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Abstract:
preserving mechanism depends on the sensitivity of the

The calibration of noise for a privacy-

query and the prescribed privacy level. A data steward
must make the non-trivial choice of a privacy level that
balances the requirements of users and the monetary
constraints of the business entity.

Firstly, we analyse roles of the sources of randomness,
namely the explicit randomness induced by the noise
distribution and the implicit randomness induced by
the data-generation distribution, that are involved in
the design of a privacy-preserving mechanism. The finer
analysis enables us to provide stronger privacy guaran-
tees with quantifiable risks. Thus, we propose privacy
at risk that is a probabilistic calibration of privacy-
preserving mechanisms. We provide a composition the-
orem that leverages privacy at risk. We instantiate the
probabilistic calibration for the Laplace mechanism by
providing analytical results.

Secondly, we propose a cost model that bridges the gap
between the privacy level and the compensation budget
estimated by a GDPR compliant business entity. The
convexity of the proposed cost model leads to a unique
fine-tuning of privacy level that minimises the compen-
sation budget. We show its effectiveness by illustrat-
ing a realistic scenario that avoids overestimation of the
compensation budget by using privacy at risk for the
Laplace mechanism. We quantitatively show that com-
position using the cost optimal privacy at risk provides
stronger privacy guarantee than the classical advanced
composition. Although the illustration is specific to the
chosen cost model, it naturally extends to any convex
cost model. We also provide realistic illustrations of how
a data steward uses privacy at risk to balance the trade-
off between utility and privacy.
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1 Introduction

Dwork et al. [12] quantify the privacy level ¢ in e-
differential privacy (or e-DP) as an upper bound on the
worst-case privacy loss incurred by a privacy-preserving
mechanism. Generally, a privacy-preserving mechanism
perturbs the results by adding the calibrated amount of
random noise to them. The calibration of noise depends
on the sensitivity of the query and the specified pri-
vacy level. In a real-world setting, a data steward must
specify a privacy level that balances the requirements
of the users and monetary constraints of the business
entity. For example, Garfinkel et al. [14] report on is-
sues encountered when deploying differential privacy as
the privacy definition by the US census bureau. They
highlight the lack of analytical methods to choose the
privacy level. They also report empirical studies that
show the loss in utility due to the application of privacy-
preserving mechanisms.

We address the dilemma of a data steward in two
ways. Firstly, we propose a probabilistic quantification
of privacy levels. Probabilistic quantification of privacy
levels provides a data steward with a way to take quan-
tified risks under the desired utility of the data. We refer
to the probabilistic quantification as privacy at risk. We
also derive a composition theorem that leverages privacy
at risk. Secondly, we propose a cost model that links the
privacy level to a monetary budget. This cost model
helps the data steward to choose the privacy level con-
strained on the estimated budget and vice versa. Con-
vexity of the proposed cost model ensures the existence
of a unique privacy at risk that would minimise the bud-
get. We show that the composition with an optimal pri-
vacy at risk provides stronger privacy guarantees than
the traditional advanced composition [12]. In the end,
we illustrate a realistic scenario that exemplifies how the
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data steward can avoid overestimation of the budget by
using the proposed cost model by using privacy at risk.

The probabilistic quantification of privacy levels de-
pends on two sources of randomness: the explicit ran-
domness induced by the noise distribution and the im-
plicit randomness induced by the data-generation distri-
bution. Often, these two sources are coupled with each
other. We require analytical forms of both sources of
randomness as well as an analytical representation of
the query to derive a privacy guarantee. Computing the
probabilistic quantification of different sources of ran-
domness is generally a challenging task. Although we
find multiple probabilistic privacy definitions in the lit-
erature [16, 27] 1, we miss an analytical quantification
bridging the randomness and privacy level of a privacy-
preserving mechanism. We propose a probabilistic quan-
tification, namely privacy at risk, that further leads to
analytical relation between privacy and randomness. We
derive a composition theorem with privacy at risk for
mechanisms with the same as well as varying privacy
levels. It is an extension of the advanced composition
theorem [12] that deals with a sequential and adaptive
use of privacy-preserving mechanisms. We also prove
that privacy at risk satisfies convexity over privacy levels
and a weak relaxation of the post-processing property.
To the best of our knowledge, we are the first to ana-
lytically derive the proposed probabilistic quantification
for the widely used Laplace mechanism [10].

The privacy level proposed by the differential pri-
vacy framework is too abstract a quantity to be inte-
grated in a business setting. We propose a cost model
that maps the privacy level to a monetary budget. The
proposed model is a convex function of the privacy level,
which further leads to a convex cost model for privacy
at risk. Hence, it has a unique probabilistic privacy level
that minimises the cost. We illustrate this using a real-
istic scenario in a GDPR~compliant business entity that
needs an estimation of the compensation budget that it
needs to pay to stakeholders in the unfortunate event
of a personal data breach. The illustration, which uses
the proposed convex cost model, shows that the use of
probabilistic privacy levels avoids overestimation of the
compensation budget without sacrificing utility. The il-
lustration naturally extends to any convex cost model.

In this work, we comparatively evaluate the privacy
guarantees using privacy at risk of the Laplace mecha-
nism. We quantitatively compare the composition under

1 A widely-used (e, §)-differential privacy is not a probabilistic
relaxation of differential privacy [29].
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the optimal privacy at risk, which is estimated using the
cost model, with traditional composition mechanisms —
basic and advanced mechanisms [12]. We observe that
it gives stronger privacy guarantees than the ones ob-
tained by the advanced composition without sacrificing
on the utility of the mechanism.

In conclusion, benefits of the probabilistic quantifi-
cation i.e., of the privacy at risk are twofold. It not
only quantifies the privacy level for a given privacy-
preserving mechanism but also facilitates decision-
making in problems that focus on the privacy-utility
trade-off and the compensation budget minimisation.

2 Background

We consider a universe of datasets D. We explicitly men-
tion when we consider that the datasets are sampled
from a data-generation distribution G with support D.
Two datasets of equal cardinality « and y are said to be
neighbouring datasets if they differ in one data point. A
pair of neighbouring datasets is denoted by = ~ y. In
this work, we focus on a specific class of queries called
numeric queries. A numeric query f is a function that
maps a dataset into a real-valued vector, i.e. f : D — RF.
For instance, a sum query returns the sum of the values
in a dataset.

In order to achieve a privacy guarantee, researchers
use a privacy-preserving mechanism, or mechanism in
short, which is a randomised algorithm that adds noise
to the query from a given family of distributions.
Thus, a privacy-preserving mechanism of a given fam-
ily, M(f,0), for the query f and the set of parame-
ters O of the given noise distribution, is a function i.e.
M(f,0) : D — R. In the case of numerical queries, R is
RF. We denote a privacy-preserving mechanism as M,
when the query and the parameters are clear from the
context.

Definition 1 (Differential Privacy [12]).
preserving mechanism M, equipped with a query f and

A privacy-

with parameters O, is (g, 0)-differentially private if for
all Z C Range(M) and x,y € D such that x ~ y:

P(M(f,0)(z) € Z) < &€ xP(M(f,0)(y) € Z) + 6.

An (g,0)-differentially private mechanism is also simply
said to be e-differentially private. Often, e-differential
privacy is referred to as pure differential privacy whereas
(¢, 0)-differential privacy is referred as approzimate dif-
ferential privacy.



A privacy-preserving mechanism provides perfect pri-
vacy if it yields indistinguishable outputs for all neigh-
bouring input datasets. The privacy level € quantifies
the privacy guarantee provided by e-differential privacy.
For a given query, the smaller the value of the ¢, the
qualitatively higher the privacy. A randomised algo-
rithm that is e-differentially private is also &’-differential
private for any &’ > €.

In order to satisfy e-differential privacy, the param-
eters of a privacy-preserving mechanism requires a cal-
culated calibration. The amount of noise required to
achieve a specified privacy level depends on the query.
If the output of the query does not change drastically
for two neighbouring datasets, then a small amount of
noise is required to achieve a given privacy level. The
measure of such fluctuations is called the sensitivity of
the query. The parameters of a privacy-preserving mech-
anism are calibrated using the sensitivity of the query
that quantifies the smoothness of a numeric query.

Definition 2 (Sensitivity). The sensitivity of a query
f:D — RF is defined as

Ay 2 max [1f@) = fW)h.

r~Yy

The Laplace mechanism is a privacy-preserving mecha-
nism that adds scaled noise sampled from a calibrated
Laplace distribution to the numeric query.

Definition 3 ([35]). The
mean zero and scale b > 0 is a probability distribution

Laplace distribution with

with probability density function

1 T
Lap(b) £ %exp <_|b|) ,

where € R. We write Lap(b) to denote a random vari-
able X ~ Lap(b)

Definition 4 (Laplace Mechanism [10]). Given any

function f : D — RF and any x € D, the Laplace
Mechanism is defined as

21002 M (1. 2) @) = o)+ (Erooe )

where L; is drawn from Lap (%) and added to the i*"
component of f(x).

Theorem 1 ([10]). The Laplace mechanism, E?Of, is
eo-differentially private.
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3 Privacy at Risk: A Probabilistic
Quantification of Randomness

The parameters of a privacy-preserving mechanism are
calibrated using the privacy level and the sensitivity of
the query. A data steward needs to choose an appro-
priate privacy level for practical implementation. Lee
et al. [25] show that the choice of an actual privacy
level by a data steward in regard to her business re-
quirements is a non-trivial task. Recall that the privacy
level in the definition of differential privacy corresponds
to the worst case privacy loss. Business users are how-
ever used to taking and managing risks, if the risks can
be quantified. For instance, Jorion [21] defines Value at
Risk that is used by risk analysts to quantify the loss in
investments for a given portfolio and an acceptable con-
fidence bound. Motivated by the formulation of Value
at Risk, we propose to use the use of probabilistic pri-
vacy level. It provides us with a finer tuning of an eo-
differentially private privacy-preserving mechanism for
a specified risk ~.

Definition 5 (Privacy at Risk). For a given data gen-
erating distribution G, a privacy-preserving mecha-
nism M, equipped with a query f and with parame-
ters O, satisfies e-differential privacy with a privacy at
risk 0 <~ <1 4f, for all Z C Range(M) and x, y sam-

pled from G such that x ~ y:

P Hln

where the outer probability is calculated with respect to

PM(f,0)(x) € 2)
P(M(f,0)(y) € Z)

>e| <7, (1)

the probability space Range(M o G) obtained by apply-
ing the privacy-preserving mechanism M on the data-
generation distribution G.

If a privacy-preserving mechanism is eg-differentially
private for a given query f and parameters ©, for
any privacy level € > &g, the privacy at risk is 0. We
are interested in quantifying the risk v with which an
go-differentially private privacy-preserving mechanism
also satisfies a stronger e-differential privacy, i.e., with
e <E€p.

Unifying Probabilistic and Random DP

Interestingly, Equation (1) unifies the notions of proba-
bilistic differential privacy and random differential pri-
vacy by accounting for both sources of randomness in
a privacy-preserving mechanism. Machanavajjhala et



al. [27] define probabilistic differential privacy that in-
corporates the explicit randomness of the noise distribu-
tion of the privacy-preserving mechanism, whereas Hall
et al. [16] define random differential privacy that incor-
porates the implicit randomness of the data-generation
distribution. In probabilistic differential privacy, the
outer probability is computed over the sample space of
Range(M) and all datasets are equally probable.

Connection with Approximate DP

Despite a resemblance with probabilistic relaxations of
differential privacy [13, 16, 27] due to the added param-
eter J, (g, 0)-differential privacy (Definition 1) is a non-
probabilistic variant [29] of regular e-differential privacy.
Indeed, unlike the auxiliary parameters in probabilis-
tic relaxations, such as v in privacy at risk (ref. Def-
inition 5), the parameter ¢ of approximate differential
privacy is an absolute slack that is independent of the
sources of randomness. For a specified choice of ¢ and
4, one can analytically compute a matching value of §
for a new value of €2. Therefore, as other probabilistic
relaxations, privacy at risk cannot be directly related
to approximate differential privacy. An alternative is to
find out a privacy at risk level v for a given privacy level
(e,6) while the original noise satisfies (eq, J).

Theorem 2. If a privacy preserving mechanism satis-
fies (e,7) privacy at risk, it also satisfies (g,7) approxi-
mate differential privacy.

We obtain this reduction as the probability measure
induced by the privacy preserving mechanism and
data generating distribution on any output set Z C
Range(M) is additive. 3 The proof of the theorem is
in Appendix A.

3.1 Composition Theorem

The application of e-differential privacy to many real-
world problem suffers from the degradation of privacy
guarantee, i.e., privacy level, over the composition. The
basic composition theorem [12] dictates that the pri-
vacy guarantee degrades linearly in the number of eval-
uations of the mechanism. The advanced composition
theorem [12] provides a finer analysis of the privacy loss

2 For any 0 < &’ < ¢, any (e, §)-differentially private mechanism
also satisfies (&', (e — e + ¢))-differential privacy.
3 The converse is not true as explained before.

Differential Privacy at Risk == 67

over multiple evaluations with a square root dependence
on the number of evaluations. In this section, we provide
the composition theorem for privacy at risk.

Definition 6 (Privacy loss random variable). For a
privacy-preserving mechanism M : D — R, any two
neighbouring datasets x,y € D and an output r € R, the
value of the privacy loss random wvariable C is defined
as:

C(r) = 1n P(M(z) = r) T).

My) =)

Lemma 1. If a privacy-preserving mechanism M sat-
isfies eo-differential privacy, then

P[IC] <eo] = 1.

Theorem 3. For all €g,e,7v, > 0, the class of eg-
differentially private mechanisms, which satisfy (,7)-
privacy at risk under a uniform data-generation distri-
bution, are (¢',8)-differential privacy under n-fold com-

1
4 =50\/2nln5 +npu,

where p = $[ve? + (1 —v)ed].

position where

Proof. Let, MY+ :D — R! x R? x ... x R™ denote the
n-fold composition of privacy-preserving mechanisms
{M?: D — R} . Each eop-differentially private M?
also satisfies (e,)-privacy at risk for some ¢ < ¢ and
appropriately computed 7. Consider any two neighbour-
ing datasets z,y € D. Let,

A BM(2) =rs)
B=<(ri,...mn — L >ef
{( 1 ) Z:/\l P(Mi(y) =1;)
Using the technique in [12, Theorem 3.20], it suffices to
show that P(M!"(z) € B) < 4.

Consider

nP(Mz(m) :ri) A Zcz (2)

where C? in the last line denotes the privacy loss random
variable related to M®.

Consider an e-differentially private mechanism M,
and ep-differentially private mechanism Mg,. Let M.,
satisfy (g,7)-privacy at risk for £ < g9 and appropriately



computed 7. Each M? can be simulated as the mech-
anism M, with probability v and the mechanism M.,
otherwise. Therefore, the privacy loss random variable
for each mechanism M? can be written as

C'=~CL + (1 —)CL,

where Cg denotes the privacy loss random variable as-
sociated with the mechanism M. and Céo denotes the
privacy loss random variable associated with the mech-
anism M,,. Using [5, Remark 3.4], we can bound the
mean of every privacy loss random variable as:

pEEC] < she® + (1 —7)ep)-

N —

We have a collection of n independent privacy random
variables C?’s such that P [|Cl| < 50] = 1. Using Hoeffd-
ing’s bound [18] on the sample mean for any 8 > 0,

1 i i ng?
P [an 2E[C}+ﬁ1 < exp (%3)

Rearranging the inequality by renaming the upper
bound on the probability as §, we get:

. 1
ZC’Z >n,u+€m/2nln6] < 4.
i

Theorem 3 is an analogue, in the privacy at risk setting,

P

O

of the advanced composition of differential privacy [12,
Theorem 3.20] under a constraint of independent evalu-
ations. Note that if one takes v = 0, then we obtain the
exact same formula as in [12, Theorem 3.20]. It provides
a sanity check for the consistency of composition using
privacy at risk.

For all
e,e,v,0 > 0 and 1 € {1,...,n}, the composition of

Corollary 1 (Heterogeneous Composition).

{e1}], -differentially private mechanisms, which satisfy
(e,v)-privacy at risk under a uniform data-generation
distribution, also satisfies (&’,0)-differential privacy
where

= 1
2 (Zs?) lng + 4,
1=1

where p = 5[e2(320, ) + 205, (1= )]

Proof. The proof follows from the same argument as
that of Theorem 3 of bounding the loss random variable
at step [ using v,CL + (1 — ’yl)Cél and then applying the
concentration inequality. O
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A detailed discussion and analysis of proving such het-
erogeneous composition theorems is available in [22,
Section 3.3].

In fact, if we consider both sources of randomness,
the expected value of the loss function must be com-
puted by using the law of total expectation.

E[C] = Ez y~g[E[C]|, y]

Therefore, the exact computation of privacy guaran-
tees after the composition requires access to the data-
generation distribution. We assume a uniform data-
generation distribution while proving Theorem 3. We
can obtain better and finer privacy guarantees account-
ing for data-generation distribution, which we keep as a
future work.

3.2 Convexity and Post-Processing

We show that privacy at risk satisfies the convexity
property and does not satisfy the post-processing prop-
erty.

Lemma 2 (Convexity). For a given eg-differentially
private privacy-preserving mechanism, privacy at risk
satisfies the convexity property.

Proof. Let M be a mechanism that satisfies eg-
differential privacy. By the definition of the privacy at
risk, it also satisfies (£1,71)-privacy at risk as well as
(e2,72)-privacy at risk for some £1,e2 < g and appro-
priately computed values of 71 and 2. Let M! and
M? denote the hypothetical mechanisms that satisfy
(e1,7)-privacy at risk and (e2,72)-privacy at risk re-
spectively. We can write privacy loss random variables
as follows:

C' <ye1+ (1 —m)eo

C? < yaea + (1 = 12)e0
where C' and C2? denote privacy loss random variables
for M and M2,

Let us consider a privacy-preserving mechanism M
that uses M! with a probability p and M? with a prob-
ability (1—p) for some p € [0, 1]. By using the techniques
in the proof of Theorem 3, the privacy loss random vari-
able C for M can be written as:

C=pCl+ (1—-p)C?
<A+ (1=9)e0
where
o _ et (1 -p)ype
pn+ (1 —p)r




V=0-=pn—01-p)2)

Thus, M satisfies (¢/,+')-privacy at risk. This proves
that privacy at risk satisfies convexity [23, Axiom 2.1.2].
O

Meiser [29] proved that a relaxation of differential pri-
vacy that provides probabilistic bounds on the privacy
loss random variable does not satisfy post-processing
property of differential privacy. Privacy at risk is indeed
such a probabilistic relaxation.

Corollary 2 (Post-processing). Privacy at risk does
not satisfy the post-processing property for every pos-
sible mapping of the output.

Though privacy at risk is not preserved after post-
processing, it yields a weaker guarantee in terms of ap-
proximate differential privacy after post-processing. The
proof involves reduction of privacy at risk to approxi-
mate differential privacy and preservation of approxi-
mate differential privacy under post-processing.

Lemma 3 (Weak Post-processing). Let M : D — R C
R* be a mechanism that satisfy (g, ~)-privacy at risk and
f: R — R be any arbitrary data independent map-
ping. Then, foM : D — R’ would also satisfy (e,7)-
approrimate differential privacy.

Proof. Let us fix a pair of neighbouring datasets z and
y, and also an event Z’ C R’. Let us define pre-image
of Z as Z2 {reR: f(r) € Z}. Now, we get

P(foM(z) e Z') =P(M(z) € Z)
(S) eP(M(y) € Z2) +v
=eP(foM(y) e Z')+6

(a) is a direct consequence of Theorem 2. O

4 Privacy at Risk for Laplace
Mechanism

The Laplace and Gaussian mechanisms are widely used
privacy-preserving mechanisms in the literature. The
Laplace mechanism satisfies pure e-differential privacy
whereas the Gaussian mechanism satisfies approximate
(e, 9)-differential privacy. As previously discussed, it is
not straightforward to establish a connection between
the non-probabilistic parameter § of approximate differ-
ential privacy and the probabilistic bound v of privacy
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at risk. Therefore, we keep privacy at risk for Gaussian
mechanism as the future work.

In this section, we instantiate privacy at risk for the
Laplace mechanism in three cases: two cases involving
two sources of randomness and a third case involving the
coupled effect. These three different cases correspond to
three different interpretations of the confidence level,
represented by the parameter ~, corresponding to three
interpretations of the support of the outer probability
in Definition 5. In order to highlight this nuance, we
denote the confidence levels corresponding to the three
cases and their three sources of randomness as 71, 72,
and s, respectively.

4.1 The Case of Explicit Randomness

In this section, we study the effect of the explicit ran-
domness induced by the noise sampled from Laplace
distribution. We provide a probabilistic quantification
for fine tuning for the Laplace mechanism. We fine-tune
the privacy level for a specified risk under by assuming
that the sensitivity of the query is known a priori.

For a Laplace mechanism Engf calibrated with sensi-
tivity Ay and privacy level eg, we present the analytical
formula relating privacy level € and the risk +; in The-
orem 4. The proof is available in Appendix B.

Theorem 4. The risk v1 € [0,1] with which a Laplace
Mechanism Eéf, for a numeric query f : D — R* sat-
isfies a privacy level € > 0 is given by
P(T <¢)
N~ oo
P(T < 60)

®3)

where T is a random variable that follows a distribution
with the following density function.

1R K1 (t)eo
Pr(t) =
r(f) V2rT(k)A

where Kn*% is the Bessel function of second kind.

Figure la shows the plot of the privacy level against
risk for different values of k and for a Laplace mecha-
nism £1-9. As the value of k increases, the amount of
noise added in the output of numeric query increases.
Therefore, for a specified privacy level, the privacy at
risk level increases with the value of k.

The analytical formula representing 7; as a func-
tion of ¢ is bijective. We need to invert it to obtain the
privacy level € for a privacy at risk ;. However the an-
alytical closed form for such an inverse function is not



explicit. We use a numerical approach to compute pri-
vacy level for a given privacy at risk from the analytical
formula of Theorem 4.

Result for a Real-valued Query. For the case
k = 1, the analytical derivation is fairly straightfor-
ward. In this case, we obtain an invertible closed-form
of a privacy level for a specified risk. It is presented in
Equation 4.

() @

Remarks on ¢y. For &k = 1, Figure 1b shows the
plot of privacy at risk level ¢ versus privacy at risk 1
for the Laplace mechanism [Ié(']o. As the value of g in-
creases, the probability of Laplace mechanism generat-
ing higher value of noise reduces. Therefore, for a fixed
privacy level, privacy at risk increases with the value of
€o. The same observation is made for k > 1.

4.2 The Case of Implicit Randomness

In this section, we study the effect of the implicit ran-
domness induced by the data-generation distribution to
provide a fine tuning for the Laplace mechanism. We
fine-tune the risk for a specified privacy level without
assuming that the sensitivity of the query.

If one takes into account randomness induced by
the data-generation distribution, all pairs of neighbour-
ing datasets are not equally probable. This leads to es-
timation of sensitivity of a query for a specified data-
generation distribution. If we have access to an ana-
lytical form of the data-generation distribution and to
the query, we could analytically derive the sensitivity
distribution for the query. In general, we have access
to the datasets, but not the data-generation distribu-
tion that generates them. We, therefore, statistically
estimate sensitivity by constructing an empirical dis-
tribution. We call the sensitivity value obtained for a
specified risk from the empirical cumulative distribu-
tion of sensitivity the sampled sensitivity (Definition 7).
However, the value of sampled sensitivity is simply an
estimate of the sensitivity for a specified risk. In or-
der to capture this additional uncertainty introduced
by the estimation from the empirical sensitivity distri-
bution rather than the true unknown distribution, we
compute a lower bound on the accuracy of this esti-
mation. This lower bound yields a probabilistic lower
bound on the specified risk. We refer to it as empirical
risk. For a specified absolute risk 2, we denote by s
corresponding empirical risk.
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For the Laplace mechanism EEASf calibrated with
sampled sensitivity Ag ; and privacy level €, we evalu-
ate the empirical risk 2. We present the result in The-
orem 5. The proof is available in Appendix C.

Theorem 5. Analytical bound on the empirical risk,

Ag,
~a, for Laplace mechanism L. 5 with privacy level €
and sampled sensitivity Ag, for a query f:D — RF 4s

Yo > a1 — 2e2°™) (5)

where n is the number of samples used for estimation of
the sampled sensitivity and p is the accuracy parameter.
Yo denotes the specified absolute risk.

The error parameter p controls the closeness between
the empirical cumulative distribution of the sensitivity
to the true cumulative distribution of the sensitivity.
Lower the value of the error, closer is the empirical cu-
mulative distribution to the true cumulative distribu-
tion. Mathematically,

p> Sup |F§(A) — Fs(A)],

where F§ is the empirical cumulative distribution of
sensitivity after n samples and Fg is the actual cumu-
lative distribution of sensitivity.

Figure 2 shows the plot of number of samples as a
function of the privacy at risk and the error parameter.
Naturally, we require higher number of samples in order
to have lower error rate. The number of samples reduces
as the privacy at risk increases. The lower risk demands
precision in the estimated sampled sensitivity, which in
turn requires larger number of samples.

If the analytical form of the data-generation distri-
bution is not known a priori, the empirical distribution
of sensitivity can be estimated in two ways. The first
way is to fit a known distribution on the available data
and later use it to build an empirical distribution of the
sensitivities. The second way is to sub-sample from a
large dataset in order to build an empirical distribution
of the sensitivities. In both of these ways, the empirical
distribution of sensitivities captures the inherent ran-
domness in the data-generation distribution. The first
way suffers from the goodness of the fit of the known
distribution to the available data. An ill-fit distribution
does not reflect the true data-generation distribution
and hence introduces errors in the sensitivity estima-
tion. Since the second way involves subsampling, it is
immune to this problem. The quality of sensitivity es-
timates obtained by sub-sampling the datasets depend
on the availability of large population.
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Privacy level (¢)
Privacy level (¢)

Sample size (n)

0.4 06
Privacy at Risk (71)

(a) (b)

Fig. 1. Privacy level ¢ for varying privacy at risk ;1 for Laplace mechanism £
Figure 1a, we use g = 1.0 and different values of k. In Figure 1b, for k = 1 and

different values of g.

Let, G denotes the data-generation distribution, ei-
ther known apriori or constructed by subsampling the
available data. We adopt the procedure of [38] to sam-
ple two neighbouring datasets with p data points each.
We sample p—1 data points from G that are common to
both of these datasets and later two more data points,
independently. From those two points, we allot one data
point to each of the two datasets.

Let, Sy = | f(z) — f(y)|l1 denotes the sensitivity
random variable for a given query f, where x and y
are two neighbouring datasets sampled from G. Using
n pairs of neighbouring datasets sampled from G, we
construct the empirical cumulative distribution, F),, for
the sensitivity random variable.

Definition 7. For a given query f and for a specified
risk v2, sampled sensitivity, Ag, , is defined as the value
of sensitivity random variable that is estimated using
its empirical cumulative distribution function, Fy,, con-
structed using n pairs of neighbouring datasets sampled
from the data-generation distribution G.

As, = F M (2)

If we knew analytical form of the data generation dis-
tribution, we could analytically derive the cumulative
distribution function of the sensitivity, F', and find the
sensitivity of the query as Ay = F~1(1). Therefore, in
order to have the sampled sensitivity close to the sensi-
tivity of the query, we require the empirical cumulative
distributions to be close to the cumulative distribution
of the sensitivity. We use this insight to derive the ana-
lytical bound in the Theorem 5.

04 06
Privacy at Risk (71)

Privacy at Risk (r2)

L0 1n Fig. 2. Number of samples n for varying pri-

vacy at risk ~o for different error parameter
p.

4.3 The Case of Explicit and Implicit
Randomness

In this section, we study the combined effect of both
explicit randomness induced by the noise distribution
and implicit randomness in the data-generation distri-
bution respectively. We do not assume the knowledge of
the sensitivity of the query.

We estimate sensitivity using the empirical cumula-
tive distribution of sensitivity. We construct the empiri-
cal distribution over the sensitivities using the sampling
technique presented in the earlier case. Since we use
the sampled sensitivity (Definition 7) to calibrate the
Laplace mechanism, we estimate the empirical risk .

For Laplace mechanism £§)Sf calibrated with sam-
pled sensitivity Ag, and privacy level g9, we present
the analytical bound on the empirical sensitivity 73 in
Theorem 6 with proof in the Appendix D.

Theorem 6. Analytical bound on the empirical risk
3 € [0,1] to achieve a privacy level € > 0 for Laplace
mechanism Egosf with sampled sensitivity Ag, of a
query f: D — R¥ s

s > y3(1 — 2¢720°™) (6)

where n is the number of samples used for estimating
the sensitivity, p is the accuracy parameter. 3 denotes
the specified absolute risk defined as:

P(T <e¢)

73:m"¥2

Here, 1 is of the order of the ratio of the true sensitivity
of the query to its sampled sensitivity.

The error parameter p controls the closeness between
the empirical cumulative distribution of the sensitivity
to the true cumulative distribution of the sensitivity.
Figure 3 shows the dependence of the error parameter
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Fig. 3. Dependence of error and number of samples on the privacy at risk for Laplace mechanism L’Lgf. For the figure on the left

hand side, we fix the number of samples to 10000. For the Figure 3b we fix the error parameter to 0.01.

on the number of samples. In Figure 3a, we observe that
for a fixed number of samples and a privacy level, the
privacy at risk decreases with the value of error param-
eter. For a fixed number of samples, smaller values of
the error parameter reduce the probability of similarity
between the empirical cumulative distribution of sensi-
tivity and the true cumulative distribution. Therefore,
we observe the reduction in the risk for a fixed privacy
level. In Figure 3b, we observe that for a fixed value of
error parameter and a fixed level of privacy level, the
risk increases with the number of samples. For a fixed
value of the error parameter, larger values of the sam-
ple size increase the probability of similarity between
the empirical cumulative distribution of sensitivity and
the true cumulative distribution. Therefore, we observe
the increase in the risk for a fixed privacy level.

Effect of the consideration of implicit and explicit
randomness is evident in the analytical expression for
~3 in Equation 7. Proof is available in Appendix D. The
privacy at risk is composed of two factors whereas the
second term is a privacy at risk that accounts for inher-
ent randomness. The first term takes into account the
implicit randomness of the Laplace distribution along
with a coupling coefficient . We define n as the ratio
of the true sensitivity of the query to its sampled sen-
sitivity. We provide an approximation to estimate n in
the absence of knowledge of the true sensitivity. It can
be found in Appendix D.

A P(T <e¢) .

P(T < nzg) 2 @)
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5 Minimising Compensation
Budget for Privacy at Risk

Many service providers collect users’ data to enhance
user experience. In order to avoid misuse of this data,
we require a legal framework that not only limits the
use of the collected data but also proposes reparative
measures in case of a data leak. General Data Protection
Regulation (GDPR)? is such a legal framework.

Section 82 in GDPR states that any person who suf-
fers from material or non-material damage as a result of
a personal data breach has the right to demand compen-
sation from the data processor. Therefore, every GDPR
compliant business entity that either holds or processes
personal data needs to secure a certain budget in the
scenario of the personal data breach. In order to re-
duce the risk of such an unfortunate event, the business
entity may use privacy-preserving mechanisms that pro-
vide provable privacy guarantees while publishing their
results. In order to calculate the compensation budget
for a business entity, we devise a cost model that maps
the privacy guarantees provided by differential privacy
and privacy at risk to monetary costs. The discussions
demonstrate the usefulness of probabilistic quantifica-
tion of differential privacy in a business setting.

4 https://gdpr-info.eu/
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5.1 Cost Model for Differential Privacy

Let E be the compensation budget that a business en-
tity has to pay to every stakeholder in case of a per-
sonal data breach when the data is processed without
any provable privacy guarantees. Let ESP be the com-
pensation budget that a business entity has to pay to
every stakeholder in case of a personal data breach when
the data is processed with privacy guarantees in terms
of e-differential privacy.

Privacy level, ¢, in e-differential privacy is the quan-
tifier of indistinguishability of the outputs of a privacy-
preserving mechanism when two neighbouring datasets
are provided as inputs. When the privacy level is zero,
the privacy-preserving mechanism outputs all results
with equal probability. The indistinguishability reduces
with increase in the privacy level. Thus, privacy level of
zero bears the lowest risk of personal data breach and
the risk increases with the privacy level. Ef;lp needs to
be commensurate to such a risk and, therefore, it needs
to satisfy the following constraints.

1. Forallee Rzo, ES” < FE.

2. Eﬁp is a monotonically increasing function of €.

3. Ase—0, E® - E,in where Epn is the unavoid-
able cost that business entity might need to pay in
case of personal data breach even after the privacy
measures are employed.

4. Ase — oo, Egp—>E.

There are various functions that satisfy these con-
straints. In absence of any further constraints, we model
EZ as defined in Equation (8).

c

E® 2 F i+ Ee . (8)

E?” has two parameters, namely ¢ > 0 and E,,;, > 0.
c controls the rate of change in the cost as the privacy
level changes and FE,,;, is a privacy level independent
bias. For this study, we use a simplified model with ¢ = 1
and E,,;n = 0.

5.2 Cost Model for Privacy at Risk

Let, EZ'"(e,v) be the compensation that a business en-
tity has to pay to every stakeholder in case of a per-
sonal data breach when the data is processed with an
go-differentially private privacy-preserving mechanism
along with a probabilistic quantification of privacy level.
Use of such a quantification allows us to provide a
stronger privacy guarantee viz. ¢ < ¢¢ for a specified
privacy at risk at most «. Thus, we calculate EE, " using
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Equation 9.
EP"(e,7) £ 4EP + (1 —7)EZ )

Note that the analysis in this section is specific to
the cost model in Equation 8. It naturally extends to
any choice of convex cost model.

5.2.1 Existence of Minimum Compensation Budget

We want to find the privacy level, say &,:n, that yields
the lowest compensation budget. We do that by min-
imising Equation 9 with respect to e.

Lemma 4. For the choice of cost model in Equation 8,
EZ"(g,7) is a convex function of €.

By Lemma 4, there exists a unique €,,;,, that minimises
the compensation budget for a specified parametrisa-
tion, say eg. Since the risk v in Equation 9 is itself
a function of privacy level ¢, analytical calculation of
Emin 18 not possible in the most general case. When the
output of the query is a real number, i. e. £ = 1, we de-
rive the analytic form (Equation 4) to compute the risk
under the consideration of explicit randomness. In such
a case, €min is calculated by differentiating Equation 9
with respect to € and equating it to zero. It gives us
Equation 10 that we solve using any root finding tech-
nique such as Newton-Raphson method [37] to compute

1 1—e 1
e € €0

5.2.2 Fine-tuning Privacy at Risk

Emin-

For a fixed budget, say B, re-arrangement of Equation 9
gives us an upper bound on the privacy level e. We use
the cost model with ¢ = 1 and FE,,;, = 0 to derive the
upper bound. If we have a maximum permissible ex-
pected mean absolute error T', we use Equation 12 to
obtain a lower bound on the privacy at risk level. Equa-
tion 11 illustrates the upper and lower bounds that dic-
tate the permissible range of ¢ that a data publisher can
promise depending on the budget and the permissible

a5m)]
L
Bi(lff}/)anp

Thus, the privacy level is constrained by the ef-

error constraints.

71< <
3
T~ =

(11)

fectiveness requirement from below and by the mone-
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Fig. 4. Variation in the budget for Laplace mechanism Léo under
privacy at risk considering explicit randomness in the Laplace
mechanism for the illustration in Section 5.3.

tary budget from above. [19] calculate upper and lower
bound on the privacy level in the differential privacy.
They use a different cost model owing to the scenario
of research study that compensates its participants for
their data and releases the results in a differentially
private manner. Their cost model is different than our
GDPR inspired modelling.

5.3 lllustration

Suppose that the health centre in a university that com-
plies to GDPR publishes statistics of its staff health
checkup, such as obesity statistics, twice in a year. In
January 2018, the health centre publishes that 34 out of
99 faculty members suffer from obesity. In July 2018, the
health centre publishes that 35 out of 100 faculty mem-
bers suffer from obesity. An intruder, perhaps an analyst
working for an insurance company, checks the staff list-
ings in January 2018 and July 2018, which are publicly
available on website of the university. The intruder does
not find any change other than the recruitment of John
Doe in April 2018. Thus, with high probability, the in-
truder deduces that John Doe suffers from obesity. In
order to avoid such a privacy breach, the health centre
decides to publish the results using the Laplace mecha-
nism. In this case, the Laplace mechanism operates on
the count query.

In order to control the amount of noise, the health
centre needs to appropriately set the privacy level. Sup-
pose that the health centre decides to use the expected
mean absolute error, defined in Equation 12, as the mea-
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sure of effectiveness for the Laplace mechanism.

E [I£Xw) - f@)] = (12)

Equation 12 makes use of the fact that the sensitivity of
the count query is one. Suppose that the health centre
requires the expected mean absolute error of at most
two in order to maintain the quality of the published
statistics. In this case, the privacy level has to be at
least 0.5.

In order to compute the budget, the health cen-
tre requires an estimate of E. Moriarty et al. [30] show
that the incremental cost of premiums for the health
insurance with morbid obesity ranges between $5467 to
$5530. With reference to this research, the health cen-
tre takes $5500 as an estimate of E. For the staff size
of 100 and the privacy level 0.5, the health centre uses
Equation 8 in its simplified setting to compute the total
budget of $74434.40.

Is it possible to reduce this budget without degrad-
ing the effectiveness of the Laplace mechanism? We
show that it is possible by fine-tuning the Laplace mech-
anism. Under the consideration of the explicit random-
ness introduced by the Laplace noise distribution, we
show that eg-differentially private Laplace mechanism
also satisfies e-differential privacy with risk ~, which is
computed using the formula in Theorem 4. Fine-tuning
allows us to get a stronger privacy guarantee, ¢ < €g
that requires a smaller budget. In Figure 4, we plot the
budget for various privacy levels. We observe that the
privacy level 0.274, which is same as &y, computed
by solving Equation 10, yields the lowest compensation
budget of $37805.86. Thus, by using privacy at risk, the
health centre is able to save $36628.532 without sacri-
ficing the quality of the published results.

5.4 Cost Model and the Composition of
Laplace Mechanisms

Convexity of the proposed cost function enables us to es-
timate the optimal value of the privacy at risk level. We
use the optimal privacy value to provide tighter bounds
on the composition of Laplace mechanism. In Figure 5,
we compare the privacy guarantees obtained by using
basic composition theorem [12], advanced composition
theorem [12] and the composition theorem for privacy
at risk. We comparatively evaluate them for composi-
tion of Laplace mechanisms with privacy levels 0.1,0.5
and 1.0. We compute the privacy level after composition
by setting § to 107°.
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Fig. 5. Comparing the privacy guarantee obtained by basic composition and advanced composition [12] with the composition obtained
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We observe that the use of optimal privacy at risk
provided significantly stronger privacy guarantees as
compared to the conventional composition theorems.
Advanced composition theorem is known to provide
stronger privacy guarantees for mechanism with smaller
es. As we observe in Figure 5¢ and Figure 5b, the compo-
sition provides strictly stronger privacy guarantees than
basic composition, in the cases where the advanced com-
position fails.

Comparison with the Moment Accountant

Papernot et al. [33, 34] empirically showed that the
privacy guarantees provided by the advanced compo-
sition theorem are quantitatively worse than the ones
achieved by the state-of-the-art moment accountant [1].
The moment accountant evaluates the privacy guaran-
tee by keeping track of various moments of privacy loss
random variables. The computation of the moments is
performed by using numerical methods on the specified
dataset. Therefore, despite the quantitative strength of
privacy guarantee provided by the moment accountant,
it is qualitatively weaker, in a sense that it is specific to
the dataset used for evaluation, in constrast to advanced
composition.

Papernot et al. [33] introduced the PATE frame-
work that uses the Laplace mechanism to provide pri-
vacy guarantees for a machine learning model trained
in an ensemble manner. We comparatively evaluate the
privacy guarantees provided by their moment accoun-
tant on MNIST dataset with the privacy guarantees ob-
tained using privacy at risk. We do so by using privacy
at risk while computing a data dependent bound [33,
Theorem 3]. Under the identical experimental setup,
we use a 0.1-differentially private Laplace mechanism,

which optimally satisfies (0.08,0.8)-privacy at risk. We
list the calculated privacy guarantees in Table 1. The re-
ported privacy guarantee is the mean privacy guarantee
over 30 experiments.

6 Balancing Utility and Privacy

In this section, we empirically illustrate and discuss the
steps that a data steward needs to take and the issues
that she needs to consider in order to realise a required
privacy at risk level € for a confidence level v when seek-
ing to disclose the result of a query.

We consider a query that returns the parameter
of a ridge regression [31] for an input dataset. It is a
basic and widely used statistical analysis tool. We use
the privacy-preserving mechanism presented by Ligett
et al. [26] for ridge regression. It is a Laplace mech-
anism that induces noise in the output parameters of
the ridge regression. The authors provide a theoretical
upper bound on the sensitivity of the ridge regression,
which we refer as sensitivity, in the experiments.

6.1 Dataset and Experimental Setup.

We conduct experiments on a subset of the 2000 US
census dataset provided by Minnesota Population Cen-
ter in its Integrated Public Use Microdata Series [39].
The census dataset consists of 1% sample of the original
census data. It spans over 1.23 million households with
records of 2.8 million people. The value of several at-
tributes is not necessarily available for every household.
We have therefore selected 212, 605 records, correspond-
ing to the household heads, and 6 attributes, namely,
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Privacy level for moment accountant(e)

[ #Queries
with differential privacy [33]  with privacy at risk
10-5 100 2.04 1.81
10-° 1000 8.03 5.95

Table 1. Comparative analysis of privacy levels computed using three composition theorems when applied to 0.1-differentially private
Laplace mechanism, which optimally satisfies (0.08,0.8)-privacy at risk. The observations for the moment accountant on MNIST

datasets are taken from [33].

Age, Gender, Race, Marital Status, Education, Income,
whose values are available for the 212,605 records.

In order to satisfy the constraint in the derivation of
the sensitivity of ridge regression [26], we, without loss
of generality, normalise the dataset in the following way.
We normalise Income attribute such that the values lie
in [0, 1]. We normalise other attributes such that 3 norm
of each data point is unity.

All experiments are run on Linux machine with
12-core 3.60GHz Intel® Core i7™processor with 64GB
memory. Python® 2.7.6 is used as the scripting lan-
guage.

6.2 Result Analysis

We train ridge regression model to predict Income using
other attributes as predictors. We split the dataset into
the training dataset (80%) and testing dataset (20%).
We compute the root mean squared error (RMSE) of
ridge regression, trained on the training data with regu-
larisation parameter set to 0.01, on the testing dataset.
We use it as the metric of utility loss. Smaller the value
of RMSE, smaller the loss in utility. For a given value
of privacy at risk level, we compute 50 runs of an ex-
periment of a differentially private ridge regression and
report the means over the 50 runs of the experiment.

Let us now provide illustrative experiments under
the three different cases. In every scenario, the data
steward is given a privacy at risk level € and the con-
fidence level v and wants to disclose the parameters of
a ridge regression model that she trains on the census
dataset. She needs to calibrate the Laplace mechanism
by estimating either its privacy level eg (Case 1) or sen-
sitivity (Case 2) or both (Case 3) to achieve the privacy
at risk required the ridge regression query.

The Case of Explicit Randomness (cf. Sec-
tion 4.1). In this scenario, the data steward knows the
sensitivity for the ridge regression. She needs to compute
the privacy level, ¢g, to calibrate the Laplace mecha-
nism. She uses Equation 3 that links the desired privacy

at risk level e, the confidence level v; and the privacy
level of noise €g. Specifically, for given ¢ and ~;, she
computes €p by solving the equation:

YP(T <eg) —P(T <e)=0.

Since the equation does not give an analytical formula
for €9, the data steward uses a root finding algorithm
such as Newton-Raphson method [37] to solve the above
equation. For instance, if she needs to achieve a privacy
at risk level ¢ = 0.4 with confidence level v; = 0.6,
she can substitute these values in the above equation
and solve the equation to get the privacy level of noise
eo = 0.8.

Figure 6 shows the variation of privacy at risk level
¢ and confidence level 71 . It also depicts the variation of
utility loss for different privacy at risk levels in Figure 6.

In accordance to the data steward’s problem, if she
needs to achieve a privacy at risk level ¢ = 0.4 with
confidence level v; = 0.6, she obtains the privacy level
of noise to be ¢y = 0.8. Additionally, we observe that
the choice of privacy level 0.8 instead of 0.4 to calibrate
the Laplace mechanism gives lower utility loss for the
data steward. This is the benefit drawn from the risk
taken under the control of privacy at risk.

Thus, she uses privacy level g and the sensitivity
of the function to calibrate Laplace mechanism.

The Case of Implicit Randomness (cf. Sec-
tion 4.2). In this scenario, the data steward does not
know the sensitivity of ridge regression. She assesses
that she can afford to sample at most n times from the
population dataset. She understands the effect of the
uncertainty introduced by the statistical estimation of
the sensitivity. Therefore, she uses the confidence level
for empirical privacy at risk 7s.

Given the value of n, she chooses the value of the
accuracy parameter using Figure 2. For instance, if the
number of samples that she can draw is 104, she chooses
the value of the accuracy parameter p = 0.01. Next, she
uses Equation 13 to determine the value of probabilistic
tolerance, «, for the sample size n. For instance, if the
data steward is not allowed to access more than 15,000
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samples, for the accuracy of 0.01 the probabilistic toler-
ance is 0.9.

a=1-2(-2"n) (13)

She constructs an empirical cumulative distribution over
the sensitivities as described in Section 4.2. Such an
empirical cumulative distribution is shown in Figure 7.
Using the computed probabilistic tolerance and desired
confidence level 75, she uses equation in Theorem 5 to
determine 2. She computes the sampled sensitivity us-
ing the empirical distribution function and the confi-
dence level for privacy Ag, at risk 2. For instance,
using the empirical cumulative distribution in Figure 7
she calculates the value of the sampled sensitivity to
be approximately 0.001 for 72 = 0.4 and approximately
0.01 for v = 0.85

Thus, she uses privacy level ¢, sets the number of
samples to be n and computes the sampled sensitivity
Ag, to calibrate the Laplace mechanism.

The Case of Explicit and Implicit Random-
ness (cf. Section 4.3). In this scenario, the data stew-
ard does not know the sensitivity of ridge regression. She
is not allowed to sample more than n times from a pop-
ulation dataset. For a given confidence level v2 and the
privacy at risk ¢, she calibrates the Laplace mechanism
using illustration for Section 4.3. The privacy level in
this calibration yields utility loss that is more than her
requirement. Therefore, she wants to re-calibrate the
Laplace mechanism in order to reduce utility loss.

For the re-calibration, the data steward uses pri-
vacy level of the pre-calibrated Laplace mechanism, i.e.
e, as the privacy at risk level and she provides a new
confidence level for empirical privacy at risk 3. Using
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Equation 25 and Equation 23, she calculates:
VP(T < meo) —ay P(T'<e) =0

She solves such an equation for €9 using the root find-
ing technique such as Newton-Raphson method [37]. For
instance, if she needs to achieve a privacy at risk level
€ = 0.4 with confidence levels 73 = 0.9 and v2 = 0.9, she
can substitute these values and the values of tolerance
parameter and sampled sensitivity, as used in the pre-
vious experiments, in the above equation. Then, solving
the equation leads to the privacy level of noise €9 = 0.8.

Thus, she re-calibrates the Laplace mechanism with
privacy level g¢, sets the number of samples to be n and
sampled sensitivity Ag,.

7 Related Work

Calibration of Mechanisms. Researchers have pro-
posed different privacy-preserving mechanisms to make
different queries differentially private. These mecha-
nisms can be broadly classified into two categories. In
one category, the mechanisms explicitly add calibrated
noise, such as Laplace noise in the work of [11] or Gaus-
sian noise in the work of [12], to the outputs of the query.
In the other category, [2, 6, 17, 41] propose mechanisms
that alter the query function so that the modified func-
tion satisfies differentially privacy. Privacy-preserving
mechanisms in both of these categories perturb the orig-
inal output of the query and make it difficult for a ma-
licious data analyst to recover the original output of
the query. These mechanisms induce randomness us-



ing the explicit noise distribution. Calibration of these
mechanisms require the knowledge of the sensitivity of
the query. Nissim et al. [32] consider the implicit ran-
domness in the data-generation distribution to compute
an estimate of the sensitivity. The authors propose the
smooth sensitivity function that is an envelope over the
local sensitivities for all individual datasets. Local sen-
sitivity of a dataset is the maximum change in the value
of the query over all of its neighboring datasets. In gen-
eral, it is not easy to analytically estimate the smooth
sensitivity function for a general query. Rubinstein et
al. [38] also study the inherent randomness in the data-
generation algorithm. We adopt their approach of sam-
pling the sensitivity from the empirical distribution of
the sensitivity. They use order statistics to choose a par-
ticular value of the sensitivity. We use the risk, which
provides a mediation tool for business entities to assess
the actual business risks, on the sensitivity distribution
to estimate the sensitivity.

Refinements of Differential Privacy. In order
to account for both sources of randomness, refinements
of e-differential privacy are proposed in order to bound
the probability of occurrence of worst case scenarios.
Machanavajjhala et al. [27] propose probabilistic differ-
ential privacy that considers upper bounds of the worst
case privacy loss for corresponding confidence levels on
the noise distribution. Definition of probabilistic differ-
ential privacy incorporates the explicit randomness in-
duced by the noise distribution and bounds the prob-
ability over the space of noisy outputs to satisfy the
e-differential privacy definition. Dwork et al. [13] pro-
pose Concentrated differential privacy that considers
the expected values of the privacy loss random variables
for the corresponding. Definition of concentrated differ-
ential privacy incorporates the explicit randomness in-
duced by the noise distribution but considering only the
expected value of privacy loss satisfying e-differential
privacy definition instead of using the confidence levels
limits its scope.

Hall et al. [17] propose random differential privacy
that considers the privacy loss for corresponding con-
fidence levels on the implicit randomness in the data-
generation distribution. Definition of random differen-
tial privacy incorporates the implicit randomness in-
duced by the data-generation distribution and bounds
the probability over the space of datasets generated
from the given distribution to satisfy the e-differential
privacy definition. Dwork et al. [9] define approximate
differential privacy by adding a constant bias to the pri-
vacy guarantee provided by the differential privacy. It is
not a probabilistic refinement of the differential privacy.
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Around the same time of our work, Triastcyn et
al. [40] independently propose Bayesian differential pri-
vacy that takes into account both of the sources of ran-
domness. Despite this similarity, our works differ in mul-
tiple dimensions. Firstly, they have shown the reduction
of their definition to a variant of Renyi differential pri-
vacy. The variant depends on the data-generation distri-
bution. Secondly, they rely on the moment accountant
for the composition of the mechanisms. Lastly, they do
not provide a finer case-by-case analysis of the source of
randomness, which leads to analytical solutions for the
privacy guarantee.

Kifer et al. [24] define Pufferfish privacy framework,
and its variant by Bassily et al. [4], that considers ran-
domness due to data-generation distribution as well as
noise distribution. Despite the generality of their ap-
proach, the framework relies on the domain expert to
define a set of secrets that they want to protect.

We refer interested readers to [8] for an extensive
review of the differential privacy and its refinements.

Composition Theorem. Recently proposed tech-
nique of the moment accountant [1] has become the
state-of-the-art of composing mechanisms in the area
of privacy-preserving machine learning. Abadi et al.
show that the moment accountant provides much strong
privacy guarantees than the conventional composition
mechanisms. It works by keeping track of various mo-
ments of privacy loss random variable and use the
bounds on them to provide privacy guarantees. The mo-
ment accountant requires access to data-generation dis-
tribution to compute the bounds on the moment. Hence,
the privacy guarantees are specific to the dataset.

Cost Models. [7, 15] propose game theoretic meth-
ods that provide the means to evaluate the monetary
cost of differential privacy. Pej6 et al. [36] also propose
a game theoretic cost model in the setting of private
collaborative learning. Our approach is inspired by the
approach in the work of Hsu et al. [19]. They model
the cost under a scenario of a research study wherein
the participants are reimbursed for their participation.
Our cost modelling is driven by the scenario of secur-
ing a compensation budget in compliance with GDPR.
Our requirement differs from the requirements of [19],
particularly in our model participants do not have any
monetary incentive to share their data.



8 Conclusion and Future Works

In this paper, we provide a means to fine-tune the
privacy level of a privacy-preserving mechanism by
analysing various sources of randomness. Such a fine-
tuning leads to probabilistic quantification on privacy
levels with quantified risks, which we call as privacy at
risk. We also provide composition theorem that lever-
ages privacy at risk. We analytical calculate privacy at
risk for Laplace mechanism. We propose a cost model
that bridges the gap between the privacy level and the
compensation budget estimated by a GDPR compliant
business entity. Convexity of the cost function ensures
existence of unique privacy at risk that minimises com-
pensation budget. The cost model helps in not only re-
inforcing the ease of application in a business setting
but also providing stronger privacy guarantees on the
composition of mechanism.

It is possible to instantiate privacy at risk for Gaus-
sian mechanism. The mechanism is (g, §)-differential pri-
vate for v = 0 and a non-zero risk calculated by account-
ing for the sources of randomness. We save it for future
work. Privacy at risk may be fully analytically com-
puted in cases where the data-generation, or the sensi-
tivity distribution, the noise distribution and the query
are analytically known and take convenient forms. We
are now looking at such convenient but realistic cases.
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A Proof of Theorem 2
(Section 3)

Proof. Let us fix a pair of neighbouring datasets z and y,
and also fix a subset of outputs Z C Range(M). Choose
OUT C Z such that

el | BMUO@ =2 _ .
OUT‘{ 2| s o =7 }

Thus, we also obtain a complementary set of outputs
Z \ OUT, where the privacy loss is upper bounded i.e.
P(M(f,0)(z) = z) < e*P(M(f,0)(y) = z). Thus,

P(M(f,0)(z) € Z)
= P(M(f,0)(z) € Z\OUT) + P(M(f,O)(z) € OUT)
B EP(M(f,0)(y) € Z\OUT) + P(M(f,0)(z) € OUT)

(%) eP(M(f,0)(y) € Z\ OUT) +~v

S eEPM(F,0)(y) € 2) +v

(a) is obtained from the fact that the privacy loss is
upper bounded in the complimentary set of outputs
Z \ OUT. (b) is a consequence of the definition of (e,~)
privacy at risk. The definition upper bounds the prob-
ability measures of the subset OUT by ~. O

B Proof of Theorem 4
(Section 4.1)

Although a Laplace mechanism L‘gAf induces higher
amount of noise on average than a Laplace mechanism
E?Of for € < gg, there is a non-zero probability that
CEAf induces noise commensurate to E?Of . This non-zero
probability guides us to calculate the privacy at risk ;
for the privacy at risk level €. In order to get an intu-
ition, we illustrate the calculation of the overlap between
two Laplace distributions as an estimator of similarity
between the two distributions.

Definition 8. [Overlap of Distributions, [35]] The
overlap, O, between two probability densities Py, P> with
support X is defined as

O = [ min[P(z), P(x)] dz.
/

Lemma 5. The overlap O between two probability dis-
tributions, Lap(é—lf) and Lap(é—;), such that eo < g1, is
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given by

O =1 (exp(—pe2/Ayf) —exp (—pe1/Ay)),

Ay ln(e1/e2)

where pp = ————

Using the result in Lemma 5, we note that the overlap
between two distributions with ¢g = 1 and ¢ = 0.6 is
0.81. Thus, Eég induces noise that is more than 80%
times similar to the noise induced by Eﬁé. Therefore,
we can loosely say that at least 80% of the times a
Laplace Mechanism ﬁﬁé will provide the same privacy
as a Laplace Mechanism Cé é.

Although the overlap between Laplace distributions
with different scales offers an insight into the relation-
ship between different privacy levels, it does not capture
the constraint induced by the sensitivity. For a given
query f, the amount of noise required to satisfy differ-
ential privacy is commensurate to the sensitivity of the
query. This calibration puts a constraint on the noise
that is required to be induced on a pair of neighbouring
datasets. We state this constraint in Lemma 6, which we
further use to prove that the Laplace Mechanism [,SAUf
satisfies (e,v1)-privacy at risk.

Lemma 6. For a Laplace Mechanism EEAOf, the differ-
ence in the absolute values of noise induced on a pair of
neighbouring datasets is upper bounded by the sensitivity
of the query.

Proof. Suppose that two neighbouring datasets x and y
are given input to a numeric query f : D — R¥. For any
output z € R* of the Laplace Mechanism E?Of ,

k k
ST @) =zl = 1) — zl) < D7 (@) = Fwi))
=1 =1
< Af.

We use triangular inequality in the first step and Defi-
nition 2 of sensitivity in the second step. O

We write Exp(b) to denote a random variable sampled
from an exponential distribution with scale b > 0. We
write Gamma(k, 8) to denote a random variable sampled
from a gamma distribution with shape k > 0 and scale
6> 0.

Lemma 7. [[35]] If a random wariable X follows
Laplace Distribution with mean zero and scale b, | X| ~
Exp(b).

Lemma 8. [[35]] If X1, ..., X,, aren i.i.d. random vari-
ables each following the Exponential Distribution with
scale b, Y1 | X; ~ Gamma(n,b).



Lemma 9. If Xi and X2 are two i.i.d. Gamma(n,0)
random variables, the probability density function for the
| X1

random variable T = — X5/ is given by

92-ngn—3 K _1(®)

V2l (n)

-1 is the modified Bessel function of second

PT(t7n70) =

where K,
kind.

Proof. Let X1 and X3 be two i.i.d. Gamma(n, ) random
variables. Characteristic function of a Gamma random
variable is given as

0x,(2) = ¢x,(2) = (1 —020)™"

Therefore,
_
(14 (26)%)"

Probability density function for the random variable

¢X1—X2 (Z) = d)Xl (Z)qb;(g (Z) =

X1 — X5 is given by,

o

1 —izx

PXl—X2($) = % / € ZL¢X1—X2(Z)dZ

— 00

_1

2R, L (3)
V27l'(n)6
where K, _ 1 is the Bessel function of second kind. Let

T — ‘¥| Therefore,

1

; 21—"75"—51(”_%(75)

Pr(t;n,0) =

7 ) V2rT(n)6

We use Mathematica [20] to solve the above integral.

O

Lemma 10. If X; and X2 are two i.i.d. Gamma(n,0)
—Xo| < M, thenT' = | X1 —
Xo|/0 follows the distribution with probability density

random variables and | X,

function:

PT(tl n, 9)

where Pr is the probability density function of defined
in Lemma 9.

Lemma 11. For Laplace Mechanism ﬁngf with query
f:D — R* and for any output Z C Range(ﬁ?of), e <

€0,
Ay
Z P(T <
SPNLLALET 0 i CELR
P(Le (y) € 2) P(T < <o)
where T follows the distribution in Lemma 9,

PT(t7 ka €0 )
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Proof. Let, x € D and y € D be two datasets such that
z ~ 5. Let f : D — RF be some numeric query. Let
P.(z) and P, (z) denote the probabilities of getting the
output z for Laplace mechanisms [,SAUf (z) and E?‘Of (v)
respectively. For any point z € R* and ¢ # 0,

kE exp (—€o|f(7«'i)—zi\)

Ay

*€0|f(yz‘)*zi\>
Ay

(
Lo <so<|f<yi>

—zi| — | f(@i) — Zi|)>
=1 Af
- ( ls:o S () = =1l = 1f () = )D
EAf
(14)
By Definition 4,
(f(z) = 2),(f(y) — z) ~ Lap(Ay/eo). (15)
Application of Lemma 7 and Lemma 8 yields,
k
Z |f(xs) — ~ Gamma(k,Ay/eo) (16)
i=1
Using Equations 15, 16, and Lemma 6, 10, we get
o &
(AO D 1) — 2| = £ (i) - z|>|)
i
NPT/(t;k,Af/Eo,Af) (17)

since, S0 [(1f(yi) — 2| —

fore,

where T follows the distribution in Lemma 9. We

|f(zs) —2])] < Ay. There-

k
E—O;nyz—ﬂ (i) = =) )

P(T <¢)

T P(T <eo)’ (18)

use Mathematica [20] to analytically compute,

2

z
4

l\')\w

b3 vt -

l\.')\»—

P(T § 1‘) 0.8 <1F2(
(21F2(k +k k41, ZZ) 2’“F(k)>

where 1 F5 is the regularised generalised hypergeometric
function as defined in [3]. From Equation 14 and 18,

b [m ] _

P(LE (z) € 8)

b P(T <e¢)
P(L5! (y) € S)

P(T < eo)




This completes the proof of Theorem 4.

Corollary 3. Laplace Mechanism E?Of with f : D —
R*  satisfies (e,0)-probabilistic differentially private

1 _ P(r<e)
5= P(T<eo)
{0 € > €0

where

and T follows BesselK(k, A /eo).

C Proof of Theorem 5
(Section 4.2)

Proof. Let, x and y be any two neighbouring datasets

sampled from the data generating distribution G. Let,

Ag, be the sampled sensitivity for query f: D — RF.

Let, P;(z) and Py,(z) denote the probabilities of get-
A

ting the output z for Laplace mechanisms L2 (z) and

A
L2 ! (y) respectively. For any point z € R¥ and ¢ # 0,

B o (P
Py(2) % exp (%J—z\)
:exp<82i—1<f(yz> AZZJ | (i) z1|)>

<o [EZ it 1 () — f(ai)]
S €xp As,

- o (A= S

A5 (19)

We used triangle inequality in the penultimate step.

Using the trick in the work of [38], we define fol-
lowing events. Let, B?5¢ denotes the set of pairs neigh-
bouring dataset sampled from G for which the sensitivity
random variable is upper bounded by Ag,. Let, C,,Asf
denotes the set of sensitivity random variable values for
which F;, deviates from the unknown cumulative distri-
bution of S, F, at most by the accuracy value p. These
events are defined in Equation 20.

B9 & {a,y ~ G such that || f(y) — f(@)]1 < Asg,}
272 fowirea) - Pl <o)

Cp (20)

Thus, we obtain

P (BASf> —P (BASf

C,,Asf)IP’(C,,ASf)

TP <BASf
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cfsf) P (Cfsf)
— F,(As,)P (c,?sf)

>z (1-207%°")

>P (BASf

(21)

In the last step, we use the definition of the sampled
sensitivity to get the value of the first term. The last
term is obtained using DKW-inequality, as defined in
[28], where the n denotes the number of samples used
to build empirical distribution of the sensitivity, Fi,.
From Equation 19, we understand that if ||f(y) —
f(@)]|1 is less than or equals to the sampled sensitivity

then the Laplace mechanism E?Sf satisfies e-differential
privacy. Equation 21 provides the lower bound on the
probability of the event |f(y) — f(z)|l1 < Ag,. Thus,
combining Equation 19 and Equation 21 completes the
proof. O

D Proof of Theorem 6
(Section 4.3)

Proof of Theorem 6 builds upon the ideas from the
proofs for the rest of the two cases. In addition to the
events defined in Equation 20, we define an additional

A
event Agosf7 defined in Equation 22, as a set of outputs

A
of Laplace mechanism L'Eosf that satisfy the constraint
of e-differential privacy for a specified privacy at risk

Sf,w,yNG}

(22)

level e.

A
Le,” (z)

25 ()

Ag As
Agofﬁ{zwﬁgof :In
Le,

Corollary 4.

Asf

<
P(4L7 |BAor) = T =°)

-~ P(T < nep)

where T follows the distribution Pr(t;As,/co) in

Lemma 9 and n = AASf .
f

Proof. We provide the sketch of the proof. Proof follows
from the proof of Lemma 11. For a Laplace mechanism
calibrated with the sampled sensitivity Ag, and privacy
level €p, Equation 17 translates to,

k
(QZM(%) — 2 = |f(x:) z>|> ~

fi=1



Pri(t;k, As, /0, As; ).

. k .
since, Y5 [(1£(ys) — 2| — | £(z:) — 2])| < Ay. Using
Lemma 10 and Equation 18,

Asf

(42 P(T <¢)

)= P(T < negp)
where T' follows the distribution Pr(t; As, /eo) and n =

Asf'

For this case, we do not assume the knowledge of the
sensitivity of the query. Using the empirical estimation
presented in Section 4.2, if we choose the sampled sen-
sitivity for privacy at risk y2 = 1, we obtain an approx-
imation for 7.

Lemma 12. For a given value of accuracy parameter
p;

where Ag = F i (1). 0 <A%f> denotes order of ALéf’

ie, O (Ag) = kﬁ for some k > 1.
5 5

Proof. For a given value of accuracy parameter p and
any A > 0,
Fa(A) = F(A) < p

Since above inequality is true for any value of A, let
A = F~1(1). Therefore,
Fu(F1 (1) = F(F~'Y(1) < p

Fo(F7H1) <1+p (23)

Since a cumulative distribution function is 1-Lipschitz
(3511,
[Fn(Fy (1) = Fa(FTHL)| < [F7H(L) = FTH()
[Fu(F 1 (1) = Fu(F7HL)| < AT, — A
p<Ay—Ag,

p__ By

1 + * — *
Ay, T A,

where we used result from Equation 23 in step 3. Intro-

ducing O (Agf) completes the proof. O
. As .

Lemma 13. For Laplace Mechanism Le, ' with sam-

pled sensitivity Ag, of a query f:D — RF and for any

A
Z C Range(L2""),

P(L.,(2) € 2)

ﬂmwawem

< e] > P(Tigs))w(lf?e‘
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where n is the number of samples used to find sampled
sensitivity, p € [0,1] is a accuracy parameter and n =

AA—Sf. The outer probability is calculated with respect to
f

support of the data-generation distribution G.

Proof. The proof follows from the proof of Lemma 11
and Lemma 13. Consider,

P(ASST) > P(AST |BRS)B(B251 |Cy * YB(C) ! )
P(T < ¢) gy
_ = . (1 — 2e pn 24
= B(T < 20) 72 - ( € ) (24)

The first term in the final step of Equation 24 fol-
lows from the result in Corollary 4 where T follows

A
BesselK (k, —£). Tt is the probability with which the

€0
A
Laplace mechanism Ceosf satisfies e-differential privacy
for a given value of sampled sensitivity. O

Probability of occurrence of event AEAOSf calculated by
accounting for both explicit and implicit sources of ran-
domness gives the risk for privacy level . Thus, the
proof of Lemma 13 completes the proof for Theorem 6.

Comparing the equations in Theorem 6 and

Lemma 13, we observe that

A P(T SE)

P(T < neo) 2 (25)

73
The privacy at risk, as defined in Equation 25, is free
from the term that accounts for the accuracy of sam-
pled estimate. If we know cumulative distribution of the
sensitivity, we do not suffer from the uncertainty of in-
troduced by sampling from the empirical distribution.
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