
Proceedings on Privacy Enhancing Technologies ; 2021 (2):214–234

Túlio Pascoal, Jérémie Decouchant*, Antoine Boutet, and Paulo Esteves-Verissimo

DyPS: Dynamic, Private and Secure GWAS
Abstract: Genome-Wide Association Studies (GWAS)
identify the genomic variations that are statistically as-
sociated with a particular phenotype (e.g., a disease).
The confidence in GWAS results increases with the
number of genomes analyzed, which encourages feder-
ated computations where biocenters would periodically
share the genomes they have sequenced. However, for
economical and legal reasons, this collaboration will
only happen if biocenters cannot learn each others’ data.
In addition, GWAS releases should not jeopardize the
privacy of the individuals whose genomes are used. We
introduce DyPS, a novel framework to conduct dynamic
privacy-preserving federated GWAS. DyPS leverages
a Trusted Execution Environment to secure dynamic
GWAS computations. Moreover, DyPS uses a scaling
mechanism to speed up the releases of GWAS results
according to the evolving number of genomes used in
the study, even if individuals retract their participation
consent. Lastly, DyPS also tolerates up to all-but-one
colluding biocenters without privacy leaks. We imple-
mented and extensively evaluated DyPS through sev-
eral scenarios involving more than 6 million simulated
genomes and up to 35,000 real genomes. Our evaluation
shows that DyPS updates test statistics with a reason-
able additional request processing delay (11% longer)
compared to an approach that would update them with
minimal delay but would lead to 8% of the genomes
not being protected. In addition, DyPS can result in
the same amount of aggregate statistics as a static re-
lease (i.e., at the end of the study), but can produce
up to 2.6 times more statistics information during ear-
lier dynamic releases. Besides, we show that DyPS can
support a larger number of genomes and SNP positions
without any significant performance penalty.

Keywords: Federated GWAS, Genomic privacy, Dy-
namic workload, Collusion resistance

DOI 10.2478/popets-2021-0025
Received 2020-08-31; revised 2020-12-15; accepted 2020-12-16.

Túlio Pascoal: SnT, University of Luxembourg. E-mail:
tulio.pascoal@uni.lu
*Corresponding Author: Jérémie De-
couchant: FSTM, University of Luxembourg. E-mail:
jeremie.decouchant@gmx.com
Antoine Boutet: University of Lyon, INSA Lyon, Inria,
CITI. E-mail: antoine.boutet@insa-lyon.fr

1 Introduction
The decreasing cost of DNA sequencing [1] allows
Genome-Wide Association Studies (GWAS) to become
affordable. GWAS aim at identifying the genetic factors
underlying a set of observable characteristics or traits
such as diseases or particular phenotypes [2]. To do so,
the genomes of a case population (i.e., a group of par-
ticipants with a phenotype of interest) are sequenced
to compare the statistical features of their Single Nu-
cleotide Polymorphisms (SNPs, one nucleotide long ge-
nomic variations) to those of a control population (i.e.,
a group of individuals without the targeted phenotype).

Research and medicine would benefit from publicly
shared GWAS statistics [3–6]. In particular, health sci-
entists and geneticists have been using aggregate statis-
tics (i.e., single or pairwise allele frequencies) and test
statistics (e.g., χ2-test results) for their studies. How-
ever, several privacy attacks [3, 4, 7–9] demonstrated
that genomic data can only be shared with special
care. Following the publication of these attacks, the Na-
tional Institute of Health (NIH) preventively removed
all GWAS results from public access and instantiated an
approval process one has to follow to consult them [10].

Few works have studied how to determine when
GWAS results can be safely released [11, 12]. How-
ever, these approaches require gaining access to the full
set of genomes, which is not realistic in modern fed-
erated biomedical ecosystems [13–15], where each bio-
center keeps its data and supports the cost of its own
sequencing process, which limits full data sharing for
economical and legal reasons. Therefore, there is now a
need for federated GWAS solutions that would encour-
age collaboration of players with different economical
interests to increase the accuracy of GWAS, distribute
their costs and reduce their computational delays.

In this context, several works have presented meth-
ods that enable the distributed computation of ag-
gregate statistics, relying either on homomorphic en-
cryption (HE) [16–19], secure multi-party computations

Paulo Esteves-Verissimo: KAUST - Resilient Computing
and Cybersecurity Center (RC3). Work partly performed while
this author was with the University of Luxembourg. E-mail:
paulo.verissimo@kaust.edu.sa

DyPS: Dynamic, Private and Secure GWAS 215

(MPCs) [20–22], or secret-sharing [23]. However, these
works do not consider adversarial environment where
GWAS results might be publicly released and poten-
tially attacked by an adversary who might control one
or several of the biocenters.

In addition, to speed up the release of the first re-
sults, GWAS could clearly benefit from a dynamic pro-
cess of updating the results gradually as the number
of genomes evolves. Indeed, GWAS can involve up to
300,000 SNPs and thousands of subjects [16], in which
case it may be necessary to wait for a long time before
accessing the final results.

Finally, there is a pressure to enable individuals to
control how their data are used [24, 25]. To comply with
current data-privacy regulations constraints such as the
US HIPAA and EU GDPR, data subjects shall have
the right to withdraw their consent to participate in a
GWAS at any time. Enforcing privacy in this context is
challenging since a potential adversary having access to
several GWAS result releases could leverage the evolu-
tion of the results to infer data.

Dynamic GWAS is therefore facing several chal-
lenges that are difficult to address simultaneously: i)
results should never allow any infringement on the pri-
vacy of their users; ii) users should be able to retract
their consent at any time; iii) the data of each biocenter
have to be secured (i.e., used to produce results but not
revealed even when facing collusion between parties);
and iv) global results should be publicly accessible and
updated as soon as possible. Our work is the first to
simultaneously address all these challenges.

Contributions. We present Dynamic, Private and
Secure GWAS (DyPS), a federated system where bio-
centers collaborate by dynamically and safely con-
tributing data to a GWAS without losing control over
the genomes they have sequenced. DyPS leverages a
Trusted Execution Environment (TEE), i.e., Intel SGX,
to securely process encrypted genomes and compute
GWAS statistics. In addition, DyPS ensures privacy-
preserving GWAS while accepting participation consent
withdrawal. To do so, DyPS implements efficient algo-
rithms that determine how to safely release and update
GWAS statistics without noise addition, which guaran-
tees no data utility loss. Moreover, DyPS tolerates up to
all but one colluding biocenters without privacy leaks.

We evaluated DyPS with a synthetic GWAS work-
load studying up to 300,000 SNPs and more than 6 mil-
lion simulated genomes. We also evaluated DyPS using
two different genomic datasets consisting of 2,000 and
35,000 real genomes, respectively. Our results show that
DyPS dynamically updates test statistics with a reason-

able additional request processing delay (11% longer)
compared to a naïve approach that would update them
with minimal delay but would lead to 8% of the genomes
not being protected. Moreover, DyPS eventually re-
leased the same amount of aggregate statistics than a
static release method, which would release statistics af-
ter all genome requests have been processed, and punc-
tually released up to 2.6 times more statistics (44 in-
stead of 17 for 350 considered SNPs). Finally, DyPS
tolerates colluding biocenters. In the worst case scenario
(only one biocenter is not colluding), DyPS updates the
GWAS results with only 6.6% and 21.4% fewer genomes,
for addition and removal requests, respectively, when
compared to a scenario without collusion. In addition,
DyPS can support a larger number of genomes and SNP
positions without any significant performance penalty.

This paper is organized as follows. Section 2 pro-
vides a comprehensive background on GWAS, the
known attacks that take their results as input, and
their countermeasures. Section 3 presents the system
and threat models we consider, along with our objec-
tives. Section 4 provides an overview of DyPS’ archi-
tecture and workflow, and presents the methods we de-
signed for the release and update of GWAS results in a
federated and adversarial environment. Section 5 evalu-
ates DyPS’ performance. Section 6 surveys the related
work. Section 7 concludes.

2 Background

2.1 Genotype encoding

Since any two genotypes (i.e., a complete set of genes)
are mostly identical, one can represent a genotype as its
differences with a reference genome. GWAS consider a
particular subset of these differences, Short Nucleotide
Polymorphisms (SNPs), which are genomic variations
that involve a single nucleotide. For example, at a spe-
cific genome location, most individuals may have a given
nucleotide, e.g., a C, while others may have an alterna-
tive nucleotide, e.g., an A. The two possible nucleotide
variations are called alleles (or variants). Table 1 pro-
vides an example of N genotypes {g1, . . . , gN} that are
described over L variants {SNP1, · · · ,SNPL}. A "1"
in this record represents the fact that the associated
genome contains the least frequent allele (minor allele)
of the corresponding SNP.

DyPS: Dynamic, Private and Secure GWAS 216

Table 1. Genomes encoding.

SNP1 SNP2 SNP3 . . . SNPL

Genome g1 0 1 0 1
g2 1 1 0 1
...

. . .
gN 0 1 1 0

2.2 Aggregate and test statistics

GWAS may produce: (i) aggregate statistics, such as mi-
nor allele frequencies (MAF), single and pairwise allele
frequencies; and (ii) test statistics, such as linkage dis-
equilibrium (LD), χ2 and p-values. Aggregate statistics
report the counts of each allele or pair of alleles. Going
further, test statistics aim at quantifying the confidence
one can have when interpreting the data, e.g., when cor-
relating a SNP with the observed phenotype.

Table 2. A singlewise SNP contingency table.

Phenotype
Population

Case Control Total
SNPl 0 (major) Ncase

0 Ncontrol
0 N0

1 (minor) Ncase
1 Ncontrol

1 N1
Total Ncase Ncontrol

Aggregate statistics. A prerequisite for the pro-
duction of all GWAS statistics is the computation of
allele contingency tables, which contain the allele counts
for each SNP in each population (single allele frequen-
cies). Table 2 illustrates the contingency table associ-
ated to SNPl. Npop

i is the count of allele i ∈ {0, 1} in
population pop ∈ {case, control}. Ncase and Ncontrol

are, respectively, the size of the case and the control
population. N0 and N1 are, respectively, the overall
counts of the major and minor alleles. The MAF is the
frequency of the least common allele of a SNP in a
population, e.g., Ncase

1 /Ncase for the case population.
The pairwise allele frequencies of two variants SNPl1

and SNPl2 (Cl1,l2
−−) report the number of occurrences of

the four possible combinations of alleles {00, 01, 10, 11}
in a population pop ∈ {case, control} (Table 3).

Test statistics. Several metrics have been defined
to identify whether the co-occurrences of two alleles can
be considered random. These metrics can be computed
from the pairwise allele frequencies of the two variants.
For example, the value of the linkage disequilibrium

Table 3. A pairwise contingency table for two variants, SNPl1
and SNPl2 , where l1, l2 ∈ {1, · · · , L}.

SNPl2
0 1 Total

SNPl1 0 C
l1,l2
00 C

l1,l2
01 C

l1,l2
0−

1 C
l1,l2
10 C

l1l,2
11 C

l1,l2
1−

Total C
l1,l2
−0 C

l1,l2
−1 2Npop

metric D can be computed as follows:

D =
Cl1,l2

00
2Npop

−

(
Cl1,l2

0−

Cl1,l2
0− + Cl1,l2

1−
∗

Cl1,l2
−0

Cl1,l2
−0 + Cl1,l2

−1

)
Differently, the χ2 hypothesis test determines

whether or not the null hypothesis, which states that
the allele frequencies in the case and control popula-
tions follow a similar distribution, can be rejected. The
χ2 statistic of a single SNP is defined as:

χ2 =
∑

i∈{0,1}

(Ncase
i −Ncontrol

i)2

Ncontrol
i

From the value of the χ2 statistic, one can then com-
pute the p-value of each SNP, which is the probability of
observing its contingency table should the null hypothe-
sis be correct. A p-value smaller than a given threshold
(e.g., 10−7) typically indicates that the variant might
play a significant role in the observed phenotype.

2.3 Privacy attacks

An adversary may try to leverage a GWAS’s metadata
(i.e., lists of SNPs and pseudonymized genomes) and
test and/or aggregate statistics to breach the genomes’
owners privacy. Figure 1 illustrates the typical infor-
mation that an adversary can observe: (i) the list of
the L SNPs; (ii) the N genome pseudonyms used in
the GWAS, and (ii) the GWAS results which may in-
clude one or several of the statistics introduced in Sec-
tion 2.2. To be noted, that if the adversary is a biocenter
contributing to the GWAS computation, this adversary
knows a subset of the SNPs and genome pseudonyms as
well as a subset of the content of the table. This adver-
sary knowledge increases in case of collusion between
several biocenters. In the following, we detail the two
categories of attacks the adversary might try to execute,
namely recovery and membership attacks.

Recovery attack. A recovery attack aims at re-
constructing the allele sequences of the individuals who
participated in the study (i.e., the content of Table 1).

DyPS: Dynamic, Private and Secure GWAS 217

Fig. 1. Observable data for privacy attacks on GWAS.

Inferred genotypes might allow the unwanted reidentifi-
cation of the subjects who participated in the study [26].
In addition, sequencing individuals represents a finan-
cial effort, and private biocenters would refrain from
participating in a study if there was any risk of seeing
their data being inferred by competitors.

Membership attack. In a membership attack an
adversary aims at determining whether a genotype gi

it already knows is included in the case population [7].
Upon success, the adversary infers that the victim has
the studied phenotype (e.g., a disease). Several member-
ship attacks have been implemented in the literature,
for example on genotype frequencies [8], and SNPs cor-
relation [3]. More recently, Cai et al. [4] showed that it
is possible to identify individuals in the case group of
a GWAS knowing their genomic variations at only 25
randomly selected SNP positions.

2.4 Conditions for safe releases

Different conditions have to be respected to ensure safe
releases of GWAS results (i.e., to avoid inference attacks
from statistics). These conditions differ according to the
statistics produced by the GWAS and the targeted at-
tack (Table 4). These conditions are always enforced
in DyPS, which is a challenge given the fact that DyPS
dynamically releases GWAS results, contrary to previ-
ous works, which in turn cannot be directly applied.

Table 4. Release conditions for GWAS aggregate or test statistics
computed over L SNPs and N individuals.

Observable
statistics

Attack Attack unfeasibility conditions

Aggregate Membership Single allele freq.: LR metric is
sufficiently low, N > 100 and
MAF > 0.05 (1)
Pairwise allele freq.: Λ or Tr met-
ric is sufficiently low. (2)

Recovery 2(N − 1)/log(N + 1) > L (3)

Test Membership 2N/(log(N + 1) − 1) > L (4)
Recovery 2(N − 1)/(log(N +1) − 1) > L

(5)

Test statistics. Zhou et al. have shown that the recov-
ery and membership attacks based on test statistics are
NP-complete problems [12]. Building on this result, they
argued that GWAS results can be safely released when
the possible solution space (i.e., the number of possible
combinations of genotypes) is significantly larger than
the original GWAS result space (e.g., the pairwise fre-
quencies space). Practically, it comes down to having
limits on the number of genome manipulated (Equa-
tions (4) and (5)).
Aggregate statistics. The likelihood ratio (LR) [11],
on one side, and the Tr [3] and Λ [12] metrics, on the
other side, can be used to bound the identification power
achievable over, respectively, single and pairwise aggre-
gate statistics. Building over the LR, SecureGenome [11]
calculates the sensitivity and the specificity of the LR-
test to decide over which SNP positions allele frequen-
cies can be safely released. We use a similar approach
on singlewise aggregate statistics, and extend it to pair-
wise aggregate statistics (see Section 4.4). Similarly to
test statistics, a bound on the number of manipulated
genomes avoids recovery attack from aggregate statis-
tics (Equation (3)).

3 Models

Fig. 2. DyPS’ system and threat model.

System model. Figure 2 illustrates our system and
threat models. We consider a federated system of B bio-
centers {b1, · · · , bB}, which obtain and store locally the
allele sequences of individuals. Each biocenter may se-

DyPS: Dynamic, Private and Secure GWAS 218

quence the genomes of case and/or control individuals,
potentially at different speed rates due to various model
of sequencing machines. We assume that biocenters can
contribute a genome to a GWAS, and that individuals
retract their participation consent, at most once. The
biocenters are connected through an asynchronous com-
munication network. Their common goal is to perform
a GWAS over a set of L pre-selected SNPs. We denote
by LtoN(L) the minimum number of genomes that need
to be used to release statistics computed over L SNPs
so that Equations (3), (4) and (5) in Table 4 are en-
forced. Reciprocally, we denote by NtoL(N) the max-
imum number L of SNPs that can be safely released
according to the number of participating genomes N .

We assume the availability of a server equipped
with a TEE dedicated to the GWAS. Consequently, it
might identify the pseudonyms of the genomes that are
used for a statistics release. We assume accordingly that
the parties have access to this information since the
pseudonyms of the used genomes are made public (cf.
Section 2.3). This TEE is responsible for executing the
actual GWAS computation, and ensuring that the result
is safe before releasing it in open access.

Threat model. We assume a probabilistic polyno-
mial time adversary that has access to a good reference
population with an allele distribution identical to that
of the case population. To launch membership attacks,
the adversary also has access to a victim’s DNA profile
(i.e., its genetic code).

We consider an honest-but-curious adversary con-
trolling biocenters and monitoring the GWAS releases:
biocenters follow the protocol and do not forge genomes.
In addition, we consider collusion between biocenters
that aim at inferring information from the non-colluding
biocenters. We assume that up to f = (B − 1) biocen-
ters can collude to launch either membership or recovery
attacks on the released GWAS results. We leave the in-
vestigation of additional adversarial behaviors for future
work. Indeed, enforcing genomic data genuineness is an
open challenge as digital genomes can be forged [27, 28]
or synthesized [29], which would make data poisoning
attacks undetectable. Even though all data is stored en-
crypted on the TEE server and only manipulated by the
enclave, DyPS does not cope with possible Intel SGX
side-channel attacks [30].

4 DyPS: Dynamic, Private and
Secure GWAS

DyPS adopts a federated architecture that allows each
biocenter to safely share genomes through a server com-
puting GWAS, while keeping the control of their own
genomes (i.e. without revealing their data to other bio-
centers and by ensuring no leakage from GWAS re-
sults). This architecture is illustrated in Figure 3. To
ensure a secured computation potentially performed by
untrusted machines, DyPS relies on a TEE which lever-
ages custom microprocessor zones, to enforce isolation,
confidentiality and integrity of both the data and op-
erations. Periodically, the enclave collects the requests
from the various biocenters and decides which requests
are to be executed to safely and dynamically update the
GWAS results. In the following, we describe how the
TEE is exploited (Section 4.1), the workflow of DyPS
(Section 4.2), how batches of requests are selected to
produce safe test statistics (Section 4.3), the produc-
tion of aggregate statistics from the selected requests
(Section 4.4), and how DyPS can dynamically increase
the number of SNPs over which statistics are computed
(Section 4.5).

4.1 TEE-based architecture

DyPS uses Intel Software Guard Extensions (SGX) [31],
which defines the concept of enclave as an isolated unit
of data and code execution that cannot be accessed even
by privileged code (e.g., the operating system or hyper-
visor). Enclaves can be attested to prove that the code
running in the enclave is the one intended, and that it
is running on a genuine Intel SGX platform. Once at-
tested, enclaves can be provisioned with secret data by
using authenticated secure channels. Moreover, enclaves
can persist secret data outside the trusted zone by using
a sealing mechanism.

Once DyPS’ enclave has been initialized, each bio-
center executes a remote attestation procedure to au-
thenticate it and establish a secret symmetric key. The
biocenters sign their data with their private key, encrypt
it with the shared symmetric key and send it over the
network to the enclave’s host. Upon reception of the en-
crypted data by the untrusted host, the enclave loads it
into its protected memory space and decrypts it.

As time goes by, the biocenters are expected to
sequence genomes, and can receive participation con-
sent withdrawals. For each genome addition or removal,

DyPS: Dynamic, Private and Secure GWAS 219

Fig. 3. DyPS’ federated architecture.

Fig. 4. DyPS’ workflow diagram.

the biocenters send a request to the enclave. This re-
quest 〈bioid, gid, seqid, pop, op, VCFid〉 contains the bio-
center ID (bioid), the donor’s pseudonym (gid), the op-
eration sequence number of the biocenter (seqid), if the
donor belongs to the control or case population (pop),
whether the genome should be added or removed (op ∈
{Add,Rmv}), and the corresponding genotype data fol-
lowing the Variant Cell Format file format (VCFid) in
case of genome addition.

4.2 Workflow diagram

GWAS can produce both test statistics and aggregate
statistics. DyPS follows the workflow depicted in Fig-
ure 4 to ensure safe releases in both cases. This workflow
is executed in the enclave and contains multiple mod-
ules: (1) the pending requests queues, (2) the request
selection to produce safe test statistics, (3) the GWAS
processing, and (4) the test to produce safe aggregate
statistics.

(1) FIFO pending requests. DyPS maintains
FIFO queues of genome additions or removals for each
biocenter. DyPS tries to execute the received requests
according to their initial ordering by the biocenter

through the use of their sequence number. However,
DyPS might not always treat requests across the FIFO
queues (e.g., because a genome A cannot be immediately
removed, while a genome B can be added). A particular
case occurs when a request to remove a genome that
has not yet been added to the GWAS is received, in
which case, both requests can immediately be executed
by removing them from the FIFO queues.

(2) Requests selection. During this phase, DyPS
aims at identifying a subset of genome operations that
can be safely executed to update the GWAS results. To
avoid exhaustive search of safe operations, DyPS assem-
bles batches of requests where each set of non-colluding
biocenters (B − f) contributes more genome additions
than removals, and sufficiently enough requests overall.
The genome additions and removals to be executed are
selected according to their FIFO order. We detail the al-
gorithm we use in Section 4.3 and in Appendix A, and
prove that it prevents all privacy leaks on test statis-
tics. If no set of requests can be processed to release
statistics, the process aborts. Since DyPS is periodi-
cally executed, requests are eventually processed.

(3) GWAS processing. After collecting a batch
of requests that verifies Equations (3), (4) and (5) in
Table 4, DyPS computes the GWAS results over the
overall remaining genomes in the SGX enclave. If the
GWAS only aims at releasing test statistic, at this point
DyPS can safely release or update the publicly accessi-
ble results (i.e., skipping step (4)).

(4) Membership tests. If DyPS aims at com-
puting aggregate statistics, this additional step verifies
that membership attacks cannot be executed on aggre-
gate statistics (Equations (1) and (2) Table 4). To do
so, DyPS relies on the LR and the Λ metrics in a SNP
selection algorithm, which exhaustively verifies that re-
leases never introduce privacy leaks (cf. Section 4.4 and
Appendix B).

4.3 Request selection to address test
statistics

We now detail how biocenters can add or remove
genomes from the results of a GWAS assuming (for now)
that the number of studied SNPs remains constant.
Both operations, if not handled carefully, can create pri-
vacy issues when the released statistics are updated. For
example, updating statistics by adding, or removing, a
single genome might directly leak this genome to an ad-
versary that would observe publicly released statistics.

DyPS: Dynamic, Private and Secure GWAS 220

An exhaustive search (i.e., a brute force approach)
checking if any candidate set of selected requests com-
bined with the sets of requests used in previous releases
verify Equations (3), (4) and (5) in Table 4 is not prac-
tical and would require exponential time. To avoid this
issue, DyPS waits to have received sufficiently enough
requests from the biocenters to verify equations listed
in Table 4. More specifically, DyPS uses equation (3) as
it implies equations (4) and (5).

DyPS assembles batches of genome operations ac-
cording to the FIFO ordering of requests, and so that
a batch contains more additions than removals for ev-
ery subset of (B− f) biocenters, and an overall number
of genome operations either equal to 0 or larger than
LtoN(L) for every subset of (B − f) non-colluding bio-
centers. We provide the pseudocode of DyPS’ requests
selection algorithm, and prove by induction that the ad-
versary is never able to isolate test statistics where less
than LtoN(L) genomes participate in Appendix A.

From a high-level perspective, this algorithm works
as follows. First, all pending addition requests of biocen-
ters are selected, and for each of them, at most an equal
number of pending removal requests. Then, the biocen-
ters with the smallest number of selected requests are
eliminated, until the B − f biocenters with the least
numbers of operations collectively possess enough re-
quests (i.e., more than LtoN(L)) or until each biocenter
has enough requests by itself. All requests from the bio-
centers that have not been discarded participate in the
next release. This algorithm has a low complexity, since
the previous statistic releases are not considered, while
a brute force algorithm would have a exponential com-
plexity with the number of previous releases (as shown
in Section 5.2). The test statistics can then be dynami-
cally updated using the selected requests.

4.4 Membership tests to address
aggregate statistics

Aggregate statistics are computed over a SNP. Con-
sequently, DyPS only includes in the GWAS results
the SNPs which depicted safe aggregate statistics. Sim-
ilarly to provide safe test statistics, preventing recov-
ery attacks from aggregate statistics relies on enforc-
ing a minimum batch size of genome (i.e., Equation
(3) in Table 4). However, to provide aggregate statistics
also preventing membership attacks, the current batch
of requests and its combinations with previous releases
must verify conditions (1) or (2) of Table 4. To ensure
these conditions, DyPS relies on metrics that bound the

identification power achievable over a set of requests
and GWAS result (i.e., LR for singlewise, and/or Λ
for pairwise frequencies) to identify over which SNPs
to update the GWAS results. More specifically, given
a set of genomes, a set of SNPs, and a set of control
genomes (the adversary knowledge), DyPS determines
which SNP positions can have their allele frequencies
safely released by firstly removing very rare allele fre-
quencies (MAF ≤ 0.05), and SNPs in high linkage dise-
quilibrium (p-value below 10−5) among the participat-
ing SNPs. After this step, DyPS computes and evalu-
ates the detection power achieved by the singlewise LR
or pairwise Λ in order to decide over which SNPs aggre-
gate statistics can be safely released. It should be noted
that DyPS reproduces SecureGenome [11] on singlewise
allele frequencies inside a TEE, and extends it by also
considering pairwise allele frequencies using the Λ met-
ric (cf. Appendix B).

Identifying a set of SNPs to update in a given batch
of genome operations however does not guarantee that
the privacy of each genome will never be breached. In-
deed, any release of aggregate statistics can be combined
with past releases, and the genomes that a subset of up
to f colluding biocenters contributed can be removed
from the resulting aggregate statistics.

To verify whether a SNP’s single or pairwise allele
frequencies can be updated with a batch of genome oper-
ations, DyPS executes an exhaustive verification. More
precisely, for a given SNP, this exhaustive verification
(i) gathers all releases where statistics over the selected
SNP have been released, and (ii) verifies that any com-
bination of these releases have a low enough LR or Λ
score for the given SNP for any combination of up to
f adversary biocenters. However, the space complexity
of this check remains constant. The complexity of this
verification scheme is O(L′ · 2R ·

(
B
f

)
), where L′ is the

number of selected SNPs in the current candidate batch,
and R is the current number of releases. In practice, one
could simply tune DyPS to limit the maximum number
of releases it wishes to avoid spending too much time
performing verifications. We further discuss the exhaus-
tive verification procedure in Appendix B.

Figure 5 illustrates some scenarios DyPS might face
with aggregate statistics. In this example, DyPS deter-
mined a batch ofN1 genomes over which statistics might
be released according to the method we defined for test
statistics, over L1 SNP positions. Using the SNP selec-
tion algorithm, DyPS determines that aggregate statis-
tics over a subset (id1, id2, id3) of those L′ = 3 SNPs can
be released (release 1). In release 2, following the same
algorithm, DyPS determines that aggregate statistics

DyPS: Dynamic, Private and Secure GWAS 221

Fig. 5. Successive releases of test and aggregate statistics as new
genome addition or removal requests are executed.

can be released over L′ = 2 SNPs (id1 and id2). DyPS
then verifies whether each combination of previous re-
leases with the current one still allows aggregate statis-
tics to be released, i.e., the combination of releases 1 and
2. This verification passes for SNP id1 (represented with
plain arrows), which means that the statistic can be up-
dated, while it does not for SNP id2 (represented with
dashed arrows), which cannot be updated during this
release. Over release 3, DyPS determines that L′ SNPs
(id1 and id3) can be released over the selected genomes.
However, the verification process identifies that the ag-
gregate statistics cannot be released for SNP id3 (be-
cause of the combination of releases 1 and 3, dashed
arrow), while all verifications pass for SNP id1 that can
be updated (all combinations of releases are not shown
for simplicity).

4.5 Scaling the GWAS over number of
SNPs

So far, we have assumed that statistics are computed
over a static set of SNPs. However, as more genomes
become available, DyPS can dynamically increase the
number of SNPs over which statistics are computed, as
illustrated in Figure 6.

The initial statistics release (i.e., release 1 in Fig-
ure 6) happens when the enclave can assemble a
batch of N1 genome addition requests such that L1 =
LtoN(N1) ≥ 1. DyPS then automatically decides the
subsequent releases, based on the conditions of Ta-
ble 4, as follows. Let us assume that the i-th release
of statistics decided by DyPS covers Li SNPs, and let
Ni = NtoL(Li). The number of genomes Ni+1 and
the number of SNPs over which to release statistics
Li+1 are determined as follows. First, Ni+1 must verify
Ni+1 −Ni > NtoL(Li), which states that the statistics

Fig. 6. SNPs set dynamic scaling.

over the first Li SNPs need to be sufficiently updated to
preserve the privacy of the newly considered individuals
over these SNPs. The value of Li+1 is then computed
using Li+1 = LtoN(Ni+1 − Ni). We call this process a
diagonal expansion (release 1 to 2 in Figure 6). The ac-
tual composition of the requests may contain additional
genome removals. In that case, DyPS uses the methods
we have defined previously for test and aggregate statis-
tics over the SNPs considered both by release i and i+1
to prevent privacy leaks.

DyPS can also handle two additional special cases.
The first one happens when Li+1 = Li, which can hap-
pen when release Li updated the full set of studied SNPs
(vertical expansion, release 2 to 3 in Figure 6). The sec-
ond case happens when the value of L is increased by
the system administrator. In that situation, the num-
ber of SNPs over which statistics are released might be
increased immediately if the number of genomes added
allows it (horizontal expansion, release 3 to 4).

5 Performance evaluation

5.1 Experimental setup

We used both Windows 10 Enterprise and an Ubuntu
18.04 LTS in a 64-bit machine, equipped with 16 GB of
RAM and an Intel i7-8650U @ 2.11.GHz, which supports
Intel SGX. We evaluate the performance of DyPS under
several scenarios using simulated and real genomes. We
run DyPS’ code both in Java using Java JDK 12.0.1 and
Eclipse IDE (4.11.0), and inside an Intel SGX enclave
using Graphene [32] to implement DyPS in C++, so
that it can run inside the SGX enclave. We use AES
256 to encrypt messages, and ECDSA for signatures.
When it executes the remote attestation procedure, a
biocenter agrees on a key with the enclave, which it
uses to encrypt and sign the data it sends to the enclave,
while the enclave can verify it upon reception.

DyPS: Dynamic, Private and Secure GWAS 222

During the experiments, we use rounds where bio-
centers generate requests that are sent to the enclave,
and the enclave tries to generate a GWAS statistics re-
lease. In real settings, rounds would typically have a
one day duration. The biocenters use a Poisson distri-
bution to generate genome addition or removal requests.
We set the parameters of these Poisson distributions so
that biocenters generate more genome additions than
removals, as we expect it to reflect reality. For the ex-
periments, based on simulated or on real genomes, we
assumed a default λ = 8 for additions, and λ = 6 for
removals as default. For larger GWAS settings, we have
proportionally increased λ. We have adopted such values
based on the increasing rate of genome sequencing, and
the growing concern about genome privacy risks among
society nowadays. For example, Dankar et. al [24] have
recently evaluated and claimed the need for the creation
of dynamic information consent models capable of au-
tonomously enabling individuals to opt out of partici-
pating in genomic studies at any time.

We compare the performance of DyPS’ request se-
lection heuristic to a brute force (BF) and a naïve al-
gorithm. The BF approach aims at adding or removing
genomes by assembling batches of genome operations,
and checking whether they are safe by combining them
with all previous combinations of data releases. DyPS
scales better than the BF algorithm with the number of
data releases by avoiding this brute force verification for
test statistics. The naïve approach waits for biocenters
to collectively have LtoN(L) genomes (additions or re-
movals) when performing a release. This method can be
seen as the current state-of-the-art, and does not allow
genomes removals. We show that this method executed
with genome removals leads to privacy risks.

Regarding aggregate statistics, since DyPS is the
first dynamic GWAS protocol, we can only compare it
to a static GWAS algorithm, which would wait for all
requests to have been collected before releasing statis-
tics. To do so, we compare DyPS with a static approach
that would rely on the LR metric [11] to release single-
wise allele frequencies at the end of the experiment. For
this experiment, we used the default LR parameter val-
ues defined in [11]: a MAF cut-off of 0.05, a LD between
SNPs cut-off of 10−5, a false positive rate of 0.1, and a
true positive rate of 0.9.

We stress DyPS by simulating the generation of up
to 6 million genomes studied over up to 300K SNPs
to evaluate its performance with test statistics. In addi-
tion, we use two real genome datasets to evaluate DyPS’
performance on both test and aggregate statistics: the
idash2017 dataset [33], which consists of 2,000 genomes,

Fig. 7. Running time of the brute force and DyPS request selec-
tion approach for test statistics over 5,000 SNPs (LtoN(L) =
38, 040) (B = 4, f = 0).

and the phs001039.v1.p1 dataset from dbGAP [6], which
consists of more than 35,000 genomes.

5.2 Bandwidth, CPU and memory
consumption

We use 64-bits integers to encode the ID fields in a re-
quest, except for the pop and op fields that only require
one bit. Overall the size of a request is 258 bits, which
represents approximately 48 Bytes after encryption. A
genome is encoded using 2 bits per SNP, which would
represent only 75 KB for a GWAS studying 300,000
SNPs. Given those numbers, bandwidth is not a bottle-
neck for DyPS since communications only occur when
biocenters asynchronously send requests to the enclave.

To measure DyPS’ CPU and memory consumption,
we first consider a GWAS scenario that involves 4 non-
colluding biocenters (B = 4, f = 0). Figure 7 shows the
CPU running time of the brute force (BF) and of DyPS’
request selection algorithms during a synthetic GWAS
that involves 5,000 SNPs and 20,000 rounds. DyPS’
SNP selection algorithm has a constant complexity and
is very fast (less than 350 ms), while the BF selection
algorithm, with exponential complexity, requires more
than 20 seconds after 20,000 rounds.

Figure 8 shows DyPS’ performance when deployed
in an enclave. Every point represents a release that took
place during the experiment. As can be noted, DyPS’s
selection algorithm for test statistics has a constant run-
ning time (and below 1 ms). In addition, the release
construction running time varies according to the num-
ber of requests. The longest release construction run-
ning time was below 500 ms in a release with 38,059
genome operations, and the average during the experi-
ment was 269 ms. With similar settings, we also simu-

DyPS: Dynamic, Private and Secure GWAS 223

Fig. 8. Running time of DyPS request selection approach for a
test statistics over 5,000 SNPs (LtoN(L) = 38, 040) inside the
SGX enclave (B = 4, f = 0).

lated a GWAS studying 300,000 SNP positions and four
biocenters and executed DyPS inside an SGX enclave.
Although DyPS was able to add 6,078,551 genomes and
to remove 899,278 genomes, we observed similar behav-
ior for the CPU running time.

We also monitored DyPS’ memory consumption in
the SGX enclave assuming different system settings (i.e.,
varying number of B and f). We did not observe sig-
nificant change in memory consumption, which stays
around 2 MB per round when the numbers of partici-
pating and colluding biocenters evolve. This is expected,
since genomes are stored encrypted outside of the en-
clave and at a given time, only a limited number of
genomes are loaded into the enclave’s memory to be
processed.

5.3 Naïve dynamic release vs. DyPS

We then compare the number of releases that can be
performed by the naïve approach, which updates GWAS
results as soon as more than LtoN(L) genomes are col-
lected without making sure that the combination of
these releases are also safe, to the number of releases
that DyPS performs. Figure 9 reports the number of
releases for both approaches, where the label of a bar
plot reports the number of rounds for which the experi-
ment ran (i.e., the value of r), and the number of SNPs
per GWAS (i.e., L).

Figure 9a shows the corresponding number of re-
leases done by each approach, and for the naïve ap-
proach shows the number of releases for which a genome
was at risk. Up to 4.98% of the releases contained at
least one genome that was at risk. Figure 9b shows the
number of genomes that were added, or removed by each

(a) Average number of releases.

(b) Average number of added, removed and unsafe genomes.

Fig. 9. Comparison between the naïve release approach and
DyPS under different scenarios (r rounds, and L SNPs) for
(B = 4, f = 0).

method during the experiments. It also shows how many
genomes were at risk with the naïve release approach.
Overall, the naïve approach was only able to consider at
most 11% more genomes than DyPS, and exposed up
to 8% of the genomes to privacy leaks (i.e., recovery at-
tacks). Even though DyPS updates the GWAS results
less frequently, which is to be expected, it is overall of
low consequence on the number of considered genomes.
In addition, DyPS enforces that no genome is at risk.

5.4 Impact of dynamic SNP set scaling

To measure how DyPS’ dynamic approach reduces the
treatment delay of requests, we measured the effect of
the dynamic SNP set scaling mechanism. In particular,
we simulated a situation where the number of rounds
is limited, and L (the number of SNPs) is high, such
that DyPS without dynamic scaling could create only

DyPS: Dynamic, Private and Secure GWAS 224

Fig. 10. DyPS with or without dynamic SNP set scaling–
round delays for a GWAS consisting of 3,000 SNP positions
(LtoN(L) = 21, 600) (B = 4, f = 0).

a limited number of releases whereas DyPS was able to
create more and earlier releases.

Figure 10 provides the round delays for both ap-
proaches per type of genome operation (addition or
removal). DyPS without the dynamic release mecha-
nism was able to perform a single release (additions
of 21,602 genomes), represented by the square at the
908th round (with an average round delay above 430
rounds), during the whole experiment, but could not re-
move any released genomes. On the other hand, DyPS
with dynamic scaling was able to execute 11 secure re-
leases, varying among diagonal, vertical and horizon-
tal releases. One can also observe that DyPS treated
genome additions and removals with very similar de-
lays (the star markers), and that the dynamic mecha-
nism has an order of magnitude lower delay. One can
also notice that the time to release of requests increases
as the number of SNP positions L increases over time,
even when using dynamic SNP set scaling since more
genomes operations are required per batch of requests
to ensure privacy.

We then measured the number of pending opera-
tions, and the overall number of applied genome oper-
ations. Figure 11a and Figure 11b respectively report
those numbers for DyPS with or without dynamic scal-
ing. DyPS without dynamic scaling was not able to ap-
ply any removal requests during the experiment. More-
over, at the end of the experiment, 14,119 genome addi-
tion and 3,572 genome removal requests were still pend-
ing. In total, 21,602 genomes have been added and none
were removed. In contrast, DyPS could publish more
safe releases starting from the first round. We ended
the experiment at the 1250th round to compare the per-
formance of both approaches. At that point DyPS was
able to add 22,179 and to remove 7,580 genomes. At
the end of the experiment, 19 genome additions and

(a) DyPS without dynamic scaling of the SNPs set.

(b) DyPS with dynamic scaling of the SNPs set.

Fig. 11. DyPS without and with dynamic scaling of the SNPs
set for a GWAS consisting of 3,000 SNP positions (LtoN(L) =
21, 600) (B = 4, f = 0).

2 genome removals remained, which represented a de-
crease of more than 99% for both cases when compared
to DyPS without dynamic scaling.

We also compared the CPU running time of the two
versions. We noted that DyPS with dynamic scaling has
a slight increase of CPU time when compared to DyPS
without scaling, due to the fact that it needs additional
analysis to dynamically evaluate and safely decide the
increasing of the number of SNPs over which statistics
are released. However it still remains practical and a
magnitude lower than the BF approach for the selection
of requests (which does not consider a dynamic scaling
scheme).

5.5 Impact of colluding biocenters

In this section we evaluate DyPS’ performance with col-
luding biocenters. For this experiment, we increase the
number of biocenters to 7 and vary the number of col-
luding biocenters (f). This experiment was performed in
the enclave. Figure 12 illustrates the pending rounds for

DyPS: Dynamic, Private and Secure GWAS 225

(a) Time to release in rounds for genome addition requests.

(b) Time to release in rounds for genome removal requests.

Fig. 12. (B − f) DyPS: Time to release in rounds for genome re-
quests for a GWAS consisting of 300 SNP positions (LtoN(L) =
1, 598) during 1,000 rounds, and different number of possibly
colluding biocenters.

addition and removal requests per update of the GWAS
results for varying number f of colluding biocenters. As
one could expect, when more biocenters collude the re-
quests are applied with more delay, since it takes more
time to assemble larger sets of requests, which are re-
quired for safety when facing more adversaries. For ex-
ample, with the first threat model (f = 0), the average
number of pending rounds was 10.13 and 10.11 for ad-
dition and removal requests, respectively. On the other
hand, with f = 5 and f = 6, the average processing
delays were equal to 52 and 71.25 rounds for additions,
and 53 and 60.2 for removals, respectively. An interest-
ing event happens in Figure 12b for the B = 7, f = 6 line
where there is a very small delay at the 200th round. It is
explained by the fact that a release was created with the
genomes of a single biocenter, in the 181st round (first
release in Figure 12a), and then after just 19 rounds, this
same biocenter was able to execute removal requests at
the 200th round, which explains the short delay.

Table 5 details the number of genome additions and
removals, the number of releases, and the average addi-

Table 5. Average number of processed addition and removal re-
quests, number of GWAS releases, and average round delays for
addition and removal requests depending on the number of col-
luding biocenters.

Threat Model (B, f) #Additions, #Removals, #Releases,
#Add. round delays, #Rmv. round

delays

B = 7, f = 0 55,435 / 19,917 / 46 / 10.13 / 10.1

B = 7, f = 1 55,093 / 19,421 / 24 / 19.75 / 10.9

B = 7, f = 2 55,013 / 19,692 / 24 / 19.96 / 20.1

B = 7, f = 3 54,353 / 18,984 / 19 / 24.84 / 24.6

B = 7, f = 4 54,033 / 18,825 / 14 / 33.93 / 33.6

B = 7, f = 5 52,655 / 17,994 / 9 / 52.0 / 51.0

B = 7, f = 6 50,813 / 14,625 / 12 / 71.25 / 60.2

tion and removal request delays under several scenarios.
As expected, fewer addition and removal operations are
executed when facing stronger adversaries. However, the
numbers decrease by at most 8.34% for the additions,
and 26.57% for the removals when comparing without
collusion (f = 0) to six colluding biocenters over seven
(f = 6). The latter number is explained by the fact that
DyPS does not currently wait to perform requests, and
because removals require that sufficiently enough addi-
tions are simultaneously executed.

5.6 SNP selection for aggregate statistics

DyPS’ releases of aggregate statistics depend on the
SNP distribution among the set of added genomes. We
first evaluate DyPS using the idash2017 dataset [33],
which consists of 2,000 real genomes (1,000 case and
1,000 control). We used all the genomes in the control
set as the adversary knowledge. For aggregate statis-
tics, DyPS’ release mechanisms require more extensive
computations when the number of previous releases and
when the number of genomes used per release increase
(cf. Section 4.4). We therefore primarily consider sce-
narios where f = 0, because it maximizes the number
of releases and their size. In this section, we consider
a GWAS that studies a small set of L SNPs (i.e., the
top 10 most significant SNPs) so that releases are more
frequent. Given these parameter values, we study the
worst case of the exhaustive verification procedure.

Figure 13 details DyPS’ CPU consumption during
each round per category: request handling, request se-
lection, SNP selection for aggregate statistic release, ex-
haustive verification, and total round processing. Each

DyPS: Dynamic, Private and Secure GWAS 226

Fig. 13. Running time for the different steps of DyPS execution
for a GWAS studying 10 SNP positions (B = 5, f = 0). Reference
group size: 1,000. Total number of real genomes used: 2,000.

Fig. 14. Comparison between a static approach and DyPS for
releases of aggregate statistics for a GWAS studying 1,000 SNP
positions (B = 5, f = 0). Reference group size: 1,000. Total
number of real genomes used: 2,000.

CPU running time peak happened when a round re-
sulted in a release of GWAS statistics. DyPS’ selection
algorithm, which runs for every round, used less than
200 ms for almost each round, and less than 1 second
overall, which is very reasonable given that sequencing
a genome usually requires around 1 day. For the largest
measured value, obtained in the 42nd round, DyPS ver-
ified more than 2,359,296 combinations of releases in
the enclave. The largest part of the computation was
used by the exhaustive verification process for aggre-
gate statistics release.

5.7 DyPS vs. static release of aggregate
statistics

Next, we compare DyPS with a state-of-the-art static
release algorithm over a larger set (the top 1,000 SNPs)
of the idash2017 dataset in Figure 14. More precisely,
we measure over how many SNPs both approaches are

Fig. 15. Running time for the different steps of DyPS for a
GWAS studying 1,000 SNP positions (B = 5, f = 0). Reference
group size: 1,000. Total number of real genomes used: 2,000.

able to release aggregate statistics only, which enables
frequent updates. We use the LR-metric [11] to de-
cide whether singlewise frequencies can be released. The
static release method identified that singlewise frequen-
cies could be safely released over 45 SNPs out of the
1,000 studied, using the full set of genomes remaining
at the end of the experiment (i.e., in only one release -
the dashed bar). On the other hand, the number of se-
lected SNPs for DyPS varied according to the rounds,
as expected, that is, in each different round, a different
distribution of genomes participated in a release and,
therefore, the set of SNPs over which statistics can be
released evolves. The maximum number of SNPs DyPS
released during the experiment was 70, while small re-
leases, which do not prevent previous releases to be ac-
cessed, were more frequent. Note that in this experi-
ment, DyPS released aggregate statistics after every
round, while test statistics would not have been updated
as frequently. Therefore, one can conclude that DyPS
not only provides more frequent releases but also over a
largest set of SNP positions. In a similar scenario with
350 SNPs, DyPS was able to release 2.6 times more
statistics (i.e., multiple safe releases with at most 44
SNPs instead of 17 only released once).

Next, we provide the results for the CPU run-
ning time in Figure 15. As can be noted, in the 44th
round a more extensive verification took place, which
has checked 4,972,331 combinations of releases in total.
The running time was 1,467 milliseconds. Furthermore,
comparing to Figure 13 experiment with 10 SNPs, there
is now an expected slight increase in the SNP selection
software algorithm running time (star marker line) be-
cause now a larger number of SNPs have been checked.
Nevertheless, even increasing the SNP set size by 100x
times (from 10 to 1,000 SNPs scenario, the longest time
have just approximately doubled in average (200 to 500

DyPS: Dynamic, Private and Secure GWAS 227

Fig. 16. Running time for f = 0 and f = 4 with aggregate
statistics computed over 1,000 SNP positions. Reference group
size: 1,000. Total number of real genomes used: 2,000.

ms). Similarly, the longest time for the exhaustive verifi-
cation, took approximately 2,000 ms in the 42nd round.

We also evaluated the impact of colluding biocen-
ters on aggregate statistics. When facing colluding bio-
centers, DyPS has also to evaluate combinations of
genomes. This results in an increased running time due
to the additional verifications. Considering the same sce-
nario, and now using f equals to (B− 1), we noted that
DyPS’s running time increases slightly. We show in Fig-
ure 16 the computation time required by DyPS when
the number of colluding biocenters is either 0 or B − 1,
where B = 5. In particular, in this new experiment the
peak and average running time for f = 0 were 1,612 and
896 milliseconds, respectively. Whereas for the f = 4
case, it took 2,348 and 1,212 milliseconds.

5.8 DyPS over a large-scale GWAS

We now consider another real genome dataset, dbGAP
phs001039.v1.p1 [6], which consists of more than 35,000
genomes from which we could use 27,895 under the
General Research Use (GRU) consent, of which 14,860
genomes are cases and 13,035 are controls, respectively.
We study the SNP positions that appear in both co-
horts. We consider chromosome 1 as it is the chromo-
some with the largest number of remaining SNPs. We
consider 5,000 SNP positions to evaluate DyPS’s al-
gorithm over this larger dataset. Besides, we multiplied
both the addition and removal lambda parameters by 16
(λ = 128 for additions and λ = 96 for removals), so that
more genome operations are generated per round. We
considered the whole control dataset (13,035 genomes)
as the adversary reference group.

In Figure 17, we show the performance of DyPS
over this larger dataset. Overall, 12,418 genomes were

added, and 5,120 genomes were removed. Compared to
the experiment in Figure 15, this experiment had an
expected longer running time (average of 207 seconds,
and peak of 2,500 seconds, when a cohort made of more
than 27,800 genomes was studied) for the SNP selec-
tion algorithm because of the larger genomes cohort
(i.e., more participating genomes and a larger reference
group). On the other hand, Figure 17 shows a shorter
running time for the exhaustive verification step due to
a smaller number of SNP positions over which statistics
could be released. This was because most of the SNP
positions were being filtered out by the linkage disequi-
librium and MAF step of DyPS over previous rounds.

Fig. 17. Running time for the different steps of DyPS execution
for a GWAS studying 5,000 SNP positions (B = 5, f = 0).
Reference group size: 13,035. Total number of real genomes used:
27,895.

In addition, in scenarios where DyPS deals with a
larger number of SNPs, it could rely on existing SNPs
batching mechanisms inside enclaves, such as [34], in
which SNPs are firstly separated in batches of equal
size, and processed separately. Later, SNPs in different
batches are processed in a crossed-over manner in order
to keep a global set of safe SNPs updated as batches are
processed.

We report DyPS’ memory consumption in Table 6
when different sizes of control groups (i.e., adversary
reference groups) are used. The memory consumption
of the machine was identical to the one reported in pre-
vious experiments, i.e., around 2 MB. DyPS can there-
fore support a large number of genomes and SNP posi-
tions without significant performance penalty. Overall,
the memory consumption stays well below the theoret-
ical 128 MB (of which only 96 MB is usable without
paging [31]) memory limitation of SGX enclaves.

DyPS: Dynamic, Private and Secure GWAS 228

Table 6. DyPS’ average memory consumption inside the enclave
depending on several controls group sizes and 5,000 SNPs.

(#B / #f) DyPS inside
enclaves

Average Memory
Consumption (KB)

(B = 5/f = 0), controls: 1,000 2,160

(B = 5/f = 0), controls: 5,000 2,224

(B = 5/f = 0), controls: 7,500 2,228

(B = 5/f = 0), controls: 10,000 2,228

(B = 5/f = 0), controls: 13,035 2,228

6 Related work
Defenses against membership attacks. Several
works proposed solutions against membership at-
tacks for static datasets, while DyPS targets dynamic
datasets. DyPS builds on SecureGenome [11] for sin-
glewise frequencies, and extends it to pairwise frequen-
cies in its SNP selection algorithm (using the Tr [3]
and/or Λ [12] metrics), to determine the set of SNPs
over which frequencies can be safely released. Craig et
al. [35] advocated for a similar approach based on the
Positive Predictive Value (PPV). Im et al. [9] showed
that the membership attack power increases when re-
gression coefficients from quantitative multi-phenotype
are available. Fernandes et al. [36] considered separat-
ing a genome over multiple sensitivity levels to prevent
reidentification attacks.

Privacy-preserving GWAS releases.
Zhou et al. [12] evaluated the theoretical complex-

ity of attacks on GWAS results. DyPS further builds
on their results by offering a dynamic and federated
architecture. Data anonymization methods enforce pri-
vacy properties such as t-closeness, k-anonymity and l-
diversity [21]. However, k-anonymous genomic datasets
have been deanonymized [37–39], even with high dimen-
sional data [40]. Differential Privacy (DP) [41], which
adds noise to the results, has also been used [42–48]. In
comparison, DyPS leaves the data unmodified. Jiang
et al. [47] proposed a privacy-budget approach based
on the LR-test that balances data perturbation with
privacy risks. Simmon et al. [46] propose two DP frame-
works for GWAS: PrivSTRAT applies data perturba-
tion considering the group stratification in a study and
PrivLMM is based on Linear Mixed Models (LLMs).
Johnson et al. [43] offer a DP approach for GWAS
based on adding noise to data based on their shifting
method that considers distance scores. Lu et al. [48]

described a Distributed Differential Privacy (DDP), in
which parties perturb their local genomic data shares
before sharing them. Similarly, another noise-based ap-
proach [39] combines the addition of minimal amounts
of noise perturbation with Bayesian and Markov Chain
Monte Carlo techniques. Nevertheless, given that the
privacy level certainty sustained by DP depends on the
statistical independence of the records in a dataset, pre-
vious works have shown that highly correlated records
in datasets can diminish the DP’s guarantees [49, 50].
In addition, if not well designed, DP approaches can
suffer from collusion attacks, which can disclose individ-
uals’ data [51]. DP under continual observation [52, 53]
and for growing databases [54] seems promising for the
dynamic releases of GWAS results. To the best of our
knowledge, no work uses such approaches for GWAS.
One limitation might be that the noise added to the
data increases with the number of colluding players and
the number of releases. Studying whether DyPS can
leverage those properties is left for future work.

Privacy-preserving GWAS computations.
Several works rely on homomorphic encryption

(HE), secure multi-party computation (MPC) or trusted
execution environments (TEE) for GWAS computa-
tions. These works could benefit from DyPS to dynam-
ically decide when computations should take place, and
their results be released. Lu et al. [16] describe a method
where a central entity generates HE keys that biocen-
ters used to encrypt their data, so that a public cloud
can use homomorphic computations to obtain GWAS
statistics. Kim et al. [17] proposed a fully HE scheme
to run χ2 tests using 80-bit key security. More recently,
Bonte et al. [55] introduced a distributed GWAS sys-
tem, which uses HE and MPC methods, and answers
yes/no responses for putative markers SNPs (rather
than releasing χ2 values). More recently, yet another
HE-based approach [56] offers complementary mecha-
nisms to accelerate and increase the performance of
GWAS analysis, such as parallelization and encoding
techniques. Kamm et al. [57] a secure MPC framework
where institutes share their genome dataset to a third-
party data storage for χ2 tests computing. Zhang et
al. [23] use secret sharing that assumes (n, t)-threshold
for corrupted parties. [21] performs χ2 and p-tests in
a privacy-preserving way, and [22] performs privacy-
preserving χ2 and MAF processing. However, these two
approaches are restricted to two parties, and can not
be applied as is in a federated system. Recently, [20]
also proposed MPC techniques for privacy-preserving
GWAS based on population biases, however, they have

DyPS: Dynamic, Private and Secure GWAS 229

not offered any mechanisms to avoid attacks on aggre-
gate released results. Raisaro et al. [14] offer a decen-
tralized and privacy-preserving data sharing of genomic
data to answer health record queries and build on Un-
lynx [58], which incorporates known privacy-preserving
techniques, such as HE and DP. PREMIX [59] relied on
Intel SGX enclaves to evaluate individual genomic ad-
mixture. SAFETY, proposed by Sadat et al. [60], com-
bines HE for the summation of participant’s inputs, and
SGX enclaves for the more heavy statistical process-
ing. In addition, PRINCESS [34] also performs GWAS
tests using SGX enclaves for rare-disease collaboration
studies. PRESAGE [61] applies encoding and indexing
methods on genomic data to answer private queries with
high performance. After encryption, the data is out-
sourced to an untrusted party, e.g., an SGX-enabled
cloud provider, which answers genomic queries with en-
crypted results.

DyPS is the first secure federated platform for
genomic statistics (i.e., GWAS) which addresses the
problem of dynamic computation and release of GWAS,
both on a dynamic supply of the number of considered
genomes in the study, and a change of users consent. To
the best of our knowledge, DyPS is the first work which
copes with both aspects of the problem: (i) respecting
conditions for a safe release of GWAS (i.e., ensuring
privacy of participants), and (ii) securing the federated
computation of GWAS (i.e., do not leak information be-
longing to one biocenter to others). These two aspects
have been addressed independently in the literature in
works that either prevent secure federated computa-
tion, or do not preserve the privacy of participants of
the study.

SGX-based privacy-preserving systems.
TEEs and in particular Intel SGX have been ex-

tensively used to build secure and privacy-preserving
systems. DyPS illustrates the benefits of this technol-
ogy for performance-sensitive genomic data processing
applications [62]. Several side-channel attacks affecting
Intel SGX have been described, e.g., timing attacks from
page faults, or memory access patterns [30]. Several ap-
proaches have been proposed to mitigate these attacks,
including memory oblivious algorithms. For instance,
Mandal et al. [63] offer oblivious approaches for secure
genomic data analysis using TEE enclaves. One can also
limit the page memory access patterns to 4 kB to cir-
cumvent the side-channel attacks [34, 61]. Studying the
impact of memory-oblivious mechanisms on DyPS’ per-
formance is future work, and will require removing the

assumption that the pseudonyms of the genomes used
in a statistics release are known.

7 Conclusion
In this paper, we presented DyPS, a novel framework
to conduct federated genomic data analysis that enables
both secure computation and release of GWAS results
even when facing collusion among participating data-
holders. In addition, DyPS enables dynamic releases of
GWAS results according to the evolution of the con-
sidered number of genomic variations, individuals, or
involved biocenters while enforcing privacy. To further
speed up the release of the results, DyPS uses a scaling
mechanism that progressively increases the number of
considered genomic variations.

DyPS leverages an Intel SGX enclave to secure
the data of each biocenter. We extensively evaluated
its performance considering up to 300,000 SNPs and
more than 6 million simulated genomes, and using
two datasets made of 2,000 and 35,000 real genomes,
respectively. We successfully demonstrated the prac-
ticability of both test and aggregate statistics release
mechanisms, and compared them against baseline ap-
proaches. For test statistics, we compared DyPS to an
approach that would immediately update the results
whenever a sufficiently large batch of requests could
be assembled. This latter approach put up to 8% of
the genomes at risk, while DyPS prevents all privacy
leaks. For aggregate statistics, we considered a static
approach that would wait for all requests to have been
received before releasing statistics. Compared to this
approach, DyPS is able to provide earlier aggregate
statistics releases over the same number of SNPs. These
earlier releases occasionally provided statistics includ-
ing up to 2.6 times as many SNPs. Future work includes
extending DyPS to tolerate malicious adversaries, and
considering memory-oblivious algorithms.

Acknowledgments. This work was partially sup-
ported by the European Union under the H2020
Programme Grant Agreement No. 830929 (Cy-
berSec4Europe) and by the Fonds National de
la Recherche Luxembourg through PEARL grant
FNR/P14/8149128.

DyPS: Dynamic, Private and Secure GWAS 230

References
[1] Tanya Lewis. Human Genome Project Marks 10th Anniver-

sary. https://www.livescience.com/28708-human-genome-
project-anniversary.html. Accessed on: January 7th, 2019.

[2] Robert Sladek, Ghislain Rocheleau, Johan Rung, Christian
Dina, Lishuang Shen, David Serre, Philippe Boutin, Daniel
Vincent, Alexandre Belisle, Samy Hadjadj, et al. A genome-
wide association study identifies novel risk loci for type 2
diabetes. Nature, 445(7130):881, 2007.

[3] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang,
and Xiaoyong Zhou. Learning your identity and disease
from research papers: Information leaks in genome wide
association study. In CCS, 2009.

[4] Ruichu Cai, Zhifeng Hao, Marianne Winslett, Xiaokui Xiao,
Yin Yang, Zhenjie Zhang, and Shuigeng Zhou. Determin-
istic identification of specific individuals from gwas results.
Bioinformatics, 31(11):1701–1707, 2015.

[5] Laura L Rodriguez, Lisa D Brooks, Judith H Greenberg, and
Eric D Green. The complexities of genomic identifiability.
Science, 339(6117):275–276, 2013.

[6] Lorelei Walker, Helene Starks, Kathleen M West, and
Stephanie M Fullerton. dbgap data access requests: a call
for greater transparency. Science translational medicine,
3(113):113–134, 2011.

[7] Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, Waibhav Tembe, Jill Muehling, John V Pearson,
Dietrich A Stephan, Stanley F Nelson, and David W Craig.
Resolving individuals contributing trace amounts of dna to
highly complex mixtures using high-density snp genotyping
microarrays. PLoS genetics, 4(8), 2008.

[8] Kevin B Jacobs, Meredith Yeager, Sholom Wacholder, David
Craig, Peter Kraft, David J Hunter, Justin Paschal, Teri A
Manolio, Margaret Tucker, Robert N Hoover, et al. A new
statistic and its power to infer membership in a genome-
wide association study using genotype frequencies. Nature
genetics, 41(11):1253, 2009.

[9] Hae Kyung Im, Eric R Gamazon, Dan L Nicolae, and
Nancy J Cox. On sharing quantitative trait gwas results in
an era of multiple-omics data and the limits of genomic pri-
vacy. The American Journal of Human Genetics, 90(4):591–
598, 2012.

[10] Elias A Zerhouni and Elizabeth G Nabel. Protecting aggre-
gate genomic data. Science, 322(5898):44–44, 2008.

[11] Sriram Sankararaman, Guillaume Obozinski, Michael I Jor-
dan, and Eran Halperin. Genomic privacy and limits of indi-
vidual detection in a pool. Nature genetics, 41(9):965–967,
2009.

[12] Xiaoyong Zhou, Bo Peng, Yong Fuga Li, Yangyi Chen,
Haixu Tang, and XiaoFeng Wang. To release or not to
release: Evaluating information leaks in aggregate human-
genome data. In Esorics, 2011.

[13] Paulo Esteves Verissimo and Alysson Bessani. E-biobanking:
What have you done to my cell samples? Security & Pri-
vacy, 11(6):62–65, 2013.

[14] Jean Louis Raisaro, Juan Ramón Troncoso-Pastoriza, Mick-
aël Misbach, E Sousa Gomes de Sá, Joao André, Syl-
vain Pradervand, Edoardo Missiaglia, Olivier Michielin,
Bryan Alexander Ford, and Jean-Pierre Hubaux. Medco:

Enabling privacy-conscious exploration of distributed clinical
and genomic data. In GenoPri, 2017.

[15] Arun Iyengar, Ashish Kundu, Upendra Sharma, and Ping
Zhang. A trusted healthcare data analytics cloud platform.
In ICDCS, 2018.

[16] Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma. Privacy-
preserving genome-wide association studies on cloud envi-
ronment using fully homomorphic encryption. BMC medical
informatics and decision making, 15(5):S1, 2015.

[17] Miran Kim and Kristin Lauter. Private genome analysis
through homomorphic encryption. BMC medical informatics
and decision making, 15(5):S3, 2015.

[18] Yuchen Zhang, Wenrui Dai, Xiaoqian Jiang, Hongkai Xiong,
and Shuang Wang. Foresee: Fully outsourced secure genome
study based on homomorphic encryption. 15(5):S5, 2015.

[19] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi
Goldwasser. Secure large-scale genome-wide association
studies using homomorphic encryption. National Academy of
Sciences, 117(21):11608–11613, 2020.

[20] Hyunghoon Cho, David J Wu, and Bonnie Berger. Secure
genome-wide association analysis using multiparty computa-
tion. Nature biotechnology, 36(6):547, 2018.

[21] Oleksandr Tkachenko, Christian Weinert, Thomas Schnei-
der, and Kay Hamacher. Large-scale privacy-preserving
statistical computations for distributed genome-wide associa-
tion studies. In Asia CCS, 2018.

[22] Scott D Constable, Yuzhe Tang, Shuang Wang, Xiaoqian
Jiang, and Steve Chapin. Privacy-preserving gwas analysis
on federated genomic datasets. BMC medical informatics
and decision making, 15(5):S2, 2015.

[23] Yihua Zhang, Marina Blanton, and Ghada Almashaqbeh.
Secure distributed genome analysis for gwas and sequence
comparison computation. BMC medical informatics and
decision making, 15(5):S4, 2015.

[24] Fida K Dankar, Marton Gergely, Bradley Malin, Radja Badji,
Samar K Dankar, and Khaled Shuaib. Dynamic-informed
consent: A potential solution for ethical dilemmas in popu-
lation sequencing initiatives. Computational and Structural
Biotechnology Journal, 2020.

[25] Jérémie Decouchant, Maria Fernandes, Marcus Völp, Fran-
cisco M Couto, and Paulo Esteves-Verissimo. Accurate fil-
tering of privacy-sensitive information in raw genomic data.
Journal of biomedical informatics, 82:1–12, 2018.

[26] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and
Amalio Telenti. Quantifying interdependent risks in genomic
privacy. TOPS, 20(1):3, 2017.

[27] Zhicong Huang, Erman Ayday, Jacques Fellay, Jean-Pierre
Hubaux, and Ari Juels. Genoguard: Protecting genomic data
against brute-force attacks. In Security & Privacy, 2015.

[28] Jean Louis Raisaro, Carmela Troncoso, Mathias Humbert,
Zoltan Kutalik, Amalio Telenti, and Jean-Pierre Hubaux.
Genoshare: Supporting privacy-informed decisions for sharing
exact genomic data. Technical report, EPFL infoscience,
2017.

[29] Peter Ney, Karl Koscher, Lee Organick, Luis Ceze, and Ta-
dayoshi Kohno. Computer security, privacy, and dna se-
quencing: Compromising computers with synthesized dna,
privacy leaks, and more. In USENIX, 2017.

[30] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-

https://www.livescience.com/28708-human-genome-project-anniversary.html
https://www.livescience.com/28708-human-genome-project-anniversary.html

DyPS: Dynamic, Private and Secure GWAS 231

ware grand exposure:{SGX} cache attacks are practical. In
WOOT, 2017.

[31] Victor Costan and Srinivas Devadas. Intel sgx explained.
IACR Cryptology ePrint Archive, 2016(086):1–118, 2016.

[32] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-
sgx: A practical library os for unmodified applications on
sgx. In USENIX ATC, 2017.

[33] iDASH Privacy & Security Challenge - secure genome anal-
ysis competition. http://www.humangenomeprivacy.org/
2017/competition-tasks.html. Accessed on: March 13rd,
2020.

[34] Feng Chen, Shuang Wang, Xiaoqian Jiang, Sijie Ding, Yao
Lu, Jihoon Kim, S Cenk Sahinalp, Chisato Shimizu, Jane C
Burns, Victoria J Wright, et al. Princess: Privacy-protecting
rare disease international network collaboration via encryp-
tion through software guard extensions. Bioinformatics,
33(6):871–878, 2016.

[35] David W Craig, Robert Goor, Zhenyan Wang, Justin
Paschall, Jim Ostell, Mike Feolo, Stephen T Sherry, and
Teri A Manolio. Assessing and managing risk when sharing
aggregate genetic variant data. Nature reviews Genetics,
12(10):730, 2011.

[36] Maria Fernandes, Jérémie Decouchant, Marcus Völp, Fran-
cisco M Couto, and Paulo Esteves-Verissimo. Dna-seal:
Sensitivity levels to optimize the performance of privacy-
preserving dna alignment. IEEE Journal of Biomedical and
Health Informatics, 24(3):907–915, 2019.

[37] Latanya Sweeney, Akua Abu, and Julia Winn. Identifying
participants in the personal genome project by name (a re-
identification experiment). arXiv preprint:1304.7605, 2013.

[38] Jaideep Vaidya, Basit Shafiq, Xiaoqian Jiang, and Lucila
Ohno-Machado. Identifying inference attacks against health-
care data repositories. AMIA Summits on Translational
Science Proceedings, 2013:262, 2013.

[39] Sean Simmons, Bonnie Berger, and Cenk S Sahinalp. Pro-
tecting genomic data privacy with probabilistic modeling. In
PSB, 2019.

[40] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy:
Using blockchain to protect personal data. In SPW, 2015.

[41] C Dwork. Differential privacy. Springer, 2011.
[42] Caroline Uhlerop, Aleksandra Slavković, and Stephen E Fien-

berg. Privacy-preserving data sharing for genome-wide asso-
ciation studies. The Journal of privacy and confidentiality,
5(1):137, 2013.

[43] Aaron Johnson and Vitaly Shmatikov. Privacy-preserving
data exploration in genome-wide association studies. In
SIGKDD, pages 1079–1087, 2013.

[44] Yongan Zhao, Xiaofeng Wang, Xiaoqian Jiang, Lucila Ohno-
Machado, and Haixu Tang. Choosing blindly but wisely:
differentially private solicitation of dna datasets for disease
marker discovery. Journal of the American Medical Informat-
ics Association, 22(1):100–108, 2014.

[45] Florian Tramèr, Zhicong Huang, Jean-Pierre Hubaux, and
Erman Ayday. Differential privacy with bounded priors:
reconciling utility and privacy in genome-wide association
studies. In SIGSAC, pages 1286–1297, 2015.

[46] Sean Simmons, Cenk Sahinalp, and Bonnie Berger. Enabling
privacy-preserving gwass in heterogeneous human popula-
tions. Cell systems, 3(1):54–61, 2016.

[47] Xiaoqian Jiang, Yongan Zhao, Xiaofeng Wang, Bradley Ma-
lin, Shuang Wang, Lucila Ohno-Machado, and Haixu Tang.
A community assessment of privacy preserving techniques
for human genomes. BMC medical informatics and decision
making, 14(1):S1, 2014.

[48] Zhigang Lu and Hong Shen. A new lower bound of privacy
budget for distributed differential privacy. In PDCAT, pages
25–32, 2017.

[49] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in
data privacy. In MOD, 2011.

[50] Changchang Liu, Supriyo Chakraborty, and Prateek Mittal.
Dependence makes you vulnberable: Differential privacy
under dependent tuples. In NDSS, 2016.

[51] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca
Pampaloni, and Ivan Pryvalov. Differentially private data
aggregation with optimal utility. In ACSAC, 2014.

[52] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N
Rothblum. Differential privacy under continual observation.
In STOC, 2010.

[53] T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and
continual release of statistics. TISSEC, 14(3):1–24, 2011.

[54] Rachel Cummings, Sara Krehbiel, Kevin A Lai, and
Uthaipon Tantipongpipat. Differential privacy for growing
databases. In Advances in Neural Information Processing
Systems, 2018.

[55] Charlotte Bonte, Eleftheria Makri, Amin Ardeshirdavani,
Jaak Simm, Yves Moreau, and Frederik Vercauteren. To-
wards practical privacy-preserving genome-wide association
study. BMC bioinformatics, 19(1):537, 2018.

[56] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi
Goldwasser. Secure large-scale genome-wide association
studies using homomorphic encryption. National Academy of
Sciences, 2020.

[57] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo.
A new way to protect privacy in large-scale genome-wide
association studies. Bioinformatics, 29(7):886–893, 2013.

[58] David Froelicher, Patricia Egger, João Sá Sousa, Jean Louis
Raisaro, Zhicong Huang, Christian Mouchet, Bryan Ford,
and Jean-Pierre Hubaux. Unlynx: a decentralized system for
privacy-conscious data sharing. PETS, 2017(4):232–250,
2017.

[59] Feng Chen, Michelle Dow, Sijie Ding, Yao Lu, Xiaoqian
Jiang, Hua Tang, and Shuang Wang. Premix: Privacy-
preserving estimation of individual admixture. AMIA Annual
Symposium, 2016:1747, 2016.

[60] Md Nazmus Sadat, Md Momin Al Aziz, Noman Mohammed,
Feng Chen, Xiaoqian Jiang, and Shuang Wang. Safety:
secure gwas in federated environment through a hybrid solu-
tion. TCBB, 16(1):93–102, 2018.

[61] Feng Chen, Chenghong Wang, Wenrui Dai, Xiaoqian Jiang,
Noman Mohammed, Md Momin Al Aziz, Md Nazmus Sadat,
Cenk Sahinalp, Kristin Lauter, and Shuang Wang. Presage:
Privacy-preserving genetic testing via software guard exten-
sion. BMC medical genomics, 10(2):48, 2017.

[62] Christoph Lambert, Maria Fernandes, Jérémie Decouchant,
and Paulo Esteves-Verissimo. Maskal: Privacy preserving
masked reads alignment using intel sgx. In SRDS, 2018.

[63] Avradip Mandal, John C Mitchell, Hart Montgomery, and
Arnab Roy. Data oblivious genome variants search on intel
sgx. In Data Privacy Management, Cryptocurrencies and

http://www.humangenomeprivacy.org/2017/competition-tasks.html
http://www.humangenomeprivacy.org/2017/competition-tasks.html

DyPS: Dynamic, Private and Secure GWAS 232

Blockchain Technology. Springer, 2018.

A Requests selection for test
statistics

A.1 Composition property and proofs

We now demonstrate that the method we developed to
select the set of genomes to be added, or removed, from
a GWAS release prevents both membership attacks on
test statistics, and recovery attacks on both aggregate
and test statistics. We refer the reader to Table 4 for
a summary of the equations we rely on to evaluate the
conditions of feasibility of those attacks. More precisely,
those equations state that there is a function NtoL(L)
such that a GWAS release that studies L SNPs can be
considered secure if it used LtoN(L) genomes. Similarly,
one could invert these equations to discover how many
SNPs L can be safely released according to the number
of genomes N , namely NtoL(N).

In the following, let Ai be the set of genome ad-
ditions and Ri the set of genome removals used for a
specific release, or update, i of the GWAS results.

Theorem 1 (Vertical expansions with f = 0). If each
release i is such that |Ai| + |Ri| ≥ LtoN(L) and that
|Ai| ≥ |Ri|, then each combination of releases involves
more than LtoN(L) genomes, which prevents an adver-
sary to successfully launch a privacy attack.

Proof. We prove this theorem by induction. The first
release does not contain any genome removal and, there-
fore, adds more than LtoN(L) genomes. The property
to prove is then verified for the first release. Let us as-
sume that this property is verified for any combination
of releases whose ids are lower than or equal to i. Let j
be the ID of the (i + 1)-th release, which contains the
additions and removals of genomes Aj and Rj . Let us
consider a combination of releases whose ids are lower
than or equal to i. This combination contains a set of
genome additions A and a set of genome removals R. We
now show that if we were to combine this combination
with release j we would still obtain a secure release.

The number of genomes that an adversary can iso-
late by combining the releases is equal to |R|+ |A\Rj |+
|Rj \A|+ |Aj |. By adding and removing |A∩Rj | to this
expression one can obtain:
(|R|+ |A \Rj |+ |A ∩Rj |)+(−|A ∩Rj |+ |Rj \A|+ |Aj |) (1).

The values of the two parts of the previous expres-
sion can be bounded thanks to the following two in-
equalities:
– By assumption, we have |A| + |R| ≥ LtoN(L) and,

therefore, |R|+ |A \Rj |+ |A ∩Rj | ≥ LtoN(L) (2)
– By construction, |Aj | ≥ |Rj |, and therefore |Aj | ≥
|A ∩Rj |+ |Rj \A| (3)

We can now bound each term in (1). First, we already
established (in (2)) that (|R| + |A \ Rj | + |A ∩ Rj |) =
|A|+ |R| ≥ LtoN(L), which bounds the first term in (1).
Second, by using (3), one can see that −|A∩Rj |+ |Rj \
A|+ |Aj | ≥ −|A∩Rj |+ |Rj \A|+(|A ∩Rj |+ |Rj \A|) ≥
2 ∗ |Rj \ A| ≥ 0, which bounds the second term in (1).
By adding these two inequalities, we finally obtain that
|R|+|A\Rj |+|Rj\A|+|Aj | ≥ LtoN(L), which concludes.

Theorem 2 (Horizontal expansions with f = 0). Let
(Ai, Ri) be the set of genome additions and removals
respectively executed during the GWAS results update
i. The horizontal expansion algorithm allows an expan-
sion of L SNPs and does not allow an adversary to
successfully launch a privacy attack.

Proof. By construction, the released set of Li+1 SNPs
have been chosen so that |Ai| + |Ri| ≥ NtoL(Li+1),
which prevents any genomic data over the SNPs that
are newly considered in release i+ 1 to be inferred.

Theorem 3 (Diagonal expansions with f = 0). Let
(Ai, Ri) and (Ai+1, Ri+1) be the sets of genome ad-
ditions and removals respectively executed during the
GWAS results updates i and i + 1, between which a
diagonal expansion occurred. The diagonal expansion
algorithm does not allow an adversary to successfully
launch a privacy attack.

Proof. A diagonal expansion can be seen as a combi-
nation of vertical and horizontal updates, which are re-
spectively proven safe in Theorems 1 and 2.

In the following, let Ai,S be the set of genome additions
and let Ri,S the set of genome removals used for a spe-
cific release, or update, i of the GWAS results by a set
S of players (i.e., biocenters). We now show that the
previous results applied to the situation where up to f
of the B biocenters might be colluding.

Theorem 4 (Diagonal expansions with f 6= 0). For
any set S of (B − f) non-colluding biocenters, if each
release i either verifies:

– |Ai,S |+ |Ri,S | ≥ LtoN(L) and |Ai,S | ≥ |Ri,S |, or

DyPS: Dynamic, Private and Secure GWAS 233

– |Ai,S | = 0 and |Ri,S | = 0,
then each combination of releases involves either no
genomes from the (B − f) biocenters at all, or more
than LtoN(L) genomes, which prevents an adversary to
successfully launch a privacy attack.

Proof. A release that does not contain any additions
or removals cannot leak any private information. We
can therefore only reason about combinations of releases
that each satisfy the first condition we listed. This The-
orem is therefore a direct consequence of Theorem 3, if
one considers the genomes that have been released by a
given subset of (B − f) biocenters.

A.2 Pseudocode

DyPS uses the algorithm reported in Figure 18 to select
the biocenters that participate in a batch of requests to
be executed. In the case of test statistics, all addition re-
quests from a selected biocenter are selected, and a lower
or equal number of removals. This algorithm assumes
that up to f biocenters are colluding, with f ≤ (B− 1).

DyPS first retrieves and binds the requests to their
corresponding biocenters in FIFO order (line 7 to 9),
and adds them to bioList. After gathering the requests
from the biocenters, DyPS sorts the list of biocenters
according to their number of addition requests (line 10),
before selecting a batch of requests (lines 11 to 34).

The rationale behind the selection algorithm is to
select a group of biocenters such that their combined
requests cannot be attacked by the f biocenters that
participate the most, and who might be colluding. From
line 12 to 20, DyPS checks if the number of additions
of the i selected biocenters are large enough consider-
ing the requests of f malicious biocenters and that this
number is equal or greater than LtoN(L).

If such a set of biocenters is not found, DyPS
checks if some biocenters have enough requests to up-
date statistics individually, considering Theorem 2 in
the previous section and LtoN(L) (lines 21 to 28). Note
that during this step, the algorithm limits the number
of removals per biocenter to the number of additions it
is also executing. From lines 30 to 33, DyPS checks if
biocenters were selected and adds them to the list of
selected biocenters (selectedBios). Finally, the algo-
rithm retrieves the selected biocenters and returns the
sets of addition and removal requests that can be exe-
cuted to update the GWAS test statistics (line 35 to 39).
In the case of aggregate statistics, the actual composi-

1: procedure DyPS request selection algorithm(B, f, L)
2: Input: B set of biocenters, f number of colluding players,

L number of SNPs.
3: Output: sets of selected genome addition and removal re-

quests.
4: Uses: NtoL(L), the minimum number of genomes required

to update L SNPs.
5: bioList = ∅;
6: selectedBios = ∅
7: for b in B do// retrieve pending requests from each biocen-

ter in FIFO order
8: bioList[b.id].add(b.toAddGenomes,b.toRmvGenomes);
9: end for

10: bioList.sort();// sort using the number of addition requests
11: istart = −1;
12: for (int i = 0; i < B; i + +) do
13: if (bioList[i].addCount == 0) then
14: continue;
15: end if
16: if (bioList.size() - i > f and

sumBioReq(bioList, i, bioList.size() − f − 1) ≥ LtoN(L)
then

17: istart = i;
18: break;
19: end if
20: end for
21: if (istart == −1) then // assemble all biocenters that

individually have enough operations
22: for (int i = 0; i < B; i + +) do
23: if (bioList[i].addCount ≥ bioList[i].rmvCount

and bioList[i].addCount + bioList[i].rmvCount ≥ LtoN(L))
then

24: istart = i;
25: break;
26: end if
27: end for
28: end if
29: if (istart != −1) then // assemble the selected biocenters
30: for (int i = istart; i < B; i + +) do
31: selectedBios.add(bioList[i]);
32: end for
33: end if
34: // assemble the batch of requests from selected biocenters
35: for (int i = 0; i < selectedBios.size(); i + +) do
36: Adds_Batch := selectedBios[i].addRequests
37: Rms_Batch := selectedBios[i].rmvRequests
38: end for
39: end procedure
40: // release test statistic over selected set of requests
41: computeT estStatistics(Adds_Batch, Rms_Batch)

Fig. 18. DyPS pseudocode for requests selection and test statis-
tic releases.

tion of the requests batch is determined by the dedicated
SNPs selection algorithm (see Appendix B).

B SNPs selection for aggregate
statistics

B.1 Verifications for singlewise and
pairwise statistics

In order to extend the mechanism that finds the list
of SNPs over which statistics can be released using a
batch of genome operations from singlewise frequencies
to pairwise frequencies, DyPS considers the best of the

DyPS: Dynamic, Private and Secure GWAS 234

SecureGenome [11] approach and pairwise-based LR-
tests Tr [3] and/or Λ [12]. On singlewise frequencies,
DyPS uses SecureGenome’s strategy to remove SNPs
in linkage disequilibrium, and very rare SNPs (i.e., SNP
positions with MAF ≤ 0.05). After removing those SNP
positions, DyPS runs the singlewise-based LR-test to
identify the safe SNP positions.

In addition, DyPS runs and verifies the power
achieved in a pairwise-based test (which can use the
Tr and/or the Λ metrics) in order to decide which pairs
of SNP positions can also have their pairwise frequency
safely released. Since at this point SNPs are in linkage
equilibrium (i.e., they have no statistical correlation), it
is sufficient to avoid publishing their pairwise allele fre-
quencies, and the pairwise frequencies that involve one
of the two SNPs (and a different one) might be pub-
lished nonetheless.

The exhaustive verification for pairwise frequencies
follow a similar scheme, and can be executed in parallel
of the verifications for singlewise frequencies. It is im-
portant noticing that Tr and Λ provide a membership
metric for safe releases of pairwise statistics. However,
they do not apply any SNP pruning mechanism (i.e.,
removal of dependent and very rare SNPs). Therefore,
DyPS extends the state-of-the-art by not only offering
a mechanism to safely release both types of allele fre-
quencies but also accomplishing it in a dynamic fashion.

B.2 Pseudocode

At this point, DyPS had already selected a safe batch
of requests to use to update test statistics, as explained
in Appendix A. DyPS then checks whether aggregate
statistics can be updated using the selected batch of re-
quests. This process is shown in the algorithm reported
in Figure 19. DyPS first collects the safe SNP posi-
tions that can be released given the selected genomes
and all combinations of genomes considering up to f
adversary biocenters (line 5). For each selected SNP,
DyPS then collects the previous releases where it has
been previously updated, and checks whether they in-
volved genomes that participate in the current batch
of genomes (lines 6 to 14). DyPS then generates and
loops over all combinations of releases that share the
same SNPs (lines 15 to 23). For each possible combi-
nation, DyPS executes the SNP selection software over
the resulting set of genomes. If the SNP position s in
safe_SNPs is also found to be safe in testSet, it means
that it can be updated, otherwise, it is ignored. In the

1: procedure DyPS for Agg. statistic releases(S, Rels) // se-
lected set of genomes, list of releases so far

2: Input: set of genomes from selected biocenters.
3: Output: set of SNP positions for safe aggregate statistics

releases.
4: Uses: SNP Selection(S, B, f): returns safe SNP positions

for a set of genomes S and combinations of
(

B
f

)
genome

sets; shareGenomes(rel): checks if a release shares genomes
with release rel; AllCombinations(Rel_shared_SNP S): cre-
ate all combinations of releases that shares SNPs with
Rels_shared_SNPS.

5: safe_SNP s := SNP Selection(S, B, f)
6: for s in safe_SNP s do // for each selected safe SNP
7: for rel in Rels do// for each release so far
8: if (s == rel.s) then // SNP position s has been

released in a previous release rel
9: if (S.shareGenomes(rel)) then // candidate re-

lease S also shares genomes with previous releases rel
10: Rel_shared_SNP s.add(rel)
11: end if
12: end if
13: end for
14: end for
15: for combRel in AllCombinations(Rel_shared_SNP s) do
16: testSet := combRel + S // merge participating genomes

in both releases
17: checkSafeSNP s := SNP Selection(testSet)
18: if (s in checkSafeSNP s) then
19: continue // this SNP can be released
20: else
21: safe_SNP s.del(s) // cannot find a safe release this

SNP this round
22: end if
23: end for
24: return safe_SNP s // set of safe SNPs for candidate re-

lease S
25: end procedure
26: computeAggStatistics(safe_SNP s) // compute and release

aggregate statistic over the set of selected SNPs

Fig. 19. DyPS pseudocode for aggregate statistic releases.

end, DyPS has a list of safe SNP positions to be up-
dated (line 24).

	DyPS: Dynamic, Private and Secure GWAS
	1 Introduction
	2 Background
	2.1 Genotype encoding
	2.2 Aggregate and test statistics
	2.3 Privacy attacks
	2.4 Conditions for safe releases

	3 Models
	4 DyPS: Dynamic, Private and Secure GWAS
	4.1 TEE-based architecture
	4.2 Workflow diagram
	4.3 Request selection to address test statistics
	4.4 Membership tests to address aggregate statistics
	4.5 Scaling the GWAS over number of SNPs

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Bandwidth, CPU and memory consumption
	5.3 Naïve dynamic release vs. DyPS
	5.4 Impact of dynamic SNP set scaling
	5.5 Impact of colluding biocenters
	5.6 SNP selection for aggregate statistics
	5.7 DyPS vs. static release of aggregate statistics
	5.8 DyPS over a large-scale GWAS

	6 Related work
	7 Conclusion
	A Requests selection for test statistics
	A.1 Composition property and proofs
	A.2 Pseudocode

	B SNPs selection for aggregate statistics
	B.1 Verifications for singlewise and pairwise statistics
	B.2 Pseudocode

