zvika Brakerski, llan Komargodski, and Gil Segev. 2016.
Multi-input Functional Encryption in the Private-Key Set-
ting: Stronger Security from Weaker Assumptions. In Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part Il. 852—-880.

Brent Carmer, Alex J. Malozemoff, and Mariana Raykova.
2017. 5Gen-C: Multi-input Functional Encryption and Pro-
gram Obfuscation for Arithmetic Circuits. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. 7T47-764.

Flaviu Cristian. 1989. Probabilistic Clock Synchronization.
Distrib. Comput. 3, 3 (Sept. 1989), 146-158. https://doi.
org/10.1007/BF01784024

Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and
Sergey Gorbunov. 2017. IRON: Functional Encryption using
Intel SGX. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017.
765-782. https://doi.org/10.1145/3133956.3134106
Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987.
How to Play any Mental Game or A Completeness Theorem
for Protocols with Honest Majority. In STOC.

Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek
Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai, Elaine
Shi, and Hong-Sheng Zhou. 2014. Multi-input Func-
tional Encryption. In Advances in Cryptology — EURO-
CRYPT 2014: 33rd Annual International Conference on

the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg, 578-602.
https://doi.org/10.1007/978-3-642-55220-5_32

Adam Groce, Alex Ledger, Alex J. Malozemoff, and Arkady
Yerukhimovich. 2016. CompGC: Efficient Offline/Online
Semi-honest Two-party Computation. Cryptology ePrint
Archive, Report 2016/458. https://eprint.iacr.org/2016/
458.

Karthik A. Jagadeesh, David J. Wu, Johannes A.

Birgmeier, Dan Boneh, and Gill Bejerano. 2017.

Deriving genomic diagnoses without revealing pa-

tient genomes. Science 357, 6352 (2017), 692—

695. https://doi.org/10.1126/science.aam9710

arXiv:http://science.sciencemag.org/content/357,/6352/692.full.pdf

Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
2014. FleXOR: Flexible Garbling for XOR Gates That Beats
Free-XOR. In Advances in Cryptology - CRYPTO 2014 -
34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part Il. 440-457.
Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas
Schneider. 2009. Improved Garbled Circuit Building Blocks
and Applications to Auctions and Computing Minima. In
Proceedings of the 8th International Conference on Cryp-
tology and Network Security (CANS '09). Springer-Verlag,
Berlin, Heidelberg, 1-20. https://doi.org/10.1007/978-3-
642-10433-6_1

http://www.basel.int/
https://unfccc.int/process/the-kyoto-protocol
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://www.bbc.com/news/business-34324772
https://www.bbc.com/news/business-34324772
https://www.bbc.com/news/world-middle-east-33521655
https://www.bbc.com/news/world-middle-east-33521655
https://doi.org/10.1145/100216.100287
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/BF01784024
https://doi.org/10.1007/BF01784024
https://doi.org/10.1145/3133956.3134106
https://doi.org/10.1007/978-3-642-55220-5_32
https://eprint.iacr.org/2016/458
https://eprint.iacr.org/2016/458
https://doi.org/10.1126/science.aam9710
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-642-10433-6_1

Self-Processing Private Sensor Data via Garbled Encryption

[24] Vladimir Kolesnikov and Thomas Schneider. 2008. Im-
proved Garbled Circuit: Free XOR Gates and Applica-

tions. In Proceedings of the 35th International Collo-

quium on Automata, Languages and Programming, Part Il
(ICALP '08). Springer-Verlag, Berlin, Heidelberg, 486—-498.
https://doi.org/10.1007 /978-3-540-70583-3_40

Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent
Carmer, Adam Foltzer, Daniel Wagner, David W. Archer,
Dan Boneh, Jonathan Katz, and Mariana Raykova. 2016.
5Gen: A Framework for Prototyping Applications Using Mul-
tilinear Maps and Matrix Branching Programs. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS '16). ACM, New York, NY,
USA, 981-992. https://doi.org/10.1145/2976749.2978314
Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security
of Yao's Protocol for Two-Party Computation. J. Cryptol.
22, 2 (April 2009), 161-188. https://doi.org/10.1007/
s00145-008-9036-8

Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Pri-
vacy Preserving Auctions and Mechanism Design. In Pro-

(25]

26]

(27]

ceedings of the 1st ACM Conference on Electronic Com-
merce (EC '99). ACM, New York, NY, USA, 129-139.
https://doi.org/10.1145/336992.337028
[28] Muhammad Naveed, Shashank Agrawal, Manoj Prab-
hakaran, XiaoFeng Wang, Erman Ayday, Jean-Pierre
Hubaux, and Carl Gunter. 2014. Controlled Functional
Encryption. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Secu-
rity (CCS '14). ACM, New York, NY, USA, 1280-1291.
https://doi.org/10.1145/2660267.2660291
Adam O'Neill. 2010. Definitional Issues in Functional En-
cryption. IACR Cryptology ePrint Archive 2010 (2010), 556.
http://eprint.iacr.org/2010/556
Benny Pinkas, Thomas Schneider, Nigel P. Smart, and
Stephen C. Williams. 2009. Secure Two-Party Computa-
tion Is Practical. In Proceedings of the 15th International

[29]

(30]

Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology (ASI-
ACRYPT '09). Springer-Verlag, Berlin, Heidelberg, 250-267.
https://doi.org/10.1007 /978-3-642-10366-7_15

Amit Sahai and Brent Waters. 2005. Fuzzy Identity-Based
Encryption. In Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings. 457-473.
Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza
Sadeghi, Thomas Schneider, and Farinaz Koushanfar.
2015. TinyGarble: Highly Compressed and Scalable Se-
quential Garbled Circuits. In Proceedings of the 2015
IEEE Symposium on Security and Privacy (SP '15).

IEEE Computer Society, Washington, DC, USA, 411-428.
https://doi.org/10.1109/SP.2015.32

Andrew Chi-Chih Yao. 1986. How to Generate and Ex-
change Secrets. In Proceedings of the 27th Annual Sym-

(31]

(32]

(33]

posium on Foundations of Computer Science (SFCS '86).
IEEE Computer Society, Washington, DC, USA, 162-167.
https://doi.org/10.1109/SFCS.1986.25

Samee Zahur, Mike Rosulek, and David Evans. 2015. Two
Halves Make a Whole - Reducing Data Transfer in Garbled
Circuits Using Half Gates. In Advances in Cryptology - EU-

(34]

— 451

ROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part Il. 220—
250.

A Deferred Definitions

A.1 Security Definition for Garbled
Encryption

Definition 5 (IND-secure Garbled Encryption). A
garbled encryption scheme GE for n-ary functions
F = {Falremy, message space X = {X\}regn, and
query pattern Q is selectively secure if for any PPT
adversary A, there exists a negligible function p(-) such
that for all sufficiently large X\ € N, the advantage of A
is

AdvSE =
PrExptSE (11, 0) = 1] — Pr[ExptSF (1%, 1) = 1]
< u(),

where for each b € {0,1} and A\ € N, the experiment

ExptSE (1%, b) is defined below:

1. Chal computes GE.msk <— GE.Setup(1*).

2. Challenge message queries: The following is re-
peated at most a polynomial number of times: A
submits queries, (T;0,%i1,7:), With z;0,2;1 € X
and j; € N, to the challenger Chal. Chal computes
GE.ct; < GE.Enc(GE.msk,z; 4, ;). The challenger
Chal then sends GE.ct; to the adversary A.

3. Function queries: The following is repeated at
most a polynomial number of times: A submits
a function query (f,Q) € Fa x Q to Chal. The
challenger Chal computes GE.sky¢ g <+ GE.KeyGen(
GE.msk, f, Q) and sends it to A.

4. If there exists a function query (f,Q) and challenge
message queries ((ml,o,xlyl,jl), ooy (Tny0, xnyl,jn))
such that f(z1,0,...,%n0) # f(Z1,1,...,2n,1) and
(J1,--+47n) € Q for j1,...,jn € N, then the output
of the experiment is set to L. Otherwise, the output
of the experiment is set to b', where b’ is the output

of A.

Definition 6 (Adaptive IND-secure Garbled Encryption).

A garbled encryption scheme GE for n-ary functions
F = {Falremy, message space X = {X\}regn, and
query pattern Q is adaptively secure if for any PPT
adversary A, there exists a negligible function p(-) such

https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1145/2976749.2978314
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/336992.337028
https://doi.org/10.1145/2660267.2660291
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1109/SFCS.1986.25

Self-Processing Private Sensor Data via Garbled Encryption

that for all sufficiently large A € N, the advantage of A
18

AdvSE =
PriExptSE (11, 0) = 1] — Pr[ExptSE(1*,1) = 1]

< p(A),

where for each b € {0,1} and A\ € N, the experiment

Expt¢G4E(1)‘,b) is defined below:

1. Chal computes GE.msk <— GE.Setup(1*).

2. The adversary is allowed to make the following two
types of queries in any arbitrary order.

— Challenge message query: A submits a
query, (1,x;0,%i1), with x;0,z;1 € Xy and
it € N, to the challenger Chal. Chal computes
GE.ct; < GE.Enc(GE.msk,x;p,4). The chal-
lenger Chal then sends GE.ct; to the adversary
A.

— Function query: A submits a function query
(f,Q) € Fa x Q to Chal. The challenger Chal
computes GE.sky g < GE.KeyGen(GE.msk, f, @)
and sends it to A.

3. If there exists a function query (f,Q) and challenge
message queries ((il, T1,0,%1,1)s - -+ 5 (fny Tn,0, mnl))
such that f(z1,0,...,2n0) # f(Z11,...,Zn,1) and
(i1,.-,in) € Q foriy,...,in € N, then the output
of the experiment is set to L. Otherwise, the output
of the experiment is set to b, where b’ is the output

of A.

B Deferred Proofs

B.1 Proof of Thm. 2

By Thm. 1, there exists GC = (Gen, Grbl, GrbC, EvalGC),
a secure garbling scheme. Let II = (KeyGen, Enc, Dec) be
an IND-CPA secure symmetric key encryption scheme.
Consider the following garbling scheme GC' = (Gen/,
Grbl’, GrbC’, EvalGC') that is chosen-wire key secure.

— Gen' = Gen and Grbl’ = Grbl.

~ GrbC/(gcsk, C, E) GrbC’ first generates wire keys k'
uniformly at random. It then runs GrbC(gcsk, C, E')
to obtain C. For all i € [(] and j € {0,1}, GrbC’
computes ctg = Enc(kg, k’f||00) where there are
A 0’s padded at the end of the message. For each
i € [¢], it generates a random bit b; € {0,1} and sets
ot’d = ct? and ') = ct;%. Tt then outputs

(6’ {Ct’g}ie[lf],je{m})

— 452

as its garbled circuit.

~ EvalGC'((C, {ct! Yicr jetony)s (KT, ... kS*)): For
all i € [f], EvalGC' runs Dec(k{*,ct?) and
Dec(kf?,ct}). If neither or both of these resulting
decryptions have A 0’s padded at the end, EvalGC’
returns L. Otherwise, it removes the A 0’s from the
decryption that has them and sets the result to be
k'%. EvalGC' then runs EvalGC(C, (K'7",..., k7))
and outputs the result.

Correctness:

This follows immediately from the correctness of the
original garbling scheme GC and the correctness and
security of the encryption scheme II. If we are given
a garbled circuit (67 {Ctg}ie[a,je{o,l}) and wire keys
(k' ..., k;*), then by construction, for each i € [¢], one
of the ctg’s will decrypt using kJ? to give k'j*[|0...0.
With all but negl(\) probability, none of the others will
decrypt to a value that has A 0’s at the end. Therefore

with overwhelming probability, EvalGC’ will correctly
., k';*) and by the correctness of GC,
the EvalGC computation will output C(x).

recover (k';",..

Chosen Wire-Key Security:

The simulator SimGC'(1*, ¢(C), C(x),k) for GC’ runs as
follows: It first runs the simulator for GC, SimGC(1*,
$(C),C(x)) to obtain (C, (K}, .. . k})). It then com-
putes, for all i € [{], ct; = Enc(k;,k;||0...0) where
ki is padded by X 0’s. It then generates wire keys
r1,...,7r¢ and 7,..., 7} uniformly at random and com-
putes ct; = Enc(r;,7;|[0...0) for all ¢ € [¢]. Then, for all
i € [¢], it uniformly generates a bit b; € {0,1} and sets
cti.” = ct; and ct;b" = ct}. It then outputs

(5, {Ctg}ie[f],je{o,l})

as its garbled circuit.

We will now show that the output of SimGC’ is in-
distinguishable from the honestly generated garbled cir-
cuit.

Let Ho denote the “real" game where on input a
circuit C' € C of input length ¢, 2 € {0,1}¢, and wire
keys k = (kq,..
normally as in Definition 2.

., ke), the garbled circuit is generated

Self-Processing Private Sensor Data via Garbled Encryption

Let H;41 denote the “fake" game where on the
above input, the garbled circuit is generated by running
SimGC' (1%, ¢(C), C(z), k).

For i € [{], let H; denote the intermediate game
where on the above input, the garbled circuit is gener-
ated as in H;_1 except when GrbC’ computes ct;“" using
Enc, it sets

ct; " = Enc(k; ", r4]]0...0),

where r; is a uniformly random wire key. So, in Hy, the
garbled circuit generator only encrypts the wire keys
corresponding to z from C' + GrbC(gesk, C, 12’) using the
., k¢) and does not encrypt
the wire keys of C corresponding to the bitwise negation

input wire keys k = (kq,..
of z.

Lemma 1. For alli € [{],
Hz’—l 578 Hi.

Suppose there exists an algorithm A that can distin-
guish between H;_; and H; with nonnegligible proba-
bility. Then, consider the following algorithm A’ that
can break the IND-CPA security of II. A’ runs A and
when A makes an oracle query (C,z,k), A" runs the
H;—1 game except at the step where it would usually

compute
Ty b7 —Z;
ct; " = Enc(k; "', k';"'(]0...0).
Instead, it submits the pair of messages
(K';]0...0,74]|0...0) to its oracle and sets ct; " to

be its result. A’ then outputs the response of A. Note
that if the random bit b of A”’s oracle was set to 0,
then it perfectly simulates H;—; and if its random bit
was set to 1, it perfectly simulates #;. Therefore, if A
can distinguish these two hybrids, then A’ can break
the IND-CPA security of II. Therefore, it must be that
Hi—l e ’HZ O

Lemma 2.
He ~e Hota-

Suppose there exists an algorithm A that can dis-
tinguish between H, and Hyy; with nonnegligible
probability. Then, there exists an algorithm A’ that
can break the security of the secure garbling scheme
GC used in the construction of GC'. A’ simply runs
SimGC'(1*,¢(C), C(z), k) and when the SimGC’' would
run SimGC, the simulator for GC, A’ queries its ora-
cle on (C,z) and uses this as the output of SimGC.

— 453

Note that if A’’s oracle is the actual garbling scheme,
it perfectly simulates H, and if its oracle is SimGC, it
perfectly simulates #Hy41. Therefore, if A exists, then
A’ can distinguish between the output of SimGC and
the actual garbled circuit, contradicting the security of

GC. O

So, it follows that Hg ~. Hy,1 and therefore, GC' is
a chosen-wire key secure garbling scheme. O

B.2 Proof of Thm. 4

We will show that ExptiE(l)‘,O) R, ExptiE(l)‘, 1) via a
series of hybrid games.

Hybrid game Ho(1*,b).

This game is the same as ExptiE(lA, b) except for the
following: Whenever the challenger Chal would generate
wire keys corresponding to an index j or a function
query (f,@), Chal generates these wire keys uniformly
at random instead of running PRF.Eval. It then stores
these wire keys in a lookup table and if it ever needs a
wire key corresponding to an index or function query
that was previously generated, it uses the value stored
in the table instead of generating a new random value.
This can be viewed as modifying ExthG4E(1)‘,b) by re-
placing PRF.Eval(GE.msk, -) by a truly random function.

Hybrid game H;(1*,b).

This game is the same as Ho(1*,b) except for the fol-
lowing. Whenever the challenger Chal would generate a
garbled circuit C for a function query (f, (ji,---+7n)),
Chal generates the garbled circuit by running the gar-
bled circuit simulator

SimGC(1Y, ¢(C), (w1, ..., 2n), k)

where x1,...,x, are the messages corresponding to the

indices ji,...,Jn, respectively and k are the wire keys
corresponding to (z1,51),.-.,(Zn,jn) (by finding them
in the stored lookup table if they had been generated
previously or else by choosing them uniformly at ran-
dom). Note that this is possible because A must submit
all challenge message queries prior to any function key
queries. If a message x; is undefined, Chal samples it

uniformly at random so that f(z1,...,2,) is defined.

Self-Processing Private Sensor Data via Garbled Encryption

Lemma 3.
ExptSE(1%,b) . Ho(1),b).

Suppose there exists some algorithm A that can distin-
guish between the two games with nonnegligible advan-
tage. Then, consider the algorithm A’ that can distin-
guish PRF from a truly random function with nonnegli-
gible advantage.

A’ runs A and simulates the role of the chal-
lenger Chal in the game ExptiE(V‘7 b) with the fol-
lowing modification. Whenever Chal would compute
PRF.Eval(GE.msk,-) on some input x, Chal instead
queries its random oracle F' on z. If A guesses that
it is playing game Ho(1*,b), A’ guesses that F is a
truly random function and if A guesses that it is playing
ExptSE(17,b), A’ guesses that F is a PRF.

Note that if F' is a PRF, then A’ simulates the game
ExptjE(lA,b) exactly. Similarly, if F' is a truly random
function, then A’ simulates the game Ho(1*,b) exactly.
Therefore, it follows that A’ could distinguish between
PRF and a truly random function with nonnegligible
advantage, breaking the pseudorandomness property of
PRF. O

Lemma 4.
Ho(1M,b) = H1 (1M, D).

Suppose there exists some algorithm A that can distin-
guish between the two games with nonnegligible advan-
tage. Then, consider the algorithm A’ that breaks the
chosen-wire key security of GC.

A" runs A and simulates the role of the chal-
lenger Chal in the game Ho(1*,b) with the following
modification. Whenever Chal would need to output a
garbled circuit c by responding to a function query

(f, G, - --
C, input z, and garbled circuit labels Kk and outputs

,in)), A’ instead queries its oracle on circuit

the resulting circuit. Here, C is the circuit computing
f, x is the input z1||...||xn, where x; is the message
corresponding to index j;, and K are the wire keys cor-
responding to the indices (j1,...,jn). If any of the mes-
sages, x; or wire keys in Kk are undefined (there was no
message submitted corresponding to j;), A’ generates
them randomly and stores them in a lookup table. If
A guesses that it is playing game Ho(1*,b), then A’
guesses that its oracle is GrbC and if A guesses that it
is playing H1(1*,b), then A’ guesses that its oracle is
SimGC.

Note that if A’’s oracle is GrbC, then A’ simulates
the game Ho(1*,b) perfectly. Similarly, if A”’s oracle is

— 454

SimGC, then A’ simulates the game H;(1*,b) perfectly.
Therefore, it follows that A’ could distinguish between
the output of GrbC with specified input wire keys and
SimGC with nonnegligible advantage, contradicting the
chosen-wire key security of the garbling scheme GC. [

Lemma 5.

Hi(12,0) =~ H1(17,1).

Since the adversary’s view in both of these games does
not depend on the actual value of the messages, but
s Tn)
that the adversary can compute, and since the adver-

rather on only the function evaluations f(xz1,...

sary can only submit challenge message pairs that agree
on all computable function evaluations, it follows that
the view of any admissible adversary in these games is
identical. O

Combining the above lemmas, it follows that

ExptST(1%,0) ~. ExptS(1%,1)

B.3 Proof of Thm. 5

We will show that ExptSE(1*,0) ~. ExptSE(1*,1) via a
series of hybrid games.

Hybrid game Ho (17, 7).

This game is the same as ExptjE(l’\,T) except for the
following: Whenever the challenger Chal would generate
wire keys corresponding to an index j, Chal generates
these wire keys uniformly at random instead of running
PRF.Eval. It then stores these wire keys in a lookup ta-
ble and if it ever needs a wire key corresponding to an
index that was previously generated, it uses the value
stored in the table instead of generating a new random
value. This can be viewed as modifying ExptE‘E(V‘7 7) by
replacing PRF.Eval(GE.msk,) by a truly random func-
tion.

Hybrid game H,(1*, 7).
This game is the same as Ho(1*,7) except for the fol-
lowing: Whenever the challenger Chal would respond to

Self-Processing Private Sensor Data via Garbled Encryption

a function query, it generates the X2’s uniformly at ran-
dom and programs O; so that O1 (k% ||V||Z) © O(Ya) =
X%, Similarly, it generates the T values uniformly at
random and programs Oy so that Oz (k2 ||V)®(Z,]|0Y) =
Tb.

Hybrid game H2 (12, 7).
This game is the same as H1 (1%, 7) except for the follow-
ing: Whenever the challenger Chal would generate a gar-

7jn)): Chal
generates the garbled circuit C' by running the adaptive

bled circuit C for a function query (f, (ji,---

garbled circuit simulator
C «+ SimGC(1*, 6(C)),

It sets T2 for a € [(],b € {0,1} to be uniformly
random strings.

Whenever the challenger Chal has given out both
a function key (C,V, {T9, T3} ae), Q) and an input la-
bel k, for wire a € [¢], it runs SimGC on the same in-
put query to obtain the simulated label &k, = (X, &
O(Yy), Zy). It then samples a uniformly random bit b’
and programs Oy so that Oy(ka||V) ® TY = Zu||0*.
Once it has submitted an input query for every « € [{],
it programs O so that O1(kq||V]|Z) @ O(Yy) = Xa.

Hybrid game H3(1*, 7).

This game is the same as Ha(1*,7) except for the fol-
lowing: Whenever the challenger Chal would generate
wire keys kO, kL for an input index o € [f], it instead
generates a single wire key k, and uses this as the value
for both k0 and k.

Lemma 6.
EXptiE(l)\,T) R ’Ho(l)‘,r).

Suppose there exists some algorithm A that can distin-
guish between the two games with nonnegligible advan-
tage. Then, consider the algorithm A’ that can distin-
guish PRF from a truly random function with nonnegli-
gible advantage.

A" runs A and simulates the role of the chal-
lenger Chal in the game ExptjE(lA,T) with the fol-
lowing modification. Whenever Chal would compute
PRF.Eval(GE.msk,-) on some input z, Chal instead
queries its random oracle F on z. If A guesses that
it is playing game Ho(1*,7), A’ guesses that F is a
truly random function and if A guesses that it is playing
ExptSE (1%, 7), A’ guesses that F is a PRF.

— 455

Note that if F'is a PRF, then A’ simulates the game
ExptiE(l)‘,T) exactly. Similarly, if F' is a truly random
function, then A’ simulates the game Ho(1*, 7) exactly.
Therefore, it follows that A’ could distinguish between
PRF and a truly random function with nonnegligible

advantage, breaking the pseudorandomness property of
PRF. O

Lemma 7.
'HQ(].A,T) = H1(1)‘7T).

These two hybrids have identical behavior and are there-
fore indistinguishable.

Lemma 8.
7‘[1(1)‘,7') e Hz(l)\,’/').

Suppose there exists some algorithm A that can distin-
guish between the two games with nonnegligible advan-
tage. Then, consider the algorithm A’ that breaks the
adaptive security of GC.

A" runs A and simulates the role of the chal-
lenger Chal in the game H;(1*,7) with the following
modification. Whenever Chal would need to output a
garbled circuit C by responding to a function query

(fa(jla-u

C to receive a garbled circuit C. Whenever A makes an

,Jin)), A’ instead queries its oracle on circuit

input query, if a corresponding function query has been
made A’ queries its oracle on this input and sets &/, to
be the received value. If not, A’ will query its oracle on
the above once a corresponding function query has been
made.

Note that if A”’s oracle is the real garbled circuit,
then A’ perfect simulates H;(1*,7) for A. If A”’s oracle
is the simulated garbled circuit, then A’ perfectly sim-
ulates Ho (12, 7) for A. O

Lemma 9.
7-[2(1)‘,7') = H3(1)\7T).

These two hybrids have identical behavior since at most
one of kY or k! is ever used, so the fact that they are
identical is irrelevant.

Lemma 10.

H3(1)\a0) oz HS(l)\v 1)

Since the adversary’s view in both of these games does
not depend on the actual value of the messages, but

Self-Processing Private Sensor Data via Garbled Encryption

. 7'7:”)
that the adversary can compute, and since the adver-

rather on only the function evaluations f(x1,..

sary can only submit challenge message pairs that agree
on all computable function evaluations, it follows that
the view of any admissible adversary in these games
is identical. Note that the input queries to SimGC do
depend on the input, but SimGC’s behavior is only
dependent on the function evaluation and not on the
actual input, therefore the views are identical. O

Combining the above lemmas, it follows that

ExptiE(lk,()) R Expt¢G4E(1>‘, 1)

C Time-Based Garbled
Encryption

In this section, we formally define, construct, and prove
adaptive security for time-based garbled encryption.

C.1 Definition

Syntax.

Let X = {X)\}aen and YV = {1 }ren be ensembles where

Xy, V) are sets each with size dependent on A. Let

F = {Fr}ren be an ensemble where each F)y is a fi-

nite collection of n-ary functions. Each function f € F)

takes as input strings z1,...,z,, where each z; € X),

and outputs f(z1,...,2,) € Y. Let Q denote a set of

sets, where each set) € Q is a subset of N”.

A time-based garbled encryption scheme TGE for
n-ary functions F and query pattern Q consists of four
algorithms
(TGE.Setup, TGE.KeyGen, TGE.Enc, TGE.Dec) described
below:
~ Setup. TGE.Setup(1?) is a PPT algorithm that

takes as input a security parameter \ and outputs

the master secret key TGE.msk.

— Key Generation. TGE.KeyGen(TGE.msk, f,Q,t) is
a PPT algorithm that takes as input the master
secret key TGE.msk, a function f € Fy,aset Q € Q,
and a time offset ¢ € N. It outputs a functional key
TGE.skf g ¢-

— Encryption. TGE.Enc(TGE.msk,m,i,t) is a PPT
algorithm that takes as input the master secret key
TGE.msk, a message m € X, an index i € N,

— 456

and a time offset ¢ € N. It outputs a ciphertext
TGE.ct. TGE.Enc is index dependent and the cipher-
text TGE.ct has an associated index ¢. If TGE.Enc is
asked to encrypt to an index j to which it has pre-
viously encrypted, it will output L.

— Decryption. TGE.Dec(TGE.sk¢ g+, TGE.cty,...,
TGE.cty,) is a deterministic algorithm that takes
as input a functional key TGE.skfg; and n ci-
phertexts TGE.ctq,..
y eV U{L}

., TGE.ct,,. It outputs a value

Correctness.

There exists a negligible function negl(-) such that for
all sufficiently large A € N, every n-ary function f € Fy,
set Q € Q, point (j1,...,jn) € @, time offset t € N, and
input tuple (z1,...,2,) € X7,

TGE.msk < TGE.Setup (1)‘) ;
TGE.skf g+ < TGE.KeyGen (TGE.msk, f,Q,t) ;
Pr | TGE.Dec(TGE.sky g
(TGE.Enc (TGE.msk, z;, ji, t))i ;)
f(x1,...,20)

< negl(})

where the probability is taken over the random coins of
all the algorithms.

Adaptive Security.

The adaptive security definition for time-based garbled
encryption is analogous to the one for garbled encryp-
tion, updated to match the new syntax. Furthermore,
we allow the adversary to make key queries for a time
t € N, and the adversary is given back O(*)(TGE.msk),
where O : {0,1}* — {0,1}* is the random oracle used in
the construction to ratchet keys forward. In the sensor
application, this will correspond to the situation where
the adversary compromises a sensor at time ¢ and learns
the key stored on the sensor.

Definition 7 (Adaptive Security). A time-based gar-
bled encryption scheme TGE for n-ary functions F =
{Frtrepy, message space X = {X\}regn, and query
pattern Q is adaptively secure with respect to key oracle
O if for any PPT adversary A, there exists a negligible
function u(-) such that for all sufficiently large \ € N,

Self-Processing Private Sensor Data via Garbled Encryption

the advantage of A is
AdvTCE =
Pr[Expt [°F(1*,0) = 1] — Pr[Expt [CE(1*, 1) = 1]
< u(N),

where for each b € {0,1} and A\ € N, the experiment

ExptLGE(l)‘J)) is defined below:

1. Chal computes TGE.msk < TGE.Setup(1*).

2. The adversary is allowed to make the following three
types of queries in any arbitrary order.

— Challenge message query: A submits a query,
(i,mi,o,$i71,t), with x; 0,21 € Xy, © € N,
and t € N, to the challenger Chal. Chal com-
putes TGE.ct; < TGE.Enc(TGE.msk,z;p,%,1).
The challenger Chal then sends TGE.ct; to the
adversary A.

— Function query: A submits a function query
(f,Q,t) € Fx x Q@ x N to Chal. The challenger
Chal computes TGE.skfg: < TGE.KeyGen(
TGE.msk, f,Q,t) and sends it to A.

— Key query: A submits a time offset t € N.
The challenger Chal computes O)(TGE.msk)
and sends the result to A.

3. If there exists a function query (f,Q,t) and
challenge message queries ((il7 1,0, %1,1,81)5- -,
(imwmo,xn,l,tn)) such that f(z10,...,2n0) #
fx11,...,2n1) and (i1, ...,i,) € Q foriy,... i, €
N, then the output of the experiment is set to L. Ad-
ditionally, if there exists a key query t and a chal-
lenge message query (i,;0,%;1,t") witht' >, then
the output of the experiment is set to L. Otherwise,
the output of the experiment is set to b', where V' is
the output of A.

C.2 Construction

The construction is the same as the adaptively secure
garbled encryption construction in Section 5 except that
we apply a random oracle t times to the master secret
key prior to generating the wire keys for a garbled cir-
cuit, where ¢ is the time offset for the key generation or
encryption algorithm in which the wire keys are gener-
ated. We provide the full construction for completeness.

Let O7 : {0,1}** — {0,1}*, Oy : {0,1}>* —
{0,1}?*, and O3 : {0,1}* — {0,1}* be random ora-
cles. Let PRF = (PRF.Gen, PRF.Eval) be a pseudoran-
dom function family with A-bit keys that outputs in
the range {0,1}* and let GC = (Gen, Grbl, GrbC, EvalGC)
be the adaptively secure garbling scheme specified by

— 457

Thm. 3. Let O be the random oracle used by the adap-
tively secure garbling scheme. Our time-based garbled
encryption scheme TGE for n-ary functions F and query
pattern Q, where Q is the set containing all sets of sin-
gletons, is defined as follows:

Recalling notation from before, let ¢ = n - log | X}
denote the input length to circuits C representing func-
tions f € F. We note that the indices (i — 1) - log | Xy | +
1,...,i-log|X)| correspond to the indices of the input
x; to C. Letting r; = (i — 1) - log |Xy| and £, = log|Xy|,
we denote these indices as r; + 1,...,7; + {m.

— Setup. On input the security parameter 1%,

TGE.Setup runs PRF.Gen(1%) to obtain a PRF key

K and outputs TGE.msk = K.

— Key Generation. On input the master secret
key TGE.msk, a function f € F), a set Q@ =
{(J1,---,Jn)} € Q, and a time offset t € N,
TGE.KeyGen runs as follows:

Let C be a circuit for f. TGE.KeyGen then runs the
garbled circuit generation algorithm Gen(1*) to ob-
tain the secret parameters gecsk. It then generates a
uniformly random string V € {0,1}*.

It then sets ko, = (k9, kL) for a € [¢] as follows:
For ¢ € [n], it sets the garbling keys k1o =
(k9i+a, k}i+a) for a € [€,,] to be

D (TGE.msk), ji||al[0)
Y (TGE.msk), j;| |a||1).

ky. 4o = PRF.Eval(O

w— w—

k}, o = PRF.Eval(O;

For o € [{f], it sets Z, uniformly at random. Set
Z=7Z1®...0 Z. For a € [{], it sets Y, according
to the procedure specified by the garbling scheme of
Thm. 3 and then sets X2 as 01 (kb ||V||Z) @ O(Y,,).
Let k’ denote the garbling keys as determined by the
Xb’s, Y,’s and Z,’s. It then runs GrbC(gcsk, C, E')
to obtain a garbled circuit C. For o € [],b € {0, 1},
let

T = (Zall0*) ® Oa (k3 ||V).
For each «, with probability 1/2, swap the values of
TY and T}.
TGE.KeyGen outputs

(C,VATY, T2} acig, Q)

as TGE.Sk’f’Q’t.

— Encryption. On input the master secret key
TGE.msk, a message m, an index j € N, and a time
offset ¢ € N, TGE.Enc runs as follows: TGE.Enc is
index dependent and maintains a state S initialized

Self-Processing Private Sensor Data via Garbled Encryption

to the empty set (. It first checks that j ¢ S. If
j € S, it returns L. Otherwise, it adds j to S and
proceeds.

Defining k0 and k. for a € [¢,,] by

kS, = PRF.Eval(OY (TGE.msk), jl|a]|0)
kL = PRF.Eval(O{" (TGE.msk), j||al|1)
as above, TGE.Enc computes

Kk — (k‘f‘”(m)a o

m

kbin(m)gm)

and outputs

(4. k)
as TGE.ct. We refer to j as the index of this cipher-
text.

— Decryption. On input a functional key
TGE.skrq: = (C,VATY T e, Q) and n
TGE.cty,..., TGE.ct,, TGE.Dec first
parses each TGE.ct; as (j;,k;) and asserts that
(J1y---,7n) € Q. If not, it outputs L.
Let k = (ky,...,ky). For a € [{], TGE.Dec recovers
Zo by computing O (ks ||V) @ T2 for b € {0,1} and
setting Z, to be the A-bit prefix of the recovered

ciphertexts

value whose last A bits are all 0. Once all the Z,’s
are recovered, TGE.Dec computes the Y,’s and Z =
P Z, and then sets X, as O1(k.||V]|Z) ® O(Ya).
It then runs EvalGC on C with the X, ’s to recover
the output.

C.3 Correctness

Correctness follows analogously to that of the adaptive
garbling construction of Section 5, observing that Oét) ()
is applied to TGE.msk when generating the input labels
for a garbled circuit in both the key generation and
encryption algorithms.

C.4 Adaptive Security

We will prove adaptive security of our construction with
respect to the key oracle O3. The proof follows in a
similar manner to the proof of adaptive security for the
garbled encryption construction in Sec. 5. The main dif-
ference is that if the adversary asks for a key query for
some time t and has already asked for a functional key
TGE.sky g ¢ for some time ¢’ > ¢, then we need a way to
ensure that TGE.sky g ¢ is compatible with all combina-
tions of input labels, since the adversary now possesses

— 458

the appropriate key for time offset ¢ and is able to learn
all the input labels corresponding to the garbled circuit
in TGE.sky ¢ 4. Fortunately, this is possible because the
simulator for the adaptive garbled circuit construction
of Thm. 3 outputs a uniformly random string as the
garbled circuit and later programs its random oracle.
So, when the adversary makes a key query for time ¢,
we will run the real garbled circuit algorithm and then
program the appropriate random oracles so that the re-
sult matches the garbled circuit we already gave out.
Formally, we show the following.

Theorem 6. Assuming that PRF is a pseudorandom
function family and GC is the adaptively secure gar-
bling scheme of Thm. 3, then TGE is an adaptively se-
cure time-based garbled encryption scheme with respect
to Os.

Stronger Adaptive Security Definition for the
Adaptive Garbling Scheme of Thm. 3.

In order to prove security, we first establish that the
adaptive garbling scheme of Thm. 3 actually satisfies a
stronger notion of security than Def. 3, where between
steps 2 and 3, we give the adversary a choice: the adver-
sary can either proceed with the game as in Def. 3 or
ask to see all input labels. If the adversary asks for all
input labels, the challenger must (using C,C) be able
to give the adversary all the input labels. To see this
holds, observe that if b = 0, the challenger already has
all the labels and can just give them out. If b = 1, the
challenger can simply run the real garbling algorithm
and then program @’ so that ©'(Yy) unmasks C’ appro-
priately. As we observed in Remark 1, Z is information
theoretically hidden from the adversary after step 2 of
the game, so Yy = Z||0 is also information theoretically
hidden.

We will show that Expt °E(1*,0) ~,. Expt CE(1*,1)
via a series of hybrid games.

Hybrid game Ho (17, 7).
This game is the same as ExptLGE(lA, 7) except for the
following:

Whenever the challenger Chal would respond to a
function query with time offset ¢, it first checks if a key
query has been made for some time offset ¢’ < ¢. If such
a key query has been made, it responds to the function
query as before. Otherwise, it instead samples the X%’s,

and the T? values uniformly at random when outputting

Self-Processing Private Sensor Data via Garbled Encryption

the function key. Then, as soon as a challenge query is
made with time offset ¢ or a key query is made with
some time offset ¢’ for ¢’ < t, it programs O; so that
O1(k4||V]|1Z)®O(Y,) = X5 and Oy so that Oa (kS ||[V) @
(Zal0Y) = TE.

Hybrid game H,(1*, 7).

This game is the same as Ho(1*,7) except for the fol-
lowing: Whenever the challenger Chal would generate
wire keys corresponding to an index j and time off-
set t when running TGE.Enc, Chal generates these wire
keys uniformly at random instead of running PRF.Eval.
It then stores these wire keys in a lookup table and
if it ever needs a wire key corresponding to an index
and time offset that was previously generated, it uses
the value stored in the table instead of generating a
new random value. This can be viewed as modifying
Expt) CF(1*, 7) by replacing PRF.Eval(OL” (TGE.msk), -)
by a truly random function.

Hybrid game H2(1*, 7).
This game is the same as H;(1*,7) except for the fol-
lowing: Whenever the challenger Chal would generate a

) jn) Y t)7
it first checks if a key query has been made for some time

garbled circuit C for a function query (f, (j1,.--

offset ¢’ < t. If such a key query has been made, it re-
sponds to the function query as before. Otherwise, Chal
generates the garbled circuit C by running the adaptive
garbled circuit simulator

C «+ SimGC(1*, 6(C)),

It sets T2 for o € [(],b € {0,1} to be uniformly random
strings.

Then, whenever the challenger Chal has given out
both a function key (G,K{TQ,T;}QG[@],Q) with time
offset ¢ and an input label k, for wire a € [¢] (by re-
sponding to a challenge query with time offset t), it
runs SimGC on the same input query to obtain the sim-
ulated label &/, = (X4 ® O(Ya), Zs). It then samples
a uniformly random bit ¥’ and programs O so that
Oz (ko||V) @ Tg = Z4||0*. Once it has submitted an
input query for every a € [{], it programs O; so that
O1(ka||V1Z) ® O(Yy) = Xa.

Alternatively, whenever the challenger is asked to
respond to a key query for time offset t' < ¢, it in-
stead runs the honest underlying selectively secure gar-
bled circuit algorithm with the circuit corresponding to
f and the labels set to the X%’s that were generated

— 459

when computing the function key to obtain a garbled
circuit C”. It then programs the underlying oracle O of
the adaptive garbling scheme so that o O(Yy) = C,
where C is the original garbled circuit Chal had given
out when responding to the function query.

Note that by the restrictions imposed on the ad-
versary, only one of the two above conditions can ever

occur.

Hybrid game H3(1*, 7).

This game is the same as Hz(1*, 7) except for the follow-
ing: Whenever the challenger Chal would generate wire
keys kU, k! for an input index a € [f] when responding
to a challenge query, it instead generates a single wire
key ko and uses this as the value for both k2 and k.

Lemma 11.
Expt [CE (1Y, 7) = Ho (12, 7).

This hybrids are indistinguishable to an adversary un-
less it is able to query O; on some k% ||V||Z or O3 on
some k2 ||V prior to them being programmed. However,
this can only be done if the adversary can determine
some k:g prior to the programming. However, from the
view of the adversary, the k%’s are the output of PRF
with a uniformly random key. Thus, an adversary that
could do this with nonnegligible probability would have
to be able to distinguish the PRF from uniform, a con-
tradiction.

Lemma 12.
7-[0(1>‘,T) = H1(1’\,T).

Suppose there exists some algorithm 4 that can distin-
guish between the two games with nonnegligible advan-
tage. Then, consider the algorithm A’ that can distin-
guish PRF from a truly random function with nonnegli-
gible advantage.

A’ runs A and simulates the role of the chal-
lenger Chal in the game Expt-;t(‘;E(l)‘7 7) with the fol-
lowing modification. Whenever Chal would compute
PRF.EvaI(Oi(,)t)(TGE.msk)7 -) on some input x when run-
ning TGE.Enc, Chal instead queries its random oracle F'

n (t,z). If A guesses that it is playing game H;(1*,7),
A’ guesses that F is a truly random function and if A
guesses that it is playing Ho(1*, 7), A’ guesses that F is
a PRF. The random oracle F' on (¢,z) either outputs a
uniformly random value or computes PRF(K¢, z), where
K is the tth uniformly random key. Observe that since

Self-Processing Private Sensor Data via Garbled Encryption

A’ only queries ' when Chal would need to respond to
a challenge query.

Note that if F' is a PRF, then A’ simulates the
game Ho(1}, 7) exactly. Similarly, if F is a truly random
function, then A’ simulates the game H1(1*, 7) exactly.
Therefore, it follows that A’ could distinguish between
PRF and a truly random function with nonnegligible
advantage, breaking the pseudorandomness property of

PRF. t

Lemma 13.
,Hl(l)‘,T) 7 H2(1A77)‘

Suppose there exists some algorithm 4 that can distin-
guish between the two games with nonnegligible advan-
tage. Then, consider the algorithm A’ that breaks the
stronger adaptive security of GC detailed above.

A’ runs A and simulates the role of the chal-
lenger Chal in the game #H;(1*,7) with the following
modification. Whenever Chal would need to output a
garbled circuit C by responding to a function query

(f?(jl’---

C to receive a garbled circuit C. Whenever A makes an

,in),t), A’ instead queries its oracle on circuit

input query with time offset ¢, if a corresponding func-
tion query has been made with time offset ¢, A’ queries
its oracle on this input and sets k., to be the received
value. If not, A’ will query its oracle on the above once
a corresponding function query has been made.

If instead, A makes a key query for time offset ¢’ < ¢,
A’ asks to see all input labels after receiving C.

Note that if A”’s oracle is the real garbled circuit,
then A’ perfect simulates H1(1*,7) for A. If A”’s oracle
is the simulated garbled circuit, then A’ perfectly sim-
ulates Ha(1*, 7) for A. O

Lemma 14.
Hg(l/\,T) = H3(1>‘,T).

These two hybrids have identical behavior since at most
one of kY or k. is ever used, so the fact that they are
identical is irrelevant.

Lemma 15.
H3 (14, 0) =~ Hz(1*,1).

Since the adversary’s view in both of these games does
not depend on the actual value of the messages, but
. 733”)
that the adversary can compute, and since the adver-

rather on only the function evaluations f(x1,..

— 460

sary can only submit challenge message pairs that agree
on all computable function evaluations, it follows that
the view of any admissible adversary in these games
is identical. Note that the input queries to SimGC do
depend on the input, but SimGC’s behavior is only
dependent on the function evaluation and not on the
actual input, therefore the views are identical. O

Combining the above lemmas, it follows that

Expt }°F (17, 0) ~ Expt [CE(1}, 1)

	Self-Processing Private Sensor Data via Garbled Encryption
	1 Introduction
	1.1 Our Results

	2 System Setting and Threat Model
	2.1 Threat Model

	3 Preliminaries
	3.1 Garbling Schemes
	3.2 Adaptive Garbling Schemes
	3.3 Index Dependence
	3.4 Garbled Encryption
	3.5 Time-Based Garbled Encryption

	4 Selectively Secure Garbled Encryption
	4.1 Construction
	4.2 Correctness
	4.3 Security

	5 Adaptively Secure Garbled Encryption
	5.1 Construction
	5.2 Correctness
	5.3 Security

	6 From Garbled Encryption to a Self-Processing Private Sensor Data System
	7 Implementation and Evaluation
	7.1 Implementation Details
	7.2 Evaluation
	7.3 Self-Processing Private Sensor Data Performance Analysis

	8 Practical Deployment Challenges
	9 Conclusions and Related Work
	10 Acknowledgements
	A Deferred Definitions
	A.1 Security Definition for Garbled Encryption

	B Deferred Proofs
	B.1 Proof of Thm. 2
	B.2 Proof of Thm. 4
	B.3 Proof of Thm. 5

	C Time-Based Garbled Encryption
	C.1 Definition
	C.2 Construction
	C.3 Correctness
	C.4 Adaptive Security

