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Abstract: Voice-activated commands have become a key
feature of popular devices such as smartphones, home
assistants, and wearables. For convenience, many peo-
ple configure their devices to be ‘always on’ and listen-
ing for voice commands from the user using a trigger
phrase such as “Hey Siri,” “Okay Google,” or “Alexa.”
However, false positives for these triggers often result
in privacy violations with conversations being inad-
vertently uploaded to the cloud. In addition, malware
that can record one’s conversations remains a signifi-
cant threat to privacy. Unlike with cameras, which peo-
ple can physically obscure and be assured of their pri-
vacy, people do not have a way of knowing whether their
microphone is indeed off and are left with no tangi-
ble defenses against voice based attacks. We envision
a general-purpose physical defense that uses a speaker
to inject specialized obfuscating ‘babble noise’ into the
microphones of devices to protect against automated
and human based attacks. We present a comprehen-
sive study of how specially crafted, personalized ‘babble’
noise (‘MyBabble’) can be effective at moderate signal-
to-noise ratios and can provide a viable defense against
microphone based eavesdropping attacks.
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1 Introduction
There are an estimated 3.3 billion actively used smart-
phones around the globe today,1 and there is a growing
market for digital assistants such as Google Home and
the Amazon Echo; for example, more than 100 million
Alexa-enabled digital assistants have been sold to date.2

These microphone-enabled devices feature an ‘always
listening’ mode to support voice based commands. As
a convenience over physically pressing a button, peo-
ple can trigger voice commands with spoken phrases
such as “Hey Alexa,” “Okay Google,” and “Hey Siri”
for Amazon-, Google-, and Apple-based devices, respec-
tively. (Always-on) microphones in these ubiquitous de-
vices, however, raise significant privacy concerns. First,
digital assistants are often incorrectly triggered through
false positives and violate people’s privacy by uploading
unauthorized conversations to the cloud [37] or, worse,
by sending them to contacts by incorrectly interpreting
casual conversations as complex commands.3 Second,
unlike cameras, which also pose privacy risks but can
be covered more ‘tangibly’ by users (e.g., with physical
items such as clothes or stickers), microphones are not
easily disabled or muted. Even if these microphones are
ostensibly ‘off’ (e.g., using on-board mute buttons), they
can potentially record conversations through eavesdrop-
ping malware [50]. Microphones, in general, pose a seri-
ous threat to the privacy of users – they are ubiquitous
in people’s lives, can be easily exploited, and yet have
no clear, ‘tangible’ way of being disabled by users [3].

Although simply turning off or removing the device
from one’s bedroom (for example) is a viable choice, it
is a heavy-handed approach. People have legitimate rea-
sons to have their smartphones and personal assistants
on hand (and ‘on’), e.g., to notice and receive incoming
calls. Yet, there are situations when one would prefer
that the camera is obscured or the microphone disabled.

1 https://venturebeat.com/2018/09/11/newzoo-smartphone-
users-will-top-3-billion-in-2018-hit-3-8-billion-by-2021/
2 https://www.theverge.com/2019/1/4/18168565/amazon-
alexa-devices-how-many-sold-number-100-million-dave-limp
3 https://bgr.com/2018/05/25/amazon-alexa-recording-
private-conversation/

https://venturebeat.com/2018/09/11/newzoo-smartphone-users-will-top-3-billion-in-2018-hit-3-8-billion-by-2021/
https://venturebeat.com/2018/09/11/newzoo-smartphone-users-will-top-3-billion-in-2018-hit-3-8-billion-by-2021/
https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-million-dave-limp
https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-million-dave-limp
https://bgr.com/2018/05/25/amazon-alexa-recording-private-conversation/
https://bgr.com/2018/05/25/amazon-alexa-recording-private-conversation/
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Therefore, we seek defenses where a user can choose to
‘mask’ their conversations while retaining the functions
and proximity of their devices. We also seek to make a
more general contribution, as we explain below, where
complementary jamming solutions can employ more ef-
fective noise patterns to mask conversations.

In general, defenses against eavesdropping attacks
have not been adequately researched. Although much
work has been done in the area of ‘speech separa-
tion’ [30, 60, 63] to retrieve a signal with added back-
ground noise from ‘babble noise generators,’ these tech-
niques have not been studied in adversarial settings.
Babble noise can mimic noisy or bustling cafes, and
speech separation can sometimes retrieve speech of in-
terest, but it is unknown to what degree signals can
be recovered in the face of adversarial noise. Further-
more, adversarial settings to retrieve the signal have
not considered strong adversary models where the at-
tacker may have a trained model based on the tar-
get victim’s speech. One class of microphone attacks
(that could be used as a defense against eavesdrop-
ping) aims to jam microphones, e.g., using techniques
that treat the microphone as an antenna and project
sound from large distances [33] or by injecting ultra-
sonic noise [14, 49]. However, it is not known what kind
of noise should be injected to effectively mask against
eavesdropping. Another class of attack seeks to trigger
or foil speech recognition by injecting adversarial noise
(including ultrasonic noise) aimed at the machine learn-
ing algorithm to result in specific (but incorrect) speech
transcription [13, 14]. In the latter case, however, a hu-
man attacker could potentially discern the target audio
because the speech itself may not be effectively obfus-
cated. Therefore, defenses that obscure against both au-
tomated and human attackers are needed.

In this work, we devise and evaluate a method
called ‘MyBabble’ for generating personalized, obfuscat-
ing ‘babble noise’ that is robust against strong adver-
saries who are capable of building automated speech
recognition models tuned to their adversaries. Basic
forms of babble noise have been shown to be effective
against humans [17], but it is unknown how babble noise
can perform against sophisticated attacks. We perform
a series of experiments to evaluate the performance of
speech separation and recognition techniques under pro-
gressively stronger adversarial models and various noise
models. In addition to training adversarial automatic
speech recognition (ASR) systems using ‘clean’ speech
from the target, we studied ASR models which were
trained using speech and noise mixtures at very low
signal-to-noise ratios (SNR). Once we identified a rea-

sonable scenario for a strong remote adversary using
ASR, we designed our MyBabble noise mixture using
a range of novel techniques. In essence, our approach
mixes a large number of randomly obtained speech
‘tracks’ using ‘voice-conversion’ techniques to transform
these tracks to imitate the voice characteristics of the
speaker. We then show that this approach of building
obfuscating noise results in poor performance for an
attacker at SNR levels that, for example, can be eas-
ily achieved with headphone-style speakers placed on
the device’s microphone without disturbing people in
the vicinity. We finally run a real-world test to con-
firm our simulation-based results. In addition to this
use case of using one’s personal headphones, our ap-
proach is general-purpose in that MyBabble can be used
with other injection techniques such as remote jamming
through ultrasonic methods [13, 14].

2 Related Work
We discuss related work on attacks and defenses
for microphone-based eavesdropping; automated speech
recognition systems; ‘babble’ noise; and voice conversion
techniques.

2.1 Attacks and Defenses

Multiple studies have explored how different devices
with microphones can be exploited to violate peo-
ple’s privacy. Schlegel et al. [50] designed a proof-of-
concept malware called “Soundcomber,” which was able
to eavesdrop on a smartphone’s owner and transcribe
credit-card numbers and other sensitive spoken num-
bers in phone calls. Earlier, Zhuang et al. [67] proposed
a method to obtain what users have typed on their key-
board by simply recording about 10 minutes of keyboard
strokes from a nearby microphone. Malware, such as
Soundcomber, could use such techniques to also eaves-
drop and transcribe keystrokes heard in the vicinity. Re-
cently, ransomware has been observed in the real world
recording conversations for later blackmail.4 In general,
the threat of malware on smartphones and IoT devices

4 Forbes: Creepy New Android Malware Can Secretly
Record Your Conversations. https://www.forbes.com/sites/
leemathews/2018/02/28/creepy-new-android-malware-can-
secretly-record-your-conversations/#2f3f6950335f

https://www.forbes.com/sites/leemathews/2018/02/28/creepy-new-android-malware-can-secretly-record-your-conversations/##2f3f6950335f
https://www.forbes.com/sites/leemathews/2018/02/28/creepy-new-android-malware-can-secretly-record-your-conversations/##2f3f6950335f
https://www.forbes.com/sites/leemathews/2018/02/28/creepy-new-android-malware-can-secretly-record-your-conversations/##2f3f6950335f
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‘listening in’ on people’s conversations is a realistic and
potent threat.

Defenses against microphone-based eavesdropping
attacks remain challenging. Although software-based se-
curity defenses that seek to detect such malware remain
relevant, one must assume that on-device defenses can
be disabled by malware. Thus, our work seeks to exam-
ine the class of external defenses by injecting obfuscat-
ing noise from an external device. Along these lines, a
few such approaches have been reported in the litera-
ture. Kune et al. [33] demonstrated how audio can be
injected into a microphone by treating them as an an-
tenna using low-power electromagnetic waveforms. Al-
though presented as an attack, such an approach could
be used to inject noise into the microphone as a defense.
For example, recent work has shown how ultrasonic jam-
ming can be improved and made more practical for end
users to disable microphones [14]. Independent of the
mechanism used for jamming, it is still not known what
is an effective method of generating noise to obfuscate
human speech. Carlini et al. [12] showed how attackers
can activate different automatic speech recognition sys-
tems without alerting their users. Such techniques could
be used to foil speech-recognition systems used by ad-
versaries. Although effective against large-scale dragnet
attacks, a human attacker targeting an adversary who
listens to the speech transcript will be able to easily dis-
cern the victim’s speech. Thus, more work is needed on
human audible obfuscating speech that can be injected
into microphones to foil both ASR systems as well as
human adversaries.

2.2 Automated Speech Recognition

In our work we assume adversaries who can use and
train speech-recognition models tuned to their tar-
get victims. Today’s state-of-the-art automatic speech
recognition (ASR) systems can achieve impressive per-
formance by recognizing everyday speech across a range
of speakers. These ASR systems are particularly good
at recognizing content of ‘clean’ speech but tend to de-
grade in performance in the presence of noise [57]. The
brittleness of the ASR systems is not surprising because
various studies show that even for human listeners, noise
can be a hurdle for comprehending speech [24]. Adver-
sarial attacks against ASR systems try to fool deep-
learning models using malicious inputs. Several adver-
sarial attacks have been investigated against computer
vision algorithms [32, 35]. More recently, speech-based
adversarial attacks have been studied [4, 13]. Such at-

tacks, however, are ‘one-to-one’ attacks, i.e., one needs
to devise specially crafted noise for each sentence. This
makes the attack (or its use as a defense in our context)
computationally expensive and cannot be executed in
real time. Our proposed defense mechanism introduces
an approach to generate such adversarial noise in ad-
vance to severely degrade ASR for the target speech.

2.3 Babble Noise

Our MyBabble defense mechanism improves on the con-
cept of ‘babble’ noise (which combines multiple voice
tracks) by tuning it for each target speaker. Basic bab-
ble noise is effective at masking speech because it is non-
stationary over time and consists of several speech sig-
nals that make separating speech and recognizing speech
much more difficult [44, 63]. This effectiveness partially
occurs because babble noise obstructs much of the au-
dible frequency range, which does not allow listeners
(or recognition systems) to hear speech in spectral gaps
that other noises produce [39]. Bronkhorst et al. [10]
identified babble noise as an effective noise for masking
speech and evaluated the impact of different configu-
rations. Elliott et al. [17] performed a user study with
children from 9 to 17 years old and found babble noise
to be effective at masking target speech. In general, bab-
ble noise is used to test speech separation applications,
e.g., to improve the performance of hearing aids in noisy
environments. However, they have not been studied in
adversarial settings. In most cases, generic versions of
babble noise are used that are constructed from random
speakers. In this study, we postulate that user-specific
babble noise will better interfere with speech from the
user and render speech even more unintelligible at a
larger range of noise levels.

2.4 Voice Conversion

‘Voice conversion’ is a technique that ‘transfers’ an ut-
terance from a source speaker to a target speaker. Fol-
lowing conversion, the utterance will then sound as if
it were spoken by the target speaker. Of course, there
are many nuances to mimicking the speech of a tar-
get speaker, and voice conversion techniques continue
to evolve [27, 51]. An overview of this field can be found
in the work of Mohammadi and Kain [41]. In our work,
we seek to mask a victim’s utterances using specialized
babble noise constructed from voice-converted tracks
tuned to the victim’s speech. Several traditional voice
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conversion systems based on Gaussian mixture models
(GMM) [2, 29] require parallel corpora, which consists
of the same set of recorded utterances from the source
and target speakers. This is a practical limitation since,
(1) such parallel corpora are difficult to obtain, and (2)
the possible conversions are limited to the utterances in
the corpora. Recent work has explored the use of deep
neural networks to avoid the need for parallel data [52];
however, this approach is less flexible because it can only
perform conversions to a single target speaker, which
limits scalability. In our work, we build a convolutional
variational auto-encoder (VAE) for the voice conversion
system inspired by the work of Hsu et al. [25], which
is a many-to-many voice conversion system that does
not require parallel data from speakers. We include a
convolutional network to better capture local and short-
time spectral-temporal structure, which is not captured
with deep neural networks. Our VAE does not require
phonetic and lexical information, which simplifies the
approach since it requires only audio data.

3 Method
In this section, we describe our defensive approach based
on babble noise, the adversarial setting, and our metric
for evaluation.

3.1 Threat Model

We assume that attackers are interested in a ‘target’
user of interest who owns at least one ‘target device.’
The attacker compromises this device to eavesdrop on
the target’s conversations. Likewise, we assume the tar-
get user is aware of such a potential attack and is mo-
tivated to defend against such attacks.

3.1.1 Target User Assumptions

We assume the target user does not trust the device with
the embedded microphone and is worried it may eaves-
drop on the target user’s face-to-face conversations. For
example, the target’s smartphone may eavesdrop on a
‘physical’ space conversation between the target user
and their spouse, or a confidential, in-person conversa-
tion between a lawyer and their client. In this model,
the target user assumes that either the platform itself is
adversarial (or, e.g., coerced by the government), or a re-

mote adversary has entirely compromised the platform.
Even if the user is particularly cautious in maintaining
the security of the device, the user could still be wor-
ried about potential eavesdropping by the platform it-
self. For example, the target user may be uncomfortable
with companies such as Amazon, Google, or Apple hav-
ing access to the microphone at all times. At the same
time, as is commonplace today, the target user finds suf-
ficient utility in owning and using the device and, thus,
is unwilling to discontinue the use of the device alto-
gether. Such practical choices are already demonstrated
in practice where people use stickers to obscure cameras
on their laptops in situations where they do not trust
the device with access to the camera and allow limited
use of the camera when needed by temporarily removing
the sticker. Likewise, we assume target users will want
to enact an analogous defense against the microphone
by trying to ‘obscure’ the microphone in various situa-
tions. Recent work has shown that people would prefer
such functionality to temporarily disable microphones
on mobile/IoT devices [3].

3.1.2 Adversarial Capabilities

We assume a strong adversarial model where attackers
have full access to the target user’s device. In particular,
we make the following assumptions:
• We assume a remote attacker who is not physically

proximal to the target and must thus rely on a com-
promised device with a microphone to eavesdrop on
the target’s conversations. We assume the attacker
can gain (or as the platform owner, already has) full
control of the target device.

• The attacker has access to the latest computational
techniques for speech separation and automated
speech recognition (ASR) so that they can try to
isolate the target user’s speech and even perform
automated surveillance without the need for human-
based audio transcription.

• At the same time, we assume that if ASR fails (e.g.,
because of any employed defenses) for the attacker,
the attacker has the time to listen to the captured
audio. Thus, any defense must be robust against
both automated and human based attacks.

• We assume the attacker has access to clean speech
samples from the target speaker, which can help
them train and tune ASR models to attempt to cir-
cumvent defenses that add noise to the captured
speech. In particular, we assume the attackers can
tune their models to noisy environments as well.
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3.1.3 Orthogonal Attacks

In this paper, we focus on designing personalized noise
defenses for single microphones. One counter-attack is
to use beamforming techniques that use multiple mi-
crophones to isolate speech based on direction informa-
tion [6] where such attacks assume speech and noise
come from different directions. We consider such attacks
orthogonal for the following reason: Defenses against
beamforming attacks rely on injecting noise into mul-
tiple microphones so that the direction of the noise
matches the direction of the target speech [65]. These
techniques are orthogonal to the question we address,
which is: After employing such defenses, what kind of
noise should be injected? Even if the noise occurs at
the same location as the target speech, other sophis-
ticated machine learning attacks may still isolate the
target speech if the noise does not obscure the spectral-
frequency content of the speech [7]. Any beamform-
ing defense must thus also employ personalized noise
to be effective. Our work focuses on the technical is-
sues and effectiveness of personalized noise, evaluated
in a single-microphone scenario but applicable to multi-
microphone scenarios.

3.2 Defense Method

Our proof-of-concept defense is to play noise through
an external device (earbuds) directly on top of the mi-
crophones of the compromised device (i.e., not at a dis-
tance). Since our experiments show that the noise does
not disturb people nearby, we can assume speakers will
not alter their voice via the Lombard effect (i.e., where
people enhance their voices in noisy environments). The
external noise generating device is assumed to be a stan-
dalone device that functions without the constant need
for an internet connection, and we assume it cannot be
compromised by the attacker in our threat model.

Before describing our defensive approach, we pro-
vide some background about the basic approach and
identify two state-of-the-art ‘baseline’ defenses for com-
parison.

3.2.1 Baseline Defense Mechanism

Our baseline defense against eavesdroppers is to add ob-
structive noise to the environment to render the speech
unintelligible. When noise is added to speech at a cer-

tain signal-to-noise ratio (SNR), the noisy speech mix-
ture, m(t), at time t is defined as:

m(t) = s(t) + 10α/20 · n(t) (1)

where s(t) and n(t) are the ‘clean’ speech and noise
signals, respectively. We multiply the noise signal by
a scalar value to ensure that the noisy speech mixture
has a desired SNR. α is calculated as:

α = 20 log10


√√√√∑T

i=1(s(i)− µs)2∑T
i=1(n(i)− µn)2

− SNR (2)

where T is the length of the signal, SNR is the desired
SNR level in decibels (dB), and µs and µn are the aver-
age values of the speech and noise signals, respectively.
The SNR of a noisy speech signal is based on the relative
total energy of the noise and speech components. SNR
plays a crucial role in the performance of both percep-
tual (according to human evaluations) and automatic
speech recognition. The SNR of a noisy speech signal is
calculated as:

SNR = 10 log10

[ ∑T
i=1 s

2(i)
10α/10∑T

i=1 n
2(i)

]
(3)

Next, we must determine if stationary or non-
stationary noise should be added to the speech. The sta-
tistical properties of stationary noise remain unchanged
over time as opposed to a non-stationary distribution,
which varies with time. Typically, both speech recogni-
tion and speech separation techniques perform signifi-
cantly worse when non-stationary noise is present [38].
Therefore, we decide to add non-stationary noise as our
form of defense. Two different baseline non-stationary
noises have been chosen – Babble and Cafe noises, where
these noises come from the NOISEX dataset [56]. Bab-
ble noise contains many people talking simultaneously,
and Cafe noise contains sounds from a cafeteria envi-
ronment, which includes people talking, doors closing,
and dishes clanking, to name a few. Bronkhorst et al.
found that ‘babble noise’ is highly effective at masking
speech (humans find it difficult to comprehend babble
noise) [10]. Babble and cafe noise also present challenges
to speech separation [63] and recognition [44]. Hence, we
restrict n(t) to babble and cafe noise types.

3.2.2 MyBabble: Proposed Defense Mechanism

For our proposed defense mechanism, user- (or target-)
specific babble noise is generated by combining simu-
lated speech signals of the user or the intended victim.
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Fig. 1. A depiction of the model structure for the variational
auto-encoding based voice conversion system.

User-simulated speech is generated by adapting a deep-
learning-based voice conversion technique that trans-
forms voice characteristics from one speaker to another
(target) speaker [25]. This generates new utterances in
the targeted speaker’s voice. Multiple simulated speech
signals are generated and combined to form the My-
Babble noise, which complicates recognition (perceptu-
ally and computationally) for the eavesdropper because
of the spectral overlap. Additionally, generating speech
signals that the target user has not spoken previously
acts as an extra layer of defense as the user can be as-
sured that the attacker has not seen this data before,
which weakens their potential attack.

We use a convolutional variational auto-encoder
(VAE) for the voice conversion system, which is inspired
by the work of Hsu et al. [25]. A VAE-based voice con-
version model is chosen because training such a model
is simpler since, unlike traditional Gaussian mixture
model (GMM) based approaches [54], parallel speech
corpora between multiple speakers are not needed. This
means that time-aligned features from the source and
target speakers are not needed, which broadens the pos-
sible utterances that can be generated since any speech
utterance can be converted to the target speaker’s voice.
Secondly, this approach enables voice conversions purely
from the audio data where phonetic and lexical infor-
mation about the utterances are not needed. Typically,
this information is often difficult to obtain as it requires
experts in linguistics. VAE models have been shown to
learn useful spectral and phonetic information that can
be used on a broad range of input signals [40, 66].

Fig. 1 shows the model structure of our voice con-
version system. The VAE-based voice conversion model
contains two main parts – an encoder and a decoder.
The model structure is similar to the originally proposed
model [25]. However, we use convolutional networks in-

stead of fully-connected feed forward DNNs since this
allows utterance-level conversion as opposed to short-
time level conversions. Convolutional neural networks
(CNNs) have also been shown to better capture local
spectral and temporal dependencies [55].Since speech
has strong short-term correlations across time and fre-
quency, we elect to use a convolutional based VAE in-
stead of a DNN to better capture this information.
Also, convolutional networks typically have fewer pa-
rameters, which reduces computational resources com-
pared to fully connected feed-forward DNN models. Our
implementation uses code by Hsu.5 The network con-
figuration and parameter values mentioned below are
based on the recommendations from Hsu et al. [25],
where they show good voice-conversion results. The en-
coder is composed of five convolutional layers with a
kernel size of 7 and stride of 3. The encoder is repre-
sented by function hφ. The decoder contains four con-
volutional layers with filter widths of 9, 7, 7, and 1025,
respectively. The corresponding strides of each layer are
3, 3, and 1. Each convoluational layer is followed by a
normalization layer. Leaky rectified linear (ReLU) acti-
vation functions are also used after each layer in order
to apply non-linearities that help with estimation. The
decoder operation is represented by function gθ.

The input to the encoder contains three parts. The
first part is the spectral magnitude Si for the ith fre-
quency bin. The spectral magnitude is computed from
the short-time Fourier transform (STFT) of the speech
signal. The STFT is computed with the fast Fourier
Transform (FFT) of size 1024, which results in 513 fre-
quency channels (or bins). The second part of the input
is the aperiodicity ai for each frequency bin, which is
the power ratio between the speech signal and the ape-
riodic component of the signal [42]. Lastly, the pitch,
f0, of the speech signal is used as the third component
of the encoder input. Therefore, for each time frame, n,
the encoder input xn is expressed as

xn = [S1 · · ·S513, a1 · · · a513, f0] (4)

The input features are extracted by the WORLD
vocoder [42, 43]. The encoder then generates a latent
representation, zn, as an output. This latent represen-
tation is concatenated with a variable spk that indicates
the target converted speaker’s identity. The concate-
nated vector, [zi, spk], then serves as the input to the
decoder, which estimates the voice characteristics (e.g.,

5 https://github.com/JeremyCCHsu/vae-npvc

https://github.com/JeremyCCHsu/vae-npvc
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spectral, aperiodicity, and pitch) of the targeted speaker
(e.g., user), x̂un.

Encoder : zn = hφ(xn)
Decoder : x̂un = gθ([zn, spk])

(5)

From the original VAE Voice Conversion paper, the
author uses 150 utterances per user to extract the voice
characteristics. Therefore, we suggest at least 150 ut-
terances from each target speaker should be used to
train the voice conversion system. In our experiment, we
used 720 utterances from two different speakers to sep-
arately learn the voice characteristics of the two speak-
ers. Future efforts will assess performance with differing
amounts of training utterances. The basic assumption
of the VAE is that the encoder output should obey a
standard normal distribution; if not, it should be penal-
ized [31]. If we do not include the regularizer, the en-
coder could learn to cheat and give each datapoint a rep-
resentation in a different region of Euclidean space [1].
Therefore, given encoder parameters, φ, decoder param-
eters, θ and input xn, the objective function for training
the VAE is expressed as:

L̂ (θ,φ;xn) =−DKL
(
qφ (zn|xn) ‖p (zn)

)
+ log pθ (x̂un|zn, spk)

(6)

DKL(·‖·) calculates the Kullback-Leibler divergence
(KLD) between the approximate, qφ (zn|xn), and the
true, p (zn), posterior probabilities. It serves as a regu-
larizer to ensure that p(zn) has a standard normal dis-
tribution. qφ(·) and p(·) are functions that calculate the
approximate and true posterior probabilities. They are
both modeled as normal distributions with diagonal co-
variances

qφ = N
(
zn;µzn

,diag (σzn)
)

pθ = N
(
x̂un;µxn

,diag (σxn)
) (7)

where µzn
and σzn are the mean and standard devia-

tion for the latent representation, zn; and µxn
and σxn

are the mean and standard deviation for the input fea-
ture, xn. The second term in Equation (6) measures the
reconstruction quality. This term equals log(1) if xn is
perfectly reconstructed.

3.3 Attack Method: Speech Recognition

Two state-of-art speech recognition models serve as the
main form of attack. The first one is Google’s Speech-to-
Text automatic speech recognition (ASR) system that
was developed by Google Brain [15]. The model de-
veloped by Google uses a multi-headed attention-based

neural encoder-decoder architecture. The model is first
trained on 12,500 hours of hand-transcribed utterances
extracted from Google voice-search data. In order to
improve robustness to noise, the system is then trained
a second time with noisy speech data that combines
clean speech utterances with noise from daily life events
that are captured from YouTube videos [47]. Google’s
Speech-to-text ASR system is powerful because of the
large training data set they use.

The second ASR model is the Deep Speech 2 ASR
system from Baidu Research [5]. Compared to Google’s
Speech-to-Text ASR system, Deep Speech 2 is easier to
customize and retrain. In this paper, the model is a Con-
nectionist Temporal Classification (CTC) based Recur-
rent Neural Network (RNN) that has two convolutional
layers that are followed by four recurrent layers.

Both ASR systems are end-to-end speech recogni-
tion models. Unlike traditional hybrid ASR systems that
require hand-crafted input features and expert knowl-
edge in linguistics [21], end-to-end speech-recognition
systems take either an unprocessed time- or time-
frequency domain input signal and jointly learn all
the components of the speech recognizer without prior
expert knowledge. Compared to hybrid ASR systems,
however, these models normally require a large amount
of data for acceptable performance. Both ASR sys-
tems use hidden Markov models (HMMs) that enforce
character- and word-level language constraints to min-
imize errors and to ensure that the most likely word
transcription is produced.

3.4 Evaluation Method

We use word error rate (WER) to evaluate ASR sys-
tem performance and the attacker’s ability to automat-
ically obtain useful speech information. WER is calcu-
lated by first identifying the number of words that the
ASR system correctly recognizes. Then, the total num-
ber of incorrect word substitutions WS , deletions WD

and insertions WI are also counted by comparing the
ASR system’s output transcription to the ground truth
transcription. WER is computed by dividing the sum
of substitutions, deletions, and insertions by the total
number of words NW in the reference transcription.

WER = WS +WD +WI

NW
× 100 (8)
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4 Experiments and Results
We now step through our evaluation of attacks and de-
fenses in different adversarial settings.

4.1 Datasets

We use three different English speech corpora to evalu-
ate our proposed approach. The first is the TIMIT cor-
pus [19] that contains 6,300 sentences spoken by 630
native English speakers from eight dialect regions in
the United States. The TIMIT corpus is often used for
speech recognition studies [21, 22] since it is phonet-
ically rich and useful for speaker-independent studies.
The TIMIT dataset has been pre-seperated into train-
ing and test datasets that do not share the same set
of speakers. The training dataset contains 462 different
speakers that provide 4,620 total clean speech signals.
The testing dataset has 168 speakers with 1,680 spoken
utterances.

We also use the IEEE speech corpus [28], which is
spoken by two different speakers, one male and one fe-
male, who each utter the same 720 sentences. The IEEE
corpus provides a relatively large dataset of utterances
that are spoken by one person, which can be used to
simulate an attack on a single user. In this project, 520
utterances are used for training, 100 for development,
and the last 100 are used for testing proposes for each
speaker.

Finally, we use the LibriSpeech corpus [46], which
is derived from the LibriVox project [48]. It contains
1,000 hours of speech. We use 30,000 clean speech sig-
nals (about 100 hours) to train the Deep Speech 2 ASR
system since this number results in sufficient phonetic
coverage while also ensuring that the system can be
trained in a reasonable amount of time. We then ran-
domly select a single speaker to use for the voice con-
version task. This random male speaker generated 118
utterances that are used for training our voice conver-
sion system.

4.2 Basic Defense: Inject Generic Noise

In this basic scenario, we assume that attackers do not
have prior information about the victim or their envi-
ronment. The attacker only observes the audio signal
that the device (e.g., cell phone) captures. Therefore,
the attacker uses an ASR system that is trained with
a large and diverse speech dataset that contains speech

Table 1. WER for noisy speech, as a function of noise and SNR.

SNR (dB) Babble Cafe
-15 100.00% 100.00%
-13 100.00% 100.00%
-10 99.84% 99.75%
-8 99.24% 98.67%
-5 93.67% 91.93%
-3 82.46% 82.39%
0 62.34% 64.41%
5 41.75% 43.87%
10 35.74% 36.67%

Clean 15.34% 15.34%

utterances spoken by thousands of individuals. Audio
from the target victim is not contained in this dataset.
We use the pre-trained Google Speech-to-Text ASR sys-
tem [15], which is trained on 12,500 hours of data, since
it has been shown to perform well for different speakers
and environments [47].

The victim is aware of potential attacks, so they
can play obfuscating noise at different amplitudes as a
defense mechanism. This scenario is simulated by mix-
ing noise with speech signals from the TIMIT testing
dataset at different signal-to-noise ratios (SNRs). Two
different non-stationary noises, Babble and Cafe, are
separately combined with the clean speech at various
SNRs in order to minimize the recognition efficiency of
the chosen ASR system [44]. The noisy speech signals
are provided as inputs to the Google Speech-to-Text
ASR system.

4.2.1 ASR Results

Table 1 shows the average WER at each noise and SNR
level. We can see that the error is relatively low when
clean speech is provided to the ASR system, where
an average WER of 15.34% is observed. At a 10 dB
SNR, Babble noise achieves a 35.74% WER, while Cafe
noise results in a 36.67% WER, which are about 20%
higher than the clean speech case. We then notice that
the word-error rate increases with decreasing signal-to-
noise ratio for each noise, where the results are simi-
lar at each SNR for Babble and Cafe noises. This oc-
curs because the noise becomes more dominant than the
speech at lower SNRs since the total intensity of the
noise increases beyond that of the speech. This makes
word recognition much more difficult. Both Babble and
Cafe noises reach 100% WER at a -13 dB SNR, which
shows that Babble and Cafe noise, at the right SNR,
can completely mask the target speech and prevent an
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attacker from using a speaker- and environmentally-
unaware ASR system for eavesdropping. Fig. 7a shows
the spectrogram for a random clean speech signal from
the TIMIT corpus and 7b shows the spectrogram for
the noisy speech signal that combines the clean speech
from Fig. 7a with Babble noise at a -5 dB SNR. The
figure shows that the noise masks much of the speech,
especially at low frequencies, which hinder recognition
capabilities.

4.2.2 Intelligibility Results

We also evaluate the computational intelligibility of the
noisy speech signals, as this serves as a measure of
human-level intelligibility. This is done in case the at-
tacker employs human listeners for speech recognition.
We evaluate intelligibility using the short-time objective
intelligibility measure (STOI) [53]. STOI outputs scores
between 0 and 1, where 1 means perfect intelligibility
and 0 means that the signal is completely unintelligi-
ble. STOI has been shown to have strong correlations
with intelligibility that is measured by human listeners
[62]. STOI computes scores by comparing the correla-
tion between the signal of interest (e.g., noisy speech)
and the clean speech signal over short-time segments
of a human-inspired time-frequency representation. Ta-
ble 2 shows the STOI scores for the Babble and Cafe
mixtures at different SNR levels.6 At an SNR of 10
dB, Babble and Cafe mixtures both have STOI scores
of 0.86, which means that the noisy speech signals are
mostly intelligible. However, as the SNR level decreases,
the STOI scores also decrease, which shows that human-
level intelligibility also decreases with the SNR. More
specifically, at -15 dB, STOI scores drop to 0.34 and
0.35, respectively, for Babble and Cafe mixtures. There-
fore, injecting Babble and Cafe noises at specific SNR
levels dramatically lowers intelligibility for both human
listeners and ASR systems.

4.3 Advanced Attack: The Victim’s
Speech Data is Obtained

In this section, we examine a stronger adversary. We
now assume that the attacker has gained access to clean

6 STOI scores of 0.5 correspond to human-level intelligibility
rates between 20% and 50%. STOI scores around 0.6 correspond
to 60% to 80% human-level intelligibility [53].

Table 2. Computed intelligibility (STOI) of the noisy speech sig-
nals. Lower scores indicate lower intelligible speech.

SNR Babble Cafe
-15 0.34 0.35
-13 0.37 0.37
-10 0.42 0.42
-8 0.46 0.45
-5 0.53 0.52
-3 0.58 0.56
0 0.65 0.64
5 0.77 0.76
10 0.86 0.86

speech data from the user, where this data is used to
retrain an ASR system to improve recognition perfor-
mance. This is a common technique that is based on
transfer learning, and it has been shown to improve per-
formance in similar scenarios [34].

We simulate this scenario by using the IEEE cor-
pus and the Deep Speech 2 ASR system [5]. We expect
that a personalized attack from a system such as Google
ASR would improve the attacker’s performance, in gen-
eral. However, this is a proprietary system that we do
not have access to modify. Therefore, we choose another
state-of-art speech recognition model: Deep Speech 2
from Baidu. The implemented Deep Speech 2 model
contains two 2-D convolutional layers, four bi-direction
recurrent layers, and one fully connected layer. We sepa-
rate the 720 IEEE utterances from the male and female
speakers into 520 separate utterances for retraining the
Deep Speech 2 model, 100 separate signals for develop-
ment, and 100 separate signals for testing. Hence, sepa-
rate models are made for the male and female speakers
to ensure consistency across both genders. The ASR sys-
tems are initially trained with 30,000 random clean sam-
ples from the LibriSpeech speech corpus. This trained
system is then separately retrained with the 520 male
utterances for the male ASR system and 520 female ut-
terances for the female ASR system. In each case, the
development signals are used for parameter tuning.

The 100 IEEE testing speech signals for each gender
are combined with the Babble and Cafe noises at {10,
5, 0, -5 ,-10 , -15} SNRs. These signals are then pro-
vided to the pretained ASR system (from LibriSpeech
data only), and the system is re-trained with user speech
data. The re-trained system is denoted as ‘user aware,’
whereas the initial ASR system is denoted as ‘user un-
aware.’ The WER across each SNR and noise type are
also calculated. This training and testing approach is
shown in Fig. 2.
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Table 3. WER comparison between user-aware and user-unaware ASR systems.

Babble Cafe
Male Female Male Female

SNR (dB) user unaware user aware user unaware user aware user unaware user aware user unaware user aware
-15 100.00% 99.63% 100.00% 99.88% 100.00% 99.88% 100.00% 99.83%
-10 100.00% 99.52% 100.00% 99.62% 100.00% 99.75% 100.00% 99.75%
-5 100.00% 99.26% 99.50% 98.12% 100.00% 99.88% 100.00% 99.68%
0 98.64% 99.26% 99.38% 97.63% 100.00% 98.51% 99.88% 98.50%
5 93.42% 92.31% 97.02% 96.03% 97.15% 95.16% 97.64% 97.89%
10 74.81% 71.09% 79.53% 76.43% 82.63% 80.77% 87.47% 87.72%

Clean 31.76% 27.67% 30.77% 26.55% 31.76% 27.67% 30.77% 26.55%

Table 3 shows the WER results for the noisy speech
signals using the user-unaware and user-aware ASR
models. Generally, the WER improves (lowers) when the
ASR system is trained with user data (compare ‘user un-
aware’ vs. ‘user aware’ columns). The performance im-
provement occurs at each SNR (including clean speech),
noise, and for male and female speakers. The average
WER decreases by 1.56% for Babble noise and 1.13%
for Cafe noise. The average WER improvement also
increases with SNR. On average, the user-aware sys-
tem increases recognition performance by 1.42% for the
IEEE male and 1.27% for the IEEE female. These re-
sults demonstrate that the attackers can have modest
performance gains when only a small amount of user
speech data is obtained. It is likely that further per-
formance gains will occur if more data is utilized, so
stronger defense mechanisms may be needed. Further-
more, as we show in Section 4.4.2, Google’s ASR sig-

Fig. 2. Flow charts for the user-unaware (top) and user-aware
(bottom) ASR systems.

nificantly outperforms these approaches, and we need a
better understanding of how user-aware models might
perform as compared to user-unaware models for such
a system.

In addition to this attacker scenario, we also tried
to enhance the attacker by allowing them to use state-
of-art speech separation techniques to remove our in-
jected noise before recognizing the speech. The results
are mixed, with WER increasing with speech separa-
tion. In some cases where WER decreased, it was by a

small amount (1–2%). Further details can be found in
Appendix C.

4.4 Proposed Defense: Specially Crafted
MyBabble Noise

In this section, we show recognition results when our
user-specific babble noise, based on the user’s voice
characteristics, is generated and combined with speech.
The user-specific babble noise is generated by combining
multiple outputs from the voice conversion VAE model.

4.4.1 System Setup and Result

First, we choose a random speaker from the LibriSpeech
speech corpus that is not in the training and devel-
opment utterances that are used to train the Deep
Speech 2 ASR model. This speaker provides 118 clean
speech signals. We also use the IEEE male and female
speech data (720 utterances each). There are a total of
three different speakers with 118, 720, and 720 utter-
ances, respectively. We train the VAE model to learn
the voice characteristics of the IEEE male and IEEE
female speakers. The model then converts the 118 ut-
terances from the chosen LibriSpeech speaker to sound
like the IEEE male and the IEEE female speakers.

After the 118 converted speech signals are esti-
mated, we produce different combinations of these ut-
terances and add them together to serve as user-specific
babble noise (one for the IEEE male and one for the
IEEE female). The new noise will be tested based on
the strongest attacker scenario from Section 4.3. WER
is calculated and compared with the baseline noises for
each gender.

Fig. 3 shows the WER differences between the user-
specific babble noise that we generate and the generic
noises. At low SNR levels (e.g., -15 to 0 dB), the dif-
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Fig. 3. WER differences between MyBabble noise and generic
babble noise on an user-aware ASR system.

ferences are small because the WERs are already near
100%. As the SNR level increases, the differences be-
come more pronounced. Compared to generic Babble
noise, the WER increases by 13.52% for male utterances
and 14.02% for female utterances at 10 dB SNR. For
generic Cafe noise, a 3.85% increase is shown for the
male and 2.73% is shown for the female at 10 dB SNR.

By comparing our results with the baseline noises,
we see that the WER increases for each gender at all
SNR levels, especially at high SNR levels. The results
imply that user-crafted noise is much better than the
generic noise at impeding word recognition. By using
the synthetic speech signals as noise, the state-of-art
ASR system is mislead by which signal serves as the
target one and which signals are the background noise.

Although these performance gains appear small, as
we show in the next subsection, Google’s ASR system
(even though not trained on the target speaker) is able
to significantly outperform the models tested in this
subsection. The WERs at 0 dB SNR for Google’s ASR
go down to about 60% as opposed to nearly 100%. Thus,
the next subsection demonstrates the strength of My-
Babble.

4.4.2 Varying Number of Speech Tracks in MyBabble

In this section, we focus on attaining a high WER
against Google’s ASR, which outperforms the previous
user-specific models. It is not possible for us to obtain
or train Google’s ASR model tuned to a target user,
but our results in the previous subsection indicate that
the incremental benefit is likely to be limited to a ‘few
percent.’ Thus, we aim for WERs in the 90–95% range
(compared to 60–61% for Cafe and plain Babble) in our
approach against Google’s ASR. We choose a 0 dB SNR

Fig. 4. WER results with different number of voice-converted
utterances for 0 dB noisy speech mixtures.

as this represents a reasonable SNR at which the noisy
speech starts to become unintelligible to human attack-
ers as well [23, 24]. In practice, using noise at -5 dB SNR
would be highly effective at this baseline.

We would also like to determine how varying the
number of user-generated utterances impacts recogni-
tion performance. We test six different babble noise con-
figurations. The user-specific babble noise is combined
with different IEEE speech signals at a 0 dB SNR. The
number of generated utterances varies between 1, 8, 16,
32, 64, and 118.

Fig. 4 shows the WER results for the different noise
realizations. For both IEEE male and female signals,
the MyBabble noise that is generated from 8 voice-
converted signals (vc-8) produce the highest WERs. The
WER gradually decreases as more converted speech sig-
nals are added. For IEEE male signals, voice-converted
noise with 8 signals has a 95.53% WER. This is much
higher than the baseline Babble noise, which produces
a 60.96% WER, even though the babble noise consists
of speech from 20 different spearkers. The Cafe noise
achieves a 60.41%WER. For IEEE female signals, voice-
converted noise with 8 signals (vc-8) outperforms all
other noises with a 92.10% WER. The generic Babble
and Cafe noises perform similarly to the same IEEE
male scenario, with 59.07% and 59.54% WERs, respec-
tively.

We surmise that vc-8 noise has the best performance
because as more soundtracks are added, each soundtrack
creates too much overlap and eventually the noise will
sound like generic babble noise (poorer defense). If too
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few soundtracks are used, there will be gaps revealing
the target’s speech. Although we make a first step, more
work is needed to study defending multiple speakers si-
multaneously.

Finally, we checked the STOI scores at 0 and -5
SNRs respectively. MyBabble attains scores of 0.62 and
0.52 respectively. Thus, we recommend, in practice, My-
Babble be used at a -5 dB SNR. (We later verify real
human unintelligibility with a user study as described
in Section 4.6.)

4.5 Real-World Experiment and Results

We further test the performance of our approach in
a real-world home environment using three different
phone devices. We assumed that the third device was
hacked by a malicious attacker. The first device plays
the speech signals. The second device then plays My-
Babble noise (vc-8), while the third device records both
sounds.

The conversation speaker and noise speaker were
20 cm and 2 cm from the recording device, respectively.
This setup mimics how one might use our noise genera-
tor in the real world since this distance and chosen SNR
ensures that the user will not be disturbed by the noise
that is played. The noise and conversation signals are
both played at 50 dB (SPL) as measured at the record-
ing device, which results in a 0 dB SNR level. Then,
the IEEE male vc-8 MyBabble noise is played simul-
taneously with 100 sequential-played IEEE male test
samples. The same setup occurs with the IEEE female
vc-8 noise and the 100 IEEE female test samples. After
these sounds are recorded, they are provided as inputs
to Google’s Speech-to-Text ASR system.

The WER for both genders is 100%, which con-
firms our simulation results and shows that our specially
crafted MyBabble noise is effective in practice. We omit
the -5 dB results since 0 dB signals produce a 100%
WER.

4.6 Human Intelligibility Study

Next, we conducted an ethics-board approved user
study to evaluate how well the generated noise obstructs
speech against human attackers.

Table 4. No. of Participants by condition in the human intelligi-
bility study

Condition Female Male
Clean speech 17 24

Generic babble at 0 dB 15 16
MyBabble at -5 dB 13 20
MyBabble at 0 dB 17 15
MyBabble at 5 dB 20 17
MyBabble at 10 dB 18 18

4.6.1 Participants

We recruited 210 participants from Amazon’s Mechan-
ical Turk online recruitment system. Participants were
required to be 18 years or older and have been living
in the United States for a minimum of five years. They
were asked to use headphones for this survey and per-
form the study in a quiet environment. They were also
asked to confirm that they had normal hearing and were
native or bilingual, professional-level English speakers.
Detailed demographics can be found in Appendix B.

4.6.2 Procedure

All procedures were carried out in accordance with a
protocol approved by our institution’s review board for
the conduct of human research. After completing the in-
formed consent form, participants were presented with
20 audio clips. The audio clips were the same as the
test data described in previous sections and were se-
lected from the 100 test utterances from IEEE data
corpus. Participants were compensated $3. Through a
pilot study, we confirmed this was ‘fair compensation’
according to the participants (through a free-text ques-
tion specifically asking about fair compensation) based
on the amount of work, which was approximately 15
minutes per participant (the median time for the full
user study was 13 min 28 sec).

Each audio clip was mixed with the baseline noise
and our proposed noise at different SNRs. Each par-
ticipant was randomly assigned to one of the mixture
conditions where they were asked to type in the words
that they heard. Detailed participation distribution can
be found in Table 4.
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Fig. 5. WER results for the user listening study

4.6.3 Results

Fig. 5 shows the word error rate (WER) results for the
participants in our user study. The study shows simi-
lar trends as observed in Section 4.4.2 where MyBab-
ble noise provides a stronger defense than the base-
line generic babble noise. For the voice signals, par-
ticipants performed well at transcribing clean speech
(11.5% mean and 7.7% median WER). For the noisy
speech mixtures, the 8-soundtrack MyBabble mixture
reached a WER of 81% mean and 81.8% median at a
0 dB SNR level, which is much higher than the base-
line Babble noise that reached a 50.5% mean and 43.5%
median WER. The WER increased to a 97.7% mean
and 98.4% median if we lower the SNR level to -5 dB.
However, if we use a SNR level higher than 0 dB, which
indicates that the speech energy is higher than the noise
energy, human listeners can easily recognize the speech.
The mean WER at a 5 dB SNR drops to 37% and the
median WER drops to 28.4%.

Even though we reach an average of 98% WER at
a -5 dB SNR, we examined which words the human lis-
teners identified correctly. From the transcripts of the
participants who obtained the best score at -5 dB, we
found that normally the words they got correct were
prepositions such as “to,” “in,” and “before,” and arti-
cles such as “the” and “a.” For example, the sentence
“a streak of color ran down the left edge” is transcribed
as “the edge.” The sentence “crouch before you jump
or miss the mark” is transcribed as “before.” In conclu-

sion, compared to other defensive approaches, MyBab-
ble noise mixed with speech at -5 dB SNR is a strong
defense mechanism against human-based eavesdropping
attacks.

4.6.4 Followup Study: Human Attackers with Prior
Knowledge

We conducted a followup user study by adding an extra
condition to the previous study with 61 participants to
simulate attackers who are more familiar with the target
speech. The requirements were the same as the previ-
ous study, and the demographics can be found in Table
Appendix B. Unlike the previous experiment, we asked
the participants to first transcribe 20 clean speech sam-
ples from the target speaker to familiarize them with
the target speaker’s voice. They were then asked to
transcribe 20 different sentences mixed using MyBab-
ble noise at -5 dB SNR as with the previous study.
The ‘MyBabble -5 Targeted’ column in Fig. 5 shows
the results for this experiment. A high WER is main-
tained even when the attacker is familiar with the tar-
get’s voice – the mean, median and minimum WERs are
97.0%, 97.0% and 89.5%, respectively. The results show
that our approach remains robust against strong human
adversaries.

4.7 Disturbance Level Experiments

In this section, we conduct realistic experiments to de-
termine if MyBabble noise is disturbing to nearby users,
where headphones are used to ‘inject’ noise into the mi-
crophone of the compromised device.

4.7.1 Experiment Setup

For this experiment, we play MyBabble noise through a
pair of consumer headphone buds (‘earpods’) to demon-
strate the practicality of injecting MyBabble while not
disturbing people in the vicinity. We then use a profes-
sional NIST-certified sound level meter7 to measure the
real-time sound level in dB.

First, we measured the sound level when speech and
noise are not present. This serves has a baseline control

7 REED Instruments R8060 Sound Level Meter with Bargraph,
Type 2, 30 to 130 dB
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for our experiment. Then, the earpods were placed at 5
different distances from the meter to measure the sound
level that would be perceived by people. We place the
sound meter at 0 cm (e.g., directly connected), 10 cm,
25 cm, 50 cm, and 100 cm from the earpods. Those
distances simulate different situations when users stay
in the room with their phone. In practice, we would
expect people to keep their phone ‘at a distance’ while
applying the MyBabble defense. Although we expect the
phone to be kept ‘a couple of meters away’ in general,
we pick shorter distances to cover situations when one
uses the defense ‘bedside,’ e.g., next to one’s alarm clock
at night. The 0 cm condition is also used to enforce
the desired sound-pressure level (SPL) when we play
MyBabble noise and allows us to pick the appropriate
SNR as heard by the microphone of the device we are
protecting. The other four distances simulate what a
human listener might hear when they are at the different
distances from the noise producer.

If the sound level at a certain distance is close to the
sound level of the quiet room, we can say that the distur-
bance level is low and that the user will not be affected
by the noise. Both male and female noise are played
for 90 seconds during each condition. The sound level
is then measured for each condition every 10 seconds.
The mean sound level for each condition is reported.
Conversational speech is generally between 60 and 70
dB [8]. Therefore, in order to obtain a -5 dB SNR, we
constrain the sound level at 0 cm to 75 dB so that the
resulting mixture has a -5 dB SNR at best.

4.7.2 Results

Fig. 6 shows the disturbance-level results. As the dis-
tance between the noise source and sound level meter
increases, the corresponding sound level decreases ac-
cordingly. The mean sound level for MyBabble noise at
10 cm, 25 cm, 50 cm, and 100 cm are 42.03 dB, 36.12
dB, 33.17 dB, and 31.91 dB, respectively. Compared to
the sound level of the quiet room, which is 30.21 dB,
the difference is negligible if the distance is 50 cm or
higher. Therefore, we can conclude that users will not
be disturbed if they are ‘a couple of feet’ away from the
noise producer.

4.7.3 Disturbance-level User Study

Finally, to verify our experimental results, we conduct
an ethics-board approved disturbance-level user study

Fig. 6. Mean Sound Level (dB) by distance to user

with 134 participants to understand how noticeable and
disturbing MyBabble noise is to users. The requirements
of the participants are the same as the previous two
user studies, and the detailed demographics of the par-
ticipants can be found in Appendix B. Participants on
Amazon Mechanical Turk were paid $1.50 based on an
estimated duration of six minutes for our study.

Although it would have been ideal to conduct this
experiment in person, due to the COVID-19 pandemic,
we could not perform in-person experiments. To best
simulate a realistic environment, we mixed the MyBab-
ble noise with five different clean daily conversations
at {35,40,45,-5} dB SNRs to simulate how participants
would hear a conversation with corresponding MyBab-
ble noise at a distance. These mixtures were carefully
calibrated; the three SNRs cover all possible distances
between the target speaker and the noise producer based
on the previous study.

We use two controls: The -5dB mixture is what
the attacker receives. Our participants should show low
comprehension for this mixture. We use clean speech as
the other control. Participants should show high com-
prehension for this condition. Participants in our study
were assigned randomly to one of the noise conditions
(clean, 35dB, 40dB, 45dB, or -5dB mixtures), and then
presented with five one-minute conversations at that
noise level. For each of the five conversations, partici-
pants were asked five questions. The first two questions
ask participants about the content of the conversation
to make sure they were paying attention (e.g., a mul-
tiple choice question about the topic of the conversa-
tion). The next three questions asked participants how
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strongly they agreed or disagreed with the following
statements:
Q1: The conversation was easy to understand.
Q2: There was noticeable background noise.
Q3: The background noise was disturbing.

Each question was answered with a 5-point Likert item
(1 - Strongly disagree, 2 - Disagree, 3 - Neither agree or
disagree, 4 - Agree, and 5 - Strongly agree).

Table 5 shows detailed results of how participants
answered these questions across the conditions. In sum-
mary, we find that the mean values for Q1, Q2, and
Q3 of clean speech and mixtures at {35,40,45} dB are
very similar (our statistical tests also show no statisti-
cally significant differences). The clean speech received
average scores of 4.19, 2.48, and 1.94 for the three
questions. 35dB noisy mixture scores are really simi-
lar, which are 4.32, 2.33, and 1.87. The 40dB and 45dB
mixtures yielded similar results: 4.2, 2.28, and 1.98 for
the 40dB mixture, and 4.27, 2.29, and 2.00 for 45dB
mixture. For the noisy control group, the mean values
of the -5dB mixture were 1.81, 4.8, and 4.7 showing that
participants did not find the conversation easy to under-
stand, could definitely notice the background noise, and
found it disturbing. A t-test shows that there is a sta-
tistically significant difference between the clean speech
and -5dB noisy mixture.

To conclude, if the noise producer is more than 10
cm away, people employing our defense will not find the
setup disturbing any more than during a conversation
without any added noise.

4.8 Two-Speaker Scenario

We conducted additional experiments that consider a
two-speaker conversational scenario to examine how
MyBabble might simultaneously protect two speakers
in a conversational setting. We use the same method-
ology as previous sections but with speech data alter-
nating between two speakers. We generated and com-
bined multi-track MyBabble noise for each speaker and
tested the effectiveness against the strongest adversary.
The eight soundtracks used by MyBabble contains four
specialized soundtracks for each speaker. We found this
method of combined noise as a defense is still effective –
the WER is about 25% at 10 dB SNR, 50% at 5 dB
SNR, 92% at 0 dB SNR and close to 100% at -5 dB
SNR.

Table 5. Disturbance Level User Study Result

Mean Std t-value t Critical P-value
Q1
Clean 4.19 0.86
35dB 4.32 0.74 -1.37 +/- 1.9681 0.17
40dB 4.20 0.81 -0.08 +/- 1.9694 0.94
45dB 4.27 0.62 -0.86 +/- 1.9692 0.39
-5dB 1.81 1.19 17.20 +/- 1.9709 0.00
Q2
Clean 2.48 1.17
35dB 2.34 1.17 0.99 +/- 1.9680 0.32
40dB 2.28 1.17 1.32 +/- 1.9694 0.19
45dB 2.29 1.16 1.26 +/- 1.9692 0.21
-5dB 4.80 0.51 -18.49 +/- 1.9709 0.00
Q3
Clean 1.94 0.85
35dB 1.87 0.86 0.67 +/ -1.9691 0.51
40dB 1.99 1.14 -0.34 +/ -1.9694 0.73
45dB 2.00 1.07 -0.48 +/ -1.9692 0.63
-5dB 4.71 0.62 26.98 +/ -1.9709 0.00

5 Discussion
Better microphone designs for ‘tangible privacy’.
Smartphones and other IoT devices are currently poorly
designed by having embedded microphones. We follow
the view that defense approaches should be more ‘tan-
gible,’ i.e., users should have confidence in their effec-
tiveness [3]. In that sense, ultrasonic jamming does not
provide users with any tangible notion that a defense is
in place. Our work thus explores tangible microphone
jamming approaches where ‘babble noise’ available to
the user can provide such assurances about their pri-
vacy.

In the longer term, better hardware designs are
needed so that microphones can be easily – and ‘tangi-
bly’ – disabled instead of relying on external defenses.
For example, these microphones may have a physical
switch that convincingly breaks the physical circuit
to disable recording [3]. Apple has started enforcing
a “hardware disconnect”8 of the microphone in their
most recent designs, e.g., when a laptop is closed or the
iPad case is closed. These approaches are a step in the
right direction, although some users may still be uncon-
vinced whether the microphone is ‘really’ disabled. For
example, in the past, a ‘hardware controlled’ LED indi-

8 Hardware microphone disconnect in Mac and iPad:
https://support.apple.com/guide/security/hardware-
microphone-disconnect-mac-ipad-secbbd20b00b/1/web/1

https://support.apple.com/guide/security/hardware-microphone-disconnect-mac-ipad-secbbd20b00b/1/web/1
https://support.apple.com/guide/security/hardware-microphone-disconnect-mac-ipad-secbbd20b00b/1/web/1


Article title 145

cator for the Macbook laptop’s camera was nevertheless
hacked through its firmware [9]. Absent convincing ap-
proaches, one may have to rely on MyBabble-style noise
generators to be assured of privacy. We note that it is
not sufficient to ‘just not use the device’ or ‘just turn
it off.’ In many cases, people will want to have their
smart personal assistants or smartphones operational
and in their vicinity with only the microphone disabled.
Compare this scenario to the case where many people
cover their laptop cameras instead of abandoning use
of their laptops (or cameras) altogether.

Prototype and scalability considerations. We built
a physical ‘MyBabble Box’ prototype of our envisioned
defense (see Figure 8 in the Appendix), although we
were unable to conduct a user study with this prototype
because of the ongoing COVID-19 pandemic. We built
a wooden housing to serve as a ‘bedside cradle’ for a
smartphone. This approach maintains the usability of
the phone screen and speaker (e.g., to serve as a music
player and allow the user to observe notifications) yet
allows for application of the MyBabble defense on the
microphones. The box included an Adafruit Audio FX
Sound Board to play the MyBabble defense through two
uxcell 1.5W 8 Ohm Mini speakers into the smartphone’s
microphones. Although this prototype is effective at ob-
fuscation, we note, for example, the 16MB limitation
of the soundboard memory, which may not be practical
for statically loaded MyBabble tracks as a long-term
defense. An internet connection could be used for down-
loading and converting new tracks; however, future work
should explore the application of generative adversarial
networks (GANs) to automatically generate synthetic
noise to foil the best possible ASR systems [20]. Non-
GAN approaches, such as a regression-based approach
by Donahue et al. [16], also provide insights and should
be considered in future work.

Limitations. Although we studied sophisticated adver-
sarial approaches with models trained on the victim’s
speech under noisy conditions, these adversaries did not
perform better than Google’s ASR system. If one is
to assume powerful adversaries, e.g., where companies
such as Google are legally forced to apply their mod-
els toward targeted adversaries, it is yet unknown how
effectively noise-based defenses might perform against
these models tuned to the victim’s speech. Yet, based
on our experiments, we predict small incremental gains
in the face of adversarial noise. As another limitation
of this work, we study only the single microphone set-
ting. Application of our technique in practice should

also examine how to defend against adversaries with
access to multiple microphones (as is now available on
many smartphone models), which can allow adversaries
to better isolate a victim’s speech.

6 Conclusions
We evaluate obfuscating noise as a defense against
microphone-based eavesdropping attacks. Through a
comprehensive evaluation of various attacker capabil-
ities, we find that our personally crafted ‘MyBabble’
defense performs best and renders automated speech
recognition (ASR) attacks (including Google’s ASR sys-
tem, which performed the best) as well as human-based
attacks ineffective. Our proposed MyBabble noise mech-
anism uses voice-conversion techniques to generate syn-
thetic speech signals that can be combined to form a
user-specific ‘babble’ mixture as noise. These synthetic
signals have the same voice characteristics as the tar-
get speaker, which further confuses ASR systems. Be-
cause of the type of ‘babble’ noise used, our approach
is also effective against human attackers, which we vali-
date through an accepted human-intelligibility metric as
well as a user study. Furthermore, MyBabble can be in-
jected into devices using commodity headphones at vol-
umes barely noticeable to users and no more disturbing
than background noise (i.e., environmental noise with-
out MyBabble) as verified in a user study.

Although we take a first step toward effective noise-
based defenses, we believe much more exploration is
needed. Further research is needed in evaluating at-
tacks that can perform better in the presence of noise-
based defenses. In particular, it is important that re-
searchers study not only ‘adversarial noise’ that can
trick ASR systems but also those that retain unintelli-
gibility against human adversaries – the resultant noise-
speech mixture should be hard to discern by both hu-
mans as well as ASR systems.
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A Additional Figures
See Figure 7 (Spectrogram) and Figure 8 (MyBabble
Box Prototype).

B Demographics
We provide demographic information of the participants
from Sections 4.6.4, 4.6.1 and 4.7.3 (see Table 6).

C Speech Separation Attack
The eavesdropper may employ methods to remove in-
jected noise to present a stronger attack that helps de-
crease WER and improve recognition at lower SNRs.
This is simulated by training multiple speech-separation
methods that serve as noise-reduction front ends to the
ASR system. The noise-reduced signal is then provided
as an input to the ASR system.

We use two different high-performing speech separa-
tion techniques to improve performance for the attacker.
Wang et al. [58] introduced the ideal binary mask (IBM)
approach, which assigns all noise-dominant units with a
value of 0 and speech-dominant units with a value of 1,
based on the SNR at each time (t) and frequency (f).

IBM(t, f) =
{

1 if SNR(t, f) ≥ 0
0 otherwise

(9)

SNR(t, f) = 10 log10(X(t, f)/N(t, f)) (10)

where X(t, f) and N(t, f) are the instantaneous ener-
gies of the speech and noise, respectively. When an
IBM is applied to a noisy speech spectrogram, all points
where noise dominates will be removed, while all speech-
dominant points will be retained. This separation strat-
egy is human inspired, as it is consistent with the pro-
cessing that occurs within the human auditory sys-
tem [39]. The IBM approach has also been shown to
result in highly-intelligible speech [11, 36].

We also use an ideal ratio masking (IRM) approach
as the front-end to the ASR system [44]. The IRM is a
smoothed version of the IBM, where continuous values
between 0 and 1 define the mask. Eq. (11) shows how
the IRM is calculated from the speech and noise that
are within a noisy speech signal.

IRM(t, f) = 10(SNR(t,f)/10)

10(SNR(t,f)/10) + 1
(11)

The IRM can be interpreted as the percentage of speech
energy at a particular time-frequency point, so when it
is applied to the noisy speech spectrogram, it results
in an estimate of the true clean spectrogram. The IRM
has been shown to be one of the top performing speech
separation approaches [59].
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Table 6. User Study Demographics table

Condition User study User Study w/ Human Adv Disturbance Level
Total 210 61 134
Gender
Male 114 ( 54.29%) 31 ( 50.82%) 84 ( 62.69%)
Female 93 (44.29%) 28 (45.90%) 49 (36.57%)
Other 3 (1.43%) 2 (3.28%) 1 (0.75%)
Age
18-29 74 ( 35.24%) 16 ( 26.23%) 40 ( 29.85%)
30-49 108 ( 51.43%) 38 ( 62.30%) 75 ( 55.97%)
50-64 27 ( 12.86%) 6 ( 9.84%) 16 ( 11.94%)
65+ 1 ( 0.48%) 1 ( 1.64%) 3 ( 2.24%)
Education
No High School 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
High School 42 ( 20.00%) 20 ( 32.79%) 27 ( 20.15%)
Underguraduate 131 ( 62.38%) 31 ( 50.82%) 70 ( 52.24%)
Master’s Degree 35 ( 16.67%) 9 ( 14.75%) 34 ( 25.37%)
Professional (MD, JD/PhD) 2 ( 0.95%) 1 ( 1.64%) 3 ( 2.24%)
Race
Hispanic or Latino 15 ( 7.14%) 3 ( 4.92%) 7 ( 5.22%)
American Indian or Alaska Native 3 ( 1.43%) 3 ( 4.92%) 1 ( 0.75%)
Asian 51 ( 24.29%) 8 ( 13.11%) 22 ( 16.42%)
Black or African American 12 ( 5.71%) 6 ( 9.84%) 12 ( 8.96%)
Native Hawaiian or Other Pacific Islander 1 ( 0.48%) 0 ( 0.00%) 2 ( 1.49%)
White 128 ( 60.95%) 40 ( 65.57%) 90 ( 67.16%)
Other 0 ( 0.00%) 1 ( 1.64%) 0 ( 0.00%)

The IBM and IRM are oracle masks that must be
estimated in real-world scenarios. Separate deep neural
networks (DNNs) are used to estimate these masks from
the given noisy speech mixtures, since DNNs have out-
performed other estimation approaches [26, 61, 64]. The
DNNs have 4 hidden layers with 1024 sigmoid units in
each layer. The output layer of each DNN uses a soft-
max function to output values between 0 and 1. Other
parameters and training strategies are as defined in [59].
The 4260 samples from the TIMIT training set are com-
bined with Babble and Cafe noises at {10, 5, 0, -3, -5,
-8, -10, -13, -15} SNRs, to create noisy speech mixtures
that are used to train the DNNs (one for the IBM and
one for the IRM). The speech and noise components of
each mixture are used to generate the IBMs and IRMs
(see Eqs (9) and (11)), which serve as training targets
for the respective DNNs. The estimated masks are gen-
erated from the trained DNNs and the masks are subse-
quently applied to noisy speech testing signals to obtain
estimated clean speech. As before, the Google Speech-
to-Text ASR system is used for word recognition. In or-
der to make a reasonable comparison, the dataset, noise
and SNR levels remain the same as the previous case.
Babble and Cafe noises are mixed with TIMIT corpus
test set at {10, 5, 0, -3, -5, -8, -10, -13, -15} SNRs.

C.1 Recognition Results

Fig. 9 shows the recognition results for the noisy speech
mixtures after speech separation is applied. For Babble
noise, Fig. 9a, the estimated IBM only slightly improves
ASR performance as compared to the unaltered noisy
speech mixtures at SNRs between -8 and -15 dB. The
average WER degrades after performing speech sepa-
ration with the estimated IBM when the SNR is be-
tween -5 and 10 dB. On average, the WER for an es-
timated IBM increases by 3.83%. The estimated IRM
approach offers more noticeable WER improvements at
each SNR, where the average WER decreases by 1.52%.
With Cafe noise, both speech separation approaches do
not improve performance over the baseline noisy speech
mixtures, except for a small improvement at -13 dB, see
Fig. 9b. The WER increases by 8.81% for the estimated-
IBM approach and 2.75% for the estimated-IRM ap-
proach when compared to noisy speech.

These WER results differ from other approaches
that use time-frequency masks to remove unwanted
noise [18, 45], but this is expected since the Google ASR
system is not trained on IBM- or IRM enhanced noisy
speech signals, unlike the prior approaches. This mis-
match in data is exacerbated by the separation tech-
niques, which contain estimation errors that result in
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(a) Clean Speech Spectrogram (b) Noisy Speech Spectrogram (c) Estimated Clean Speech Spectrogram

Fig. 7. a) Random clean speech spectrogram from the TIMIT corpus. b) Noisy speech spectrogram by combining a) and Babble noise
at -5 dB. c) An estimated clean speech spectrogram after applying an estimated IBM to b).

Fig. 8. Our MyBabble prototype consists of a wooden encasing to
house a smartphone. Miniature speakers in the prototype are po-
sitioned at the microphones of the smartphone. Included circuitry
plays MyBabble into the microphones through these speakers.

the partial removal of speech and the partial retention
of noise. This is shown in Fig. 7c, which shows the
spectrogram of a noisy speech signal after IBM-based
speech separation is performed. By comparing the noise-
reduced spectrogram to the clean speech spectrogram,
we can see that most noise is removed along with some
of the speech when the estimated IBM is applied. For
example, if we focus on the 5 second mark and between
seconds 2 and 3 in the first and third spectrograms, we
can easily find that part of the speech signal is elimi-
nated and some of the noise is erroneously retained by
the speech separation process. This loss of information
negatively impacts word recognition.

C.2 Intelligibility Results

For the STOI result of Babble mixtures, an average im-
provement of 0.13 is observed when an estimated IBM

(a) Babble mixed speech

(b) Cafe mixed speech

Fig. 9. WER after speech separation is performed on noisy speech
signals for a) Babble and b) Cafe.

is used for separation, whereas an average improvement
of 0.14 is observed for IRM-based separation. For Cafe
mixtures, both separation approaches have a 0.06 av-
erage increase in STOI results. The results imply that
human-level intelligibility is only slightly increased af-
ter using these speech separation techniques. However,
due to only minor intelligibility improvements and poor
recognition performance, the attackers will not likely use
speech separation on noisy speech signals before recog-
nition.
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