
Proceedings on Privacy Enhancing Technologies ; 2021 (2):111–129

Martin Zuber* and Renaud Sirdey

Efficient homomorphic evaluation of k-NN
classifiers
Abstract: We design and implement an efficient, secure,
homomorphic k-Nearest Neighbours determination al-
gorithm, to be used for regression or classification over
private data. Our algorithm runs in quadratic complex-
ity with regard to the size of the database but is the
only one in the literature to make the secure determi-
nation completely non-interactively. We show that our
secure algorithm is both efficient and accurate when ap-
plied to classification problems requiring a small set of
model vectors, and still scales to larger sets of model
vectors with high accuracy yet at greater (sequential)
computational costs.

Keywords: k-Nearest Neighbours, Fully Homomorphic
Encryption, Machine Learning, Secure Cloud Comput-
ing

DOI 10.2478/popets-2021-0020

Received 2020-08-31; revised 2020-12-15; accepted 2020-12-16.

1 Introduction
The k-Nearest Neighbours (k-NN) method is a machine
learning tool that can be used either for classification
(attributing a tag/class to an unknown feature) or re-
gression (estimating the relationship between a certain
amount of variables). The principle that drives a k-NN
classifier is that closeness of two vectors in a Euclidean
space is a good measure of class-similarity. This is of
course only true for certain kinds of classification prob-
lems. For many such classification problems, k-NN clas-
sifiers have been found to be very efficient (compared
with more recent deep learning methods for instance)
and very accurate (though less so than said deep learn-
ing methods).
In this paper, we design a secure k-NN algorithm that
can be used for both classification and regression of ei-

*Corresponding Author: Martin Zuber: CEA, LIST,
E-mail: martin.zuber@cea.fr
Renaud Sirdey: CEA, LIST, E-mail: renaud.sirdey@cea.fr

ther a private input against a public database of neigh-
bors or a public input against a private such database.
We do so by means of homomorphic encryption tech-
niques fine-tuned to this specific problem. As such, we
thus propose an algorithm that finds the k nearest
neighbours of a given vector and which is amenable to
practical homomorphic evaluation timings. More pre-
cisely, the specific problem we aim to solve is known as
the k-NN determination problem or the k-NN problem
for short. It is the following. We are given a database
of vectors that we will call model vectors in this paper.
We are given a single vector we call the source vector.
We aim to find the k closest vectors to the source vector
among the model vectors using a given norm.
At the end of the paper, we evaluate our k-NN determi-
nation algorithm by using it to classify in a real-world
context. We then compare with existing work on the
topic.

In the following, we first expose a general overview of
our contribution with respect to prior work on the sub-
ject. We then present the existing work on which we are
building our contribution. Then comes the description
of our novel k-NN algorithm. Finally, we detail exper-
imental results obtained applying our algorithm on a
real-world classification problem.

1.1 Prior work

As we present prior work done on establishing privacy-
preserving solutions for k-NN computations, we need to
distinguish three kinds of cases depending on the na-
ture of the database used for the k-NN computation.
All three of them aim to protect the confidentiality of
the database.

– The database is owned by a single entity and placed
on a remote cloud for outsourced computation using
encryption.

– The database is made up of several databases from
separate entities and placed on a remote cloud for
outsourced computation using encryption.

– The database is made up of several databases from
separate entities that keep their own database and
use a distributed computation process to obtain the

Efficient homomorphic evaluation of k-NN classifiers 112

final result between them and without a central
server.

The third case - the distributed case - is not the topic
of this paper. It differs fundamentally from the first
two cases in that it assumes that the database owners
have computational resources at hand, and are only con-
cerned about privacy. That is a legitimate case-study.
However it is not our focus. We refer to [1–10] for pa-
pers which tackle this latter setup.

The first and second cases are fairly similar in their use
of encryption and the outsourced nature of the compu-
tation. We will call this the outsourced k-NN problem.
Our goal is to achieve confidentiality for the database
with respect to the cloud server. Remark that achieving
database confidentiality with respect to the querier in-
volves some subtleties since, although the querier does
not have access to the database, she or he can ex-
tract some information about it based on the results
of its queries which she can choose freely. Additionally,
[11] presents an impossibility result that states that a
scheme achieving private multi-client computing can-
not be semantically CPA secure if it is purely a crypto-
graphic scheme. This is a fundamental difference with
the schemes that use distributed computing techniques.
The interest of using encryption is in the comparatively
much lower interactivity that such a scheme will in-
cur.

Solutions in the literature vary but they all design a
communication protocol between the different parties
that we represent in Figure 1. There can be one or sev-
eral data owners. The data host is the one making the k-
NN computation. The querier is the entity requesting a
k-NN computation over its source vector. In some cases,
there needs to be a key distribution done by an entity
we call Cryptographic Service Provider (CSP) here. De-
pending on the solution, there sometimes is a Trusted
Computation Assistant (TCA) with access to the secret
encryption key and interacting with the data host dur-
ing the computation phase. We separate clearly all of
these entities in Figure 1 in order to present a general
framework for all existing schemes. However in any so-
lution, some of those entities could be merged with oth-
ers and assume several functions at once. Depending on
our privacy requirements, we could for instance choose
to have the data owner be the CSP. Several papers ([12–
17]) address the outsourced k-NN problem and propose
various solutions. We quickly review them below.

data ownerdata owner

data host

data owner

CSP TCA

querier
key distribution

data exchange

Fig. 1. A general design for protocols in the literature that tackle
the outsourced problem. The data owner, data host and querier
are always present and are drawn in full lines while other, "op-
tional", entities are drawn with dashed lines. TCA: Trusted Com-
putation Assistant. CSP: Cryptographic Service Provider.

In [12], the authors use an homomorphically additive
encryption scheme. They use a TCA - which in this
case is also the CSP - to distribute public encryption
keys to the data owners and the querier while keeping
the corresponding secret key. The encrypted distances
for the k-NN computations are calculated by the data
host. A kernel computation phase (k-NN optimization
method) is made by the CSP, but it is worth noting that
the distances are kept secret from it: they are masked
by the data host before being sent to the CSP. The com-
parison and classification phases occur with interactions
between the CSP and the DH. They use a garbled cir-
cuit (introduced in [18]) for this.

In [13], the authors build a system in which there is no
data host, and the data is given to the querier in en-
crypted form. Then the queriers interact with a TCA
(which has a decryption algorithm) to extract the re-
sult. One of the drawbacks of this scheme is the fact
that the querier (called client in [13]) learns some in-
complete plaintext information on the data from the
TCA. In [15], the authors use this information to de-
sign an attack in the CPA model, in which the client
can eventually obtain the actual data values in plain-
text in the case of an honest TCA with no collusion.
Because of this attack, we will not include this scheme
into our comparison table (Table 1).

Efficient homomorphic evaluation of k-NN classifiers 113

In [16], the authors propose a secure multiparty k-NN
computation. The data owner outsources its encrypted
database to the DH and its secret key to a TCA. Then
the querier interacts with both of them to complete the
k-NN determination in linear time.

In [14], the authors use what they call an "asym-
metric scalar-product-preserving encryption". This self-
explanatory type of encryption allows them to do away
with a TCA. The queries and the database are en-
crypted using two different encryption algorithms but
with the same key. Then the data host can compute the
comparisons between every distance. The k encrypted
data points that are closest to the query can then be
sent back to the querier for decryption. This means the
data host has access to the scalar products p · q for ev-
ery data point p and every query q sent by the querier.
Therefore, in a CPA attack model, with the data host as
an attacker, it can choose the queries q and [15] shows
that it can recover the data points through a set of lin-
ear equations (as many as there are queries). However,
the data host can only mount a CPA attack with the
help of the querier (it needs an encryption key which is
secret). This means that this scheme is not resistant to
collusion between the data host and the querier. This is
actually the case of all other encryption-based schemes
we encountered in the literature. It is also the case for
our scheme.

One exception is that of the scheme in [15]. They only
circumvent this problem by providing the data host with
encryptions of portions of the database. The final result
will not be an actual nearest neighbour but rather the
nearest partition. This scheme is structurally different
from all other schemes we mention here because it solves
another problem in order to circumvent this structural
security flaw. This is why we will not be comparing our
scheme to it.

In [17], the authors design a secure k-NN scheme based
on both additive homomorphic encryption and garbled
circuits (therefore requiring interactions between the
data host and the querier). They provide a secure im-
plementation of two k-NN algorithms: a linear scan al-
gorithm which has a linear complexity; and a clustering-
based algorithm which has a sublinear complexity but
does not aim to output the exact k nearest neigh-
bours.

Table 1 compares the schemes we presented from the
literature with our own scheme with respect to the two
most important attributes for a secure k-NN determi-
nation scheme: its non-interactivity and its complexity.

The schemes mentioned here diverge in a lot of ways.
Most notably, in the way that they implement (or not)
specific optimizations to the k-NN algorithm (kernels for
instance) or whether they implement a secure majority-
class voting at the end. We chose to focus on the basic
k-NN algorithm. As a general rule we can see that our
scheme, compared with pre-existing ones, trades non-
interactivity with a higher complexity. This makes our
scheme asymptotically slower (though still practical for
real-world problems as is shown in Section 5.4) but re-
quires no interaction for the k-NN computation. All
other schemes require some sort of interaction.

One exception is [14] which is both linear in complex-
ity and works offline. However that scheme provides a
lower level of security: the use of their scalar-product-
preserving encryption means the data host will have ac-
cess to the distance values in the clear. We propose a
scheme which guarantees (to the level of the security of
the underlying encryption scheme) that no information
will leak during the k-NN computation.

this work [12] [16] [14] [17]
Non-Interactive 3 7 7 3 7

Complexity x2 x x x x

Table 1. This table shows a comparison of the two most impor-
tant attributes for a secure k-NN scheme: its non-interactivity
and its complexity. The complexity of the corresponding scheme
is linear when x is used, and quadratic when x2 is used. As men-
tioned, [17] introduces two secure k-NN algorithms and one of
them is sublinear. However this clustering-based algorithm does
not output the exact result.

1.2 Our contribution

In this paper, we propose a fully homomorphic k-NN
algorithm. This algorithm works in two settings. If the
database is encrypted and the query is clear, then the
computation is handled by the querier. If the query is
encrypted and the database is clear, then the compu-
tation is handled by the database owner. Achieving en-
cryption for both the query and the database is within
reach but not yet attainable due to a high noise prop-
agation issue. These two "settings" allow us to design
two protocols for secure k-NN determination where the
computation itself is fully non-interactive, and where
the security of both the query and the database is en-
sured. Figure 2 represents the two protocols. We differ-
entiate the two protocols depending on who performs
the computation.

Efficient homomorphic evaluation of k-NN classifiers 114

The DB owner computation protocol has the query q

be sent encrypted by the querier, to the data owner
using a bracket notation for encrypted data. The data
owner then applies our secure k-NN algorithm over an
encrypted query and a clear database and sends the
encrypted result r back to the querier.

The query owner computation protocol is represented
here with several queriers to better illustrate the sce-
nario we present in section 2. In this case the data owner
sends its database to queriers and receives their respec-
tive results encrypted.

Remark: Information leakage. It should however be
emphasized that, although these architectures offer
provable security on the raw data being exchanged us-
ing encryption, the guarantees they offer on the confi-
dentiality of the database (resp. the query) from threats
coming the querier (resp. the data owner) are less for-
mal as, in both cases, having access to the result of the
classification leads to some (useful) leakage on the raw
database (resp. query). This latter leakage is inherent
to the service provided and, if not acceptable, can be
mitigated by other countermeasures such as noising the
output of the classifier (differential privacy gives us the
theoretical toolbox to do so meaningfully). This coun-
termeasure is hard to consider in serious use-cases such
as medical ones, where patient health - and therefore
classification accuracy - cannot be traded for database
confidentiality. Another possible countermeasure would
be throttling the request rate, which can be performed
by a given entity.

We show that we can implement both of these protocols
with quadratic complexity with respect to the size of the
database but constant with respect to k. We show that
they achieve close to optimal classification rate over a
real-world classification problem. Over this classification
problem our scheme is very efficient. We also test our
algorithm on a benchmark database to give the reader
a better idea of our algorithm’s scaling ability.

2 Scenario and threat model
This section aims at pointing out the kind of classifica-
tion use cases that can be meaningfully addressed by the
ability to run a k-NN classifier in the homomorphic do-
main. We do so in an abstract fashion, independently of
the underlying FHE techniques (which are duly detailed
in the rest of the paper). We start by considering the
concrete e-health scenario in which a doctor (operator)

data owner

querier

[q](1)
q

[r](2)
q

DB owner

data owner

querier

[DB](1)

[r](2)

[DB](1)

[r](2)

querier

computation
query owner
computation

Fig. 2. Two examples of protocols for a secure k-NN computation
that our scheme allows for. We use simple brackets ([·]) to indi-
cate that data is encrypted by the data owner and brackets with
an index q ([·]q) to indicate that data is encrypted by the querier.
The order in which the data is exchanged is indicated in red: q(2)
means q is the second data exchange to happen in the protocol.

wishes to benefit from a diagnosis service provided by
a laboratory (server) for one of its patient (user) on a
given class of pathologies. The laboratory is able to pro-
vide this service thanks to a highly sensitive database of
previous cases which it cannot share with third parties
(due to either or both legal constraints or commercial
value) and which it uses at the core of a k-NN classi-
fier. In this context, a privacy-preserving diagnosis ser-
vice can work as follows. The doctor is the owner of an
FHE private key. The doctor encrypts the patient’s data
which it then sends to the laboratory. The lab evaluates
the k-NN classification of the (encrypted) patient data
in the homomorphic domain against its database (which
is in clear form) and produces an (encrypted) classifica-
tion. The latter (encrypted) classification is then sent to
the doctor for decryption and interpretation. In terms of
privacy, this kind of protocol has several desirable prop-
erties. The raw patient data remains private from the
lab (as it sees and manipulates them only in encrypted
form). Additionally, the laboratory’s precious database
of past cases remains on its own server and its privacy
is also preserved from the doctor and the patient. This
scenario corresponds to the DB owner computation case
illustrated in Figure 2.

Efficient homomorphic evaluation of k-NN classifiers 115

Beyond scenarios in which a private (encrypted) request
is run over a cleartext database, the case where a clear-
text request is run over a private (encrypted) database
is also of practical relevance. To stay in the medical
field, we can consider the case of a pharmaceutical com-
pany (operator) which needs to run an epidemiological
study over a set of cases stored by one or more hos-
pitals (servers). For normative and legal reasons, as is
usual in the medical field, the data owned by a hospi-
tal cannot leave its information system. Yet, the phar-
maceutical company does not wish to reveal the set of
model vectors (the database) it will use to perform its
study by means of a k-NN classifier (although this does
not prevent it to disclose the nature of the study when
applicable legislation requires it). In this context, the
firm can then send its database of reference vectors en-
crypted under its own FHE public key and the hospital
can then homomorphically evaluate the k-NN over its
set of patient data (the queries), sending the (encrypted)
classifications back to the firm for further analysis once
processing complete (note that, in this second scenario
of batch processing of a possibly large database under
mild latency constraints, the non-interactivity of our ap-
proach is highly desirable to avoid unnecessary resource-
wasting synchronization during the processing). In this
context, the raw hospital queries are not disclosed to
the pharmaceutical company and stay on premise. Addi-
tionally, the sensitive data from the firm is not disclosed
to the hospital. The above illustrative example also ap-
plies in many operator/server situations (e.g. cyberat-
tack threat monitoring with private criteria in cleart-
ext traffic, recognition of private faces in cleartext video
streams [19], ...). This scenario corresponds to the query
owner computation case illustrated in Figure 2.

Lastly, note that our solution does not allow to address
the case where both the request and the database are
encrypted. We believe that adapting our solutions to
allow for the encryptions of both of them will be pos-
sible soon. It would require an increased precision in
the underlying FHE library we used for implementation
and would come at, as of yet unknown, performance
costs.

3 Preliminaries
3.1 Notations

We use B to denote the set {0, 1}. The cardinal of a
finite set A is written |A|. We denote signed integers by

Z, the reals by R and use T to denote the real torus mod
1. Zq = Z/qZ will denote the integers mod q with a given
integer q. We write TN [X] the quotient R[X]/(XN + 1)
mod 1. We write ‖·‖p to denote the `p norm of vectors
over reals or integers.

3.2 The TFHE encryption scheme

The TFHE scheme [20, 21] implemented in the TFHE
library [22] is based on both the LWE and ring-LWE
problems. The LWE problem was introduced by Regev
in [23] and the ring-LWE problem in [24]. Importantly,
both work by introducing an error into the ciphertext.
When the ciphertext is added or multiplied to other ci-
phertexts, that error will grow, inducing what we call
here an error propagation. The larger the noise, the
lower the probability of correct decryption. We will not
go into the details of the LWE problem or the TFHE
scheme and refer the reader to the original papers. We
will only present here the information necessary to un-
derstand the algorithm that we build and implement.
Ciphertexts in TFHE can either be in Tn+1 (where n
is an integer parameter) or in TN [X]k+1 (where k and
N are integer parameters). The former encrypts a scalar
value in T and the latter a polynomial message in TN [X].
The secret key is taken from Bn and BN [X]k respec-
tively.
In the notation that we use, we differentiate cipher-
texts based on whether they encrypt a polynomial or
a scalar value. Therefore a ciphertext of a polynomial
µ[X] will be written as [µ[X]](r) and one for a scalar µ
as [µ].

3.3 Problem definition

The k-NN problem aims to find the k Nearest Neigh-
bours of a given vector (the source vector) among a
number of vectors (the model vectors).
The problem that we aim to solve is to have the data
host perform a k-NN determination over an encrypted
set of reference vectors, non-interactively. It is given en-
cryptions of d real model vectors c(i) ∈ Rγ , i ∈ {1, d}
of dimension γ by the data owner. The data owner also
gives it two bootstrapping keys which are used in TFHE
computations and cannot be used to retrieve encrypted
data without a decryption key. The querier sends it its
query: one clear source vector m ∈ Rγ . Again, it could
very well be the source vector that is hidden under a
layer of encryption and the model vectors that are clear.
See Figure 2 for a presentation of the two protocols. It

Efficient homomorphic evaluation of k-NN classifiers 116

is made evident in section 4.5.2 that the distance com-
putation can be done in the same way in either case and
the rest of the computation is identical.
The data host’s goal is to obtain d encrypted binary
values - one for every model vector - with a 1 for every
model vector that is among the k closest vectors to the
source and a 0 for every model vector that is not. The
results of the k-NN computation need to have a correct
decryption with overwhelming probability.

3.4 FHE operations

In this section we present the different operations in
TFHE and their noise propagations. Since they are
based on the LWE problem, the TFHE encryption
scheme relies on a noise to be introduced in the cipher-
text. We assume that it is a Gaussian noise unless stated
otherwise and refer to it through its standard deviation
that we denote σ. With every homomorphic operation
(except the bootstrap operation) the noise grows. This
is a fundamental issue in FHE in general and in this
paper in particular. We add to the notation of the ci-
phertext a possible mention of an encryption key s and
a noise α as such: [∗]s,α.

– Internal Addition/Subtraction : [∗]× [∗]→ [∗]
Given two ciphertexts [µ1] and [µ2], we can add
them and obtain a ciphertext [µ1 + µ2]. The exact
same operation can be applied to polynomial cipher-
texts.

– External Multiplication : ∗ × [∗]→ [∗]
Given an integer scalar a and a ciphertext [µ], we
can multiply them and obtain a ciphertext [a× µ].
The exact same operation can be applied to poly-
nomial ciphertexts with polynomials µ and a. This
actually just corresponds to several iterations of in-
ternal additions or subtractions.

– Extraction : [∗](r) → [∗]
From a ring ciphertext of a polynomial µ[X] =∑N−1
i=0 µii, it is possible to extract a scalar cipher-

text of a single coefficient of µp at a position p ∈
{0, N − 1}. We can do this at no cost to the noise
of the ciphertext. We can extract similarly the cor-
responding scalar secret key from the initial ring
secret key. This means the owner of the initial ring
secret key can also decrypt the extracted ciphertext.

– Sign Bootstrapping1 : [∗]s,α → [∗]s′,αb
From two keys s and s′, we can create an object
BKs→s′ (BK for short) called the bootstrapping key,
with a precision depending on parameters ` and Bg.
Given an integer b, a ciphertext [µ]s,α of a scalar
value µ encrypted using the key s with noise α, and
this bootstrapping key BK, we can obtain a cipher-
text [µ0]s′,αb where µ0 = 1/b if µ ∈ [0, 1

2] and µ0 = 0
if µ ∈ [1

2 , 1]. Very importantly, αb is fixed by the pa-
rameters of the bootstrapping key BK and does not
depend on the initial standard deviation. We call it
sign bootstrap because the function that it applies
(it could apply other functions) can be considered a
sign computation. Indeed, if a value in [0, 1

2] (upper
half of the torus in Figure 3) is considered positive
and a value in [−1

2 , 0] (lower half of the torus) is
considered negative, the operation outputs 0 for a
negative input and 1

b for a positive input.
This operation therefore allows us to both apply a
sign function to the input ciphertext and reduce its
noise down to αb. Figure 3 is a representation of this
operation. The application of the function is not in-
finitely precise. The figure illustrates that there is a
range of inputs (the red zones) for which the oper-
ation does not necessarily output the correct value:
it will output a random value. This is not a problem
when the parameters are chosen appropriately.

4 Our k-NN algorithm
In this section, we will present our general algorithm
solving the k-NN problem over encrypted inputs. How-
ever, for simplicity sake, we will first present it with all
inputs and outputs as clear values. We show in section
4.5 how and why this algorithm can be used efficiently
in a fully homomorphic setting. All of the operations
that we use here are therefore clear-value equivalents of
the homomorphic operations presented in section 3.4.
First of all, we assume that the integer k (as in k-NN)
is set.

4.1 Distance computation

What interest us are not actually the distances between
the model vectors and the source vectors themselves but

1 This bootstrapping is only a slight variation on the bootstrap-
ping procedure introduced in [20], we just add a public rotation
to the bootstrap operation used in [25].

Efficient homomorphic evaluation of k-NN classifiers 117

3
4

1
4

01
2

0

1
b

µ
µ+ e

Fig. 3. The bootstrapping operation represented on the torus. As
indicated in the figure, any value in the upper half of the torus
will yield an encrypted output of 1

b
with b a given base; and a

value in the lower half an encrypted output of 0. There is a range
(red zones) around 0 and around 1

2 where the bootstrapping op-
eration will return a random value.

rather a comparison of distances. In fact we are going to
compute the difference of the squares of distances. This
means that if di is the distance between vector i and the
source for a given i ∈ {1, d}, then we want to compute
d2
i − d2

j for every i, j ∈ {1, d}.

4.2 Delta values

For all i, j in {1, d}, we compute the sign of the difference
of the two squared distances d2

i , d
2
j :

δi,j = 1 if d2
i < d2

j

= 0 otherwise

These δ values will help us select the smallest distances.
They form a matrix:

0 δ1,2 · · · δ1,d
δ2,1 0 · · · δ2,d
...

...
. . .

...
δd,1 δd,2 · · · 0



4.3 A first partial solution

From here, we present a solution which works in theory,
but is not applicable in practice for any number d of

vectors. However, this idea is the basis for the final k-
NN algorithm that we propose, the one we present in
section 4.4. The idea is to sum all of the rows from the
δ matrix together as in [19]. We obtain:

(
∆0 ∆1 · · · ∆d−1

)
where ∆i =

d−1∑
j=0

δj,i

All of the ∆i are between 0 and d − 1. If i is the index
of the greatest distance, then ∆i = 0. It corresponds to
the distance for which every comparison to another dis-
tance yields a 0. Respectively, the smallest distance has
an associated ∆ equal to d− 1. We want to select the k
greatest ∆ values. For this, we can apply Signk, an oper-
ation that applies the following transformation:

Signl : N→ B

x 7→ 0 if x ≤ d− 1
1 if x > d− l

Therefore, we would obtain an encryption of 1 only for
the indexes of the k closest vectors to the source, and
an encryption of 0 for every other index.

Just as in [19], this solution is limited by the fact that,
in an homomorphic setting, we cannot add an unlimited
amount of ciphertexts together for a given set of param-
eters. This is due to the fact that, after some point, the
noise distribution in the output ciphertext becomes too
great for accurate decryption.
One can in theory change the parameters to allow for
any number of sums if that number is known before-
hand. This is in the case of a Levelled Homomorphic
Encryption (LHE). But in practice, this is not true for
any number of inputs d, since we are limited by the
precision of the homomorphic library used in the im-
plementation. To put it in other words, if one were to
design a levelled homomorphic solution for the k-NN
problem, one would be limited in the number of inputs
it could parse. Since we want to design a fully homomor-
phic k-NN algorithm, we have to assume that the set of
parameters are set independently of the number d of in-
put vectors. Given that set of parameters (see section
5.1 for our choices), we call m the maximum number of
ciphertexts that we can add together before applying a
bootstrapping operation.

This m value changes in theory depending on the noise
of the ciphertexts to add. If a ciphertext is fresh (a di-
rect encryption of a plain value), then usually its noise
will be lower than if a ciphertext has been created by
summing two other ciphertexts together. We choose pa-

Efficient homomorphic evaluation of k-NN classifiers 118

rameters in section 5.1 that induce the following prop-
erty: δ ciphertexts and ciphertexts that are outputs of a
bootstrapping operation have the same noise distribu-
tion. This means that there exists a single value m so
that we can add m δ ciphertexts and/or bootstrapped
ciphertexts together and not more.

At this point in [19], the authors just apply a bootstrap-
ping operation to the sum of m δ values to reset that
value to either 0 or 1 and then keep adding new δ val-
ues. This works to find the single closest vector because
the bootstrapping only selects the vector with minimum
distance every time. This would not work here because
we need to select more than one vector and therefore
keep more information at every bootstrapping step. Our
solution is presented in section 4.4.

4.4 The scoring algorithm solution

From this point on, we set an index i for one of the model
vectors, and aim to produce a 0 value if that vector is
not among the k nearest neighbours to the source and
a value of 1 if it is. We consider that k < m. We will
see in section 5.3.1 that this will always be the case in
practice.

We introduce a scoring algorithm to solve the k-NN
problem over an arbitrary amount of input vectors. Fig-
ure 4 presents the algorithm applied in the first phase
of our k-NN computation: over the first m values in
column i. The algorithm takes m inputs and has one
output. Its building blocks are the summing operation
and Sign operations which applying the following trans-
formation:

Signl : N→ B

x 7→ 0 if x ≤ m− l
1 if x > m− l

We can formalize our scoring operation as the following
function Sk,m : Nn → {0, . . . , k}:

Sk,m : (x1, . . . , xn) 7→max

(
0 , k −m+

n∑
l=1

xl

)

∅ if
n∑
l=1

xl > m

For the output to be in {0, . . . , k}, we need to have∑n
l=1 xl ≤ m. This corresponds to the condition that

lead us to design this algorithm.

When applied to binary inputs (Bm), this operation
counts the number of 0s and returns either (k − #0)

∑

∑
Sign1 Sign2 Signk

Sk ({δ1,i, . . . , δm,i})



0 · · · δ1,i · · · δ1,d
...

...
...

δm,1 · · · δm,i · · · δm,d
...

...
...

...
...

...
δd,1 · · · δd,i · · · 0



S

Fig. 4. A figure presenting our scoring algorithm. Here it is pre-
sented parsing through the first m values in one column - the
first phase of the k-NN computation. The values δ1,i, . . . , δm,i
are summed and then their sum is parsed by the Sign operations.
The k outputs are summed again at the end. The operation - the
dotted blue box called S - outputs a score between 0 and k we
write Sk,m ({δ1,i, . . . , δm,i}).

or 0. An example, for m = 7 and k = 3:

S3,7(0, 1, 1, 1, 0, 0, 1) = max(0, k − 3) = 0
S3,7(1, 0, 1, 1, 1, 1, 0) = max(0, k − 2) = 1
S3,7(1, 1, 0, 1, 1, 1, 1) = max(0, k − 1) = 2

In our k-NN computation, we apply it on the δ val-
ues from the matrix, which are binary values. And if
δj,i = 0, that means that vector j is closer than vector
i to the source. Therefore the number of 0s in our ith

column counts the number of vectors that are closest to
the source than vector i. This is why we call it a scoring
operation. The higher the score given by our operation,
the closer vector i is to the source. The operation, in
an FHE setting, is still limited to inputs of sum lower
than m. The output is in the range {0, . . . , k}. There-
fore, since k < m, after applying the scoring operation
once, there is "room" to add m − k more values to the
output and applying the operation again. Even if the
output were 0, in an FHE setting, that information is
not known, therefore we have to plan everything as if

Efficient homomorphic evaluation of k-NN classifiers 119

the output value were its maximum value: k.
Let’s formalize this with a proposition.

Proposition 1. Let x1, . . . , x2m−k ∈ B.
Let A denote:

Sk,m
(
x1, . . . , xm−k, Sk,m (xm−k+1, . . . , x2m−k)

)
Let B denote:

Sk,2m−k (x1, . . . , x2m−k)

in an FHE setting, we cannot compute B directly because
it would require us to sum more than m binary values.
However we can compute A and:

A = B

A proof of this proposition is provided in appendix
A.

Therefore, by iterating enough times the scoring opera-
tion, we can obtain the score of a set of any size. This
means we can compute

Sk,d (δ1,i, . . . , δi−1,i, δi+1,i, . . . , δd) (1)

Which is equal to 0 if vector i is not among the k nearest
neighbours and a non-zero value if it is one of the k
closest vectors to the source. Note that we removed δi,i
from the computation as its value is trivial and known
to be 0. In fact, (1) is not exactly the value that we are
looking for. We want a constant output value of 1 for the
k closest vectors. This means the last scoring operation
is replaced with a sum and the Signk operation. The
full algorithm is represented in Figure 5. Furthermore,
if - for the last sum - there are less than m−k values left
in matrix column, then for the last Signk operation to
output the correct value, we need to pad the sum with
an appropriate value.

4.4.1 An example execution

An example of our k-NN algorithm applied in the case
of d = 7 model vectors is given in Figure 6. We are look-
ing for the k = 2 closest vectors to the source vector.
We can only add m = 4 δ values at a time. The model
vectors are represented in a drawing on top in their Eu-
clidean space as small stars, and the source vector is
the larger star. As we can see from the figure, the two
closest vectors are vectors 2 and 7. We do not go into
the details of the distance computation and the distance

comparisons that go into creating the associated δ ma-
trix. We show how to apply the algorithm on the 5th

vector. From the drawing, we can see that it is the 3rd

closest vector and therefore we should obtain a result of
0. The matrix diagonal is "removed" in the sense that
we do not take it into account. We take the first m = 4 δ
values for the 5th column and make them go through the
scoring algorithm S. Since there is one 0 among those
first values, the output of the scoring algorithm at this
point is k − 1 = 1. The output of the scoring algorithm
is at most of size k = 2. Since we do not know its value
(in an FHE setting), we can only add m− k = 2 more δ
values to it (we cannot have a sum go above the value
m).
Therefore, the rest of the algorithm consists of adding 2
fresh values to the output of the last scoring operation
and running a new scoring operation. Here we are left
with only two values, therefore we add them with the
output of the first S box and compute the score. We find
an overall score of 0, which means that the 5th vector is
not among the 2 closest. We do not know anything else
about it.
If the matrix was of size 6, then we would add a 7th

line of 1s to the matrix as padding. Since the algorithm
scores according to the number of 0s, this would not af-
fect the overall score but it would allow us to have the
right number of inputs for the scoring algorithm. In the
context of an FHE computation, this padding would
be added as plaintext values and therefore induce no
noise.

4.5 Going FHE

From the start of section 4, we have so far presented
a k-NN algorithm that works over clear values. To ap-
ply our algorithm in an FHE setting we need to use
the equivalent homomorphic operations on encrypted
inputs.

4.5.1 Encoding and encryption

First of all, we will be using a torus-based homomor-
phic encryption scheme: TFHE. This means that our
values are not actually real values but rather torus val-
ues in [0, 1]. Every real value i is therefore actually a
torus value i

b with b > i a given integer, called the
base. When a real value i is encrypted as

[
i
b

]
, it can

be rescaled to
[
i
b′

]
with b′ a different base by applying

an external scalar multiplication by b′

b . However, we de-
signed a scheme that only needs to define three bases:

Efficient homomorphic evaluation of k-NN classifiers 120

Sk ({δ1,i, . . . , δm,i})



0 · · · δ1,i · · · δ1,d
...

...
...

δm,1 · · · δm,i · · · δm,d
...

...
...

...
...

...
δd,1 · · · δd,i · · · 0



δ1,i, . . . , δm,i , δm+1,i, . . . , δ2m−k,i , · · · · · · , δd−p,i, . . . , δd,i

S

Sk
({
δ1,i, . . . , δ2m−k,i

})
S

As long as we can, add the next (m − k) δ values to
the latest score and compute a new score

when there are less than
(m − k) values left, add a
padding value and compute
the final score

∑
Signk

{0,1}

max(0,m− k − p− 1)

Fig. 5. A figure representing the final score computation for a given vector i. The blue S boxes correspond to the scoring algorithm as
represented in the dotted blue box in Figure 4. It is important to note that for simplicity sake, we did not make it clear in the figure
that we remove δi,i, the diagonal value, from the computation. It is however important to do it.

one as a common encoding base for all the model vec-
tors and the source vector: ν; one as a common encoding
base for all the δ values: bδ; one as the encoding base
for the final output values: bf.

Therefore, to take an example, a δ value that we pre-
sented in section 4.4 as being equal to either 0 or 1 will
actually be equal to either 0 or 1

bδ
. And a sum of m such

values will be in {0, 1
bδ
, . . . , mbδ }.

4.5.2 Squared distance difference computation

Every squared distance is computed between an en-
crypted and a non-encrypted vector as explained in sec-
tion 3.3. Again we assume that the source vector is
plain and the model vectors are encrypted. The oppo-
site yields a strictly equivalent way to compute the dis-
tances and from then on, everything is encrypted and
therefore nothing changes. We now give specific names
to our vectors and present the distance computation in
detail.

We are given d real model vectors: c(i) ∈ Rγ , i ∈
{1, . . . , d} of dimension γ. However, we encode these vec-
tors as torus vectors in order to have them be encrypted

in the THFE encryption scheme. Therefore we define a
base ν > maxi

(∥∥c(i)
∥∥
∞

)
and rescale every vector by ν

to obtain torus vectors.

We call µ ∈ Rγ the source vector. First of all, it needs to
be rescaled using the same value used for the model vec-
tors: ν. Secondly, when going FHE, we have to run the
k-NN computation on an integer source vector and not
a real one. However µ is a real data vector and therefore
needs to be rounded to an integer vector after a scaling
is performed to preserve the precision. Therefore, with
an additional rescaling factor τ ∈ N, we actually have
to transform every µi into b τ×µiν e ∈ N. We then encode
this rounded and rescaled source vector as a polynomial:

M =
γ−1∑
l=0

⌊τ × µγ−l
ν

⌉
·Xl

However, introducing this τ factor by itself would
change the distance computation result. Therefore, we
need to rescale the model vectors by τ as well. Encoding
the twice-rescaled model vectors a polynomials gives us:
∀i ∈ {1, d},

C(i) =
γ−1∑
l=0

c
(i)
l+1
τν
·Xl

Efficient homomorphic evaluation of k-NN classifiers 121

1 2 3 4 5 6 7

0 1 1 0 1 0 1
0 0 0 0 0 0 1
0 1 0 0 1 0 1
1 1 1 0 1 0 1
0 1 0 0 0 0 1
1 1 1 1 1 0 1
0 0 0 0 0 0 0



3

Distance computations

4

7
5

2

Distance comparisons

the δ matrix

vector number

1

6

∑
Sign1

S

Sign2∑
3 3

0 1

1

1∑
Sign2

2

0

Euclidean space

Fig. 6. An example of our k-NN algorithm applied in the case of
d = 7 model vectors. We are looking for the k = 2 closest vectors
to the source vector. We can only add m = 4 δ values at a time.

We are actually given an encryption
[
C(i)](r) for every i.

And we want to obtain encryptions of every differences
of every distances between vectors c(i) and µ. In other
words, if we write di the distance from µ to c(i) for
every i, then we want to obtain

[1
ν2 (d2

i − d2
j)
]
for every

i 6= j.

In order to simplify the computation, we assume that
the party that encrypted the

[
C(i)](r) ciphertexts also

pre-computed and encrypted:

Ai =

 γ∑
l=1

(
c

(i)
l

ν

)2
 ·Xγ−1

for every i.

At this point, given M,
[
C(i)](r) and [Ai](r) we can com-

pute:

2M ·
([
C(j)

](r)
−
[
C(i)

](r)
)

+ [Ai](r) − [Aj](r) (2)

Proposition 2. For τ a high enough power of 10, if
we extract the (γ − 1)th coefficient from (2), we obtain[1
ν2 (d2

i − d2
j)
]
.

A proof of this proposition is provided in appendix A.
The value of τ will determine the extent to which the
result is approximated. In section 5.3.1, we can see that
experimentally, allowing some approximation does not
impact the overall k-NN result significantly.

This homomorphic computation can only work if the
difference does not go above 1

2 or below −1
2 . Indeed,

we will consider a value between 0 and 1
2 to be positive

and one between − 1
2 and 0 to be negative. Therefore

overflowing in the difference computation will cause us
to return a wrong sign value. This requires choosing
a base value ν appropriate for the given data range.
We explain our choices for the different base values in
section 5.1.

4.5.3 Delta computation

At this point, we want to obtain the sign of the differ-
ences

[
d2
i − d2

j

]
for every i 6= j (it is the same as that of[1

ν2 (d2
i − d2

j)
]
). We do this using the bootstrapping op-

eration we presented in 3.4 and used in several works in
the literature. To illustrate it we show a torus represen-
tation of this sign bootstrapping operation in Figure 3.
The output of the sign boostrapping operation applied
to
[1
ν2 (d2

i − d2
j)
]
is [δi,j]. As mentioned in section 4.5.1,

the output values will either be 0 or 1
bδ

with bδ a given
base. We do not actually compute all of the δ values as
δi,j = 1 − δj,i for every i, j. Therefore, there are only
1
2 · (d

2 − d) bootstrapping operations.

4.5.4 The scoring operation

Figure 7 is a representation of the scoring operation ap-
plied to torus variables. To represent any variable, we
present it in the figure as every value it can take in the
torus: 0 and 1

bδ
for δ variables for instances. The scoring

operation starts with a sum of δ variables. The sum of
ciphertexts is a standard operation. As shown in Figure
7, the resulting ciphertext can hold one of m+ 1 differ-
ent values from 0 to m

bδ
. We want the greatest possible

value to be 1
2 and therefore we need to set bδ = 2m.

Efficient homomorphic evaluation of k-NN classifiers 122

From there intuitively, we apply k rotations to obtain
k ciphertexts on which we run the sign bootstrapping
operation. In figure 3, the sign bootstrapping is repre-
sented as giving an output of 0 for negative values. For
this bootstrapping operation, we still apply a sign oper-
ation but invert the outputs so that our bootstrapping
outputs 1

bδ
for "negative" values. The values are not ac-

tually seen as negative here but rather as overflowing
from the rotation we apply. We can see in Figure 7 that
only the greatest possible value will yield an output of
1
bδ

over a sign bootstrapping of the first rotated cipher-
text. Only the l greatest possible values will yield an
output of 1

bδ
over a sign bootstrapping of the lth ro-

tated ciphertext.

This figure therefore represents the homomorphic equiv-
alent of the Sign operations. However, though this is ex-
actly how these Sign operations work intuitively, their
implementations are slightly more subtle. The homo-
morphic operations Sign1, . . . , Signk are all computed
together at the same time on the same input, and can
be seen as one single operation with one input and k

outputs. We can do this by applying a sign bootstrap-
ping over the first rotated ciphertext and then extract-
ing k different outputs where the usual sign bootstrap-
ping only extracts one. It therefore corresponds to a
slight variation on the original bootstrapping operation
and allows us to compute our k-NN determination at
virtually a constant cost with regard to k.

Algorithm 1 presents the modified bootstrapping al-
gorithm that, given an encrypted input, computes the
Sign1, . . . , Signk operations on that input homomorphi-
cally. The notations that we use are those found in the
original presentation of the bootstrapping algorithm in
[20] (Algorithm 3: Bootstrapping procedure). We do this
to stress where our algorithm deviates from the orig-
inal version. As done in [20], we use the LWE(µ) no-
tation to present a TLWE encryption of µ. Lines 1 to 7
describe the start of the standard bootstrapping pro-
cedure. In that original procedure, the last step is an
extraction of the first coefficient of the ACC ciphertext:
SampleExtract (ACC, 0) (see Section 3.4 for a brief pre-
sentation of the extraction operation). In our variation,
we extract k different coefficients to virtually no addi-
tional performance cost. This algorithm is provided to
ensure the reproducibility of our results and a reader
wishing to understand all of the notations should refer
to [20].

Algorithm 1: Homomorphic Sign operations
Input: A TLWE sample (a, b) = [µ] of an unknown

message µ ∈ T, a bootstrapping key BK, a
bootstrapping base bδ, a number k of
desired outputs. The symbol � represents
the internal multiplication operation.

Output: k LWE samples (uj)1≤j≤k where uj ∈
LWE

(
1
bδ

if µ+ (j−1)
bδ
∈
]
0, 1

2
[

; − 1
bδ

else
)
1Let

_
b = b2Nbe

2for i = 1 to n do
3Let _

ai = b2Naie

4Let testv =
(
1 +X + · · ·+XN−1)×X− 2N

4 · 1
bδ

5ACC←
(
X

_
b · (0, testv)

)
6for i = 1 to n do
7ACC←

[
h+ (X−

_
ai − 1) · BKi

]
� ACC

8for j = 1 to k do
9uj = SampleExtract

(
ACC, b 4jN

bδ
e
)

Remark: (parallelization)
In section 3.3, we mention that the data host is given
two bootstrapping keys to compute the homomorphic
operations the k-NN determination requires. This is be-
cause the bootstrapping operation does three things: it
outputs a ciphertext with a fixed noise (therefore re-
ducing the input noise if it was higher); it applies a
pre-programmed function (here the sign function or its
opposite); it switches the encryption key with another
one. This key switching means we cannot re-apply the
same bootstrapping operation twice in a row. Therefore
Fig. 5 does not represent the real order in which the δ
values are used as inputs for the S-boxes.

We can actually design an FHE implementation in the
linear order presented Fig. 5. It would require the use
of a key-switching operation after every S-box. This ad-
ditional operation would decrease the efficiency of the
scheme. It would at the same time decrease the band-
width costs by eliminating the need for a second boot-
strapping key (a key-switching key is much lighter than
a bootstrapping key).

We presented a linear order of computation in Fig. 5
for simplicity sake. However, the real precedence rela-
tion between the S-boxes offers more degrees of freedom
and we were able to implement our scheme with bet-
ter efficiency by finding of an ordering which removed
the need for a key-switching. In essence, we divide our

Efficient homomorphic evaluation of k-NN classifiers 123

k values

δ1 δ2 δm

Sign Bootstrap

(∑m

i=1 δi
)

k + 1 values∑

Fig. 7. A figure showing how the scoring operation intuitively
works in the torus. The circles, as in other figures in this article,
represent the torus. The squared areas in each circle represent ev-
ery possible value that the given variable can take. For instance,
every δ variable can have either a value of 0 or of 1

bδ
. After sum-

ming m of them, we obtain a variable that can take one of m+ 1
values.

δ values into chunks of size m and apply S-boxes on
each chunk. Then we do the same on the output val-
ues of the S-boxes. Additionally, this partial ordering
allows for parallelization at run-time, although the tim-
ings presented in the paper do not exploit this. Two
bootstrapping keys are then needed for the implemen-
tation of the scheme.

5 Experimental results
We fully implemented the homomorphic k-NN scheme
described above, and integrated it with a real-world
classification problem. In this section we provide the
details on our implementation, k-NN training and ef-
ficiency and accuracy of our FHE k-NN classifica-
tion.

5.1 FHE implementation

The TFHE encryption scheme is implemented in the
TFHE library2. That is what we use to implement our
homomorphic algorithm. We use it in its 64-bit torus
representation and its dedicated AVX assembly version
for FFT computations. The choice of parameters de-
pends both on questions of security and accuracy. The
parameters needed to replicate our results are presented
in Table 2. As in [25], we base the security of our scheme
on the lwe-estimator3 script. The estimator is based
on the work presented in [26]. It allows us to find the
smallest initial noise for our ciphertexts, that still en-
sures security and gives us the most leeway in terms of
noise propagation. As for accuracy, there are two issues
that we need to solve to ensure our scheme outputs an
accurate result.

One issue is the precision of the bootstrap operation. As
shown in Figure 3, the bootstrap operation, given a set
of parameters, has a red zone around 0 and 1

2 where in-
put values yield an uncertain output. We can arrange for
the values of 1

ν2 (d2
i −d2

j) to never reach the zone around
1
2 by increasing ν. However, increasing ν too much will
mean having values too small for the bootstrap opera-
tion to work accurately. We find the appropriate value
for ν through a scilab script, simulating FHE operations
over the dataset on which the homomorphic k-NN is im-
plemented (see Section 5.2.1).
An erroneous output by the bootstrapping operation,
when it happens, does not necessarily impact the accu-
racy of the overall result. If none of the two distances in
question is actually one of the k smallest, then the mis-
take changes nothing to the end-result. In the case where
one of the k smallest distances is overlooked and another
one is chosen in its stead, we can assume the new dis-
tance is close to the one that was overlooked. Therefore
in a majority class voting setting (where we determine
the class of the source depending on the majority class
of its k nearest neighbours) the output determination
has a good chance of still being correct. This qualita-
tive analysis does not prove the accuracy of our scheme.
Rather it helps explain its theoretical resilience to mis-
takes. We show in section 5.3.1 that, in practice, our
scheme is highly accurate in a real-world setting.

2 https://tfhe.github.io/tfhe/
3 https://bitbucket.org/malb/lwe-estimator/raw/HEAD/
estimator.py

https://tfhe.github.io/tfhe/
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py

Efficient homomorphic evaluation of k-NN classifiers 124

The other issue pertaining to accuracy is the correct
final decryption. The initial ciphertexts are purpose-
fully noisy and, the noise increases with every non-
bootstrapping operation. This noise propagation, if too
great, can lead to an incorrect decryption. The param-
eters have to be carefully chosen so that it does not.
Again, this is done using a scilab simulation.

λ N σ

110 1024 1e−9
Nb σb Bg `

1024 1e-9 64 6

m ν τ bδ bf
65 3 100 4m− 4 4

Table 2. The parameter tables for our implementation. The top-
left table presents the overall security (λ), and the parameters
for the initial encryption: σ is the Gaussian noise parameter and
N the size of polynomials. In the TFHE polynomial encryption
scheme (TRLWE), there is a parameter k independent from the one
we use to refer to the k-NN determination problem here. That
parameter was set to 1 in every case. The top-right table presents
the parameters needed to create the two bootstrapping keys we
are using. For details on the use of Bg and l, see [20]. The bot-
tom table presents parameters specific to our k-NN scheme as
presented in Sections 4 and 4.5. m is the maximum number of
sums of fresh δ ciphertexts we can do before a bootstrapping
operation. τ is used to rescale the data before encryption. ν, bδ
and bf are introduced in Sect. 4.5.1 and are encoding bases used
respectively for the initial data, the output of the intermediate
scoring operations and the output of the final scoring operation.
bδ and bf are parameters of the scoring operation presented in
Algorithm 1.

5.2 Experimental setup

5.2.1 The datasets

Breast Cancer dataset. As a first example of a se-
cure k-NN application, we use a dataset4 previously
used with the purpose of testing machine learning al-
gorithms. Specifically, it is a dataset containing 569 in-
stances (vectors) of 30 attributes (meaning the vectors
are of dimension γ = 30). Each of those instances is ex-
tracted from a digitized image of a "fine needle aspirate
of a breast mass" from a single patient with a tumor in
her breast. Every instance is obtained from a different
patient. The data is labeled with a class: the tumor can
be malignant or benign. This dataset was retrieved from
an online open archive of machine learning datasets [27].

4 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Diagnostic)

Our goal is to build a secure k-NN classifier that can de-
termine with high accuracy whether a given instance is
one of a malignant or a benign tumor by comparing it
to an encrypted set of labelled model vectors.

MNIST dataset. We present a second application of
our algorithm: on the widely used MNIST dataset5. This
dataset is used to test the classification of handwritten
digits (0 to 9). In fact, we do not use the raw MNIST
dataset (which consists of 60,000 training images and
10,000 testing images all of them with 28x28 pixels)
but we use a pre-processed subset of the data provided
by the scikit-learn6 library. This subset includes 1,797
images of size 8x8.

5.2.2 The classification process

In order to showcase the efficiency and accuracy of our
scheme, we design our own k-NN classification algorithm
over the dataset. Since, as discussed in Sect. 2, we are in-
terested only in the homomorphic evaluation of already
trained k-NN classifiers, we train our algorithm in the
clear domain. In this case, training means selecting a
subset of the learning data that will be used as refer-
ence vectors (model vectors) in a k-NN computation as
well as selecting the most appropriate k value. The clas-
sification is then made homomorphically and consists of
running our k-NN algorithm over the encrypted refer-
ence vectors selected in the training phase, comparing
them to a cleartext instance. The results are then de-
crypted and a majority voting takes place: the instance
is attributed the class shared by a majority of the k
model vectors selected as its closest.

With respect to this, our goal is not to design the best
clear-domain classification algorithm for the given prob-
lem but rather to build a “good enough” clear-domain
algorithm and show that its encrypted-domain counter-
part works just as well or almost as well and efficiently
so. In particular, with respect to efficiency, as the com-
puting time of any algorithm running in the encrypted
domain over FHE cannot by construction depend on its
input data, we could even have used a random selec-
tion of reference vectors and obtained the very same
performance results. To allow for our results to be fully
reproducible, we present our training and classification
process in detail in Appendix B.

5 http://yann.lecun.com/exdb/mnist/
6 https://scikit-learn.org/stable/

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Efficient homomorphic evaluation of k-NN classifiers 125

5.3 Performance results

5.3.1 Classification rate

Breast Cancer dataset. For a measure of our algo-
rithm’s accuracy, we can compare with the results of
previous work (see [28] for instance) which regularly
present classification rates between 94% and 97% de-
pending on the method used. We train our k-NN classi-
fier in the clear and obtain a classification rate of 95.2%
with k = 3 and d = 10 model vectors.

We implemented the FHE classification algorithm and
ran it on the encrypted model vectors selected during
the training phase. The overall classification rate was
95.0%. This means "going FHE" only slightly reduces
the accuracy of our k-NN classifier. Therefore, round-
ing the classified instances to integer vectors and keep-
ing real model vectors does not affect the overall accu-
racy that much. Furthermore, our algorithm works well
here not because all of the instances are quite far from
one another but rather in spite of the opposite. With
the given parameters, we determined that around 4%
of the differences of squared distances are lower than
the precision threshold of our sign bootstrapping oper-
ation. However, as mentioned in Section 5.1, a k-NN
classifier can be quite resilient to such computational
mistakes.

In all of our testing, we found values for k that are low
(7 or below) not because it was easier for us computa-
tionally (we mentioned that it changes almost nothing
to the efficiency of the algorithm) but rather because
k values are always very low in a k-NN classifier. [29]
reviewed an important amount of k-NN algorithms at
the time and determined that in 75% of the cases, the
k = 1 classifier was the best one.

Interestingly, in the FHE case, we found that k = 3
gives significantly better results than k = 1. When k =
1, the difference in classification rate between a clear
classification and an FHE one is 3% on average. The
difference when k = 3 never exceeds 0.4%. This is due
to the fact that, as mentioned in Sect. 5.1, a majority-
class voting scenario (k > 1) attenuates the impact of a
single error significantly.

MNIST dataset. An application of our algorithm on
the well-known MNIST database allows us to provide
benchmarks for the efficiency and accuracy of our algo-
rithm. To that end, we test our algorithm with 5 dif-
ferent model sizes. Each size is chosen as the smallest
model size able to achieve a given benchmark classi-

fication rate on the MNIST database. Table 3 shows
the values that were chosen for model sizes (d) and
their respective benchmark clear classification rates. It
shows the classification rates achieved with each model
through the FHE classifier. We use k = 3 for every clas-
sification.

d 40 175 228 269 457
clear rate (%) 80 95 96 97 98
fhe rate (%) 79.5 94.8 95.4 96.4 97.3

Table 3. k-NN classification rates over the MNIST database. This
table gives the MNIST classification rates both in the clear case
and in the fhe case, depending on the size of the model (d).

Overall the accuracy loss is relatively low. Importantly,
it does not depend on the size of the model: this is due to
the fact that we built a fully homomorphic scheme and
not a levelled scheme. Since the parameters are the same
regardless of the size of the problem, on average, the loss
of accuracy is constant. The relatively high number of
model vectors needed to obtain a similar classification
rate to that of the breast cancer database result can
be explained (in part) by the higher number of classes.
The MNIST database requires a classification among
10 different classes (there are 2 classes for the breast
cancer database), this increases the amount of model
vectors needed for an accurate classification.
s

5.4 Timing results

As mentioned previously, our algorithm has a quadratic
complexity with regard to the number of training in-
stances (model vectors). This is because we are comput-
ing d2−d

2 sign bootstrapping operations to obtain the δ
values. After that, we need to run the scoring algorithm
on each column of the δ matrix, with roughly d× d

m−k
S-box evaluations in total. Of course, this is a less ef-
ficient k-NN algorithm compared with existing work in
the clear as, some optimizations in the literature allow
approximate k-NN classifiers to run in sublinear time.
However our work is the only one to achieve a fully
non-interactive secure k-NN classifier, and the quadratic
complexity is the price that we pay for that. This can
be explained intuitively by the fact that any such secure
non-interactive classifier cannot use conditional gates
to reduce the complexity of the algorithm: if it did, it
would leak a lot of information to the data host. We
are running the operations on an Intel Core i7-6600U
CPU. All of the times that we present here correspond

Efficient homomorphic evaluation of k-NN classifiers 126

to sequential computation times. Our scheme is highly
parallelizable as mentioned.

Breast Cancer dataset. The real-world breast cancer
detection problem we applied our algorithm on requires
us to find the k = 3 closest vectors to a source vector
among d = 10 model vectors. When applied to this prob-
lem, a single k-NN classification takes 4 seconds to finish
sequentially. In the first application scenario presented
in Sect. 2, a patient and/or her doctor are sending an
encrypted query for remote classification. In our case
this means they would have to wait around 4 seconds
for an answer. Given that an average medical consulta-
tion takes around 15 minutes, the response time is ap-
propriate. In the second scenario of an epidemiological
study as presented in Sect. 2, a pharmaceutical com-
pany running this study over several remote databases
of 500 patient vectors each would have to wait under 35
minutes (for sequential computations) to get the results
of their study. It is an appropriate latency for such a
use-case.

MNIST dataset. As for the MNIST database, Table
4 shows how much time a single classification takes de-
pending on the size of the model. For instance, in order
to classify with 95% accuracy, one classification would
take just under 12 minutes of sequential computation-
time to complete (recall, as already emphasized in Sect.
4.5.4, that our scheme is highly parallelizable and that
these timings can be significantly decreased through
multi-core execution). We recall that each model size
is chosen as the smallest model size able to achieve
a given benchmark classification rate on the MNIST
database.

d 40 175 228 269 457
time (min) 0.5 11.6 18.3 25.4 70.8

Table 4. Sequential timings for a single MNIST k-NN homomor-
phic classification, depending on the size of the model (d). The
time is given in minutes.

5.5 Bandwidth usage

The bandwidth usage depends on which scenario
(among the two presented in Section 2) is used for the
secure k-NN classification. In any case, two bootstrap-
ping keys have to be sent (once at setup time), which
- given the parameters used here - correspond to 200
MBytes. The encrypted result is sent in every case as
10 TLWE samples amounting to 40 KBytes. Let us present

the amount of bandwidth used on top of that in both
our scenarios.

Encrypted model vectors. In the k-NN scenario pre-
sented in Sect. 4.5, the model vectors are encrypted and
the query is in the clear. This means that d

[
C(i)](r) ci-

phertexts and d [Ai](r) ciphertexts have to be sent (with
d the size of the model). For the breast-cancer problem
(d = 10), the encrypted data to be transferred amounts
to 160 KBytes. In the case of the MNIST database, the
size of the data transfer is given in table 5 depending
on the size of the model used.

d 40 175 228 269 457
bandwidth usage (MBytes) 0.6 2.8 3.6 4.3 7.3

Table 5. Amount of bandwidth usage (on top of the boot-
strapping key) for the different model sizes used in our MNIST
database application, in the case of an encrypted model.

Encrypted query. In the case where our scheme is
used to send an encrypted query to be compared with
a set of clear model vectors, then the communication
overhead prior to the computation amounts to a single
TRLWE sample (8 KBytes).

6 Conclusion
In this paper, we designed and implemented a novel se-
cure k-NN algorithm requiring no interaction between
involved entities during the computation phase. To the
best of our knowledge, it is the first such algorithm.
It uses exclusively special purpose fully homomorphic
encryption building on the versatility of the TFHE en-
cryption scheme. Although our algorithm is quadratic in
complexity it achieves practical homomorphic sequen-
tial execution performances for small sizes of model
vector sets. Furthermore, it may still achieve perfor-
mances meeting the latency constraints of real-world
scenarios requiring larger such sets by means of im-
provements achievable through basic multi-core paral-
lelization.

Acknowledgments
This research was funded in part by a PhD grant from
Commissariat à l’Energie Atomique, France.

Efficient homomorphic evaluation of k-NN classifiers 127

References
[1] H. Rong, H. Wang, J. Liu, and M. Xian. Privacy-preserving

k-nearest neighbor computation in multiple cloud environ-
ments. IEEE Access, 4:9589–9603, 2016.

[2] M. Burkhart and X. Dimitropoulos. Fast privacy-preserving
top-k queries using secret sharing. In 2010 Proceedings of
19th International Conference on Computer Communications
and Networks, pages 1–7, Aug 2010.

[3] Feng Zhang, Gansen Zhao, and Tingyan Xing. Privacy-
preserving distributed k-nearest neighbor mining on hori-
zontally partitioned multi-party data. In Ronghuai Huang,
Qiang Yang, Jian Pei, João Gama, Xiaofeng Meng, and Xue
Li, editors, Advanced Data Mining and Applications, pages
755–762, Berlin, Heidelberg, 2009. Springer Berlin Heidel-
berg.

[4] Murat Kantarcıoǧlu and Chris Clifton. Privately computing
a distributed k-nn classifier. In Jean-François Boulicaut,
Floriana Esposito, Fosca Giannotti, and Dino Pedreschi,
editors, Knowledge Discovery in Databases: PKDD 2004,
pages 279–290, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[5] Li Xiong, Subramanyam Chitti, and Ling Liu. K nearest
neighbor classification across multiple private databases. In
CIKM, 2006.

[6] Li Xiong, Subramanyam Chitti, and Ling Liu. Preserving
data privacy in outsourcing data aggregation services. ACM
Trans. Internet Techn., 7, 08 2007.

[7] Y. Qi and M. J. Atallah. Efficient privacy-preserving k-
nearest neighbor search. In 2008 The 28th International
Conference on Distributed Computing Systems, pages 311–
319, June 2008.

[8] M. Shaneck, Y. Kim, and V. Kumar. Privacy preserving
nearest neighbor search. In Sixth IEEE International Con-
ference on Data Mining - Workshops (ICDMW’06), pages
541–545, Dec 2006.

[9] J. Zhan and S. Matwin. A crypto-based approach to
privacy-preserving collaborative data mining. In Sixth
IEEE International Conference on Data Mining - Workshops
(ICDMW’06), pages 546–550, Dec 2006.

[10] Jeongsu Park and Dong Lee. Privacy preserving k -nearest
neighbor for medical diagnosis in e-health cloud. Journal of
Healthcare Engineering, 2018:1–11, 10 2018.

[11] Marten Van Dijk and Ari Juels. On the impossibility of cryp-
tography alone for privacy-preserving cloud computing. In
Proceedings of the 5th USENIX Conference on Hot Topics
in Security, HotSec’10, pages 1–8, Berkeley, CA, USA, 2010.
USENIX Association.

[12] Frank Li, Richard Shin, and Vern Paxson. Exploring pri-
vacy preservation in outsourced k-nearest neighbors with
multiple data owners. In Proceedings of the 2015 ACM
Workshop on Cloud Computing Security Workshop, CCSW
’15, page 53–64, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450338257.
10.1145/2808425.2808430. URL https://doi.org/10.1145/
2808425.2808430.

[13] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private
queries over untrusted data cloud through privacy homo-
morphism. In 2011 IEEE 27th International Conference on

Data Engineering, pages 601–612, April 2011.
[14] Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos

Mamoulis. Secure knn computation on encrypted databases.
In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, pages
139–152, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-551-2.

[15] B. Yao, F. Li, and X. Xiao. Secure nearest neighbor revis-
ited. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 733–744, April 2013.

[16] B. K. Samanthula, Y. Elmehdwi, and W. Jiang. k-nearest
neighbor classification over semantically secure encrypted
relational data. IEEE Transactions on Knowledge and Data
Engineering, 27(5):1261–1273, 2015.

[17] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya,
Ilya P. Razenshteyn, and M. Sadegh Riazi. SANNS: scaling
up secure approximate k-nearest neighbors search. CoRR,
2019.

[18] Andrew Chi-Chih Yao. How to generate and exchange se-
crets. In Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, SFCS ’86. IEEE Com-
puter Society, 1986.

[19] Martin Zuber, Sergiu Carpov, and Renaud Sirdey. Towards
real-time hidden speaker recognition by means of fully ho-
momorphic encryption. 2019.

[20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Faster fully homomorphic encryption: Boot-
strapping in less than 0.1 seconds. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. ISBN 978-3-662-53887-6.

[21] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Improving tfhe: faster packed homomorphic op-
erations and efficient circuit bootstrapping. IACR Cryptology
ePrint Archive, page 430, 2017.

[22] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. TFHE: Fast fully homomorphic encryption
library, August 2016. https://tfhe.github.io/tfhe/.

[23] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing. ACM, 2005.

[24] V Lyubashevsky, C. Peikert, and O. Regev. On ideal lat-
tices and learning with errors over rings. In EUROCRYPT.
Springer, 2010.

[25] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast
homomorphic evaluation of deep discretized neural networks.
In Proceedings of CRYPTO 2018. Springer, 2018.

[26] Martin R. Albrecht, Rachel Player, and Sam Scott. On
the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169 – 203, 2015. URL https:
//www.degruyter.com/view/journals/jmc/9/3/article-p169.
xml.

[27] Dheeru Dua and Casey Graff. UCI machine learning reposi-
tory, 2017. URL http://archive.ics.uci.edu/ml.

[28] David Bingham Skalak. Prototype Selection for Composite
Nearest Neighbor Classifiers. PhD thesis, USA, 1997.

[29] C Feng, A Sutherland, R King, S Muggleton, and R Henery.
Comparison of machine learning classifiers to statistics and
neural networks. In Proceedings of the Third International
Workshop in Artificial Intelligence and Statistics, 1993.

https://doi.org/10.1145/2808425.2808430
https://doi.org/10.1145/2808425.2808430
https://doi.org/10.1145/2808425.2808430
https://www.degruyter.com/view/journals/jmc/9/3/article-p169.xml
https://www.degruyter.com/view/journals/jmc/9/3/article-p169.xml
https://www.degruyter.com/view/journals/jmc/9/3/article-p169.xml
http://archive.ics.uci.edu/ml

Efficient homomorphic evaluation of k-NN classifiers 128

A Proofs
In this section, we provide proofs of propositions 1 and
2.

proof of Proposition 1. There are two cases to look at.

Case 1:
2m−k∑

l=m−k+1

xl ≤ m− k

then we have

Sk,m (xm−k+1, . . . , x2m−k) = 0

and since x1, . . . , x2m−k ∈ B, then
∑m−k
l=1 xl ≤ m− k.

Therefore A = 0. Also,

2m−k∑
l=1

xl =
m−k∑
l=1

xl +
2m−k∑

l=m−k+1

xl

≤ m− k +m− k
≤ 2m− 2k

And we have

B = max

(
0 , 2k − 2m+

2m−k∑
l=1

xl

)

Therefore B = 0 = A.

Case 2:
2m−k∑

l=m−k+1

xl > m− k

Then

Sk,m (xm−k+1, . . . , x2m−k) = k −m+
2m−k∑

l=m−k+1

xl

And

A = Sk,m

(
x1, . . . , xm−k, k −m+

2m−k∑
l=m−k+1

xl

)

= max

(
0, k −m+

m−k∑
l=1

xl + k −m+
2m−k∑

l=m−k+1

xl

)

= max

(
0, k − (2m− k) +

2m−k∑
l=1

xl

)
= Sk,2m−k (x1, . . . , x2m−k)
= B

proof of Proposition 2. If we assume that the homomor-
phic operations work as expected (this depends only on
an appropriate choice for the parameters) then we can
simply show that the same computation, but over clear
data, yields the right result.
We have:

2M · C(i) = 2

(
γ−1∑
l=0

b
τ × µγ−l

ν
e ·Xl

)
·

(
γ−1∑
l=0

c
(i)
l+1
τν
·Xl

)

Therefore its (γ−1)th coefficient is 2×
∑γ
l=1b

τ×µl
ν e×

c
(i)
l
τν .

If τ is high enough, then b τ×µlν e = τ×µl
ν and this means

the (γ − 1)th coefficient of

Ai +

(
γ∑
l=1

µ2
l

ν2

)
Xγ−1 − 2M · C(i)

is
γ∑
l=1

(
c

(i)
l

ν

)2

+
γ∑
l=1

µ2
l

ν2 − 2×
γ∑
l=1

µlc
(i)
l

ν2

= 1
ν2

γ∑
l=1

µ2
l − 2µlc

(i)
l +

(
c

(i)
l

)2

= 1
ν2

γ∑
l=1

(
µl − c

(i)
l

)2

= 1
ν2

∥∥∥µ− c(i)
∥∥∥2

2
= 1
ν2 d2

i

Therefore the (γ − 1)th coefficient of

Ai +
��

���
���(

γ∑
l=1

µ2
l

ν2

)
Xγ−1 − 2M · C(i)

−

Aj +
��

���
���(

γ∑
l=1

µ2
l

ν2

)
Xγ−1 − 2M · C(j)


=Ai −Aj + 2M ·

(
C(j) − C(i)

)
is 1

ν2 (d2
i − d2

j).

B Details on the classification
process

In this section, we present our classification process
in detail. This classification is made in the cleartext
space.

Breast Cancer dataset. The data is first pre-
processed by rescaling every attribute to a value be-
tween 0 and 1. More complex classification algorithms

Efficient homomorphic evaluation of k-NN classifiers 129

could choose to rescale some attributes differently to
increase or decrease their weight in the distance com-
putation. However, most of the previous work apply-
ing a k-NN algorithm applies this simple pre-processing
(see [28]). We simply apply the same pre-processing. As
seen section 4.5.2 our model vector and source vector
values are both rescaled using the same factor ν and
the source vector is multiplied by a factor τ and then
rounded.

At this point a classification rate is obtained through
a classification process which we took from the existing
literature (see [28] for instance). A few things change in
our process compared with the literature’s usual rules
of thumb. We present our reasoning below. Here is our
classification process:

– 1. Select 459 instances at the start to be the testing
set among the 569.

– 2. Among the 110 instances left, select randomly 10
instances to be the training set. The 100 other one
are the validation set.

– 3. Classify the 100 instances from the validation
set by finding their k closest neighbours among the
training set instances with k an odd number. The
majority class among the neighbours is selected.

– 4. Compute the classification rate (the number of
correct classifications divided by 100).

– 5. Repeat steps 2 to 4 a certain amount of times
and keep the training set that yields the maximum
classification rate on the validation set.

– 6. Compute the classification rate of the testing set
using the selected best training set. This is what we
actually call the classification rate.

The use of a training, validation and testing set is a
standard machine learning method. In this context, one
aims to optimize one’s classification rate on the valida-
tion data by changing every parameter under their con-
trol (here, the size and content of the training set and
the value k). Then the classification rate of the testing
set is computed once.

A rule of thumb in machine learning is to have the fol-
lowing ratio: 64% training set; 16% validation set; 20%
testing set. This ratio is not the one we choose to apply:
a very small (in absolute value) testing set could not
have yielded a very trustworthy result. Additionally, a
small validation set (again, in absolute value) limits the

quality of the classifier: if it is too easy to obtain a 100%
classification rate over the validation set, then there is
less competition among the possible model vectors. In
comparison, our ratio is the following: 2% training set;
18% validation set; 80% testing set. With this ratio, we
achieve classification rates comparable to the state-of-
the-art results on this database using the k-NN classifi-
cation method. It allows us to reduce the time a single
classification takes in the encrypted space, and, by in-
creasing the size of the testing set, to make our results
more stable. For the purpose of comparison, when run-
ning exactly the same training algorithm, but with the
usual set ratios given above, we obtain a clear classifi-
cation rate of 94.7% (with d = 364 model vectors). The
clear classification rate we obtain with our modified ra-
tios is 95.2% (with d = 10 model vectors).

For reproductibility purposes, we include here the iden-
tification numbers of all 10 vectors eventually selected
as our model vectors: 864018, 857010, 855563, 848406,
857156, 862717, 8510653, 86208, 861598, 852781.

MNIST dataset. The database in this case is pre-
processed and therefore we jump directly to the selec-
tion of the model vectors phase. We do this in exactly
the same manner as with the breast cancer database.
Importantly, we used several different sizes for our
model to give a better understanding of our algorithm’s
scaling ability, both in terms of accuracy and in terms
of efficiency.

	Efficient homomorphic evaluation of k-NN classifiers
	1 Introduction
	1.1 Prior work
	1.2 Our contribution

	2 Scenario and threat model
	3 Preliminaries
	3.1 Notations
	3.2 The TFHE encryption scheme
	3.3 Problem definition
	3.4 FHE operations

	4 Our k-NN algorithm
	4.1 Distance computation
	4.2 Delta values
	4.3 A first partial solution
	4.4 The scoring algorithm solution
	4.4.1 An example execution

	4.5 Going FHE
	4.5.1 Encoding and encryption
	4.5.2 Squared distance difference computation
	4.5.3 Delta computation
	4.5.4 The scoring operation

	5 Experimental results
	5.1 FHE implementation
	5.2 Experimental setup
	5.2.1 The datasets
	5.2.2 The classification process

	5.3 Performance results
	5.3.1 Classification rate

	5.4 Timing results
	5.5 Bandwidth usage

	6 Conclusion
	A Proofs
	B Details on the classification process

