
Proceedings on Privacy Enhancing Technologies ; 2021 (1):21–42

Miguel Ambrona, Dario Fiore, and Claudio Soriente

Controlled Functional Encryption Revisited:
Multi-Authority Extensions and Efficient
Schemes for Quadratic Functions
Abstract: In a Functional Encryption scheme (FE), a
trusted authority enables designated parties to com-
pute specific functions over encrypted data. As such, FE
promises to break the tension between industrial interest
in the potential of data mining and user concerns around
the use of private data. FE allows the authority to de-
cide who can compute and what can be computed, but
it does not allow the authority to control which cipher-
texts can be mined. This issue was recently addressed by
Naveed et al., that introduced so-called Controlled Func-
tional encryption (or C-FE), a cryptographic framework
that extends FE and allows the authority to exert fine-
grained control on the ciphertexts being mined. In this
work we extend C-FE in several directions. First, we dis-
tribute the role of (and the trust in) the authority across
several parties by defining multi-authority C-FE (or mC-
FE). Next, we provide an efficient instantiation that en-
ables computation of quadratic functions on inputs pro-
vided by multiple data-owners, whereas previous work
only provides an instantiation for linear functions over
data supplied by a single data-owner and resorts to gar-
bled circuits for more complex functions. Our scheme
leverages CCA2 encryption and linearly-homomorphic
encryption. We also implement a prototype and use it
to showcase the potential of our instantiation.

Keywords: controlled function encryption, computation
over encrypted data

DOI 10.2478/popets-2021-0003
Received 2020-05-31; revised 2020-09-15; accepted 2020-09-16.

Miguel Ambrona: NTT Secure Platform Laboratories, E-
mail: miguel.ambrona.fu@hco.ntt.co.jp
Dario Fiore: IMDEA Software Institute, E-mail:
dario.fiore@imdea.org
Claudio Soriente: NEC Laboratories Europe, E-mail: clau-
dio.soriente@nec.eu

1 Introduction
Functional Encryption (FE) [14, 40] allows authorized
parties to compute a function over encrypted data and
learn nothing beyond the function output. In a typi-
cal FE scenario, an authority distributes secret function
keys; an entity holding a function key for function f can
apply it over a ciphertext (encrypting data m), to learn
f(m) and nothing else. The blueprint of FE fits the de-
scription of many data mining applications, where data
utility must be balanced with data privacy. For exam-
ple, users may encrypt their DNA material and send it
to a clinic to check for specific genetic markers (i.e., the
function). An authority, say the national health system,
may grant to that clinic the function key to carry out
the computation. As long as the authority is trusted,
the clinic may only compute the function(s) for which
it received function key(s).

As such, the authority regulates who can compute
and what can be computed over encrypted data. Yet,
FE does not allow the authority to control on which
ciphertexts a function key can be used. For example,
the clinic may hold the function key for kinship tests
over encrypted DNAs and Alice may want her DNA to
be tested only versus Bob’s. Such an access control may
require either increasing the complexity of the function
to be computed or introducing mechanisms beyond FE.

This shortcoming of FE was the focus of Controlled
Functional Encryption (C-FE), introduced by Naveed
et al. [37]. This is a special flavor of FE where the de-
cryption algorithm (i.e., the one that computes f(m))
becomes a two-party protocol between the party hold-
ing the function key and the authority, where only the
former learns the output of the computation. That way,
the authority can exert fine-grained access control on
the ciphertexts fed as input to the decryption procedure.
For example, Alice can attach a policy to her encrypted
DNA specifying that it may only be used to test kin-
ship versus Bob’s. The authority can, therefore, deny
any computation that involves Alice’s DNA and those
belonging to individuals others than Bob.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 22

The authors of [37] provide a simulation-based def-
inition of C-FE that models malicious clients (i.e., par-
ties computing functions over encrypted data) and a sin-
gle, honest-but-curious (hbc) authority. They propose a
lightweight C-FE for linear functions that leverages a
CCA2 encryption scheme. They also propose a C-FE
for arbitrary functions that leverages garbled circuits.
Both instantiations are “single-input”, i.e., they can ac-
commodate encrypted data from a single data producer.
As such, the C-FE instantiations of [37] cannot be used
in the kinship test example, unless Bob’s DNA is avail-
able in the clear to the client and the authority.

Our Contribution. In this paper, we continue the
study of C-FE and extend it in several directions.

First, we provide a novel simulation-based defini-
tion that accounts for multiple authorities and ensures
that a client can obtain no information from a cipher-
text, unless all the authorities allow so. We argue that
a multi-authority C-FE (or mC-FE) dramatically in-
creases the security of its single-authority counterpart
where the one authority unilaterally enforces access con-
trol to data and represents a single point of failure.
The multi-authority model turns useful in applications
where decisions on the generation of a function key or
on its use over specific ciphertexts need to be taken by
distinct entities, or in cases where one wants to simply
and efficiently split the trust on the authority’s secret-
key material across different parties.

Second, we propose a mC-FE scheme formulti-input
quadratic functions. Multi-input functions are necessary
to implement application scenarios like the kinship test
described earlier where functions are computed over
data produced by multiple independent parties (e.g., Al-
ice and Bob). Quadratic functions enable to compute
several statistic functions such as average, variance, co-
variance or simple hypothesis testings; they could also
be used for computing distances and areas1 between
points on a map (e.g., for location-based applications).

We showcase our mC-FE instantiations by imple-
menting a prototype and evaluating its performance
(Section 6) to, for example, classify encrypted images
of handwritten digits of the MNIST dataset [33] or find
correlations between age and blood pressure [44]. Our
results show that the described C-FE constructions are
efficient and can be used for real-world applications.

Our Techniques. In order to design our mC-FE
for quadratic functions we start from a technique
by Catalano and Fiore [18] for compiling a linearly-

1 For example, by using Gauss’ shoelace formula.

homomorphic encryption into an homomorphic encryp-
tion for quadratic functions. In its essence, this tech-
nique shows how to transform an encryption of m,
of the form (m− r, Enc(r)) for a random r, into
Enc(f(m)− f(r)), where f is a quadratic function and
Enc a linearly-homomorphic encryption. To begin with,
let us show how this can be used in a single-authority
setting. The basic idea2 is that the data-owner gives r
to the client and (m− r, Enc(r)) to the authority; if the
authority grants permission for computing a function
f , it computes homomorphically Enc(f(m)− f(r)) and
gives it to the client; the client can then decrypt it, and
by computing f(r) can recover the result f(m).

Extending this idea to work with multiple authori-
ties presents a number of challenges stemming from the
fact that in the multi-authority setting we need to en-
sure security even if the adversary controls the client
and (up to) all but one authority. Let us discuss why
some attempts do not work.

A first attempt may be to let each authority re-
ceive (m− r, Enc(r)) and compute Enc(f(m)− f(r));
then they may altogether perform a threshold decryp-
tion on this ciphertext in order to provide the client
with f(m)− f(r). However, now the client would need
r to recover the final result, which is a no-go for secu-
rity since in the multi-authority setting the client may
collude with any of the authorities and thus recover the
input m from m− r.

A second attempt may consider a solution similar to
the previous one in which we remove the need for r and
use directly an homomorphic encryption for quadratic
functions. So, each authority receives Enc(m), computes
homomorphically Enc(f(m)) and then all authorities
and the client run a threshold decryption on this cipher-
text. The problem with this solution is that threshold
decryption requires a common input ciphertext, namely
every party must produce the same Enc(f(m)). This is
possible only if the homomorphic encryption is deter-
ministic, which is also not an option because without a
proper re-randomization Enc(f(m)) may leak informa-
tion about the original input m. Clearly, one could also
achieve this process by having all authorities and the
client run a general-purpose MPC protocol, but we are
not aware of any such protocol that is efficient and re-
quires minimal, asynchronous, interaction.

In our work we propose a solution that proceeds in
a way similar to the first attempt and solves its tech-
nical challenges by using a form of secret sharing of

2 For simplicity of presentation, here we omit several details.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 23

the message across all authorities and a combination of
threshold decryption with secret-sharing reconstruction.
Notably, our mC-FE for quadratic function can be in-
stantiated using a variant of the ElGamal scheme. This
is the main technical novelty of our solution; we refer to
Section 5.2 for more details.

2 Related Work
Functional Encryption. The notion of Functional En-
cryption was put forth in [14, 40] where general syntax
and both IND-based and SIM-based security definitions
were provided. The first ensures that encryptions of any
two messages x0, x1 are indistinguishable for an adver-
sary that only has access to functional keys for func-
tions f that satisfy f(x0) = f(x1). On the other hand,
simulation-based security guarantees the existence of a
simulator that, given a polynomial number of function
evaluations over data x, can simulate the view of an
adversary that has an encryption of x and the corre-
sponding functional keys.

Schemes for general functionalities [16, 28, 29, 45]
usually rely on strong building blocks such as indistin-
guishability obfuscation (iO) or multilinear maps. In
particular, given recent results [34] there is strong evi-
dence that iO is necessary for FE for just cubic functions.
Custom schemes for linear [3, 6, 11, 24] and quadratic [9]
functions can rely on simpler assumptions.

An FE scheme whose encryption algorithm uses se-
cret information is said to be secret-key [4, 5], otherwise
it is known as public-key FE [3]. Function-private FE
(functional keys do not leak information on the function
being computed) have been studied in both the private-
key setting [17, 43] and in the public-key one [12, 13].

Some works explore the notion of multi-input FE
and multi-client FE (where functions are computed over
ordered sets of ciphertexts) [30]. Alternative construc-
tions in this setting have been proposed for both gen-
eral functionalities [8, 30] and restricted classes of func-
tions [2, 4, 5, 20]. We note that in some multi-client FE
schemes [20], the encryption routine takes an additional
label as input so that, given a function key, the corre-
sponding function can be computed only on ciphertexts
that were generated with the same label. As such, multi-
client FE provides basic access control to the ciphertexts
that can be mined with a given function key—one of
the goals of C-FE. Nevertheless, complex access policies
beyond string matching are not possible in multi-client
FE, whereas C-FE allows for access policies of arbitrary

complexity. Further, in multi-client FE schemes [2, 20]
encryption is secret key and data-producers are required
to act also as authorities, i.e., it is not possible to release
encrypted data and go (permanently) offline, whereas in
C-FE, encryption is public-key and data-owners are not
required to be online after encrypting their data.

Other works try to reduce the trust on a single au-
thority, e.g., Chandran et al. [19], define and build multi-
authority FE for arbitrary functionalities (based on iO).
Previous work has also tried to obtain efficient FE by
combining cryptography with trusted hardware [27].

Mining encrypted data. A number of works allow to
compute statistics on encrypted data. For example [35]
allows a server to compute statistics on aggregated
data supplied by a large population. However, their
system requires coordination among all data producers.
PRIO [21] also allows computation of statistic over pri-
vate data but uses multiple servers (each holding a share
of the private data) to carry out the computation. In the
context of recommender systems, the authors of [39]
propose a scheme (based on garbled circuits) where a
“crypto-service provider” allows a recommender system
to compute matrix factorization of private inputs sup-
plied as ciphertexts by the users.

Classification over encrypted data is an emerging
topic [15, 31, 36]. However, in all of these works the
data suppliers are those who perform the classification
over their own (encrypted) data. Differently, C-FE al-
lows a third party (independent of the data supplier) to
perform the computation, a functionality that is more
difficult to achieve.

3 Preliminaries

3.1 Notation

For an integer n ∈ N, we denote by [n] the range of
integers {1, . . . , n}. We say that a function with range
in [0, 1] is negligible if it is asymptotically smaller than
the inverse of any polynomial. We say that a function
δ with range in [0, 1] is overwhelming if 1 − δ is negli-
gible. We write y ← A(x) to denote that y is the out-
put of algorithm A on input x. For a vector x of size
`, we abuse notation and write y ← A(x), to denote
y1 ← A(x1); . . . ; y` ← A(x`). If A takes two arguments,
we sometimes write Ax1(x2) to denote A(x1, x2). For al-
gorithm A and O, we write AO(·) to denote the fact that
A has oracle access to function O.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 24

3.2 Public-Key Encryption

We define public-key encryption (PKE) and the stan-
dard security notions that we use in our security proofs.

Definition 1 (Public-Key Encryption). A public-key
encryption scheme is a tuple of three efficiently com-
putable algorithms:
• KeyGen(1κ): on input the security parameter, outputs
a key pair (pk, sk). The public key, pk, includes a de-
scription of the message spaceM and the ciphertext
space C.

• Enc(pk,m): on input the public key and a message
m ∈M, outputs a ciphertext ct.

• Dec(sk, ct): given the secret key and a ciphertext, out-
puts a message m.

A PKE scheme is said correct if there exists negligible
function ε in κ such that for every (sufficiently large
κ ∈ N), for (pk, sk)← KeyGen(1κ) and for every m ∈M:

Pr [Dec(sk, Enc(pk,m)) = m] ≥ 1− ε(κ)

where the probability is taken over the coins of KeyGen
and Enc.

Definition 2 (Security of encryption). We say that a
public-key encryption scheme E is xxx secure, for xxx ∈
{IND-CPA, IND-CCA1, IND-CCA2}, if there exists a neg-
ligible function ε in κ such that for every probabilistic
polynomial-time (p.p.t.) stateful adversary A, and for
every (sufficiently large) κ ∈ N, Advxxx

E,A(κ) ≤ ε(κ), where

Advxxx
E,A(κ) :=

∣∣Pr[Expxxx
E,A(κ) = 1]− 1

2
∣∣

and the experiment Expxxx
E,A(κ) is defined as:

Expxxx
E,A(κ) :=



(pk, sk) ← KeyGen(1κ)
(m0,m1) ← AO1(pk)

b ←$ {0, 1}
ct∗ ← Enc(pk,mb)
b′ ← AO2(ct∗)

if b = b′ ∧ |m0| = |m1| output 1,
otherwise output 0.

where O1, O2 are decryption oracles that, on input a ci-
phertext ct, return Dec(sk, ct). Oracle O2 returns ⊥ if it
is called on the target ciphertext ct∗. In the IND-CCA2
experiment, both oracles are present. In the case of
IND-CCA1, only O1 is available, while in the IND-CPA
experiment, neither O1 nor O2 are available to A.

3.3 Homomorphic Encryption

An homomorphic encryption scheme is an encryption
scheme equipped with a procedure to perform a compu-
tation on ciphertexts, producing a ciphertext for a value
that equals the result of the computation if it were per-
formed on the plaintexts.

In this work we use linearly-homomorphic encryp-
tion (LHE) as a building block, an homomorphic scheme
where the operations allowed are: addition of cipher-
texts, addition of constants to ciphertexts and multi-
plication of constants by ciphertexts. As in other works
[10, 18], we consider schemes where messages are in cer-
tain ring (M,+, ·).

Definition 3 (Linearly-homomorphic encryption). A
linearly-homomorphic encryption scheme is a tuple of
six efficiently computable algorithms:
• KeyGen(1κ): on input the security parameter, outputs
a key pair (pk, sk). The public key, pk, includes a
description of the message space M.

• Enc(pk,m): on input the public key and a message
m ∈M, outputs a ciphertext ct.

• Eval.add(pk, ct1, ct2): on input the public key, and two
ciphertexts ct1, ct2, outputs a ciphertext.

• Eval.add-const(pk,m, ct): on input the public key, a
plaintext m and a ciphertext ct, outputs a ciphertext.

• Eval.mul-const(pk,m, ct): on input the public key, a
plaintext m and a ciphertext ct, outputs a ciphertext.

• Dec(sk, ct): given the secret key and a ciphertext, out-
puts a message m or ⊥.

A linearly-homomorphic encryption scheme is correct if
for all m, m̂ ∈M, ct← Enc(pk,m), ĉt← Enc(pk, m̂), the
following probabilities are overwhelming in κ:

Pr [Dec(sk, ct) = m]
Pr [Dec(sk,Eval.add(pk, ct, ĉt)) = m+ m̂]
Pr [Dec(sk,Eval.add-const(pk,m, ĉt)) = m+ m̂]
Pr [Dec(sk,Eval.mul-const(pk,m, ĉt)) = m · m̂]

for every honestly generated pair of keys (pk, sk) ←
KeyGen(1κ). (The probabilities are taken over the coins
of all probabilistic algorithms involved.)

For arbitrary linear functions f : M` → M of
arity `, we can define (from Eval.add, Eval.add-const,
Eval.mul-const) a procedure Eval(f, pk, ct1, . . . , ct`) that,
on input f , a public key and ` ciphertexts produces a

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 25

ciphertext ct that decrypts to f(m1, . . . ,m`), where mi

is the plaintext encrypted in cti, for i ∈ [`].
For security we require semantic security, equivalent

to IND-CPA (Definition 2) and circuit privacy. Roughly,
the former guarantees that ciphertexts leak no informa-
tion about the plaintexts they were created from, while
the latter guarantees that the Eval procedure does not
leak information about the original plaintexts encoded
in the processed ciphertexts.

Definition 4 (Circuit privacy). A linearly-homomor-
phic encryption scheme H satisfies circuit privacy if
there exists a p.p.t. simulator H.Sim such that for any
pair of keys (pk, sk) ← KeyGen(1κ), any linear circuit
f :M` →M, all messages m1, . . . ,m` ∈M and cipher-
texts ct1, . . . , ct` built as cti := Enc(pk,mi), ∀i ∈ [`]:

H.Eval(f, pk, ct1, . . . , ct`) ≡ H.Sim(1κ, pk, f(m1, . . . ,m`))

where ≡ denotes equality of distributions.

Remark. For general homomorphic encryption schemes,
it is common to relax the above definition and admit
statistically close distributions, however, it is not hard
to achieve perfect circuit privacy for LHE schemes.

Extra notation. For two ciphertexts ct, ĉt, we denote
by ct �pk ĉt the result of Eval.add(pk, ct, ĉt). Analo-
gously, given a message m∈M and a ciphertext ct,
we denote by m⊕pk ct and m ⊗pk ct the result of
Eval.add-const(pk,m, ct) and Eval.mul-const(pk,m, ct) re-
spectively. When the public key is clear form the con-
text, we simply write ct� ĉt,m ⊕ ct orm⊗ ct. Note that
all these homomorphic operations may be probabilistic
to allow circuit privacy.

3.4 Degree-2 Homomorphic Encryption
from LHE

In [18], Catalano and Fiore proposed a method for
compiling a linearly-homomorphic encryption scheme
into an homomorphic encryption scheme that supports
degree-2 computations. Although the technique of [18]
did not yield fully compact ciphertexts (i.e., ciphertexts
of fixed size, independently of the number of inputs in
the computation), Barbosa et al. [10] later extended
it to achieve compact ciphertexts in a different model
called labeled homomorphic encryption. Our construc-
tions build on the technique from [10], without however
using the model of labeled homomorphic encryption.

The techniques from [10, 18] require that the mes-
sage space be what they define as public-space, which

can be informally described as a publicly known finite
and commutative ring where it is possible to efficiently
sample elements uniformly at random. The authors con-
sider ciphertexts of the form ct = (m− r, Enc(r)), where
m∈M, r is chosen uniformly at random in M and
“−” denotes the inverse operation of the addition, “+”,
in the ring. They observe that, for such ciphertexts,
it is possible to perform degree-2 homomorphic com-
putations. More precisely, given two ciphertexts ct1 =
(m1− r1, Enc(r1)) and ct2 = (m2− r2, Enc(r2)) and given
a degree-2 polynomial f(x, y) ∈ M[X,Y], it is possible
to efficiently compute Enc(f(m1,m2)− f(r1, r2)). For ex-
ample, let f(x, y) = axy + bx + cy + d, for a, b, c, d∈M
(d could actually be ignored):

1. Compute α := (m1− r1) · (m2− r2).
2. Set β1 := (m1− r1)⊗ Enc(r2) = Enc(m1r2− r1r2).
3. Set β2 := (m2− r2)⊗ Enc(r1) = Enc(r1m2− r1r2).
4. Combine γ := α⊕ β1 � β2 = Enc(m1m2− r1r2).
5. Output (b · (m1− r1) + c · (m2− r2))⊕ (a⊗ γ).

Observe that the above technique can be generalized
to compute degree-2 functions over an arbitrary number
of inputs (Section 3.6).

We define and show a security property of this tech-
nique, which we refer to as masked vs random security.

Definition 5. Let H be a linearly-homomorphic en-
cryption scheme. For algorithm A, consider the masked
vs random experiment defined as:

ExpMskvsRnd
H,A (κ) :=



(pk, sk) ← KeyGen(1κ)
x ← A(pk)

y0, r ←$ M; y1 := x− r
b ←$ {0, 1}
b′ ← A(yb, Enc(pk, r))

if b = b′ output 1, otherwise, 0.

The advantage function of A in the masked vs random
security game is defined as:

AdvMskvsRnd
H,A (κ) :=

∣∣Pr[ExpMskvsRnd
H,A (κ) = 1]− 1

2
∣∣ .

Lemma 1. Let H be a linearly-homomorphic encryp-
tion scheme. For every p.p.t. adversary A, there exists
a p.p.t. adversary B such that

AdvMskvsRnd
H,A (κ) ≤ AdvIND-CPA

H,B (κ) .

We refer to Appendix A for a proof.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 26

3.5 Distributed Threshold Encryption

In our constructions, we use a variant of public key en-
cryption in which a party can encrypt a message to a
set of public keys in such a way that all the correspond-
ing secret keys need to be used in decryption. This is
essentially a version of n-out-of-n distributed threshold
encryption (introduced by De Santis et al. [25] and fur-
ther formalized by Cortier et al., [22]) with three main
functional differences: each party generates its own key
pair independently (i.e., there is no dealer or interactive
protocol for key generation); a common group public key
can be constructed on-the-fly (i.e., one can dynamically
pick the set of recipients); decryption can be performed
by applying the secret keys in a simple sequential fash-
ion. Finally, we also require this scheme be equipped
with an algorithm AddPk that allows one to add a recip-
ient’s public key (with knowledge of its secret key) to
an existing ciphertext. A formalization follows.

Definition 6 (Distributed Threshold Encryption). A
distributed threshold encryption scheme is a tuple of
four efficiently computable algorithms:
• KeyGen(1κ): this protocol is independently run by
each party Pi (i ∈ [n] and n ∈ N); on input secu-
rity parameter κ, output its own key pair (ski, pki)

• Enc(pk1, . . . , pkn;m): on input the set of all public
keys pk1, . . . , pkn and a message m, outputs a cipher-
text ct.

• AddPk(sk, ct): on input a secret key sk and a cipher-
text ct, outputs a ciphertext ct′.

• ShareDec(ski, ct): this is a share decryption algorithm
that on input a secret key ski and a ciphertext ct,
outputs a decryption share ci.

• Rec(c1, . . . , ct): this is the reconstruction algorithm
that, given a set of decryption shares c1, . . . , ct out-
puts value.

A distributed threshold encryption scheme is said cor-
rect if for every m ∈ M, the following probability (over
the coins of KeyGen and Enc) is overwhelming in κ:

Pr
[
Rec({ShareDec(ski, Enc(pk1, . . . , pkn; m))}i∈[n]) = m

]
.

Furthermore AddPk is such that for n hon-
estly generated key pairs {(pki, ski)}i∈[n] and every
m ∈ M, it holds AddPk(skn,Enc(pk1, . . . , pkn−1;m)) =
Enc(pk1, . . . , pkn;m).

For security, we define IND-CPA security against
static corruptions. This is essentially classical IND-CPA

security with the difference that here the adversary re-
ceives one honestly generated public key pk1, specifies
two messages m0 and m1 and up to n − 1 public keys
pk2, . . . , pkn (of which it can know the secret keys), then
it receives Enc(pk1, . . . , pkn;mb) for a random b and must
return a bit b′.

In our work we are interested in distributed thresh-
old public key encryption schemes that are linearly-
homomorphic. An efficient instantiation of it can be ob-
tained based on ElGamal as follows. (A similar scheme
can be found in [32].) Assume that a prime order group
G (with generator g) is common to all parties. During
KeyGen each party creates an ElGamal key pair (pk, sk)
such that pk = gsk for a random sk. Given public keys
pk1, . . . , pkn, an encryption of m is ct = (a, b), com-
puted as a = gr, b = m

∏
i∈[n] pkri for a randomly cho-

sen r. Algorithm AddPk(sk, ct) returns (a, b · ask). Algo-
rithm ShareDec on ciphertext ct and secret key share
ski returns ci = aski . Finally, algorithm Rec outputs
b/
∏
i∈[n] ci.
Note that, at encryption time, one could pick

any subset of the public keys, say {pki1 , . . . , pkit} ⊆
{pk1, . . . , pkn, }, and let ct ← Enc(pki1 , . . . , pkit ;m).
Also, let I be the set of indices i1, . . . , it. Thus, the re-
construction algorithm recovers m only if it is given in
input the decryption shares {ci ← Dec(ski, ct)}i∈I.

Correctness and security of this construction are
rather obvious and we omit them.

3.6 Quadratic Functions

Definition 7 (Arithmetic circuit). An arithmetic cir-
cuit is a directed acyclic graph with ` sources (nodes
with in-degree 0) and other nodes of in-degree 2, called
internal gates. Sources are labeled by inputs x1, . . . , x`,
all other nodes are labeled by + or ∗.

We consider circuits with a single output node or sink
(of out-degree 0). A circuit f of this form computes an
arithmetic function over a set R with two operations,
+ and ∗, defined over it (usually forming a ring), from
R` → R. More concretely, after assigning a value xi ∈ R
to the input nodes, the internal gates can be evaluated
in any order consistent with the underlying graph, re-
sulting in a unique output value, denoted by evalf (x).

Inputs of a circuit that have a fixed associated value
are called constants, otherwise they are called linear
terms or variables. We say a circuit is quadratic if it
computes a quadratic function over R. More precisely, a
circuit is quadratic if every node can be tagged as 0 (con-

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 27

const. plus const. const. plus linear const. plus quad.
(a,⊥) � (â,⊥) := (a+ â, ⊥) (a,⊥) � (â, b̂) := (â, a⊕pk b̂) (a,⊥) � (⊥, b̂) := (⊥, b̂)

linear plus linear linear plus quad. quad. plus quad.
(a, b) � (â, b̂) := (a+ â, b�pk b̂) (a, b) � (⊥, b̂) := (⊥, a⊕pk b̂) (⊥, b) � (⊥, b̂) := (⊥, b�pk b̂)

const. times const. const. times linear
(a,⊥) � (â,⊥) := (a · â, ⊥) (a,⊥) � (â, b̂) := (a · â, a⊗pk b̂)

const. times quad. linear times linear
(a,⊥) � (⊥, b̂) := (⊥, a⊗pk b̂) (a, b) � (â, b̂) := (⊥, a · â⊕pk (a⊗pk b̂) �pk (â⊗pk b))

Fig. 1. Definition of operators � and � defined over elements of Γ :=M⊥× C⊥ \ {(⊥,⊥)}, for all a, â ∈M and all b, b̂ ∈ C.

stant), 1 (linear) or 2 (quadratic) preserving the natural
hierarchy of the circuit. Namely, constant source nodes
are tagged with 0, variable source nodes are tagged with
1 and for every non-source node u labeled with op and
with predecessors v1 and v2, it holds:

tag(u) = max{tag(v1), tag(v2)} if op = +
tag(u) = tag(v1) + tag(v2) if op = ∗ .

We now describe a method to homomorphically
evaluate a quadratic circuit, that leverages a linearly-
homomorphic encryption scheme, say with message
spaceM and ciphertext space C. LetM⊥ and C⊥ be de-
fined as {⊥}∪M and {⊥}∪C respectively. The method
is based on the technique of [10] (see Section 3.4), with a
small extension to deal with additions by constant (not
supported in [10]). In Figure 1, we define two operations,
an homomorphic addition � and an homomorphic mul-
tiplication � , over the set Γ :=M⊥×C⊥ \{(⊥,⊥)}. Ele-
ments inM×{⊥} represent constants, elements inM×C
represent linear terms, whereas elements in {⊥}×C rep-
resent quadratic terms.

Observe that although operators � and � may
be probabilistic, since they are defined based on the ho-
momorphic operators ⊕, ⊗ and �, they inherit asso-
ciativity, commutativity and distributivity from these
operations (as well as from +, ∗ in M).3 Also, observe
that operator � is not defined between a linear and a
quadratic term or between two quadratic terms. This is
not necessary to evaluate quadratic circuits.

In order to state our next lemma, we define the de-
cryption of elements in Γ as follows, for every a ∈ M
and every b ∈ C:

Decsk((a, b)) := a Decsk((⊥, b)) := Decsk(b)

3 These properties hold with respect to fixed randomness.

Lemma 2. Let f be a non-constant quadratic circuit
with variables xi, ∀i∈ [`] and let x, r ∈M`. It holds:

Decsk
(
evalf (x−r, Encpk(r))

)
= f(x)− f(r) ,

where the evaluation of f takes place over set Γ with
operations � for addition and � for multiplication.

We refer to Appendix A for a proof.

Context Hiding. We claim that the result of evalf con-
tains no information about the original plaintexts, what
we define as context hiding. We could formalize this by
showing that there exists a simulator Ŝim that on in-
put f , f(x), the random vector r and the secret key,
can perfectly simulate the output of evalf . This can be
done based on the perfect circuit privacy (Definition 4)
of H. A formal proof of the context hiding of evalf could
be obtained in essentially the same way as in [10].

4 Multi-Authority C-FE
Controlled Functional Encryption. We start by provid-
ing an overview of Controlled Functional Encryption as
defined in [37]. In a C-FE scenario, there are three types
of entities denoted as data-owners, clients, and a central
authority. The authority runs a Setup algorithm to pro-
duce public system parameters and its own secret key. A
data-owner uses an encryption routine Enc to encrypt its
data item x. The resulting ciphertext ct is sent to clients
and may also include an arbitrary policy λ. A client is
the party interested in computing f(x), given ciphertext
ct. To do so, the client first issues a key request (with
references to ct and the function f to be computed) to
the authority. Via the key request, the authority obtains

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 28

the policy λ (associated to ct), which can be evaluated
(using an arbitrary logic) to decide whether to grant or
deny the client’s request. If the request is to be granted,
the authority issues a functional key skf to the client.
Note that skf is only valid to compute f over the data
encrypted under ct. Finally the client runs a decryption
algorithm Dec with input skf and ct to learn f(x).

Correctness informally states that, if all parties are
honest and execute the algorithms correctly, the author-
ity obtains the policy λ attached to the ciphertext by
the data-owner, while the client learns f(x). Security
guarantees that, unless the client and the authority col-
lude, (i) no information on x is leaked to the authority,
and (ii) nothing but f(x) is learned by the client.

As discussed above, the authors of [37] instantiate
a very efficient C-FE scheme for single-input, linear
functions, based on a CCA2 encryption scheme. They
also build a C-FE for arbitrary functions (again, single-
input) that leverages garbled circuits, making it partic-
ularly suited for functions over Boolean inputs.
Multi-Authority Controlled Functional Encryption. We
extend the work of [37] to scenarios with multiple au-
thorities. In our setting, a client must issue key requests
to each authority and will only learn f(x) if all of them
decide to grant such requests. Hence, multi-authority C-
FE considerably strengthens the security of C-FE. In
particular, our security definitions ensure that no in-
formation on the data produced by owners is leaked
(apart from f(x), that is learned by the client), unless
the client and all the authorities collude. In other words,
as long as one authority is honest, data-owners are as-
sured on the privacy of their data. We also consider
functions with multiple inputs coming from possibly dif-
ferent data-owners. In Section 5.2, we provide an instan-
tiation of mC-FE for quadratic functions using a CCA2
encryption scheme and a linearly-homomorphic encryp-
tion scheme.

Definition 8 (Multi-authority C-FE). Let F={Fκ}κ∈N
be a function family, where Fκ is a collection of
functions {F :Xκ×Λκ→Yκ} and let n∈N. A multi-
authority C-FE scheme for F consists of two distributed
protocols {Auth-Setup, KeyReq} and a tuple of efficiently
computable algorithms {Cli-Setup,Enc,Dec}:

• Auth-Setup(1κ)→ {(mpk,mski)}i∈[n]: for certain se-
curity parameter κ, the authorities A1, . . . ,An run
a distributed protocol, where all obtain the master
public key mpk (which will be distributed to all data-
owners), while the k-th share of the master secret key
mskk is only obtained by the k-th authority Ak.

• Cli-Setup(1κ) → (pkc, skc): on input the security pa-
rameter, outputs a pair of keys for the client.

• Enc(mpk, pkc, x, λ) → ct: on input a master public
key, a client’s public key , a value x, and a policy λ,
outputs a ciphertext ct.

• KeyReq((f, ct, pkc); {mski}i∈[n])→ (skf; {λi}i∈[n]):
the client and the n authorities run a distributed
protocol, where the client inputs a function f of ar-
ity ` and a vector of ` ciphertexts ct = (ct1, . . . , ct`)
together with their own public key; and every au-
thority inputs their corresponding master secret key.
As the outcome of this protocol, all authorities get a
vector of policies associated to the requested cipher-
texts (based on which they may decide to abort their
execution) and the client receives a secret function
key skf.

• Dec(f, ct, skc, skf) → y: on input a function of arity
`, a list of ` ciphertexts, a client’s secret key and a
function key, outputs a value y.

Remark. For generality, we have defined Auth-Setup and
KeyReq as distributed protocols. In the spirit of func-
tional encryption, we require protocol KeyReq be such
that the authorities do not exchange messages between
them and every authority interacts only once with the
client, i.e., it receives the request from the client and
answers back or aborts (if it decides not to grant the
computation). Ideally, the Auth-Setup would require no
interaction between the authorities so that new author-
ities can enter the system at any moment (our instanti-
ation from Section 5 achieves this property).
Remark. Although requiring a client’s public key for en-
cryption seems to depart from the original notion of
C-FE, we note that the C-FE model of [37] implicitly
assumes the existence of a private communication chan-
nel between the data-owner and the client. Thus having
a public key for every client is a way to realize such
channel. Furthermore, we argue that it is reasonable to
assume that data-owners (and authorities) are aware of
client’s identities (and their public keys) in a real deploy-
ment of C-FE. Indeed, if data-owners are to define who
can use their data and authorities are to enforce those
policies, well-known client identities are necessary.

We require a multi-authority C-FE be correct.
Roughly, if all algorithms are executed correctly, after
KeyReq the authorities recover the original policies set
by the data-owners who produced the ciphertexts (this
is for the authority to evaluate the data-owner’s policies
correctly). Further, after decryption, the client receives
f(x1, . . . , x`) if all authorities granted the evaluation. In

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 29

Ideal World

• Setup. Let O be an ideal functionality interacting with the data-owners, the clients and the n-authorities.
O keeps tracks of ciphertexts and evaluation requests with tables T1 and T2, respectively. All tables are
initially empty. Let also βi() be a Boolean function that models the evaluation of the policies set by data-
owners as carried out by the i-th authority.

• Data upload. A data-owner sends (x,C, λ) to O, who creates a fresh handle h and sends it to the simulator.
If the latter allows, then O stores the record (h, x,C, λ) in T1, sends h to C and stops. Otherwise, O drops
(x,C, λ) and stops.

• Evaluation request. A client C sends f and h = (hi1 , . . . , hi`) to O. For each j ∈ {i1, . . . , i`}, O checks
that (hj , xj ,C, λj) ∈ T1 for some xj and λj ; if the check fails for some j, O sends ⊥ to the client and stops.
Otherwise, let λ = (λi1 , . . . , λi`). Oracle O draws a fresh handle t (the session ID) and, for i ∈ [n] behaves
as follows. If the i-th authority is corrupted, it sends (t, f,C,h,λ, i) to the simulator that may reply with
a Boolean allowi; otherwise, it sets allowi := βi(λ). If allowi is defined, then O sends (t, i, allowi) to C. If
allowi equals true for all i ∈ [n], then O stores (t, f,C,h) in T2 and stops.

• Decryption. A client C sends t to O. If exists (t, f ′,C,h′) ∈ T2 for any f ′ and any h′, then oracle O
retrieves (hi, xi, ∗, ∗) for each hi ∈ h′, computes y = f(x1, . . . , x`) and sends y to C. Otherwise, oracle O
sends ⊥ to C and stops.

Real World

• Setup. Authorities run Auth-Setup with security parameter κ, and each gets (mpk,mski), for i ∈ [n]. They
distribute mpk among all other parties. Also, each client runs Cli-Setup (again, with security parameter κ)
to obtain (pkc, skc); pkc is distributed to all other parties.

• Data Upload. A data-owner runs Enc on (mpk, pkc, x, λ) to get a ciphertext ct and sends it to all clients.

• Evaluation Request. A client C wishing to compute f over ct engages with the n authorities in
KeyReq((f, ct); {mski}i∈[n])→ (skf; {λi}i∈[n]) and obtains skf if all authorities grant the computation.

• Decryption. A client C runs Dec on input (f, ct, skc, skf) to obtain y.

Fig. 2. Ideal and real worlds for the security of multi-authority C-FE.

the following definition, we abuse notation to accommo-
date for vectors of data items.

Definition 9 (Correctness). A multi-authority C-FE
scheme is said to be correct if there exists an overwhelm-
ing function, δ such that, for all (sufficiently large)
κ ∈ N, f ∈ Fκ, and all x = (x1, . . . , x`) ∈ Xκ, λ =
(λ1, . . . , λ`) ∈ Λκ, the following probability is ≥ δ(κ):

Pr



{(mpk,mski)}i∈[n]←Auth-Setup(1κ)
(pkc, skc)←Cli-Setup(1κ)

ct←Enc(mpk, pkc,x,λ)
(skf, {λ′i}i∈[n])←KeyReq((f, ct, pkc); {mski}i∈[n])

y←Dec(f, ct, skc, skf)

y = f(x) ∧ ∀i ∈ [n], λ′i = λ



where the probability is taken over the coins of the algo-
rithms that are involved.

Regarding security, our goal is to ensure that a client
can learn the output of a specific function over a given
(set of) ciphertext(s) only if all of the authorities al-
low so; furthermore no additional information can be
leaked about the encrypted data, unless the client and
all of the authorities collude. We express such security
requirements using the simulation paradigm. Namely,
we define an ideal functionality that acts as a trusted
third party and captures the desired security guarantees,
i.e., the description of what every party in the system
(data-owners, clients and the authorities) should know
and learn from the interaction with each other. The
methodology consists of defining an ideal world (based

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 30

on the ideal functionality) and a real world (based on
the C-FE construction) and proving that all attacks in
the real world are inherent. Namely, every attack in the
real world can also be performed in the simulated world,
which is formalized by showing that for every algorithm
controlling a set of parties in the real world, there exists
another algorithm (simulator) controlling the same set
of parties in the ideal world that produces an indistin-
guishable output. We refer to Figure 2 for a description
of the two worlds in the case of multi-authority C-FE.

Definition 10 (Security of multi-authority C-FE). A
multi-authority C-FE scheme is said to be secure if for
every adversary A in the real world (actively corrupting
a subset of clients and possibly up to n−1 authorities;
or corrupting all n authorities, but no client), there
exists a simulator S in the ideal world (corrupting the
same set of parties) who produces an output that is
indistinguishable from the output of A.

5 mC-FE for Quadratic Functions
In this section we provide a construction of a multi-
authority C-FE for quadratic functions.

5.1 Single-Authority C-FE

We start by defining a very efficient scheme in the case
of a single authority. Our construction relies on the
method used for building labeled homomorphic encryp-
tion for quadratic polynomials [18] (see Section 3.6). In
particular, the authors of [18] encrypt a message x as
e = (a = x−r, b = Enc(r)) where Enc is a linear-y ho-
momorphic and r is fresh randomness used to blind
x. Given e, anybody can homomorphically compute
Enc(f(x)−f(r)) for a quadratic function f (we refer to
our Section 3.6 for more details about this procedure
called evalf). Our idea is to let the client hold the de-
cryption key of Enc but we wrap ciphertext e with an
additional encryption layer by using a CCA2 encryp-
tion scheme and the authority’s public key; further, we
reveal the blinding r to the client. Hence the authority
(and only the authority) can recover e and evaluate ho-
momorphically Enc(f(x)−f(r)); this ciphertext is essen-
tially the function key; it is given to the client that uses
its secret key to recover the plaintext f(x)−f(r), and
removes f(r) to obtain f(x). This basic idea can be eas-
ily extended to accommodate for functions of any arity

• Υ.Auth-Setup(1κ): on input κ,
1. run E .KeyGen(1κ) to get (pkE, skE),
2. set mpk := pkE, and msk := skE,
3. output (mpk,msk).

• Υ.Cli-Setup(1κ): on input the security parameter,
1. run H.KeyGen(1κ) to get (pkHc , skHc),
2. output (pkHc , skHc).

• Υ.Enc(mpk, pkHc , x, λ) : on input mpk = pkE, the
client’s public key pkHc , x ∈M and policy λ,
1. sample r←$ M,
2. compute a := x− r and b := H.Enc(pkHc , r),
3. set ct := (r, E .Enc(pkE, (a, b, λ))),
4. output ct.

• Υ.KeyReq((f, ct, pkHc); msk): where ct includes ` ci-
phertexts,
1. the client parses ctj as (rj , ej), ∀j ∈ [`],
2. sends (f, {ej}j∈[`]) to the authority,
3. who sets (aj , bj , λj) := E .Dec(skE, ej), ∀j ∈ [`]
4. then sets a= (a1, . . . , a`) (b, λ analogously),
5. if ∃j ∈ [`] : aj 6∈M∨bj 6∈ C∨λj 6∈Λ, it sets skf:=⊥,

otherwise, skf := evalf (a, b) (using pkHc),
6. the authority stores λ, sending skf to the client.

• Υ.Dec(f, (ct1 . . . , ct`), skHc , skf):
1. parse ctj as (rj , ej), for every j ∈ [`],
2. output H.Dec(skHc , skf) + f(r1, . . . , r`).

Fig. 3. Instantiation of a single-authority C-FE for quadratic
functions, based on a linearly-homomorphic encryption
scheme H, and a CCA2 public-key encryption scheme E.

where inputs are provided by multiple data-owners. Fur-
ther, the CCA2 encryption scheme allows data-owners
to attach an arbitrary policy to their ciphertexts, ensur-
ing that it cannot be tampered.

Figure 3 provides the details of our instantiation. In
a bit more of detail, during Υ.Auth-Setup the authority
creates secret and public parameters that are essentially
the secret and public key pkE, skE for a CCA2 encryp-
tion scheme E . Similarly, each client runs Υ.Cli-Setup to
compute a key pair pkHc , skHc for a linearly-homomorphic
encryption scheme H.

The encryption routine Υ.Enc can be used to en-
crypt message x∈M for a client with public key pkHc ,
picking a fresh r∈M at random and computing ct =
(r, e) where e = E .EncpkE(x−r,H.EncpkHc (r)). The CCA2
ciphertext e should also carry the policy λ, which we
omit here for simplicity.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 31

When a client wants to compute a function f of
arity ` on ciphertexts ct1, . . . , ct`, it engages in proto-
col Υ.KeyReq with the authority. Let cti = (ri, ei), for
every i∈ [`], and defines r = r1, . . . , r`, e = e1, . . . , e`.
The authority decrypts e (by using skE) component-
wise to get (x−r,H.EncpkHc (r)). (The authority also
gets the policies as defined by data-owners and uses
them to decide whether to process the client’s request
or to abort.) Next, the authority evalf to compute
H.EncpkHc (f(x)−f(r)), and sends it to the client. Finally,
the client runs Υ.Dec that decrypts the received cipher-
text using skHc and adds f(r) to the result, getting f(x).

Theorem 1 (Correctness). The scheme from Figure 3
is a correct 1-authority C-FE scheme.

Proof. Let f be a function, x∈M`, and policies λ. Run:

(pkE, skE)← Υ.Auth-Setup(1κ) (pkHc , skHc)← Cli-Setup(1κ)

Then run (r, e)← Υ.Enc(pkE,x,λ, pkHc). Notice that com-
puting Υ.KeyReq((f, ct, pkHc); msk) will result in (skf; λ′)
where skf = evalf (x−r,H.EncpkHc (r)) and λ′ = λ. Now,
Υ.Dec(f, ct, skf, skHc) produces H.Dec(skHc , skf)+f(r), that
(by Lemma 2) equals f(x).

Theorem 2 (Hbc authority). Let H be a linearly-
homomorphic encryption scheme and let E be a CCA2
public-key encryption scheme. The scheme from Fig-
ure 3 is such that for every adversary A in the real
world (passively corrupting the authority), there exists
a simulator in the ideal world (also corrupting the au-
thority) who produces an output that is indistinguishable
from the one of A.

Theorem 3 (Malicious clients). Let H be a linearly-
homomorphic encryption scheme and let E be a CCA2
public-key encryption scheme. The scheme from Fig-
ure 3 is such that for every adversary A in the real
world actively corrupting a subset of clients, there ex-
ists a simulator in the ideal world (corrupting the same
set of parties) who produces an output that is indistin-
guishable from the one of A.

We refer to Appendix A for a proof of both Theorems.

5.2 Main Construction

In this section we show our mC-FE for quadratic func-
tions. We design the scheme by extending the one for
single-authority described in the previous section. In

• Ψ.Auth-Setup(1κ): on input κ,
1. authority i∈ [n] runs (pkHi , skHi)←H.KeyGen(1κ),
2. authority i∈ [n] runs (pkEi , skEi)←E .KeyGen(1κ),
3. set mpk := ({(pkHi , pkEi)}i∈[n]),
4. set mski := (skHi , skEi) for all i ∈ [n],
5. the output is ((mpk,msk1); . . . ; (mpk,mskn)).

• Ψ.Cli-Setup(1κ): on input κ,
1. run H.KeyGen(1κ) to get (pkHc , skHc),
2. output (pkHc , skHc).

• Ψ.Enc(mpk, pkHc , x, λ) : on input the master public
key mpk = {(pkHi , pkEi)}i∈[n], x ∈M and λ ∈ Λ,
1. sample ri←$ M, for i ∈ [n],
2. set r0 := x,
3. set Ωi := {pkHc , pkHi, pkHi+1, . . . , pkHn},
4. let ai := ri−1− ri, bi := H.Enc(Ωi, ri), for i∈ [n],
5. set ct :=

(
rn, {E .Enc(pkEi , (ai, bi, λ))}i∈[n]

)
,

6. output ct.

• Ψ.KeyReq((f, ct, pkHc); {mski}i): where ct includes
` ciphertexts. The client sets i = 1. While i ≤ n:
1. the client parses ctj as (rn,j , (e

(1)
j , . . . ,e

(n)
j)), ∀j ∈ [`],

2. if i = 1, it sends (e(1)
1 , . . . , e(1)

`) to authority 1,
if i > 1, (skf

i−1, (e(i)
1 , . . . , e(i)

`)) to authority i,
3. authority i parses mski as (skHi, skEi),
4. ∀j ∈ [`], it sets (aj , bj , λj) := E .Dec(skEi, e(i)

j),
and a = (a1, . . . , a`), (define b, λ analogously),

5. if i = 1, it computes γi := evalf (a, b),
if i > 1, it computes γi := skf

i−1 �Ωi
evalf (a, b),

6. it sets skf
i := H.Dec(skHi, γi),

7. it stores λ and sends skf
i to the client,

8. the client increments i and goes to Step 2.
The client defines its secret key skf := skf

n.

• Ψ.Dec(f, (ct1, . . . , ct`), skHc , skf):
1. parse ctj as (rn,j , (e

(1)
j , . . . , e(n)

j)), for all j∈ [`],
2. output H.Dec(skHc , skf) + f(rn,1, . . . , rn,`).

Fig. 4. Construction of a multi-authority C-FE for quadratic
functions, based on the multi-key linearly-homomorphic
encryption scheme, H, and the CCA2 public-key encryption
scheme, E.

this case, however, we need to solve a number of tech-
nical challenges related to guaranteeing security when a
client colludes with (up to) all but one authority, and
avoiding collusion between authorities. We refer to the
introduction for a discussion on these challenges.

A key idea of our solution is the use of secret-sharing
of the encrypted message. More in details, in order to en-

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 32

crypt x, a data-owner picks n fresh blindings r1, . . . , rn.
Assume r0 = x, the data-owner creates a “chain” of ci-
phertexts e(1), . . . , e(n) so that e(i) is the encryption of
(ri−1−ri, Enc(ri)) under the public key of authority Ai,
for i∈ [n]. As before, Enc is the encryption routine of a
linearly-homomorphic encryption scheme and the pub-
lic key is the one of the client. On the other hand, the
encryption scheme to create e(i) is CCA2 and the pub-
lic key is the one of authority Ai. Finally, the client also
gets rn from the data-owner.

Given e(i), the i-th authority uses its secret key to re-
cover (ri−1−ri, Enc(ri)), it homomorphically computes
Enc(f(ri−1)−f(ri))), and returns it to the client. The
latter decrypts the ciphertexts returned by the authori-
ties and computes

∑i=n
i=1 f(ri−1)−f(ri) that is equal to

f(r0)− f(rn). Finally, the client removes f(rn) and ob-
tains f(r0) as desired (recall that r0 = x).

The above design, however, has a security flaw. In
particular, given e(i) = (ri−1−ri, Enc(ri)), a client that
colludes with an authority can recover ri and, there-
fore, ri−1. For example, if the client colludes with au-
thority A1 they can recover r0 (that is, x) from e(1) =
(r0−r1,Enc(r1)). We fix this flaw by using the notion
of distributed threshold (linearly-homomorphic) encryp-
tion that we mentioned in Section 3.5. The idea is that
to compute Enc(ri) we use a set of public keys that in-
clude that of the client and the ones of authorities in the
range [n] \ [i−1] (therefore authorities also have public
keys for the linearly-homomorphic encryption scheme).

In more detail, with Auth-Setup each authority gen-
erates a keypair for a linearly-homomorphic encryption
scheme H and a CCA2 encryption scheme E , whereas
each client generates a keypair for H with Cli-Setup.

The Enc routine encrypts a message x as follows. It
draws n values r1, . . . , rn uniformly at random and sets
r0 = x. Next, it sets ct =

(
rn, {e(i)}i∈[n]

)
where e(i) is a

CCA2 encryption of (ri−1−ri,H.Enc(Ωi, ri)) under pkEi
and H.Enc uses the following set of public keys Ωi :=
{pkHc , pkHi, pkHi+1, . . . , pkHn}, i.e., the public key pkHc of the
client and the public keys of authorities Ai,Ai+1 . . . ,An.
To compute a function f on a ciphertext:

• The client sends e(1) to the first authority, who de-
crypts it to obtain (x−r(1),H.Enc(Ω1, r

(1))). The
first authority then runs evalf to compute γ1 :=
H.Enc(Ω1, f(x)−f(r(1))), and “peels off” one layer
of encryption by computing skf

1 := Dec(sk1, γ1) and
sends skf

1 to the client.

• The client contacts the second authority by sending
e(2) and skf

1. The second authority decrypts e(2) to

get (r(1)−r(2),H.Enc(Ω2, r
(2))) and runs evalf , get-

ting H.Enc(Ω2, f(r(2))−f(r(1))). It homomorphically
adds skf

1 to it and peels off its layer of encryption, get-
ting skf

2 := H.Enc(Ω3, f(x)−f(r(2))), which is sent
back to the client.

• Following the same process, eventually, the client
will receive skf

n := H.Enc(pkHc , f(x)−f(r(n))) and fin-
ishes the decryption as in the case of 1 authority,
since the client knows r(n).

Remark. Note that an advantage of our scheme is that
the setup is not really a distributed protocol and au-
thorities can obtain msk shares without interaction. On
the other hand, notice that our construction imposes a
specific order of communication with the authorities. It
is an appealing target for future work to remove this
limitation.

We will reduce the security of our multi-authority
construction to the security of the construction for 1
authority (from Section 5.1). The following lemma is
what makes the reduction possible. Roughly, it describes
a method for perfectly simulating a ciphertext for n+1
authorities from a ciphertext for just n authorities. For
lack of space the proof is in Appendix A.

Lemma 3. Let (rn, e(1), . . . , e(n)) be a ciphertext that
honestly encrypts x for n authorities, and let skE1
be the CCA2 secret key of the first authority. Let
(pkH0, skH0) and (pkE0, skE0) be the homomorphic key pair
and CCA2 key pair respectively of a new author-
ity, and let λ0 be an arbitrary policy. In these con-
ditions, there is an efficient algorithm that, on in-
put (pkH0, skH0, pkE0, skE1, pkE1, rn, e(1), . . . , e(n)), can gener-
ate a ciphertext (rn, ẽ(0), ẽ(1), e(2), . . . , e(n)) identically
distributed to an honest encryption of x for n+1 author-
ities, in which the new authority is in the first position,
followed by the original authorities (in the same order).

Theorem 4 (Hbc authorities). Let H be a linearly-
homomorphic encryption scheme and let E be a public-
key encryption scheme. Then, the scheme from Figure 4
is such that for every adversary A in the real world (pas-
sively corrupting the n authorities), there exists a simu-
lator S in the ideal world (corrupting the n authorities)
who produces an output that is indistinguishable from
the output of A.

Proof. We proceed by induction on the number of au-
thorities. For n = 1, the result is true as established by
Theorem 2. Now, assume the result is true for n author-
ities and consider the case of n+1 authorities. We pro-

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 33

ceed by reductio ad absurdum: assume that there exists
a p.p.t. adversary A (passively controlling n+1 authori-
ties) that produces a view which is distinguishable from
the view that any simulator can generate in the ideal
world. We could use this adversary to create a similar
adversary A′ (in a game of n authorities) that cannot be
simulated (which contradicts the induction hypothesis).

Algorithm A′ starts its experiment (in the real
world of n authorities) and runs E .KeyGen(1κ) and
H.KeyGen(1κ), one extra time (for the new simulated
authority), producing (pkE0, skE0) and (pkH0, skH0). It runs
the code of A with the exception that, when an eval-
uation request is performed, say on (f, e1, . . . , e`), for
every j ∈ [`] it modifies every vector ej as described in
Lemma 3 (for every j ∈ [`]) and continues executing the
code of A with the simulated ciphertext for one extra
authority. Recall that A′ controls all the n authorities
and thus knows all their secret keys, and this enables
A′ to run the algorithm of Lemma 3. Observe that A′

is perfectly simulating the experiment executed by A
(with n+1 authorities), and so, no simulator can exist
for A′ in the ideal world: absurdum.

Theorem 5 (Malicious clients and hbc authorities).
Let H be a linearly-homomorphic encryption scheme and
let E be a CCA2 secure public-key encryption scheme.
Then, the scheme from Figure 4 is such that for every
adversary A in the real world (actively corrupting a
subset of clients and passively corrupting up to n−1 au-
thorities), there exists a simulator S in the ideal world
(corrupting the same parties) who produces an output
that is indistinguishable from the output of A.

Proof. Again, by induction on n, we have that for n = 1
the result is immediately implied by Theorem 3. Now,
assume the result is true for n authorities and consider
the case of n+1 authorities. Assume that there exists a
p.p.t. adversary A (passively controlling a subset S of
the n+1 authorities such that |S| ≤ n, and actively cor-
rupting a subset of clients) that produces a view which
is distinguishable from the view that any simulator can
generate in the ideal world. First, we can easily trans-
form such an adversary into one that controls exactly
n out of n+1 authorities (by acting genuinely in the
name of those that were not controlled before). There-
fore, from now on we assume that A controls exactly n
authorities. As in the previous proof, we build an adver-
sary A′ that runs in the game with n authorities, and
controls n − 1 of them. We show that such an A′ can
simulate the behaviour of A, and therefore, cannot be
simulated. We denote with indices {1, . . . , n} the n au-

thorities in the game of A′. We distinguish two mutually
exclusive cases regarding the authorities corrupted by A:

1. The last authority (in the game with n+1) is honest.
In this case, the first two authorities in the game
with n+1 must be under the control of the adver-
sary. Let us use indices 0, . . . , n to refer to these
n+1 authorities. In this case, A′ proceeds as in The-
orem 4. Namely, A′ runs in a game with authorities
{1, . . . , n}, it samples the keys for the authority 0,
(pkE0, skE0), (pkH0, skH0), and uses these keys, as well as
skE1, to run the algorithm of Lemma 3 in order to
modify a ciphertext for authorities {1, . . . , n} into
one for authorities {0, . . . , n} to be given to A.

2. The last authority (in the game with n+1) is cor-
rupted. In this case, the ciphertext expansion is eas-
ier as it does not require knowledge of any secret
key. Let us use indices {1, . . . , n+ 1} to refer to the
n+1 authorities in the game of A, and let {1, . . . , n}
the ones in the game of A′. When a corrupted
client (with public key pkHc) receives a ciphertext, say
(rn, (e(1), . . . , e(n))), A′ generates a new fresh random-
ness w←$ M and sets

e(n+1) := E .EncpkEn+1
(rn−w,H.Enc({pkHc , pkHn+1}, w), λ)

where λ is chosen as A dictates. It simulates the n+1-
authorities ciphertext as (w, (e(1), . . . , e(n), e(n+1))).

Observe that (in both cases) A′ perfectly simulates the
experiment executed by A (with n+1 authorities), there-
fore, no simulator can exist for A′ in the ideal world.

Finally, we also observe that the need of distinguish
between the two cases comes from the fact that we need
to guarantee that A′ controls strictly less than n author-
ities, and thus the authority that is kept honest by A
must be present in the game run by A′.

Remark. Our mC-FE construction requires a PKI for
clients, because data-owners must use a specific client’s
public key when encrypting their data. Note that the
original C-FE construction of [37] also requires authen-
ticated channels towards clients, albeit authentication
in [37] does not necessarily need a PKI. An alterna-
tive to forgo the PKI for clients in our construction
could be achieved if data-owners created a fresh key pair
(pk, sk) ← H.KeyGen at the moment of encryption and
used pk as the client’s public key, including both pk and
sk in the ciphertext.

This alternative may compromise the multi-input
property: if a single data-owner encrypts several cipher-
texts, it can include the same pair of keys in all of them,

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 34

(* Mean *) (* Variance *)

sum := 0; sum1 := 0;
sum2 := 0;

for i in [m]{
sum += x[i]; for i in [m]{

} sum1 += x[i];
return sum. sum2 += x[i]**2;

}
return m * sum2 - sum1**2.

Fig. 5. Example of input files in our programming language.
Symbol x is reserved to represent the input vector and m is
reserved to represent its length.

however, the keys will not match on ciphertexts pro-
duced by different data-owners. Yet, if the LHE scheme
ismulti-key, the client could combine the different public
keys generated by different users into a single one. This
would allow multi-input computations even if client’s
public keys are generated by different data-owners.

6 Implementation and Evaluation
We implement a general library for controlled functional
encryption, based on our constructions. Our library is
written in OCaml and uses the Relic-Toolkit [7] for el-
liptic curves. All the experiments were executed on an
Intel Core i7-4790K CPU and 16GB of RAM, running
Ubuntu 16.04 LTS.

We implement the CCA2 public-key encryption as a
hybrid encryption scheme that uses AES (128-bits key)
and the Cramer Shoup PKE scheme [23], implemented
over the NIST P224 Curve. For the sake of simplicity,
we ignore policies λ.

We have designed a simple programming language
to describe circuits, which gives users fine-grained con-
trol on the way functions are evaluated. As an example,
in Figure 5, we describe an implementation of the mean
and variance functions (used in our experiments of lin-
ear regression in Section 6.3).

Observe that, as is common, we implement the mean
multiplied bym (i.e. the sum) instead of the mean (both
functions are equivalent if m is known) and we imple-
ment the variance multiplied bym2 instead of the actual
variance. This is to ensure that the result is an integer, a
requirement imposed by our representation of numbers
in discrete modular arithmetic.

6.1 Description of Our Experiments

In Section 6.2, we show how our construction can be
used to evaluate quadratic classifiers over encrypted
data. As in [42], we consider the popular MNIST
dataset [33], a database of images of handwritten digits,
commonly used to assess the performance of a machine
learning classifier. It contains a total of 60 000 training
images and 10 000 test images, where every image has
been classified and labeled with a digit from 0 to 9. An
image is represented as a vector of 784 (28×28) integers
in the range [0, 255], corresponding to the luminosity of
every pixel.

The authors of [42], train a quadratic classifier that
predicts the digit associated to an encrypted image
with an accuracy of 97.54% on the test set.4 More
precisely, they use the training set to find a matrix
P (of dimension k × 784) and diagonal matrices Di
(of dimension k × k) with integer coefficients, for every
i∈ [0, 9]. Now, an image x∈Z784 is classified as digit j
if fj(x) = maxi∈[0,9] {fi(x)} where fi(x) is defined as
(Px)>Di(Px) for every i. In Section 6.2 we use the exact
same quadratic classifier from [42] (where k = 40) to
evaluate it on randomly chosen images from the test set
with our C-FE construction (see Table 1).

In case both data and classifier must be private
we can leverage the multi-input property of our con-
struction (for linear classifiers). More concretely, a lin-
ear classifier can be defined as a collection of pairs
(vi,wi) ∈ Z × Z784, for i in the set of classes Ψ; such
that an image x is classified as belonging to class j
if gj(x) = maxi∈Ψ {gi(x)}, where gi(x) := vi + w>ix

for every i ∈ Ψ. Such a classification can be privately
performed with our C-FE construction if one party en-
crypts (vi,wi) for every i ∈ Ψ, and another party en-
crypts an image x. Then, an evaluator (with the help
of one or more authorities) computes the corresponding
quadratic functions on both sources of encrypted data
to obtain the values of gj(x). For our experiments (see
Table 2), we consider the classifier that, given a specific
digit, classifies an image in two classes, depending on
whether it is the image of the given digit or not. Our
ten different linear classifiers (one for each digit) trained
with TensorFlow [1], achieve an accuracy on the test set
between 96.14% and 99.39%.

4 Classifying encrypted images of hand-written digits allows to
determine the digit itself while keeping any other information
private. For example, the classification outcome does not leak
the handwriting style, so to keep the authorship private.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 35

Encryption (s) KeyReq (s) Dec (ms)

ElGamal 0.61± 0.11 2.50± 0.42 2450± 580
Paillier 27.7± 2.5 6.10± 0.23 430± 36

Table 1. Evaluation times of the quadratic classifier.

Encryption (s)

Image Classifier KeyReq (s) Dec (ms)

ElGamal 0.58± 0.03 1.18± 0.05 2.94± 0.14 26± 6
Paillier 26.8± 3.1 53.5± 5.7 20.6± 1.6 78± 7

Table 2. Evaluation times of the linear classifier.

Finally, in Section 6.3 we show the performance
of our multi-authority C-FE construction, used to per-
formed linear regression over encrypted data using a
small dataset of blood pressure measurements [44].

6.2 Single-Authority C-FE Experiments

Tables 1 and 2 show our results on applying the
quadratic and the linear classifier, respectively, to ran-
domly chosen encrypted images (from the test set). We
compare the evaluation times, showing the average time
of 20 evaluations (with a 95% confidence interval), be-
tween two different LHE scheme choices: ElGamal en-
cryption [26], over the NIST P224 Curve, and Paillier
cryptosystem [41], with a 2048-bits5 modulus.

As expected, ElGamal performs much better, how-
ever Paillier has the advantage that the message space
is exponentially large. When using ElGamal as a LHE
scheme, decryption requires discrete logarithm computa-
tions. We have implemented the baby-step giant-step al-
gorithm [38], with a precomputed table of 1.7GB that al-
lows us to recover the discrete logarithm of 32-bits mes-
sages in roughly of 3ms. Exceptionally, the quadratic
classifier of [42], produces 37-bits values—with the same
storage we recover the message in roughly 0.2s. The en-
cryption times in both tables (in seconds) represent the
time of encrypting one image, i.e., 28×28 values. In the
case of the linear classifier (Table 2), we additionally in-
clude the time of encrypting the classifier (a classifier
consists of 785×2 values). Finally, note that decryption
times are expressed in milliseconds.

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Number of authorities

0

200

400

600

800

1000

1200

T
im

e
 (

m
s)

Function: Linear regression on 30 points

Encrypt

KeyReq

Decrypt

Fig. 6. Evaluation of our n-authority mC-FE.

Paillier ElGamal

Authorities 1 1 2 3 5 10

Plaintext 256B 4B 4B 4B 4B 4B
Ciphertexts 768B 112B 196B 280B 448B 868B
mC-FE Keys 512B 56B 112B 168B 280B 560B

Table 3. Sizes (plaintexts, ciphertexts and keys) of our mC-FE

6.3 Multi-Authority C-FE Experiments

Since our main construction of mC-FE requires the LHE
scheme have the distributed threshold property, experi-
ments in this section are based on ElGamal.

As a proof of concept example, we consider a small
medical record with data of 30 patients [44]. We en-
crypt the age and systolic blood pressure of every pa-
tient and evaluate simple linear regression on the en-
crypted data. Figure 6 shows the median times (of 20
executions) for encryption, key request and decryption,
where four statistics are computed in order to derive the
regression line: average age, average blood pressure, vari-
ance of the age variable and covariance of both variables.
In the case of key request, we aggregate the execution
time of all authorities. As expected, the number of au-
thorities slows down encryption and key request linearly.
On the other hand, decryption times are independent on
the number of authorities.

5 To achieve a comparable security level of 112-bits.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 36

Finally, in Table 3 we show the sizes relative to
the implementation of our construction. Entries plain-
text and ciphertext correspond to the size of encrypting
one single integer6, e.g., encrypting an MNIST image
(which is encoded as 784 integers) with ElGamal and
3 authorities would require about 280B · 784 = 214KB.
Note that the size of mC-FE keys is independent of the
input length and the underlying function.

7 Conclusions
Controlled Functional Encryption (C-FE) enables
clients to mine on third-party encrypted data while an
authority exerts fine-grained access control on who can
mine the data, what information can be extracted, and
which ciphertexts can be used for mining. Thus, C-FE
emerges as a promising primitive to balance utility and
privacy in data mining applications that deal with sensi-
tive data. Previous work has proposed a C-FE for single-
input linear functions based on CCA2 encryption and
one for arbitrary functions based on garbled circuits.

In this paper we have revised the notion of C-FE
and extended it in multiple directions. In particular, we
have defined multi-authority C-FE (or mC-FE) as a C-
FE scenario where access control is carried out by a co-
hort of authorities. We have then provided an instantia-
tion for quadratic functions (on inputs potentially com-
ing from multiple data-owners) that leverages CCA2 en-
cryption and linear homomorphic encryption (thereby
forgoing garbled circuits). We have also implemented
and evaluated our proposal.

A problem left open by our instantiations is to (ef-
ficiently) tolerate malicious authorities. Indeed, both
our instantiations (the single-authority and the multi-
authority) are proven secure against malicious clients
but hbc authorities. While the support for malicious
clients is rather straightforward since in our protocol the
client is “almost” passive7, supporting malicious author-
ities would require a mechanism for the client to check
that each authority has performed the computation cor-
rectly. Concretely, for our constructions, this could be
achieved by designing an efficient verifiable computation
mechanism for the degree-2 homomorphic computation

6 The size of the integer is bounded by the message space,
i.e., 224-bits in the case of ElGamal or 2048-bits with Paillier.
However, in the case of ElGamal, decryption may be inefficient
unless small integers (for example, 4-bytes integers) are used.
7 The only active attack it can mount is to alter the information
passed to the authorities which is not possible thanks to the
CCA2 security of the encryption scheme.

based on LHE. We leave the investigation of this exten-
sion as future work.

Acknowledgments
The research of Dario Fiore has been partially sup-
ported by the Spanish Government under projects
SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC
(refs. ERC2018-092822, EUR2019-103816), and SECU-
RITAS (ref. RED2018-102321-T), and by the Madrid
Regional Government under project BLOQUES (ref.
S2018/TCS-4339), and by a research contract with
NEC Laboratories Europe GmbH. Claudio Soriente has
been partially funded by the EU H2020-SU-ICT-03-2018
Project No. 830929 CyberSec4Europe and by the Eu-
ropean Union’s Horizon 2020 research and innovation
programme under grant agreement No 779852.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner.
Decentralizing inner-product functional encryption. In Public
Key Cryptography (2), volume 11443 of Lecture Notes in
Computer Science, pages 128–157. Springer, 2019.

[3] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval.
Simple functional encryption schemes for inner products. In
PKC 2015, LNCS, pages 733–751. Springer, 2015.

[4] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu.
Multi-input functional encryption for inner products:
Function-hiding realizations and constructions without pair-
ings. In Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I, pages
597–627, 2018.

[5] M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input
inner-product functional encryption from pairings. In Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, pages 601–626, 2017.

[6] S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional
encryption for inner products, from standard assumptions.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 37

LNCS, pages 333–362. Springer, Aug. 2016.
[7] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient

LIbrary for Cryptography. https://github.com/relic-toolkit/
relic.

[8] S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-
input functional encryption for unbounded arity functions. In
Advances in Cryptology – ASIACRYPT 2015, Part I, volume
9452 of LNCS, pages 27–51. Springer, Dec. 2015.

[9] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical
functional encryption for quadratic functions with applica-
tions to predicate encryption. In Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, pages 67–98, 2017.

[10] M. Barbosa, D. Catalano, and D. Fiore. Labeled homo-
morphic encryption. In S. N. Foley, D. Gollmann, and
E. Snekkenes, editors, Computer Security – ESORICS 2017,
pages 146–166, Cham, 2017. Springer International Publish-
ing.

[11] A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding
inner product encryption. In Advances in Cryptology –
ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages
470–491. Springer, Dec. 2015.

[12] D. Boneh, A. Raghunathan, and G. Segev. Function-private
identity-based encryption: Hiding the function in func-
tional encryption. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 461–
478. Springer, Aug. 2013.

[13] D. Boneh, A. Raghunathan, and G. Segev. Function-private
subspace-membership encryption and its applications. In
K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part I,
volume 8269 of LNCS, pages 255–275. Springer, Dec. 2013.

[14] D. Boneh, A. Sahai, and B. Waters. Functional encryption:
Definitions and challenges. In Y. Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 253–273. Springer, Mar. 2011.

[15] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. In 22nd An-
nual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11,
2015, 2015.

[16] E. Boyle, K.-M. Chung, and R. Pass. On extractability
obfuscation. In Y. Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 52–73. Springer, Feb. 2014.

[17] Z. Brakerski and G. Segev. Function-private functional
encryption in the private-key setting. In TCC 2015: 12th
Theory of Cryptography Conference, Part II, volume 9015 of
LNCS, pages 306–324. Springer, 2015.

[18] D. Catalano and D. Fiore. Using linearly-homomorphic
encryption to evaluate degree-2 functions on encrypted data.
In ACM CCS 15, pages 1518–1529. ACM Press, 2015.

[19] N. Chandran, V. Goyal, A. Jain, and A. Sahai. Functional
encryption: Decentralised and delegatable. IACR Cryptology
ePrint Archive, 2015:1017, 2015.

[20] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and
D. Pointcheval. Decentralized multi-client functional en-
cryption for inner product. In Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, pages 703–732, 2018.

[21] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In 14th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March
27-29, 2017, pages 259–282, 2017.

[22] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. Dis-
tributed elgamal à la pedersen: Application to helios. In
Proceedings of the 12th annual ACM Workshop on Privacy
in the Electronic Society, WPES 2013, Berlin, Germany,
November 4, 2013, pages 131–142, 2013.

[23] R. Cramer and V. Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In
H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 13–25. Springer, Aug. 1998.

[24] P. Datta, R. Dutta, and S. Mukhopadhyay. Functional
encryption for inner product with full function privacy. LNCS,
pages 164–195. Springer, 2016.

[25] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to
share a function securely. In Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, STOC
’94, page 522–533, New York, NY, USA, 1994. Association
for Computing Machinery.

[26] T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In G. R. Blakley and
D. Chaum, editors, CRYPTO’84, volume 196 of LNCS,
pages 10–18. Springer, Aug. 1984.

[27] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov.
IRON: functional encryption using intel SGX. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 765–782, 2017.

[28] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th FOCS, pages
40–49. IEEE Computer Society Press, Oct. 2013.

[29] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional en-
cryption without obfuscation. In E. Kushilevitz and T. Malkin,
editors, TCC 2016-A: 13th Theory of Cryptography Confer-
ence, Part II, volume 9563 of LNCS, pages 480–511, Tel
Aviv, Israel, Jan. 10–13, 2016. Springer.

[30] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz,
F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-input
functional encryption. In P. Q. Nguyen and E. Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
578–602. Springer, May 2014.

[31] T. Graepel, K. E. Lauter, and M. Naehrig. ML confidential:
Machine learning on encrypted data. In Information Security
and Cryptology - ICISC 2012 - 15th International Confer-
ence, Seoul, Korea, November 28-30, 2012, Revised Selected
Papers, pages 1–21, 2012.

[32] H. Kilinc and A. Küpçü. Optimally efficient multi-party fair
exchange and fair secure multi-party computation. 04 2015.

[33] Y. LeCun and C. Cortes. MNIST handwritten digit database.
2010.

[34] H. Lin and S. Tessaro. Indistinguishability obfuscation from
trilinear maps and block-wise local PRGs. LNCS, pages
630–660. Springer, 2017.

[35] L. Melis, G. Danezis, and E. D. Cristofaro. Efficient private
statistics with succinct sketches. In 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 38

Diego, California, USA, February 21-24, 2016, 2016.
[36] P. Mohassel and Y. Zhang. Secureml: A system for scalable

privacy-preserving machine learning. In 2017 IEEE Sympo-
sium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, pages 19–38, 2017.

[37] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ay-
day, J.-P. Hubaux, and C. A. Gunter. Controlled functional
encryption. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM
CCS 14, pages 1280–1291. ACM Press, Nov. 2014.

[38] V. I. Nechaev. Complexity of a determinate algorithm for the
discrete logarithm. Mathematical Notes, 55(2):165–172, Feb
1994.

[39] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh. Privacy-preserving matrix factorization. In
A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM
CCS 13, pages 801–812. ACM Press, Nov. 2013.

[40] A. O’Neill. Definitional issues in functional encryption. IACR
Cryptology ePrint Archive, 2010:556, 2010.

[41] P. Paillier. Public-key cryptosystems based on composite de-
gree residuosity classes. In J. Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 223–238. Springer, May 1999.

[42] E. D. Sans, R. Gay, and D. Pointcheval. Reading in the
dark: Classifying encrypted digits with functional encryption.
Cryptology ePrint Archive, Report 2018/206, 2018. https:
//eprint.iacr.org/2018/206.

[43] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryp-
tion systems. In O. Reingold, editor, TCC 2009, volume 5444
of LNCS, pages 457–473. Springer, Mar. 2009.

[44] H. Spaeth. Mathematical algorithms for linear regression.
Academic Press, page 304, 1991.

[45] B. Waters. A punctured programming approach to adaptively
secure functional encryption. In CRYPTO 2015, Part II,
LNCS, pages 678–697. Springer, Aug. 2015.

A Proofs
Proof of Theorem 2.

We show that for every adversary A (passively con-
trolling the authority), there exists a simulator S such
that no p.p.t. environment D can distinguish between
the view of A in the real world and the simulated view
by S in the ideal world. For that, we define a sequence of
games, starting from the real world experiment and pro-
gressively modifying it until we reach a last game, that
we can simulate in the ideal world. All games consist of
an execution of a C-FE experiment, and the output of
every game is defined as the final view of the corrupted
parties at the end of the experiment.

• Game G0: The real world experiment.

• Game G1.i: The real world experiment, with the
exception that the first i ciphertexts sent during

evaluation requests are slightly modified: for data
x and policy λ, instead of being created as r←$ M,
E .Enc(mpk, (x−r,H.Enc(pkHc , r), λ)), they are created
as E .Enc(mpk, (y,H.Enc(pkHc , r), λ)) for y, r←$ M.

• Game G2: Game G1, except that all the ciphertexts
sent for evaluation requests are modified as above.

Let q be an upper-bound on the number of ciphertexts
sent by A to the authority on evaluation requests. We
first argue that any p.p.t. distinguisher between G0 and
G2 has a distinguishing advantage upper-bounded by
q · AdvIND-CPA

H,B (κ), for some p.p.t. algorithm B. Note that
G0 equals G1.0 and that G1.q equals G2. Therefore, it
is enough to prove that the distinguishing advantage of
any external environment between G1.i and G1.(i+1) (for
a generic i) is upper-bounded by AdvMskvsRnd

H,B (κ) (and then
apply Lemma 1 and the union bound).

Now, let D be a p.p.t. distinguisher between the
games G1.i and G1.(i+1). We build a p.p.t. algorithm
B against the Msk-vs-Rnd experiment on H (Lemma 1),
that succeeds with at least the same probability D does.
The challenger of B will run (pkHc , skHc)← H.KeyGen(1κ)
and will send pkHc to B. Now, B starts running game G1.i
(which so far is identical to game G1.(i+1)). For that, it
executes Υ.Setup(1κ) to get a pair of keys (mpk,msk). It
then assigns the public key pkHc to the client that will
perform the evaluation request involving the i+1-th ci-
phertext. For the rest of evaluation requests, it samples
a pair of client keys with H.KeyGen when a new iden-
tity interacts with the authority and feeds the author-
ity as the environment D dictates. Algorithm B sim-
ulates the evaluation requests as the authority would
do (using its own msk). Eventually, an evaluation re-
quest will contain the i+1-th ciphertext. Let this eval-
uation request be (f, e1, . . . , e`), and let ek, for some
k ∈ [`] be the i+1-th ciphertext during the whole execu-
tion. Because ek was created by an honest data-owner
(the only corrupted party is the authority), B has cre-
ated it by executing E .Enc(mpk, (a, b, λ)), where r was
sampled r ←$ M, a was set to x−r, and b was set to
H.Enc(pkHc , r). At this point, B starts the communica-
tion (of the Msk-vs-Rnd game) with its challenger and
sends its first message x. The challenger will respond
with (yb∗ , ct), where ct := Enc(pk, r) of some r ←$ M
and yb∗ is either x−r (if b∗ = 1) or uniformly ran-
dom from M (if b∗ = 0). Now, B replaces this cipher-
text and continues the execution of the game, sending
(f, e1, . . . , ek−1, (y, ct), ek+1, . . . , e`), and it completes the
execution of the game (either G1.i or G1.(i+1), because
they are equivalent from this point).

https://eprint.iacr.org/2018/206
https://eprint.iacr.org/2018/206

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 39

After finishing the execution, it sends the produced
view to D, who will output a bit. Algorithm B passes this
bit to its challenger. Simply, observe that if b∗ = 1, B
has just perfectly simulated an execution of G1.i, while
if b∗ = 0, B has just perfectly simulated an execution
of G1.(i+1). Therefore, if D succeeds in differentiating
between these games, B will win the Msk-vs-Rnd game,
as desired.

Finally, we provide a simulator S that perfectly sim-
ulates G2 in the ideal world. Simulator S first runs
Υ.Setup(1κ) to get a pair of keys (mpk,msk), and adds
both keys to the simulated view.

Since the adversary only controls the authority, we
just need to show how to simulate evaluation requests.
The simulator initializes a table Th of handles and a
table T id of identities. Observe that, in the ideal world,
on every evaluation request, O sends (t, f,C,h,λ, 1) to
the simulator. On input this information, the simulator
looks in its table T id for (C, pkHc). If this entry does not
exist, it samples (pkHc , skHc) ← H.KeyGen(1κ) and adds
(C, pkHc) to T id . For every handle in h, hj , S looks in
Th for the entry (hj , ej). If it does not exist, it samples
y, r←$ M and sets ej := E .Enc(mpk, (y,H.Enc(pkHc , r), λj))
and adds the pair (hj , ej) to Th. Finally, it adds (f, e,λ)
and pkHc to the view.

Note that S perfectly simulates the real world ex-
periment of game G2.

Proof of Theorem 3.

We show that for every t ∈ N and for every adver-
sary A (controlling t clients), there exists a simulator
S such that no p.p.t. environment D can distinguish
between the view of A in the real world and the simu-
lated view by S in the ideal world. For that, we define a
sequence of games, starting from the real world experi-
ment and progressively modifying it until we reach a last
game, that we can simulate in the ideal world. All games
consist of an execution of a C-FE experiment, and the
output of every game is defined as the final view of the
corrupted parties at the end of the experiment.

• Game G0: The real world experiment.

• Game G1: The real world experiment, with the ex-
ception that every evaluation request performed by a
malicious client, say (f, e1, . . . , e`), is handled by the
authority in a slightly different way: on decrypting
ej (for every j ∈ [`]), if it corresponds to a ciphertext
generated by an honest client, decryption is not exe-
cuted; instead, the plaintext encrypted by the honest
client is used.

• Game G2.i: Game G1, except that the first i data
uploads performed from an honest data-owner to a
corrupted client, are modified: the ciphertext that
the client receives, (r, e), is replaced by (r, ẽ), where8

ẽ := E .Enc(mpk, str).

• Game G3: As G1, except that all data uploads from
honest data-owners to corrupted clients are modified
as above.

The difference between G0 and G1 is imperceptible for
D, as the view of A is identical in both games.

Let u be an upper-bound on the number of data
uploads performed by honest data-owners. We now
argue that any p.p.t. distinguisher between G1 and
G3 has a distinguishing advantage upper-bounded by
u · AdvIND-CCA2

E,B (κ), for some p.p.t. algorithm B. Note that
G1 equals G2.0 and that G2.u equals G3. Therefore, it
is enough to prove that the distinguishing advantage
of any external environment between G2.i and G2.(i+1)
(for a generic i) is upper-bounded by AdvIND-CCA2

E,B (κ) (and
then apply the union bound). Let D be a p.p.t. distin-
guisher between the games G2.i and G2.(i+1). We build
a p.p.t. algorithm B against the IND-CCA2 security of E
that succeeds with at least the same probability D does:

The challenger of B will run (pk, sk)← E .KeyGen(1κ)
and will send pk to B. Now, B starts running game G2.i
(which so far is identical to game G2.(i+1)), on public
key mpk := pk (identically distributed to a mpk gener-
ated from Υ.Setup), following the code of A. For that, B
creates t public keys for the t clients in the same way9

A does.
On the j-th data upload, for every j ∈ [i], (say, to

the k-th corrupted client) on data10 (xj , λj): B samples
rj ←$ M, producing the ciphertext (rj , ej), with ej :=
E .Enc(pk, str); it also sets variable ckeyj = pkHc k.

On every evaluation request performed by the code
of A, it simulates the authority:

• if some of the input ciphertexts is one of the simu-
lated for an honest data upload, i.e., it equals ej , for
some j ∈ [i], B performs step (3) of KeyReq for that
ciphertext as a := xj−rj , b := H.Enc(ckeyj , rj), λ = λj ,

8 Let str be an arbitrary string (for example, of zeros) whose
length is the length of the elements ofM×C × Λ.
9 It may not always be by running the official algorithm
H.KeyGen, this depends on the adversary A.
10 Note that without loss of generality, we can assume that B
knows the data chosen by honest users in this execution, because
B is quantified after the environment D.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 40

• otherwise, B performs step (3) of KeyReq by using its
O1 oracle (provided by its challenger in the IND-CCA2
game),

and continues executing KeyReq as described. At some
point, when the (i+1)-th data upload comes, (say, on
data xi+1, policy λi+1 and for the k-th client), B will
proceed as follows: it will sample ri+1←$ M, and it will
set

m0 := (xi+1−ri+1,H.Enc(pkHc k, ri+1), λi+1)
m1 := str .

It will send (m0,m1) to its challenger, getting back the
target ciphertext ct∗ := E .Enc(pk,mb∗) for some b∗ ∈
{0, 1}. Lastly, it will set the ciphertext corresponding to
this data upload to (ri+1, ct∗).

From this point on, B continues executing game G2.i
(or G2.(i+1), they are identical again), by following the
same process described above for data uploads and eval-
uation requests (this time with its oracle O2). Note that
B will not have to call O2 on the target ciphertext, be-
cause if ct∗ is sent in an evaluation request, it will be
handled as in the first bullet point above.

When B finishes the execution, it passes the final
view to distinguisher D, who will output a bit. Finally,
algorithm B copies the answer of D and outputs the
same bit to its challenger. Observe that if b∗ = 0, B is
perfectly simulating G2.i, while if b∗ = 1, B is perfectly
simulating G2.(i+1). Therefore, if D succeeds in differen-
tiating between these games, B will win the IND-CCA2
game, as desired.

We finish the proof of Theorem 3 by defining a sim-
ulator S that perfectly simulates G3 in the ideal world.
Simulator S first runs Υ.Setup(1κ) to get a pair of keys
(m̃pk, m̃sk), and adds m̃pk to the simulated view (which
is identically distributed to the master public-key that
A gets in the real world). It also creates t public keys
for the t corrupted clients in the same way A does in
game G3, say (p̃kHc 1, s̃kHc 1), . . . , (p̃kHc t, s̃kHc t).

On the j-th data upload, the ideal functionality O
will send to S a handle hj and the identity of the cor-
rupted client for which the data was intended, say it
was for the k-th corrupted client. The simulator, now
sets ckeyj := pkHc k and samples rj ←$ M, producing the
ciphertext (r, E .Enc(pk, str)), as in game G3.

On every evaluation request described in the code
of A, say (f, ct1, . . . , ct`) in the name of the k-th cor-
rupted11 client the simulator simulates the authority.

11 We assume clients must authenticate to the authority in
order to perform evaluation requests and that the authority

For that, S first fills a vector of handles (ĥ1, . . . , ĥ`) and
another vector of messages (r̂1, . . . , r̂`), i.e., for all i ∈ [`]:

• if cti is equal to one of the ciphertexts simulated for
data uploads for honest users, that is, cti = ctj for
some j, it sets ĥi := hj (the handle received in the
j-th data upload), and r̂i := rj (the random message
generated in the j-th data upload),

• otherwise, it sets (ãi, b̃i, λ̃i) := E .Dec(m̃sk, cti); if ãi 6∈
M or b̃i 6∈ C or λ̃i 6∈ Λ, S aborts the simulation of the
authority, with s̃kf := ⊥; else, it computes

r̃i := H.Dec(s̃kHc k, b̃i) and x̃i := ãi + r̃i

and sends a data upload to the ideal functionality
O, directed to the k-th corrupted client and for data
(x̃i, λ̃i), immediately receiving a handle h from O, fi-
nally, S sets ĥi := h and r̂i := r̃i.

After completing the vectors (of handles and messages),
S sends an evaluation request to O as the k-th corrupted
client on input (f, ĥ1, . . . , ĥ`), getting back (after the
corresponding decryption query) a value ỹ or ⊥. To con-
clude the simulation of the authority in this evaluation
request, S outputs

s̃kf := H.Sim (1κ, pkHc k, ỹ − f(r̂1, . . . , r̂`)) .

Note that s̃kf is simulated perfectly, since it is iden-
tically distributed to the answer of the authority in the
real world (game G3): it is a ciphertext (of H) that,
decrypted with pkHc k, results in f(x)−f(r), where x
and r are the hidden vectors in the evaluation request
(f, ct1, . . . , ct`). Finally, observe that the context hiding
of the function evalf makes the computation of s̃kf iden-
tically distributed to the one performed by the author-
ity in G3 (through the evalf procedure). Formally, we
would use the simulator Ŝim mentioned in the remark
about context hiding that follows Lemma 2.

Proof of Lemma 1.

Let A be a p.p.t. adversary against the Msk-vs-Rnd
security game. We build from A a p.p.t. adversary B
against the IND-CPA experiment, which succeeds with
at least the same probability (actually, the same) that A
does in experiment Msk-vs-Rnd. On input pk, algorithm
B challenges A on the same public key, receiving a mes-
sage x ∈M. It then samples s, r ←$ M and sets m0 := s

answers with ⊥ if the authentication fails (e.g. because they try
to impersonate an honest user); furthermore, we assume that
policies λ include information about the clients who should have
access to the data.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 41

Addition, � = � , and so f(x) = f1(x) + f2(x):
• f1, f2 constant: (c1,⊥) �(c2,⊥) = (c1 + c2,⊥), i)
• f1 const., f2 linear: (c1,⊥) �

(
f2(x)− f2(r), Enc(f2(r))

)
=
(
f(x)− f(r), c1 ⊕ Enc(f2(r))

)
, ii)

• f1 const., f2 quad.: (c1,⊥) �
(
⊥,Enc(f2(x)− f2(r))

)
=
(
⊥,Enc(f(x)− f(r))

)
, iii)

• f1, f2 linear:
(
f1(x)− f1(r), Enc(f1(r))

)
�
(
f2(x)− f2(r), Enc(f2(r))

)
=
(
(f1 + f2)(x)− (f1 + f2)(r),Enc((f1 + f2)(r))

)
, ii)

• f1 linear, f2 quad.:
(
f1(x)− f1(r), Enc(f1(r))

)
�
(
⊥,Enc(f2(x)− f2(r))

)
= (⊥, ({f1(x)− f1(r)} ⊕ Enc(f2(x)− f2(r))), iii)

• f1, f2 quad.:
(
⊥,Enc(f1(x)− f1(r))

)
�
(
⊥,Enc(f2(x)− f2(r))

)
=
(
⊥,Enc((f1+f2)(x)−(f1+f2)(r))

)
, iii)

Multiplication, � = � , and so f(x) = f1(x)f2(x):
• f1, f2 constant: (c1,⊥) �(c2,⊥) = (c1c2,⊥), i)
• f1 const., f2 linear: (c1,⊥) �

(
f2(x)− f2(r), Enc(f2(r))

)
= (c1f2(x)− c1f2(r)), Enc(c1f2(r))), ii)

• f1 const., f2 quad.: (c1,⊥) �
(
⊥, Enc(f2(x)− f2(r))

)
=
(
⊥, Enc(c1f2(x)− c1f2(r))

)
, iii)

• f1, f2 linear:
(
f1(x)− f1(r), Encpk(f1(r))

)
�
(
f2(x)− f2(r), Enc(f2(r))

)
=
(
⊥, (f1(x)−f1(r))(f2(x)−f2(r))⊕ ((f1(x)−f1(r))⊗Enc(f2(r)))� ((f2(x)−f2(r))⊗Enc(f1(r)))

)
=
(
⊥, Enc(f1(x)f2(x)− f1(r)f2(r))

)
, iii)

Fig. 7. Computation of evalf (x− r,Encpk(r)) for the induction step, with f(x) = f1(x) � f2(x).

and m1 := r, answering with (m0,m1) as its first output
in the IND-CPA game. Now B’s challenger will sample a
bit b ←$ {0, 1} and respond with ct := Enc(pk,mb). On
receiving ct, B sends (x−r, ct) to A, who will eventually
reply back with a bit b′. Finally, B outputs b′.

Observe that, if b = 1, ct contains the encryption
of r. On the other hand, if b = 0, ct is the encryption
of an independent random value s. Actually, note that
for every x ∈ M, the following two distributions are
identical:

s, r←$ M; (x−r,Enc(pk, s)) ≡ y, r←$ M; (y,Enc(pk, r)) .

Therefore, when b = 1, B is perfectly simulating the
masked experiment in the Msk-vs-Rnd game, while when
b = 0, B is perfectly simulating the random experiment.
We conclude that B wins the IND-CPA game if and only
if A wins the Msk-vs-Rnd game.

Proof of Lemma 2.

We will prove the following stronger statement,
which clearly implies Lemma 2:

Lemma 4. Let f be quadratic circuit with variables
xi, ∀i∈ [`] and let x, r∈M`. Let (a, b) be the result of

evalf (x−r, Encpk(r)). It holds:

i) if (a, b)∈M× {⊥}, then a = f(x).

ii) if (a, b)∈M×C, a = f(x)− f(r) ∧ Decsk(b) = f(r),

iii) if (a, b)∈{⊥} × C, then Decsk(b) = f(x)− f(r),

where the evaluation of f takes place over set Γ with
operations � for addition and � for multiplication.

We prove the lemma by induction on the circuit struc-
ture. The base case is a circuit f with no gates (one
single wire that is at the same time input and output).
The evalf procedure does nothing, and the statement of
the lemma holds immediately, since f(x) = x.

Now, take a general circuit f and express it as
f(x) = f1(x) �f2(x), where � ∈{ � , �} is the last
gate of circuit f . By the induction hypothesis, the
lemma holds for circuits f1 and f2. We just need to
show that it also holds for f . This calculation is done in
Figure 7, where we leverage the homomorphic property
of ⊕, ⊗ and �. Since we cover all relevant cases (f is
quadratic, so there will be no multiplications between
linear and quadratic terms or between two quadratic
terms), this completes the proof.

Proof of Lemma 3.

Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions 42

The algorithm proceeds as follows. First it uses
skE1 to decrypt e(1), i.e., it computes (a, b, λ) :=
E .Dec(skE1, e(1)). Second, it samples a random r ←$ M,
and computes:

b′ := r ⊕H.AddPkskH0(b)

ẽ(0) := E .EncpkE0((a−r, b′, λ))

ẽ(1) := E .EncpkE1((r, b, λ))

Let us now show that (rn, ẽ(0), ẽ(1), e(2), . . . , e(n))
generated in this way is identically distributed to an
honest encryption of x for n+1 authorities, in which the
new authority is in the first position, and it is followed
by the original authorities (in the same order).

This follows from two properties. First, by correct-
ness of H.AddPk and the circuit privacy of H we have
that b′ is identically distributed to a fresh encryption of
r + r1, where r1 represents the randomness encrypted
inside b. Second, by doing a simple change of variables,
we can define r 7→ r0−r1, for a random r0 ←$ M. This
way, (a − r, b′) and (r, b) are identically distributed to
(r0 − x,Enc(r0)) and (r0 − r1,Enc(r1)), as required.

	Controlled Functional Encryption Revisited: Multi-Authority Extensions and Efficient Schemes for Quadratic Functions
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Public-Key Encryption
	3.3 Homomorphic Encryption
	3.4 Degree-2 Homomorphic Encryption from LHE
	3.5 Distributed Threshold Encryption
	3.6 Quadratic Functions

	4 Multi-Authority C-FE
	5 mC-FE for Quadratic Functions
	5.1 Single-Authority C-FE
	5.2 Main Construction

	6 Implementation and Evaluation
	6.1 Description of Our Experiments
	6.2 Single-Authority C-FE Experiments
	6.3 Multi-Authority C-FE Experiments

	7 Conclusions
	A Proofs

