
Proceedings on Privacy Enhancing Technologies ; 2021 (1):128–144

Jaewoo Lee* and Daniel Kifer

Scaling up Differentially Private Deep Learning
with Fast Per-Example Gradient Clipping
Abstract: Recent work on Renyi Differential Privacy
has shown the feasibility of applying differential privacy
to deep learning tasks. Despite their promise, however,
differentially private deep networks often lag far be-
hind their non-private counterparts in accuracy, show-
ing the need for more research in model architectures,
optimizers, etc. One of the barriers to this expanded
research is the training time — often orders of magni-
tude larger than training non-private networks. The rea-
son for this slowdown is a crucial privacy-related step
called “per-example gradient clipping” whose naive im-
plementation undoes the benefits of batch training with
GPUs. By analyzing the back-propagation equations we
derive new methods for per-example gradient clipping
that are compatible with auto-differeniation (e.g., in Py-
Torch and TensorFlow) and provide better GPU utiliza-
tion. Our implementation in PyTorch showed significant
training speed-ups (by factors of 54x - 94x for training
various models with batch sizes of 128). These tech-
niques work for a variety of architectural choices includ-
ing convolutional layers, recurrent networks, attention,
residual blocks, etc.

Keywords: Differential privacy, Deep learning, Gradient
clipping, Gradient perturbation

DOI 10.2478/popets-2021-0008
Received 2020-05-31; revised 2020-09-15; accepted 2020-09-16.

1 Introduction
Machine learning models trained on sensitive datasets,
such as medical records, emails, and financial transac-
tions have great value to society but also pose risks to
individuals who contributed their information to the
training data. Even if the model parameters are not
shared, black-box access to the models can leak pri-
vate information [40]. Differential privacy is a promis-

*Corresponding Author: Jaewoo Lee: University of Geor-
gia, E-mail: jwlee@cs.uga.edu
Daniel Kifer: Penn State University, E-mail:
dkifer@cse.psu.edu

ing framework for mitigating such risks because of its
strong mathematical guarantees and because of recent
advances in differentially private training of predictive
models.

Simple models, such as linear regression and logistic
regression, which have convenient mathematical struc-
tures (e.g., convexity) and relatively few parameters,
have been well-studied in the differentially private liter-
ature and many privacy preserving training algorithms
have been proposed (e.g., [7, 10, 12, 21, 24, 26, 35, 45,
51]). These algorithms are generally fast and accurate
compared to their non-private counterparts.

However, state-of-the-art prediction results gener-
ally come from deep artificial neural networks with mil-
lions of parameters. These models are not convex and
hence require different fitting algorithms to ensure pri-
vacy [2, 23, 32, 50]. In the non-private case, training
is generally accomplished using stochastic gradient de-
scent backed by GPU/TPU hardware accelerators that
process multiple training records together in a batch. In
the privacy-preserving case, the most generally appli-
cable training algorithm is also a variation of stochas-
tic gradient descent [2]. However, its current imple-
mentations (e.g., [31]) are extremely slow because a
key step, “per-example gradient clipping”,1 limits the
batch-processing capabilities of GPUs/TPUs, resulting
in slowdowns of up to two orders of magnitude. This
slowdown has a direct impact on differentially-private
deep learning research, as it becomes expensive even to
experiment with differential privacy and different neural
network architectures [6].

In this paper, we show that most of this slow-
down can be avoided. By analyzing how backpropaga-
tion computes the gradients, we derive some tricks for
fast per-example-gradient clipping that are easy to im-
plement and result in speedups of up to 94x over the
naive approach. These methods take advantage of auto-
differentiation features of standard deep learning pack-
ages (such as TensorFlow and PyTorch [33]) and do not
require any low-level programming (our code consists

1 Essentially, the gradient contribution of each record in a batch
must be normalized first (in a nonlinear way), before the contri-
butions are added together. See Section 3 for details.

Fast Per-Example Gradient Clipping 129

of Python wrappers around PyTorch layer objects —
e.g., a wrapper for fully connected layers, a wrapper for
convolutional layers, etc.).

We note that Goodfellow [17] provided a fast per-
example gradient clipping method that only applied to
fully connected networks. Our results apply to a wider
variety of architectures, including convolutional layers,
recurrent networks, attention, residual blocks, etc.

In short, our contributions are as follows.
– We present methods for efficiently computing per-

example gradients for different kinds of deep learn-
ing models, achieving a speedup of up to 54x to
94x (depending on the model) compared to naive
per-example gradient computation on mini-batches of
size 128. This allows hardware-accelerated differen-
tially private training of deep learning models to rival
the speed of hardware-accelerated non-private train-
ing and thus makes differentially private deep learning
possible in practical timeframes.

– The proposed methods do not require fundamental
changes to GPU parallelization. Instead, they are
easy to implement because they take advantage of
automatic differentiation capabilities of modern deep
learning packages. Our PyTorch wrappers are being
prepared for open-source release.

– As an application of the proposed framework, we
demonstrate how to train (under Rényi differential
privacy) a Transformer encoder block [44], a key
component in an architecture that has lead to recent
advances in natural language processing.

– We perform extensive experiments and empirically
show the effectiveness of approach for differentially
private training of various kinds of deep neural net-
work models.
The rest of this paper is organized as follows. In

Section 2, we define notations and provide background
on differential privacy. Building on these concepts, we
describe the per-example gradient clipping problem in
Section 3. We then discuss related work in Section 4.
We present our proposed methods in Section 5, experi-
mental results in Section 6 and conclusions in Section 7.

2 Preliminaries
In this paper, we use upper-letters (e.g., W) to repre-
sent matrices, bold-face lower-case (e.g., x) to represent
vectors and non-bold lower-case (e.g., y) to represent
scalars. One exception is that D represents a dataset.
Tensors of order 3 or higher (i.e., multidimensional ar-

rays that are indexed by 3 or more variables) are repre-
sented in calligraphic font (e.g,. W).

We index vectors using square brackets (e.g., x[1] is
the first component of the vector x. For matrices, we
use subscripts to identify entries (Wi,j is the entry in
row i, column j). Similarly, tensors are indexed using
subscripts (e.g., Wi,j,k is the entry at row i, column
j, depth k). To partially index a matrix or tensor, we
use the symbol ∗. That is row i in a matrix W is Wi,∗,
column j is W∗,j . Similarly, for a 4th order tensor W,
Wi,j,∗,∗ is a matrix V where Vk,` =Wi,j,k,`.

Let D = {(x1, y1), . . . , (xn, yn)} be a set of n

records, where xi ∈ X is a feature vector and yi ∈ Y

is a target (value we must learn to predict). We say two
datasets D and D′ are neighbors if D′ can be obtained
from D by adding or removing one record and write
D∼D′ to denote this relationship.

2.1 Differential Privacy

Differential privacy is a widely accepted formal privacy
definition that requires randomized algorithms (also
called mechanisms to process data. The intuition be-
hind it is that the addition/deletion of one record should
have very little influence on the output distribution.

Definition 1 ((ε, δ)-DP [15, 16]). Given privacy pa-
rameters ε ≥ 0, δ ≥ 0, a randomized mechanism (al-
gorithm)M satisfies (ε, δ)-differential privacy if for ev-
ery set S ⊆ range(M) and for all pairs of neighboring
datasets D∼D′,

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ .

The probability only depends to the randomness in M.

The cases δ = 0 and δ > 0 are respectively referred to
as pure and approximate differential privacy.

2.2 Rényi Differential Privacy

One of the drawbacks of Definition 1 is that accurately
tracking privacy loss from multiple noise-infused ac-
cesses to the data is difficult. For this reason, most work
on differentially private deep learning uses a variant
called Rényi Differential Privacy (RDP) [29] to track
privacy leakage of an iterative algorithm and then. At
the very end, the RDP parameters are converted to the
ε, δ parameters of Definition 1. RDP relies on the con-
cept of Rényi divergence:

Fast Per-Example Gradient Clipping 130

Definition 2 (Rényi Divergence). Let P1 and P2 be
probability distributions over a set Ω and let α ∈ (1,∞).
Rényi α-divergence Dα is defined as: Dα(P1 ‖ P2) =

1
α−1 log(Ex∼P2

[
P1(x)αP2(x)−α

]
) .

Rényi differential privacy requires two parameters: a
moment α and a parameter ε that bounds the moment.

Definition 3 ((α, ε)-RDP [29]). Given a privacy pa-
rameter ε ≥ 0 and an α ∈ (1,∞), a randomized mecha-
nismM satisfies (α, ε)-Rényi differential privacy (RDP)
if for all D1 and D2 that differ on the value of one
record, Dα(M(D1) ‖ M(D2)) ≤ ε .

While the semantics of RDP are still an area of research,
its privacy guarantees are currently being interpreted in
terms of (ε, δ)-differential privacy through the following
conversion result [29].

Lemma 1 (Conversion to (ε, δ)-DP [29]). If M satis-
fies (α, ε)-RDP, it satisfies (ε′, δ′)-differential privacy
when ε′ ≥ ε+ log(1/δ)

α−1 and δ′ ≥ δ.

This result implies that (α, ε)-RDP can be converted to
(ε′, δ′)-DP for many different choices of ε′ and δ′. The
result can be used in many ways. For example, one may
choose a desired ε′ and set δ′ = e−(ε′−ε)(α−1), in which
case (α, ε)-RDP provides more protections than differen-
tial privacy with those values of ε′ and δ′. Alternatively,
one can pick a δ′ and use Lemma 1 to determine the
corresponding ε′.

Building Blocks. One of the simplest methods of cre-
ating an algorithm satisfying RDP is called the Gaus-
sian Mechanism. It relies on a concept called L2 sensi-
tivity, which measures the largest effect a single record
can have on a function. Formally,

Definition 4 (L2 sensitivity). Let q be a vector-valued
function over datasets. The L2 sensitivity of q, de-
noted by ∆2(q) is defined as ∆2(q) = maxD∼D′‖q(D)−
q(D′)‖2 , where the max is over all neighboring pairs.

The Gaussian mechanism for RDP answers a numeri-
cal aggregate query q by adding Gaussian noise whose
variance depends on the sensitivity of q as follows:

Lemma 2 (Gaussian Mechanism [29]). Let q be a
vector-valued function over datasets. LetM be a mech-
anism that releases the random variable N (q(D), σ2Ik)
and let α ∈ (1,∞) and ε > 0 be privacy parameters. If
σ2 ≥ α∆2

2(q)/(2ε), then M satisfies (α, ε)-RDP.

Composition. More complex algorithms for (α, ε)-
RDP, such as training deep neural networks, can be cre-
ated by combining together many applications of sim-
pler mechanisms (such as the Gaussian Mechanism) —
each one leaks a controlled amount of private informa-
tion, and the composition theorem explains how to com-
pute the total leakage.

Lemma 3 (Composition [29]). Let M1, . . . ,Mk be
mechanisms such that each Mi satisfies (α, εi)-RDP
(that is, the α values are all the same but the ε val-
ues can differ). The mechanism that, on input D,
jointly releases the outputsM1(D), . . . ,Mk(D) satisfies
(α,
∑
i εi)-RDP.

In practice, one keeps track of multiple α values. That
is, a mechanismM1 may satisfy (α1, ε1)-RDP, (α2, ε2)-
RDP and (α3, ε3)-RDP, while M2 may satisfy (α1, ε

′
1)-

RDP, (α2, ε
′
2)-RDP and (α3, ε

′
3)-RDP. The mechanism

that releases both of their outputs would satisfy (α1, ε1+
ε′1)-RDP and also (α2, ε2 + ε′2)-RDP and (α3, ε3 + ε′3)-
RDP. When converting to (ε, δ)-DP, one applies Lemma
1 to each of these and selects the best ε, δ values [2].

Postprocessing Immunity. Another key feature of
differential privacy is post-processing immunity. If M
is a mechanism that satisfy (α, ε)-RDP (or (ε′, δ′)-DP)
and f is any algorithm, then the mechanism which,
on input D, releases f(M(D)), satisfies (α, ε)-RDP (or
(ε′, δ′)-DP) – the privacy parameters do not get worse.

3 The Problem with Per-Example
Gradient Clipping

In this section we briefly describe non-private training of
neural networks to explain how GPU mini-batch com-
putation is used to speed up training. We then discuss
the most common differentially private deep learning
training procedure and explain how its direct imple-
mentation loses much of these speed benefits (via a step
called gradient clipping). In Section 5 we then explain
how to recover the speedup that was lost with a better
gradient clipping algorithm.

3.1 Non-private Mini-batch SGD

A machine learning model Mθ is a parametrized func-
tion with parameters θ (e.g., θ could be the weights

Fast Per-Example Gradient Clipping 131

in an artificial neural network). Once the parameters
are set, the model can make predictions. The parame-
ters are typically chosen using training data through a
process called empirical risk minimization: given (1) a
dataset D = {(x1, y1), . . . , (xn, yn)} and (2) a loss func-
tion ` that quantifies the error between the true target
yi and predicted valueMθ(xi), the goal of empirical risk
minimization is to find a value of θ that minimizes

arg min
θ∈Θ

L(θ, D) := 1
n

n∑
i=1

`(yi,Mθ(xi)) . (1)

The function L is called the objective function.
WhenMθ is a deep neural network, the above prob-

lem is typically solved with an iterative first-order algo-
rithm such as stochastic gradient descent (SGD) [9, 36]
or its variants.

In each iteration, a set B of τ records is randomly
sampled from the dataD. This set is called a mini-batch.
The objective function is computed over the minibatch:
L(θ,B) = 1

τ

∑
x∈B `(yi,Mθ(xi)) and then its gradient

∇θL(θ, B) is computed. This gradient is then used to
update the parameters θ, either through a vanilla up-
date rule such as θ ← θ − η∇θL(θ, B) (where η is a
number called a learning rate) or the gradient is used
inside a more complicated procedure such as ADAM [25]
or RMSProp (see [38] for a survey of alternatives).

The computation of the gradient ∇θL(θ, B) is
generally the most expensive part of this proce-
dure, but can be thought of as a series of ma-
trix multiplications and element-wise products that
can often be performed in parallel. Modern frame-
works like TensorFlow [1] and PyTorch [33] use auto-
differentiation (e.g., torch.autograd.grad) to com-
pute the sum of the gradients over a batch (i.e.,
∇θL(θ, B) ≡ 1

τ

∑
x∈B ∇θ`(yi,Mθ(xi)). Behind the

scenes, data records are bulk-loaded onto the GPU to
amortize data transfer costs and then the matrix oper-
ations take advantage of the parallelism in the GPU.

3.2 Mini-batch Stochastic Gradient
Descent with Privacy

In the framework of Abadi et al. [2], adding differential
privacy to deep learning requires adding bias and noise
into the mini-batch gradient computation. Ideally, one
would like to simply add noise to the minibatch gra-
dient ∇θL(θ, B) ≡ 1

τ

∑
x∈B ∇θ`(yi,Mθ(xi)). To satisfy

differential privacy, the noise has to be large enough to
mask the effect of any possible record. However, without
any further assumptions, a worst-case change to a single

record can result in a large change to the mini-batch gra-
dient (potentially large enough to cause floating point
computations to result in∞). The amount of noise nec-
essary to mask such an effect would render all computa-
tions useless. Rescaling the inputs (e.g., converting im-
age pixel values from the range [0,255] to [0,1]) would
not solve this problem as the millions of weights in a
deep network could still result in a large worst-case gra-
dient (this happens even in the non-private setting and
is called the exploding gradient problem [18]).

Abadi et al. [2] addressed this problem by clipping
each term in the summation to make sure that no term
can get large, even in the worst case. The clipping func-
tion has a parameter c (called the clipping threshold)
and is defined as follows:

clipc(z) = z
max(1, ||z||2/c)

If the L2 norm of a vector is at most c, then clipc(z) = z
(and the L2 norm of the result is ≤ c). If the L2 norm
is > c then clipc(z) = c z

||z||2 , which has a norm equal to
c. Hence clipc always outputs a vector of L2 norm ≤ c

that points in the same direction as the input vector.
Thus, the differentially private deep learning

framework [2] replaces the mini-batch gradient with
1
τ

∑
x∈B clipc(∇θ`(yi,Mθ(xi))) and adds Gaussian

noise (via the Gaussian mechanism) to this quantity
before updating parameters in the network (e.g., the
parameters can be updated with this noisy/biased gra-
dient as in vanilla stochastic gradient descent: θ ← θ −
η
(

1
τ

∑
x∈B clipc(∇θ`(yi,Mθ(xi)))

)
or the noisy/biased

gradient can be used in more complex rules such as
ADAM or RMSProp). Abadi et al. use the Moment
Accountant technique [2] to precisely track the privacy
protections offered by random sampling (to create the
random mini-batches) and the added Gaussian noise.

3.3 The Computational Problem

The efficiency of the differentially private deep learn-
ing framework depends on the following question:
how does one compute 1

τ

∑
x∈B clipc(∇θ`(yi,Mθ(xi)))?

Auto-differentiation software will not do this directly.
One baseline approach (as implemented in Tensor-

Flow Privacy [31]) is to loop through the examples one
at a time. For each example xi one can ask the auto-
differentiator to compute ∇θ`(yi,Mθ(xi)), then clip it
and then at the end, sum up the clipped gradients.

This approach has several drawbacks. First, it loses
the parallelism that GPUs can offer when performing

Fast Per-Example Gradient Clipping 132

matrix computations. Second, it may result in multiple
transfers of data to the GPU (i.e., not taking advantage
of bulk transfer capabilities).

A related, slightly faster approach is to use
the auto-differentiation api to directly ask for
multiple gradients. For example in PyTorch, the
function torch.autograd.grad is normally called
with the first parameter equal to the minibatch
loss 1

τ

∑
x∈B `(yi,Mθ(xi)) (in which case it com-

putes the gradient). However, it is also possi-
ble to call the function with a vector of losses:
[`(y1,Mθ(x1)), . . . , `(yτ ,Mθ(xτ))] to obtain the gradi-
ent of each one. These gradients can then be clipped
and summed together.

In our experiments, this approach is still signifi-
cantly slower than non-private training. Further signif-
icant improvements are possible and are described in
Section 5. The main idea is that when deep learning
auto-differentiators compute the gradients, they are also
computing the derivatives with respect to intermediate
variables (e.g., the chain rule). Normally, these interme-
diate results are not returned but it is possible to ask
for them. The per-example gradient norms (i.e. norm
of the gradient of each term `(yi,Mθ(xi)) can be di-
rectly computed from these intermediate results. Once
the per-example gradient norms are computed, we turn
them into weights ν1, . . . , ντ then re-weight the terms in
the mini-batch loss: 1

τ

∑
x∈B νi `(yi,Mθ(xi)). This step

ensures that the gradient of each weighted term now has
norm at most c. We then ask the audo-differentiator for
the gradient of this reweighted loss. The result is exactly
equivalent to per-example gradient clipping (but turns
out to be much faster than the baseline implementa-
tions). Thus, after this reweighted gradient is computed,
noise can be added and parameters can be updated as
in [2]. We describe the details in Section 5.

4 Related Work
Deep learning for differential privacy was introduced by
Skokri and Shmatikov [39] but required enormous val-
ues of the privacy parameters (e.g., ε values in the hun-
dreds or thousands). The first practical approach, which
could train deep networks to reasonable accuracy (on
the MNIST and CIFAR datasets) with ε values of 10 or
less was proposed by Abadi et al. [2] and required the
use of gradient clipping and Renyi Differential Privacy
[29] (referred to as the Moment Accountant in [2]).

Followup work [3, 4, 8, 13, 28, 42, 50] relied on this
training technique. Also [4, 28, 42, 50] investigated dif-
ferent clipping strategies, such as adaptively changing
the clipping threshold [4, 42, 50] or clipping the gradi-
ent layer by layer [27, 28]. Specifically, given the global
clipping threshold c, McMahan et al. [28] clip the gradi-
ent of each layer’s parameter using the threshold c/

√
m,

where m is the total number of layers. In [27], the au-
thors extended the idea of per-layer clipping and pro-
posed a joint clipping strategy which applies different
amount of clipping to each group of queries. Since our
proposed fast per-example clipping framework is able to
compute the per-example gradient norm layer-wise (as
well as overall norm), our work can be used to acceler-
ate the previously mentioned training algorithms that
experimented with more refined clipping ideas.

There are other approaches to differentially private
training of deep networks that avoid gradient clipping
and adding noise to gradients. One example is PATE
[30, 32] which requires a large private dataset but also
a large public dataset (and hence is applicable in fewer
scenarios). Gradient clipping in specific models can also
be avoided, for example Phan et al. [34] perturb the
objective function of auto-encoders while Xie et al. [47]
show that it is possible to train a differentially private
GAN using weight clipping instead of gradient clipping.

Overall, basing differentially private training algo-
rithms on gradient clipping techniques (e.g., [2]) re-
sults in algorithms that are applicable in wider set-
tings. However, despite the popularity of gradient clip-
ping technique in differentially private deep learning,
per-example gradient computation for a general neu-
ral network was computationally heavy and significantly
slowed down training.

In [17], Goodfellow showed that for fully-connected
networks per-example gradients can be efficiently com-
puted using auto-differentiation library in deep learning
frameworks, such as Tensorflow and PyTorch. A key ob-
servation is that in these specific networks, the gradient
of loss function L, defined in (1), with respect to the net-
work parameters can be decomposed into the product
of intermediate results of the auto-differentiation proce-
dure. Specifically, consider a fully-connected layer with,
weight matrix W ∈ Rm×n and bias b ∈ Rm, whose pre-
activation z ∈ Rm are computed by z = Wh + b , where
h ∈ Rn is an input vector to the layer (or equivalently,
it is the post-activation of the previous layer). A careful
analysis using the chain rule reveals that∥∥∥∥ ∂L∂W

∥∥∥∥2

F
=
∥∥∥∥∂L∂z

∥∥∥∥2
‖h‖2 .

Fast Per-Example Gradient Clipping 133

Hence, the norms of per-example gradients can be effi-
cienlty computed (without having to explictly material-
ize them) if we store z and h and compute ∂L

∂z using the
auto-differentiation library. However, this formula does
not generalize to other type of neural network layers,
e.g., convolutional layer and recurrent layer. We observe
that the technique is applicable when the gradient with
respect to parameter is expressed as an outer product
between the gradient with respect to pre-activation ∂L

∂z
and the layer input h. That is when

∂L

∂W
= ∂L

∂z
⊗ h ,

where ⊗ denotes the outer product of two vectors. In
this work, we extend the technique to other types of
neural networks, derive equations for per-example gradi-
ents, and provide a recipe for efficiently computing them
and integrating them into differentially private training.

Recently, at the time of writing, Rochette et al. [37]
also made an attempt to extend the technique in [17]
to convolutional neural networks. While they also an-
alyzed gradients using the chain rule and made obser-
vations similar to those in our work, their work differs
with ours in both mathematical derivation and imple-
mentation. For simplicity, [37] derives the gradient for
1D convolution operation and claim the same result also
holds for higher dimensional cases. In our work, we di-
rectly show the derivations for 2D convolution (which is
most popularly used in practice) using tensors. Another
aspect of their technique is that to compute the per-
example gradients for 1-D convolutions, they make use
of 2-D convolution operations. Extensions of their tech-
niques to per-example gradients for 2-D convolutions
would require 3-D convolutions and extensions of their
work to 3-D convolutions would not be efficiently sup-
ported (for example, due to lack of efficient support of
4-D convolutions in PyTorch). In contrast, to avoid this
problem in our implementation, we convert the same
operation into one single batch matrix-matrix multipli-
cation, which can be done efficiently on GPUs. In ad-
dition, to smoothly integrating our technique into dif-
ferentially private training, we indirectly clip gradients
by assigning weights to loss values, rather than directly
manipulating the gradients.

5 Faster Deep Learning with
Differential Privacy

In this paper, we consider feedforward networks (which
include recurrent networks) consisting of layers (e.g., a

Algorithm 1: Gradient perturbation by
reweighting per-example losses
Input: dataset D = {di}, model Mθ, activation

function φ(·), privacy parameters ε and
δ, number of iterations T , mini batch
size τ , clipping threshold c

1 Use Moment Accountant [2] to determine noise
variance σ2 (based on m, c, and T) that will
result in (ε, δ)-dp.

2 for t = 1, 2, . . . , T do
3 Construct a random minibatch B of τ

records
4 Γ = ∅ ,Λ = ∅

/* Perform the feed forward step */
5 foreach layer l in Mθ do
6 Z(l) = X(l−1)W (l) + b(l)

7 X(l) = φ(Z(l))
8 Γ = Γ ∪ {Z(l)} // pre-activation
9 Λ = Λ ∪ {X(l−1)} // layer input

10 end
11 Compute ∂L(θ,B)

∂Γ via auto-differentiation

// same as
∂ 1
τ

∑
x∈B

`(yi,Mθ(xi))
∂Γ

12 Using Λ and ∂L(θ,B)
∂Γ , compute

||∇`(yi,Mθ(xi))||2 for i ∈ B as described
in Section 5

13 νi ← min(1, c/‖∇`(θ, di)‖2)
14 Use auto-differentiation to compute

gradient of: 1
τ

∑
x∈B νi`(yi,Mθ(xi))

// Add Gaussian Noise to the gradient
(as in [2]) and update parameters.

15 θ ← θ −

η
(
N(0, σ2I)+

1
τ∇θ

∑
x∈B νi`(yi,Mθ(xi))

)
16 end

convolutional layer feeding into a max pooling layer,
etc.).

Each layer ` has a weight matrix W (`) ∈ Rdin×dout

where din is the number of inputs to the layer and dout
is the number of outputs.

Since each example in the mini-batch is being run
through the network, we can think of the inputs to the
layer as a matrix X(`) ∈ Rτ×din whose first row (i.e.,
X

(`)
1,∗) is the layer’s input when the first record of the

mini-batch is run through the network and the ith row
(i.e., X(`)

i,∗) is the layer’s input when the ith record of the
mini-batch is run through the network.

The pre-activation of the layer is then X(`)W (`) +b,
where b(`) ∈ Rdout is the bias parameter of the layer.

Fast Per-Example Gradient Clipping 134

The activation function φ(`) of the layer is ap-
plied pointwise to the pre-activation to give the post-
activation, or output, of the network:

X(`+1) = φ(`)(Z(`)) , Z(`) = X(`)W (`) + b(`) ,

In this section we show how to compute
1
τ

∑
x∈B clipc(∇θ`(yi,Mθ(xi))). This is the quantity to

which Gaussian noise is added and which is then used to
update the network parameters during training. Pseu-
docode for the integration of our procedure into differ-
entially private deep learning in shown in Algorithm 1.

The main idea behind our approach is that
clipc(∇θ`(yi,Mθ(xi))) = νi∇θ`(yi,Mθ(xi)), where

νi = min(1, c/||∇θ`(yi,Mθ(xi))||2) (2)

If we can compute νi for each xi, then the re-
weighted loss on the minibatch:

1
τ

∑
x∈B

νi `(yi,Mθ(xi)) (3)

has gradient that equals 1
τ

∑
x∈B clipc(∇θ`(yi,Mθ(xi))).

Thus we compute νi for each i, reweight the loss
function, ask the auto-differentiation api to get the gra-
dient, add privacy noise to the gradient, and then up-
date the parameters. The result is exactly the same as
per-example gradient clipping, but is much faster.

Noting that the parameters θ consists of the weight
matrix and bias vector of each layer, the L2 norm of the
gradient with respect to θ is the square root of the sum
of squares of the gradients with respect to the W (`) and
b(`) of each layer.

Thus, in each of the following subsections, we ex-
plain how to compute these quantities for each type of
layer. All that is needed are quantities ∂Loss

∂Z(`) (the gradi-
ent with respect to pre-activations of Layer `) and X(`)

(the mini-batch inputs to Layer `).

5.1 Fully-connected Layers

For completeness, we first describe Goodfellow’s tech-
nique for fully connected layers [17].

Consider two consecutive fully-connected layers, de-
scribed in Figure 1, of a multi-layer perceptron (MLP).
Let ` and `− 1 denote those two layers. Let W ∈ Rm×n

be the weight matrix between layers ` and ` − 1 and
x ∈ Rn be an input to the upper layer (which is also the
activation of bottom layer). In the forward phase, the
pre-activation z ∈ Rm and activation a ∈ Rm are:

z = Wx + b , a = φ(z) , (4)

x ∈ Rmlayer `− 1

z = Wx + b ∈ Rnlayer `

W ∈ Rm×n

Fig. 1. Two fully-connected layers in an MLP

where φ is an activation function applied element-wise
and b ∈ Rm is a bias term. By the chain rule, the deriva-
tive of L with respect to the entry of W at ith row and
jth column is given by

∂L

∂Wi,j
= ∂L

∂z
∂z

∂Wi,j
=

m∑
k=1

∂L

∂z[k]
∂z[k]
∂Wi,j

, (5)

where we view ∂L
∂z and ∂z

∂Wi,j
as matrices of size 1 ×m

and m× 1, respectively. From (4) we have

∂z[k]
∂Wi,j

= ∂

∂Wi,j

(
n∑
l=1

Wk,lx[l] + b[k]

)

=

{
x[j] if k = i,
0 if k 6= i.

Plugging the above into (5), we obtain

∂L

∂Wi,j
= ∂L

∂z[i]x[j] .

Combining all together, we see that

∂L

∂W
=



∂L
∂z[1]x[1] ∂L

∂z[1]x[2] · · · ∂L
∂z[1]x[n]

∂L
∂z[2]x[1] ∂L

∂z[2]x[2] · · · ∂L
∂z[2]x[n]

...
...

. . .
...

∂L
∂z[m]x[1] ∂L

∂z[m]x[2] · · · ∂L
∂z[m]x[n]


= ∂L

∂z
⊗ x , (6)

where ⊗ denotes the outer product of two vectors. Equa-
tion (6) is the gradient for a single example x. Sup-
pose there are τ examples in the minibatch. Then both
∂L
∂z and x become matrices of size τ × m and τ × n,
respectively. To efficiently compute the per-example
graidents for τ examples, in our implementation, we re-
shape ∂L

∂z and x into tensors of size [τ,m, 1] and [τ, 1, n],
respectively, and perform batch matrix-matrix multipli-
cation2. This procedure is described in Algorithm 2. We
note that in the pseudocode ∂L

∂zi denotes the gradient for
the ith example in the minibatch. Similarly, the gradient

2 In PyTorch, this is done using torch.bmm() function.

Fast Per-Example Gradient Clipping 135

Algorithm 2: Per-example gradient compu-
tation for fully-connected layer
Input: batch of gradients w.r.t. pre-activations

Z = [∂L∂z1

ᵀ
, . . . , ∂L∂zτ

ᵀ]ᵀ, batch of layer’s
input X = [xᵀ

1 , . . . ,x
ᵀ
τ]ᵀ

1 Z ← reshape Z into [τ,m, 1]
2 X ← reshape X into [τ, 1, n]

/* Compute batch matrix-matrix
multiplication */

3 G = bmm(Z, X)
4 return G

of L with respect to the kth entry of bias term b[k] is

∂L

∂b[k] = ∂L

∂z
∂z
∂b[k] = ∂L

∂z
Im = ∂L

∂z

since we have

∂z[p]
∂b[k] = ∂

∂b[k]

(
m∑
l=1

Wp,lx[l] + b[p]

)
=

{
1 if p = k,
0 if p 6= k,

where Im denotes an identity matrix of size m×m.

5.2 Convolutional Layers

Suppose we have a convolutional layer with cout kernels
of size κ× κ 3. Assume input images have size sH × sW
with cin channels. The kernelW for the layer can be rep-
resented by a 4D tensor with dimensions [cout, cin, κ, κ],
and the input image X by a 3D tensor with dimensions
[cin, sH , sW]. We denote the entry of tensor X at lo-
cation (i, j, k) by Xi,j,k and write Xi,j,∗ to denote the
entries of X whose indices for the first 2 dimensions are
fixed to (i, j). Xi:j denotes the entries with indices from
i to j.

The pre-activation Z resulting from performing con-
volution between W and X , denoted by W ∗ X , is ex-
pressed as

Zl,m,n =Wl,∗,∗,∗ ? X∗,m:m+κ,n:n+κ + bl , (7)

where ? symbol defines the inner product between two
tensors of same order, i.e., X ? Y =

∑
i,j,k Xi,j,kYi,j,k.

For simplicity, let’s fix l and focus on the lth output
feature map. See Figure 2 for a graphical depiction of
the convolution operation. From (7), we get

3 Here we assume the width and height of filter are the same
for simplicity. Our result can be generalized to the filters with
abitrary size.

cin

sW

sH

cin

κ

κ

cout

dW

dH

Zl,∗,∗

Wl,∗,∗,∗

Z

X

Fig. 2. Convolution between W and X

∂Zl,m,n
∂Wl,k,i,j

=
∂
∑κ
p=1

∑κ
q=1

∑cin
r=1Wl,r,p,qXr,m+p−1,n+q−1

∂Wl,k,i,j

= Xk,m+i−1,n+j−1

and see that the derivative of the lth pre-activation with
respect to Wl,k,i,j is given by

∂Zl,∗,∗
∂Wl,k,i,j

=


Xk,i,j Xk,i,j+1 · · · Xk,i,j+dW
Xk,i+1,j Xk,i,j+1 · · · Xk,i+1,j+dW

...
...

. . .
...

Xk,i+dH ,j Xk,i+dH ,j+1 · · · Xk,i+dH ,j+dW

 ,

where dH = sH − κ and dW = sW − κ. Using the chain
rule, we get

∂L

∂Wl,k,i,j
= ∂L

∂Zl,∗,∗
∂Zl,∗,∗
∂Wl,k,i,j

=
dH+1∑
m′=1

dW+1∑
n′=1

∂L

∂Zl,m′,n′
Xk,i+m′−1,j+n′−1

= ∂L

∂Zl,∗,∗
? Xk,i:i+dH ,j:j+dW .

(8)

The above equation implies that the gradient ∂L
∂Wl,k,∗,∗

is
obtained by performing convolution between the deriva-
tive of L with respect to the pre-activation Zl,∗,∗ and
input image Xk,∗,∗ (without the bias term). That is,

∂L

∂Wl,k,∗,∗
=
(
∂L

∂Z

)
l,∗,∗
∗ Xk,∗,∗ .

As described for the fully-connected layer case, the per-
example gradient can be obtained from the derivative
∂L
∂Z and layer’s input X . The only difference is that we
now need to compute the convolution between these two
tensors — it was outer product in the fully-connected
layer case. To efficiently perform the above convolution

Fast Per-Example Gradient Clipping 136

h(t−1) h(t) h(t+1)W W W

x(t−1) x(t) x(t+1)

V V V

Fig. 3. Recurrent neural network

operation, we convert it into a general matrix-matrix
multiplication (GEMM) [11] through vectorizing and re-
shaping the data and leverage its fast implementation in
BLAS library. To this end, we apply im2col [22] trans-
formation on images which converts an image into a
matrix where each row corresponds to κ× κ× Cin pix-
els to which the kernel is applied. See Algorithm 3 for
the procedure to get per-example graidents using this
operation.
Extensions to 3D convolution. The derivation in (8)
readily generalizes to 3D case. Consider a 3D convolu-
tion between an input X of shape [cin, din, sH , sW] and
a kernel W of shape [cout, cin, κ, κ, κ]. The entry at po-
sition (o,m, n) of the lth output feature map is given
by

Zl,o,m,n =
κ∑
p=1

κ∑
q=1

κ∑
r=1

cin∑
c=1
Wl,c,r,p,q·Xc,o+r,m+p−1,n+q−1 .

From the above, it is easy to see that

∂Zl,o,m,n
∂Wl,c,k,i,j

= Xc,o+k−1,m+i−1,n+j−1

and ∂Zl,∗,∗,∗
∂Wl,c,k,i,j

is a 4D tensor. As in (8), an application
of chain rule yields

∂L

∂Wl,c,k,i,j

= ∂L

∂Zl,∗,∗,∗
∂Zl,∗,∗,∗
∂Wl,c,k,i,j

=
dD+1∑
o′=1

dH+1∑
m′=1

dW+1∑
n′=1

∂L

∂Zl,o′,m′,n′
Xc,k+o′−1,i+m′−1,j+n′−1

= ∂L

∂Zl,∗,∗,∗
? Xc,k:k+dD,i:i+dH ,j:j+dW .

Again, this implies that the gradient of 3D convolution
can also be obtained from 3D convolutions.

5.3 Recurrent Layers

We now consider a recurrent layer with weight matri-
ces W ∈ Rm×m and V ∈ Rm×n. Let x(t) ∈ Rn and

Algorithm 3: Per-example gradient compu-
tation for convolutional layer
Input: gradient w.r.t. pre-activation ∂L

∂Z of
shape [τ, cout, dH+1, dW+1], input
image X of shape [τ, cin, sH , sW]

1 Construct P ← im2col(X , [κ, κ])
// P is of shape [τ, (dH+1)(dW+1), κ2cin]

2 δZ ← reshape ∂L
∂Z into [τ, cout, (dH+1)(dW+1)]

/* Compute batch matrix-matrix
multiplication */

3 G = bmm(δZ, P)
4 G ← reshape G into [τ, cout, cin, κ, κ]
5 return G

h(t) ∈ Rm, for t = 1, . . . , T , denote the input and hid-
den state vectors at time step t, respectively. As shown
in Figure 3, the pre-activation z(t) ∈ Rm at time t is
computed by

z(t) = Wh(t−1) + V x(t) + b , (9)

where h(t−1) = φ(z(t−1)) and φ is an activation function.
We first consider the gradient with respect to W , the
weight matrix for hidden state vector. By the chain rule,
the gradient of L with respect to Wi,j is

∂L

∂Wi,j
=

T∑
t=1

∂L

∂z(t)
∂z(t)

∂Wi,j

=
T∑
t=1

m∑
k=1

∂L

∂z(t)[k]
∂z(t)[k]
∂Wi,j

(10)

=
T∑
t=1

∂L

∂z(t)[i]
h(t−1)[j] (11)

since we have

∂z(t)[p]
∂Wi,j

= ∂

∂Wi,j

(
m∑
k=1

Wp,kh(t−1)[k] + b[p]

)

=

{
h(t−1)[j] if p = i,
0 if p 6= i.

From (11), we see that

∂L

∂W
=

T∑
t=1

∂L

∂z(t) ⊗ h(t−1) . (12)

Similarly, the gradient with respect to V , weight matrix
for input vector, can be obtained as follows:

∂L

∂V
=

T∑
t=1

∂L

∂z(t) ⊗ x(t) and ∂L

∂b =
T∑
t=1

∂L

∂z(t) .

Algorithm 4 describes how per-example gradients are
computed using Equation (12).

Fast Per-Example Gradient Clipping 137

Algorithm 4: Per-example gradient compu-
tation for recurrent layer
Input: list of gradient w.r.t. pre-activations

[∂L
∂z(1) , . . . ,

∂L
∂z(T)] for T time steps, input

sequence [x(1), . . . ,x(T)]
1 Γ = []
2 for t = 1 to T do
3 Z ← shape batch of ∂L

∂z(t) into [τ,m, 1]
4 X ← shape batch of x(t) into [τ, 1, n]
5 Γ.append(bmm(Z, X))
6 end
7 G ← sum(Γ)
8 return G

5.4 LSTM Layers

The forward phase of an LSTM layer is described by the
following pre-activations

z(t)
f

z(t)
i

z(t)
g

z(t)
o

 =


W f

W i

W g

W o

h(t−1) +


V f

V i

V g

V o

x(t) +


bf

bi

bg

bo


and 4 gate values f (t) = σ(z(t)

f), i(t) = σ(z(t)
i), g(t) =

tanh(z(t)
g), and o(t) = σ(z(t)

o), where σ(·) is the sigmoid
function,Wξ ∈ Rm×m and Vξ ∈ Rm×n for ξ ∈ {f, i, g, o}.
The above can be simplified by introducing matrices
W ∈ R4m×m and V ∈ R4m×n and a bias b ∈ R4m

constructed by stacking weights and biases for all gates:

z(t) = Wh(t−1) + V x(t) + b .

From the above, we see that the gradient of an LSTM
layer can be computed in the same way as in a recurrent
layer.

5.5 LayerNorm Layers

LayerNorm [5] layer enables a neural network to control
the distribution of layer inputs by allowing it to con-
trol the mean and variance of inputs across activations
(rather than those across minibatch as in batch normal-
ization). It has two parameters γ and β. In the forward
phase, the LayerNorm at layer ` computes the mean and
variance of activations from the layer `− 1:

µ(`) = 1
κ

κ∑
i=1

a(`−1)[i] and σ(`) = 1
κ

κ∑
i=1

(h(`−1)[i]− µ(`))2 .

Algorithm 5: Per-example gradient compu-
tation for LayerNorm layer
Input: batch of gradient w.r.t. pre-activations

Z = [∂L∂h1

ᵀ
, . . . , ∂L∂hτ

ᵀ]ᵀ, normalized
input H = [hᵀ

1 , . . . ,h
ᵀ
τ]ᵀ

1 G ← Z �H
2 return G

It then normalizes the layer inputs by

h(`)[i] = 1
σ(`) (h(`−1)[i]− µ(`)) , i = 1, . . . , κ .

Finally, the output of layer is given by

h(`) = γ � h(`) + β ,

where γ,β ∈ Rκ and � denotes the element-wise multi-
plication. If we view h(`) as the pre-activation of layer,
we have

∂L

∂γ
= ∂L

∂h(`)
∂h(`)

∂γ
= ∂L

∂h(`) diag(h(`)) = ∂L

∂h(`) � h(`)

∂L

∂β
= ∂L

∂h(`)
∂h(`)

∂β
= ∂L

∂h(`) Ik = ∂L

∂h(`)

since we have

∂h(`)[p]
∂γ[i] = ∂

∂γ[i]

(
γ[p]h(`)[p] + β[p]

)
=

{
h(`)[i] if p = i,
0 if p 6= i,

and

∂h(`)[p]
∂β[i] = ∂

∂γ[i]

(
γ[p]h(`)[p] + β[p]

)
=

{
1 if p = i,
0 if p 6= i.

As shown in Algorithm 5, the per-example gradient for
LayerNorm layer over a minibatch can be obtained by
simple element-wise product of two matrices.

5.6 Multi-head Attention Layers

Multi-head attention mechanism is a core component of
Transformer network [14, 44, 48], the state-of-the-art
model for neural language translation (NLT).

Let X = (xᵀ
1 ,x

ᵀ
2 , . . . ,x

ᵀ
s)ᵀ be an input sequence

of encoded vectors xi ∈ Rdm , and consider a multi-
head attention layer with h attention heads in the
lth layer of a Transformer network. The architec-
ture of a transformer network with a single encoder

Fast Per-Example Gradient Clipping 138

LayerNorm2

Fully-connected 2

Output

+

Fully-connected 1

LayerNorm1

+

Multihead Attention

Positional Encoding

Word Embedding

Input

A Transformer
block

Fig. 4. A transformer network with a single encoder block.

block is described in Figure 4. The layer takes a tu-
ple (Q(`−1),K(`−1), V (`−1)) of query Q, key K, and
value V from the layer ` − 1 as input. Note that
(Q(0),K(0), V (0)) = (X,X,X). It starts by applying lin-
ear transformations on the inputs. This is done by mul-
tiplying them with weight matrices WQ,WK ,WV ∈
Rdm×dm :

Q(`) = Q(`−1)(WQ)ᵀ ,

K(`) = K(`−1)(WK)ᵀ ,

V (`) = V (`−1)(WV)ᵀ .

The attention weights are computed by the scaled dot
product between Q and K. The attention values are
weighted sums of values V .

A(`) = 1√
dk

softmax
(
Q(`)(K(`))ᵀ

)
,

H(`) = A(`)V (`) ,

where dm = h × dk. Finally, the output of layer Y is
obtained by applying a linear transformation on the at-
tention values:

Y (`) = H(`)(WO)ᵀ ,

where WO ∈ Rdm×dm . The gradient of L with respect
to WQ is

∂L

∂WQ
= ∂L

∂Q(`)
∂Q(`)

∂WQ
.

From

∂Q
(`)
m,n

∂Wi,j
= ∂

∂Wi,j

(
dm∑
k=1

Q
(`−1)
m,k Wk,n

)

=

{
Q

(`)
m,j if n = i,

0 if n 6= i,
,

we get

∂Q(`)

∂Wi,j
=


0 · · · Q

(`−1)
1,j · · · 0

0 · · · Q
(`−1)
2,j · · · 0

...
...

...
0 · · · Q

(`−1)
s,j · · · 0

 ,

where we only have non-zero entries at the ith column.
From the above, we have

∂L

∂Wi,j
=

s∑
k=1

∂L

∂Q
(`)
k,i

Q
(`−1)
k,j =

〈
∂L

∂Q
(`)
∗,i

, Q
(`−1)
∗,j

〉
.

In other words, the entry of ∂L
∂W at location (i, j) is ob-

tained by taking inner product between the ith column
of ∂L

∂Q(`) and the jth column of Q(`−1). Combining all
together, we conclude that

∂L

∂WQ
=
(

∂L

∂Q(`)

)ᵀ

Q(`−1) .

Similarly, we can compute the gradients with respect to
other parameters:

∂L

∂WK
=
(

∂L

∂K(`)

)ᵀ

K(`−1) ,

∂L

∂WV
=
(

∂L

∂V (`)

)ᵀ

V (`−1) ,

∂L

∂WO
=
(

∂L

∂Y (`)

)ᵀ

H(`) .

5.7 Other Layer Types

There are many types of layers that have no parame-
ters at all. Some common examples include max-pooling
layers (which divide the layer input into patches and
output the maximum of each patch), softmax layers
(which take a vector x ∈ Rdin and output a vector[

ex[1]∑
i
ex[i] , · · · ,

ex[din]∑
i
ex[i]

]
). These layers do not outwardly

affect our approach – they are automatically accounted
for when we ask the auto-differentiation software to
compute ∂Loss

∂Z(`) for layers ` below them.
Similarly, skip-connections, which are used in resid-

ual blocks [19] also do not outwardly affect our ap-
proach.

Fast Per-Example Gradient Clipping 139

5.8 Implementation

We implemented the fast per-example gradient clipping
technique, described in Section 5, using PyTorch. We
encapsulated the per-example gradient norm computa-
tion functionality into python wrapper classes for Py-
Torch’s built-in network layers, e.g., Linear, Conv2D,
RNN, and so on. This modular implementation allows
users to incorporate the gradient clipping functional-
ity into their existing neural network models by simply
replacing their layers with our wrapper classes. Each
layer wrapper class maintains references to two tensors:
pre-activations Z and input X to the layer. After the
feed-forward step, it computes ∂L/∂Z, the gradient with
respect to Z, using autograd package and combines it
with X to derive per-example gradients.

6 Experiments

6.1 Experimental Setup

To evaluate the efficiency of the proposed framework,
we compare the performance of our per-example loss
reweighting algorithm to those of two other algorithms,
namely Non-private and nxBP, on different types of neu-
ral network models. Non-private algorithm takes a mini-
batch of examples and performs the forward and back-
ward propagation steps only once as in standard train-
ing process. nxBP is the baseline differentially private
deep learning algorithm that computes per-example gra-
dient clipping using the naive method from Section 3: it
uses auto-differentiation to sequentially obtain the gra-
dient for each record, clips it, and then adds the clipped
gradients together. multiLoss is an improved version of
the naive approach. As described in Section 3, it asks
the auto-differentiator to get the gradients for all exam-
ples at once (e.g., it calls torch.autograd.grad with
first parameter equal to the vector of losses across mini-
batch records) and then clips and adds them together.
Our algorithm, ReweightGP, performs back-propagation
twice, once for computing per-example gradient norms
(as explained in Section 5) to determine the weights for
individual loss functions and the other for computing
the batch gradient of weighted loss function.

We note that accuracy comparisons among
the differentially private algorithms are irrele-
vant, as they all produce the same clipped gra-
dients – the only difference among them is speed.

We have implemented our algorithm using Py-
Torch [33] framework. We used a differentially private
version of Adam optimizer, which is the same with the
non-private Adam [25] except it injects Gaussian noise
with scale σ to gradients. In our experiments, we set
the default value for the clipping threshold C to be
1 and used the default value of σ = 0.05. For all ex-
periments, we set the step size of Adam optimizer to
0.001, β1 = 0.9, and β2 = 0.999. At each epoch, we ran-
domly shuffle the dataset and partition the data into
non-overlapping chunks of size |B|. All the experiments
were conducted on a machine with Intel Xeon E5-2660
CPU and NVIDIA GeForce 1080 TI GPU.

6.1.1 Models

We tested the effectiveness of our framework on the fol-
lowing 5 different neural network models for classifica-
tion. All models apply softmax function to the output
layers and use the cross entropy loss.

– MLP (Multi-layer Perceptron): this is a simple neu-
ral network with two hidden layers. The first layer
contains 128 and the second layer 256 units. We used
sigmoid function as our default activation function.

– CNN (Convolution Neural Network): the network
consists of 2 convolutional layers, each of which fol-
lowed by a 2 × 2 max pooling layer with stride of 2,
and one fully connected layer with 128 hidden units.
The first convolutional layer has 20 kernels of size 5×5
with stride 1, and the second layer 50 kernels of size
5× 5 with stride 1. We didn’t use zero-paddings.

– RNN (Recurrent Neural Network): this network was
constructed by adding a fully connected layer on top
of one vanilla recurrent layer with 128 hidden units.
tanh was used as an activation function.

– LSTM (Long Short-term Memory): similar to RNN,
there is one LSTM layer with 128 hidden units fol-
lowed by a fully connected layer for classification.

– Transformer: the network contains a word embed-
ding layer, positional encoding layer, a transformer
encoder block, and a fully connected layer. Figure 4
describes the architecture of the Transformer network
used in our experiments.

6.1.2 Datasets and Tasks

We used the following five publicly available datasets in
our experiments.

Fast Per-Example Gradient Clipping 140

MLP CNN RNN LSTM Transformer
100

101

102

103

Tr
ai

ni
ng

tim
e

(s
ec

/e
po

ch
)

1.39
1.93 2.15

14.49

1.942.27
4.24

6.96

21.20

3.04

49.00
81.77 93.66

681.33

2257.22

152.65
205.07

320.21

1439.49

298.94

Non-private ReweightGP multiLoss nxBP

MLP CNN RNN LSTM

101

102

103

Tr
ai

ni
ng

tim
e

(s
ec

/e
po

ch
)

MLP CNN RNN LSTM
100

101

102

103

Tr
ai

ni
ng

tim
e

(s
ec

/e
po

ch
)

Fig. 5. Comparison of performance by varying architectures (Top: MNIST, Bottom-left: FMNIST, Bottom-right: CIFAR10, Transformer
is trained on IMDB)

1. MNIST is a grayscale, image dataset of hand-
written digits, consisting of 60,000 training and
10,000 test examples. Each image has 28 × 28 pix-
els, and there are 10 classes (one for each digit). We
trained MLP, CNN, RNN, and LSTM networks for
classfication. For RNN and LSTM, we construct a
sequence by considering the ith row of an image as
an input vector for the time step i. In other words,
we view an image as a sequence of rows.

2. FMNIST (Fashion-MNIST) is a dataset of fashion
article images designed to replace MNIST dataset.
It also contains 70,000 grayscale images of size 28×
28 (60,000 for training and 10,000 for testing).

3. CIFAR10 is an image dataset for object classifi-
cation. It consists of 50,000 training examples of
32× 32 RGB images. There are 10 classes, and each
class has 5,000 images.

4. IMDB is a movie review dataset for binary senti-
ment analysis. We trained the Transformer network
on this dataset using 50% of examples. The other
50% of examples were used for testing. For word
embedding, rather than training from scratch, we
leveraged GloVe embedding vectors of 200 dimen-
sions, pretrained on 6 billions of tokens.

5. LSUN [49] is a large-scale scene understanding
dataset, having over 59 million RGB images of size
at least 256× 256, and 10 different scene categories.

6.2 Small Image Performance

We first show improvements for each architecture on the
smaller image datasets (MNIST, FMNIST, CIFAR10).
These datasets are not appropriate for Transformer, so
we use IMDB for this architecture. Figure 5 compares
the performance of the different gradient clipping com-
putation methods on 5 different neural network models
in terms of training time per epoch. For this experiment,
the minibatch size |B| was fixed to 32, and the models
were trained for 100 epochs. As shown in the Figure
5, the proposed RewieghtGP algorithm significantly re-
duces the training time on all 5 different architectures.
Notice that values on y-axis are in log scale. It is worth
noting that the training of LSTM network takes sig-
nificantly longer than that for other networks because
the per-gradient computation must access each layer’s
pre-activations and input tensor. This prevents us from
using highly optimized fast implementation of LSTM
such as NVIDIA’s cuDNN LSTM. For RNN, this lim-
itation can be avoided as one can derive the gradient
of loss function with respect to pre-activations from the
gradient with respect to activations using the chain rule.

6.3 Impact of Different Batch Size

Figure 6 shows the impact of different batch sizes on
the per-epoch training time. For this experiment, we

Fast Per-Example Gradient Clipping 141

16 32 64 128
Batch size

101

102

Tr
ai

ni
ng

tim
e

(s
ec

/e
po

ch
)

16 32 64 128
Batch size

101

102

16 32 64 128
Batch size

101

102

Non-private ReweightGP multiLoss nxBP

Fig. 6. Execution time by varying batch size (Left: MLP, Middle: CNN, Right: RNN)

trained the MLP, CNN, and RNN models described in
Section 6.1.1 on MNIST dataset by varying the batch
size. The batch sizes used for training are 16, 32, 64, and
128. An interesting observation is that for Non-private
and ReweightGP per-epoch training time decreases as
the batch size increases, while that for nxBP remains
constant regardless of batch size. This is because that
both Non-private and ReweightGP can take advantage of
more parallelism due to the use of larger batch. On the
other hand, in nxBP computationally heavy error back-
propagation happens for each training example (even if
an entire batch is stored in the gpu).

6.4 Impact of Network Depth

Before experimenting with larger and more complex ar-
chitectures, we first provide network depth results for
smaller architectures, as small networks are most com-
monly used with differential privacy [2]. We trained
multiple MLP models on three datasets (MNIST, FM-
NIST, and CIFAR10) by using different numbers of hid-
dne layers: 2, 4, 6, and 8. The batch size |B| is fixed
to 128. As shown in Figure 7, ReweightGP algorithm
significantly outperforms the naive nxBP algorithm on
all three datasets. Especially on FMNIST dataset with
2 hidden layers, the proposed algorithm showed 94x
speed-up over the naive nxBP algorithm.

6.5 ResNet and VGG Networks

We now evaluate the performance on deeper archi-
tectures with millions of parameters: ResNet [19] and
VGG networks [41]. For this evaluation, we froze the
batchnorm parameters at values taken from pre-trained
models (since batch-norm parameters do not have per-

example gradients). 4 Due to the large memory space
requirement, mini-batches of size 20 are used for this
experiment. Results on the LSUN dataset are shown in
Figure 8. mutiLoss had out-of-memory errors on VGG
networks and resnet101 for large images. We still see
that ReweightGP consistently outperforms other gradi-
ent clipping algorithms (nxBP, multiLoss). The improve-
ment is significant for images of (rescaled) size 64x64
and diminishes for size 256x256.

6.6 Image Size

Noting that image size played a key role in reducing the
speedup, we investigate this further in Figure 9 using
ResNet 18 with batch size 32 and image sizes ranging
from 32x32 to 256x256. This causes quadratic growth in
the width of the network (multiplying each dimension
by c results in c2 as many pixels) and we see that the
advantage over the naive method decreases due to the
extra computation per layer that ReweightGP uses.

6.7 Memory

Due to caching, it is difficult to obtain an accurate esti-
mate of GPU memory requirements. As an alternative,
we consider the largest batch size a method can support
before running out of memory. For this experiment, we
used ResNet 101 with 256x256 input images and varied
the batch sizes. The non-private method first failed at
batch size 48, ReweightGP at 36, and multiLoss at 18.
nxBP operates on one example at a time (even when an
entire batch is stored in the GPU). Thus we estimate

4 In practice, other types of normalizations could also be used,
such as LayerNorm [5] (Section 5.5), group norm [46], and in-
stance norm [43].

Fast Per-Example Gradient Clipping 142

2 4 6 8
Number of hidden layers

101

102
Tr

ai
ni

ng
tim

e
(s

ec
/e

po
ch

)

2 4 6 8
Number of hidden layers

101

102

2 4 6 8
Number of hidden layers

100

101

102

Non-private ReweightGP multiLoss nxBP

Fig. 7. Comparison of performance by varying number of hidden layers (Left: MNIST, Middle: FMNIST, Right: CIFAR10)

resnet18 resnet34 resnet50 resnet101
0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

tim
e

(s
ec

/it
er

.)

Non-private
ReweightGP
multiLoss
nxBP

(a) ResNet (Image size: 64×64)

resnet18 resnet34 resnet50 resnet101
0.0

0.5

1.0

1.5

2.0

2.5
Tr

ai
ni

ng
tim

e
(s

ec
/it

er
.)

Non-private
ReweightGP
multiLoss
nxBP

(b) ResNet (Image size: 256×256)

VGG11 VGG13 VGG16 VGG19
0.0

0.1

0.2

0.3

0.4

Tr
ai

ni
ng

tim
e

(s
ec

/it
er

.)

Non-private
ReweightGP

multiLoss
nxBP

(c) VGG (Image size: 64× 64)

Fig. 8. Performance evaluation on ResNet and VGG networks. Bar for multiLoss is missing when it runs out of memory.

the GPU memory overhead of ReweightGP compared to
nonprivate to be up to (48 − 36)/48 ≈ 25% for large
images. At the lower end, ReweightGP with ResNet 18
with 32x32 images ran with batch size of 500 without
any problems. Note nxBP under-utilizes GPU memory
and parallelism (backpropagating through one example
at a time). Thus, in practice, the memory overhead is
manageable (i.e., allows for relatively large batch sizes)
and buys us significant improvements in running time
(taking better advantage of GPU parallelism).

32x32 64x64 128x128 256x256
Image size

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

tim
e

(s
ec

/it
er

.)

Non-private
ReweightGP
multiLoss
nxBP

Fig. 9. Processing time by image resolution

6.8 Limitations

Overall, the experiments have shown that our pro-
posed ReweightGP method outperforms the other meth-

ods nxBP and MultiLoss (which is often unreliable).
ReweightGP requires more memory and computation
per layer than nxBP. As a result, its advantage starts
to decline with increased image sizes as this causes a
quadratic scaling in the width of the network and con-
sequently in the computations of ReweightGP. For very
high resolution images, it may be preferable to use nxBP.

Second, some highly optimized versions of LSTM,
such as the ones that use the CuDNN LSTM routines
do not expose the internal gate values, so that we can-
not obtain the appropriate gradients. However, less op-
timized versions of LSTM can be implemented in Py-
Torch/TensorFlow and benefit from our approach.

7 Conclusions
We presented a general framework for fast per-example
gradient clipping which can be used to improve training
speed under differential privacy. Prior work underuti-
lized GPU parallelism, leading to slow training times.
Our empirical evaluation showed a significant reduction
in training time of differentially private models.

Per-example gradient clipping is not compatible
with Batch Norm [20], but other layer normalization
methods can be used instead [5, 43, 46].

Fast Per-Example Gradient Clipping 143

Acknowledgements
This work was supported by NSF Awards CNS-1931686
and CNS-1943046.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learning with dif-
ferential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 308–318. ACM, 2016.

[3] N. C. Abay, Y. Zhou, M. Kantarcioglu, B. M. Thuraising-
ham, and L. Sweeney. Privacy preserving synthetic data
release using deep learning. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML
PKDD 2018, Dublin, Ireland, September 10-14, 2018, Pro-
ceedings, Part I, pages 510–526, 2018.

[4] G. Acs, L. Melis, C. Castelluccia, and E. D. Cristofaro. Dif-
ferentially private mixture of generative neural networks. In
ICDM, 2017.

[5] L. J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.
CoRR, abs/1607.06450, 2016.

[6] E. Bagdasaryan and V. Shmatikov. Differential pri-
vacy has disparate impact on model accuracy. CoRR,
abs/1905.12101, 2019.

[7] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk
minimization: Efficient algorithms and tight error bounds. In
Proceedings of the 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, FOCS ’14, pages 464–
473, Washington, DC, USA, 2014. IEEE Computer Society.

[8] B. K. Beaulieu-Jones, Z. S. Wu, C. Williams, R. Lee, S. P.
Bhavnani, J. B. Byrd, and C. S. Greene. Privacy-preserving
generative deep neural networks support clinical data shar-
ing. bioRxiv, 2018.

[9] L. Bottou. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010,
pages 177–186. Springer, 2010.

[10] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differen-
tially private empirical risk minimization. Journal of Machine
Learning Research, 12(Mar):1069–1109, 2011.

[11] K. Chellapilla, S. Puri, and P. Simard. High performance
convolutional neural networks for document processing. In
Tenth International Workshop on Frontiers in Handwriting
Recognition. Suvisoft, 2006.

[12] C. Chen, J. Lee, and D. Kifer. Renyi differentially private
erm for smooth objectives. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 2037–
2046, 2019.

[13] Q. Chen, C. Xiang, M. Xue, B. Li, N. Borisov, D. Kaafar,
and H. Zhu. Differentially private data generative models.
https://arxiv.org/pdf/1812.02274.pdf, 2018.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, 2019.

[15] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages
486–503. Springer, 2006.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrat-
ing noise to sensitivity in private data analysis. In Theory of
Cryptography Conference, pages 265–284. Springer, 2006.

[17] I. Goodfellow. Efficient per-example gradient computations.
arXiv preprint arXiv:1510.01799, 2015.

[18] I. J. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, Cambridge, MA, USA, 2016.
http://www.deeplearningbook.org.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[21] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta,
and L. Wang. Towards practical differentially private convex
optimization. In Towards Practical Differentially Private
Convex Optimization, page 0. IEEE.

[22] Y. Jia. Learning semantic image representations at a large
scale. PhD thesis, UC Berkeley, 2014.

[23] J. Jordon, J. Yoon, and M. van der Schaar. Pate-gan: Gen-
erating synthetic data with differential privacy guarantees. In
ICLR, 2019.

[24] D. Kifer, A. Smith, and A. Thakurta. Private convex em-
pirical risk minimization and high-dimensional regression. In
Conference on Learning Theory, pages 25–1, 2012.

[25] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. International Conference on Learning Representa-
tions, 12 2014.

[26] J. Lee and D. Kifer. Concentrated differentially private
gradient descent with adaptive per-iteration privacy budget.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018.

[27] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien,
I. Mironov, N. Papernot, and P. Kairouz. A general ap-
proach to adding differential privacy to iterative training
procedures. arXiv preprint arXiv:1812.06210, 2018.

[28] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang.
Learning differentially private recurrent language models. In
International Conference on Learning Representations, 2018.

[29] I. Mironov. Renyi differential privacy. In Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th, pages
263–275. IEEE, 2017.

https://arxiv.org/pdf/1812.02274.pdf
http://www.deeplearningbook.org

Fast Per-Example Gradient Clipping 144

[30] N. Papernot, M. Abadi, Úlfar Erlingsson, I. Goodfellow, and
K. Talwar. Semi-supervised knowledge transfer for deep
learning from private training data. In Proceedings of the
International Conference on Learning Representations, 2017.

[31] N. Papernot, S. Chien, C. C. Choo, G. M. Andrew, and
I. Mironov. TensorFlow Privacy.

[32] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Tal-
war, and Úlfar Erlingsson. Scalable private learning with
pate. In International Conference on Learning Representa-
tions (ICLR), 2018.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in PyTorch. In NeurIPS Autodiff
Workshop, 2017.

[34] N. Phan, Y. Wang, X. Wu, and D. Dou. Differential pri-
vacy preservation for deep auto-encoders: an application of
human behavior prediction. In AAAI, 2016.

[35] M. Reimherr and J. Awan. KNG: the k-norm gradient mech-
anism. In NeurIPS, 2019.

[36] H. Robbins and S. Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–
407, 1951.

[37] G. Rochette, A. Manoel, and E. W. Tramel. Efficient per-
example gradient computations in convolutional neural net-
works. ArXiv, abs/1912.06015, 2019.

[38] S. Ruder. An overview of gradient descent optimization
algorithms. CoRR, abs/1609.04747, 2016.

[39] R. Shokri and V. Shmatikov. Privacy-preserving deep learn-
ing. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

[40] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Mem-
bership inference attacks against machine learning models.
In IEEE Symposium on Security and Privacy (SP), 2017.

[41] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference on Learning Representations, 2015.

[42] O. Thakkar, G. Andrew, and H. B. McMahan. Differ-
entially private learning with adaptive clipping. CoRR,
abs/1905.03871, 2019.

[43] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is
all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[45] D. Wang, M. Ye, and J. Xu. Differentially private empirical
risk minimization revisited: Faster and more general. In
Advances in Neural Information Processing Systems 30,
pages 2719–2728. Curran Associates, Inc., 2017.

[46] Y. Wu and K. He. Group normalization. In ECCV, 2018.
[47] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou. Differen-

tially private generative adversarial network, 2018.
[48] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov,

and Q. V. Le. Xlnet: Generalized autoregressive pretraining
for language understanding. arXiv preprint arXiv:1906.08237,
2019.

[49] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. Lsun: Con-
struction of a large-scale image dataset using deep learning
with humans in the loop. ArXiv, abs/1506.03365, 2015.

[50] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. Differen-
tially private model publishing for deep learning. 2019 IEEE
Symposium on Security and Privacy (SP), pages 332–349,
2019.

[51] J. Zhang, K. Zheng, W. Mou, and L. Wang. Efficient pri-
vate erm for smooth objectives. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence,
pages 3922–3928. AAAI Press, 2017.

	Scaling up Differentially Private Deep Learning with Fast Per-Example Gradient Clipping
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Rényi Differential Privacy

	3 The Problem with Per-Example Gradient Clipping
	3.1 Non-private Mini-batch SGD
	3.2 Mini-batch Stochastic Gradient Descent with Privacy
	3.3 The Computational Problem

	4 Related Work
	5 Faster Deep Learning with Differential Privacy
	5.1 Fully-connected Layers
	5.2 Convolutional Layers
	5.3 Recurrent Layers
	5.4 LSTM Layers
	5.5 LayerNorm Layers
	5.6 Multi-head Attention Layers
	5.7 Other Layer Types
	5.8 Implementation

	6 Experiments
	6.1 Experimental Setup
	6.1.1 Models
	6.1.2 Datasets and Tasks

	6.2 Small Image Performance
	6.3 Impact of Different Batch Size
	6.4 Impact of Network Depth
	6.5 ResNet and VGG Networks
	6.6 Image Size
	6.7 Memory
	6.8 Limitations

	7 Conclusions

