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Abstract: The security of the web improved greatly
throughout the last couple of years. A large majority
of the web is now served encrypted as part of HTTPS,
and web browsers accordingly moved from positive to
negative security indicators that warn the user if a con-
nection is insecure. A secure connection requires that
the server presents a valid certificate that binds the do-
main name in question to a public key. A certificate
used to be valid if signed by a trusted Certificate Au-
thority (CA), but web browsers like Google Chrome
and Apple’s Safari have additionally started to mandate
Certificate Transparency (CT) logging to overcome the
weakest-link security of the CA ecosystem. Tor and the
Firefox-based Tor Browser have yet to enforce CT.

In this paper, we present privacy-preserving and
incrementally-deployable designs that add support for
CT in Tor. Our designs go beyond the currently de-
ployed CT enforcements that are based on blind trust: if
a user that uses Tor Browser is man-in-the-middled over
HTTPS, we probabilistically detect and disclose crypto-
graphic evidence of CA and/or CT log misbehavior. The
first design increment allows Tor to play a vital role
in the overall goal of CT: detect mis-issued certificates
and hold CAs accountable. We achieve this by randomly
cross-logging a subset of certificates into other CT logs.
The final increments hold misbehaving CT logs account-
able, initially assuming that some logs are benign and
then without any such assumption. Given that the cur-
rent CT deployment lacks strong mechanisms to verify
if log operators play by the rules, exposing misbehavior
is important for the web in general and not just Tor.
The full design turns Tor into a system for maintaining
a probabilistically-verified view of the CT log ecosystem
available from Tor’s consensus. Each increment leading
up to it preserves privacy due to and how we use Tor.
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1 Introduction
Metrics reported by Google and Mozilla reveal that en-
cryption on the web skyrocketed the past couple of years:
at least 84% of all web pages load using HTTPS [26, 44].
An HTTPS connection is initiated by a TLS handshake
where the client’s web browser requires that the web
server presents a valid certificate to authenticate the
identity of the server, e.g., to make sure that the client
who wants to visit mozilla.org is really connecting to
Mozilla, and not, say, Google. A certificate specifies the
cryptographic key-material for a given domain name,
and it is considered valid if it is digitally signed by a
Certificate Authority (CA) that the web browser trusts.

It is a long-known problem that the CA trust model
suffers from weakest-link security: web browsers allow
hundreds of CAs to sign arbitrary domain-name to key-
bindings, which means that it suffices to compromise a
single CA to acquire any certificate [9, 18]. Motivated
by prominent CA compromises, such as the issuance
of fraudulent certificates for *.google.com, *.mozilla.org
and *.torproject.org by DigiNotar [49], multiple browser
vendors mandated that certificates issued by CAs must
be publicly disclosed in Certificate Transparency (CT)
logs to be valid. The idea behind CT is that, by making
all CA-issued certificates transparent, mis-issued ones
can be detected after the fact [34, 36, 37]. The appropri-
ate actions can then be taken to keep the wider web safe,
e.g., by investigating the events that lead up to a partic-
ular incident, removing or limiting trust in the offending
CA, and revoking affected certificates. Google Chrome
and Apple’s Safari currently enforce CT by augmenting
the TLS handshake to require cryptographic proofs from
the server that the presented certificate will appear in
CT logs that the respective web browsers trust [3, 24].

In addition to increased encryption on the web, the
ability to access it anonymously matured as well. Tor
with its Tor Browser has millions of daily users [16, 40],
and efforts are ongoing to mature the technology for
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wider use [43]. Tor Browser builds on-top of Mozilla’s
Firefox: it relays traffic between the user and the web
server in question by routing everything through the Tor
network, which is composed of thousands of volunteer-
run relays that are located across the globe [62]. Just
like attackers may wish to break security properties
of HTTPS, it may also be of interest to break the
anonymity provided by Tor. A common technique for
deanonymization (known to be used in practice) is to
compromise Tor Browser instead of circumventing the
anonymity provided by Tor [5, 10, 22, 69]. Web browsers
like Firefox (or forks thereof) are one of the most com-
plex software types that are widely used today, leading
to security vulnerabilities and clear incentives for ex-
ploitation. For example, the exploit acquisition platform
Zerodium offers up to $100, 000 for a Firefox zero-day
exploit that provides remote code execution and local
privilege escalation (i.e., full control of the browser) [70].

An attacker that wishes to use such an exploit to
compromise and then ultimately deanonymize a Tor
Browser user has to deliver the exploit somehow. Since
the web is mostly encrypted, this primarily needs to
take place over an HTTPS connection where the at-
tacker controls the content returned by the web server.
While there are numerous possible ways that the at-
tacker can accomplish this, e.g., by compromising a web
server that a subset of Tor Browser users visit, another
option is to impersonate one or more web servers by ac-
quiring fraudulent certificates. Due to the Tor network
being run by volunteers, getting into a position to per-
form such an attack is relatively straightforward: the
attacker can volunteer to run malicious exit relays [68].
The same is true for an attacker that wishes to man-
in-the-middle connections made by Tor Browser users.
In some cases a Tor Browser exploit may not even be
needed for deanonymization, e.g., the attacker can ob-
serve if the user logs-on to a service linking an identity.

1.1 Introducing CTor

We propose an incrementally deployable and privacy-
preserving design that is henceforth referred to as CTor.
By bringing CT to Tor, HTTPS-based man-in-the-
middle attacks against Tor Browser users can be de-
tected after the fact when conducted by attackers that:
1. can acquire any certificate from a trusted CA,
2. with the necessary cryptographic proofs from

enough CT logs so that Tor Browser accepts the
certificate as valid without the attacker making it
publicly available in any of the controlled logs, and

3. with the ability to gain full control of Tor Browser
shortly after establishing an HTTPS connection.

The first and third capabilities are motivated directly
by shortcomings in the CA ecosystem as well as how
the anonymity of Tor Browser is known to be attacked.
The second capability assumes the same starting point
as Google Chrome and Apple’s Safari, namely, that the
logs are trusted to promise public logging, which is in
contrast to being untrusted and thus forced to prove it.
This is part of the gradual CT deployment that avoided
breakage on the web [55]. Therefore, we start from the
assumption that Tor Browser accepts a certificate as
valid if accompanied by two independent promises of
public logging. The limitation of such CT enforcement is
that it is trivially bypassed by an attacker that controls
two seemingly independent CT logs. This is not to say
that trusting the log ecosystem would be an insignificant
Tor Browser improvement when compared to no CT at
all, but CTor takes us several steps further by relaxing
and ultimately eliminating the trust which is currently
(mis)placed in today’s browser-recognized CT logs. We
already observed instances of CT logs that happened
to violate their promises of public logging [41], show
inconsistent certificate contents to different parties [52,
53], and get their secret signing keys compromised due
to disclosed remote code-execution vulnerabilities [50].

The first design increment uses the CT landscape
against the attacker to ensure a non-zero (tweakable)
probability of public disclosure each time a fraudulent
certificate is used against Tor Browser. This is done
by randomly adding a subset of presented certificates
to CT logs that the attacker may not control (inferred
from the accompanied promises of public logging). Such
certificate cross-logging distributes trust across all CT
logs, raising the bar towards unnoticed certificate mis-
issuance. Motivated by factors like privacy, security and
deployability, Tor Browser uses Tor relays as intermedi-
ates to cache and interact with CT logs on its behalf.
Such deferred auditing is a fundamental part of our set-
ting unless future distributed auditing mechanisms turn
out to be non-interactive from the browser’s perspective.

The next incremental step is to not only cross-log
certificates but also their promises of public logging.
While it requires an additional CT log API endpoint,
it facilitates auditing of these promises if some logs are
trustworthy. The full design also holds logs accountable
but without any such assumption: Tor relays challenge
the logs to prove correct operation with regards to a sin-
gle fixed view in Tor’s consensus, and potential issues
are reported to auditors that investigate them further.
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1.2 Contribution and Structure

Section 2 introduces background on the theory and prac-
tise of CT, as well as the anonymity network Tor. Sec-
tion 3 motivates the intended attacker and presents a
unified threat model for CT and Tor. Section 4 de-
scribes the full CTor design that eliminates all trust in
the browser-recognized CT logs by challenging them to
prove certificate inclusion cryptographically, and would
result in a single probabilistically-verified view of the CT
log ecosystem available from Tor’s consensus. This view
could be used by other browsers as the basis of trust,
greatly improving the security posture of the entire web.
The security analysis in Section 5 shows that one of the
best bets for the attacker would be to take network-wide
actions against Tor to avoid public disclosure of certifi-
cate mis-issuance and log misbehavior. Such an attack
is trivially detected, but it is hard to attribute unless
reactive defenses are enabled at the cost of trade-offs.

The full design involves many different components
that add deployment burdens, such as the requirement
of reliable CT auditors that investigate suspected log
misbehavior further. Therefore, we additionally propose
two initial increments that place some trust in CT logs
(Section 6). The first increment provides evidence to in-
dependent CT logs that fraudulent certificates were pre-
sented while preserving privacy. This greatly impacts
risk-averse attackers because one part of their malicious
behavior becomes transparent if the randomly selected
log operator is benign. For example, the targeted domain
name is disclosed as part of the cross-logged certificate,
and awareness of the event draws unwanted attention.

The next increment is minor from the perspective of
Tor, but requires CT logs to support an additional API.
Similar changes were proposed in the context of CT gos-
sip [23]. If supported, Tor relays could expose both the
mis-issued certificates and the operators that promised
to log them publicly without the complexity of ever dis-
tinguishing between what is benign and fraudulent. This
API change happens to also build auditor infrastructure
directly into CT log software, thereby paving the path
towards the missing component of the full design. We ar-
gue that CTor can be deployed incrementally: complete
Firefox’s CT enforcement [4], add our cross-logging in-
crements, and finally put the full design into opera-
tion. Each part of CTor would greatly contribute to the
open question of how to reduce and/or eliminate trust
in browser-recognized log operators, which is caused by
the lack of an appropriate gossip mechanism as well as
privacy issues while interacting with the logs [20, 23, 46].

We show that circuit-, bandwidth- and memory-
overheads are modest by computing such estimates in
Section 7. Therefore, we do not investigate performance
further in any experimental setting. Section 8 discusses
privacy aspects of our design choices with a focus on the
essential role of the Tor network’s distributed nature to
preserve user privacy as well as the overall security. In
gist, a similar approach would be privacy-invasive with-
out Tor, e.g., if adopted by Google Chrome. Section 9
outlines related work. Section 10 concludes the paper.

2 Background
The theory and current practise of CT is introduced
first, then Tor and its privacy-preserving Tor Browser.

2.1 Certificate Transparency

The idea to transparently log TLS certificates emerged
at Google in response to a lack of proposals that could
be deployed without drastic ecosystem changes and/or
significant downsides [34]. By making the set of issued
certificate chains1 transparent, anyone that inspect the
logs can detect certificate mis-issuance after the fact. It
would be somewhat circular to solve issues in the CA
ecosystem by adding trusted CT logs. Therefore, the
cryptographic foundation of CT is engineered to avoid
any such reliance. Google’s gradual CT roll-out started
in 2015, and evolved from downgrading user-interface
indicators in Chrome to the current state of hard failures
unless a certificate is accompanied by a signed promise
that it will appear in two CT logs [55]. Unlike Apple’s
Safari [3], these two logs must additionally be operated
by Google and not-Google to ensure independence [24].

The lack of mainstream verification, i.e., beyond
checking signatures, allows an attacker to side-step the
current CT enforcement with minimal risk of exposure
if the required logs are controlled by the attacker. CTor
integrates into the gradual CT roll-out by starting on
the premise of pairwise-independently trusted CT logs,
which avoids the risk of bad user experience [55] and sig-
nificant system complexity. For example, web pages are
unlikely to break, TLS handshake latency stays about

1 A domain owner’s certificate is signed by an intermediate CA,
whose certificate is in turned signed by a root CA that acts as a
trust anchor [18]. Such a certificate chain is valid if it ends in a
trusted anchor that is shipped in the user’s system software.
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the same, and no robust management of suspected log
misbehavior is needed. Retaining the latter property as
part of our incremental designs simplifies deployment.

2.1.1 Cryptographic Foundation

The operator of a CT log maintains a tamper-evident
append-only Merkle tree [36, 37]. At any time, a Signed
Tree Head (STH) can be produced which fixes the log’s
structure and content. Important attributes of an STH
include the tree head (a cryptographic hash), the tree
size (a number of entries), and the current time. Given
two tree sizes, a log can produce a consistency proof that
proves the newer tree head entails everything that the
older tree head does. As such, anyone can verify that the
log is append-only without downloading all entries and
recomputing the tree head. Membership of an entry can
also be proven by producing an inclusion proof for an
STH. These proof techniques are formally verified [17].

Upon a valid request, a log must add an entry and
produce a new STH that covers it within a time known
as the Maximum Merge Delay (MMD), e.g., 24 hours.
This policy aspect can be verified because in response,
a Signed Certificate Timestamp (SCT) is returned. An
SCT is a signed promise that an entry will appear in
the log within an MMD. A log that violates its MMD is
said to perform an omission attack. It can be detected by
challenging the log to prove inclusion. A log that forks,
presenting one append-only version to some entities and
another to others, is said to perform a split-view attack.
Split-views can be detected by STH gossip [8, 14, 46, 58].

2.1.2 Standardization and Verification

The standardized CT protocol defines public HTTP(S)
endpoints that allow anyone to check the log’s accepted
trust anchors and added certificates, as well as to obtain
the most recent STH and to fetch proofs [36, 37]. For
example, the add-chain endpoint returns an SCT if the
added certificate chain ends in a trust anchor returned
by the get-roots endpoint. We use add-chain in Sec-
tion 6, as well as several other endpoints in Section 4 to
fetch proofs and STHs. It might be helpful to know that
an inclusion proof is fetched based on two parameters: a
certificate hash and the tree size of an STH. The former
specifies the log entry of interest, and the latter with
regards to which view inclusion should be proven. The
returned proof is valid if it can be used in combination
with the certificate to reconstruct the STH’s tree head.

The CT landscape provides a limited value unless it
is verified that the logs play by the rules. What the rules
are changed over time, but they are largely influenced by
the major browser vendors that define CT policies. For
example, what is required to become a recognized CT
log in terms of uptime and trust anchors, and which
criteria should pass to consider a certificate CT com-
pliant [3, 24]. While there are several ways that a log
can misbehave with regards to these policy aspects, the
most fundamental forms of cheating are omission and
split-view attacks. A party that follows-up on inclusion
and consistency proofs is said to audit the logs.

Widespread client-side auditing is a premise for CT
logs to be untrusted, but none of the web browsers that
enforce CT engage in such activities yet. For example,
requesting an inclusion proof is privacy-invasive because
it leaks browsing patterns to the logs, and reporting
suspected log misbehavior comes with privacy [20] as
well as operational challenges. Found log incidents are
mostly reported manually to the CT policy list [11].
This is in contrast to automated CT monitors, which
notify domain owners of newly issued certificates based
on what actually appeared in the public logs [12, 38].

2.2 Tor

Most of the activity of Tor’s millions of daily users starts
with Tor Browser and connects to some ordinary web-
site via a circuit comprised of three randomly-selected
Tor relays. In this way no identifying information from
Internet protocols (such as IP address) are automati-
cally provided to the destination, and no single entity
can observe both the source and destination of a connec-
tion. Tor Browser is also configured and performs some
filtering to resist browser fingerprinting, and first party
isolation to resist sharing state or linking of identifiers
across origins. More generally it avoids storing identify-
ing configuration and behavioral information to disk.

Tor relays in a circuit are selected at random, but
not uniformly. A typical circuit is comprised of a guard,
a middle, and an exit. A guard is selected by a client
and used for several months as the entrance to all Tor
circuits. If the guard is not controlled by an adversary,
that adversary will not find itself selected to be on a Tor
circuit adjacent to (thus identifying) the client. And be-
cause some relay operators do not wish to act as the
apparent Internet source for connections to arbitrary
destinations, relay operators can configure the ports (if
any) on which they will permit connections besides to
other Tor relays. Finally, to facilitate load balancing,
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relays are assigned a weight based on their apparent
capacity to carry traffic. In keeping with avoiding stor-
ing of linkable state, even circuits that share an origin
will only permit new connections over that circuit for
ten minutes. After that, if all connections are closed, all
state associated with the circuit is cleared.

Tor clients use this information when choosing re-
lays with which to build a circuit. They receive the in-
formation via an hourly updated consensus. The con-
sensus assigns weights as well as flags such as guard
or exit. It also assigns auxiliary flags such as stable,
which, e.g., is necessary to obtain the guard flag since
guards must have good availability. Self-reported infor-
mation by relays in their extra-info document, such as
statistics on their read and written bytes, are also part
of the consensus and uploaded to directory authorities.
Directory authorities determine the consensus by vot-
ing on various components making up the shared view
of the state of the Tor network. Making sure that all
clients have a consistent view of the network prevents
epistemic attacks wherein clients can be separated based
on the routes that are consistent with their understand-
ing [15]. This is only a very rough sketch of Tor’s design
and operation. More details can be found by following
links at Tor’s documentation site [60].

Tor does not aim to prevent end-to-end correlation
attacks. An adversary controlling the guard and exit, or
controlling the destination and observing the client ISP,
etc., is assumed able to confirm who is connected to
whom on that particular circuit. The Tor threat model
assumes an adversary able to control and/or observe a
small to moderate fraction of Tor relays measured by
both number of relays and by consensus weight, and it
assumes a large number of Tor clients able to, for exam-
ple, flood individual relays to detect traffic signatures of
honest traffic on a given circuit [21]. Also, the adversary
can knock any small number of relays offline via either
attacks from clients or direct Internet DDoS.

3 Threat Model
We consider a strong attacker who is targeting all or
a subset of users visiting a particular website over Tor.
It is generally difficult to perform a targeted attack on
a single particular Tor user because one needs to iden-
tify the user’s connection before performing the attack—
something that Tor’s anonymity properties frustrate.
However, it is not difficult to perform an attack on all or
a subset of unknown users of a particular service. A net-

work vantage point to perform such an attack is easily
obtained by operating an exit relay (for a subset of Tor
users) or by compromising the network path of multiple
exit relays or the final destination. Once so positioned,
the encrypted network traffic can be intercepted using
a fraudulent certificate and associated SCTs. The subse-
quent attack on decrypted network traffic may be pas-
sive (to gather user credentials or other information) or
active. Typical examples of active attacks are to change
cryptocurrency addresses to redirect funds to the at-
tacker or to serve an exploit to the user’s browser for
user deanonymization. Without the ability to intercept
encrypted traffic, these attacks become more difficult as
the web moves towards deprecating plaintext HTTP.

All of the components of such an attack have been
seen in-the-wild numerous times. Untargeted attacks on
visitors of a particular website include Syria’s intercep-
tion of Facebook traffic using a self-signed 512-bit RSA
key in 2011 [19], Iran’s interception of Bing and Google
traffic using the DigiNotar CA [34, 49], and the 2018
MyEtherWallet self-signed certificate that was used as
part of a BGP hijack [51]. The latter is also an example
of redirecting routing as part of an attack (either sus-
pected or confirmed). Other examples of this are Iran
hijacking prefixes of Telegram (an encrypted messaging
application) in 2018 [47], another attack on cryptocur-
rency in 2014 this time targeting unencrypted mining
traffic [57], and hijacks that may have been intelligence-
gathering (or honest mistakes) including hijacks by Rus-
sian ISPs in 2017 and China Telecom in 2018 and
2019 [66]. Finally, there are several examples of law en-
forcement serving exploits to Tor Browser users to de-
anonymize and subsequently arrest individuals [28, 65].

With the attacker’s profile in mind, we consider
someone that controls a CA, enough CT logs to pass
Tor Browser’s SCT-centric CT policy, some Tor clients,
and a fraction of Tor relays. For example, it is possi-
ble to issue certificates and SCTs, dishonor promises of
public logging, present split-views at will, intercept and
delay traffic from controlled exit relays as well as CT
logs, and be partially present in the network. This in-
cludes a weaker attacker that does not control CAs and
CT logs, but who gained access to the relevant signing
keys [32, 41]. A modest fraction of CTor entities can be
subject to DoS, but not everyone at once and all the
time. In other words, we consider the threat model of
Tor and Tor Browser as a starting point [16, 48]. Any
attacker that can reliably disrupt CT and/or Tor well
beyond Tor’s threat model is therefore not within ours.

Given that we are in the business of enforcing CT,
the attacker needs to hide mis-issued certificates and
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SCTs from entities that audit the CT log ecosystem. As
described in Section 2.1, this can either be achieved by
omission or split-view attacks. Our intended attacker
is clearly powerful and may successfully issue a certifi-
cate chain and associated SCTs without detection some
of the time, but a CA caught in mis-issuance or a CT
log that violated an MMD promise will no longer be
regarded as trusted. Therefore, we assume a risk-averse
attacker that above a relatively low probability of de-
tection would be deterred from engaging in such activ-
ities. Note that the goal of detection is inherited from
CT’s threat model, which aims to remedy certificate
mis-issuance after the fact; not prevent it [34].

We identify and analyze specific attack vectors that
follow from our threat model and design as part of the
security analysis in Section 5, namely, attack vectors
related to timing as well as relay flooding and tagging.

4 Design
A complete design—a design that detects misbehavior
by both CAs and CT logs within our strong threat
model—requires a considerable degree of complexity. In
this section we present such a full design by breaking it
up into four phases as shown in Figure 1, demonstrat-
ing the need for the involved complexity in each step.
Section 6 presents two incremental versions of the full
design that are less complicated. The first increment
comes as the cost of having a weaker threat model and
security goal. The second increment does not have a
weaker security goal but requires a new CT log API.

A design that starts by validating SCT signatures
like Apple’s Safari is promising and assumed [3, 67], but
it does not stand up against a malicious CA and two CT
logs that work in concert. If the logs cannot be trusted
blindly, the presented SCTs need to be audited.

4.1 Phase 1: Submission

The least complicated auditing design would be one
where Tor Browser receives a TLS certificate and ac-
companying SCTs (we will refer to this bundle as an
SCT Feedback Object, or SFO for short) and talks to
the corresponding logs, over Tor, requesting an inclusion
proof for each SCT. In an ordinary browser, this would
be an unacceptable privacy leak to the log of browsing
behavior associated with an IP address; performing this

request over Tor hides the user’s IP address but still
leaks real-time browsing behavior.

An immediate problem with this design is that a
primary requirement of Tor Browser is to persist no
data about browsing behavior after the application ex-
its. If we assume that browsers are not left running for
long periods of time, the inclusion proof request can
be easily circumvented by the attacker by using a fresh
SCT whose MMD has not completed—thus no inclusion
proof needs to be provided (yet) by the log as per the
CT standard. A second problem is that the STH that an
inclusion proof refers to exists in a trust vacuum: there
is no way to know that it is consistent with other STHs
and not part of a split view (assuming that there is no
proactive STH gossip [14, 58], which is not deployed).

We can evolve the design by adding two components:
a list of STHs that Tor Browser receives over a trusted
channel and the participation of a trusted third party
with the ability to persist data and perform auditing
actions at a later point in time.

A single third party used by all users of Tor Browser
would receive a considerable aggregation of browsing be-
havior and would need to scale in-line with the entire
Tor network. A small number of auditors presents pri-
vacy and single-point-of-failure concerns. A large num-
ber would be ideal but presents difficulties in curation
and independent management and still requires scal-
ing independent of the Tor network. These concerns do
not entirely preclude the design, but they can be eas-
ily avoided by reusing relays in the Tor network as our
trusted third parties: we call the relays so designated
Certificate Transparency Relays (CTRs).

Now, when the browser is completing the TLS hand-
shake, it simultaneously either passes the SFO to a CTR
(if the MMD of the SCT has not elapsed) or queries
the log itself for an inclusion proof to a trusted STH.
However, if we presume the attacker can serve an ex-
ploit to the browser, the latter behavior is immediately
vulnerable. The log, upon receiving an inclusion proof
request for an SCT that it knows is malicious, can de-
lay its response. The TLS connection in the browser,
having succeeded, will progress to the HTTP request
and response, at which point the exploit will be served,
and the SFO (containing the cryptographic evidence of
CA and log misbehavior) will be deleted by the exploit
code. While blocking the TLS connection until the CT
log responds is an option, experience related to OCSP
hard-fail indicates that this notion is likely doomed to
fail [33].

The final change of the design has Tor Browser sub-
mit the SFO to the CTR immediately upon receipt
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Fig. 1. An overview of the four phases of the full CTor design. In phase 1 Tor Browser submits an SFO (SCT Feedback Object) to a
Certificate Transparency Relay (CTR), followed by phase 2 where the CTR buffers the SFO. In phase 3 the relay attempts to audit the
SFO, and in case of failure, it reports the SFO to an auditor with the help of a watchdog CTR in phase 4.

(with some probability) in all cases. A consequence of
this shift is that the trusted STH list no longer needs
to be delivered to the browser but rather the CTRs.
To mitigate the risk of a browser exploit being able to
identify the CTR to the attacker (who could then tar-
get it), we prepare CTR circuits ahead of time that are
closed and discarded as soon as the SFO is sent. This
allows the SFO submission to race with the TLS connec-
tion completion and HTTP request/response. An added
detail is to block the TLS connection in the case that
an SFO is unusually large, as defined by a parameter
ct-large-sfo-size. A large SFO may indicate an at-
tempt to win the race between SFO submission and
exploitation. The parameter can be set such that it
happens extremely rarely on legitimate connections, as
shown in Section 7.

We summarize phase 1 with the following algorithm
that provides more explicit steps and details, including
the addition of a parameter ct-submit-pr that indi-
cates a probability that an SFO is submitted to a CTR.
This provides probabilistic security while providing the
ability to adjust submission rates to account for CTR
and more general network scaling/health issues. Given
an incoming SFO s, Tor Browser should:
1. Raise a certificate error and stop if the certificate

chain of s is not rooted in Tor Browser’s trust store.
2. Raise a certificate transparency error and stop if the

SCTs of s fail Tor Browser’s CT policy.
3. If len(s) < ct-large-sfo-size, accept s and

conduct the remaining steps in the background
while the TLS connection and subsequent
HTTP request/response proceed. If len(s) ≥
ct-large-sfo-size pause the TLS handshake, com-
plete the remaining steps, accept s as valid and then
continue the handshake.

4. Flip a biased coin based on ct-submit-pr and stop
if the outcome indicates no further auditing.

5. Submit s to a random CTR on a pre-built circuit.
The circuit used for submission is closed immedi-
ately without waiting for any acknowledgment.

4.2 Phase 2: Buffering

Once received, the most straightforward thing for a
CTR to do would be to contact the issuing log and re-
quest an inclusion proof relative to a trusted STH. (And
if the SCT’s MMD has not elapsed, hold the SFO until
it has.) However, this proposal has two flaws, the first
of which leads us to the actual design of phase 2.

Immediately contacting the log about an SFO (i)
allows the log to predict when exactly it will receive a
request about an SFO and (ii) discloses real-time brows-
ing behavior to the log. The former problem means that
an attacker can position resources for perpetuating an
attack ahead-of-time, as well as letting it know with
certainty whether a connection was audited (based on
ct-submit-pr). The latter is some amount of informa-
tion leakage that can help with real-time traffic analysis.

Because a CTR must support buffering SCTs re-
gardless (due to the MMD), we can schedule an event
in the future for when each SFO should be audited.
Adding a per-SFO value sampled from ct-delay-dist
effectively adds stop-and-go mixing [30] to the privacy
protection, but where there is only one mix (CTR) be-
tween sender (client) and receiver (CT log). So there
is no point in a client-specified interval-start-time such
that the mix drops messages arriving before then, and
there is no additional risk in having the interval end time
set by the mix rather than the sender. This means both
that some SFOs a client sends to a CTR at roughly the
same time might be audited at different times and that
SFOs submitted to that CTR by other honest clients
are more likely to be mixed with these.
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1 : t← now() + MMD + random(ct-delay-dist)

2 : if SCT.timestamp + MMD < now() :

3 : t← now() + random(ct-delay-dist)

Fig. 2. Algorithm that computes an audit_after timestamp t.

In addition to buffering SFOs for mixing effects, we
also add a layer of caching to reduce the storage over-
head, prevent unnecessary log connections, and limit the
disclosure to logs. With regards to some CT circuit, an
incoming SFO s is processed as follows by a CTR:
1. Close the circuit to enforce one-time use.
2. Discard all SCTs in the SFO for logs the CTR is not

aware of; if no SCT remains then discard the SFO.
3. Stop if s is cached or already pending to be audited

in the buffer. See caching details in Section 7.2.
4. Sample a CT log l that issued a remaining SCT in s.
5. Compute an audit_after time t, see Figure 2.
6. Add (l, t, s) to a buffer of pending SFOs to audit.

What makes a CT log known to the CTR is part of the
Tor consensus, see Section 4.5. It implies knowledge of
a trusted STH for the sampled CT log l, which refers to
an entity that (i) issued an SCT in the submitted SFO,
and (ii) will be challenged to prove inclusion in phase 3
sometime after the audit_after timestamp t elapsed.
We choose one SCT (and thus log) at random from the
SFO because it is sufficient to suspect only one misbe-
having log so long as we report the entire SFO, allowing
us to identify the other malicious CT logs later on (a
risk averse-attacker would not conduct an attack with-
out controlling enough logs, i.e., one benign log would
otherwise make the mis-issued certificate public).

The audit_after timestamp specifies the earliest
point in time that an SCT from an SFO will be audited
in phase 3, which adds random noise that obfuscates
real-time browsing patterns in the Tor network and com-
plicates predictions of when it is safe to assume no audit
will take place. If memory becomes a scarce resource,
pending triplets should be deleted at random [46]. Fig-
ure 2 shows that t takes the log’s MMD into account.
This prevents an early signal to the issuing CT logs
that an SFO is being audited. For example, if an SFO
is audited before the MMD elapsed, then the issuing
CT log could simply merge the underlying certificate
chain to avoid any MMD violation. However, by taking
the MMD into account, this results in a relatively large
time window during which the attacker can attempt to
flood all CTRs in hope that they delete the omitted SFO
at random before it is audited. We discuss the threat
of flooding further in Section 5, noting that such an

attack can be detected if CTRs publish two new met-
rics in the extra-info document: ct-receive-bytes and
ct-delete-bytes. These metrics indicate how many
SFO bytes were received and deleted throughout differ-
ent time intervals, which is similar to other extra-info
metrics such as read-history and write-history.

4.3 Phase 3: Auditing

As alluded to in phase 2, there is a second problem why
the simple behavior of “contact the log and request an
inclusion proof” is unacceptable. We include the ability
to DoS an individual Tor relay in our threat model—
if the log knows which CTR holds the evidence of its
misbehavior, it can take the CTR offline, wiping the
evidence of the log’s misbehavior from its memory.

We can address this concern in a few ways. The
simple proposal of contacting the log over a Tor circuit
will not suffice: a log can tag each CTR by submitting
unique SFOs to them all, and recognize the CTR when
they are submitted (see Section 5). Even using a unique
Tor circuit for each SFO might not suffice to prevent
effective tagging attacks. For example, after tagging all
CTRs, a malicious log could ignore all but innocuous un-
tagged requests and tagged requests matching tags for
whichever CTR it decides to respond to first. If some
kind of back-off is supported (common to delay retrans-
missions and avoid congestion), the rest of the CTRs
will likely be in back-off so that there is a high proba-
bility that the first CTR is the one fetching proofs. The
log can repeat this process—alternating tagged CTRs it
replies to—until it receives the offending SFO from an
identifiable CTR with high probability. CTRs may re-
port the log as inaccessible for days, but that is not the
same as direct cryptographic evidence of misbehavior.

While there are ways to detect this attack after-the-
fact, and there may be ways to mitigate it, a more robust
design would tolerate the disclosure of a CTRs identity
to the log during the auditing phase without significant
security implications. A simple appealing approach is to
write the data to disk prior to contacting the log; how-
ever, Tor relays are explicitly designed not to write data
about user behavior to disk unless debug-level logging
is enabled. Relay operators have expressed an explicit
desire to never have any user data persisted to disk, as
it changes the risk profile of their servers with regards
to search, seizure, and forensic analysis.

The final design is to have the CTR work with a
partner CTR—we call it a watchdog—that they choose
at random and contact over a circuit. Prior to attempt-
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ing to fetch a proof from a log, the CTR provides the
watchdog with the SFO it is about to audit. After an
appropriate response from the log, the CTR tells the
watchdog that the SFO has been adequately addressed.

In more detail, each CTR maintains a single shared
circuit that is used to interact with all CT logs known
to the CTR (we are not using one circuit per SFO given
the overhead and unclear security benefit noted above).
For each such log l, the CTR runs the following steps:
1. Sample a delay d← random(ct-backoff-dist) and

wait until d time units elapsed.
2. Connect to a random watchdog CTR.
3. For each pending buffer entry (l′, s, t), where l′ = l

and t <= now():
(a) Share s with the current watchdog.
(b) Challenge the log to prove inclusion to the

closest STH in the Tor consensus where t ≤
STH.timestamp. Wait ct-log-timeout time
units for the complete proof before timing out.
– On valid proof: send an acknowledgment to

the watchdog, cache s and then discard it.
– On any other outcome: close circuit to the

watchdog CTR, discard s, and go to step 1.

4.4 Phase 4: Reporting

At any given time, a CTR may be requesting inclusion
proofs from logs and act as a watchdog for one or more
CTRs. A CTR acting as a watchdog will have at most
one SFO held temporarily for each other CTR it is in-
teracting with. If an acknowledgement from the other
CTR is not received within ct-watchdog-timeout, it be-
comes the watchdog’s responsibility to report the SFO
such that it culminates in human review if need be.

Because human review and publication is critical at
this end-stage, we envision that the watchdog (which is
a Tor relay that cannot persist any evidence to disk and
may not be closely monitored by its operator) provides
the SFO to an independent CT auditor that is run by
someone that closely monitors its operation. When ar-
riving at the design of the CTR being a role played by a
Tor relay, we eschewed separate auditors because of the
lack of automatic scaling with the Tor network, the con-
siderable aggregation of browsing behavior across the
Tor network, and the difficulties of curation and vali-
dation of trustworthy individuals. SFOs submitted to
auditors at this stage have been filtered through the
CTR layer (that additionally backs-off if the logs be-
come unavailable to prevent an open pipe of SFOs from
being reported), resulting in an exponentially smaller

load and data exposure for auditors. This should allow
for a smaller number of them to operate without need-
ing to scale with the network.

While we assume that most auditors are trusted
to actually investigate the reported SFOs further, the
watchdog needs to take precautions talking to them
because the network is not trusted.2 The watchdog
can contact the auditor immediately, but must do so
over an independent Tor circuit.3 If a successful ac-
knowledgement from the auditor is not received within
ct-auditor-timeout, the SFO is buffered for a random
time using ct-delay-dist before being reported to the
same auditor again over a new independent Tor circuit.

When an auditor receives an SFO, it should persist
it to durable storage until it can be successfully resolved
to a specific STH.4 Once so persisted, the auditor can be-
gin querying the log itself asking for an inclusion proof.
If no valid inclusion proof can be provided after some
threshold of time, the auditor software should raise the
details to a human operator for investigation.

Separately, the auditor should be retrieving the cur-
rent Tor consensus and ensuring that a consistency
proof can be provided between STHs from the older
consensus and the newer. If consistency cannot be es-
tablished after some threshold of time, the auditor soft-
ware should raise the details to a human operator for
investigation. An auditor could also monitor a log’s up-
time and report on excessive downtime. Finally, it is
paramount that the auditor continuously monitors its
own availability from fresh Tor-circuits by submitting
known SFOs to itself to ensure that an attacker is not
keeping watchdogs from connecting to it.

4.5 Setup

There are a number of additional details missing to
setup phases 1–4 for the design. Most of these details
relate to the Tor consensus. Directory authorities in-

2 While our threat model, and Tor’s, precludes a global network
adversary, both include partial control of the network.
3 This is also important because CTRs are not necessarily exits,
i.e., the exiting traffic must be destined to another Tor relay.
4 The fetched inclusion proof must be against the first known
STH that should have incorporated the certificate in question
by using the history of STHs in Tor’s consensus: the mis-issued
certificate might have been merged into the log reactively upon
learning that a CTR reported the SFO, such that a valid inclusion
proof can be returned with regards to a more recent STH but
not earlier ones that actually captured the log’s misbehavior.
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fluence the way in which Tor Browser and CTRs be-
have by voting on necessary parameters, such as the
probability of submission of an SFO (ct-submit-pr)
and the timeout used by CTRs when auditing CT logs
(ct-log-timeout), as introduced earlier as part of the
design. See Appendix A for details on these parameters
and their values that were previously used. Next, we
briefly introduce a number of implicitly used parts from
our design that should also be part of the consensus.

In the consensus, the existing known-flags item de-
termines the different flags that the consensus might
contain for relays. We add another flag named CTR,
which indicates that a Tor relay should support CT-
auditing as described here. A relay qualifies as a CTR
if it is flagged as stable and not exit, to spare the rel-
atively sparse exit bandwidth and only use relays that
can be expected to stay online. Section 8 discusses trade-
offs in the assignment of the CTR flag.

The consensus should also capture a fixed view of
the CT log ecosystem by publishing STHs from all
known logs. A CT log is known if a majority of direc-
tory authorities proposed a ct-log-info item, which
contains a log’s ID, public key, base URL, MMD, and
most recent STH. Each directory authority proposes its
own STH, and agrees to use the most recent STH as de-
termined by timestamp and lexicographical order. Since
CTRs verify inclusion with regards to SCTs that Tor
Browser accepts, the CT logs recognized by Tor Browser
must be in Tor’s consensus.

Tor’s directory authorities also majority-vote on
ct-auditor items, which pin base URLs and public keys
of CT auditors that watchdogs contact in case that any
log misbehavior is suspected.

5 Security Analysis
We consider four types of impact for an attacker that
conducted HTTPS-based man-in-the-middle attacks on
Tor Browser. Other than none, these impact types are:
Minor the attack was detected due to some cover-up

that involved network-wide actions against CTor.
This is likely hard to attribute to the actual attacker,
but nevertheless it draws much unwanted attention.

Significant the attack generated public cryptographic
evidence that proves CA misbehavior.

Catastrophic the attack generated public crypto-
graphic evidence that proves CT log misbehavior.

Our design leads to significant and catastrophic impact
events, but does unfortunately not preclude minor ones.
It is possible to overcome this shortcoming at different
trade-offs, e.g., by tuning CTor parameters reactively
(phase 2 below) or relying on different trust assumptions
as in the incremental cross-logging designs (Section 6).

Probability of Detection. Suppose the attacker
mis-issued a certificate that Tor Browser trusts, and
that it is considered valid because it is accompanied by
enough SCTs from CT logs that the attacker controls.
The resulting SFO is then used to man-in-the-middle a
single Tor Browser user, i.e., for the purpose of our anal-
ysis we consider the most risk-averse scenario possible.
Clearly, none of the attacker’s CT logs plan to keep any
promise of public logging: that would trivially imply sig-
nificant impact events. The risk of exposure is instead
bound by the probability that any of the four phases
in our design fail to propagate the mis-issued SFO to a
pinned CT auditor that is benign.

Phase 1: Submission. The probability of de-
tection cannot exceed the probability of submission
(ct-submit-pr). We analyze the outcome of submitting
the mis-issued SFO from Tor Browser to a CTR. There
are two cases to consider, namely, the mis-issued SFO
is either larger than ct-large-sfo-size or it is not.

If the SFO is larger than ct-large-sfo-size, Tor
Browser blocks until the SFO is submitted and its CT
circuit is closed. As such, it is impossible to serve a Tor
Browser exploit reactively over the man-in-the-middled
connection that shuts-down the submission procedure
before it occurs. Assuming that forensic traces in tor and
Tor Browser are unreliable,5 the sampled CTR identity
also cannot be revealed with high certainty afterwards
by compromising Tor Browser. The attacker may know
that the SFO is buffered by some CTR based on timing,
i.e., blocking-behavior could be measurable and distinct.
The important part is not to reveal which CTR received
a submission: a single Tor relay may be subject to DoS.

If the SFO is smaller or equal to ct-large-sfo-size
there is a race between (i) the time it takes for Tor
Browser to submit the SFO and close its CT circuit
against (ii) the time it takes for the attacker to compro-
mise Tor Browser and identify the CTR in question. It
is more advantageous to try and win this race rather
than being in the unfruitful scenario above. Therefore,

5 “tor” (aka “little-t tor”) is the tor process Tor Browser uses
to interact with the Tor network. On marking a circuit as closed
in tor, tor immediately schedules the associated data structures
to be freed as soon as possible.
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the attacker would maximize the time it takes to per-
form (i) by sending an SFO that is ct-large-sfo-size.
Our design reduced the threat of an attacker that wins
this race by using pre-built CT circuits that are closed
immediately after use. This makes the attack surface
narrow, limiting the number of reliable exploits (if any).

Note that the attack surface could, in theory, be
eliminated by setting ct-large-sfo-size to zero. How-
ever, that is likely too costly in terms of latency [33].

Phase 2: Buffering. The probability of detection
cannot exceed 1 − (fctr + fdos), where fctr is the frac-
tion of malicious CTRs and fdos the fraction of CTRs
that suffer from DoS. We analyze the outcome of SFO
reception at a genuine CTR.

The time that an SFO is buffered depends on if the
log’s MMD elapsed or not. The earliest point in time
that a newly issued SCT can be audited (and the log
is expected to respond) is an MMD later, whereas the
normal buffer time is otherwise only governed by smaller
randomness in the audit_after timestamp (minutes).
A rational attacker would therefore maximize the buffer
time by using a newly issued SCT, resulting in an attack
window that is at least 24 hours for today’s CT logs [24].

Following from Tor’s threat model, the mis-issued
SFO must be stored in volatile memory and not to disk.
Two risks emerge due to large buffer times: the CTR
in question might be restarted by the operator indepen-
dently of the attacker’s mis-issued SFO being buffered,
and given enough time the attacker might find a way
to cause the evidence to be deleted. While a risk-averse
attacker cannot rely on the former to avoid detection,
we emphasize that the CTR criteria must include the
stable flag to reduce the probability of this occurring.

The latter is more difficult to evaluate. It depends
on the attacker’s knowledge as well as capabilities.
Phase 1 ensured that the attacker does not know which
CTR to target. As such, any attempt to intervene needs
to target all CTRs. While a network-wide DoS against
Tor would be effective, it is not within our threat model.
A less intrusive type of DoS would be to flood CTRs
by submitting massive amounts of SFOs: just enough
to make memory a scarce resource, but without mak-
ing Tor unavailable. This could potentially flush a tar-
get SFO from the CTR’s finite memory, following from
the delete-at-random strategy in Section 4.2. Assuming
that a CTR has at most 1 GiB of memory available for
SFOs (conservative and in favour of the attacker), Ap-
pendix C shows that the attacker’s flood must involve
at least 2.3 GiB per CTR to accomplish a 90% success
certainty. This means that it takes 7.9–39.3 minutes if
the relay bandwidth is between 8–40 Mbps. So it is im-

practical to flush all CTRs within a few minutes, and
hours are needed not to make everyone unavailable at
once.

The CTR criteria set in Section 4.5 matches over
4000 Tor relays [62]. A network-wide flush that succeeds
with 90% certainty therefore involves 8.99 TiB. It might
sound daunting at first, but distributed throughout an
entire day it only requires 0.91 Gbps. Such an attack
is within our threat model because it does not make
Tor unavailable. Notably the ballpark of these numbers
do not change to any significant degree by assuming
larger success probabilities, e.g., a 99% probability only
doubles the overhead. Further, the needed bandwidth
scales linearly with the assumed memory of CTRs. This
makes it difficult to rely on the finite volatile memory of
CTRs to mitigate network-wide flushes. As described in
Section 4.2, we ensure that flushes are detected by pub-
lishing the number of received and deleted SFO bytes
throughout different time intervals as extra-info.

Once detected, there are several possible reactions
that decrease the likelihood of a minor impact scenario.
For example, Tor’s directory authorities could lower
MMDs to, say, 30 minutes, so that the SFO is reported
to an auditor before it is flushed with high probabil-
ity. This has the benefit of implying significant impact
because the mis-issued certificate is detected, but also
the drawback of allowing the logs to merge the certifi-
cate before there is any MMD violation to speak of. The
most appropriate response depends on the exact attack
scenario and which trade-offs one is willing to accept.

Phase 3: Auditing. By the time an SFO enters
the audit phase, the log in question is expected to re-
spond with a valid inclusion proof. There is no such
proof if the log violated its MMD, and it is too late to
create a split-view that merged the certificate in time
because the CTR’s view is already fixed by an STH in
the Tor consensus that captured the log’s misbehavior.
In fact, creating any split-view within Tor is impracti-
cal because it requires that the consensus is forged or
that nobody ever checks whether the trusted STHs are
consistent. This leaves two options: the attacker either
responds to the query with an invalid inclusion proof or
not at all. The former is immediately detected and starts
phase 4, whereas the latter forces the CTR to wait for
ct-watchdog-timeout to trigger (which is a few seconds
to avoid premature auditor reports). A rational attacker
prefers the second option to gain time.

Clearly, the attacker knows that some CTR holds
evidence of log misbehavior as it is being audited. The
relevant question is whether the exact CTR identity can
be inferred, in which case the attacker could knock it
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offline (DoS). Motivated by the threat of tagging, where
the attacker sends unique SFOs to all CTRs so that
their identities are revealed once queried for, we erred
on the safe side and built watchdogs into our design: it is
already too late to DoS the querying CTR because the
evidence is already replicated somewhere else, ready to
be reported unless there is a timely acknowledgement.
The attacker would have to break into an arbitrary CTR
within seconds to cancel the watchdog, which cannot be
identified later on (same premise as the sampled CTR in
phase 1). Such an attacker is not in Tor’s threat model.

Phase 4: Reporting. At this stage the process of
reporting the mis-issued SFO to a random CT auditor
is initiated. Clearly, the probability of detection cannot
exceed 1 − fauditor, where fauditor is the fraction of mali-
cious CT auditors. Fixating the sampled CT auditor is
important to avoid the threat of an eventually success-
ful report only if it is destined to the attacker’s auditor
because our attacker is partially present in the network.
Gaining time at this stage is of limited help because
the CTR identity is unknown as noted above, and it re-
mains the case throughout phase 4 due to reporting on
independent Tor circuits (and independently of if other
SFO reports succeeded or not). Without an identifiable
watchdog, the attacker needs a network-wide attack that
is already more likely to succeed in the buffer phase.

6 Incremental Deployment
Section 4 covered the full design that places zero-trust
in the CT landscape by challenging the logs to prove
certificate inclusion with regards to trusted STHs in
the Tor consensus. If no such proof can be provided,
the suspected evidence of log misbehavior is reported
to a trusted CT auditor that follows-up on the incident,
which involves human intervention if an issue persists.
The proposed design modifies the Tor consensus, Tor
relays, and Tor Browser. It also requires development
and operation of a trusted auditor infrastructure. The
current lack of the latter makes it unlikely that we will
see adoption of CTor in its full potential anytime soon,
and begs the question of increments that help us get
there in the future. Therefore, we additionally propose
two incremental designs in this section.

Without the ability to rely on CT auditors, trust
needs to be shifted elsewhere because we cannot expect
relay operators to take on the role. At the same time, an
incremental proposal needs to improve upon the status
quo of pairwise-independently trusted CT logs. These

observations lead us towards the trust assumption that
at least some of the CT logs are trustworthy. Such an
assumption is suboptimal, but it does provide a real-
world security improvement by significantly raising the
bar from weakest-link(s) to quite the opposite.

The smallest change of the full design would be for
watchdogs to report suspected certificate mis-issuance
to all CT logs, simply by using the public add-chain
API to make the SFO’s certificate chain transparent.
This has the benefit of holding the CA accountable if
some log operator is benign. Given that our attacker is
risk-averse, reporting to a single independent log6 that
issued none of the accompanied SCTs would likely be
sufficient. There is also room for further simplification:
there is no point in challenging the logs to prove inclu-
sion if the fallback behavior of no response only makes
the issued certificate public, not the associated SCTs.
Thus, CTRs could opt to cross-log immediately without
ever distinguishing between certificates that are benign
and possibly fraudulent. This results in the incremental
design shown in Figure 3, which initially removes several
system complexities such as extra-info metrics, auditor
infrastructure, watchdog collaborations, and inclusion
proof fetching against trusted STHs in Tor’s consensus.

The drawback of certificate cross-logging is that the
misbehaving CT logs cannot be exposed. There is also
a discrepancy between cross-logging and encouraging
the CT landscape to deploy reliable CT auditors. We
therefore suggest a minimal change to the basic cross-
logging design that addresses both of these concerns.
This change is unfortunately to the API of CT logs and
not Tor. The proposed change is to allow cross-logging
of a certificate’s issued SCTs, e.g., in the form of an
add-sfo API that would replace add-chain in Figure 3.
This means that CTRs could expose both the mis-issued
certificate and the logs that violated their promises of
public logging. At the same time, the infrastructural
part of a CT auditor is built directly into existing CT
logs: accepting SFOs that need further investigation.
Such an API would be an ecosystem improvement in
itself, providing a well-defined place to report suspected
log misbehavior on-the-fly casually, i.e., without first
trying to resolve an SFO for an extended time period
from many different vantage points and then ultimately
reporting it manually on the CT policy mailing list.

6 The independent log need not be trusted by the browser, i.e.,
it could be specified separately in the Tor consensus. An operator
that runs such a log would help distribute trust and facilitate
auditing. Appendix B provides details on today’s log ecosystem.
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Fig. 3. Incremental design that can be deployed without any trusted CT auditors. Tor Browser still submits SFOs to CTRs on indepen-
dent Tor circuits for the sake of privacy and security. After CTR buffering, the submitted certificates are cross-logged by adding them
to independent CT logs (selected at random) that the attacker does not control (inferred from accompanied SCTs).

Security Sketch. There are no changes to phase 1
because cross-logging is instantiated at CTRs. Phases 3–
4 are now merged, such that the encountered certificates
are added to independent CT logs that the attacker
does/may not control. Watchdogs are no longer needed
since either the certificates are added to a log that the
attacker controls, or they are not (which makes them
public). The other main difference takes place in phase 2,
during which CTRs buffer SFOs. The buffer time used
to be lengthy due to taking early signals and MMDs
into account, but it is now irrelevant as no inclusion
proofs are fetched. The expected buffer time can there-
fore be shortened down to minutes that follow only from
the randomness in the audit_after timestamp (for the
sake of privacy), making network-wide flushes imprac-
tical while at the same time reducing the time that a
mis-issued certificate stays unnoticed: a benign log is
likely to add an entry before all MMDs elapsed.

The extended cross-logging also aims to expose log
misbehavior. As such, it is paramount that no cross-
logged SFO becomes public before the issuing CT logs
can merge the mis-issued certificate reactively to avoid
catastrophic impact. This could be assured by buffering
newly issued SFOs longer as in the full design, which
brings back the threat and complexity of minor impact
scenarios. Another option that is appealing for Tor (but
less so for CT) is to operate the add-sfo API with the
expectation of delayed merges that account for MMDs
before making an SFO public, effectively moving lengthy
buffering from CTRs to CT logs with persistent storage.
Trillian-based CT logs already support delayed merges
of (pre)certificates, see sequencer_guard_window [25].

7 Performance
The following analysis shows that CTor’s overhead is
modest based on computing performance estimates from
concrete parameter properties and two public data sets.

7.1 Setup

Mani et al. derived a distribution of website visits over
Tor and an estimation of the number of circuits through
the network [40]. We use their results to reason about
overhead as the Tor network is under heavy load, assum-
ing 140 million daily website visits (the upper bound of
a 95% confidence interval). Our analysis also requires
a distribution that captures typical SFO properties per
website visit. Therefore, we collected an SFO data set
by browsing the most popular webpages submitted to
Reddit (r/frontpage, all time) on December 4, 2019.
The data set contains SFOs from 8858 webpage visits,
and it is available online as an open access artifact to-
gether with the associated scripts [13]. Notably we hy-
pothesized that browsing actual webpages as opposed to
front-pages would yield more SFOs. When compared to
Alexa’s list it turned out to be the case: our data set has
roughly two additional SFOs per data point. This makes
it less likely that our analysis is an underestimate.

We found that an average certificate chain is
5440 bytes, and it is seldom accompanied by more than a
few SCTs. As such, a typical SFO is in the order of 6 KiB.
No certificate chain exceeded 20 KiB, and the average
number of SFOs per webpage was seven. The latter in-
cludes 1–2 SFOs per data point that followed from our
client software calling home on start-up (Chromium 77).

We assume no abnormal CTor behavior, which
means that there will be little or no CTR back-offs
due to the high uptime requirements of today’s CT logs:
99%. We set ct-large-sfo-size conservatively to avoid
blocking in the TLS handshake (e.g., 20 KiB), and use a
10% submission probability as well as a 10 minute ran-
dom buffer delay on average. It is likely unwarranted
to use a higher submission probability given that the
intended attacker is risk-averse. Shorter buffer times
would leak finer-grained browsing patterns to the logs,
while longer ones increase the attack surface in phase 2.
Therefore, we selected an average for ct-delay-dist
that satisfies none of the two extremes. The remaining
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CTor parameters are timeouts, which have little or no
performance impact if set conservatively (few seconds).

7.2 Estimates

The incremental cross-logging designs are analyzed first
without any caching. Caching is then considered, fol-
lowed by overhead that appears only in the full design.

Circuit Overhead. Equation 1 shows the expected
circuit overhead from Tor Browser over time, where p

is the submit probability and d̄ the average number of
SFOs per website visit. The involved overhead is linear
as either of the two parameters are tuned up or down.

pd̄ (1)

Using p ← 1
10 and our approximated SFO distribu-

tion d̄← 7 yields an average circuit overhead of 0.70, i.e.,
for every three Tor Browser circuits CTor adds another
two. Such an increase might sound daunting at first,7

but these additional circuits are short-lived and light-
weight; transporting 6 KiB on average. Each CTR also
maintains a long-lived circuit for CT log interactions.

Bandwidth Overhead. Equation 2 shows the ex-
pected bandwidth overhead for the Tor network over
time, where V is the number of website visits per time
unit, p the submit probability, d̄ the average number of
SFOs per website visit, and s̄ the average SFO byte-size.

6V pd̄s̄ (2)

V pd̄ is the average number of SFO submissions per
time unit, which can be converted to bandwidth by
weighting each submission with the size of a typical
SFO and accounting for it being relayed six times: three
hops from Tor Browser to a CTR, then another three
hops from the CTR to a CT log (we assumed symmetric
Tor relay bandwidth). Using V ← 140 M/day, p ← 1

10 ,
d̄ ← 7, s̄ ← 6 KiB and converting the result to bps
yields 334.5 Mbps in total. Such order of overhead is
small when compared to Tor’s capacity: 450 Gbps [61].

Memory Overhead. Equation 3 shows the ex-
pected buffering overhead, where Vm is the number of
website visits per minute, t the average buffer time in

7 Circuit establishment involves queueing of onionskins [63] and
it is a likely bottleneck, but since the introduction of ntor it is
not a scarce resource so such overhead is acceptable if it (i) serves
a purpose, and (ii) can be tuned. Confirmed by Tor developers.

minutes, R the number of Tor relays that qualify as
CTRs, and s̄ the typical SFO size in bytes.

Vmt

R
s̄ (3)

Vmt represent incoming SFO submissions during the
average buffer time, which are randomly distributed
across R CTRs. Combined, this yields the expected
number of SFOs that await at a single CTR in phase 2,
and by taking the byte-size of these SFOs into account
we get an estimate of the resulting memory overhead.
Using Vm ← 140 M

24·60 , t ← 10 m, R ← 4000 based on
the CTR criteria in Section 4.5, and s̄ ← 6 KiB yields
1.42 MiB. Such order of overhead is small when com-
pared to the recommended relay configuration: at least
512 MiB [64].

A cache of processed SFOs reduces the CTR’s
buffering memory and log interactions proportionally
to the cache hit ratio. Mani et al. showed that if the
overrepresented torproject.org is removed, about one
third of all website visits over Tor can be attributed to
Alexa’s top-1k and another one third to the top-1M [40].
Assuming 32 byte cryptographic hashes and seven SFOs
per website visit, a cache hit ratio of 1

3 could be achieved
by a 256 KiB LFU/LRU cache that eventually captures
Alexa’s top-1k. Given that the cache requires memory
as well, this is mainly a bandwidth optimization.

Full Design. For each CTR and CT log pair, there
is an additional watchdog circuit that transports the full
SFO upfront before fetching an inclusion proof. The ex-
pected bandwidth overhead is at most 9V pd̄s̄, i.e., now
also accounting for the three additional hops that an
SFO is subject to. In practise the overhead is slightly
less, because an inclusion query and its returned proof
is smaller than an SFO. We expect little or no watchdog-
to-auditor overhead if the logs are available, and other-
wise one light-weight circuit that reports a single SFO
for each CTR that goes into back-off. Such overhead is
small when compared to all Tor Browser submissions.
Finally, the required memory increases because newly
issued SFOs are buffered for at least an MMD. Only a
small portion of SFOs are newly issued, however: the
short-lived certificates of Let’s Encrypt are valid for
90 days [1], which is in contrast to 24 hour MMDs [24].

8 Privacy
There is an inherent privacy problem in the setting due
to how CT is designed and deployed. A browser, like Tor
Browser, that wishes to validate that SFOs presented to
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it are consistent and included in CT logs must directly or
indirectly interact with CT logs wrt. its observed SFOs.
Without protections like Private Information Retrieval
(PIR) [7] that require server-side support or introduc-
tion of additional parties and trust assumptions [29, 39],
exposing SFOs to any party risks leaking (partial) infor-
mation about the browsing activities of the user.

Given the constraints of the existing CT ecosys-
tem, CTor is made privacy-preserving thanks to the
distributed nature of Tor with its anonymity proper-
ties and high-uptime relays that make up the Tor net-
work. First, all communication between Tor Browser,
CTRs, CT logs, and auditors are made over full Tor-
circuits. This is a significant privacy-gain, not available,
e.g., to browsers like Chrome that in their communi-
cations would reveal their public IP-address (among a
number of other potentially identifying metadata). Sec-
ondly, the use of CTRs as intermediaries probabilisti-
cally delays the interaction with the CT logs—making
correlating Tor Browser user browsing with CT log in-
teraction harder for attackers—and safely maintains a
dynamic cache of the most commonly already verified
SFOs. While browsers like Chrome could maintain a
cache, Tor Browser’s security and privacy goals (Sec-
tion 2.2) prohibit such shared (persisted) dynamic state.

In terms of privacy, the main limitation of CTor
is that CTor continuously leaks to CT logs—and to a
lesser extent auditors (depending on design)—a fraction
of certificates of websites visited using Tor Browser to
those that operate CT logs. This provides to a CT log a
partial list of websites visited via the Tor network over
a period of time (determined by ct-delay-dist), to-
gether with some indication of distribution based on the
number of active CTRs. It does not, however, provide
even pseudonymously any information about which sites
individual users visit, much less with which patterns or
timing. As such it leaks significantly less information
than does OCSP validation by Tor Browser or DNS res-
olution at exit-relays [27], both of which indicate visit
activity in real time to a small number of entities.

Another significant limitation is that relays with the
CTR flag learn real-time browser behavior of Tor users.
Relays without the exit flag primarily only transport
encrypted Tor-traffic between clients and other relays,
never to destinations. If such relays are given the CTR
flag—as we stated in the full design, see Section 4.5—
then this might discourage some from running Tor relays
unless it is possible to opt out. Another option is to
give the CTR flag only to exit relays, but this might
be undesirable for overall network performance despite
the modest overhead of CTor (Section 7). Depending

on the health of the network and the exact incremental
deployment of CTor, there are different trade-offs.

9 Related Work
The status quo is to consider a certificate CT compliant
if it is accompanied by two independent SCTs [24, 67].
Therefore we proposed that Tor Browser should do the
same, but unlike any other CT-enforcing web browser
CTor also provides concrete next steps that relax the
centralized trust which is otherwise misplaced in CT
logs [41, 50, 52, 53]. Several proposals surfaced that aim
to do better with regards to omissions and split-views.

Laurie proposed that inclusion proofs could be
fetched over DNS to avoid additional privacy leaks, i.e.,
a user’s browsing patterns are already exposed to the
DNS resolver but not the logs in the CT landscape [35].
CT/bis provides the option of serving stapled inclusion
proofs as part of the TLS handshake in an extension, an
OCSP response, or the certificate itself [37]. Lueks and
Goldberg proposed that a separate database of inclusion
proofs could be maintained that supports information-
theoretic PIR [39]. Kales et al. improved scalability by
reducing the size of each entry in the PIR database at
the cost of transforming logs into multi-tier Merkle trees,
and additionally showed how the upper tier could be ex-
pressed as a two-server computational PIR database to
ensure that any inclusion proof can be computed pri-
vately on-the-fly [29]. Nordberg et al. avoid inclusion
proof fetching by hanging on to presented SFOs, hand-
ing them back to the same origin at a later time [46]. In
contrast, CTor protects the user’s privacy without any
persistent browser state by submitting SFOs on inde-
pendent Tor circuits to CTRs, which in turn add ran-
dom noise before there is any log interaction. The use
of CTRs enable caching similar to CT-over-DNS, but it
does not put the logs in the dark like PIR could.

Inclusion proofs are only meaningful if everyone
observes the same consistent STHs. One option is to
configure client software with a list of entities that
they should gossip with, e.g., CT monitors [6], or,
browser vendors could push a verified view [54]. Such
trusted auditor relationships may work for some but
not others [46]. Chuat et al. proposed that HTTPS
clients and HTTPS servers could pool STHs and con-
sistency proofs, which are gossiped on website visits [8].
Nordberg et al. suggested a similar variant, reducing
the risk of user tracking by pooling fewer and recent
STHs [46]. Dahlberg et al. noted that such privacy-
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insensitive STHs need not be encrypted, which could
enable network operators to use programmable data
planes to provide gossip as-a-service [14]. Syta et al. pro-
posed an alternative to reactive gossip mechanisms by
showing how an STH can be cosigned efficiently by many
independent witnesses [58]. A smaller-scale version of
witness cosigning could be instantiated by cross-logging
STHs in other CT logs [23], or in other append-only
ledgers [59]. CTor’s full design (Section 4) ensures that
anyone connected to the Tor network is on the same
view by making STHs public in the Tor consensus. In
contrast, the first incremental design (Section 6) is not
concerned with catching log misbehavior, while the sec-
ond incremental design (also Section 6) exposes misbe-
having logs without first trying to fetch inclusion proofs.

Nordberg proposed that Tor clients could enforce
public logging of consensus documents and votes [45].
Such an initiative is mostly orthogonal to CTor, as it
strengthens the assumption of a secure Tor consensus by
enabling detection of compromised signing keys rather
than mis-issued TLS certificates. Winter et al. proposed
that Tor Browser could check self-signed TLS certifi-
cates for exact matches on independent Tor circuits [68].
Alicherry et al. proposed that any web browser could
double-check TLS certificates on first encounter using
alternative paths and Tor, again, looking for certificate
mismatches and generating warnings of possible man-in-
the-middle attacks [2]. The submission phase in CTor is
similar to double-checking, except that there are nor-
mally no TLS handshake blocking, browser warnings,
or strict assumptions regarding the attacker’s location.

In parallel Stark and Thompson proposed that
Chrome could submit a random subset of encountered
SCTs to a trusted auditor that Google runs [56]. CTor
also propagates a random subset of SCTs to a trusted
auditor, but does so while preserving privacy because of
and how Tor is used. Meiklejohn additionally proposed
witness cosigning on-top of consistent STHs [42]. CTor
adds signatures on-top of STHs too, but only as part of
the Tor consensus that directory authorities sign.

10 Conclusion
We proposed CTor, a privacy-preserving and
incrementally-deployable design that brings CT to Tor.
Tor Browser should start by taking the same proactive
security measures as Google Chrome and Apple’s Safari:
require that a certificate is only valid if accompanied by
at least two SCTs. Such CT enforcement narrows down

the attack surface from the weakest-link security of the
CA ecosystem to a relatively small number of trusted
log operators without negatively impacting the user ex-
perience to an unacceptable degree. The problem is that
a powerful attacker may gain control of the required
logs, trivially circumventing enforcement without signif-
icant risk of exposure. If deployed incrementally, CTor
relaxes the currently deployed trust assumption by dis-
tributing it across all CT logs. If the full design is put
into operation, such trust is completely eliminated.

CTor repurposes Tor relays to ensure that today’s
trust in CT logs is not misplaced: Tor Browser prob-
abilistically submits the encountered certificates and
SCTs to Tor relays, which cross-log them into indepen-
dent CT logs (incremental design) or request inclusion
proofs with regards to a single fixed view (full design).
It turns out that delegating verification to a party that
can defer it is paramount in our setting, both for privacy
and security. Tor and the wider web would greatly bene-
fit from each design increment. The full design turns Tor
into a system for maintaining a probabilistically-verified
view of the entire CT log ecosystem, provided in Tor’s
consensus for anyone to use as a basis of trust. The idea
to cross-log certificates and SCTs further showcase how
certificate mis-issuance and suspected log misbehavior
could be disclosed casually without any manual inter-
vention by using the log ecosystem against the attacker.

The attacker’s best bet to break CTor involves any
of the following: operating significant parts of the CTor
infrastructure, spending a reliable Tor Browser zero-day
that escalates privileges within a tiny time window, or
targeting all Tor relays in an attempt to delete any ev-
idence of certificate mis-issuance and log misbehavior.
The latter—a so-called network-wide flush—brings us
to the border of our threat model, but it cannot be
ignored due to the powerful attacker that we consider.
Therefore, CTor is designed so that Tor can adapt in
response to interference. For example, in Tor Browser
the ct-large-sfo-size could be set reactively such
that all SFOs must be sent to a CTR before accept-
ing any HTTPS application-layer data to counter zero-
days, and the submit probability ct-submit-pr could
be increased if ongoing attacks are suspected. When it
comes to the storage phase, the consensus can minimize
or maximize the storage time by tuning a log’s MMD in
the ct-log-info item. The distribution that adds ran-
dom buffering delays could also be updated, as well as
log operator relationships during the auditing phase.
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A Detailed Consensus Parameters
Below, the value of an item is computed as the median
of all votes.
ct-submit-pr: A floating-point in [0, 1] that deter-

mines Tor Browser’s submission probability. For ex-
ample, 0 disables submissions while 0.10 means that
every 10th SFO is sent to a random CTR on average.

ct-large-sfo-size: A natural number that determines
how many wire-bytes a normal SFO should not ex-
ceed. As outlined in Section 4.1, excessively large
SFOs are subject to stricter verification criteria.

ct-log-timeout: A natural number that determines
how long a CTR waits before concluding that a CT
log is unresponsive, e.g., 5 seconds. As outlined in
Section 4.3, a timeout causes the watchdog to send
an SFO to the auditor.

ct-delay-dist: A distribution that determines how
long a CTR should wait at minimum before audit-
ing a submitted SFO. As outlined in Section 4.2,
random noise is added, e.g., on the order of minutes
to an hour.

ct-backoff-dist: A distribution that determines how
long a CTR should wait between two auditing in-
stances, e.g., a few minutes on average. As outlined
in Section 4.3, CTRs audit pending SFOs in batches
at random time intervals to spread out log overhead.

ct-watchdog-timeout: A natural number that deter-
mines how long time at most a watchdog waits be-
fore considering an SFO for reporting. Prevents the
watchdog from having to wait for a circuit timeout
caused by an unresponsive CTR. Should be set with
ct-backoff-dist in mind.

ct-auditor-timeout A natural number that deter-
mines how long time at most a watchdog waits
for an auditor to acknowledge the submission of an
SFO.

B Log Operators & Trust Anchors
The standardized CT protocol suggests that a log’s trust
anchors should “usefully be the union of root certifi-
cates trusted by major browser vendors” [36, 37]. Apple
further claims that a log in their CT program “must
trust all root CA certificates included in Apple’s trust
store” [3]. This bodes well for the incremental CTor de-
signs: we assumed that the existence of independent log
operators implies the ability to at least add certificate
chains and possibly complete SFOs into logs that the

attacker does not control. Google’s CT policy currently
qualifies 36 logs that are hosted by Cloudflare, DigiCert,
Google, Let’s Encrypt, Sectigo, and TrustAsia [24]. No
log accepts all roots, but the overlap between root cer-
tificates that are trusted by major browser vendors and
CT logs increased over time [31]. This trend would likely
continue if there are user agents that benefit from it, e.g.,
Tor Browser. Despite relatively few log operators and an
incomplete root coverage, the basic and extended cross-
logging in CTor still provide significant value as is:
– Even if there are no independent logs available for a

certificate issued by some CA, adding it again to the
same logs would come with practical security gains.
For example, if the attacker gained access to the
secret signing keys but not the logs’ infrastructures
the mis-issued certificate trivially makes it into the
public. If the full SFO is added, the log operators
could also notice that they were compromised.

– Most log operators only exclude a small fraction of
widely accepted root certificates: 1–5% [31]. This
narrows down the possible CAs that the attacker
must control by 1–2 orders of magnitude. In other
words, to be entirely sure that CTor would (re)add
a mis-issued SFO to the attacker-controlled CT logs,
this smaller group of CAs must issue the underlying
certificate. It is likely harder to take control of Let’s
Encrypt which some logs and operators exclude due
to the sheer volume of issued certificates than, say,
a smaller CA that law enforcement may coerce.

Browser-qualified or not, the availability of independent
logs that accept the commonly accepted root certificates
provides significant ecosystem value. Log misbehavior
is mostly reported through the CT policy mailing list.
Thus, it requires manual intervention. Wide support of
certificate chain and SCT cross-logging allows anyone to
casually disclose suspected log misbehavior on-the-fly.

C Flushing a Single CTR
Let n be the number of SFOs that a CTR can store in its
buffer. The probability to sample a target SFO is thus
1
n , and the probability to not sample a target SFO is q =
1− 1

n . The probability to not sample a target SFO after
k submissions is qk. Thus, the probability to sample the
relevant buffer index at least once is p = 1− qk. Solving
for k we get: k = log(1−p)

log(q) . Substituting q for 1− 1
n yields

Equation 4, which can be used to compute the number
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of SFO submissions that the attacker needs to flush a
buffer of n > 2 entries with some probability p ∈ [0, 1).

k = log(1− p)
log(1− 1

n )
(4)

It is recommended that a non-exit relay should have
at least 512MB of memory. If the available bandwidth
exceeds 40Mbps, it should have at least 1GB [64]. Given
that these recommendations are lower bounds, suppose
the average memory available to store SFOs is 1GiB.
Section 7 further showed that the average SFO size
is roughly 6KiB. This means that the buffer capacity
is n ← 174763 SFOs. Plugging it into Equation 4 for
p ← 9

10 , the attacker’s flood must involve k ← 402406
submissions. In other words, 2.3GiB must be transmit-
ted to flush a single CTR with 90% success probability.

As a corner case and implementation detail it is im-
portant that Tor Browser and CTRs reject SFOs that
are bogus in terms of size: it is a trivial DoS vector to
load data indefinitely. If such a threshold is added the re-
quired flushing bandwidth is still 2.3GiB (e.g., use 1MiB
SFOs in the above computations). What can be said
about bandwidth and potential adversarial advantages
is that a submitted SFO yields amplification: twofold for
cross-logging, and slightly more for proof-fetching as the
SFO is pushed up-front to a watchdog. Note that such
amplification is smaller than a typical website visit.
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