
Proceedings on Privacy Enhancing Technologies ; 2021 (2):5–26

Takao Murakami*, Koki Hamada, Yusuke Kawamoto, and Takuma Hatano

Privacy-Preserving Multiple Tensor
Factorization for Synthesizing Large-Scale
Location Traces with Cluster-Specific Features
Abstract: With the widespread use of LBSs (Location-
based Services), synthesizing location traces plays an in-
creasingly important role in analyzing spatial big data
while protecting user privacy. In particular, a synthetic
trace that preserves a feature specific to a cluster of
users (e.g., those who commute by train, those who
go shopping) is important for various geo-data analysis
tasks and for providing a synthetic location dataset. Al-
though location synthesizers have been widely studied,
existing synthesizers do not provide sufficient utility,
privacy, or scalability, hence are not practical for large-
scale location traces. To overcome this issue, we propose
a novel location synthesizer called PPMTF (Privacy-
Preserving Multiple Tensor Factorization). We model
various statistical features of the original traces by a
transition-count tensor and a visit-count tensor. We fac-
torize these two tensors simultaneously via multiple ten-
sor factorization, and train factor matrices via posterior
sampling. Then we synthesize traces from reconstructed
tensors, and perform a plausible deniability test for a
synthetic trace. We comprehensively evaluate PPMTF
using two datasets. Our experimental results show that
PPMTF preserves various statistical features includ-
ing cluster-specific features, protects user privacy, and
synthesizes large-scale location traces in practical time.
PPMTF also significantly outperforms the state-of-the-
art methods in terms of utility and scalability at the
same level of privacy.

Keywords: location privacy, location synthesizer,
cluster-specific feature, multiple tensor factorization

DOI 10.2478/popets-2021-0015
Received 2020-08-31; revised 2020-12-15; accepted 2020-12-16.

*Corresponding Author: Takao Murakami: AIST, E-
mail: takao-murakami at aist.go.jp
Koki Hamada: NTT/RIKEN E-mail: hamada.koki at
lab.ntt.co.jp
Yusuke Kawamoto: AIST, E-mail: yusuke.kawamoto at
aist.go.jp
Takuma Hatano: NSSOL, E-mail: hatano.takuma.hq2 at
jp.nssol.nipponsteel.com

1 Introduction
LBSs (Location-based Services) have been used in a
variety of applications such as POI (Point-of-Interest)
search, route finding, and geo-social networking. Con-
sequently, numerous location traces (time-series loca-
tion trails) have been collected into the LBS provider.
The LBS provider can provide these location traces
(also called spatial big data [60]) to a third party (or
data analyst) to perform various geo-data analysis tasks;
e.g., finding popular POIs [75], semantic annotation
of POIs [19, 70], modeling human mobility patterns
[17, 40, 42, 63], and road map inference [5, 41].

Although such geo-data analysis is important for in-
dustry and society, some important privacy issues arise.
For example, users’ sensitive locations (e.g., homes, hos-
pitals), profiles (e.g., age, profession) [33, 44, 73], activ-
ities (e.g., sleeping, shopping) [39, 73], and social rela-
tionships [6, 24] can be estimated from traces.

Synthesizing location traces [8, 15, 32, 36, 64, 72]
is one of the most promising approaches to perform
geo-data analysis while protecting user privacy. This ap-
proach first trains a generative model from the original
traces (referred to as training traces). Then it generates
synthetic traces (or fake traces) using the trained gen-
erative model. The synthetic traces preserve some sta-
tistical features (e.g., population distribution, transition
matrix) of the original traces because these features are
modeled by the generative model. Consequently, based
on the synthetic traces, a data analyst can perform the
various geo-data analysis tasks explained above.

In particular, a synthetic trace that preserves a fea-
ture specific to a cluster of users who exhibit similar
behaviors (e.g., those who commute by car, those who
often go to malls) is important for tasks such as seman-
tic annotation of POIs [19, 70], modeling human mo-
bility patterns [17, 40, 42, 63], and road map inference
[5, 41]. The cluster-specific features are also necessary
for providing a synthetic dataset for research [30, 52] or
anonymization competitions [2]. In addition to preserv-
ing various statistical features, the synthetic traces are
(ideally) designed to protect privacy of users who pro-

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 6

vide the original traces from a possibly malicious data
analyst or any others who obtain the synthetic traces.

Ideally, a location synthesizer should satisfy the fol-
lowing three features: (i) high utility: it synthesizes
traces that preserve various statistical features of the
original traces; (ii) high privacy: it protect privacy of
users who provide the original traces; (iii) high scala-
bility: it generates numerous traces within an accept-
able time; e.g., within days or weeks at most. All of
these features are necessary for spatial big data analy-
sis or providing a large-scale synthetic dataset.

Although many location synthesizers [8, 12, 13, 15,
28, 32, 36, 64, 72] have been studied, none of them are
satisfactory in terms of all three features:
Related Work. Location privacy has been widely
studied ([11, 27, 37, 56] presents related surveys) and
synthesizing location traces is promising in terms of
geo-data analysis and providing a dataset, as explained
above. Although location synthesizers have been widely
studied for over a decade, Bindschaedler and Shokri [8]
showed that most of them (e.g., [15, 32, 36, 64, 72])
do not satisfactorily preserve statistical features (espe-
cially, semantic features of human mobility, e.g., “many
people spend night at home”), and do not provide high
utility.

A synthetic location traces generator in [8] (denoted
by SGLT) is a state-of-the-art location synthesizer. SGLT
first trains semantic clusters by grouping semantically
similar locations (e.g., homes, offices, and malls) based
on training traces. Then it generates a synthetic trace
from a training trace by replacing each location with all
locations in the same cluster and then sampling a trace
via the Viterbi algorithm. Bindschaedler and Shokri [8]
showed that SGLT preserves semantic features explained
above and therefore provides high utility.

However, SGLT presents issues of scalability, which
is crucially important for spatial big data analysis.
Specifically, the running time of semantic clustering in
SGLT is quadratic in the number of training users and
cubic in the number of locations. Consequently, SGLT
cannot be used for generating large-scale traces. For ex-
ample, we show that when the numbers of users and lo-
cations are about 200000 and 1000, respectively, SGLT
would require over four years to execute even by using
1000 nodes of a supercomputer in parallel.

Bindschaedler et al. [9] proposed a synthetic data
generator (denoted by SGD) for any kind of data using
a dependency graph. However, SGD was not applied to
location traces, and its effectiveness for traces was un-
clear. We apply SGD to location traces, and show that it

cannot preserve cluster-specific features (hence cannot
provide high utility) while keeping high privacy. Simi-
larly, the location synthesizers in [12, 13, 28] generate
traces only based on parameters common to all users,
and hence do not preserve cluster-specific features.
Our Contributions. In this paper, we propose a novel
location synthesizer called PPMTF (Privacy-Preserving
Multiple Tensor Factorization), which has high utility,
privacy, and scalability. Our contributions are as follows:
– We propose PPMTF for synthesizing traces.

PPMTF models statistical features of training
traces, including cluster-specific features, by two
tensors: a transition-count tensor and visit-count
tensor. The transition-count tensor includes a tran-
sition matrix for each user, and the visit-count ten-
sor includes a time-dependent histogram of visited
locations for each user. PPMTF simultaneously fac-
torizes the two tensors via MTF (Multiple Tensor
Factorization) [35, 65], and trains factor matrices
(parameters in our generative model) via posterior
sampling [67]. Then it synthesizes traces from recon-
structed tensors, and performs the PD (Plausible
Deniability) test [9] to protect user privacy. Tech-
nically, this work is the first to propose MTF in a
privacy preserving way, to our knowledge.

– We comprehensively show that the proposed
method (denoted by PPMTF) provides high utility,
privacy, and scalability (for details, see below).

Regarding utility, we show that PPMTF preserves all of
the following statistical features.
(a) Time-Dependent Population Distribution. The
population distribution (i.e., distribution of visited lo-
cations) is a key feature to find popular POIs [75]. It
can also be used to provide information about the num-
ber of visitors at a specific POI [29]. The population
distribution is inherently time-dependent. For example,
restaurants have two peak times corresponding to lunch
and dinner periods [70].
(b) Transition Matrix. The transition matrix is a
main feature for modeling human movement patterns
[42, 63]. It is used for predicting the next POI [63] or
recommending POIs [42].
(c) Distribution of Visit-Fractions. A distribution
of visit-fractions (or visit-counts) is a key feature for
semantic annotation of POIs [19, 70]. For example, [19]
reports that many people spend 60% of the time at their
home and 20% of the time at work/school. [70] reports
that most users visit a hotel only once, whereas 5% of
users visit a restaurant more than ten times.

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 7

(d) Cluster-Specific Population Distribution. At
an individual level, a location distribution differs from
user to user, and forms some clusters; e.g., those who
live in Manhattan, those who commute by car, and those
who often visit malls. The population distribution for
such a cluster is useful for modeling human location
patterns [17, 40], road map inference [5, 41], and smart
cities [17].
We show that SGD does not consider cluster-specific
features in a practical setting (similarly, [12, 13, 28]
do not preserve cluster-specific features), and therefore
provides neither (c) nor (d). In contrast, we show that
PPMTF provides all of (a)-(d). Moreover, PPMTF au-
tomatically finds user clusters in (d); i.e., manual clus-
tering is not necessary. Note that user clustering is very
challenging because it must be done in a privacy pre-
serving manner (otherwise, user clusters may reveal in-
formation about users who provide the original traces).

Regarding privacy, there are two possible scenarios
about parameters of the generative model: (i) the pa-
rameters are made public and (ii) the parameters are
kept secret (or discarded after synthesizing traces) and
only synthetic traces are made public. We assume sce-
nario (ii) in the same way as [8]. In this scenario, PPMTF
provides PD (Plausible Deniability) in [9] for a synthetic
trace. Here we use PD because both SGLT [8] and SGD
[9] use PD as a privacy metric (and others [12, 13, 28] do
not preserve cluster-specific features). In other words,
we can evaluate how much PPMTF advances the
state-of-the-art in terms of utility and scalabil-
ity at the same level of privacy. We also empirically
show that PPMTF can prevent re-identification (or de-
anonymization) attacks [26, 47, 62] and membership in-
ference attacks [31, 61] in scenario (ii). One limitation
is that PPMTF does not guarantee privacy in scenario
(i). We clarify this issue at the end of Section 1.

Regarding scalability, for a larger number |U| of
training users and a larger number |X | of locations,
PPMTF’s time complexity O(|U||X |2) is much smaller
than SGLT’s complexity O(|U|2|X |3). Bindschaedler and
Shokri [8] evaluated SGLT using training traces of only
30 users. In this paper, we use the Foursquare dataset in
[68] (we use six cities; 448839 training users in total) and
show that PPMTF generates the corresponding traces
within 60 hours (about 106 times faster than SGLT) by
using one node of a supercomputer. PPMTF can also
deal with traces of a million users.

In summary, PPMTF is the first to provide all of
the utility in terms of (a)-(d), privacy, and scalability
to our knowledge. We implemented PPMTF with C++,

and published it as open-source software [1]. PPMTF
was also used as a part of the location synthesizer to
provide a dataset for an anonymization competition [2].
Limitations. Our results would be stronger if user pri-
vacy was protected even when we published the param-
eters of the generative model; i.e., scenario (i). However,
PPMTF does not guarantee meaningful privacy in this
scenario. Specifically, in Appendix F, we use DP (Dif-
ferential Privacy) [21, 22] as a privacy metric in scenario
(i), and show that the privacy budget ε in DP needs to
be very large to achieve high utility. For example, if we
consider neighboring data sets that differ in one trace,
then ε needs to be larger than 2×104 (which guarantees
no meaningful privacy) to achieve high utility. Even if
we consider neighboring data sets that differ in a sin-
gle location (rather than one trace), ε = 45.6 or more.
We also explain the reason that a small ε is difficult in
Appendix F. We leave providing strong privacy guaran-
tees in scenario (i) as future work. In Section 5, we also
discuss future research directions towards this scenario.

2 Preliminaries

2.1 Notations

Let N, Z≥0, R, and R≥0 be the set of natural num-
bers, non-negative integers, real numbers, and non-
negative real numbers, respectively. For n ∈ N, let
[n] = {1, 2, · · · , n}. For a finite set Z, let Z∗ be the
set of all finite sequences of elements of Z. Let P(Z) be
the power set of Z.

We discretize locations by dividing the whole map
into distinct regions or by extracting POIs. Let X be a
finite set of discretized locations (i.e., regions or POIs).
Let xi ∈ X be the i-th location. We also discretize time
into time instants (e.g., by rounding down minutes to
a multiple of 20, as in Figure 1), and represent a time
instant as a natural number. Let T ⊂ N be a finite set
of time instants under consideration.

In addition to the time instant, we introduce a time
slot as a time resolution in geo-data analysis; e.g., if we
want to compute the time-dependent population distri-
bution for every hour, then the length of each time slot
is one hour. We represent a time slot as a set of time
instants. Formally, let L ⊆ P(T) be a finite set of time
slots, and li ∈ L be the i-th time slot. Figure 1 shows an
example of time slots, where l1 = {1, 2, 3}, l2 = {4, 5, 6},
l3 = {7, 8, 9}, and L = {l1, l2, l3}. The time slot can
comprise either one time instant or multiple time in-

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 8

x2 x3 x4 x3 x4

Training TracesUser

u1

u2

x5 x5

x1 x1 x2 x4 x3 x3

u3 x5 x4 x1 x3 x5 x3 x5

Hour (AM) 7 8 9
Time Instant 1 2 3 4 5 6 7 8 9

s1

s2

s3

Time Slot l1 l2 l3

Fig. 1. Training traces (|U| = 3, |X | = 5, |T | = 9, |L| = 3).
Missing events are marked with gray.

stants (as in Figure 1). The time slot can also comprise
separated time instants; e.g., if we set the interval be-
tween two time instants to 1 hour, and want to average
the population distribution for every two hours over two
days, then l1 = {1, 2, 25, 26}, l2 = {3, 4, 27, 28}, · · · , l12 =
{23, 24, 47, 48}, and L = {l1, · · · l12}.

Next we formally define traces as described below.
We refer to a pair of a location and a time instant as an
event, and denote the set of all events by E = X × T .
Let U be a finite set of all training users, and un ∈ U
be the n-th training user. Then we define each trace
as a pair of a user and a finite sequence of events, and
denote the set of all traces by R = U × E∗. Each trace
may be missing some events. Without loss of generality,
we assume that each training user has provided a single
training trace (if a user provides multiple temporally-
separated traces, we can concatenate them into a single
trace by regarding events between the traces as missing).
Let S ⊆ R be the finite set of all training traces, and
sn ∈ S be the n-th training trace (i.e., training trace of
un). In Figure 1, s1 = (u1, (x2, 1), (x3, 2), (x4, 3), (x3, 5),
(x4, 6), (x5, 7), (x5, 9)) and S = {s1, s2, s3}.

We train parameters of a generative model (e.g., se-
mantic clusters in SGLT [8], factor matrices in PPMTF)
from training traces, and use the model to synthesize
a trace. Since we want to preserve cluster-specific fea-
tures, we assume a type of generative model in [8, 9]
as described below. Let y ∈ R be a synthetic trace.
For n ∈ [|U|], let Mn be a generative model of user un
that outputs a synthetic trace y ∈ R with probability
p(y =Mn).Mn is designed so that the synthetic trace y
(somewhat) resembles the training trace sn of un, while
protecting the privacy of un. Let M be a probabilis-
tic generative model that, given a user index n ∈ [|U|]
as input, outputs a synthetic trace y ∈ R produced
by Mn; i.e., p(y = M(n)) = p(y = Mn). M consists
ofM1, · · · ,M|U|, and the parameters ofM1, · · · ,M|U|
are trained from training traces S. A synthetic trace
y that resembles sn too much can violate the privacy

of un, whereas it preserves a lot of features specific to
clusters un belongs to. Therefore, there is a trade-off be-
tween the cluster-specific features and user privacy. In
Appendix C, we show an example ofMn in SGD [9].

In Appendix A, we also show tables summarizing
the basic notations and abbreviations.

2.2 Privacy Metric

We explain PD (Plausible Deniability) [8, 9] as a pri-
vacy metric. The notion of PD was originally introduced
by Bindschaedler and Shokri [8] to quantify how well a
trace y synthesized from a generative modelM provides
privacy for an input user un. However, PD in [8] was de-
fined using a semantic distance between traces, and its
relation with DP was unclear. Later, Bindschaedler et
al. [9] modified PD to clarify the relation between PD
and DP. In this paper, we use PD in [9]:

Definition 1 ((k, η)-PD). Let k ∈ N and η ∈ R≥0. For
a training trace set S with |S| ≥ k, a synthetic trace y ∈
R output by a generative model M with an input user
index d1 ∈ [|U|] is releasable with (k, η)-PD if there exist
at least k− 1 distinct training user indexes d2, · · · , dk ∈
[|U|]\{d1} such that for any i, j ∈ [k],

e−ηp(y=M(dj)) ≤ p(y=M(di)) ≤ eηp(y=M(dj)). (1)

The intuition behind (k, η)-PD can be explained as fol-
lows. Assume that user un is an input user of the syn-
thetic trace y. Since y resembles the training trace sn
of un, it would be natural to consider an adversary who
attempts to recover sn (i.e., infer a pair of a user and
the whole sequence of events in sn) from y. This attack
is called the tracking attack, and is decomposed into two
phases: re-identification (or de-anonymization) and de-
obfuscation [62]. The adversary first uncovers the fact
that user un is an input user of y, via re-identification.
Then she infers events of un via de-obfuscation. (k, η)-
PD can prevent re-identification because it guarantees
that the input user un is indistinguishable from at least
k − 1 other training users. Then the tracking attack is
prevented even if de-obfuscation is perfectly done. A
large k and a small η are desirable for strong privacy.

(k, η)-PD can be used to alleviate the linkage of the
input user un and the synthetic trace y. However, y may
also leak information about parameters of the genera-
tive model Mn because y is generated using Mn. In
Section 3.5, we discuss the overall privacy of PPMTF
including this issue in detail.

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 9

3 Privacy-Preserving Multiple
Tensor Factorization (PPMTF)

We propose PPMTF for synthesizing location traces. We
first present an overview (Section 3.1). Then we explain
the computation of two tensors (Section 3.2), the train-
ing of our generative model (Section 3.3), and the syn-
thesis of traces (Section 3.4). Finally, we introduce the
PD (Plausible Deniability) test (Section 3.5).

3.1 Overview

Proposed Method. Figure 2 shows an overview of
PPMTF (we formally define the symbols that newly ap-
pear in Figure 2 in Sections 3.2 to 3.4). It comprises the
following four steps.
(i). We compute a transition-count tensor RI and visit-

count tensor RII from a training trace set S.
The transition-count tensor RI comprises the
“User,” “Location,” and “Next Location” modes.
Its (n, i, j)-th element includes a transition-count
of user un ∈ U from location xi ∈ X to xj ∈ X .
In other words, this tensor represents the move-
ment pattern of each training user in the form of
transition-counts. The visit-count tensor RII com-
prises the “User,” “Location,” and “Time Slot”
modes. The (n, i, j)-th element includes a visit-
count of user un at location xi in time slot lj ∈ L.
That is, this tensor includes a histogram of visited
locations for each user and each time slot.

(ii).We factorize the two tensors RI and RII simulta-
neously via MTF (Multiple Tensor Factorization)
[35, 65], which factorizes multiple tensors into low-
rank matrices called factor matrices along each
mode (axis). In MTF, one tensor shares a factor
matrix from the same mode with other tensors.
In our case, we factorize RI and RII into factor ma-
trices A, B, C, and D, which respectively corre-
spond to the “User,” “Location,” “Next Location,”
and “Time Slot” mode. Here A and B are shared
between the two tensors. A, B, C, and D are param-
eters of our generative model, and therefore we call
them the MTF parameters. Let Θ = (A,B,C,D)
be the tuple of MTF parameters. We train MTF
parameters Θ from the two tensors via posterior
sampling [67], which samples Θ from its posterior
distribution given RI and RII.

(iii).We reconstruct two tensors from Θ. Then, given an
input user index n ∈ [|U|], we compute a transition-

𝐃

𝐁

𝐀

User un
Time
Slot

Visit-probability
Vector

1 𝝅n,1Qn,1

Transition-probability
Matrix

|ℒ| 𝝅n,|ℒ|Qn,|ℒ|

Training
Traces

Synthetic
Traces

(iii)

(iv)

Time Slot

L
oc

at
io

n

Next Location

Use
r

𝐑I 𝐑II

Time Slot

L
oc

at
io

n

Next Location

Use
r

Transition-count
Tensor

Visit-count
Tensor

𝐑I 𝐑II
(ii)

MTF parameters 𝚯 = (𝐀,𝐁,𝐂,𝐃)

(i)

(v)

𝐂

Fig. 2. Overview of PPMTF with the following four steps: (i)
computing a transition-count tensor and visit-count tensor, (ii)
training MTF parameters via posterior sampling, (iii) computing
a transition-probability matrix and visit-probability vector via the
MH algorithm and synthesizing traces, and (iv) the PD test.

probability matrix Qn,i and visit-probability vec-
tor πn,i of user un ∈ U for each time slot li ∈ L.
We compute them from the reconstructed tensors
via the MH (Metropolis-Hastings) algorithm [50],
which modifies the transition matrix so that πn,i is
a stationary distribution of Qn,i. Then we generate
a synthetic trace y ∈ R by using Qn,i and πn,i.

(iv).Finally, we perform the PD test [9], which verifies
whether y is releasable with (k, η)-PD.

We explain steps (i), (ii), (iii), and (iv) in Sections 3.2,
3.3, 3.4, and 3.5, respectively. We also explain how to
tune hyperparameters (parameters to control the train-
ing process) in PPMTF in Section 3.5. Below we explain
the utility, privacy, and scalability of PPMTF.
Utility. PPMTF achieves high utility by modeling sta-
tistical features of training traces using two tensors.
Specifically, the transition-count tensor represents the
movement pattern of each user in the form of transition-
counts, whereas the visit-count tensor includes a his-
togram of visited locations for each user and time slot.
Consequently, our synthetic traces preserve a time-
dependent population distribution, a transition matrix,
and a distribution of visit-counts per location; i.e., fea-
tures (a), (b), and (c) in Section 1.

Furthermore, PPMTF automatically finds a cluster
of users who have similar behaviors (e.g., those who al-
ways stay in Manhattan; those who often visit univer-
sities) and locations that are semantically similar (e.g.,
restaurants and bars) because factor matrices in tensor
factorization represent clusters [16]. Consequently, our
synthetic traces preserve the mobility behavior of sim-

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 10

ilar users and the semantics of similar locations. They
also preserve a cluster-specific population distribution;
i.e., feature (d) in Section 1,

More specifically, each column in A, B, C, and
D represents a user cluster, location cluster, location
cluster, and time cluster, respectively. For example, ele-
ments with large values in the first column in B, C, and
D may correspond to bars, bars, and night, respectively.
Then elements with large values in the first column in
A represent a cluster of users who go to bars at night.

In Section 4, we present visualization of some clus-
ters, which can be divided into geographic clusters (e.g.,
north-eastern part of Tokyo) and semantic clusters (e.g.,
trains, malls, universities). Semantic annotation of POIs
[19, 70] can also be used to automatically find what each
cluster represents (i.e., semantic annotation of clusters).

PPMTF also addresses sparseness of the tensors by
sharing A and B between the two tensors. It is shown
in [65] that the utility is improved by sharing factor
matrices between tensors, especially when one of two
tensors is extremely sparse. We also confirmed that the
utility is improved by sharing A and B.
Privacy. PPMTF uses the PD test in [9] to provide PD
for a synthetic trace. In our experiments, we show that
PPMTF provides (k, η)-PD for reasonable k and η.

We also note that a posterior sampling-based
Bayesian learning algorithm, which produces a sam-
ple from a posterior distribution with bounded log-
likelihood, provides DP without additional noise [67].
Based on this, we sample Θ from a posterior distribu-
tion given RI and RII to provide DP for Θ. However, the
privacy budget ε needs to be very large to achieve high
utility in PPMTF. We discuss this issue in Appendix F.
Scalability. Finally, PPMTF achieves much higher
scalability than SGLT [8]. Specifically, the time com-
plexity of [8] (semantic clustering) is O(|U|2|X |3|L|),
which is very large for training traces with large |U|
and |X |. On the other hand, the time complexity of
PPMTF is O(|U||X |2||L|) (see Appendix B for details),
which is much smaller than the synthesizer in [8]. In our
experiments, we evaluate the run time and show that
our method is applicable to much larger-scale training
datasets than SGLT.

3.2 Computation of Two Tensors

We next explain details of how to compute two tensors
from a training trace set S (i.e., step (i)).

0 0 0
0 1 1
1 0 0
1 1 1

0 1 0

0 1 0
0 0 2
0 0 1
0 0 0

2 0 0

1 0 0
1 1 0
1 1 0
0 0 2

0 0 0
0 0 0 0 0
0 0 0 0 2
0 0 0 0 0
0 0 1 1 0

0 0 1 0 0

0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0

0 1 0 0 0

0 0 1 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0

0 0 0 0 0

Transition-count tensor 𝐑I

L
oc

at
io

n

Next Location

Visit-count tensor 𝐑II

Time Slot

x1
x2
x3
x4
x5
x1 x2 x3 x4 x5

Use
r

u1

u2

u3

Use
r

u1

u2

u3

L
oc

at
io

n

x1
x2
x3
x4
x5

l1 l2 l3

Fig. 3. Two tensors obtained from the training traces in Figure 1.

Two Tensors. Figure 3 presents an example of the two
tensors computed from the training traces in Figure 1.

The transition-count tensor includes a transition-
count matrix for each user. Let RI ∈ Z|U|×|X|×|X|≥0 be the
transition-count tensor, and rI

n,i,j ∈ Z≥0 be its (n, i, j)-
th element. For example, rI

1,3,4 = 2 in Figure 3 because
two transitions from x3 to x4 are observed in s1 of u1
in Figure 1. The visit-count tensor includes a histogram
of visited locations for each user and each time slot. Let
RII ∈ Z|U|×|X|×|L|≥0 be the visit-count tensor, and rII

n,i,j ∈
Z≥0 be its (n, i, j)-th element. For example, rII

1,5,3 = 2
in Figure 3 because u1 visits x5 twice in l3 (i.e., from
time instant 7 to 9) in Figure 1.

Let R = (RI,RII). Typically, RI and RII are sparse;
i.e., many elements are zeros. In particular, RI can be
extremely sparse because its size |RI| is quadratic in |X |.
Trimming. For both tensors, we randomly delete pos-
itive elements of users who have provided much more
positive elements than the average (i.e., outliers) in the
same way as [43]. This is called trimming, and is effective
for matrix completion [34]. The trimming is also used
to bound the log-likelihood in the posterior sampling
method [43] (we also show in Appendix F that the log-
likelihood is bounded by the trimming). Similarly, we
set the maximum value of counts for each element, and
truncate counts that exceed the maximum number.

Specifically, let λI, λII ∈ N respectively represent the
maximum numbers of positive elements per user in RI

and RII. Typically, λI � |X | × |X | and λII � |X | × |L|.
For each user, if the number of positive elements in RI

exceeds λI, then we randomly select λI elements from
all positive elements, and delete the remaining positive
elements. Similarly, we randomly delete extra positive
elements in λII. In addition, let rI

max, r
II
max ∈ N be the

maximum counts for each element in RI and RII, re-
spectively. For each element, we truncate rI

n,i,j to rI
max

if rI
n,i,j > rI

max (resp. rII
n,i,j to rII

max if rII
n,i,j > rII

max).
In our experiments, we set λI = λII = 102 (as in [43])

and rI
max = rII

max = 10 because the number of positive

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 11

elements per user and the value of counts were respec-
tively less than 100 and 10 in most cases. In other words,
the utility does not change much by increasing the val-
ues of λI, λII, rI

max, and rII
max. We also confirmed that

much smaller values (e.g., λI = λII = rI
max = rII

max = 1)
result in a significant loss of utility.

3.3 Training MTF Parameters

After computing R = (RI,RII), we train the MTF pa-
rameters Θ = (A,B,C,D) via posterior sampling (i.e.,
step (ii)). Below we describe our MTF model and the
training of Θ.
Model. Let z ∈ N be the number of columns (factors)
in each factor matrix. Let A ∈ R|U|×z, B ∈ R|X |×z, C ∈
R|X |×z, and D ∈ R|L|×z be the factor matrices. Typi-
cally, the number of columns is much smaller than the
numbers of users and locations; i.e., z � min{|U|, |X |}.
In our experiments, we set z = 16 as in [49] (we also
changed the number z of factors from 16 to 32 and con-
firmed that the utility was not changed much).

Let ai,k, bi,k, ci,k, di,k ∈ R be the (i, k)-th elements
of A, B, C, and D, respectively. In addition, let R̂I ∈
R|U|×|X|×|X| and R̂II ∈ R|U|×|X|×|L| respectively rep-
resent two tensors that can be reconstructed from Θ.
Specifically, let r̂I

n,i,j ∈ R and r̂II
n,i,j ∈ R be the (n, i, j)-

th elements of R̂I and R̂II, respectively. Then R̂I and
R̂II are given by:

r̂I
n,i,j =

∑
k∈[z]

an,kbi,kcj,k, r̂
II
n,i,j =

∑
k∈[z]

an,kbi,kdj,k, (2)

where A and B are shared between R̂I and R̂II.
For MTF parameters Θ, we use a hierarchical Bayes

model [58] because it outperforms the non-hierarchical
one [57] in terms of the model’s predictive accuracy.
Specifically, we use a hierarchical Bayes model shown in
Figure 4. Below we explain this model in detail.

For the conditional distribution p(R|Θ) of the two
tensors R = (RI,RII) given the MTF parameters
Θ = (A,B,C,D), we assume that each element rI

n,i,j

(resp. rII
n,i,j) is independently generated from a normal

distribution with mean r̂I
n,i,j (resp. r̂II

n,i,j) and precision
(reciprocal of the variance) α ∈ R≥0. In our experi-
ments, we set α to various values from 10−6 to 103.

Here we randomly select a small number of zero el-
ements in R to improve the scalability in the same way
as [3, 54]. Specifically, we randomly select ρI ∈ N and
ρII ∈ N zero elements for each user in RI and RII, re-
spectively, where ρI � |X | × |X | and ρII � |X | × |L|
(in our experiments, we set ρI = ρII = 103). We

𝛼

𝜇0,𝛽0,𝑊0, 𝜈0

𝐑𝐈𝐈𝐑𝐈

𝐃𝐂𝐁𝐀

𝚿𝐃𝚿𝐂𝚿𝐁𝚿𝐀

MTF parameters𝚯

Tensors 𝐑

Fig. 4. Graphical model of PPMTF.

treat the remaining zero elements as missing. Let II
n,i,j

(resp. III
n,i,j) be the indicator function that takes 0 if

rI
n,i,j (resp. rII

n,i,j) is missing, and takes 1 otherwise.
Note that II

n,i,j (resp. III
n,i,j) takes 1 at most λI + ρI

(resp. λII + ρII) elements for each user, where λI (resp.
λII) is the maximum number of positive elements per
user in RI (resp. RII).

Then the distribution p(R|Θ) can be written as:

p(R|Θ) = p(RI|A,B,C)p(RII|A,B,D)

=
∏
n,i,j

[N (rI
n,i,j |r̂I

n,i,j , α
−1)]I

I
n,i,j

·
∏
n,i,j

[N (rII
n,i,j |r̂II

n,i,j , α
−1)]I

II
n,i,j , (3)

where N (r|µ, α−1) denotes the probability of r in the
normal distribution with mean µ and precision α (i.e.,
variance α−1).

Let ai,bi, ci,di ∈ Rz be the i-th rows of A, B, C,
and D, respectively. For a distribution of Θ = (A,B,
C,D), we assume the multivariate normal distribution:

p(A|ΨA) =
∏
nN (an|µA,Λ−1

A)
p(B|ΨB) =

∏
nN (bn|µB,Λ−1

B)
p(C|ΨC) =

∏
nN (cn|µC,Λ−1

C)
p(D|ΨD) =

∏
nN (dn|µD,Λ−1

D),

where µA, µB, µC, µD ∈ Rz are mean vectors, ΛA,
ΛB, ΛC, ΛD ∈ Rz×z are precision matrices, and ΨA =
(µA,ΛA), ΨB = (µB,ΛB), ΨC = (µC,ΛC), ΨD =
(µD,ΛD).

The hierarchical Bayes model assumes a distribu-
tion for each of ΨA, ΨB, ΨC, and ΨD, which is called a
hyperprior. We assume ΨZ ∈ {ΨA,ΨB,ΨC,ΨD} follows
a normal-Wishart distribution [10], i.e., the conjugate
prior of a multivariate normal distribution:

p(ΨZ) = p(µZ|ΛZ)p(ΛZ)
= N (µZ|µ0, (β0ΛZ)−1)W(ΛZ|W0, ν0), (4)

where µ0 ∈ Rz, β0 ∈ R, and W(Λ|W0, ν0) denotes the
probability of Λ ∈ Rz×z in the Wishart distribution

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 12

with parameters W0 ∈ Rz×z and ν0 ∈ R (W0 and ν0
represent the scale matrix and the number of degrees of
freedom, respectively). µ0, β0, W0, and ν0 are parame-
ters of the hyperpriors, and are determined in advance.
In our experiments, we set µ0 = 0, β0 = 2, ν0 = z, and
W0 to the identity matrix, in the same way as [58].
Posterior Sampling of Θ. We train Θ based on the
posterior sampling method [67]. This method trains Θ
from R by sampling Θ from the posterior distribution
p(Θ|R). To sample Θ from p(Θ|R), we use Gibbs sam-
pling [50], which samples each variable in turn, condi-
tioned on the current values of the other variables.

Specifically, we sample ΨA, ΨB, ΨC, ΨD, A, B, C,
and D in turn. We add superscript “(t)” to these vari-
ables to denote the sampled values at the t-th iteration.
For initial values with “(0)”, we use a random initializa-
tion method [4] that initializes each element as a ran-
dom number in [0, 1] because it is widely used. Then,
we sample Ψ(t)

A , Ψ(t)
B , Ψ(t)

C , Ψ(t)
D , A(t), B(t), C(t), and

D(t) from the conditional distribution given the current
values of the other variables, and iterate the sampling
for a fixed number of times (we omit the details of the
sampling algorithm for lack of space).

Gibbs sampling guarantees that the sampling distri-
butions of A(t), · · · ,D(t) approach the posterior distri-
butions p(A|R), · · · , p(D|R) as t increases. Therefore,
Θ(t) = (A(t),B(t),C(t),D(t)) approximates Θ sampled
from the posterior distribution p(Θ|R) for large t. In
our experiments, we discarded the first 99 samples as
“burn-in”, and used Θ(100) as an approximation of Θ.
We also confirmed that the model’s predictive accuracy
converged within 100 iterations.

3.4 Generating Traces via MH

After training Θ = (A,B,C,D), we generate synthetic
traces via the MH (Metropolis-Hastings) algorithm [50]
(i.e., step (iii)). Specifically, given an input user index
n ∈ [|U|], we generate a synthetic trace y ∈ R that
resembles sn of user un ∈ U from (an,B,C,D). In other
words, the parameters of the generative model Mn of
user un are (an,B,C,D).

Let Q be the set of |X | × |X | transition-probability
matrices, and C be the set of |X |-dimensional probability
vectors (i.e., probability simplex). Given a transition-
probability matrix Q ∈ Q and a probability vector π ∈
C, the MH algorithm modifies Q to Q′ ∈ Q so that
the stationary distribution of Q′ is equal to π. Q is a
conditional distribution called a proposal distribution,
and π is called a target distribution.

Time Slot

L
oc

at
io

n

Next Location

𝐑𝒏
I 𝐐𝑛

∗

𝐐𝑛 ,1

𝐐𝑛 ,|ℒ|

𝝅n,1

𝝅n,|ℒ|

Visit-prob.
Vector

Transition-prob.
Matrix

L
oc

at
io

n

𝐑𝒏
II

Fig. 5. Computation of (Qn,i, πn,i) via MH. We compute Q∗n
from R̂I

n, and πn,i from R̂II
n . Then for each time slot li ∈ L, we

modify Q∗n to Qn,i whose stationary distribution is πn,i.

In step (iii), given the input user index n ∈ [|U|], we
reconstruct the transition-count matrix and visit-count
matrix of user un, and use the MH algorithm to make
a transition-probability matrix of un consistent with a
visit-probability vector of un for each time slot. Figure 5
shows its overview. Specifically, let R̂I

n ∈ R|X |×|X| and
R̂II
n ∈ R|X |×|L| be the n-th matrices in R̂I and R̂II,

respectively (i.e., reconstructed transition-count matrix
and visit-count matrix of user un). We first compute R̂I

n

and R̂II
n from (an,B,C,D) by (2). Then we compute a

transition-probability matrix Q∗n ∈ Q of user un from
R̂I
n by normalizing counts to probabilities. Similarly, we

compute a visit-probability vector πn,i ∈ C of user un
for each time slot li ∈ L from R̂II

n by normalizing counts
to probabilities. Then, for each time slot li ∈ L, we
modify Q∗n to Qn,i ∈ Q via the MH algorithm so that
the stationary distribution of Qn,i is equal to πn,i. Then
we generate a synthetic trace using (Qn,i, πn,i).

Below we explain step (iii) in more detail.
Computing (Qn,i, πn,i) via MH. We first compute
the n-th matrix R̂I

n ∈ R|X |×|X| in R̂I from Θ by (2).
Then we compute Q∗n ∈ Q from R̂I

n by normalizing
counts to probabilities as explained below. We assign
a very small positive value φ ∈ R≥0 (φ = 10−8 in
our experiments) to elements in R̂I

n with values smaller
than φ. Then we normalize R̂I

n to Q∗n so that the sum
over each row in Q∗n is 1. Since we assign φ (= 10−8)
to elements with smaller values in R̂I

n, the transition-
probability matrix Q∗n is regular [50]; i.e., it is possible
to get from any location to any location in one step. This
allows πn,i to be the stationary distribution of Qn,i, as
explained later in detail.

We then compute the n-th matrix R̂II
n ∈ R|X |×|L| in

R̂II from Θ by (2). For each time slot li ∈ L, we assign φ
(= 10−8) to elements with smaller values in R̂II

n . Then
we normalize the i-th column of R̂II

n to πn,i ∈ C so that
the sum of πn,i is one.

We use Q∗n as a proposal distribution and πn,i as
a target distribution, and apply the MH algorithm to

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 13

x3 x2 x4 x1 x2

Synthetic TraceUser

un

Time Slot

x3 x5

Hour (AM) 7 8 9
Time Instant 1 2 3 4 5 6 7 8 9

y

l1 l2 l3

𝐐𝑛 ,1𝝅n,1

x1 x5

Distribution 𝐐𝑛 ,2 𝐐𝑛 ,3

Fig. 6. Generation of a synthetic trace (|X | = 5, |T | = 9, |L| =
3). Each location is randomly generated from a distribution in the
same time slot.

obtain a transition-probability matrix Qn,i whose sta-
tionary distribution is πn,i. For Q ∈ Q and a, b ∈ [|X |],
we denote by Q(xb|xa) ∈ [0, 1] the transition probability
from xa ∈ X to xb ∈ X (i.e., the (a, b)-th element of Q).
Similarly, given π ∈ C, we denote by π(xa) ∈ [0, 1] the
visit probability at xa ∈ X . Then, the MH algorithm
computes Qn,i(xb|xa) for xa 6= xb as follows:

Qn,i(xb|xa) = Q∗n(xb|xa) min
(
1, πn,i(xb)Q∗n(xa|xb)
πn,i(xa)Q∗n(xb|xa)

)
,

(5)

and computes Qn,i(xa|xa) as follows: Qn,i(xa|xa) =
1−
∑
b 6=a Qn,i(xb|xa). Note that Qn,i is regular because

all elements in Q∗n and πn,i are positive. Then the MH
algorithm guarantees that πn,i is a stationary distribu-
tion of Qn,i [50].
Generating Traces. After computing (Qn,i, πn,i) via
the MH algorithm, we synthesize a trace y ∈ R of user
un as follows. We randomly generate the first location in
time slot l1 from the visit-probability distribution πn,1.
Then we randomly generate the subsequent location in
time slot li using the transition-probability matrix Qn,i.
Figure 6 shows an example of synthesizing a trace y of
user un. In this example, a location at time instant 7
is randomly generated from the conditional distribution
Qn,3 given the location x2 at time instant 6.

The synthetic trace y is generated in such a way
that a visit probability in time slot li is given by πn,i.
In addition, the transition matrix is computed by us-
ing Q∗n as a proposal distribution. Therefore, we can
synthesize traces that preserve the statistical feature of
training traces such as the time-dependent population
distribution and the transition matrix.

3.5 Privacy Protection

We finally perform the PD test for a synthetic trace y.
Let MPPMTF be our generative model in step (iii)

that, given an input user index n ∈ [|U|], outputs a syn-

thetic trace y ∈ R with probability p(y =MPPMTF(n)).
Let σ : T → X be a function that, given time instant
t ∈ T , outputs an index of the location at time instant
t in y; e.g., σ(1) = 3, σ(2) = 2, · · · , σ(9) = 5 in Figure 6.
Furthermore, let ω : T → L be a function that, given
time instant t ∈ T , outputs an index of the correspond-
ing time slot; e.g., ω(1) = ω(2) = ω(3) = 1, · · · , ω(7) =
ω(8) = ω(9) = 3 in Figure 6.

Recall that the first location in y is randomly gen-
erated from πn,1, and the subsequent location at time
instant t ∈ T is randomly generated from Qn,ω(t). Then,

p(y =MPPMTF(n))

= πn,1(xσ(1))
∏|T |
t=2 Qn,ω(t)(xσ(t)|xσ(t−1)).

Thus, given y ∈ R, we can compute p(y =
MPPMTF(m)) for any m ∈ [|U|] as follows: (i) com-
pute (Qm,i, πm,i) for each time slot li ∈ L via the MH
algorithm (as described in Section 3.4); (ii) compute
p(y = MPPMTF(m)) using (Qm,i, πm,i). Then we can
verify whether y is releasable with (k, η)-PD by count-
ing the number of training users such that (1) holds.

Specifically, we use the following PD test in [9]:

Privacy Test 1 (Deterministic Test in [9]). Let k ∈ N
and η ∈ R≥0. Given a generative model M, training
user set U , input user index n ∈ [|U|], and synthetic
trace y, output pass or fail as follows:
1. Let i ∈ Z≥0 be a non-negative integer that satisfies:

e−(i+1)η < p(y =M(n)) ≤ e−iη. (6)

2. Let k′ ∈ Z≥0 be the number of training user indexes
m ∈ [|U|] such that:

e−(i+1)η < p(y =M(m)) ≤ e−iη. (7)

3. If k′ ≥ k, then return pass, otherwise return fail.

By (1), (6), and (7), if y passes Privacy Test 1, then
y is releasable with (k, η)-PD. In addition, (k, η)-PD is
guaranteed even if Θ is not sampled from the exact pos-
terior distribution p(Θ|R).

The time complexity of Privacy Test 1 is linear in
|U|. In this paper, we randomly select a subset U∗ ⊆ U
of training users from U (as in [9]) to ascertain more
quickly whether k′ ≥ k or not. Specifically, we initialize
k′ to 0, and check (7) for each training user in U∗∪{un}
(increment k′ if (7) holds). If k′ ≥ k, then we return
pass (otherwise, return fail). The time complexity of
this faster version of Privacy Test 1 is linear in |U∗|
(≤ |U|). A smaller |U∗| leads to a faster (k, η)-PD test at
the expense of fewer synthetic traces passing the test.

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 14

In Section 4, we use the faster version of Privacy
Test 1 with |U∗| = 32000, k = 10 to 200, and η = 1 to
guarantee (k, η)-PD for reasonable k and η (note that
ε = 1 is considered to be reasonable in ε-DP [23, 38]).
Overall Privacy. As described in Section 2.2, even if
a synthetic trace y satisfies (k, η)-PD, y may leak infor-
mation about the MTF parameters. We finally discuss
the overall privacy of y including this issue.

Given the input user index n, PPMTF generates y
from (an,B,C,D), as described in Section 3.4. Since the
linkage of the input user un and y is alleviated by PD,
the leakage of an is also alleviated by PD. Therefore,
the remaining issue is the leakage of (B,C,D).

Here we note that B and C are information about
locations (i.e., location profiles), and D is information
about time (i.e., time profile). Thus, even if the adver-
sary perfectly infers (B,C,D) from y, it is hard to infer
private information (i.e., training traces S) of users U
from (B,C,D) (unless she obtains user profile A). In
fact, some studies on privacy-preserving matrix factor-
ization [45, 53] release an item profile publicly. Simi-
larly, SGLT [8] assumes that semantic clusters of loca-
tions (parameters of their generative model) leak almost
no information about U because the location clusters are
a kind of location profile. We also assume that the loca-
tion and time profiles leak almost no information about
users U . Further analysis is left for future work.
Tuning Hyperparameters. As described in Sec-
tions 3.2, 3.3, and 3.5, we set λI = λII = 102, rI

max =
rII
max = 10 (because the number of positive elements
per user and the value of counts were respectively less
than 100 and 10 in most cases), z = 16 (as in [49]),
ρI = ρII = 103, |U∗| = 32000, and changed α from 10−6

and 103 in our experiments. If we set these values to very
small values, the utility is lost (we show its example by
changing α in our experiments). For the parameters of
the hyperpriors, we set µ0 = 0, β0 = 2, ν0 = z, and W0
to the identity matrix in the same way as [58].

We set the hyperparameters as above based on the
previous work or the datasets. To optimize the hyper-
parameters, we could use, for example, cross-validation
[10], which assesses the hyperparameters by dividing a
dataset into a training set and testing (validation) set.

4 Experimental Evaluation
In our experiments, we used two publicly available
datasets: the SNS-based people flow data [52] and the
Foursquare dataset in [68]. The former is a relatively

small-scale dataset with no missing events. It is used to
compare the proposed method with two state-of-the-art
synthesizers [8, 9]. The latter is one of the largest pub-
licly available location datasets; e.g., much larger than
[14, 55, 69, 74]. Since the location synthesizer in [8] can-
not be applied to this large-scale dataset (as shown in
Section 4.4), we compare the proposed method with [9].

4.1 Datasets

SNS-Based People Flow Data. The SNS-based peo-
ple flow data [52] (denoted by PF) includes artificial
traces around the Tokyo metropolitan area. The traces
were generated from real geo-tagged tweets by inter-
polating locations every five minutes using railway and
road information [59].

We divided the Tokyo metropolitan area into 20×20
regions; i.e., |X | = 400. Then we set the interval between
two time instants to 20 minutes, and extracted traces
from 9:00 to 19:00 for 1000 users (each user has a single
trace comprising 30 events). We also set time slots to
20 minutes long from 9:00 to 19:00. In other words, we
assumed that each time slot comprises one time instant;
i.e., |L| = 30. We randomly divided the 1000 traces into
500 training traces and 500 testing traces; i.e., |U| = 500.
The training traces were used for training generative
models and synthesizing traces. The testing traces were
used for evaluating the utility.

Since the number of users is small in PF, we gener-
ated ten synthetic traces from each training trace (each
synthetic trace is from 9:00 to 19:00) and averaged the
utility and privacy results over the ten traces to stabilize
the performance.
Foursquare Dataset. The Foursquare dataset
(Global-scale Check-in Dataset with User Social Net-
works) [68] (denoted by FS) includes 90048627 real
check-ins by 2733324 users all over the world.

We selected six cities with numerous check-ins and
with cultural diversity in the same way as [68]: Istan-
bul (IST), Jakarta (JK), New York City (NYC), Kuala
Lumpur (KL), San Paulo (SP), and Tokyo (TKY). For
each city, we extracted 1000 POIs, for which the number
of visits from all users was the largest; i.e., |X | = 1000.
We set the interval between two time instants to 1 hour
(we rounded down minutes), and assigned every 2 hours
into one of 12 time slots l1 (0-2h), · · · , l12 (22-24h) in
a cyclic manner; i.e., |L| = 12. For each city, we ran-
domly selected 80% of traces as training traces and used
the remaining traces as testing traces. The numbers
|U| of users in IST, JK, NYC, KL, SP, and TKY were

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 15

219793, 83325, 52432, 51189, 42100, and 32056, respec-
tively. Note that there were many missing events in FS
because FS is a location check-in dataset. The numbers
of temporally-continuous events in the training traces
of IST, JK, NYC, KL, SP, and TKY were 109027, 19592,
7471, 25563, 13151, and 47956, respectively.

From each training trace, we generated one syn-
thetic trace with the length of one day.

4.2 Location Synthesizers

We evaluated the proposed method (PPMTF), the syn-
thetic location traces generator in [8] (SGLT), and the
synthetic data generator in [9] (SGD).

In PPMTF, we set λI = λII = 102, rI
max = rII

max =
10, z = 16, ρI = ρII = 103, µ0 = 0, β0 = 2, ν0 = z, and
W0 to the identity matrix, as explained in Section 3.
Then we evaluated the utility and privacy for each value.

In SGLT [8], we used the SGLT tool (C++) in [7].
We set the location-removal probability parc to 0.25, the
location merging probability parm to 0.75, and the ran-
domization multiplication factor parv to 4 in the same
way as [8] (for details of the parameters in SGLT, see [8]).
For the number c of semantic clusters, we attempted
various values: c = 50, 100, 150, or 200 (as shown later,
SGLT provided the best performance when c = 50 or
100). For each case, we set the probability parl of re-
moving the true location in the input user to various
values from 0 to 1 (parl = 1 in [8]) to evaluate the
trade-off between utility and privacy.

In SGD [9], we trained the transition matrix for each
time slot (|L| × |X | × |X | elements in total) and the
visit-probability vector for the first time instant (|X | el-
ements in total) from the training traces via maximum
likelihood estimation. Note that the transition matrix
and the visit-probability vector are common to all users.
Then we generated a synthetic trace from an input user
by copying the first ξ ∈ Z≥0 events of the input user and
generating the remaining events using the trained tran-
sition matrix. When ξ = 0, we randomly generated a lo-
cation at the first time instant using the visit-probability
vector. For more details of SGD for location traces, see
Appendix C. We implemented PPMTF and SGD with
C++, and published it as open-source software [1].

4.3 Performance Metrics

Utility. In our experiments, we evaluated the utility
listed in Section 1.

(a) Time-Dependent Population Distribution. We
computed a frequency distribution (|X |-dim vector) of
the testing traces and that of the synthetic traces for
each time slot. Then we evaluated the average total vari-
ation between the two distributions over all time slots
(denoted by TP-TV).

Frequently visited locations are especially impor-
tant for some tasks [19, 75]. Therefore, for each time
slot, we also selected the top 50 locations, whose fre-
quencies in the testing traces were the largest, and re-
garded the absolute error for the remaining locations in
TP-TV as 0 (TP-TV-Top50).
(b) Transition Matrix. We computed an average
transition-probability matrix (|X |× |X | matrix) over all
users and all time instances from the testing traces. Sim-
ilarly, we computed an average transition-probability
matrix from the synthetic traces.

Since each row of the transition matrix represents a
conditional distribution, we evaluated the EMD (Earth
Mover’s Distance) between the two conditional distribu-
tions over the x-axis (longitude) and y-axis (latitude),
and averaged it over all rows (TM-EMD-X and TM-
EMD-Y). TM-EMD-X and TM-EMD-Y represent how
the two transition matrices differ over the x-axis and
y-axis, respectively. They are large especially when one
matrix allows only a transition between close locations
and the other allows a transition between far-away lo-
cations (e.g., two countries). The EMD is also used in
[8] to measure the difference in two transition matrices.
We did not evaluate the two-dimensional EMD, because
the computational cost of the EMD is expensive.
(c) Distribution of Visit-Fractions. Since we used
POIs in FS (regions in PF), we evaluated how well the
synthetic traces preserve a distribution of visit-fractions
in FS. We first excluded testing traces that have a few
events (fewer than 5). Then, for each of the remain-
ing traces, we computed a fraction of visits for each
POI. Based on this, we computed a distribution of visit-
fractions for each POI by dividing the fraction into 24
bins as (0, 1

24], (1
24 ,

2
24], · · · , (23

24 , 1). Similarly, we com-
puted a distribution of visit-fractions for each POI from
the synthetic traces. Finally, we evaluated the total vari-
ation between the two distributions (VF-TV).
(d) Cluster-Specific Population Distribution. To
show that PPMTF is also effective in this respect, we
conducted the following analysis. We used the fact that
each column in the factor matrix A represents a cluster
(z = 16 clusters in total). Specifically, for each column
in A, we extracted the top 10% users whose values in
the column are the largest. These users form a clus-

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 16

ter who exhibit similar behavior. For some clusters, we
visualized factor matrices and the frequency distribu-
tions (i.e., cluster-specific population distributions) of
the training traces and synthetic traces.
Privacy. In PF, we evaluated the three synthesizers.
Although PPMTF and SGD provide (k, η)-PD in Defi-
nition 1, SGLT provides PD using a semantic distance
between traces [8], which differs from PD in Definition 1.

To compare the three synthesizers using the same
privacy metrics, we considered two privacy attacks: re-
identification (or de-anonymization) attack [26, 47, 62]
and membership inference attack [31, 61]. In the re-
identification attack, the adversary identifies, for each
synthetic trace y, an input user of y from |U| = 500
training users. We evaluated a re-identification rate as
the proportion of correctly identified synthetic traces.

In the membership inference attack, the adversary
obtains all synthetic traces. Then the adversary deter-
mines, for each of 1000 users (500 training users and
500 testing users), whether her trace is used for training
the model. Here training users are members and testing
users are non-members (they are randomly chosen, as
described in Section 4.1). We used membership advan-
tage [71] as a privacy metric in the same way as [31].
Specifically, let tp, tn, fp, and fn be the number of
true positives, true negatives, false positives, and false
negatives, respectively, where “positive/negative” repre-
sents a member/non-member. Then membership advan-
tage is defined in [71] as the difference between the true
positive rate and the false positive rate; i.e., member-
ship advantage = tp

tp+fn −
fp

fp+tn = tp−fp
500 . Note that

membership advantage can be easily translated into
membership inference accuracy, which is the propor-
tion of correct adversary’s outputs (= tp+tn

tp+tn+fp+fn =
tp+tn
1000), as follows: membership inference accuracy =

membership advantage+1
2 (since tn+ fp = 500). A random

guess that randomly outputs “member” with probabil-
ity q ∈ [0, 1] achieves advantage = 0 and accuracy = 0.5.

For both the re-identification attack and member-
ship inference attack, we assume the worst-case scenario
about the background knowledge of the adversary; i.e.,
maximum-knowledge attacker model [20]. Specifically,
we assumed that the adversary obtains the 1000 original
traces (500 training traces and 500 testing traces) in PF.
Note that the adversary does not know which ones are
training traces (and therefore performs the membership
inference attack). The adversary uses the 1000 original
traces to build an attack model. For a re-identification
algorithm, we used the Bayesian re-identification algo-
rithm in [47]. For a membership inference algorithm, we

implemented a likelihood-ratio based membership infer-
ence algorithm, which partly uses the algorithm in [48].
For details of the attack algorithms, see Appendix D.

Note that evaluation might be difficult for a partial-
knowledge attacker who has less background knowledge.
In particular, when the amount of training data is small,
it is very challenging to accurately train an attack model
(transition matrices) [46–48]. We note, however, that if
a location synthesizer is secure against the maximum-
knowledge attacker, then we can say that it is also secure
against the partial-knowledge attacker, without imple-
menting clever attack algorithms. Therefore, we focus
on the maximum-knowledge attacker model.

In FS, we used (k, η)-PD in Definition 1 as a privacy
metric because we evaluated only PPMTF and SGD. As
a PD test, we used the (faster) Privacy Test 1 with
|U∗| = 32000, k = 10 to 200, and η = 1.
Scalability. We measured the time to synthesize traces
using the ABCI (AI Bridging Cloud Infrastructure) [51],
which is a supercomputer ranking 8th in the Top 500
(as of June 2019). We used one computing node, which
consists of two Intel Xeon Gold 6148 processors (2.40
GHz, 20 Cores) and 412 GB main memory.

4.4 Experimental Results in PF

Utility and Privacy. Figure 7 shows the re-
identification rate, membership advantage, and utility
with regard to (a) the time-dependent population distri-
bution and (b) transition matrix in PF. Here, we set the
precision α in PPMTF to various values from 0.5 to 1000.
Uniform represents the utility when all locations in syn-
thetic traces are independently sampled from a uniform
distribution. Training represents the utility of the train-
ing traces; i.e., the utility when we output the training
traces as synthetic traces without modification. Ideally,
the utility of the synthetic traces should be much better
than that of Uniform and close to that of Training.

Figure 7 shows that PPMTF achieves TP-TV and
TP-TV-Top50 close to Training for while protecting user
privacy. For example, PPMTF achieves TP-TV = 0.43
and TP-TV-Top50 = 0.13, both of which are close to
those of Training (TP-TV = 0.39 and TP-TV-Top50 =
0.12), while keeping re-identification rate < 0.02 and
membership advantage < 0.055 (membership inference
accuracy < 0.53). We consider that PPMTF achieved
low membership advantage because (1) held for not only
k − 1 training users but testing users (non-members).

In SGLT and SGD, privacy rapidly gets worse with
decrease in TP-TV and TP-TV-Top50. This is because

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 17

SGLT (50)
SGLT (100)

SGLT (150)

SGLT (200)SGD
PPMTF Uniform

Training

0.35

0.45

0.55

0.65

0 0.2 0.4 0.6 0.8 1

T
P-

T
V

Re-identification Rate
0 0.2 0.4 0.6 0.8 1

T
P

-T
V

-T
op

50
Re-identification Rate

0.4

0.5

0.6

0.1

0.125

0.2

0.15

0.175

3

5

7

0 0.2 0.4 0.6 0.8 1

T
M

-E
M

D
-X

Re-identification Rate
0 0.2 0.4 0.6 0.8 1

T
M

-E
M

D
-Y

Re-identification Rate

4

6

1
2

0

3

5

7

4

6

1
2

0

(i) Re-identification

0.35

0.45

0.55

0.65

0 0.2 0.4 0.6 1

T
P-

T
V

Membership Advantage

T
P

-T
V

-T
op

50

0.4

0.5

0.6

0.1

0.125

0.2

0.15

0.175

3

5

7

T
M

-E
M

D
-X

T
M

-E
M

D
-Y

4

6

1
2

0

3

5

7

4

6

1
2

0

0.8 0 0.2 0.4 0.6 1
Membership Advantage

0.8

0 0.2 0.4 0.6 1
Membership Advantage

0.8 0 0.2 0.4 0.6 1
Membership Advantage

0.8

SGLT (50)
SGLT (100)

SGLT (150)

SGLT (200)SGD
PPMTF Uniform

Training

(ii) Membership Inference

Fig. 7. Privacy and utility in PF. The number in SGLT represents the number c of clusters. In PPMTF, SGLT and SGD, we varied α,
parl and ξ, respectively. Lower is better in all of the utility metrics.

both SGLT and SGD synthesize traces by copying over
some events from the training traces. Specifically, SGLT
(resp. SGD) increases the number of copied events by
decreasing parl (resp. increasing ξ). Although a larger
number of copied events result in a decrease of both
TP-TV and TP-TV-Top50, they also result in the rapid
increase of the re-identification rate. This result is con-
sistent with the uniqueness of location data; e.g., only
three locations are sufficient to uniquely characterize
80% of the individuals among 1.5 million people [18].

Figure 7 also shows that PPMTF performs worse
than SGLT and SGD in terms of TM-EMD-X and TM-
EMD-Y. This is because PPMTF modifies the transition
matrix so that it is consistent with a visit-probability
vector using the MH algorithm (SGLT and SGD do
not modify the transition matrix). It should be noted,
however, that PPMTF significantly outperforms Uniform
with regard to TM-EMD-X and TM-EMD-Y. This means
that PPMTF preserves the transition matrix well.
Analysis on Cluster-Specific Features. Next, we
show the utility with regard to (d) the cluster-specific
population distribution. Specifically, we show in Fig-
ure 8 the frequency distributions of training traces and
synthetic traces and the columns of factor matrices B
and C for three clusters (we set α = 200 because it pro-
vided almost the best utility in Figure 7; we also nor-
malized elements in each column of B and C so that
the square-sum is one). Recall that for each cluster, we
extracted the top 10% users; i.e., 50 users.

Figure 8 shows that the frequency distributions of
training traces differ from cluster to cluster, and that

Factor matrix B Factor matrix CTraining traces Synthetic traces
0.010

0.008

0.006

0.004

0.002

0.000

(i)

(ii)

0.010

0.008

0.006

0.004

0.002

0.000
0.010

0.008

0.006

0.004

0.002

0.000

(iii)

Fig. 8. Frequency distributions and the columns of factor ma-
trices B and C for three clusters (50 users for each cluster) in
PF. The green line in (ii) and the orange line in (iii) represent
subways (Shinjuku and Fukutoshin lines, respectively).

the users in each cluster exhibit similar behavior; e.g.,
the users in (i) stay in the northeastern area of Tokyo;
the users in (ii) and (iii) often use the subways. PPMTF
models such a cluster-specific behavior via B and C,
and synthesizes traces that preserve the behavior using
B and C. Figure 8 shows that PPMTF is useful for geo-
data analysis such as modeling human location patterns
[40] and map inference [5, 41].
Scalability. We also measured the time to synthe-
size traces from training traces. Here we generated one
synthetic trace from each training trace (500 synthetic
traces in total), and measured the time. We also changed
the numbers of users and locations (i.e., |U|, |X |) for var-
ious values from 100 to 1000 to see how the running time
depends on |U| and |X |.

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 18

PPMTF (T) PPMTF (S) SGLT (T) SGLT (S)
102

10
0

20
0

R
un

ni
ng

 T
im

e
(h

ou
r)

|𝒳|

101

100

10-1

10-2

10-3

10-4

10-5

10-6

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

|𝓤|=100

102

10
0

20
0

R
un

ni
ng

 T
im

e
(h

ou
r)

|𝒰|

101

100

10-1

10-2

10-3

10-4

10-5

10-6

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

|𝓧|=400

Fig. 9. Running time in PF. “T” and “S” in the parentheses rep-
resent the time to train a generative model (i.e., MTF parameters
in PPMTF and semantic clusters in SGLT) and the time to gen-
erate 500 synthetic traces, respectively.

Figure 9 shows the results (we set α = 200 in
PPMTF, and c = 100 and parl = 1 in SGLT; we also ob-
tained almost the same results for other values). Here we
excluded the running time of SGD because it was very
small; e.g., less than one second when |U| = 1000 and
|X | = 400 (we compare the running time of PPMTF with
that of SGD in FS, as described later). The running time
of SGLT is much larger than that of PPMTF. Specifi-
cally, the running time of SGLT is quadratic in |U| (e.g.,
when |X | = 400, SGLT(T) requires 0.47 and 47 hours
for |U| = 100 and 1000, respectively) and cubic in |X |
(e.g., when |U| = 100, SGLT(T) requires 8.1× 10−3 and
8.4 hours for |X | = 100 and 1000, respectively). On the
other hand, the running time of PPMTF is linear in |U|
(e.g., PPMTF(S) requires 6.3×10−5 and 5.9×10−4 hours
for |U| = 100 and 1000, respectively) and quadratic in
|X | (e.g., PPMTF(S) requires 9.3× 10−3 and 0.96 hours
for |X | = 100 and 1000, respectively). This is consistent
with the time complexity described in Section 3.1.

From Figure 9, we can estimate the running time
of SGLT for generating large-scale traces. Specifically,
when |U| = 219793 and |X | = 1000 as in IST of
FS, SGLT(T) (semantic clustering) would require about
4632 years (=8.4 × (219793/100)2/(365 × 24)). Even if
we use 1000 nodes of the ABCI (which has 1088 nodes
[51]) in parallel, SGLT(T) would require more than four
years. Consequently, SGLT cannot be applied to IST.
Therefore, we compare PPMTF with SGD in FS.

4.5 Experimental Results in FS

Utility and Privacy. In FS, we set α = 200 in PPMTF
(as in Figures 8 and 9). In SGD, we set ξ = 0 for the
following two reasons: (1) the re-identification rate is
high for ξ ≥ 1 in Figure 7 because of the uniqueness of
location data [18]; (2) the event in the first time slot

0.6

T
P

-T
V

0.5
0.4

0.3
0.2

0.1
0

IST JK NYC KL SP TKY
0.25

T
P-

T
V

-T
op

50 0.2

0.15

0.1

0.05

0
IST JK NYC KL SP TKY

5

T
M

-E
M

D
-Y 4

3

2

1

0
IST JK NYC KL SP TKY

Uniform SGD
PPMTF (k = 10) Training

5

T
M

-E
M

D
-X 4

3

2

1

0
IST JK NYC KL SP TKY

0.75

V
F

-T
V

IST JK NYC KL SP TKY

0.6

0.45

0.15

0

0.3

0.6

T
P

-T
V

0.5
0.4

0.3
0.2

0.1
0

IST NYC TKY

3

T
M

-E
M

D
-X 2.5

2
1.5

0

1
0.5

IST NYC TKY

0.25

T
P

-T
V

-T
op

50 0.2

0.15

0.1

0.05

0
IST NYC TKY

3.5

T
M

-E
M

D
-Y

3

0

2.5
2

1.5
1

0.5

IST NYC TKY
V

F
-T

V

IST NYC TKY

0.75

0.6

0.45

0.15

0

0.3

Uniform w/o PD
Training
k = 10

k = 100 k = 200

Fig. 10. Utility of synthetic traces with (k, 1)-PD in FS. The left
graphs show the utility of PPMTF without the PD test, with
k = 10, 100 or 200. Lower is better in all of the utility metrics.

is missing for many users in FS, and cannot be copied.
Note that SGD with ξ = 0 always passes the PD test
because it generates synthetic traces independently of
the input data record [9]. We evaluated all the utility
metrics for PPMTF and SGD.

Figure 10 shows the results. The left graphs show
PPMTF without the PD test, with k = 10, 100, or 200
in IST, NYC, and TKY (we confirmed that the results of
the other cities were similar to those of NYC and TKY).
The right graphs show PPMTF with k = 10 and SGD.

The left graphs show that all of the utility met-
rics are minimally affected by running the PD test with
k = 10 in all of the cities. Similarly, all of the util-
ity metrics are minimally affected in IST, even when
k = 200. We confirmed that about 70% of the synthetic
traces passed the PD test when k = 10, whereas only
about 20% of the synthetic traces passed the PD test
when k = 200 (see Appendix E for details). Neverthe-
less, PPMTF significantly outperforms Uniform in IST.
This is because the number of users is very large in
IST (|U| = 219793). Consequently, even if the PD test
pass rate is low, many synthetic traces still pass the test

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 19

F
re

qu
en

cy

Visit-fraction (/24)

1

0.8

0.6

0.4

0

(i) Park

0.2

1 2 3 4 5 6 7 8 9 10 11 1213-

Testing
PPMTF
SGD

F
re

qu
en

cy

Visit-fraction (/24)

1

0.8

0.6

0.4

0

(ii) Office

0.2

1 2 3 4 5 6 7 8 9 10 11 1213-

Testing
PPMTF
SGD

F
re

qu
en

cy

Visit-fraction (/24)

1

0.8

0.6

0.4

0

(iii) Bar

0.2

1 2 3 4 5 6 7 8 9 10 11 1213-

Testing
PPMTF
SGD

F
re

qu
en

cy

Visit-fraction (/24)

1

0.8

0.6

0.4

0

(iv) University

0.2

1 2 3 4 5 6 7 8 9 10 11 1213-

Testing
PPMTF
SGD

Fig. 11. Distributions of visit-fractions in NYC. PPMTF provides
(10, 1)-PD.

and preserve various statistical features. Thus PPMTF
achieves high utility especially for a large-scale dataset.

The right graphs in Figure 10 show that for TP-TV
and TP-TV-Top50, PPMTF is roughly the same as SGD.
For TM-EMD-X and TM-EMD-Y, PPMTF outperforms
SGD, especially in JK, NYC, KL, and SP. This is because
many missing events exist in FS and the transitions in
the training traces are few in JK, NYC, KL, and SP (as
described in Section 4.1).

A crucial difference between PPMTF and SGD lies in
the fact that PPMTF models the cluster-specific mobil-
ity features (i.e., both (c) and (d)), whereas SGD (ξ = 0)
does not. This causes the results of VF-TV in Figure 10.
Specifically, for VF-TV, SGD performs almost the same
as Uniform, whereas PPMTF significantly outperforms
SGD. Below we perform more detailed analysis to show
how well PPMTF provides (c) and (d).
Analysis on Cluster-Specific Features. First, we
show in Figure 11 the distributions of visit-fractions for
four POI categories in NYC (Testing represents the dis-
tribution of testing traces). The distribution of SGD
concentrates at the visit-fraction of 1/24 (i.e., 0 to
0.042). This is because SGD (ξ = 0) uses the tran-
sition matrix and visit-probability vector common to
all users, and synthesizes traces independently of input
users. Consequently, all users spend almost the same
amount of time on each POI category. On the other
hand, PPMTF models a histogram of visited locations
for each user via the visit-count tensor, and generates
traces based on the tensor. As a result, the distribution
of PPMTF is similar to that of Testing, and reflects the
fact that about 30 to 35% of users spend less than 1/24
of their time at a park or bar, whereas about 80% of
users spend more than 1/24 of their time at an office or

Great Outdoors (0)
Great Outdoors (14)
Great Outdoors (3)

Mall (15)
Mall (9)

Factor matrix B
Great Outdoors (14)

Mall (9)
University (5)

Great Outdoors (0)
Great Outdoors (3)

Training (10-12h)

0.040 0.02

Great Outdoors (14)
Great Outdoors (3)

Great Outdoors (0)
Mall (15)

Airport (2)

Synthetic (10-12h)

0.020 0.0180 4

0 6 12 18 24
Hour

1.6

0.8

0

University (5)
University (16)

Great Outdoors (0)
University (56)
University (33)

Factor matrix B
Great Outdoors (0)

University (16)
University (32)
University (5)

Mall (12)

Training (10-12h)

0.050 0.025

Great Outdoors (0)
University (16)

University (5)
Bridge (6)

Neighborhood (10)

Synthetic (10-12h)

0.020 0.01360 18

0 6 12 18 24
Hour

2.6

1.3

0

(i) Cluster of great outdoors and malls

(ii) Cluster of universities

Factor matrix D Training (10-12h) Synthetic (10-12h)

Factor matrix D Training (10-12h) Synthetic (10-12h)

Fig. 12. Two clusters in IST (21980 users for each cluster). Here
PPMTF provides (10, 1)-PD. For B and training/synthetic traces,
we show the top 5 POIs (numbers in parentheses represent POI
IDs), whose values or frequencies from 10:00 to 12:00 are the
highest. We show the top 20 POIs by circles in the map. Red cir-
cles in (i) (resp. (ii)) represent outdoors/malls (resp. universities).

university. This result explains the low values of VF-TV
in PPMTF. Figure 11 also shows that PPMTF is useful
for semantic annotation of POIs [19, 70].

Next, we visualize in Figure 12 the columns of fac-
tor matrices B and D and training/synthetic traces for
two clusters. As with PF, the training users in each
cluster exhibit a similar behavior; e.g., the users in (i)
enjoy great outdoors and shopping at a mall, whereas
the users in (ii) go to universities. Note that users and
POIs in each cluster are semantically similar; e.g., peo-
ple who enjoy great outdoors also enjoy shopping at
a mall; many users in (ii) would be students, faculty,
or staff. The activity times are also different between
the two clusters. For example, we confirmed that many
training users in (i) enjoy great outdoors and shopping
from morning until night, whereas most training users
in (ii) are not at universities at night. PPMTF mod-
els such a behavior via factor matrices, and synthesizes
traces preserving the behavior. We emphasize that this
feature is useful for various analysis; e.g., modeling hu-
man location patterns, semantic annotation of POIs.

SGD (ξ = 0) and others [12, 13, 28] do not pro-
vide such cluster-specific features because they generate
traces only based on parameters common to all users.
Scalability. Figure 13 shows the running time in FS.
SGD is much faster than PPMTF. The reason for this
lies in the simplicity of SGD; i.e., SGD trains a transition

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 20

24

T
im

e
(h

ou
r)

IST JK NYC KL SP TKY

PPMTF (T)
PPMTF (S)
PPMTF (P)

18

12

6

0

SGD (T)
SGD (S)

100

T
im

e
(s

ec
)

IST JK NYC KL SP TKY

75

50

25

0

Fig. 13. Running time in FS. “T”, “S”, and “P” represent the
time to train a generative model, synthesize traces, and run the
PD test, respectively.

matrix for each time slot via maximum likelihood esti-
mation; it then synthesizes traces using the transition
matrix. However, SGD does not generate cluster-specific
traces. To generate such traces, PPMTF is necessary.

Note that even though we used a supercomputer
in our experiments, we used a single node and did not
parallelize the process. We can also run PPMTF on a
regular computer with large memory. For example, as-
sume that we use 8 bytes to store a real number, and
that we want to synthesize all of 219793 traces in IST.
Then, 8|U|(λI +ρI +λII +ρII)+8z(|U|+2|X |+ |L|) = 3.9
GB memory is required to perform MTF, and the other
processes need less memory. PPMTF could also be par-
allelized by using asynchronous Gibbs sampling [66].

5 Conclusion
In this paper, we proposed PPMTF (Privacy-Preserving
Multiple Tensor Factorization), a location synthesizer
that preserves various statistical features, protects user
privacy, and synthesizes large-scale location traces in
practical time. Our experimental results showed that
PPMTF significantly outperforms two state-of-the-art
location synthesizers [8, 9] in terms of utility and scala-
bility at the same level of privacy.

We assumed a scenario where parameters of the gen-
erative model are kept secret (or discarded after synthe-
sizing traces). As future work, we would like to design a
location synthesizer that provides strong privacy guar-
antees in a scenario where the parameters of the genera-
tive model are made public. For example, one possibility
might be to release only parameters (B,C,D) (i.e., lo-
cation and time profiles) and randomly generate A (i.e.,
user profile) from some distribution. We would like to
investigate how much this approach can reduce ε in DP.

Acknowledgement: This study was supported by JSPS
KAKENHI JP19H04113, JP17K12667, and by Inria un-
der the project LOGIS.

References
[1] Tool: Privacy-preserving multiple tensor factorization

(PPMTF). https://github.com/PPMTF/PPMTF.
[2] PWS Cup 2019.

https://www.iwsec.org/pws/2019/cup19_e.html,
2019.

[3] C. C. Aggarwal. Recommender Systems. Springer, 2016.
[4] R. Albright, J. Cox, D. Duling, A. N. Langville, and C. D.

Meyer. Algorithms, initializations, and convergence for the
nonnegative matrix factorization. SAS Technical Report,
pages 1–18, 2014.

[5] J. Biagioni and J. Eriksson. Inferring road maps from global
positioning system traces: Survey and comparative eval-
uation. Journal of the Transportation Research Board,
2291(2291):61–71, 2012.

[6] I. Bilogrevic, K. Huguenin, M. Jadliwala, F. Lopez, J.-P.
Hubaux, P. Ginzboorg, and V. Niemi. Inferring social ties in
academic networks using short-range wireless communica-
tions. In Proc. WPES’13, pages 179–188, 2013.

[7] V. Bindschaedler and R. Shokri. Synthetic location traces
generator (sglt). https://vbinds.ch/node/70.

[8] V. Bindschaedler and R. Shokri. Synthesizing plausible
privacy-preserving location traces. In Proc. S&P’16, pages
546–563, 2016.

[9] V. Bindschaedler, R. Shokri, and C. A. Gunter. Plausible
deniability for privacy-preserving data synthesis. PVLDB,
10(5):481–492, 2017.

[10] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[11] K. Chatzikokolakis, E. Elsalamouny, C. Palamidessi, and
A. Pazii. Methods for location privacy: A comparative
overview. Foundations and Trends in Privacy and Security,
1(4):199–257, 2017.

[12] R. Chen, G. Acs, and C. Castelluccia. Differentially private
sequential data publication via variable-length n-grams. In
Proc. CCS’12, pages 638–649, 2012.

[13] R. Chen, B. C. M. Fung, B. C. Desai, and N. M. Sossou.
Differentially private transit data publication: A case study
on the montreal transportation system. In Proc. KDD’12,
pages 213–221, 2012.

[14] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mo-
bility: User movement in location-based social networks. In
Proc. KDD’11, pages 1082–1090, 2011.

[15] R. Chow and P. Golle. Faking contextual data for fun, profit,
and privacy. In Proc. WPES’09, pages 105–108, 2009.

[16] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Non-
negative Matrix and Tensor Factorizations: Applications to
Exploratory Multi-way Data Analysis and Blind Source Sepa-
ration. Wiley, 2009.

[17] J. Cranshaw, R. Schwartz, J. I. Hong, and N. Sadeh. The
livehoods project: Utilizing social media to understand the
dynamics of a city. In Proc. ICWSM’12, pages 58–65, 2012.

[18] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D.
Blondel. Unique in the crowd: The privacy bounds of human
mobility. Scientific Reports, 3(1376):1–5, 2013.

[19] T. M. T. Do and D. Gatica-Perez. The places of our lives:
Visiting patterns and automatic labeling from longitudinal
smartphone data. IEEE Trans. Mob. Comput, 13(3):638–

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 21

648, 2013.
[20] J. Domingo-Ferrer, S. Ricci, and J. Soria-Comas. Disclosure

risk assessment via record linkage by a maximum-knowledge
attacker. In Proc. PST’15, pages 3469–3478, 2015.

[21] C. Dwork. Differential privacy. In Proc. ICALP’06, pages
1–12, 2006.

[22] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. Now Publishers, 2014.

[23] C. Dwork and A. Smith. Differential privacy for statistics:
What we know and what we want to learn. Journal of Pri-
vacy and Confidentiality, 1(2):135–154, 2009.

[24] N. Eagle, A. Pentland, and D. Lazer. Inferring friendship
network structure by using mobile phone data. PNAS,
106(36):15274–15278, 2009.

[25] J. Ernvall and O. Nevalainen. An algorithm for unbiased
random sampling. The Computer Journal, 25(1):45–47,
1982.

[26] S. Gambs, M.-O. Killijian, and M. Núñez del Prado Cortez.
De-anonymization attack on geolocated data. Journal of
Computer and System Sciences, 80(8):1597–1614, 2014.

[27] G. Ghinita. Privacy for Location-based Services. Morgan &
Claypool Publishers, 2013.

[28] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc,
and D. Srivastava. DPT: Differentially private trajectory
synthesis using hierarchical reference systems. PVLDB,
11(8):1154–1165, 2015.

[29] H. Hu, J. Xu, Q. Chen, and Z. Yang. Authenticating
location-based services without compromising location pri-
vacy. In Proc. SIGMOD’12, pages 301–312, 2012.

[30] T. Iwata and H. Shimizu. Neural collective graphical models
for estimating spatio-temporal population flow from aggre-
gated data. In Proc. AAAI’19, pages 3935–3942, 2019.

[31] B. Jayaraman and D. Evans. Evaluating differentially private
machine learning in practice. In Proc. USENIX Security’19,
pages 1895–1912, 2019.

[32] R. Kato, M. Iwata, T. Hara, A. Suzuki, X. Xie, Y. Arase,
and S. Nishio. A dummy-based anonymization method
based on user trajectory with pauses. In Proc. SIGSPA-
TIAL’12, pages 249–258, 2012.

[33] Y. Kawamoto and T. Murakami. Local obfuscation mecha-
nisms for hiding probability distributions. In Proc. ESORICS,
pages 128–148, 2019.

[34] R. H. Keshavan, A. Montanari, and S. Oh. Matrix comple-
tion from noisy entries. In Proc. NIPS’09, pages 952–960,
2009.

[35] S. A. Khan and S. Kaski. Bayesian multi-view tensor factor-
ization. In Proc. ECML PKDD’14, pages 656–671, 2014.

[36] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous
communication technique using dummies for location-based
services. Proc. ICPS’05, pages 88–97, 2005.

[37] J. Krumm. A survey of computational location privacy.
Personal and Ubiquitous Computing, 13(6):391–399, 2009.

[38] N. Li, M. Lyu, and D. Su. Differential Privacy: From Theory
to Practice. Morgan & Claypool Publishers, 2016.

[39] L. Liao, D. Fox, and H. Kautz. Extracting places and ac-
tivities from gps traces using hierarchical conditional ran-
dom fields. International Journal of Robotics Research,
26(1):119–134, 2007.

[40] M. Lichman and P. Smyth. Modeling human location data
with mixtures of kernel densities. In Proc. KDD’14, pages

35–44, 2014.
[41] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and

Y. Zhu. Mining large-scale, sparse gps traces for map infer-
ence: Comparison of approaches. In Proc. KDD’12, pages
669–677, 2012.

[42] X. Liu, Y. Liu, K. Aberer, and C. Miao. Personalized point-
of-interest recommendation by mining users’ preference tran-
sition. In Proc. CIKM’13, pages 733–738, 2013.

[43] Z. Liu, Y.-X. Wang, and A. J. Smola. Fast differentially
private matrix factorization. In Proc. RecSys’15, pages 171–
178, 2015.

[44] Y. Matsuo, N. Okazaki, K. Izumi, Y. Nakamura,
T. Nishimura, and K. Hasida. Inferring long-term user prop-
erties based on users’ location history. In Proc. IJCAI’07,
pages 2159–2165, 2007.

[45] X. Meng, S. Wang, K. Shu, J. Li, B. Chen, H. Liu, and
Y. Zhang. Personalized privacy-preserving social recom-
mendation. In Proc. AAAI’18, pages 1–8, 2018.

[46] T. Murakami. Expectation-maximization tensor factorization
for practical location privacy attacks. PoPETs, 4:138–155,
2017.

[47] T. Murakami, A. Kanemura, and H. Hino. Group sparsity
tensor factorization for de-anonymization of mobility traces.
In Proc. TrustCom’15, pages 621–629, 2015.

[48] T. Murakami, A. Kanemura, and H. Hino. Group sparsity
tensor factorization for re-identification of open mobility
traces. IEEE Trans. Inf. Forensics Secur., 12(3):689–704,
2017.

[49] T. Murakami and H. Watanabe. Localization attacks using
matrix and tensor factorization. IEEE Trans. Inf. Forensics
Secur., 11(8):1647–1660, 2016.

[50] K. P. Murphy. Machine Learning: A Probabilistic Perspec-
tive. The MIT Press, 2012.

[51] National Institute of Advanced Industrial Science and Tech-
nology (AIST). AI bridging cloud infrastructure (ABCI).
https://abci.ai/.

[52] Nightley and Center for Spatial Information Science at the
University of Tokyo (CSIS). SNS-based people flow data.
http://nightley.jp/archives/1954, 2014.

[53] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh. Privacy-preserving matrix factorization. In
Proc. CCS’13, pages 801–812, 2013.

[54] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz,
and Q. Yang. One-class collaborative filtering. In Proc.
ICDM’08, pages 502–511, 2008.

[55] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Gross-
glauser. CRAWDAD dataset epfl/mobility (v. 2009-02-24).
http://crawdad.org/epfl/mobility/20090224, 2009.

[56] V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie. The
long road to computational location privacy: A survey. IEEE
Commun. Surv., 21(3):2772–2793, 2019.

[57] R. Salakhutdinov and A. Mnih. Probabilistic matrix factor-
ization. In Proc. NIPS’07, pages 1257–1264, 2007.

[58] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In Proc.
ICML’08, pages 880–887, 2008.

[59] Y. Sekimoto, R. Shibasaki, H. Kanasugi, T. Usui, and
Y. Shimazaki. PFlow: Reconstructing people flow recycling
large-scale social survey data. IEEE Pervasive Computing,
10(4):27–35, 2011.

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 22

[60] S. Shekhar, M. R. Evans, V. Gunturi, and K. Yang. Spatial
big-data challenges intersecting mobility and cloud comput-
ing. In Proc. MobiDE’12, pages 1–12, 2012.

[61] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Mem-
bership inference attacks against machine learning models.
In Proc. S&P’17, pages 3–18, 2017.

[62] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P.
Hubaux. Quantifying location privacy. In Proc. S&P’11,
pages 247–262, 2011.

[63] L. Song, D. Kotz, R. Jain, and X. He. Evaluating next-cell
predictors with extensive wi-fi mobility data. IEEE Trans.
Mob. Comput, 5(12):1633–1649, 2006.

[64] A. Suzuki, M. Iwata, Y. Arase, T. Hara, X. Xie, and
S. Nishio. A user location anonymization method for lo-
cation based services in a real environment. In Proc. GIS’10,
pages 398–401, 2010.

[65] K. Takeuchi, R. Tomioka, K. Ishiguro, A. Kimura, and
H. Sawada. Non-negative multiple tensor factorization.
In Proc. ICDM’13, pages 1199–1204, 2013.

[66] A. Terenin, D. Simpson, and D. Draper. Asynchronous gibbs
sampling. In Proc. AISTATS’20, pages 144–154, 2020.

[67] Y.-X. Wang, S. E. Fienberg, and A. J. Smola. Privacy for
free: Posterior sampling and stochastic gradient monte carlo.
In Proc. ICML’15, pages 2493–2502, 2015.

[68] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. Revisit-
ing user mobility and social relationships in LBSNs: A hy-
pergraph embedding approach. In Proc. WWW’19, pages
2147–2157, 2019.

[69] D. Yang, D. Zhang, and B. Qu. Participatory cultural map-
ping based on collective behavior data in location based so-
cial network. ACM Trans. Intell. Syst. Technol., 7(3):30:1–
30:23, 2016.

[70] M. Ye, D. Shou, W.-C. Lee, P. Yin, and K. Janowicz. On
the semantic annotation of places in location-based social
networks. In Proc. KDD’11, pages 520–528, 2011.

[71] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy
risk in machine learning: Analyzing the connection to over-
fitting. In Proc. CSF’18, pages 268–282, 2018.

[72] T.-H. You, W.-C. Peng, and W.-C. Lee. Protecting moving
trajectories with dummies. In Proc. MDM’07, pages 278–
282, 2007.

[73] V. W. Zheng, Y. Zheng, and Q. Yang. Joint learning user’s
activities and profiles from GPS data. In Proc. LBSN’09,
pages 17–20, 2009.

[74] Y. Zheng, X. Xie, and W.-Y. Ma. GeoLife: A collaborative
social networking service among user, location and trajec-
tory. IEEE Data Engineering Bulletin, 32(2):32–40, 2010.

[75] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interest-
ing locations and travel sequences from GPS trajectories. In
Proc. WWW’09, pages 791–800, 2009.

A Notations and Abbreviations
Tables 1 and 2 respectively show the basic notations and
abbreviations used in this paper.

Table 1. Basic notations in this paper († represents I or II).

Symbol Description
U Finite set of training users.
X Finite set of locations.
T Finite set of time instants over N.
L Finite set of time slots (L ⊆ P(T)).
E Finite set of events (E = X × T).
R Finite set of traces (R = U × E∗).
S Finite set of training traces (S ⊆ R).
F Randomized algorithm with domain P(R).
M Generative model.
un n-th training user (un ∈ U).
xi i-th location (xi ∈ X).
sn n-th training trace (sn ∈ S).
y Synthetic trace (y ∈ R).
R Tuple of two tensors (R = (RI,RII)).
R̂† Reconstructed tensors by Θ.
r
†
n,i,j (n, i, j)-th element of R†.
r̂
†
n,i,j (n, i, j)-th element of R̂†.

Θ Tuple of MTF parameters (Θ = (A,B,C,D)).
z Number of columns in each factor matrix.
FPPMTF Proposed training algorithm.
MPPMTF Proposed generative model.
Qn,i Transition-probability matrix of user un for

time slot li inMPPMTF.
πn,i Visit-probability vector of user un for time

slot li inMPPMTF.
λ† Maximum number of positive elements per

user in R†.
ρ† Number of selected zero elements per user

in R†.
r
†
max Maximum value of counts for each element

in R†.
I
†
n,i,j Indicator function that takes 0 if r†n,i,j is

missing, and takes 1 otherwise.

B Time Complexity
Assume that we generate a synthetic trace from each
training trace sn ∈ S (i.e., |U| synthetic traces in total).
Assume that λI, ρI, λII, ρII, z, and |U∗| are constants.

In step (i), we simply count the number of transi-
tions and the number of visits from a training trace set
S. Consequently, the computation time of this step is
much smaller than that of the remaining three steps.

In step (ii), we first randomly select ρI and ρII zero
elements for each user in RI and RII, respectively. This
can be done in O(|U|) time in total by using a sampling
technique in [25]. Subsequently, we train the MTF pa-
rameters Θ via Gibbs sampling. The computation time
of Gibbs sampling can be expressed as O(|U|+|X |+|L|).

In step (iii), we generate synthetic traces via the
MH algorithm. This is dominated by computation of the
transition-probability matrices Q∗n, Qn,1, · · · ,Qn,|L| for

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 23

Table 2. Abbreviations in this paper.

Abbreviation Description
PPMTF Proposed location traces generator.
SGLT Synthetic location traces generator in [8].
SGD Synthetic data generator in [9].
PF SNS-based people flow data [52].
FS Foursquare dataset [68].
IST/JK/NYC/ Istanbul/Jakarta/New York City/
KL/SP/TKY Kuala Lumpur/San Paulo/Tokyo.
TP-TV(-Top50) Average total variation between time-

dependent population distributions
(over 50 frequently visited locations).

TM-EMD-X/Y Earth Mover’s Distance between transition-
probability matrices over the x/y-axis.

VF-TV Total variation between distributions of
visit-fractions.

each training trace sn, which takes O(|U||X |2|L|) time
in total. Then we generate a synthetic trace y, which
takes O(|U||X ||L|) time.

In step (iv), the faster version of Privacy Test 1 in
Section 3.5 computes the transition-probability matrices
Q∗m, Qm,1, · · · ,Qm,|L| for each training trace sm ∈ S∗,
which takes O(|X |2|L|) time in total. Subsequently, we
check whether k′ ≥ k for each training trace sn ∈ S,
which takes O(|U||X ||L|) time in total.

In summary, the time complexity of the proposed
method can be expressed as O(|U||X |2|L|).

C Details on SGD
SGD [9] is a synthetic generator for any kind of data,
which works as follows: (i) Train the dependency struc-
ture (graph) between data attributes; (ii) Train condi-
tional probabilities for each attribute given its parent
attributes; (iii) Generate a synthetic data record from
an input data record by copying the top γ ∈ Z≥0 at-
tributes from the input data record and generating the
remaining attributes using the trained conditional prob-
abilities. Note that the dependency structure and the
conditional probabilities are common to all users.

We applied SGD to synthesis of location traces as
follows. We regarded an event as an attribute, and a
location trace of length |T | as a data record with |T | at-
tributes. Then it would be natural to consider that the
dependency structure is given by the time-dependent
Markov chain model as in PPMTF and SGLT, and the
conditional probabilities are given by the transition ma-
trix for each time slot. In other words, we need not train
the dependency structure; i.e., we can skip (i).

We trained the transition matrix Q̃i ∈ Q for each
time slot li ∈ L (|L| × |X | × |X | elements in total) and
the visit-probability vector π̃ ∈ C for the first time in-
stant (|X | elements in total) from the training traces
via maximum likelihood estimation. Then we synthe-
sized a trace from an input user un by copying the first
γ events in the training trace sn of un and by generating
the remaining events using the transition matrix. When
γ = 0, we generated a location at the first time instant
using the visit-probability vector. Thus the parameters
of the generative modelMn of user un can be expressed
as: (Q̃1, · · · , Q̃|L|, π̃, sn).

SGD can provide (ε, δ)-DP for one synthetic trace y
by using a randomized test [9], which randomly selects
an input user un from U and adds the Laplacian noise
to the parameter k in (k, η)-PD. However, both ε and
δ can be large for multiple synthetic traces generated
from the same input user, as discussed in [9]. Thus we
did not use the randomized test in our experiments.

D Details on Privacy Attacks
Re-Identification Algorithm. We used the Bayesian
re-identification algorithm in [47]. Specifically, we first
trained the transition matrix for each training user from
the training traces via maximum likelihood estimation.
Then we re-identified each synthetic trace y by selecting
a training user whose posterior probability of being the
input user is the highest. Here we computed the pos-
terior probability by calculating a likelihood for each
training user and assuming a uniform prior for users.
We calculated the likelihood by simply calculating a
likelihood for each transition in y using the transition
matrix and multiplying them. We assigned a small pos-
itive value (= 10−8) to zero elements in the transition
matrix so that the likelihood never becomes 0.
Membership Inference Algorithm. We consid-
ered a likelihood ratio-based membership inference algo-
rithm, which partly uses the algorithm in [48] as follows.

Let V be a finite set of all training and testing users
(each of them is either a member or a non-member;
|V| = 1000 in PF), and vn ∈ V be the n-th user. As-
sume that the adversary attempts to determine whether
user vn is a training user (i.e., member) or not. Since
each training user is used as an input user to generate a
synthetic trace, the adversary can perform the member-
ship inference by determining, for each synthetic trace
y, whether vn is used as an input user to generate y.
To perform this two-class classification (i.e., vn is an in-

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 24

put user of y or not), we used the likelihood ratio-based
two-class classification algorithm in [48].

Specifically, given user vn and synthetic trace y, let
H1 (resp. H0) be the hypothesis that vn is (resp. is not)
an input user of y. We first trained the transition matrix
for each of |V| = 1000 users from her (original) trace.
Let Wn be the transition matrix of user vn. We calcu-
lated a population transition matrix W0, which models
the average behavior of users other than vn as the av-
erage of Wm (m 6= n); i.e., W0 = 1

|V|−1
∑
m 6=n Wm.

Let z1 (resp. z0) ∈ R be the likelihood of y given H1
(resp. H0). We calculated z1 (resp. z0) simply by cal-
culating a likelihood for each transition in y using the
transition matrix Wn (resp. W0) and multiplying them
(as in the re-identification attack). Then we compared
the log-likelihood ratio log z1

z0
with a threshold ψ ∈ R. If

log z1
z0
≥ ψ, we accepted H1; otherwise, we accepted H0.

We performed this two-class classification for each
synthetic trace y. If we accepted H1 for at least one
synthetic trace y, then we decided that vn is a member.
Otherwise, we decided that vn is a non-member.

In our experiments, we changed the threshold ψ to
various values. Then we evaluated, for each location syn-
thesizer, the maximum membership advantage over the
various thresholds (Figure 8 shows the results).

E Relationship between k and the
PD Test Pass Rate

We evaluated the PD test pass rate, which is the pro-
portion of synthetic traces that have passed the PD test
to all synthetic traces when we changed k from 1 to 200.
We set the other parameters to the same values as in
Section 4 (e.g., η = 1, |U∗| = 32000).

Figure 14 shows the results obtained for six cities
in FS. The PD test pass rate decreases with an increase
in k. For example, the PD test pass rate is about 70%
when k = 10, whereas it is about 20% when k = 200.

Note that when k = 200, the PD test pass rate
of IST (17.9%) is lower than that of NYC (26.9%), as
shown in Figure 14. Nevertheless, PPMTF significantly
outperforms Uniform with regard to all of the utility
metrics in IST, as shown in Figure 10. This is because
the number of users is very large in IST (|U| = 219793).
Consequently, even if the PD test pass rate is low, many
synthetic traces still pass the test and preserve various
statistical features.

Therefore, PPMTF achieves high utility especially
for a large-scale dataset.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

P
D

 T
es

t P
as

s
R

at
e

k

IST JK
NYC KL
SP TKY

Fig. 14. Relationship between k and the PD test pass rate.

F DP for the MTF Parameters Θ

Here we explain DP (Differential Privacy) [21, 22] as
a privacy metric (Appendix F.1). Then we analyze the
privacy budget ε in DP for the MTF parameters Θ in
PPMTF (Appendix F.2), and evaluate ε for Θ using the
Foursquare dataset (Appendix F.3).

F.1 Differential Privacy

We define the notion of neighboring data sets in the
same way as [22, 43, 67] as follows. Let S,S ′ ⊆ R be two
sets of training traces. We say S and S ′ are neighboring
if they differ by at most one trace and include the same
number of traces, i.e., |S| = |S ′|. For example, given a
trace s′1 ∈ R, S = {s1, s2, s3} and S ′ = {s′1, s2, s3} are
neighboring. Then DP [21, 22] is defined as follows:

Definition 2 (ε-DP). Let ε ∈ R≥0. A randomized al-
gorithm F with domain P(R) provides ε-DP if for any
neighboring S,S ′ ⊆ R and any Z ⊆ Range(F),

e−εp(F(S ′) ∈ Z) ≤ p(F(S) ∈ Z) ≤ eεp(F(S ′) ∈ Z). (8)

ε-DP guarantees that an adversary who has observed
the output of F cannot determine, for any pair of S
and S ′, whether it comes from S or S ′ (i.e., a particular
user’s trace is included in the training trace set) with
a certain degree of confidence. As the privacy budget
ε approaches 0, S and S ′ become almost equally likely,
which means that a user’s privacy is strongly protected.

F.2 Theoretical Analysis

We now analyze the privacy budget ε in DP for the
MTF parameters Θ in PPMTF.

Let FPPMTF be our training algorithm in step (ii),
which takes as input the training trace set S and outputs
the MTF parameters Θ. Assume that Θ is sampled from
the exact posterior distribution p(Θ|R).

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 25

Recall that the maximum counts in RI and RII are
rI
max and rII

max, respectively, as defined in Section 3.2.
Let κ ∈ R≥0 be a non-negative real number such that
r̂I
n,i,j ∈ [−κ, rI

max + κ] and r̂II
n,i,j ∈ [−κ, rII

max + κ] for
each triple (n, i, j). The value of κ can be made small
by iterating the sampling of Θ until we find Θ with small
κ [43]. Note that this “retry if fail” procedure guarantees
that Θ is sampled from the posterior distribution under
the constraint that r̂I

n,i,j and r̂II
n,i,j are bounded as above

(see the proof of Theorem 1 in [43]). Then we obtain:

Proposition 1. FPPMTF provides ε-DP, where

ε =α
(
min{3λI, λI + ρI}(rI

max + κ)2

+ min{3λII, λII + ρII}(rII
max + κ)2) . (9)

Proof. By (3), ln p(Θ|R) can be written as follows:

ln p(Θ|R)
= ln p(R|Θ) + ln p(Θ)− ln p(R) (by Bayes’ theorem)

=−
|U|∑
n=1

|X |∑
i=1

|X |∑
j=1

II
n,i,j

(
α(rI

n,i,j − r̂I
n,i,j)2

2 + ln
√

α

2π

)

−
|U|∑
n=1

|X |∑
i=1

|L|∑
j=1

III
n,i,j

(
α(rII

n,i,j − r̂II
n,i,j)2

2 + ln
√

α

2π

)
+ ln p(Θ)− ln p(R). (10)

The sum of the first and second terms in (10) is the log-
likelihood ln p(R|Θ), and is bounded by the trimming
that ensures rI

n,i,j ∈ [0, rI
max] and rII

n,i,j ∈ [0, rII
max].

Let G be a function that takes as input R and Θ
and outputs G(R,Θ) ∈ R as follows:

G(R,Θ) =
|U|∑
n=1

|X |∑
i=1

|X |∑
j=1

αII
n,i,j(rI

n,i,j − r̂I
n,i,j)2

2

+
|U|∑
n=1

|X |∑
i=1

|L|∑
j=1

αIII
n,i,j(rII

n,i,j − r̂II
n,i,j)2

2

− ln p(Θ). (11)

Note that ln
√

α
2π and ln p(R) in (10) do not depend on

Θ. Thus, by (11), ln p(Θ|R) in (10) can be expressed as:

p(Θ|R) = exp[−G(R,Θ)]∫
Θ exp[−G(R,Θ)]dΘ

. (12)

Then, Proposition 1 can be proven by using the fact
that FPPMTF is the exponential mechanism [22] that
uses −G(R,Θ) as a utility function. Specifically, let R′

be the tuple of two tensors that differ from R at most
one user’s elements; i.e., R and R′ are neighboring. We

write R ∼ R′ to represent that R and R′ are neighbor-
ing. Let ∆G ∈ R be the sensitivity of G given by:

∆G = max
Θ

max
R,R′:R∼R′

|G(R,Θ)−G(R′,Θ)|. (13)

Here we note that when ρI is large, many zero elements
are common in RI and R′I. Specifically, for each user,
we can randomly select ρI zero elements as follows: (i)
randomly select ρI elements from RI (including non-zero
elements), (ii) count the number ρI

0 (≤ λI) of non-zero
elements in the selected elements, (iii) randomly reselect
ρI

0 elements from zero (and not selected) elements in
RI. Note that this algorithm eventually selects ρI zero
elements from RI at random.1 In this case, for each user,
at least max{ρI−2λI, 0} zero elements are common in RI

and R′I (since RI and R′I have at most 2λI reselected
elements in total).

Except for such common zero elements, II
n,i,j in

(11) takes 1 at most min{3λI, λI + ρI} elements for
each user (since (λI + ρI) − (ρI − 2λI) = 3λI). Simi-
larly, except for common zero elements, III

n,i,j in (11)
takes 1 at most min{3λII, λII + ρII} elements for each
user. In addition, rI

n,i,j ∈ [0, rI
max], rII

n,i,j ∈ [0, rII
max],

r̂I
n,i,j ∈ [−κ, rI

max+κ], and r̂II
n,i,j ∈ [−κ, rII

max+κ] for each
triple (n, i, j), as described in Section 3.5. Moreover, the
“retry if fail” procedure, which iterates the sampling of
Θ until r̂I

n,i,j and r̂II
n,i,j are bounded as above, guaran-

tees that Θ is sampled from the posterior distribution
under this constraint [43].

Consequently, the sum of the first and second terms
in (11) is less than (resp. more than) or equal to ε

2
(resp. 0), where ε is given by (9). Then, since the third
term in (11) is the same for G(R,Θ) and G(R′,Θ) in
(13), ∆G can be bounded above by ε

2 : i.e., ∆G ≤ ε
2 .

Since the exponential mechanism with sensitivity ε
2 pro-

vides ε-DP [22], FPPMTF provides ε-DP.

ε for a Single Location. We also analyze ε for neigh-
boring data sets R and R′ that differ in a single location.
Here we assume ρI = ρII = 0 to simplify the analysis (if
ρI > 0 or ρII > 0, then ε will be larger because selected
zero elements can be different in R and R′). In this
case, RI and R′I (resp. RII and R′II) differ in at most
two (resp. four) elements, and the value in each element
differs by 1.2 Then by (11) and (13), we obtain:

∆G ≤ 2 · α2
(
(rI
max + κ)2 − (rI

max + κ− 1)2)

1 Other random sampling algorithms do not change our conclu-
sion because p(Θ|S) is obtained by marginalizing R = (RI,RII).
2 In RII and R′II, we can consider the case where one
transition-count differs by 2 and two transition-counts differ by

Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features 26

0
0.1
0.2
0.3
0.4
0.5
0.6

10-2
�

1 102 104 106 108

PPMTF
Uniform
TrainingT

P
-T
V

0

0.1

0.15

0.2

0.25

10-2 �1 102 104 106 108

T
P
-T
V
-T
op
50

10-2
�

1 102 104 106 108

T
M
-E
M
D
-X
/Y

0
0.1
0.2
0.3
0.4
0.5
0.6

10-2
�

1 102 104 106 108
V
F
-T
V

0.05

PPMTF
Uniform
Training

PPMTF (X) PPMTF (Y)
Uniform (X) Uniform (Y)
Training (X) Training (Y)

0

1
1.5

2
2.5

0.5

PPMTF
Uniform
Training

Fig. 15. Relation between ε and utility in IST (κ = 0).

+ 4 · α2
(
(rII
max + κ)2 − (rII

max + κ− 1)2)
)

= α(2rI
max + 4rII

max + 6κ− 3),

and therefore ε = α(4rI
max + 8rII

max + 12κ− 6).
Note that a trace y is synthesized from Θ after

FPPMTF outputs Θ. Then by the immunity to post-
processing [22], FPPMTF also provides ε-DP for all syn-
thetic traces. However, ε needs to be large to achieve
high utility, as shown in Appendix F.3.

F.3 Experimental Evaluation

We evaluated the privacy budget ε in DP for Θ and the
utility by changing α in Proposition 1 from 10−6 and
103 using the Foursquare dataset [68]. Figure 15 shows
the results in IST (Istanbul), where ε is the value in
Proposition 1 when κ = 0. In practice, ε can be larger
than this value because κ ≥ 0.

Figure 15 shows that ε needs to be larger than
2 × 104 to provide high utility. This is because α in
Proposition 1 needs to be large to achieve high utility.
Specifically, by (3), α needs to be large so that r̂I

n,i,j and
r̂II
n,i,j in (3) are close to rI

n,i,j and rII
n,i,j , respectively. For

example, when α = 0.01 (i.e., standard deviation in (3)
= 10), transition/visit-counts can be frequently changed
by ±10 after sampling (e.g., r̂I

n,i,j = rI
n,i,j ± 10), which

destroys the utility. In Figure 15, we need α ≥ 0.4 to
achieve high utility, which results in ε > 2× 104.

If we consider neighboring data sets S and S ′ that
differ in a single location (rather than one trace), ε be-
comes much smaller. However, ε is still large. Specifi-
cally, if κ = ρI = ρII = 0, then ε = α(4rI

max+8rII
max−6);

otherwise, ε is larger than this value (see Appendix F.2).

1 (e.g., transition x1 → x1 → x1 changes to x1 → x2 → x1). We
can ignore such cases because |G(R,Θ)−G(R′,Θ)| is smaller.

Thus, when α = 0.4, the privacy budget is ε = 45.6 or
more (since rI

max = rII
max = 10).

Finally, we note that adding the Laplacian noise
to Θ (rather than sampling Θ) does not provide DP.
For example, assume that Θ is trained from S by the
MAP (Maximum a Posteriori) estimation algorithm F
[10], which calculates Θ that maximizes p(Θ|S); i.e.,
F(S) = argmaxΘ p(Θ|S). If p(Θ|S) is uniform (or nearly
uniform), then F(S ′) can take any value for neighboring
trace set S ′. Therefore, the sensitivity is unbounded and
adding the Laplacian noise does not provide DP.

For these reasons, providing a small ε in DP is dif-
ficult in our location synthesizer.

	Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Privacy Metric

	3 Privacy-Preserving Multiple Tensor Factorization (PPMTF)
	3.1 Overview
	3.2 Computation of Two Tensors
	3.3 Training MTF Parameters
	3.4 Generating Traces via MH
	3.5 Privacy Protection

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Location Synthesizers
	4.3 Performance Metrics
	4.4 Experimental Results in PF
	4.5 Experimental Results in FS

	5 Conclusion
	A Notations and Abbreviations
	B Time Complexity
	C Details on SGD
	D Details on Privacy Attacks
	E Relationship between k and the PD Test Pass Rate
	F DP for the MTF Parameters
	F.1 Differential Privacy
	F.2 Theoretical Analysis
	F.3 Experimental Evaluation

