$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2021 (3):142-163

Sumit Mukherjee, Yixi Xu, Anusua Trivedi, Nabajyoti Patowary, and Juan L. Ferres

privGAN: Protecting GANs from membership
inference attacks at low cost to utility

Abstract: Generative Adversarial Networks (GANs)
have made releasing of synthetic images a viable ap-
proach to share data without releasing the original
dataset. It has been shown that such synthetic data
can be used for a variety of downstream tasks such as
training classifiers that would otherwise require the orig-
inal dataset to be shared. However, recent work has
shown that the GAN models and their synthetically
generated data can be used to infer the training set
membership by an adversary who has access to the en-
tire dataset and some auxiliary information. Current ap-
proaches to mitigate this problem (such as DPGAN [1])
lead to dramatically poorer generated sample quality
than the original non—private GANs. Here we develop a
new GAN architecture (privGAN), where the generator
is trained not only to cheat the discriminator but also to
defend membership inference attacks. The new mecha-
nism is shown to empirically provide protection against
this mode of attack while leading to negligible loss in
downstream performances. In addition, our algorithm
has been shown to explicitly prevent memorization of
the training set, which explains why our protection is
so effective. The main contributions of this paper are:
i) we propose a novel GAN architecture that can gener-
ate synthetic data in a privacy preserving manner with
minimal hyperparameter tuning and architecture selec-
tion, ii) we provide a theoretical understanding of the
optimal solution of the privGAN loss function, iii) we
empirically demonstrate the effectiveness of our model
against several white and black—box attacks on several
benchmark datasets, iv) we empirically demonstrate on
three common benchmark datasets that synthetic im-
ages generated by privGAN lead to negligible loss in
downstream performance when compared against non—
private GANs. While we have focused on benchmarking
privGAN exclusively on image datasets, the architecture
of privGAN is not exclusive to image datasets and can
be easily extended to other types of datasets. Repository
link: https://github.com/microsoft/privGAN.

Keywords: Membership inference, GANs

DOI 10.2478/popets-2021-0041

Received 2020-11-30; revised 2021-03-15; accepted 2021-03-16.

1 Introduction

Much of the recent progress in machine learning and
related areas has been strongly dependent on the open
sharing of datasets. A recent study shows that the in-
crease in the number of open datasets in biology has led
to a strongly correlated increase in the number of data
analysis papers [2]. Moreover, in many specialized ap-
plication areas, the development of novel algorithms is
contingent upon the public availability of relevant data.
While the public availability of data is essential for re-
producible science, in the case of sensitive data, this
poses a possible threat to the privacy of the individuals
in the dataset.

One way in which privacy of samples in a dataset
can be compromised is through membership inference
attacks. Membership inference attacks are adversarial
attacks where the goal of the adversary is to infer
whether one or more samples are a part of a dataset
without having explicit access to the dataset. There has
been a lot of work on developing membership inference
attacks against predictive machine learning models us-
ing their outputs [3—6]. Much of this work has focused
on exploiting information leakage due to overfitting in
many machine learning models [7]. These approaches
have been shown to be extremely effective against com-
mon machine learning models and have given rise to
machine learning methods that are specifically designed
to be resistant to such attacks [8-11].

There has recently been a surge of interest in using
synthetic data generated from generative models as a
privacy preserving way to share datasets [12-14]. While
this is an appealing approach, it has been shown that
generative models such as GANs are also prone to mem-

Sumit Mukherjee, Yixi Xu, Anusua Trivedi, Juan L.
Ferres: Al for Good Research Lab, Microsoft, USA. E-mail:
{summukhe,yixi.xu,antriv,jlavista}@microsoft.com
Nabajyoti Patowary: Microsoft, USA. E-mail: napa-
towa@microsoft.com

[®) ov-ne-np |



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 143

orizing their training set [15]. This has been exploited
in several recent papers to explore the vulnerability of
generative models to membership inference attacks [16—
18]. [16] designed a white-box attack on the released
discriminator of a GAN and showed that it can be al-
most 100% accurate in some cases. They also designed
a black—box attack, which is comparatively a lot less
accurate. [18] designed Monte—Carlo attacks on the gen-
erators which are shown to have high accuracy for set
membership inference (defined later) and slightly lower
accuracy for instance membership inference.

To address this vulnerability to membership infer-
ence attacks, we developed a novel GAN architecture
namely priv(ate)GAN to enhance membership privacy:
the synthetic data generated by the GAN trained on
the training samples should be indistinguishable from
those generated by the GAN trained on the other data
points from the same distribution. To achieve this, an
adversary is trained to attack the model, while the gen-
erator is trained to fool both the discriminator and
the adversary. We empirically demonstrate the effec-
tiveness of this architecture against attacks described
in [16, 18] as well as an oracle attack on the discr-
minator that we designed. We empirically show that
privGAN achieves high membership privacy while not
sacrificing the sample quality, compared to the origi-
nal GANs with identical architecture and hyperparam-
eter settings. Our primary contributions in this paper
are: i) proposing a novel privacy preserving GAN ar-
chitecture which requires minimal additional hyper-
parameter selection and no additional architec-
ture choices, ii) providing a theoretical analysis of
the optimal solution to the GAN minimax problem and
demonstrating that with large enough sample size the
generative model learned with privGAN is identical to
a non—private GAN, iii) empirically comparing the per-
formance of our architecture against baselines on differ-
ent membership inference attacks (both on generators
and discriminators), and iv) empirically comparing the
sample quality of our generated samples with different
baselines.

2 Related works

2.1 Membership inference attacks against
machine learning models

A membership attacker aims to infer the membership of
samples to a training set. To formally understand the

adversary, let us first assume there exists a training set
Xirain drawn from some data distribution D, a machine
learning model M trained on Xi,qin and an adversary
A that has access to samples X4, (also drawn from D).
The adversary is assumed to have some query access to
M such that, given a sample x € X,4,, it can compute
some function Q(M,x). The goal of the adversary is to
then estimate Pr(z € Xyrqin) as a function of Q(M, x).
[3] demonstrated one of the first membership attacks
against discriminative models with only black-box ac-
cess to the confidence scores for each input data sample.
Their approach involved first training many ’shadow’
machine learning models. Then an adversary model was
trained to identify whether a sample was in the training
set of any of the shadow models. This MIA approach
was shown to be surprisingly effective against a variety
of CNNs. Since then, there have been many such empiri-
cal membership attacks designed against machine learn-
ing models. Recently, [7, 19] quantified membership pri-
vacy leakage as an adversarial game and showed a con-
nection to the generalization error of machine learning
algorithms and differential privacy.

There have been several recent papers proposing
successful membership inference adversaries against gen-
erative models [16, 18]. Both of these works were mo-
tivated by the close connection of information leakage
to overfitting. More specifically, the generative models
tend to memorize the training samples. The success of
such adversaries greatly increases the risk to publish
even synthetic datasets. To solve this concern, We pro-
pose privGAN, and will show the effectiveness of our
method against all of these attacks in Section 6.

2.2 Private GANs

A differentially private algorithm guarantees that the
algorithm will yield similar outputs with high proba-
bility, no matter whether a sample is included in the
training dataset or not [20]. Existing works [1, 21] pro-
pose new algorithms guaranteeing differential privacy of
the discriminator (here the output is the model param-
eters) by the introduction of systematic noise during
the model optimization steps [22]. This also leads to a
differentially private generator as differential privacy is
immune to post-processing [20]. As a consequence, it
provides a strong protection against membership infer-
ence attacks. However, the model has to sacrifice a lot
in terms of sample quality and diversity of synthetic im-
ages, making them not particularly useful for practical
applications. For the specific task of generating class



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 144

specific images, [23] introduces a differentially private
extension to conditional GAN [24]. This can improve
the downstream utility for a limited set of classification
tasks. A comprehensive survey of differentially private
GANSs can be found in [25].

In addition to differential privacy based strategies,
using techniques that improve generalization can also
provide membership privacy benefits to generative mod-
els. Examples of such techniques are the use of dropout
layers [26] and Wasserstein loss [27]. Unlike these tech-
niques, the privGAN architecture is explicitly designed
to maximize the privacy/utility trade-off, which is quan-
titatively demonstrated in Section 6.

3 priv(ate)GANs

In this section, we will motivate and introduce priv-
GANSs. In addition, we will provide the theoretical re-
sults for the optimal generator and discriminator.

3.1 The non—private GAN

Before introducing privGANSs, let us define the original
GAN. In the original (non—private) GAN, the discrimi-
nator D and the generator G play a two-player game to
minimaximize the value function V4 (G, D):

VO(Gv D) :Ea:fvpdam(x) [IOg D(I)]+
Bemp.(2)llog(1 — D(G(2)))];
where p, is the pre-defined input noise distribution, and

Pdate 18 the distribution of the real data X. Here, the
goal of the generator is to learn realistic samples that

(1)

can fool the discriminator, while the goal of the discrim-
inator is to be able to tell generator generated samples
from real ones. The solution to the minimax problem
leads to a generator whose generated distribution is iden-
tical to the distribution of the training dataset [28].

3.2 Motivation of the privGAN
architecture

Having defined the original GAN loss function, we note
that one of its major privacy risks comes from the fact
that the model tends to memorize the training sam-
ples [7, 15]. This leaves the original GAN vulnerable
to some carefully constructed adversaries. For exam-
ple, consider a situation where the trained GAN model

has been open sourced, and a larger pool containing
the training set is available to the public. [16] has con-
structed adversarial attacks that could easily identify
the training samples using the observation that the
trained discriminator is more likely to identify training
samples as 'real’ samples than those that were not in
the training set. Similarly it has been shown in [18§],
that samples generated by trained generators are more
similar to images in the training set than those not in
the training set which can be utilized by an adversary
to perform membership inference.

In the classification setting [8] demonstrated adver-
sarial regularization as an effective strategy to prevent
membership inference attacks. They used a built—in ad-
versary to identify whether a sample was a part of the
training set for the classification model or from a hold
out set. The classification model eventually learns to
make predictions that are ambigious enough to fool the
adversary while trying to maintain the classification ac-
curacy. Here, we adapt the same idea to generative mod-
els by introducing a built-in adversary which the genera-
tor must fool in addition to learning to generate realistic
samples.

3.3 Membership inference attacks against
GANs

To motivate the built—in adversary, let us first define
a generic membership inference adversary for GANs.
Given a training dataset Xy,qin, a discriminator mod-
ule D and a generator module G, the goal of a generic
membership inference adversary is to learn the function
f(D,G,z) where:

Pr(z € Xirain) = f(D,G,x) (2)

In the case of attacks that utilize only the discriminator
model (e.g. the white-box attack in [16]), this reduces
to the form:

Pr(z € Xirain) = f(D(x)) (3)

Similarly, attacks that rely only on the generator model
(e.g. the Monte—Carlo attacks described in [18]) reduce
to the form:

Pr(z € X¢rain) = f(G, ) (4)

In the case of attacks on generators, all known attacks
(to the best of our knowledge) rely on the distance of
synthetic generated samples G(z) with the sample of
interest « (using some distance metric). The underlying



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 145

assumption being that if a large number of synthetic
samples have a small distance to x, then x was most
likely a part of the training set.

The privGAN architecture is motivated by such an
adversary. In addition, we demonstrate through empir-
ical results that a protection against such adversaries
also protects against adversaries that target discrimina-
tors. The privGAN architecture relies on two tricks to
protect against such adversaries: i) random partition-
ing of the training dataset to train multiple generator—
discriminator pairs, ii) a built—in adversary that must
be fooled, whose goal is to infer which generator gen-
erated a synthetic sample. In the following sub—section
we describe the privGAN loss highlighting these differ-
ent parts.

3.4 Some notation relevant to privGAN

Before we introduce the mathematical formulation of

privGAN, let us first list some important notation for

ease of reading. Some of these terms will be defined in

greater detail later on in the text:

— N denotes the number of generator-discriminator
pairs in privGAN

— The tuple (G;,D;) denotes the ith generator-
disciminator pair

—  Xi,---,Xn denotes the partition of data corre-
sponding to each generator-discriminator pair

— p; refers to the distribution of the X;

—  p, is some pre—defined input noise distribution

— D, denotes the internal adversary or the ’privacy
discriminator’

— A is a hyperparameter that controls the privacy—
utility tradeoff in privGAN

—  KL(pallpy) stands for the KL-divergence between
two distributions p, and py.

— JSD(p1,---,pn) is the Jensen—Shannon divergence
between the distributions p1,--- ,pN-

3.5 The mathematical formulation of
privGAN

Given an integer valued hyperparameter N > 1, we
randomly divide the training data—set X into N equal
sized non—overlapping subsets: X1, .-, Xny. Each par-
tition of the data is used to train separate generator—
discriminator pairs (G;,D;) hence their cumulative loss
is simply the summation of their individual value func-
tions. We further introduce a built—in adversary (called

the privacy discriminator) whose goal is to identify
which generator generated the synthetic sample. In the
case of N = 2, this is a similar objective to that of the
adversary who only utilizes the generator model of a
GAN. The loss of the privacy discriminator can then be
written as:

Rp(Dp) = EZNPZ(Z) IOg[D;i)(Gi(Z))]

where, Dy (z) = (Dll,(x), e DI])V (z)) represents the prob-
ability of x to be generated by the generator G; satisfy-

N .
ing that ) D} (z) = 1. Hence, the complete value func-

i=1
tion Va({Gi},,{D;}.,, D,) for a privGAN is defined
as:

N
>~ {Earepu ) 108(Di(2))] + Eerp. 1) log(1 = Di(Gi(2)))]
=1
FAE. . () log[ Dy, (Gi(2))]}

where the p; is the real data distribution of X; for
i =1,---,N, p, is the pre-defined input noise distri-
bution, A > 0 is a hyperparameter that controls the pri-
vacy /utility trade—off. Figure 1A shows an illustration
of the privGAN architecture when N = 2. It is easy to
see that the complete value function takes the form :

N
> Vo(Gi, Di) +A Ry(Dy)

=1 utility privacy

Here, the first term optimizes for ’utility’ (sample qual-
ity compared to training data partition) whereas the
second term optimizes for membership privacy. Accord-
ingly, the optimization problem for privGANs is

i WG (DN, D,).
{Cgrilﬁf‘l’zl I%ix{lr)n?ﬁ A({ }171 { }171 p)

ifi=1

()

In section 3.6 we will obtain the optimal solution
to the above stated optimization problem. This result
will then be used in section 3.7 to show that the the
built—in adversary acts as a regularizer which prevents
over—fitting to the training set partitions.

3.6 Theoretical results for privGANs

We first provide explicit expressions for the optimal dis-
criminators given the generators.

Theorem 1. Fizing the generators {G;}Y.; and the hy-
perparameter A > 0, the optimal discriminators of Equa-



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 146

fake!/fake?

A realffake real/fake B

X
Ko

Xyn overfits to X, making the GAN model susceptible 1o
membership inference attacks

A

X
—.

! :
! 1
! 1
! 1

I s

| 7N :
. miklr :
: ‘ xlreul | xlfaloe | X fake | xzreal !
pood i P i :
| 1
n \ G / \ G / i
! 1
! I
| P i i g [ ————

1 2

I XlEa| I > *

D, = built-in adversary to predict which :-

generator produces a syntheticsample

2
2
]
: vl
Sample
privGAN trains multiple generator-discriminator pairs with
anin-built adversary to minimize overfittingto X.., .
Z
Z
=
2
o
a
* | privGAN >
Sample

Fig. 1. A) The privGAN architecture with 2 generator-discriminator pairs. B) lllustration of how privGAN provides protection against
membership inference attacks by preventing memorization of the training set.

tion (5) are given by:

pi(v)
pi(x) + pg, ()’

(D;,)*(x) _ pgi(x)

N
Z Py, ()
j=1

Dy (z) =

?

fori=1,--- N, where py, is the distribution of G;(z)
gien z ~p, forj=1,--- N.

Proof. Decompose the value function as

VA({Gi}ily D}, Dy) =

N N
> Vo(Gi, Di) + A " E.np(z log[ Dy (Gi(2)))],

i=1 i=1

where V| is defined in Equation (1). Note that the first
N

term Y Vo(Gi, D;) only depends on {D;}Y |, while the

i=1
second term AE,.,_(.)log[D}(G;(2))] depends on D,
pi(x)

alone. By Proposition 1 [28], D} (z) = P, (2) Max-
imizes Vy(G;, D;) fori=1,--- | N. »
Note that (following [28])
N N
D Bep(5)10g Dj(Gi(2) = Y Eunp,, log[Dj(@)]

= i=1

Then it is equivalent to solve the optimization problem

maX{yi}f\I:—ll L(y]_’ e 7yN71)7 where _L(y]_7 . 7yN71) —
N-1 ' N-1
> aijlogy; + anlog[l — > y;] under the constraints
=1 j=1

' N-—1 ) N—-1 4
= [ X b 0108 D40 + by () 08[1 = 3 Dol
Ji=1 j=1

N—1

that > y; € (0,1)and y; € (0,1) fori=1,--- ,N—1. Tt
i=1

is reasonable to assume that a; > 0, since the probability

density function is always positive. Easy to verify that
L(y1,--- ,yn—1) is concave, given any positive a;s. Note
that yf = %— for ¢ = 1,--- ,N — 1 solves the set

pE
j=1
of differential equations {gTL = 0}j=1,..,N—1 for any
J

) nyl)
for any positive a;s, and we complete the proof. O

positive a;s. Thus it always maximizes L(yi,- - -

Similar to the original GAN [28], define

Ch({GiYY) = V({G Y {DN,, D
Z({Gitiz1) i max Z({Gitit, ADi}ite, D)

rSi=1

Theorem 2. The minimum achievable wvalue of
Cr({Gi}Y.)) is —N(log4 + AlogN) for any positive
A. This value is achieved if and only if py, = p; = Pdata,
fori=1,--- N.

Proof. 1t is easy to verify that when pg, = p; = Pdata for
i=1,---,N, O\({G;}X) achieves —N(log4 + Alog N).
By its definition, Cy({G;}}¥,) can be re-written as:

N
(Gt 1) = Y Eunp,[log Dj ()] +
i=1

Exnp,, [l0g(1 = Dj (2))] + AEznp,, [log(D,") (x)]



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 147

By Theorem 1 and a few algebraic manipulations,
we have

CA({GiYN.)) + N(log4 + Alog N) =

N

Di + Pg; Di + Dg,
> [KLilIP522) + KL(pg 12522 )+
i=1

(6)

N
>_j—1Pg;
MK L ==
(pg7 N ) )
Note that the Jensen-Shannon divergence (JSD)
between N distributions pi,...py is defined as

ZN

I El 1 KL(ps| | =55 J) Then, Equation (6) turns out
to be
N
> 278D (pillpg,) + NAISD(pg,, -, Pgn) > 0,
i=1

where the minimum is achieved if and only if py, = p;,

fori =1,---,N, and pg, = -+ = pgy = Ddata, accord-
ing to the property of Jensen-Shannon divergence. Thus
completing the proof.

O

Remark 1. Assume that p; = pgata for i = 1,--- ,N.
Given ({GIYN |, {D: YV 1:D}) - the optimal solution of
Equation (5), Theorems 1 and 2 indicates that each pair
in the set

N N
{(Gi7 Di)iz1, N, (Y Gi/N,Y Di/N)}
i=1 =1

minimazimizes Vo (G, D).

This remark suggests that privGANs and GANs yield
the same solution, when the data distribution of each
partition X; is identical to that of the whole dataset X.
This will be true, if there are infinite samples in each
partition X;, and p; equals to the underlying distribu-
tion, where the training samples were drawn from.

3.7 privGAN loss as a regularization

In Theorem 2 and Remark 1, we have focused on the
ideal situation where we could get access to the underly-
ing distribution, where the training samples were drawn
from. In such an ideal situation, there is no room for
the membership inference attacks, thus a privGAN and
a GAN yield the same solution. However, in a practi-
cal scenario, this is not true (due to unavailability of
infinitely many samples), making white-box and black—
box attacks against GANs effective. In the following

lemma, we will demonstrate that the built—in adversary
(Dp) serves as a regularizer that prevents the optimal
generators (and hence the discriminators) from memo-
rizing the training samples.

Assume

Lemma 1. that  {(GM)*}Y,  minimizes
C\({G:}Y.) for a fized positive X\. Then minimizing
Cr\({G:}Y.)) is equivalent to
N
min JSD(pillpg:)

Gk i
(7)

subject to:

JSD(pglv ~~7pgN) S 5)\5

where pg, ~ Gi(z) given z ~ p, fori = 1,..,N, and
5)\ :JSD(p(gf)*,..,p(gﬁ’)*).
Proof. Since A and N are fixed, reformulate

min C)\({Gi}fil) as

N

min

N
JSD(pillpg;) + B) —JSD(pgy - Pgy ). (8)
(Gl i

Assume that {(GM*TIN, solves Equation (7). It

also minimizes CA({Gz‘}izl), since Z JSD(p¢||p +) +
1 1
NT/\JSD(p(gA)+7~,p(g*)+) < ZzlJSD(PvHP(g ) +
on = OA{(G) 1Y) = min CA({Gi}Y).
We will then Show that {(G})*}Y, is a so-
lution of Equation (7). If the above assump-

tion is not true, then there exists {G;}Y, such

N N
that > JSD(pillpg,) < EJSD(pin(g?)*), and
i=1 i=1

N
Then ZJSD(pi“pgi) +

JSD(pg,s-pgn) < Ox

NAJSD(pqu-,pgN) < ZJSD(pzllp(q )+ sy =

CA({(GMH*IY)) = min CA({G} 1). This contradicts
the assumptlon that {(G2)*}Y| minimizes C\ ({Gi} ;).
This completes the proof. O

Theorem 2 and Lemma 1 provide an intuitive under-
standing of the properties of the optimal generator dis-
tributions. More specifically, it has been shown that
the cost function Cy({G;}}¥,) reduces to a trade off
between the distance of generator distributions and
their corresponding data split, and their distance to the
other generator distributions. On the one hand, the pri-
vacy discriminator can be seen as a regularization to
prevent generators from memorizing their correspond-
ing data split. On the other hand, a privGAN will



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 148

yield the same solution as a non—private GAN when
there is low risk of memorization, as suggested by Re-
mark 1. This interesting observation further demon-
strates the effectiveness of our protection, as the suc-
cess of all kinds of membership inference attacks heav-
ily rely on the extent of training set memorization. In
addition, the reformulation of the optimization prob-
lem for the generators (seen in Lemma 1) provides a
more explicit way to bound the distance between the
generator distributions, which can be explored in fu-
ture work to provide privacy guarantees. It should also
be noted that the upper bound of JSD(py,,..,pgy ) for
{G¥}N.| will approach to 0 as A — co. According to the
proof of Theorem 2, Cy({G;}Y.,) could be written as
~Nlogd + S, [KLmil|2) + KL(p, | 232 | +
NXJSD(pg,,..,pgy) — log N). When X is large enough,
NX(JSD(pg,,..,pgn) — log N) dominates the loss func-
tion. Note that JSD(pg,,..,pgy) > 0, and it equals to
0 if and only if p,, = .. = pgy almost everywhere.
Hence, while A\ and N are dataset dependent quanti-
ties, by increasing A it should be possible to reduce
JSD(pg,,..,pgy) (for the optimal solution) to a user-
desired value for most datasets.

Note: While the previous mathematical formulation
and theoretical results are based on the original GAN
formulation [28], the same idea of multiple generator-
discriminator pairs and an internal adversary could
be extended to most other GAN approaches such as
WGAN [27],Conditional GAN [24] etc.. It must be noted
though that the mathematical results will not automat-
ically extend without modification to such cases.

3.8 Practical implementation of privGAN
architecture

For the purposes of practical implementation of priv-
GAN we just duplicated the discriminator and gener-
ator architectures of the simple GAN for all the com-
ponent generator—discriminator pairs of privGAN. The
privacy discriminator is identical in architecture to other
discriminators barring the activation of the final layer,
which is soft—max instead of sigmoid (in other discrim-
inators). Identical learning rates are used as in the
simple GAN. Hence, the only additional hyperparam-
eters in privGAN are A and the number of generator—
discriminator pairs N. It should be noted that in the
case of practical implementation, N lies in a bounded

[ Xtrainl | for a fixed batch size.

range [27 batchSize

3.9 Training privGAN

The overall training algorithm for privGAN can be seen
in Algorithm 1. While an alternating minimization strat-
egy seems like a reasonable choice for training the priv-
GAN, there are several practical tricks that can accel-
erate the convergence. The first trick is to set up good
initial weights for the privacy discriminator (D). We
first train a neural network to distinguish the different
partitions of the training data (corresponding to each
generator) for a small number of epochs n; (here we
used 50). Then initialize D, with this neural network.
The second trick is to fix D, for the first ny epochs
(here we used 100) after the initialization, while only al-
lowing the generator-discriminator pairs to train. These
two strategies have been shown to accelerate the con-
vergence. In addition, the learning curves for different
combinations of n; and ng are presented in Figure 2.
Setting ng = 0 leads to big initial transients in the com-
bined loss which eventually subsides. A possible expla-
nation is that it is too hard for the generators to beat
both discriminators and the privacy discriminator at the
very beginning. The effect of setting n; = 0 is less dra-
matic when ng = 100. However, the convergence of the
combined loss could be accelerated by setting n; = 50,
when ng = 0. Note that D, will be initialized with ran-
dom weights by setting n; = 0. Last but not least, the
relative values of the various losses after 200 epochs are
quite stable to the choice of n; and ng, as shown in
Figure 2. Note - n; = 50 and ng = 100 are used in all
experiments performed in the following sections.

4 Proposed attacks

In this section, we will introduce several state-of-the-art
membership inference attacks against generative models
from [16, 18], as well as an oracle attack of our own. Al-
though the privGAN is specifically designed to defend
against membership inference attacks targeting gener-
ators (or generated data), we also present other adver-
saries that attack released discriminator models for com-
pleteness.

4.1 White—box attack on discriminator

The white-box attack on a simple GAN is performed as
outlined in [16]. Briefly, the attack assumes that the ad-
versary is in possession of the trained model along with
a large data pool including the training samples. The



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 149

ni=so.nd=0 ni=0.nd=100 ni=50,nd=100

= DP-loss = DPloss
Combined-loss.

— D_ldoss

— D_2oss

— DPuoss — Dpuoss
Combined-loss. N Combined-loss
D_l-oss a1 | 0_1-loss

— D_2doss — D_2dass

R

F e P T—— —

B ——

0 % S B W0 125 150 U5 00 o X W 75 100 125 180 US .0 0 % 0 75 100 125 150 175 200 0 X S 75 W0 15 150 1S 200

Fig. 2. Comparing the loss convergence for different model training hyperparameters of privGAN on the MNIST dataset with A = 1.

Algorithm 1: Training privGAN attacker is also assumed to have the knowledge of what

Input: Dataset X with m samples, array of
generators G, array of discriminators D,
privacy discriminator D), privacy weight A,
number of epochs n, initial D, epochs n;,
co-training delay ng;
N < number of discriminators/generators;
Divide X into N equal parts {X1,.Xn};
yP < partition index of each data point;
for i =1 to n; do

| Train one epoch of D, with (X, yP);
end
for i =1 ton do
for j =1 to N do

X jf < fake images generated with Gj;

y; <+ random numbers in [1, V]
excluding j;

y; < labels for fake and real images;

X; = (X, X]); )

Train one epoch of D; with (Xj,y;);

end
xf e {x{,.x1}
P {yl, ik
if i > ng then
| Train one epoch of D, with (X7, yP);
end
Train one epoch of G with (X7,y/P yP, \);
end

fraction of the dataset was used for training (say f) but
no other information about the training set. The attack
then proceeds by using the discriminator of the trained
GAN to obtain a probability score for each sample in the
dataset (see Algorithm 2). The samples are then sorted
in descending order of probability score and the top f
fraction of the scores are outputted as the likely training
set. The evaluation of the white—box attack is done by
calculating what fraction of the predicted training set
was actually in the training set.

Algorithm 2: White-box attack on GAN
Input: Dataset X with m samples,

discriminator D;
for i =1 tom do

| p(X) - D(X,) ;
end

return p ;

Since a privGAN model has multiple generator—
discriminator pairs, the previously described attack can-
not be directly applied to it. However, for a success-
ful white-box attack, each of the discriminators should
score samples from the training corpus higher than
those not used in training (note: the training sets are of
the same size for both private and non—private GANs).
Hence, we modify the previous approach by identify-
ing a maz probability score by taking the max over the
scores from all discriminators (see Algorithm 3). The ra-
tionale being that the discriminator which has trained
on a particular data sample should have the largest dis-
criminator score. We now proceed to sort the samples
by each of these aggregate scores and select the top f
fraction samples as the predicted training set, which is
similar to Algorithm 3. We also tried taking mean in-
stead of maz which led to largely similar results, hence
we only report the results for the max attack here.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 150

Algorithm 3: White-box attack on privGAN
Input: Dataset X with m samples, array of

discriminators D ;
N « number of discriminators ;
for i =1 to m do

{p!(Xi), .. PN (Xi)} « {D1(X0), .., D (Xa)}
end
P max(p', . pN) ;
return p™e* ;

4.2 Oracle white—box attack on
discriminator

While we describe a particular white-box attack tar-
geting discriminator models from [16] in the previous
sub—section, this is merely a heuristic based attack and
there can be many other such heuristic attacks. A de-
tailed analysis of all possible attacks is beyond the scope
of this paper, but a taxonomy of possible attacks can be
found in [17]. While the previously described white—box
attack is an intuitive heuristic for a practical scenario,
here we seek to identify the upper limit of membership
inference accuracy of white—box attacks based solely on
discriminator scores. This will enable us to better quan-
tify the privacy loss due to GANs.
We first define the following notations:

—  Xtrain is the training set for the GAN, and X, is
the holdout set

— D is the discriminator

- 2 € Xirain UXho, is a sample which may or may not
have been used to train the GAN.

— X is a random number drawn uniformly from
Xtrain U Xho

- D ={D(=)|z € Xtrain U Xno}, and M is the size of
D. Sort the set D in the ascending order, and define
d; as its ith element for i =1, ..., M.

- A(D
bership of a sample 2 using D(x). More specifically,
A(D(z)) = 1 means that the adversary classifies the
sample x as a training sample, otherwise it is classi-
fied into the holdout set X, (A(D(x)) = 0).

—  The utility score A of a membership inference attack

(z)) € {0,1} is an adversary to infer the mem-

A at a sample z is:

1, if membership correctly identified
Aulz) = :
—1, otherwise
- pi= PT(D(X) = dz‘X c Xtrain)

- ¢ =Pr(D(X) =di|X € Xpo)

_ f = P?"(X S Xtrain) %
— s =Pr(D(X)=d;)=pif +q;(1 - f)

- A= P’I“(X € Xtrain|D( )
— 54 = A(D(d)

pif
di) = pi f+q7(1 f)

Note that {p;,¢;}i=1,.. s could exactly describe the
probability distribution of D(X
X € Xpo- Thus, we are making no assumption about
the distribution of D(X). Next, we identify the maxi-
mum expected value of A for any adversary with access
to pi, ¢; and f.

) given X € Xipgin O

Theorem 3. The mazimum expected value of A is
given by:

maXEX [Aa(X)] =

Zm — -9

The proof of Theorem 3 can be found in the Appendix.
It should be noted that such an oracle attack has a
Ex[AA(X)]maz = |2f—1] > 0 even when P = Q. We fur-
ther show in Lemma 2 that for f = 1, Ex[AA(X)]mae =
TV D(P,(Q), where TVD stands for the Total Variation
Distance between the distributions P and Q [29].

Lemma 2. The maximum expected value of A is for
=
probability distributions P and @, where P is the dis-

is equal to the Total Variation Distance between

tribution of discriminator scores given x € Xiest while
where @ is the distribution of discriminator scores given
T € Xpo-

Proof. In the case of f = %, the condition \; > % is
equivalent to p; > ¢;. Hence, equation 15 can be re—
written as:

max Ex[A4(X)] = 22\]717 i 9)
This is equal to the Total Variation Distance between
probability distributions P and @ (Q.E.D.). O

Based on the previously stated observations, we use To-
tal Variation Distance between the distribution of dis-
criminator scores for X;.s; and Xp, to robustly quantify
effectiveness of an attacker that only uses discrimina-
tor scores as described in Algorithm 4. Note - In the
practical scenario, since the number of samples used in
training are limited, we bin the discriminator scores into
equally spaced bins and calculate the TVD on the result-
ing distributions.

Similar to the white-box attack described in the
previous sub—section, this attack doesn’t work directly



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 151

Algorithm 4: TVD attack on GAN
Input: Datasets Xypqin and Xy, ,

discriminator D, number of bins M ;

P D(X;),Vi € {1, Xtrainl} ;

q' D(X;),Vi € {1, [Xpol} ;

P + probability distribution of p* with the
range [0, 1] discretized into M equal bins ;

Q « probability distribution of ¢* with the
range [0, 1] discretized into M equal bins ;

return TVD(P, Q) ;

on privGAN due to the presence of multiple discrimina-
tors. Hence, we modify the attack by taking the maxi-
mum TVD of the distribution of discriminator scores for
Xtest and Xp, among all discriminators (Algorithm 5).

Algorithm 5: TVD attack on privGAN
Input: Datasets Xyqin and Xy, , array of

discriminators D, number of bins M ;

for j =1 to |D| do

P+ D;(X;),Vi € {1, | Xirainl} ;

PJ « probability distribution of p;; with
the range [0, 1] discretized into M equal
bins ;

g9 Dj(Xi), Vi € {1,|Xnol} ;

()7 < probability distribution of ¢;; with
the range [0, 1] discretized into M equal

bins ;
end
return max;(TVD(P?, Q%)) ;

4.3 Monte—Carlo attack on generator

While the previous two sub—sections describe attacks on
GANS that rely on using the discriminator scores to infer
training set membership, it has been shown in [18] that
generators of GANs are also vulnerable to membership
inference attacks. [18] describes two attacks against gen-
erators, namely, instance membership inference and set
membership inference. Instance membership inference
is shown to work only marginally better than random
chance guessing, while set membership inference was
shown to be very effective in multiple datasets. Hence,
in this paper we restrict ourselves to the set membership
inference attack on generators only as described in [18].

In a set membership attack, we are given two sets of
samples. All samples in one set have the desired mem-
bership, while all samples in the other set do not have
said membership. The goal of the attacker is to identify
which of the two sets contain samples with the desired
membership. In the context of attacks against genera-
tive models, the goal is to identify the set that was part
of the training set for the model.

Algorithm 6: Monte—Carlo set membership
attack on GAN/privGAN

Input: Datasets Xipqin and Xy, , set size m,

synthetic dataset X of size n, distance metric d,
epsilon € ;

S1 <, random subset of X,qin of size m ;

So -, random subset of X}, of size m ;

y< [

for j =1 tom do

Fsre =3 2im1 Luseus, o(a)

[Soe = %2?21 1ri€Uso,f(Ii) )

if fSl,e > fSo,e then

|yl =1;
else
| ylil=0;
end
end
if Sum(y) > % return 1 ;
if Sum(y) < & return 0 ;
if Sum(y) = & return Bernoulli(0.5) ;

Algorithm 6 lays out the set membership inference
algorithm described in [18]. The attack works by us-
ing the generator to generate some n number of sam-
ples (or using m generator generated samples if only
samples are available). For each sample in the two
sets whose memberships are being tested, we calculate
D Li,eUs,  (z:), Where Ue(z) = {a'ld(z,2) < €}
The authors find that the most effective distance is the
a PCA based one. Where the top 40 principal compo-
nents of the vectorized images in a held out set is first
computed. To calculate the distance d between two im-
ages = and 7', the PCA transformation is used to first
compute the 40 principal components of interest. An
euclidean distance is then computed between these re-
duced dimension vectors. The authors also prescribe sev-
eral heuristics for choosing €. The most effective heuris-



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 152

tic is shown to be the median heuristic:
€= ﬁg%lgg(lglgn (4, 95))

Here g; refers to the jth generated sample. We note
that while [18] describes several minor variants of the
same set membership attack (namely, different choices
of distance metrics and heuristics for selecting €), we
choose the variant that was reported to have the best
results in their experiments. We note that since all three
of the datasets used in [18] are also used in our paper,
this selection is well motivated.

5 Experiment details

5.1 Datasets used

We use the following standard open datasets for our
experiments: i) MNIST, ii) fashion-MNIST, iii) CIFAR-
10, and iv) Labeled Faces in Wild (LFW). MNIST and
fashion—-MNIST are grayscale datasets of size 70,000
(60,000 training samples, 10,000 test samples). MNIST
comprises of images of handwritten digits, while fashion—
MNIST contains images of simple clothing items. They
contain a balanced number of samples from 10 classes
of images. CIFAR-10 is a colored (RGB) dataset of ev-
eryday objects of size 60,000 (50,000 training samples,
10,000 test samples). LFW is a dataset of size 13,223
comprising of faces of individuals. We use the grayscale
version of the dataset made available through scikit—
learn.

5.2 Modeling and optimization

For MNIST, MNIST-fashion and LFW, we use standard
fully connected networks for both generators and dis-
criminators since these are relatively simple datasets.
The generator and discriminator architecture details can
be found in the Supplementary Methods. Identical gen-
erator and discriminator architectures are used for both
GANs and privGANs. In the comparisons with DP-
GANs we use an identical architecture as detailed in
Supplementary Methods. While evaluating the different
adversarial attacks, we trained all GAN models with
an Adam [30] optimizer with a learning rate of 0.0002
(8 = 0.5) for 500 epochs. While evaluating performance
on downstream classification tasks, we train all GAN
models with an Adam optimizer with a learning rate
of 0.0002 (8 = 0.5) for 200 epochs (except in CIFAR~-
10 where we train for 400 epochs as it is a much more

Fig. 3. Comparison of predicted scores by discriminators during
white box attack on privGAN and non-private GANs for the
various datasets. In the case of privGAN, the scores from one
randomly selected discriminator. 'Train’ refers to scores of data
points in the training set, while 'test’ refers to scores of data
points not in the training set.

complicated dataset). For the classifier, we use simple
CNN models (see architecture in Supplementary Meth-
ods). For the CNN models, we still used a learning rate
of 0.0002 but trained for 50 epochs instead since the
model converges quickly. In all cases we used a batch—
size of 256.

To test the efficiency of white—box and TVD attacks,
models were trained on 10% of the data as in [16]. In
the case of the Monte—Carlo attack, we first separated
out the ’test set’ for all datasets and used it only to
compute the principal components as described in [18].
100,000 synthetic samples (n) were used in the Monte—
Carlo attack. 10% of the rest of the dataset was then
used to train models while the model was evaluated on
all the data except the held out test set. Reported num-
bers are averages over 10 runs. For each run, 10% of
the dataset was randomly chosen to be the training set.
In the case of the Monte—Carlo attack, 10 attacks were
performed per run of model training and their average
accuracy was taken (as in [18]). For the task of eval-
uating the downstream performance of GANs, a sepa-
rate generative model was trained for each class of the
training dataset. Here the training dataset refers to the
pre—defined training set available for MNIST, MNIST—
fashion and CIFAR-10.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 153

6 Results

6.1 Comparison of privacy loss under the
proposed attacks

A qualitative way to evaluate how well GANs are pro-
tected against white—-box attacks is visually comparing
the distribution of discriminator scores for samples in
the training set with samples outside of the training set.
The more similar the distributions are, the harder it is
for an adversary to tell the samples apart. For a priv-
GAN;, since there are multiple discriminators, we can
look at the outputs of a randomly chosen discriminator
instead. In Figure 3 we see that the privGAN does in-
deed make the two distributions closer and the similarity
between the distributions increases with A. On the other
hand, for a non—private GAN, the two distributions are
very different which explains the high accuracy of white—
box attacks in their case.

To quantitatively compare the privacy loss of priv-
GANSs with the baselines, we performed several attacks
described in section 4. The first is a white-box at-
tack as described previously. In the case of a white—
box attack, since the privGAN has multiple genera-
tor/discriminator pairs, we describe a modified attack
that is designed specifically for privGANs (see Algo-
rithm 3). For each dataset, we train the GAN and priv-
GANs (for A = 0.1, 1,10) on 10% of the dataset. The goal
of the white-box attack is to then identify the training
set from the complete dataset. Table 1 shows that in-
creasing A generally leads to reduction in the accuracy
of white—box attacks. This indicates that a privGAN be-
comes more resistant to membership inference attacks,
as A becomes larger. Moreover, even for a small A = 0.1,
the privGAN leads to substantial decrease in accuracy
of the white-box attack when compared to the non-—
private GAN for all datasets. In all cases, the privGAN
model corresponding to the best performing value of
A yields comparable performance to the random chance.
We also find that for two of the lower values of € yielding
usable images (25, 100), the white-box attack accuracy
for DPGANS is similar to privGANs with A = 10 (see
Supplementary Table 7). To compare the effect of num-
ber of generators N on privacy, we also performed the
white-box attack for varying N (2,4,6 and 8) with A =1
(see Supplementary Table 4). We see that increasing N
generally leads to decrease in accuracy of the white-box
attack, except in fashion-MNIST for N = 8. This may
be either due to the heuristic nature of the attack or
because unlike ¢ in differential privacy, the connection

between A or N to privacy is dataset dependent. We
hypothesize that for certain datasets, increasing A or
N beyond certain optimal values, may cause decrease
in sample quality or diversity, leading to lower mem-
bership privacy. For the MNIST and fashion-MNIST
datasets, we also compare how white—box attack accu-
racy varies as a function of number of epochs for priv-
GAN (A =1, N = 2) and non-private GAN (see Supple-
mentary Figure 8). We find that, while increasing num-
ber of epochs increases the white-box attack accuracy
for both privGAN and non-private GAN, privGAN per-
forms significantly better than the non-private GAN at
the same epoch number (against the white-box attack).
It is therefore important that when comparing member-
ship privacy benefits of privGAN against a non-private
GAN, we train them for the same number of epochs. It is
worth noting here that increase in privacy loss as a func-
tion of epochs is true for even differential privacy based
techniques for a given level of input noise. However, un-
like differentially private methods, which can bound the
privacy loss for a given noise level and a given number
of epochs [22], there is no direct way to do so for priv-
GAN. In Section 7.3 we discuss potential data driven
ways that may be used to estimate query specific mem-
bership privacy of models, which can then be used to
study how the membership privacy of privGAN varies
as a function of epochs.

Dataset | Rand. | GAN privGAN
A=01 | A=1|Ax=10
MNIST 0.1 0.467 0.144 0.12 0.096
f-MNIST 0.1 0.527 0.192 0.192 0.095
LFW 0.1 0.724 0.148 0.107 0.086
CIFAR-10 0.1 0.723 0.568 0.424 0.154

Table 1. White—box attack accuracy of various models on various
datasets. For privGAN, the number represents accuracy of the
'max’ attack.

While not a practical attack, the Total Variation
Distance between the distribution of scores on the train-
ing and held out set provide an upper limit to the ef-
ficacy of discriminator score based white—box attacks
against GANs (see Algorithm 4). It can be seen as an at-
tack with an oracle adversary. Like in the previous case,
this is complicated in the case of privGAN due to the
presence of multiple generator—discriminator pairs. We
mitigated this by taking the largest Total Variation Dis-
tance among all discriminators (see Algorithm 5. Similar
to the previous attack, we trained the GAN and priv-



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 154

GANs (for A = 0.1,1,10) on 10% of the dataset. We
find again that for all datasets and all three values of A,
privGAN leads to considerable reduction in Total Vari-
ation Distance (Table 2). Moreover, an increase in A is
seen to generally lead to reduction in the Total Varia-
tion Distance. Here too we note that the reduction is
not a monotonic as a function of A, possibly for the rea-
sons stated previously. Similar to the white-box attack,
we also varied the number of generators keeping \ fixed
(see Supplementary Table 5). We find that increasing N
decreases the Total Variation Distance.

Dataset | GAN privGAN
A=01|A=1|A=10
MNIST 0.438 0.31 0.235 0.048
f-MNIST | 0.674 0.323 0.278 0.155
LFW 0.756 0.237 0.097 0.261
CIFAR-10 | 0.91 0.371 0.367 0.244

Table 2. TVD attack score of various models on various datasets.

While the previous two attacks are attacks against
the discriminator, the final attack is one against the
trained generators and only uses synthetic generated im-
ages. Moreover, unlike the previous two attacks which
were instance membership inference attacks, this is a
set membership inference attack (described previously).
The attack (Algorithm 6), first described in [18], is a
Monte—Carlo attack that tries to perform set member-
ship inference under the assumption that generated im-
ages will be more similar to the image set used to train
them. As seen in the previous two attacks, privGAN
outperforms GAN for all three values of A and set mem-
bership inference accuracy decreases as a function of A
(Table 3). Similar to the two previous attacks, we gen-
erally see a drop in attack accuracy as a function of
N (see Supplementary Table 6), with the exception of
fashion-MNIST for N = 8.

Dataset | Rand. | GAN privGAN
A=01|A=1|2x2=10
MNIST 0.5 0.79 0.71 0.68 0.56
f-MNIST 0.5 0.75 0.73 0.7 0.64
LFW 0.5 0.77 0.66 0.57 0.55
CIFAR-10 0.5 0.62 0.61 0.56 0.52

Table 3. Monte—Carlo attack accuracy of various models on
various datasets.

GAN PrivGAN(0.1) iVGAN (1.0) rivGAN (10.0)

3

A A [ v d 9 /1t
s 71 %2 [ VA I3 03 1A [ S
£ 8 9 1 &3 ¢ aq | 0q 204 1 1 7 51 1 2t
R - B ¥ 7 1 2 & /o2 7 a9 ¢ 7
[0 S A - A AV T I 7 4 F 1
, 40 A a@fTnan T =100 a =100
: 8 m i FArAan: ma a0 e =
Tn-=-1n1 - A= S B nnanan
00 00 L A& 00 Tnig=1
Tl -2 8nm P20 @i F R B | [ I |
EEEEE EE9TE EFPEOE GSEEES
 EEESE FOEPE DEIEE 99E9S
UEE0F GUERET A0TAA GETES
GEEEE TCOEY GDE0GE J0EES
GEEPFS BEF0E PPPEE EEAES
(AL ]| E 1B =] s B =] =] &
ary/EE H-HEH ESsScE SEARG

CIFAR-10

Fig. 4. Comparison of images generated by non-private GAN
with privGAN for different values of A. We see a gradual drop in
quality of images with increasing values of .

6.2 Comparison of downstream
performance against non-private
GANs

We compare the downstream performance of privGANs
against non—private GANs in two ways: i) qualitative
comparison of the generated images, ii) quantitative

comparison on a downstream classification task.

mmm Real

GAN
privGAN(0.1)
privGAN(1.0)
privGAN(10)
DPGAN(100)
Random

10

08

Arcuracy
=} =}
£ (=2

02

0.0

fash-MNIST
Dataset

CIFARLO

Fig. 5. Comparison of test—set performance of CNN models
trained real data, synthetic data generated using GAN and syn-
thetic data generated using privGAN. Numbers in brackets indi-
cate A values for privGAN and € values for DPGAN.

For the first task we qualitatively compare the qual-
ity of images generated by privGANs with different set-
tings of A to those generated by non—private GANs as
seen in Figure 4. It is easy to see that the image quality



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 155

for all three A values (0.1, 1, 10) are quite comparable
to the images generated by non—private GANs. However,
it can be seen that the image quality does decrease as
we increase A. We also see that certain classes become
overrepresented as A increases. This will be studied in
greater detail in the following section.

To quantitatively test the downstream performance,
we split the pre—defined training set for MNIST,
MNIST—fashion and CIFAR by its class and trained
privGANs (A = 0.1,1,10) for each single class. We then
generated the same number of samples per class as in
the original training set to create a new synthetic train-
ing set(each image was generated by a randomly chosen
generator). This training set was used to train a CNN
classification model, which was then tested on the pre—
defined test sets for each dataset. The baselines used
for comparison were: i) CNN trained on the real train-
ing set, ii) CNN trained on a training set generated by
a non—private GAN. Figure 5 shows that the classifica-
tion accuracy decreases, as A\ increases. However, the
decrease is almost negligible with A = 0.1,1 compared
to the non—private GAN for both MNIST and MNIST—
fashion. Besides, a comparison with DPGAN (for 100)
shows that privGAN leads to far higher downstream
utility than DPGAN. While privGANs outperforms DP-
GANSs for all three values of A, we note that the com-
parison is not fair since DPGAN is known to provide a
rather conservative privacy guarantees and isn’t specifi-
cally designed with membership privacy in mind. Hence,
a more fair comparison is between the privacy provid-
ing mechanism used in DPGAN (gradient clipping with
gaussian noise addition) with that of privGAN. To do
this, we do a white-box accuracy vs downstream accu-
racy plot for a wide range of A (for privGAN) and e (for
DPGAN) values. (Note: This experiment was only per-
formed on MNIST and fashion-MNIST due to compu-
tational considerations) We find that in both datasets,
privGAN has higher utility for similar privacy for most
of the privacy loss range as seen in Figure 6. It is also
interesting to note that the privacy loss range for priv-
GAN is somewhat smaller than DPGAN. This may in-
dicate that simply sub-sampling the data already pro-
vides some amount of membership privacy. We tried to
replicate this experiment for PATE-GAN [21] but were
unable to generate reasonable samples, hence we don’t
report the results here. The implementation details and
experiment results for PATE-GAN can be found in sup-
plementary methods.

A MNIST - privacy vs utility fashion-MNIST - privacy vs utiity

o6 | @ pvGAN 082 | o= prvaN
- DPGAN —&- DPGAN

ols 020 025 030 035 040 045 050 olo 015 02 025 030 035 080
White-box accuracy White-box accuracy

Fig. 6. Comparison of utility vs privacy between privGAN and
DPGAN.

6.3 Effect of privGAN hyperparameters on
sample quality

Class diversity vs generators Class diversity vs lambda

s privGAN
- GAN - GAN

H 3 4 H 6 7 [] -8 -1 -l

-05
Generators Logl0ilambeal

Average entropy vs lambda
= pGAN
—— GAN

Average entropy vs generators
= pGAN
]

H 3 H H 3 7 [] -8 -8 -lo
Ganerators

-05 00 [ 10
LoglOilambea)

Fig. 7. Comparison of the effect of hyperparameters on average
entropy and class diversity for MNIST.

To test the effect of the hyperparameter choices on
sample quality we focus on two attributes: i) unambi-
guity of the class of the generated images, ii) relative
abundance of different classes in generated images. We
measure the unambiguity of the class of the generated
images using the entropy of the predicted class probabil-
ities (using a CNN trained on real images). The average
entropy of the entire dataset is then reported for differ-
ent hyperparameter settings (lower average entropy rep-
resents less ambiguity of image class). The class diver-
sity of generated images is measured by using the pre—
trained CNN to first identify the most probable class per
sample and then using it to calculate the relative abun-
dance of each class in the generated dataset (scaled to
sum to 1). We then calculate the entropy of the relative
class abundance which we report as the class diversity
(higher entropy represents larger class diversity).

We see in Figure 7 that as A (fixing number of gener-
ators to 2) is increased, both average entropy and class
diversity monotonically decrease. This implies that as A



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 156

increases, the class ambiguity of the samples increases,
while the class diversity decreases. As the number of gen-
erators is increased (fixing A = 0.1) we notice a mono-
tonic increase of average entropy. This increase in aver-
age entropy is accompanied by an increase in class di-
versity (although the increase is not monotonic). This in
turn implies that as the number of generators increases,
the class ambiguity of samples decreases along with an
increase in class diversity. Here it must be noted that
as the number of generators is increased (for a fixed
dataset size), the size of each data split decreases.

Based on these results, it can be summarized that
both A and the number of generators impact the qual-
ity of samples generated by privGAN. Since these two
parameters interact, the optimal value of these hyperpa-
rameters are inter-dependent and most likely dependent
on the dataset.

7 Practical considerations for
data/model sharing

While the interplay between privacy and synthetic data
sharing has been extensively discussed academically [31],
there is a lack of discussion on when it is appropriate
to share models (and synthetic data) and when it is rec-
ommended to share just synthetic data. These release
choices can dramatically affect privacy concerns as dif-
ferent attacks against GANs can have vastly different
success rates. In our case this is further complicated
because privGAN has multiple generator discriminator
pairs. Here we discuss some practical considerations for
synthetic data/model sharing in the case of privGAN.

7.1 Sharing only synthetic data

Sharing only synthetic data is the most desirable option
when possible, as it only allows for black box attacks,
which are generally considered less effective than white
box attacks for GANs [16]. While synthetic data shar-
ing is relatively straightforward for non—private GANs,
it is more complicated in the case of privGAN due to
the presence of multiple generators, each of which may
have lead to a slightly different generated distribution.
Releasing images generated by any one generator may
reduce the diversity of shared data, particularly for low
values of A\. A smart sampling strategy (e.g. each image
can be generated from a randomly sampled generator)
from multiple generators would increase the diversity of

the generated samples and would likely make it harder
for adversaries to construct a black box attack. A rel-
ative privacy vs utility comparison of these approaches
will be explored in future work.

7.2 Model sharing

While sharing only synthetic data should be gener-
ally more preferable to model sharing from a member-
ship privacy standpoint, in many situations sharing the
model might become necessary. Moreover, it is standard
practice in many academic fields to share models for the
sake of reproducible research. In such circumstances, it
is strongly recommended to not share the D), (privacy
discriminator) module of privGAN. Since D,, serves the
role of an in—built adversary in privGAN; it’s ability to
predict which generator generated a particular synthetic
sample could be utilized by an adversary to infer mem-
bership. Additionally, one may consider releasing one or
a randomly selected sub—set of generator—discriminator
pairs instead of all pairs to further enhance membership
privacy.

7.3 Certifying model/data privacy

While privGAN does not provide any privacy guarantees
similar to differential privacy based techniques, some
certificate of membership privacy can often be required
by data/model owners as well as regulators. One could
use the performance of realistic SOTA membership in-
ference attacks against models or synthetic datasets as a
way to empirically quantify membership privacy vulner-
ability of models. A more principled approach would be
to use new privacy evaluation frameworks such as [32],
that uses a Bayes Optimal Classifier as an optimal ad-
versary and provides a dataset dependent and query spe-
cific membership privacy loss estimate (along with con-
fidence intervals). This is a generalization of the Oracle
attack introduced in this paper and is shown in [32]
to be related to differential privacy. Although the op-
timal/Oracle adversary is an impractically strong ad-
versary, the performance estimate of such an adversary
can act as a post-hoc certificate for models/synthetic
datasets. A data/model owner may decide to obtain
such certificates for several different queries relevant to
their application, to understand overall susceptibility of
the model/synthetic data.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 157

7.4 Hyperparameter choices

For practical deployment purposes, we suggest users
first optimize hyperparameters for a non-private GAN
(including number of epochs) and then set the privGAN
hyperparameters A and N. As evident from the experi-
ment results, as well as the mathematical formulation,
there is no dataset independent privacy interpretation
for the hyperparameters A and N. These quantities are
strongly associated with the complexity and the size of
datasets. Moreover, it matters what query function the
MIAs can use to attack the model (e.g. discriminator
scores in the case of model sharing or synthetic datasets).
However, choice of these parameters affects both query
specific membership privacy as well as downstream util-
ity of the model/synthetic data. For the purposes of
practical data/model sharing, we recommend perform-
ing grid search (or similar techniques) to identify op-
timal hyperparameters corresponding to query specific
privacy (see above) and downstream utility (using the
users choice of utility metric). These should allow users
to identify privGAN hyperparameters that provide ade-
quate privacy and utility for their application. A useful
heuristic may be to first measure query specific mem-
bership privacy of a non-private GAN against a desired
query and depending on the obtained value choose the
range of A or N to explore. In our experience, when
MIAs are very effective against a non-private model,
privGAN generally requires larger values of A or N to
obtain a desired level of membership attack accuracy.
We should however note that increasing N has a larger
impact on sample quality(Figure 7) than A, and hence
selecting very large values of N for small datasets may
lead to poor model utility. We recommend starting with
hyper-parameter values (A = 1, N = 2) since this choice
of hyperparameters has yielded reasonable results in the
datasets we have tested on. Future work can be aimed
at developing techniques for automatic identification of
hyperparameters for a particular query and utility defi-
nition.

8 Conclusion

Here we present a novel GAN framework (named priv-
GAN) that utilizes multiple generator-discriminator
pairs and a built—in adversary to prevent the model
from memorizing the training set. Through a theoreti-
cal analysis of the optimal generator/discriminators, we
demonstrate that the results are identical to those of

a non—private GAN. We also demonstrate in the more
practical scenario where the training data is a sample of
the entire dataset, the privGAN loss function is equiva-
lent to a regularization to prevent memorization of the
training set. The regularization provided by privGAN
could also lead to an improved learning of the data dis-
tribution, which will be the focus of future work.

To demonstrate the utility of privGAN, we focus on
the application of preventing membership inference at-
tacks against GANs. We demonstrate empirically that
while non—private GANs are highly vulnerable to such
attacks, privGAN provides relative protection against
such attacks. While we focus on a few state—of-the—art
white—box and black—box attacks in this paper, we argue
that due to the intrinsic regularization effect provided by
privGAN (see Section 3.7) this would generalize to other
attacks as well. We also demonstrate that compared to
another popular defense against such attacks (DPGAN,
PATE-GAN), privGAN minimally affects the quality of
downstream samples as evidenced by the performance
on downstream learning tasks such as classification. We
also characterize the effect of different privGAN hyper-
parameters on sample quality, measured through two
different metrics.

While the major focus of the current paper has been
to characterize the properties of privGAN and empiri-
cally show the protection it provides to white-box at-
tacks, future work could focus on theoretically quanti-
fying the membership privacy benefits due to privGAN.
Specifically, it would be useful to investigate connections
between the privGAN hyperparameters (N and \) and
dataset memorization. The privGAN architecture could
also have applications in related areas such as federated
learning. Hence another direction of future work could
be focused on extending privGAN to such application ar-
eas and demonstrating the benefits in practical datasets.

9 Acknowledgement

The authors acknowledge Dr. Ilya Mironov (Face-
book), Dr. Jean-Francois Rajotte (University of British
Columbia) and Mayana Pereira (Microsoft), for helpful
discussions related to the paper. This research received
no specific grant from any funding agency in the public,
commercial, or not-for-profit sectors.



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 158

References

(1]

(2]
(3]

(5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differen-
tially private generative adversarial network,” arXiv preprint
arXiv:1802.06739, 2018.

H. A. Piwowar and T. J. Vision, “Data reuse and the open
data citation advantage,” PeerJ, vol. 1, p. el75, 2013.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership inference attacks against machine learning models,”
in 2017 IEEE Symposium on Security and Privacy (SP),

pp- 3-18, IEEE, 2017.

Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang,

H. Tang, C. A. Gunter, and K. Chen, “Understanding mem-
bership inferences on well-generalized learning models,”
arXiv preprint arXiv:1802.04889, 2018.

L. Song, R. Shokri, and P. Mittal, “Membership inference at-
tacks against adversarially robust deep learning models,” in
2019 IEEE Security and Privacy Workshops (SPW), pp. 50—
56, IEEE, 2019.

S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Demys-
tifying membership inference attacks in machine learning as
a service,” IEEE Transactions on Services Computing, 2019.
S. Yeom, |. Giacomelli, M. Fredrikson, and S. Jha, “Privacy
risk in machine learning: Analyzing the connection to over-
fitting,” in 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pp. 268-282, |IEEE, 2018.

M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning
with membership privacy using adversarial regularization,”
in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 634—646,
2018.

J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong,
“Memguard: Defending against black-box membership in-
ference attacks via adversarial examples,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 259-274, 2019.

J. Li, N. Li, and B. Ribeiro, “Membership inference attacks
and defenses in supervised learning via generalization gap,”
arXiv preprint arXiv:2002.12062, 2020.

A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz,
and M. Backes, “Ml-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models,” arXiv preprint arXiv:1806.01246, 2018.

C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda,

S. Muramatsu, Y. Furukawa, G. Mauri, and H. Nakayama,
"Gan-based synthetic brain mr image generation,” in 2018
IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), pp. 734-738, IEEE, 2018.

X. Yi, E. Walia, and P. Babyn, “Generative adversarial
network in medical imaging: A review,” Medical image
analysis, p. 101552, 2019.

R. Zheng, L. Liu, S. Zhang, C. Zheng, F. Bunyak, R. Xu,
B. Li, and M. Sun, “Detection of exudates in fundus pho-
tographs with imbalanced learning using conditional genera-
tive adversarial network,” Biomedical optics express, vol. 9,
no. 10, pp. 4863-4878, 2018.

K. S. Liu, B. Li, and J. Gao, “Generative model: Mem-
bership attack, generalization and diversity,” CoRR,
abs/1805.09898, 2018.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

28]

[29]

30]
(31]

(32]

J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Lo-
gan: Membership inference attacks against generative
models,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 1, pp. 133-152, 2019.

D. Chen, N. Yu, Y. Zhang, and M. Fritz, “Gan-leaks: A
taxonomy of membership inference attacks against gans,”
arXiv preprint arXiv:1909.03935, 2019.

B. Hilprecht, M. Harterich, and D. Bernau, “Monte carlo
and reconstruction membership inference attacks against
generative models,” Proceedings on Privacy Enhancing
Technologies, vol. 2019, no. 4, pp. 232-249, 2019.

B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Reuvisiting
membership inference under realistic assumptions,” arXiv
preprint arXiv:2005.10881, 2020.

C. Dwork, A. Roth, et al., “The algorithmic foundations of
differential privacy,” Foundations and Trends® in Theoretical
Computer Science, vol. 9, no. 3-4, pp. 211-407, 2014.

J. Jordon, J. Yoon, and M. van der Schaar, “Pate-gan: Gen-
erating synthetic data with differential privacy guarantees,”
2018.

M. Abadi, A. Chu, |. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang, “Deep learning with
differential privacy,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 308-318, ACM, 2016.

R. Torkzadehmahani, P. Kairouz, and B. Paten, “Dp-cgan:
Differentially private synthetic data and label generation,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 0-0, 2019.

M. Mirza and S. Osindero, “Conditional generative adversar-
ial nets,” arXiv preprint arXiv:1411.1784, 2014.

L. Fan, "“A survey of differentially private generative ad-
versarial networks,” in The AAAIl Workshop on Privacy-
Preserving Artificial Intelligence, 2020.

W. Mou, Y. Zhou, J. Gao, and L. Wang, “Dropout training,
data-dependent regularization, and generalization bounds,”
in International Conference on Machine Learning, pp. 3645—
3653, 2018.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,”
arXiv preprint arXiv:1701.07875, 2017.

|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in neural informa-
tion processing systems, pp. 2672-2680, 2014.

R. M. Dudley, “Distances of probability measures and ran-
dom variables,” in Selected Works of RM Dudley, pp. 28-37,
Springer, 2010.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

S. M. Bellovin, P. K. Dutta, and N. Reitinger, “Privacy and
synthetic datasets,” Stan. Tech. L. Rev., vol. 22, p. 1, 2019.
X. Liu, Y. Xu, S. Mukherjee, and J. L. Ferres, “Mace: A
flexible framework for membership privacy estimation in
generative models,” arXiv preprint arXiv:2009.05683, 2020.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 159

Appendix 1: Proof of theorem 3

Proof. The expected value of A is given by:

Ex[A4(X)] =1 x Pr(correct prediction by A)—

(10)
1 x Pr(wrong prediction by A)
M
=) A+ (1= N)(1—6)—
;[ ( )1 =67) (1)

(1= X)o7 = X1 = 67)]ss

The optimal attack strategy is given by the following
Integer Programming (IP) formulation:

M
* sA . A
A fargmvgx;[xzéi + (1= )1 =57
(12)

— (L= )5 = M1 = 6Y)]s;

(]
subject to:

oA € {0,1},Vi e {1,..M}

This can be simplified to the following IP formula-

tion:
M
{(6) 1L, = arg s, D (2 - 1)57%s;
Lol (13)
subject to:

64 € {0,1},Vi e {1,..M}

It is easy to see that this IP has an analytical solu-
tion given by:

1,
§AT = {
0,

‘We note that the condition \; > % is equivalent to p; >
17
o

Using {(6;1)*}}L,,

Ex[A4(X)] to be:

if \; > 1
SMEE vien, My (14)

)\i<%

we find the maximum value of

M
max Ex[A4(X)] = Z[/\ilpe%qi (=M 1y,

=1

-(- /\i)lpe%ql /\ilq1<¥pi}si
M

= DolN = DL+
i=1

(=201, 1o, I
M

=Y Ipif — a1 - )|
i=1

(15)

Appendix 2: Model architectures
and hyperparameters

Here we outline the different layers used in the model ar-
chitectures for different datasets, along with associated
optimization hyperparameters. It is important to note
that the same choices are made for non—private GAN,
privGAN as well as DPGAN in all cases. Note that lay-
ers are in sequential order.

MNIST & MNIST—fashion

Generator layers

— Dense(units= 512, input size= 100)

— LeakyReLU(a = 0.2)

— Dense(units= 512)

—  LeakyReLU(a = 0.2)

—  Dense(units= 1024)

— LeakyReLU(a = 0.2)

— Dense(units= 784, activation = tanh’)

Discriminator layers

—  Dense(units= 2048)

— LeakyReLU(a = 0.2)

—  Dense(units= 512)

— LeakyReLU(a = 0.2)

—  Dense(units= 256)

—  LeakyReLU(a = 0.2)

—  Dense(units= 1, activation = ’sigmoid’)

Privacy—Discriminator layers

—  Dense(units= 2048)

— LeakyReLU(a = 0.2)

— Dense(units= 512)

— LeakyReLU(a = 0.2)

—  Dense(units= 256)

—  LeakyReLU(a = 0.2)

— Dense(units = number of generators, activation =
’softmax’)

An Adam optimizer with 5 = 0.5 and a learning rate of
0.0002 was used for optimization.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 160

LFW

Generator layers

Dense(units= 512, input size= 100)
LeakyReLU(a = 0.2)

Dense(units= 512)

LeakyReLU(a = 0.2)

Dense(units= 1024)

LeakyReLU(a = 0.2)

Dense(units= 2914, activation = ’tanh’)

Discriminator layers

Dense(units= 2048)

LeakyReLU(a = 0.2)

Dense(units= 512)

LeakyReLU(a = 0.2)

Dense(units= 256)

LeakyReLU(a = 0.2)

Dense(units= 1, activation = ’sigmoid’)

Privacy—Discriminator layers

Dense(units= 2048)

LeakyReLU(a = 0.2)

Dense(units= 512)

LeakyReLU(a = 0.2)

Dense(units= 256)

LeakyReLU(a = 0.2)

Dense(units = number of generators, activation =
'softmax’)

An Adam optimizer with 5 = 0.5 and a learning rate of
0.0002 was used for optimization.

CIFAR-10

Generator layers

Dense(units= 2048, input size= 100, target shape=
(2,2,512))
Conv2DTranspose(filters=
strides= 2)

LeakyReLU(a = 0.2)
Conv2DTranspose(filters=
strides= 2)

LeakyReLU(a = 0.2)

256, kernel size= 5,

128, kernel size= 5,

Conv2DTranspose(filters=
strides= 2)

LeakyReLU(a = 0.2)
Conv2DTranspose(filters= 3,
strides= 2, activation = ’tanh’)

64, kernel size= 5,

kernel size= 5,

Discriminator layers

Conv2D(filters= 64, kernel size= 5, strides= 2)
Reshape(target shape= (2,2,512))
Conv2D(filters= 128, kernel size= 5, strides= 2)
LeakyReLU(a = 0.2)

Conv2D(filters= 128, kernel size= 5, strides= 2)
LeakyReLU(a = 0.2)

Conv2D(filters= 256, kernel size= 5, strides= 2)
LeakyReLU(a = 0.2)

Dense(units= 1, activation = ’sigmoid’)

Privacy—Discriminator layers

Conv2D(filters= 64, kernel size= 5, strides= 2)
Reshape(target shape= (2,2,512))

Conv2D(filters= 128, kernel size= 5, strides= 2)
LeakyReLU(a = 0.2)

Conv2D(filters= 128, kernel size= 5, strides= 2)
LeakyReLU(a = 0.2)

Conv2D(filters= 256, kernel size= 5, strides= 2)
LeakyReLU(a = 0.2)

Dense(units = number of generators, activation =
’softmax’)

An Adam optimizer with 8 = 0.5 and a learning rate of

0.0002 was used for optimization.

CNN classifier for MNIST &
MNIST-fashion

Conv2D(filters= 32, kernel size= 3, activation =
relu’)
Conv2D(filters= 32, kernel size= 3, activation =
relu’)

Max—pooling(pool size= 2)
Dense(units= 128, activation = ’relu’)
Dense(units= 10, activation = ’soft-max’)

An Adam optimizer with 5 = 0.5 and a learning rate of

0.0002 was used for optimization.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 161

CNN classifier for CIFAR-10

—  Conv2D(filters= 32, kernel size= 3, activation =
relu’)

— Conv2D(filters= 32, kernel size= 3, activation =
'relu’)

—  Max—pooling(pool size= 2)

—  Dropout(0.25)

—  Conv2D(filters= 64, kernel size= 3, activation =
relu’)

— Conv2D(filters= 64, kernel size= 3, activation =
'relu’)

—  Max—pooling(pool size= 2)

—  Dropout(0.25)

—  Dense(units= 512, activation = ’relu’)

— Dropout(0.5)

— Dense(units= 10, activation = ’soft—max’)

An Adam optimizer with 8 = 0.5 and a learning rate of
0.0002 was used for optimization.

DPGAN hypterparameters and
implementation

To make the architectures identical, we replaced the
Wasserstein loss in DPGAN with the original GAN
loss. In the implementation of DPGAN, there are sev-
eral additional hyperparameters. In all our experiments,
we have set § = 1/N, where N is the sample size
of the dataset (this is considered standard practice).
Furthermore, for each discriminator iteration, we per-
formed 1 iteration of the generator for the sake of
consistency with GAN and privGAN. DPGAN was
implemented using the Tensorflow Privacy package
(https://github.com/tensorflow/privacy).

PATE-GAN implementation

The generator architecture for PATE-GAN was chosen
to be identical to a simple GAN. The Teacher & Stu-
dent discriminators were chosen to have the same ar-
chitecture as a simple GAN discrminator. The num-
ber of teacher discrminators was set to 5, following
the default values found in the official bitbucket repos-
itory of project. The number of inner student and
teacher discriminator iterations (ng and np) were set
to 5, also following default settings. The total num-
ber of iterations was chosen to identical to other types
of GANs (privGAN, DPGAN) for different values of

A € [0.01,50]. The white-box attacks reported here were
performed against the student discrminator of PATE-
GAN. We note here that using these settings we were
simply unable to generate any recognizable images us-
ing PATE-GAN. Furthermore, we were not able to find
any examples in published/archived literature (or even
blogs) where PATE-GAN has been used for image gen-
eration. On the contrary, others have noted that it is
not suitable for image data generation [25].

Appendix 3: Effects of
hyperparameter choices on
membership privacy

Note: For experiments comparing different number of
generators, LFW has been left out since the small size
of the dataset leads to partition size being smaller than
batch size for n = 6,8. For experiments comparing dif-
ferent number of epochs, we restrict our comparison to
MNIST and fashion-MNIST due to computational con-
siderations.

Dataset n=2|n=4 | n=6 | n=2=8

MNIST 0.12 0.095 0.098 0.08

f-MNIST 0.194 0.17 0.14 0.126
CIFAR-10 | 0.424 0.139 0.11 0.101

Table 4. White—box attack accuracy against privGAN for different
number of generator/discriminator pairs. A = 1 in all cases.

Dataset n=2 | n=4 | n=6 | n==8
MNIST 0.235 0.084 0.054 0.03

f-MNIST 0.278 0.235 0.166 0.101
CIFAR-10 | 0.367 0.247 0.138 0.056

Table 5. TVD attack score against privGAN for different number
of generator/discriminator pairs. A =1 in all cases.

Dataset n=2|n=4 | n=6 | n=2=8

MNIST 0.68 0.53 0.6 0.57
f-MNIST 0.7 0.69 0.5 0.6
CIFAR-10 0.56 0.55 0.56 0.52

Table 6. Monte—Carlo attack accuracy against privGAN for dif-
ferent number of generator/discriminator pairs. A = 1 in all
cases.



privGAN: Protecting GANs from membership inference attacks at low cost to utility = 162

fashion-MNIST - privacy vs epochs MNIST - privacy vs epochs

10 10
& privGAN & privGAN
-~ GAN - GAN
08 08
= =
g g
é 06 g 06
] L]
* =
H H
4 04 4 04
£ £
02 0.2 /‘_’.\‘
00— T T T T T T T T 0.0 T T T T T T T T T
200 300 400 500 €00 700 8O0 900 1000 200 300 400 500 600 700 €00 900 1000

Epochs Epochs

Fig. 8. Comparison of white—box privacy loss between privGAN and GAN for different number of training epochs (for fashion-MNIST
and MNIST). A =1 and N = 2 for privGAN.

Appendix 4: Complete table of white—box attack efficiencies

Dataset Rand. | GAN privGAN privGAN privGAN DPGAN DPGAN
(A=0.1) | (A=1.0) | (A=10.0) | (¢ =100) | (e = 25)
MNIST 0.1 0.467 0.144 0.12 0.096 0.098 0.1
f-MNIST 0.1 0.527 0.192 0.192 0.095 0.102 0.099
LFW 0.1 0.724 0.148 0.107 0.086 0.109 0.097
CIFAR-10 0.1 0.723 0.568 0.424 0.154 0.107 0.098
Table 7. White box attack accuracy of various models on various datasets.
Dataset GAN privGAN privGAN privGAN DPGAN DPGAN
(A=0.1) | (A=1.0) | (A=10.0) | (¢ =100) | (e = 25)
MNIST 0.438 0.31 0.235 0.048 0.021 0.024
f-MNIST | 0.674 0.323 0.278 0.155 0.022 0.025
LFW 0.756 0.237 0.097 0.261 0.04 0.045
CIFAR-10 | 0.91 0.371 0.367 0.244 0.01 0.008
Table 8. TVD attack score of various models on various datasets.
Dataset Rand. | GAN privGAN privGAN privGAN DPGAN DPGAN
(A=0.1) | (A=1.0) | (A =10.0) | (e =100) | (e = 25)
MNIST 0.5 0.79 0.71 0.68 0.56 0.62 0.6
f-MNIST 0.5 0.75 0.73 0.7 0.64 0.52 0.56
LFW 0.5 0.77 0.66 0.57 0.55 0.59 0.49
CIFAR-10 0.5 0.62 0.61 0.56 0.52 0.63 0.57

Table 9. Monte—Carlo attack accuracy of various models on various datasets.



privGAN: Protecting GANs from membership inference attacks at low cost to utility =—— 163

Appendix 5: Privacy vs utility plots for PATE-GAN

fashion-MNIST - privacy vs utility (PATE-GAN) MNIST - privacy vs utility (PATE-GAN)
016
0.14 ] ¢ 012
> =
n g
g e
g g °
g 012 2 011
s s .
-] -] .
S o o * g ol .
7 o, = 010 .
k] . 4
o . o
0.08
0.09
0.06 T T T T T T T T T
0096 0097 0098 0099 0100 0101 0102 0.098 0.099 0.100 0.101 0102 0.103
White-box accuracy White-box accuracy

Fig. 9. Utility vs privacy for PATE-GAN on the fashiong-MNIST and MNIST datasets.



	privGAN: Protecting GANs from membership inference attacks at low cost to utility
	1 Introduction
	2 Related works
	2.1 Membership inference attacks against machine learning models
	2.2 Private GANs

	3 priv(ate)GANs
	3.1 The non–private GAN
	3.2 Motivation of the privGAN architecture
	3.3 Membership inference attacks against GANs
	3.4 Some notation relevant to privGAN
	3.5 The mathematical formulation of privGAN
	3.6 Theoretical results for privGANs
	3.7 privGAN loss as a regularization
	3.8 Practical implementation of privGAN architecture
	3.9 Training privGAN

	4 Proposed attacks
	4.1 White–box attack on discriminator
	4.2 Oracle white–box attack on discriminator
	4.3 Monte–Carlo attack on generator

	5 Experiment details
	5.1 Datasets used
	5.2 Modeling and optimization

	6 Results
	6.1 Comparison of privacy loss under the proposed attacks
	6.2 Comparison of downstream performance against non-private GANs
	6.3 Effect of privGAN hyperparameters on sample quality

	7 Practical considerations for data/model sharing
	7.1 Sharing only synthetic data
	7.2 Model sharing
	7.3 Certifying model/data privacy
	7.4 Hyperparameter choices

	8 Conclusion
	9 Acknowledgement


