
Proceedings on Privacy Enhancing Technologies ; 2021 (3):164–181

Ellis Fenske*, Dane Brown, Jeremy Martin*, Travis Mayberry*, Peter Ryan, and Erik Rye*

Three Years Later:
A Study of MAC Address Randomization
In Mobile Devices And When It Succeeds
Abstract: Mobile device manufacturers and operating sys-
tem developers increasingly deploy MAC address random-
ization to protect user privacy and prevent adversaries from
tracking persistent hardware identifiers. Early MAC ad-
dress randomization implementations suffered from logic
bugs and information leakages that defeated the privacy
benefits realized by using temporary, random addresses, al-
lowing devices and users to be tracked in the wild. Recent
work either assumes these implementation flaws continue
to exist in modern MAC address randomization implemen-
tations, or considers only dated software or small numbers
of devices.
In this work, we revisit MAC address randomization by
performing a cross-sectional study of 160 models of mobile
phones, including modern devices released subsequent to
previous studies. We tested each of these phones in a lab
setting to determine whether it uses randomization, un-
der what conditions it randomizes its MAC address, and
whether it mitigates known tracking vulnerabilities.
Our results show that, although very new phones with up-
dated operating systems generally provide a high degree of
privacy to their users, there are still many phones in wide
use today that do not effectively prevent tracking.

Keywords: MAC randomization, privacy, device identifiers

DOI 10.2478/popets-2021-0042
Received 2020-11-30; revised 2021-03-15; accepted 2021-03-16.

*Corresponding Author: Ellis Fenske: USNA, E-mail:
fenske@usna.edu
Dane Brown: USNA, E-mail: dabrown@usna.edu
*Corresponding Author: Jeremy Martin: MITRE, E-mail:
jbmartin@mitre.org
*Corresponding Author: Travis Mayberry: USNA, E-mail:
mayberry@usna.edu
Peter Ryan: MITRE, E-mail: peterryan@mitre.org
*Corresponding Author: Erik Rye: CMAND, E-mail:
rye@cmand.org

1 Introduction
Although mobile devices and the wireless networks that
support them provide a variety of benefits to their users,
these networks were not designed with privacy in mind.
Wi-Fi radios constantly send Probe Requests as a means
of scanning for available access points. This has the side
effect of announcing their presence and potentially track-
able identity information to every nearby eavesdropper. In
response to these privacy concerns mobile device manufac-
turers and software developers deploy a class of techniques
called Media Access Control (MAC) address randomization
for probe requests in which previously persistent network
identifiers are randomized to prevent user tracking.

MAC address randomization saw its first major deploy-
ment in Apple’s iOS version 8.0, released in September of
2014. Other manufacturers followed suit but at a slower
and more sporadic pace [23]. In 2017, Martin et al. [21]
performed the first study of the effectiveness of Wi-Fi
MAC address randomization in the wild and discovered
that although Apple had deployed randomization across
its lineup of mobile devices, the majority of Android de-
vices did not use any randomization. In addition, several
weaknesses in the implementations of randomization were
highlighted, including the novel discovery that Request to
Send (RTS) and Clear to Send (CTS) frames could leak
the MAC address of all known devices at the time.

Recent research has continued to use these identi-
fied weaknesses to make broad claims regarding the in-
effectiveness of MAC address randomization [12, 28, 31].
However, [21] also made recommendations that could be
implemented by manufacturers and standards bodies to
realize the potential privacy assurances of MAC random-
ization. Since then, there have been significant changes in
the deployment of randomization that make it uncertain
how vulnerable modern devices are to being tracked. More
manufacturers include the ability to randomize MAC ad-
dresses. Previously discovered issues have been fixed or
mitigated. Interestingly, a new type of randomization is
being used by some devices called post-association random-
ization [9]. In contrast with normal pre-association MAC
address randomization, wherein a device uses a random

MAC Randomization Revisited 165

MAC address only before it associates with an Access
Point (AP), devices that use post-association randomiza-
tion also use a random address for all transmitted frames
even after they are associated with an AP.

Unfortunately, most implementations of MAC address
randomization are undocumented and their source code
is proprietary. This makes it difficult for researchers and
users of the devices themselves to understand what privacy
guarantees, if any, the devices provide. In order to provide
an accurate assessment of the modern state of MAC ad-
dress randomization as well as a case study in how privacy
technologies in mobile devices are adopted and deployed
over time, we conducted a large-scale study to examine
trends in MAC address randomization.

We obtained and tested 160 distinct mobile phones
manufactured between 2012-2020 in a laboratory setting
to assess trends over time. Our device set includes represen-
tatives from 18 manufacturers, including brands with large
market penetration like Apple, Samsung, Huawei, Xiaomi,
and Motorola. From these tests, we classify devices ac-
cording to whether they use MAC address randomization,
from what space the random addresses are generated, and
how resilient they are against known de-anonymization
techniques [18, 21, 24].

We also provide the first analysis of privacy achieved
through post-association MAC address randomization. We
identify from our data set a small number of devices which
currently allow post-association randomization and exam-
ine the effectiveness of these techniques.

2 Background and Related Work

2.1 Previous work
Previous studies highlighted several shortcomings in the
implementation of MAC address randomization. The goal
of this work is to evaluate the current state of the art
with respect to these vulnerabilities; we first discuss our
intended adversarial model then briefly recall the vulnera-
bilities we investigate.

2.2 Adversarial Model
In this work we investigate the privacy implications of cur-
rently deployed MAC address randomization technology.
Our threat model encompasses adversaries able to interact
with a mobile device wirelessly without physical access or a
software presence on the device. The adversary’s goal is to
uniquely identify and/or track a single device over time and
from location to location, based on its wireless emissions.

This captures an upper bound on privacy; users choose
which apps to install, but they cannot alter the manner
in which their device advertises itself and interacts with
other devices at the link layer. Any further app-based
tracking can compound privacy issues, but are inherently
orthogonal to our model.

In addition to the contents of Wi-Fi messages, it may
also be interesting to consider metadata about the trans-
missions: transmit power, inter-frame arrival time [24], etc.
We chose not to include that in this study in order to limit
it to a reasonable scope. We leave this to future work.

2.2.1 Inconsistent Use of Randomization

The prior work conducted by Martin et al. [21] in early
2017 concluded that while Apple had recently introduced
MAC address randomization in iOS 8, the vast majority of
Android phones did not employ any form of MAC address
randomization. Other Android phones that did employ
randomization occasionally reverted to broadcasting their
hardware MAC address for a small percentage of probe re-
quests, even while unassociated. Between these two issues,
over 96% of Android phones were ineffective at hiding their
hardware MAC address.

Furthermore, implementation details differed even
between devices that perform MAC randomization. For
example, iOS devices randomized the entire MAC address,
with the exception of the two functional local/universal
and unicast/multicast bits. In contrast, many Android de-
vices used a fixed 3-byte Company Identifier (CID) prefix
and only randomized the last 3 bytes. Devices also differed
in how often they rotated to new random addresses and
how often they sent probe requests containing these ad-
dresses. These inconsistencies provide an adversary with
mechanisms to isolate and identify unique devices based
on these distinct behaviors.

2.2.2 Persistent Identifiers

In addition to the MAC address, other probe request fields
can be used as persistent identifiers [21, 29]. In particular,
devices that support Wi-Fi Protected Setup (WPS) trans-
mit a Universally Unique IDentifier-Enrollee (UUID-E) in
probe requests, which is static and persistent even when the
random MAC address changes. The UUID-E is determinis-
tically derived from the device’s MAC address [8, 29], allow-
ing an attacker to pre-compute UUID-Es for future MAC
address de-anonymization. This technique has been used
to recover a device’s MAC address in public packet capture
repositories despite source MAC anonymization [20].

MAC Randomization Revisited 166

2.2.3 Sequence Numbers

Probe requests also include a 12-bit sequence number
field, which is typically initialized at 0 and incremented
with each successive probe request sent, modulo 212. Prior
work [21, 29] demonstrated that sequence number mono-
tonicity decreases the efficacy of MAC address randomiza-
tion, as it allows a nearby adversary to link random MAC
address changes by comparing sequence number values.

For example, an attacker that observes a probe request
with MAC address, sequence number tuple (MACA,seq),
followed shortly thereafter by (MACB, seq + 1) can be
relatively certain that these two observations represent the
same device that has “rotated” random MAC addresses.
While this technique is ineffective if the device goes unob-
served for significant periods of time, it allows an adversary
with sustained surveillance of a target device to correlate
its random MAC addresses.

2.2.4 Device Signatures

Gentry and Pennarun [15] describe a mechanism to pas-
sively identify the device model of Wi-Fi clients by ana-
lyzing the Information Elements (IEs) they include when
transmitting probe request frames. Following a similar
model as [6], which identifies device models by analyz-
ing the Dynamic Host Configuration Protocol (DHCP)
Request message options, [15] introduces the idea of a
“device signature” – the IEs and their order that a client
transmits in its probe requests. For example, a probe re-
quest containing the ordered IEs “SSID” (0), “Supported
Data Rates” (1), and “Extended Supported Data Rates”
(50) equates to a device signature of “0,1,50”.

The authors report that approximately 60% of device
models could be identified by signature in two real-world
case studies, note that many devices exhibit multiple
signatures, and discover that Operating System (OS) up-
dates can change the signature emitted by devices. We
re-examine, validate, and update these results in this work.
In a similar vein, Matte and Cunche [22] develop a tool
called “Panoptiphone” to evaluate the uniqueness of a
device’s IE fingerprint.

2.2.5 Active Attacks

In [29], Vanhoef et al. study the effect of the Access
Network Query Protocol (ANQP) on MAC address ran-
domization. This protocol is used to identify, query, and
select Hotspot 2.0 networks [30], typically without user
interaction. The authors establish Hotspot 2.0 honeypots
in an attempt to elicit the hardware MAC addresses from
devices that randomize their source MAC address when
not associated with an AP. The authors found that Win-

dows and Linux devices used their hardware MAC address
when sending ANQP requests when in an unassociated
state, while verifying that Apple devices continue to use a
random identifier.

We also reevaluate a novel privacy attack described
in [21], in which the authors are able to successfully con-
firm the presence of 100% of devices they study, spanning
all major manufacturers and then-current OS versions. In
this attack, an adversary with a priori knowledge of a
victim’s hardware MAC address they wish to track can
determine whether that device is nearby by sending RTS
frames to that MAC address. The authors of [21] discov-
ered that a nearby device will respond with a CTS frame,
even if it is unassociated and sending probe requests with
a random source MAC. Because the CTS response to the
RTS query confirms the presence of the hardware MAC
address in question, this privacy attack negates the value
of using a random source MAC address while unassoci-
ated. In order to determine whether device manufacturers
have addressed this potential source of location privacy
disclosure, we conduct the same experiments as [21] using
modern hardware and OSs.

2.3 Limitations of Previous Studies
The previous study by Martin et al. [21] was limited by
the fact that it was based only on data captured in open,
public spaces (“wild data”) and was not performed under
laboratory conditions. In [21], the authors identified device
models and randomization behaviors using WPS fields
contained in management frames. Because each device
was observed for a limited time period in an uncontrolled
Radio Frequency (RF) environment being used in an un-
known manner, nuanced device behavior was impossible
to determine.

Interestingly, as we report in §4.3, almost all devices
produced in the last few years do not send WPS elements,
meaning that the methodology of Martin et al. [21] would
not be possible today.

Because Hotspot 2.0 deployments have drastically in-
creased [4] since the publication of [29], as well as the
fact that prior work did not study Android devices, we
reexamine this potential vector for hardware MAC address
disclosure in our study.

2.4 IEEE Standards
Pre-association MAC address randomization was formally
specified by the IEEE Standards Association Standards
Board in June 2018 with the approval of the 802.11aq Pre-
Association Service Discovery Task Group amendment to
the 802.11-2016 standard [3]. The Randomized and Chang-
ing MAC addresses Topic Interest Group (RCM TIG) was

MAC Randomization Revisited 167

established in March 2019. Although the RCM TIG has
begun to evaluate and address post-association MAC ad-
dress randomization, there is no formal standard dictating
how post-association MAC address randomization should
be implemented. Each manufacturer is free to decide how
to implement this technique on their own.

3 Methodology
We performed 647 individual passive measurements of
pre-association probe request behavior on our corpus of
264 mobile devices, spanning 160 individual device models
selected for diversity with respect to manufacturer, oper-
ating system, and release date. We tested multiple devices
of the same model when possible to ensure confidence and
robustness of our results. Additionally, to assess differences
in behavior due to changes in OS versions, we tested the
same device before and after applying updates. To assess
the more time-consuming active attacks, we selected rep-
resentative samples from our corpus. These samples are
weighted heavily towards modern devices that have not
previously been studied. Because some devices do not sup-
port ANQP, we were able to complete fewer of these tests.
We tested 62 and 118 distinct devices for ANQP and RTS
vulnerabilities, respectively.

The manual nature of our methodology likely intro-
duces some error into our data set. However, the size and
relative consistency of our results give us strong confidence
in our conclusions about general trends with respect to
behavioral characteristics. Further, we note that the pri-
vacy technology we wish to assess is explicitly designed
to prevent identification of any given wireless signal ac-
curately to its source device. Since many devices deploy
these technologies successfully, individual RF-shielded tests
like those we performed are required to accurately assess
individual device behavior.

The corpus, while comprehensive, is not representative
of the distribution of devices existing in the real world. This
is in part because the true distribution of currently active
mobile devices is not precisely known, even at a regional
granularity. Instead, we use the experiments performed
on our corpus to determine ground truth for hundreds of
individual devices, including but not limited to those we
have reason to believe are the most widely deployed in
practice based on data collected from web requests [25].

The breakdown of the individual tests by device release
year, manufacturer, and OS version is presented in Figure 1.
We select a single canonical representative for all figures
in the following for every unique device-model OS-version
pair, not displaying tests which were identical repeats of

previous tests for double-checking and consistency pur-
poses. The results and analysis are presented in detail in §4.

To further validate the results of these tests in practice
and collect real-world data on the probe requests that ap-
pear in the wild, we also performed large-scale untargeted
collection in public places, primarily in the mid-Atlantic
region of the United States, discussed further in §3.2.

3.1 Pre-association Experiments
We performed the following individual tests to assess pre-
association behavior.

Setup: All phones were factory reset before testing.
Since unassociated Wi-Fi devices rotate through channels
while sending probe requests, we connected three Wi-Fi
capture cards tuned to non-overlapping channels 1, 6, and
11 of the 2.4 GHz band to capture all of the requests.

The experiment was broken down into one test for
each of two device states, action and idle:

Action/Idle: We chose to gather probe requests from
both the action (device in active use) and idle (device un-
used and eventually locked) states due to annotated Wi-Fi
behavioral differences described by OS vendors while a de-
vice is in active use, when the screen is off or on, and
whether a device is connected to a network [2]. We focused
on device behavior in an unassociated state; therefore, our
testing methodology focuses on the differences in behavior
observed from the action versus idle states. To replicate
the action state, we had a small robot with a stylus inside
the box which maintained regular, periodic contact with
the screen of the device. This kept the device from locking
and emulated consistent active use. For the idle state, we
placed the device in the enclosure and did not touch it,
letting the screen lock naturally, emulating the behavior of
a device in a pocket or otherwise not in use.

In each test the device was left inside an RF-shielded
enclosure until either we collectively received 200 probe re-
quests or 20 minutes elapsed. Earlier informal experiments
led us to determine that 200 probe requests would be
enough to characterize the pre-association probe requests
from a device.

OS Updates: After the experiments were concluded
on these factory-reset devices, we attempted to update
their OS to the most recent version possible, and repeated
the tests described above. We also examined, for each OS,
device settings that could be modified or reset by an up-
date that could reasonably affect probe request behavior
and found none. When a device could be updated, we con-
sider both tests, one on each OS, as distinct independent
tests throughout all of the analysis that follows.

MAC Randomization Revisited 168

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

Randomization Tests by Manufacturer

T
e

s
ts

0

10

20

30

40

50

60

Randomization Test
ANQP
RTS/CTS

2 4 5 6 7 8 9 10 11

All tests by Android Version

Android Version (Major)

T
e

s
ts

0
1

0
3

0
5

0

9 10 11 12 13 14

All tests by iOS Version

iOS Version (Major)

T
e

s
ts

0
5

1
0

1
5

2
0

2012 2014 2016 2018 2020

All tests by Device Release Year

Year

T
e

s
ts

0
2

0
4

0
6

0

Fig. 1. Corpus Tests by OS Version, Release Year, Manufacturer

3.2 Wild Capture Data
To validate our experiments and assess the state of probe
requests in the wild, we collected probe requests en masse
from a variety of locations, primarily focused on the mid-
Atlantic region of the United States. We created Wi-Fi
collection kits, each with a Raspberry Pi and an Alfa
AWUS036NEH NIC connected to a 7 dBi omni-directional
antenna. The Pi was configured to start a Wi-Fi collection
of management frames on power-up on channel 6 (2437
MHz), chunking in 50 MB files.

When connected to the Internet, the Pi would auto-
upload collected packet captures to a server for cleaning
(e.g. omission of malformed frames) and analysis. Using
these kits, we collected 20 million probe requests between
2019 and 2020 for the purpose of assessing whether our
individual enclosed-environment experiments reasonably
reflected the state of privacy technologies in the wild.

In addition, we compared this dataset to the data
recovered by a similar collection effort from 2016 with
60 million probe requests to assess large-scale trends over
time. We made no attempt to ensure these samples were
representative, and in particular cannot determine be-
tween mobile devices and other devices that send probe
requests: laptops, Internet of Things devices, etc. Devices
consistently nearby the collection kits (for example, owned
by a collector) are overrepresented. Given these problems,
many of which we consider to be inherent to bulk wild
data collection of devices deploying privacy technology, we
are careful to limit the conclusions we draw from this data.

Nonetheless, we find the large wild corpus very useful to
confirm the existence of certain phenomena in the real
world, and we discuss our results further in §4.1.

3.3 Ethical Considerations
In this study, we capture 802.11 frames from devices owned
by our research group in a laboratory setting, as well as
“wild” data that was primarily captured near our insti-
tution in a major metropolitan area. The data captured
outside the laboratory was collected in an entirely passive
manner; at no time did we stimulate a device not owned
by our group, alter the normal flow of traffic, or attempt
to decrypt any encrypted data. We consulted with our
Institutional Review Board (IRB) in order to obtain a
determination regarding the information collected, and
whether this information contains data “about whom” or
“about what”. In this study, we limit the frames we consider
from our outside collection corpus to 802.11 management
frames. Management frames do not contain Personally
Identifiable Information (PII), and although we obtain
MAC addresses from 802.11 devices, there is no reasonable
way to map these addresses back to an individual. Because
the purpose of our study is to evaluate the efficacy of
MAC address randomization, humans are incidental to the
experiment, and our work presents no expectation of harm.
As such, our IRB determined that our experiment was not
human subject research.

MAC Randomization Revisited 169

3.4 Active Attack Experiments
Vanhoef et al. demonstrated in [29] that ANQP, a protocol
designed to solicit authentication and network information
from APs by wireless devices, also leaked the hardware
MAC addresses of devices in certain situations. ANQP
is used by mobile devices, in particular, to determine
whether or not to attempt to authenticate to Hotspot 2.0
networks based on their cellular service provider, if the
service provider supports data offloading via Hotspot 2.0.
These devices are provisioned by the cellular carrier and
device manufacturer to automatically query and attempt
to authenticate to trusted 802.11 networks. As in [29], we
establish a Hotspot 2.0 honeypot and observe the ANQP
requests from our test devices in order to ascertain their
vulnerability to this type of privacy attack. While prior
work studied only Apple mobile devices (as well as Linux
and Windows computers), we extend this work to Hotspot
2.0-capable Android devices, in order to evaluate the extent
to which it preserves the privacy of the hardware MAC
address.

Martin et al. introduced a novel attack in [21] in which
a device using random MAC addresses while probing for
APs could be induced to respond to an RTS frame sent
to its hardware MAC address. In fact, every device the
study tested sent a CTS frame in response to an RTS with
the correct hardware MAC address, indicating a pervasive
privacy problem. Although the MAC address space is too
large to feasibly brute force and discover the hardware
MAC address of every device within transmission range,
an attacker with a priori knowledge of a device’s MAC
address that they wish to track can detect whether this
device is within transmitter range. We reevaluate the ef-
fectiveness of this attack on modern devices with current
OSs in a laboratory environment in order to determine
whether this tracking vulnerability has been mitigated.

Our test protocol involves sending 802.11 RTS frames
to the hardware MAC address of each test device over a pe-
riod of twominutes on a single 802.11 2.4 GHz channel. The
test devices are not associated to any network, and thus, if
they are capable of pre-association MAC address random-
ization, they are sending probe requests with a random
source MAC address. Because CTS frames sent in response
to RTS messages do not contain a source MAC address but
rather only the destination that is cleared to send its traffic,
we declare a device vulnerable to RTS stimulation attacks
if we receive CTS frames addressed to our transmitter.

Scheme % (2016) % (2019-2020)
Hardware Addr 81.6% 56.0%
46-bit (Apple) 10.7% 25.6%

46-bit (Google) 0.0% 0.7%
46-bit (Samsung) 0.0% 1.5%

46-bit (Other) 4.1% 7.5%
DA:A1:19 0.4% 6.6%

02 0% 0.2%
Motorola 3% 1.7%
92:68:C3 0.2% 0.4%

Table 1. Probe Requests in the Wild

4 Passive Analysis
4.1 Wild Capture Data
Martin et al. [21] primarily used large-scale passive col-
lection of probe requests to classify and identify probe re-
quest behavior. While in past studies, many probe requests
included WPS information, providing ground truth with
which to analyze these frames collected from the wild, we
found that of the frames sent with random addresses, less
than 0.5% included WPS information. This means WPS
information has been almost entirely phased out of the mo-
bile device ecosystem, and severely limits the conclusions
we may draw from our captures in the wild, since we can-
not necessarily link multiple randomized addresses to the
same device. In addition, this collection methodology does
not allow researchers to identify a device shifting its behav-
ior over time or in response to certain events, which we
observed in our controlled experiments, and cannot deter-
mine relative frequency of probe requests between devices
with random addresses. Finally, in some cases we cannot
know from in-the-wild captures whether or not a probe re-
quest is using a random address, since some devices select
random addresses without the Universal/Local (U/L) bit
set, meaning their random addresses are indistinguishable
from legitimately assigned hardware addresses.

We present our results in the form of percentages of
the total probe requests collected, organized by random-
ization scheme in Table 1. For probe requests with local
addresses, we categorized each based on its prefix accord-
ing to the schemes we observed and in the case of 46-bit
randomization, made an attempt to classify the manufac-
turer of the source device using signatures as described in
§4.5. We further note that every scheme with the local bit
set can appear at random as an address selected by the
46-bit randomization scheme. However, the only frames
which can be confused with non-negligible frequency with
a 46-bit randomization scheme are from the 02 scheme,
which only appears on a select number of Samsung devices
in our experiments, which are identifiable by signature.
Therefore, we only classify as 02 in Table 1 frames with

MAC Randomization Revisited 170

02 addresses and Samsung-specific signatures, noting that
probe requests from Samsung devices using 46-bit random-
ization that randomly select an address with first byte 02
are incorrectly classified.

We caution the reader against drawing conclusions
from the results in Table 1 since not only is our corpus
a non-representative sample of behavior in the wild, a
number of factors mentioned above complicate conclusions
drawn by any study based on modern in-the-wild capture
data in 2020. Finally, since our intent is to measure and
identify the output of a privacy-preserving technology, as
the technology becomes more effective our attempts to
assess and measure behavior in the real world should be-
come less effective by design; preventing an in-the-wild
approach to assessment is a natural side effect of effective
privacy technology, if not its intended result. Due to these
complications, we use these results primarily to justify the
necessity of the individual, isolated, per-device experiments
described in §3.1.

Given the experimental data, we used a mix of custom
software and manual inspection to classify behavior of
devices both tested individually from the corpus and from
the collection of wild packet captures. While we initially
expected to observe clear delineations of privacy protection
introduction by OSs and device manufacturers, discovering
such straightforward demarcations often proved elusive. In
our data, contemporaneous mobile devices produced by
a single manufacturer and running the same OS version
often exhibited different privacy behaviors. Therefore, we
highlight the fragmentation and diversity of behaviors in
the mobile device ecosystem, and identify general trends
both by manufacturer and over time.

4.2 MAC Address Randomization
As in previous studies [21, 29], we observed several distinct
MAC address randomization behaviors from the devices
in our experiments. These behaviors varied across devices
and also across OS versions on the same devices.

Structurally, randomized MAC addresses take differ-
ent forms based upon the implementation – some parts
of the MAC address may be fixed, with others chosen at
random. For instance, some devices use a fixed CID while
randomizing the remaining 24 bits. Other devices use ran-
dom addresses without the U/L bit set, indicating that the
MAC address is drawn from an Institute of Electrical and
Electronics Engineers (IEEE)-allocated Organizationally
Unique Identifier (OUI) and globally-unique, when it is in
fact not [17]. We refer to the bitwise structure of random-
ized addresses for a device as Randomization Schemes.

On a behavioral level, not all devices deploy random-
ization consistently. We observed devices that use random-

ized addresses only while in the idle state, and devices
that occasionally “cycle through” their hardware address
in between random ones. Randomization inconsistencies
are discussed further in §4.2.2. We refer to these behavioral
classifications as a device’s Randomization Type.

4.2.1 Randomization Schemes

We observed several distinct randomization schemes
throughout our experimentation. From a privacy perspec-
tive, no particular scheme is meaningfully more effective
than any other if deployed consistently, since while some
devices randomize more bits of the address than others,
all randomize at least the final 24 bits. We observed no
unique statistical properties of the randomization besides
the determination of which bits were fixed and which were
random; bits are always drawn uniformly at random under
any scheme. Different randomization schemes allow for
limited device profiling, particularly if a scheme is used for
few devices, and this wide array of schemes characterizes
the fragmentation among approaches manufacturers have
taken towards providing privacy.

Hardware MAC Address. Though this is not prop-
erly a randomization scheme (as no randomization occurs),
we include it here for completeness. The standard behavior
for non-Apple devices released before 2015 was to simply
send all Wi-Fi messages including probe requests with
the device’s hardware MAC address. Surprisingly, many
modern devices still exhibit this behavior. We observed it
from devices released as recently as 2018, and on a single
device running Android 9. Many devices on Android 7 and
8 use this scheme. We were not able to identify any devices
using only this scheme with Android 10 or 11, though this
may be due to the release of Android 10 being phased in
first to modern or flagship devices which are more likely
to implement a randomization scheme.

46-bit Randomization. Many devices deploy so-
called 46-bit randomization, wherein all bits of the address
are random except for the two least-significant bits of
the first byte, which are required to be fixed by [17]. We
observed this scheme in all Apple devices, which is a
fact well-understood in literature. Furthermore, modern
Android devices use 46-bit randomization: nearly every de-
vice we observed on Android 10 and 11 uses this scheme, as
well as around half of the devices we tested on Android 9.

DA:A1:19. Many Android devices fix a Google CID,
DA:A1:19, and randomize the remaining half of the MAC
address. We observed this behavior in both modern and
legacy devices running Android 6.1.1 through Android
9, from a variety of manufacturers. Although DA:A1:19
is a CID belonging to Google, we observe that modern

MAC Randomization Revisited 171

Google devices consistently use 46-bit randomization on
OS releases 8 and above, meaning that this scheme is pre-
dominantly used by non-Google Android manufacturers.

Motorola. Motorola devices have distinct randomiza-
tion schemes compared to Android devices produced by
other manufacturers. Of the 21 Motorola devices we tested,
only one effectively applied randomization in the action
state, the Moto Z 4th gen, which deployed 46-bit random-
ization in action and idle states. Motorola devices select
addresses at random within their own assigned OUI. They
usually also rotate through the device’s actual hardware
MAC address alongside the random addresses, as identi-
fied in previous work. This means that these devices cycle
through random MAC addresses which all appear as uni-
versal addresses (i.e. the U/L bit in the address is not set).

92:68:C3. Consistent with previous work [21], we ob-
served the Motorola Nexus 6 as the only device using
this scheme, which fixes the first 3 bytes, randomizing the
remaining 3 bytes, similar to the DA:A1:19 scheme above.

02. A few Samsung devices fix the first byte of the
MAC address as 02, then randomize the remaining 40 bits
on Android versions 8 and 9. However, when these devices
were upgraded to Android 10, where possible, their scheme
switched to 46-bit randomization. We observed this behav-
ior from the Galaxy J7, Galaxy J7 Prime, Galaxy Note 9,
Galaxy S9 and S9+, and Galaxy S10 and S10+. However,
we emphasize that many similar Samsung devices on the
same OS versions do not use this scheme: the Galaxy J7
Max, released in the same year as the J7 devices above and
on Android 8.1.0, uses its hardware MAC address, as does
the Galaxy S8, even on Android 9. Since this behavior has
been phased out in Android 10 and is only used by a small
number of devices on specific OSs, this randomization
scheme provides a very precise device fingerprint.

4.2.2 Inconsistent Use of Randomization

As reported in previous studies, we observed many devices
that randomize MAC addresses, will at some point “ro-
tate through” their hardware MAC address. We observed
this behavior in both the action and idle states in Mo-
torola devices and those using the DA:A1:19 scheme. In
many cases, the devices used their hardware MAC address
frequently, every few seconds, while other devices prop-
erly randomized their addresses for long periods of time
(30-40 minutes) before using the hardware MAC address
(primarily Motorola devices) in a few frames.

Disabling Wi-Fi: Although it is widely known that
disabling Wi-Fi on Android and iOS devices does not pre-
vent all Wi-Fi interactions (e.g. devices can still survey
nearby APs for location information), we did not see a

significant number of devices transmitting probe requests
with Wi-Fi disabled. We tested the devices in our corpus
using the same methodology described in §3 but with Wi-
Fi switched off in the device settings. Under these circum-
stances, for example, the Sony Xperia X Compact sent
probe requests using its hardware address, and the 4th Gen-
eration Motorola Moto Z sent probe requests with random
addresses. Only a few of the devices in our corpus sent any
probe requests at all with Wi-Fi disabled, all of which were
Android devices. This means that in most cases, although
a user cannot do anything to directly solve the MAC ad-
dress randomization issues we identify in this work, they
can disable Wi-Fi entirely to mitigate them temporarily.

4.2.3 Idle vs Action State

We observed 11 Huawei, LG, Motorola, OnePlus, and Sony
devices randomizing consistently but only while in the idle
state. Notably, these devices used their hardware MAC
address at least some of the time while in the action state.

In particular, we highlight among this group the 7th
Generation Motorola Moto G on Android 10 and 9, mark-
ing it as the only one of our ten Android 10 devices that
did not consistently deploy 46-bit randomization at all
times. All other devices exhibiting idle-only randomization
were running Android 6 and 7. The devices in this class
that could be upgraded to Android 8 randomized properly
when this update was applied, with the exception of the
aforementioned Motorola device.

We note that while it is known that many Android de-
vices cycle through their hardware address while deploying
the Motorola and DA:A1:19 schemes [21], many devices
successfully deploy randomization in the idle state without
ever using their hardware address. This is a surprising be-
havior characteristic that previous work could not identify
without individual controlled tests of these devices.

4.2.4 OS Updates

We were able to apply major OS version updates to 51 de-
vices from our corpus. With respect to randomization type,
13 of these improved with an OS update, one degraded, and
the remaining 37 behaved similarly before and after the up-
date was applied. Only four devices, all Samsung, changed
randomization scheme, from 02 to a 46-bit scheme after
the update, randomizing consistently regardless of scheme.

Of the 13 that improved, ten devices randomized
consistently after all updates were applied, while three im-
proved marginally, beginning to randomize their addresses
inconsistently after the updates, whereas with the previous
OS version they used their hardware address.

MAC Randomization Revisited 172

●

●
●

●●
●
●●●●●●
●●●

●

●●

●●●●●●●●●

●●
●●●●●

●●
●

●●

●●●●

●●●●●●●●●

●

●

●●
●●●●●

●

● ●
●●

●●

●●

●●
●●

●●

●

●●

●

●

●

●

●●

●●

●●

●●

●●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●● ●

●●

●

●●

●

●

●

●

●●

●

●●●●●

●●
●

●

●●

●

● ●●

●

●●●

●●●●

●●●

●
●●

●●

●●
●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●●
●

●●

●

●●

●

●●

●●●

●

●●

●●●●

● ●

●
●●●●●●

●●●●

●
●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

● ●

●●

● ● ●

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

2012

2014

2016

2018

2020

Randomization Type by Device Year

Always

Idle

Mixed

Never

●

●●

●
●●

●●●●●●
●●●●

●●

●●●●●●●●●

●
●●●●●●

●●●

●●

●●●●

●●
●
●●

●●●●

●

●

●●●●●●
●

●

● ●
●●

●●

●●

●● ●●

●●

●

●●

●

●

●

●

●●

●●

●●

●●

●●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
● ●

●●

●

●
●

●

●

●

●

●●

●

●●●●●

●●●

●

●●

●

●
●●

●

●●●

●●●●

●●●

●●●

●●

●●
●●
●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●●
●

●●

●

●●

●

●●

●●●

●

●●

●●●●

● ●

●●●
●
●●●

●●●●

●●

●

●

●●●●

●

●

●

●
●●

●

●

●

●

● ●

●●

● ● ●

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

2012

2014

2016

2018

2020

Randomization Scheme by Device Year

●

●●

●

●

●

●●

●
●

●
●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ● ●

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E
2012

2014

2016

2018

2020

Randomization Type by OS Year

●

●●

●

●

●

●●

●●

●●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●
●

●●

●

●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ● ●

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

2012

2014

2016

2018

2020

Randomization Scheme by OS Year

02

46−bit

92:68:C3

DA:A1:19

Motorola

None

Fig. 2. Randomization Scheme and Type, by Manufacturer

Finally, we identified one model whose randomiza-
tion scheme degraded with an OS update. The two Asus
ZenFone 3 devices we tested used the DA:A1:19 scheme
on Android versions 6.1.1 and 7, but when upgraded to
Android 8, used their hardware address.

4.2.5 Device Chipsets

In an attempt to explain dissimilar behavior from similar
devices, we annotated the device chipset for each device in
our corpus and considered whether hardware differences
could plausibly explain the inconsistent behavior among
similar devices, or within a single device over time. In some
cases we found the chipset could plausibly explain device
behavior; however, chipset role in randomization schemes
remains ambiguous and unconfirmed.

Discrepancies may be explained better by product line:
the Samsung S and J series devices that deploy random-
ization use the 02 scheme on Android 8 and 9, while the
A series devices we tested uses a 46-bit scheme on Android
9. However, in many cases the device behavior remains
unpredictable even with knowledge of the low-level chipset
information: there remain some sets of devices that share a
manufacturer, device release year, OS version, and chipset,
but deploy different randomization schemes. For example,
the Sony Xperia XZ and Sony Xperia X Performance were
both released in 2016 and use the Snapdragon 820 chipset,
but one deploys the DA:A1:19 scheme in the idle state
only, and the other uses its hardware MAC address, both
on Android 7.1.1.

4.2.6 Results

To characterize inconsistent behavior (regardless of the ran-
domization scheme in use) we define a randomization type
to be a characterization of when, and how consistently, ran-
domization is deployed, falling into one of four categories:
– Always, where devices always use randomized ad-

dresses while not associated.
– Idle, where devices consistently use randomized ad-

dresses in the idle state, but use their hardware address
intermittently or always during the action state.

– Mixed, where devices use their hardware address at
least once in each state, but were also observed using
randomized addresses.

– Never, where devices never use randomized addresses
and instead always use their hardware address.

Our results are presented in Figure 2 by manufacturer over
time, presenting how both randomization type and scheme
changes, both by hardware and software since either can
determine device behavior. To present changing hardware
over time, we sort device models by the year they were
released. We observe some clear trends from the data: Mo-
torola, Samsung, and Apple stand out as distinct, while the
remaining (Android) manufacturers follow a general trend
of using the hardware address in 2014-2015, a gradual, frag-
mented transition to DA:A1:19 around 2015-2016, and a
similarly gradual transition towards 46-bit randomization
in 2018 and later. Apple devices are consistent throughout,
Samsung devices began randomizing recently but have
transitioned through the 02 scheme to consistent 46-bit
randomization very quickly.

MAC Randomization Revisited 173

●

●

●

●

●

●

●
●

● ●

●

● ● ● ●

● ●

●
●

●

●
● ●

●
●

●

●●

●

●

●

●

● ●

●
●

● ●

●●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●
●●

●
●●

●

● ●

●

●

●

●
●

●

●●

●

●

●
●●

●●
●

●●

●●● ●
●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●●

●

●

●

● ●

●

●

●●

●
●

● ●

●
●

●
●

●● ●
●

●

●
● ●
●

●
●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

Always

Idle

Mixed

Never

2012 2014 2016 2018 2020

2012

2014

2016

2018

2020

Android Randomization Type

OS Release Year

D
e
v
ic

e
 R

e
le

a
s
e
 Y

e
a

r

●

●

●

●
● ●

●

●●
●

●

●
●

●
●

● ●

●
●

● ●
●●

●
●

●

●
●

●

●

●

●

●

●

●●

● ●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●
●

●

● ●
● ●●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●●

●
●

●
●

●
●

●●
●●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

02

46−bit

92:68:C3

DA:A1:19

Motorola

None

2012 2014 2016 2018 2020

2012

2014

2016

2018

2020

Android Randomization Scheme

OS Release Year

D
e
v
ic

e
 R

e
le

a
s
e
 Y

e
a

r

Fig. 3. Android Randomization Trends

The behavior of Motorola devices is unlike those from
any other manufacturer: not only do they use their own
schemes, but much of the diversity in randomization type
comes from Motorola devices, as they provide the bulk
of the “mixed” classifications (caused by Motorola ran-
domization schemes where the devices rotate through the
hardware address alongside random addresses). Of the two
Android 10 Motorola devices we tested, one had typical
Motorola device behavior (a Motorola scheme in the idle
state and the hardware address in the action state), while
the other used 46-bit randomization, indicating Motorola
devices may be trending towards 46-bit randomization.

In Figure 3 we present the trends with respect to
both the hardware and software release date over time for
Android devices. Apple devices are omitted, since they all
consistently deploy 46-bit randomization.

4.3 WPS and UUID-E
Although prior work [20, 21, 29] leveraged the WPS IE in
probe requests to deanonymize devices using randomMAC
addresses, it is non-existent in modern OSs and equipment.
We observed 24 devices broadcasting WPS information,
including the unique persistent UUID-E field, but only
from legacy devices. In our corpus WPS is entirely absent
since Android 8 and rare in Android 7.

4.4 Sequence Numbers
We observed two primary meaningful characterizations of
sequence numbers in our experiments: monotonicity and
maximum value. Some devices use strictly monotonic se-
quence numbers modulo some maximum, while others ran-
domize them over time. Some devices limit their sequence
numbers in probe requests to 2047, while others send mes-
sages with sequence numbers as high as 4095. Even random
sequence numbers increase monotonically in bursts, reset-
ting to a random new starting point periodically.

While IEEE 802.11 standards allow for sequence num-
bers as high as 4095, many devices restrict these sequence
numbers to a maximum of 2047. Sequential sequence num-
bers reset to 0 after reaching the maximum value. This
property provides some fingerprinting capabilities for pas-
sive adversaries (for e.g., if a sequence number higher than
2047 is observed, this precludes many devices as a potential
source of the signal).

Many modern devices randomize their sequence num-
bers in tandem with the MAC address to prevent an adver-
sary from trivially linking sequential randomized addresses
with the same or a nearby sequence number [5]. This behav-
ior is common in modern devices, but our data and our ex-
periments after applying OS updates suggest a strong corre-
lation between hardware release year and sequence number
randomization that does not exist with software version,
especially for Apple devices. We speculate that sequence
number randomization is in many cases implemented in
hardware, and cannot be introduced with OS updates. Se-
quence number randomization does not appear to depend
on the the particular maximum sequence number, but we
observed that nomodern devices that randomized sequence
numbers did not also randomize their MAC address.

We present our sequence number analysis in Figure
4. We drop from the sequence number maximum plots
those devices for which the maximum value could not be
determined from our experiments (i.e. we neither observed
a sequence number larger than 2047, or a clear reset after
reaching 2047). We note that the maximum sequence num-
ber is cleanly determined by manufacturer and hardware
release year, with no clear consensus among manufacturers,
while sequence number randomization has been adopted
consistently by newer devices of all types.

MAC Randomization Revisited 174

●●

●●●●●●●
●●●
●●●
●
●●●●
●●●●●●●●●

●

●
●●●●●●
●

● ●●
●●
●

●
●●
●

●

●

●●●
●

●

●

●●
●

●●

●

●
●●●

●●
●●
●
●
●●
●●●

●●

●

●
●
●●●
●●●

●●●

●

●●●●●

●
●

●●●

●

●●
●●
●●
●●●

●

●●●●

●●●●
●●●

●
●●●●
●
●
●
●● ●

●
A

p
p

le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

2012

2014

2016

2018

2020

SN Maximum by Release Year

2047

4095

●

●●

●●
●●●●●●●●●
●●●●●●●
●●●

●●
●●●●
●●●●●●●●●

●

●
●●●●●●●

●
● ●●

●●
●

●●●
●●

●

●

●
●

●
●●

●●

●●
●●

●●●●
●
●

●

●

●●
●

●●

●●

●

●
●
●●

●
●
●

●● ●
●●

●

●●
●

●
●
●
●●
●●●●●
●●●

●

●●

●

● ●●
●
●●●
●●●
●●●

●●●
●●
●●●●●

●

●

●

●●●

●

●●●

●

●
●
●

●
●
●●
●●●

●●
●

●

●
●●

●●●

●

●●
●●●●

● ●

●●●●●●●
●●●●

●
●

●
●●●●
●
●

●
●●●
●

●
●
●
● ●

●●

● ● ●

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

2012

2014

2016

2018

2020

SN Random by Release Year

Random

Sequential

●●

●

●

●

●
●

●
●

●

●
●●
●

●●
●
●●●
●
●

●

●
●
●

●●

●

●

●

●
●●

●

●
●●

●
●

●
●
●

●

●●
●

●

●
●
●

●

●

●

●

●
●
● ●

●
●

●
●

●
●
●

●
●

●●
●
●●
●
●●●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●
●●
●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●
●

●
●
●●

●
●
●

●

●

●
●●
●
●

●
●
●

●
●

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E
2012

2014

2016

2018

2020

SN Maximum by OS Year

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●
●

●

●
●
●

●●

●
●
●●●
●
●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●
●

●

●
●●●

●

●

●

●

●

●●
●

●●
●

●●●

●●●
●
●

●

●

●
●
● ●

●
●

●
●●
●

●

●
●

●

●

●

●
● ●

●●

●

●●
●●
●

●
●●
●
●
●
●
●
●●●
●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●●
●
●●

●

●●
●
●

●

●
●

●

●
●

●

●●

●●

●●●
●

●

●

●

●
●

●●
●
●

●

●

●

●
●
●
●

●

●
●

●

●
●
●

● ●

●
●
●
●

●●
●
●
●
●
●

●

●

●

●

●
●●
●

●
●
●
●
●●

●
●

●
●

●
●●

● ● ●

A
lc

a
te

l

A
p

p
le

A
q

u
o

s

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u

a
w

e
i

L
e

n
o
vo L
G

M
o

to
ro

la

N
o

k
ia

O
n

e
P

lu
s

O
p

p
o

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

Z
T

E

2012

2014

2016

2018

2020

SN Random by OS Year

Fig. 4. Sequence Number Behavior, by Manufacturer

4.5 Device Signatures
Probe request device signatures are a privacy concern be-
cause they allow a passive adversary to perform device
fingerprinting (e.g., determining a device’s OS, manufac-
turer, device model, or radio chipset). Ideally, signatures
should be entirely generic, giving adversaries no informa-
tion about the properties of the device sending a particular
probe request. In our observations, we found that device
signatures for most devices allow fairly granular device
binning, allowing adversaries to determine a small class of
devices that could have produced any given probe request.
Unlike other privacy features we identify, it is difficult
to identify a best practice for making signatures more
private other than general heuristics (e.g. include fewer in-
formation elements) that may impact device performance.
According to our observations, no particular method for
producing generic signatures has seen wide adoption. We
briefly characterize the effectiveness of fingerprint-based
device binning based on our experiments for a few major
manufacturers, but a fully exhaustive characterization of
device signatures and fingerprinting techniques is outside
the scope of this work and has been given elsewhere [15, 29].
Briefly, a signature is an ordered list of IEs present in a
probe request along with certain bitmasks which have high
entropy between distinct device models, and low entropy
within probe requests from a single device type, making
them robust identifiers [15, 21, 29].

4.5.1 Device Binning

Both Apple and Samsung exhibit the same general pattern
with respect to device signatures: every generation of de-
vices uses the same set of signatures, and each generation
of devices use signatures distinct from other generations.

We provide the device classes and signatures for Apple and
Samsung in Table 2. Other manufacturers employ a variety
of schemes, and some vary by device within manufacturer.
For example, the three OnePlus devices we tested all ap-
peared as uniquely identifiable to the model within our
corpus, and all Oppo devices we tested were identifiable as
such. Motorola device signature patterns varied by device,
with some identifiable and some generic.

4.5.2 Trends

Our focus primarily remains on whether or not there has
been an improvement in this area in the mobile device
ecosystem from the perspective of privacy technology. In
previous work analyzing signatures, authors recommend
that signatures should be made generic [21]. Unfortunately,
there is no explicit guidance for what information elements
should be included in a properly generic signature. This has
led to fragmentation. Google, for example, has modified
their device signatures in order to minimize the number
of information elements with the explicit intention of pro-
tecting user privacy [5], reducing entropy in their devices’
probe requests. Unfortunately, while the set of information
elements (0, 1, and 3) they select is small, that precise set is
used almost exclusively by Google devices, allowing manu-
facturer fingerprinting. Since Google devices are relatively
uncommon [25], this could provide passive adversaries with
effective tracking capabilities.

The most common signature in our corpus and in the
wild, simply consists of three information elements, which
appears very generic: (0,1,50). Unfortunately, this signature
is characteristic of older Android devices, most of which
use their hardware MAC address, so signature-based fin-
gerprinting provides no additional information in this case.

MAC Randomization Revisited 175

Table 2. Device Classes and Signature Fingerprints

Device Classes Example Signature
iPhone 6/6+/6S/SE 0,1,50,3,45,127,107,221(0x17f2,10),221(0x50f2,8),221(0x1018,2),htcap:0021,htagg:17,htmcs:000000ff,extcp:0400088400000040

iPhone 7/7+/8/8+/X 0,1,50,3,45,127,107,htcap:402d,htagg:17,htmcs:000000ff,extcp:0000088400000040
iPhone XS/XS Max 0,1,50,3,45,127,221(0x17f2,10),221(0x50f2,8),221(0x1018,2),htcap:402d,htagg:1b,htmcs:000000ff,extcp:0000080400000040

iPhone 11 0,1,50,3,45,127,255,221(0x17f2,10),221(0x50f2,8),221(0x1018,2),htcap:402d,htagg:1b,htmcs:000000ff,extcp:0000080400000040
Galaxy J2 Core/J3/J4 0,1,50,3,45,127,221(0x50f2,8),htcap:016f,htagg:17,htmcs:000000ff,extcp:0000000000000040

Galaxy Note 8/Note 9/S8/S9/S9+ 0,1,50,3,45,127,221(0x904c,4),221(0x50f2,8),221(0x1018,2),221(0x904c,92),htcap:11ef,htagg:1b,htmcs:0000ffff,extcp:0000088001400040
Galaxy S10/S10+ 0,1,50,3,45,127,255,255,221(0x904c,4),221(0x50f2,8),221(0x1018,2),221(0x506f9a,22),htcap:002d,htagg:1b,htmcs:0000ffff,extcp:00004880014000400021

To develop an objective criterion for a generic signa-
ture, we identified the most common information elements
appearing in signatures. We analyzed our experimental
results and wild capture data, identified all distinct sig-
natures from each, and counted the occurrence of each
information element.

Since the results from both datasets gave similar rank-
ings, we took the most common information elements from
this list (0, 1, 45, 50), present in 80−90% of all signatures
we observed in our lab and in the wild, and considered
any signature which was a subset of these elements to be
generic. Under this definition, nearly all modern devices
we observed used non-generic signatures, marking these
identifiers as the one privacy technology for which we have
not observed marked improvement.

Inconsistent use of Signatures. As with MAC
address randomization, we observed many devices using
different (generally shorter) signatures in the idle state. 18
distinct devices consistently used generic signatures in the
idle state, even under our strict definition of generic. These
are all Android devices from a variety of manufacturers,
both new and old. In addition, many devices use many
signatures while in a single state. Crucially, to prevent
against fingerprinting attacks, device signatures must be
generic consistently, which was nearly never the case in
our experiments.

5 Active Attacks
5.1 ANQP
While Vanhoef et al. [29] investigated the use of random-
ized and hardware MAC addresses in ANQP requests sent
by Apple devices and Linux and Windows computers, we
extend this analysis to include a variety of Android devices.
Like [29], we find that all Apple devices we tested use a
randomized MAC address when sending ANQP requests
to query Hotspot 2.0-capable APs. However, we find a wide
variety of behaviors among Android devices, as displayed
in Figure 5. Some manufacturers, like Google, OnePlus,
and Samsung exhibit a distinct transition from using the
device’s hardware MAC address in earlier-released mod-
els, to using a randomized MAC address in later models.
This suggests a conscious effort by the manufacturer to

implement best practices suggested in [29]. The other man-
ufacturers we assessed have not adopted the practice of
using a randomized MAC address in ANQP frames; this
leaves the device open to being stimulated by an adversary
seeking to elicit nearby hardware MAC addresses. Finally,
some devices we tested did not send ANQP requests at all;
these behaviors are summarized in Table 3.

5.2 RTS/CTS
This work also updates [21] by examining whether de-
vices have implemented privacy protections against the
RTS/CTS attack the authors developed, which they found
affected 100% of devices they studied. In other words, do
modern devices still respond to RTS frames sent to their
hardware MAC address even while probing for networks
with a randomized source MAC address?

Figure 5 indicates that again, several manufacturers
have implemented the recommended best practice from [21]
and do not respond to RTS frames addressed to the device’s
hardware address with a CTS frame, or they do so with
such infrequency that we failed to detect it during our two-
minute observation period described in §3.4. In either case,
an attacker is unable to determine whether their target is
nearby. Apple and Samsung devices evince a clear split,
after which their products are no longer vulnerable to the
RTS device detection attack. All OnePlus phones we tested
were unresponsive to RTS frames, though we have no mod-
els produced prior to 2016. Most manufacturers’ devices
are still vulnerable to this attack, including several mod-
els of LG and Motorola devices that were released in 2019.
This indicates that while this privacy vulnerability has been
patched by some manufacturers, many are either unaware
of the threat or have not prioritized addressing it. The RTS
response behavior of selected devices is listed in Table 3.

5.3 Forcing the Action State
As described in §4.2.3 and §4.5, many Android devices
deploy privacy technology only when the device is in an
idle state: e.g. randomized MAC address and generic signa-
tures. These behaviors persist even in devices on Android
9 and 10, and in particular nearly all Motorola devices
use their hardware address (whether by cycling through
it, or simply using it exclusively) in the action state. In
addition, we observed informally that devices which use

MAC Randomization Revisited 176

●
●

● ●

●

● ●

●

●
●

● ●

●●
●

●

●
●

● ●
●

●
●●

●

●

●

●
● ●●

●●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●●●

●

●

●
●

●

●

●
●

●●

●●

●

● ●●

●
●

● ●

●
●●●
●●●

●●

●●

●

●

●

●●●

●

●

●
●●

●

●●
●

●

●

●

●●
●

●●

●●

●

●

●

●

●●

●
●

●●●

● ●●

RTS Results

D
e
v
ic

e
 R

e
le

a
s
e
 Y

e
a

r

A
p

p
le

A
S

U
S

B
la

c
k
B

e
rr

y

G
o

o
g

le

H
T

C

H
u
a
w

e
i

L
e

n
o
vo L
G

M
o
to

ro
la

O
n

e
P

lu
s

O
p

p
o

S
a
m

s
u

n
g

S
o

n
y

X
ia

o
m

i

2012

2014

2016

2018

2020

RTS Non−Responsive

RTS Responsive

● ●

●

●

●

●●

●

●●

●●● ●●

●

●

●

●

●●

●●
●

●

●

●

●
● ●

●
●

●

●

●

●●

●

●

●
●●

●

● ●

● ●
●

ANQP Results

D
e
v
ic

e
 R

e
le

a
s
e
 Y

e
a

r

A
p

p
le

G
o
o

g
le

H
u
a
w

e
i

L
G

M
o

to
ro

la

O
n
e

P
lu

s

S
a

m
s
u

n
g

S
o

n
y

X
ia

o
m

i

2012

2014

2016

2018

2020

Random MAC Address

Hardware MAC Address

Fig. 5. Active Attacks

their hardware address in between random addresses do
so more frequently in the action state. Since many devices
lose privacy protections while in active use, we investigated
further whether the device’s action state could be elicited
by active attacks or benign non-user behavior. For all of
these devices, the action state behaviors began immedi-
ately when the screen was turned on by a user or when
the device received an incoming phone call, meaning that
an active attacker with the user’s phone number could
defeat these privacy technologies without user interaction.
Text messages and push notifications did not induce a
state change, though these signals could prompt the user
to activate her own device to respond.

The aforementioned action “triggers” require a user-
based activity to occur that is reasonably unlikely for an
adversary to elicit in a non-obtrusive manner. As such,
we sought to identify a non-interactive, inconspicuous trig-
gering mechanism. We repeated the ANQP experiments
performed in §5.1 to observe whether the mobile device
switches from the idle to the action state when it transmits
an ANQP request frame. Our first test, a Google Pixel 3a
running Android 10 began sending action state device sig-
natures immediately after transmitting an ANQP request.

We repeated the experiment on a Motorola Moto
G (7th gen.) on Android 10 and a LG V20 on Android
7. Both of these devices properly employ randomization
while in the idle state, but utilize the hardware MAC
address in the action state. As with the Google Pixel 3a,
each device transitioned to the action state upon execut-
ing ANQP queries, in this instance causing the devices to
transmit probe requests with the hardware MAC address.
It is important to note that devices do not immediately
send ANQP queries in the idle state version of our ANQP
experiments. In order to optimize power usage while the
screen is off Android implements interval scan rates when
searching for available Wi-Fi networks [1]. Our work does

not explore power saving implementations in detail; rather,
we note that while this attack extracts identifying informa-
tion from these devices, it relies on the device initiating a
scan for nearby APs, which can occur infrequently.

6 Post-association Randomization
Post-association randomization, wherein a random MAC
address is used as a client’s source MAC address after it
connects to an AP, was introduced in 2015 in Windows
10 [16]. Four years elapsed before Android 10, introduced
in fall 2019, became the first mobile operating system to
introduce this feature for devices with supported hard-
ware. Apple’s iOS 14, released in 2020, also supports post-
association randomization. Thus, an investigation into the
privacy-preserving properties and discussion of privacy
shortfalls of this type of MAC address randomization is a
timely problem.

In contrast to the randomized MAC addresses consid-
ered heretofore, post-association randomization is intended
to protect user privacy when sending 802.11 frames during
and following association to an AP. Rather than use the
device’s hardware MAC address when transmitting, in all
post-association randomization schemes, the device uses a
random MAC address it has chosen for this connection for
some period of time, although implementation differences
exist. Regardless of implementation, this type of random-
ization is designed to protect user tracking by an adversary
observing the same hardware MAC address on multiple
networks, e.g., at home and at the office. This type of
randomization, while new, is a crucial development for
location privacy. Devices are often associated to APs when
users are stationary, and in many instances mobile devices
can be trivially induced to associate to a previously-used
Service Set Identifier (SSID) by an active attacker.

MAC Randomization Revisited 177

6.1 Windows 10
While we focus primarily on mobile devices, we mention
Windows 10 briefly because it was the first widely avail-
able implementation of post-association randomization,
and as a point of comparison for other implementations.
Post-association randomization is not enabled by default
in Windows 10. A user may either enable this setting for
specific networks individually or as a global setting applied
to all 802.11 networks; in either case, the device chooses
a random MAC address to use when connected to each
SSID to which it connects. Windows 10 also affords the
user with the option to change the random MAC address
for use with a specific SSID daily, rather than the random
MAC address generated when the device first connected.

6.2 Android 10/11
UnlikeWindows 10, in Android 10 and 11, post-association
MAC address randomization is enabled by default for new
connections if the device hardware supports it – though
it may be disabled by the user. Random MAC addresses
are generated per-SSID; this enables users to move from
one AP to another in an Extended Service Set (ESS) while
using the same MAC address. MAC address reuse for the
same SSID prevents needing to reauthenticate to each new
AP within an ESS and the potential to be denied because
of MAC address filtering if a new MAC address were to be
generated for each associated Basic Service Set Identifier
(BSSID). Android stores SSID-random MAC address map-
pings in a root-accessible file called WifiConfigStore.xml.

Android’s post-association randomization landscape is
fragmented, owing to the variety of device manufacturers
developing unique Android flavors for their products and
disparate underlying hardware capabilities. For example,
some devices were incapable of using a random MAC ad-
dress after association despite running Android 10. This
included the original Google Pixel, released in 2016, which
we speculate is limited by its relatively dated hardware.
Of note, the Xiaomi Mi 9 Lite, released in September of
2019 does not implement post-association MAC address
randomization, indicating that widespread adoption may
still require manufacturer support.

Some Android devices leak traceable identifiers after
establishing a wireless connection with post-association
randomization. These identifiers can potentially under-
mine the privacy benefits afforded by post-association
randomization by allowing an adversary to correlate two
random MAC addresses on different networks. Of the
devices we tested running Android 10, the OnePlus6,
Samsung Galaxy Note 9 and Samsung Galaxy S10 fall
into this category. Following association to our network,
we observe hostname and operating system information

passed in DHCP Discover and Request messages. In the
case of all three devices, the phone model is the default
hostname (e.g., Galaxy Note 9), while android-dhcp-10
was additionally passed as the Vendor Class Identifier
DHCP option. While the combination of these identifiers
distinguishes the phone’s device model and operating sys-
tem version, users that modify their hostname potentially
increase their ability to be tracked, depending upon its
uniqueness. Other devices, primarily newer-model Google
Pixels, leaked only their OS version in DHCP messages;
similar to the Samsung and OnePlus models we tested,
Pixels identify themselves as android-dhcp-10 devices in
DHCP messages, which are broadcast on the local network.

We also note that trackable identifiers exchanged in
HTTP sessions (e.g. cookies) are available to adversaries
capable of sniffing traffic at the AP in the case of an en-
crypted network, and to any observer within transmission
range for open networks.

6.3 iOS 14 Beta and Production Release
Although iOS 14 has been officially released as of the time
of writing, Apple had previously announced that devices
running it, iPadOS 14, or watchOS 7, would implement
post-association randomization [10]. We installed the iOS
14 beta release in order to evaluate the features present
prior to the official release of iOS 14 and compare the
findings to the production release.

Unlike Android’s implementation of post-association
MAC address randomization, the iOS 14 beta release
ensures that a new random address is selected for each
distinct SSID when the user “forgets” the network, or
after 48 hours have elapsed. This address is used for all
subsequent connections to networks advertising this SSID
until the user “forgets” the network. At this point, the
random MAC address-SSID mapping ceases to exist, and
a new random MAC address will be generated should the
user decide to connect again in the future. Like Android,
Apple’s post-association randomization implementation
is enabled by default for all new networks (per-SSID) a
user joins, but can be manually disabled by the user. This
behavior diverges from Android, which permanently links
a MAC address to each SSID.

Recent press releases from Apple [10] and other
sources [26] suggested that the 48 hour rotation may not be
enforced in the production release. In our analysis of the of-
ficial iOS 14 release, we confirm that Apple demurred from
the aggressive 48 hour rotation schedule and instead main-
tain a connection-persistent address unless a user forgets
the network, prioritizing usability over privacy in this case.

Despite enabling post-association randomization in
iOS 14, we observe traceable identifiers appearing in DHCP

MAC Randomization Revisited 178

traffic that could be used by an on-network (or nearby, if
the network is unencrypted) adversary to correlate users
with the random MAC addresses their device is using.

6.4 Active Attacks
Vanhoef et al. present attacks on pre-association random-
ization that induce a client randomizing its MAC address
to reveal its hardware MAC address [29]. We extend those
attacks to post-association MAC address randomization.

6.4.1 Leveraging Connection-Persistence

Nearly all devices implementing post-association MAC ad-
dress randomization can be tracked by taking advantage
of the scope of the per-network MAC address to network
mapping, because all but Windows 10’s “change daily”
setting use a persistent MAC address for an indefinite
amount of time. This enables an adversary to either follow
devices as they reconnect to these networks over time and
space, or perform an Evil-Twin attack using well-known
SSIDs. As [29] notes, the increasing prevalence and usage
of Hotspot 2.0 networks provide a wealth of SSIDs suitable
for use in Evil-Twin attacks, as cellular and cable providers
often offer Hotspot access (e.g. “xfinitywifi”, “attwifi”). Ad-
ditionally, free Wi-Fi services offered at popular regional
locations like cafes or airports, municipal Wi-Fi deploy-
ments, and industry-specific networks like “eduroam” [13]
present additional Evil-Twin SSID targets, allowing an
attacker to detect the presence of a device in an arbitrary
physical location with knowledge of one of that device’s
previously-used connections. While an adversary does not
obtain the victim’s true MAC address, the persistence of
the random MAC address makes it just as valuable for
targeted user tracking.

Nearly all implementations of post-association MAC
address randomization are vulnerable to tracking persis-
tent random MAC addresses. Android 10/11 permanently
joins a device-SSID pair to a randomized MAC address
until a factory reset.

Windows 10 devices implementing post-association
MAC address randomization keep a persistent address
for one day or indefinitely, but these addresses can be
refreshed by forgetting and later rejoining, a network.

6.4.2 Leveraging EAP Identities

Wi-Fi networks utilizing Extensible Authentication Proto-
col (EAP) [7] authentication methods provide a final track-
ing vector. In addition to trackable identifiers in network
protocols (§6), clients configured to authenticate using an
EAP method to certain networks provide another track-
able identifier in the EAP identity. EAP-Evil-Twin attacks
using EAP authentication are trivial to conduct; EAPham-

mer [14], for example, is a penetration-testing tool designed
to steal EAP identities and credentials for networks employ-
ing Protected Extensible Authentication Protocol (PEAP)
and EAP-Tunneled Transport Layer Security (TTLS).
Generally, EAP identities are the username of the device
owner and are unique within the enterprise to which the
customer belongs and remain static over time. Other EAP
methods, like EAP-Subscriber Identity Module (SIM) and
-Authentication and Key Agreement (AKA), provide a
trackable identifier in the form of mobile subscriber’s Inter-
national Mobile Subscriber Identity (IMSI) [11, 21, 27], al-
though some mechanisms to protect the IMSI exist [19, 27].

Regardless of the EAP method employed, most EAP
identities provide a static identifier that can be linked to
a connection-specific MAC address as in §6.4.1, providing
a second traceable identifier despite post-association MAC
address randomization.

7 Summary of Modern Devices
We summarize the current state of the modern devices
from our corpus: devices whose hardware release date and
OS release date were in 2018 or later. For devices we tested
on multiple OS versions, we give the results for our test af-
ter the device has been fully updated. Our results are given
in Table 3. In summary, for passive attacks all recommen-
dations have been consistently applied in nearly all modern
devices, with the notable exception of the signatures. The
Google Pixel 3 uses intentionally low-information signa-
tures, but we consider these signatures non-generic as dis-
cussed in §4.5. We highlight the 7th Generation Motorola
Moto G, the only modern device we tested that did not
consistently use random addresses even after all available
updates were applied, though the overwhelming general
trend we observe is towards consistent, well-deployed 46-bit
randomization, with random sequence numbers.

We review the work of Vanhoef et al. [29] and observe
that some Android devices (LG and Motorola) remain sus-
ceptible to ANQP attacks, while the attack is ineffective
against other modern Android devices. Many devices still
respond to RTS messages, but we note this attack does not
extract private information from a device, simply allows
an adversary to confirm its presence once the adversary
has already identified the hardware MAC by other means.

Post-association randomization was deployed in An-
droid 10 and iOS 14. While most devices we tested em-
ployed post-association MAC address randomization we
observe that the Xiaomi Mi 9 Lite did not, indicating that
it is not seamlessly integrated across manufacturers.

MAC Randomization Revisited 179

Table 3. Modern Devices

Model OS Version Random Address Generic Signature Random Sequence Number Random ANQP Address RTS Unresponsive Post-Assoc
Apple iPhone X 13.4.1 X X

Apple iPhone XR 13.4 X X
Apple iPhone XS 13.4 X X

Apple iPhone XS Max 13.4 X X
Apple iPhone 11 13.4.1 X X
Apple iPhone 12 14.2 X

LG V35 ThinQ 9 X X X X
LG G8 ThinQ 10 X X X

Google Pixel 3 10 Attempted
Motorola Moto Z (4th gen.) 10 X X X
Motorola Moto G (7th gen.) 10 Idle-Only Idle-Only X X X

OnePlus 6 10 X
OnePlus 8 11 X

Oppo F7 9 X ? X X
Oppo F9 Pro 9 X ? X X

Samsung Galaxy A8 (2018) 9 X ? X
Samsung Galaxy Note 9 10 X

Samsung Galaxy S9 10 X X
Samsung Galaxy S9+ 10 X X
Samsung Galaxy S10 10 X

Xiaomi Mi 9 Lite 10 X X X

: Privacy Protection Employed X : Privacy Protection Non-Existent ? : Test Inconclusive

8 Conclusion and Recommendations
We consider a primary takeaway of our work to be that
randomization technology has not been deployed cleanly
or consistently across the range of modern mobile devices.
Not only do different OSes introduce these technologies
differently, but different manufacturers implementing the
same operating system have their own distinctions and
idiosyncrasies. It appears as though manufacturers and
OS developers saw the need to harden probe requests and
implemented their own solutions independently, leading
to fragmentation and significant differences in effective
privacy from one device to another.

In time, these technologies appear to be converging
towards consensus, but the path is slow and staggered,
moving in fits and starts. In particular, we found the be-
havior of individual Android 7, 8, and 9 devices to be
difficult to predict, with many pairs of similar devices
with radically dissimilar privacy properties, devices whose
privacy protections are eliminated with OS updates, and
devices that provide effective protections only while the
device is not actively in use. However, we observe a clear,
strong trend toward effective deployment of privacy tech-
nologies with some protections in particular lagging behind:
device signatures and mitigation against ANQP and RTS
attacks. The most egregious passive and active attacks,
which allow adversaries to recover a device’s hardware
address, are now mostly ineffective. Post-association ran-
domization presents important new challenges, and again
we see distinct implementations emerging from different
device ecosystems, some of which still provide trackable
identifiers to passive and active attackers.

While pre-association MAC address randomization pri-
vacy improvements have not majorly effected usability in
practice, some networks are designed assuming a consistent

and stableMAC address per device, which sits in direct con-
flict with the fundamental privacy goals of post-association
MAC address randomization. This makes finding a com-
promise between privacy and usability particularly difficult
in this context, which we have seen with shifting random-
ization policies in the case of Apple, or allowing network
operators to disable privacy technology and deploying
it off-by-default from Microsoft. While we advocate for
on-by-default effective post-association MAC address ran-
domization, we recognize this requires a significant change
in the design of some enterprise networks, and may take
time before it can be seamlessly deployed on all devices.

8.1 Recommendations
– State. Devices should deploy privacy protections con-

sistently no matter the device state, noting that these
states are fragile and may be easily manipulated in
unexpected ways by an adversary to compromise user
privacy, as we have shown above.

– Pre-Association Randomization. Manufacturers
should agree on a fixed, small, low-information de-
vice signature for probe requests. We also recommend
manufacturers fix the remaining vulnerabilities (RTS,
ANQP, etc.) outlined in Table 3.

– Post-Association Randomization. We recommend
the industry move towards the approach taken in
the initial iOS 14 beta randomization model, where
post-association MAC address randomization is on
by default and random MAC addresses used for a
given SSID rotate regularly without user interaction.
Additionally, devices should ensure the messages they
send in discovery protocols like DHCP do not contain
persistent or model-specific identifiers.

MAC Randomization Revisited 180

Acknowledgment
Views and conclusions are those of the authors and should
not be interpreted as representing the official policies or
position of the U.S. Government. The author’s affiliation
with The MITRE Corporation is provided for identifi-
cation purposes only, and is not intended to convey or
imply MITRE’s concurrence with, or support for, the po-
sitions, opinions or viewpoints expressed by the author.
This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.
The authors additionally thank Joey Han, Paul Slife, and
Leo Bulgrin for technical assistance and feedback. Finally,
for their hard work conducting our many individual ex-
periments, we would like to thank John Baldwin, Will
Cheshire, Byron Gallagher, Adie Geoghagan, Eduardo
Gomez, Hugh Hajdik, Dylan Larkin, Trystin Martin, Eu-
gene Om, Alex Psichas, Connor Schellenbach, Caroline
Sears, Geno Shamugia, and Eric Towe.

References
[1] Wi-fi preferred network offload scanning, .

https://source.android.com/devices/tech/connect/wifi-scan.
[2] Android wi-fi network selection, . https://source.android.com/

devices/tech/connect/wifi-network-selection.
[3] 802.11aq-2018 - ieee standard for information technology–

telecommunications and information exchange between systems
local and metropolitan area networks–specific requirements
part 11: Wireless lan medium access control and physical
layer specifications amendment 5: Preassociation discovery.
https://standards.ieee.org/standard/802_11aq-2018.html.

[4] Wifi certified passpoint® continues worldwide momentum.
https://www.wi-fi.org/beacon/the-beacon/wi-fi-certified-
passpoint-continues-worldwide-momentum.

[5] Changes to device identifiers in android o, Apr 2017.
https://android-developers.googleblog.com/2017/04/changes-
to-device-identifiers-in.html.

[6] Fingerbank, 2020. https://fingerbank.org/.
[7] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz.

Extensible Authentication Protocol (EAP). RFC 3748 (Standards
Track), 2004. http://www.ietf.org/rfc/rfc3748.txt.

[8] Wi-Fi Alliance. Wi-Fi Simple Configuration Protocol and
Usability Best Practices for the Wi-Fi Protected Setup™
Program, 2020. https://www.wi-fi.org/download.php?file=/sites/
default/files/private/wsc_best_practices_v2_0_1.pdf.

[9] Amelia Andersdotter. Ongoing developments in ieee 802.11
wlan standardization. 12th Workshop on Hot Topics in Privacy
Enhancing Technologies (HotPETs 2019), 2019.

[10] Apple. Use private Wi-Fi addresses in iOS 14, iPadOS 14, and
watchOS 7, 2020. https://support.apple.com/en-us/HT211227.

[11] Jaejong Baek, Sukwha Kyung, Haehyun Cho, Ziming Zhao, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. Wi not calling:
Practical privacy and availability attacks in wi-fi calling. In
Proceedings of the 34th Annual Computer Security Applications
Conference, pages 278–288, 2018.

[12] Guillaume Celosia and Mathieu Cunche. Discontinued privacy:
Personal data leaks in apple bluetooth-low-energy continuity
protocols. Proceedings on Privacy Enhancing Technologies, 2020
(1):26–46, 2020.

[13] eduroam. eduroam, 2020. https://eduroam.org.
[14] Gabriel Ryan (s0lst1c3). EAPhammer, 2020.

https://github.com/s0lst1c3/eaphammer.
[15] Denton Gentry and Avery Pennarun. Passive taxonomy

of wifi clients using mlme frame contents. arXiv preprint
arXiv:1608.01725, 2016.

[16] Christian Huitema. Experience with mac address randomization
in windows 10. In 93th Internet Engineering Task Force Meeting
(IETF), 2015.

[17] IEEE. Ieee standards for local and metropolitan area networks:
overview and architecture. IEEE Std 802–2001, pages 802–1990,
2001.

[18] Oisín Kyne. Mac address de-anonymisation. arXiv, pages
arXiv–1805, 2018.

[19] Malthankar, Rohan C., Sawant, Paresh B., Fernandes,
Sitnikov, Sergey, Mathias, Arun G., Novak, and et al.
Protection of the ue identity during 802.1x carrier hotspot
and wi-fi calling authentication - apple inc., May 2018.
http://www.freepatentsonline.com/y2018/0124597.html.

[20] Jeremy Martin, Erik Rye, and Robert Beverly. Decomposition
of mac address structure for granular device inference. In
Proceedings of the 32nd Annual Conference on Computer
Security Applications, pages 78–88. ACM, 2016.

[21] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe,
Lamont Brown, Chadwick Riggins, Erik C Rye, and Dane
Brown. A study of mac address randomization in mobile
devices and when it fails. Proceedings on Privacy Enhancing
Technologies, 2017(4):365–383, 2017.

[22] Célestin Matte and Mathieu Cunche. Panoptiphone: How unique
is your wi-fi device? In Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, pages
209–211, 2016.

[23] Célestin Matte and Mathieu Cunche. Spread of mac address
randomization studied using locally administered mac addresses
use historic. 2018.

[24] Célestin Matte, Mathieu Cunche, Franck Rousseau, and Mathy
Vanhoef. Defeating mac address randomization through timing
attacks. In Proceedings of the 9th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, pages 15–20, 2016.

[25] Scientia Mobile. Mobile overview report, 2020.
https://www.scientiamobile.com/movr-mobile-overview-report/.

[26] Wi-Fi Now. Is Apple backpedaling on their new ‘Private Wi-Fi’
feature?, 2020. https://wifinowglobal.com/news-and-blog/is-
apple-backpedaling-on-their-new-private-wi-fi-feature/.

[27] Piers O’hanlon, Ravishankar Borgaonkar, and Lucca Hirschi.
Mobile subscriber wifi privacy. In 2017 IEEE Security and Privacy
Workshops (SPW), 2017.

[28] Jiaxing Shen, Jiannong Cao, and Xuefeng Liu. Bag: Behavior-
aware group detection in crowded urban spaces using wifi
probes. IEEE Transactions on Mobile Computing, 2020.

[29] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S
Cardoso, and Frank Piessens. Why mac address randomization is
not enough: An analysis of wi-fi network discovery mechanisms.
In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 413–424. ACM,
2016.

https://source.android.com/devices/tech/connect/wifi-scan
https://source.android.com/devices/tech/connect/wifi-network-selection
https://source.android.com/devices/tech/connect/wifi-network-selection
https://standards.ieee.org/standard/802_11aq-2018.html
https://www.wi-fi.org/beacon/the-beacon/wi-fi-certified-passpoint-continues-worldwide-momentum
https://www.wi-fi.org/beacon/the-beacon/wi-fi-certified-passpoint-continues-worldwide-momentum
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://fingerbank.org/
http://www.ietf.org/rfc/rfc3748.txt
https://www.wi-fi.org/download.php?file=/sites/default/files/private/wsc_best_practices_v2_0_1.pdf
https://www.wi-fi.org/download.php?file=/sites/default/files/private/wsc_best_practices_v2_0_1.pdf
https://support.apple.com/en-us/HT211227
https://eduroam.org
https://github.com/s0lst1c3/eaphammer
http://www.freepatentsonline.com/y2018/0124597.html
https://www.scientiamobile.com/movr-mobile-overview-report/
https://wifinowglobal.com/news-and-blog/is-apple-backpedaling-on-their-new-private-wi-fi-feature/
https://wifinowglobal.com/news-and-blog/is-apple-backpedaling-on-their-new-private-wi-fi-feature/

MAC Randomization Revisited 181

[30] Wi-Fi Alliance. Hotspot 2.0 Specification Version 3.1, 2019.
[31] Fang-Jing Wu, Yunfeng Huang, Lucas Doring, Stephanie

Althoff, Kai Bitterschulte, Keng Yip Chai, Lidong Mao, Damian
Grabarczyk, and Ernoe Kovacs. Passengerflows: A correlation-
based passenger estimator in automated public transport. IEEE
Transactions on Network Science and Engineering, 2020.

	 Three Years Later: A Study of MAC Address Randomization In Mobile Devices And When It Succeeds
	1 Introduction
	2 Background and Related Work
	2.1 Previous work
	2.2 Adversarial Model
	2.2.1 Inconsistent Use of Randomization
	2.2.2 Persistent Identifiers
	2.2.3 Sequence Numbers
	2.2.4 Device Signatures
	2.2.5 Active Attacks

	2.3 Limitations of Previous Studies
	2.4 IEEE Standards

	3 Methodology
	3.1 Pre-association Experiments
	3.2 Wild Capture Data
	3.3 Ethical Considerations
	3.4 Active Attack Experiments

	4 Passive Analysis
	4.1 Wild Capture Data
	4.2 MAC Address Randomization
	4.2.1 Randomization Schemes
	4.2.2 Inconsistent Use of Randomization
	4.2.3 Idle vs Action State
	4.2.4 OS Updates
	4.2.5 Device Chipsets
	4.2.6 Results

	4.3 WPS and UUID-E
	4.4 Sequence Numbers
	4.5 Device Signatures
	4.5.1 Device Binning
	4.5.2 Trends

	5 Active Attacks
	5.1 ANQP
	5.2 RTS/CTS
	5.3 Forcing the Action State

	6 Post-association Randomization
	6.1 Windows 10
	6.2 Android 10/11
	6.3 iOS 14 Beta and Production Release
	6.4 Active Attacks
	6.4.1 Leveraging Connection-Persistence
	6.4.2 Leveraging EAP Identities

	7 Summary of Modern Devices
	8 Conclusion and Recommendations
	8.1 Recommendations

