
Proceedings on Privacy Enhancing Technologies ; 2021 (3):246–264

Ilia Iliashenko* and Vincent Zucca
Faster homomorphic comparison operations for BGV and BFV
Abstract: Fully homomorphic encryption (FHE) allows
to compute any function on encrypted values. However,
in practice, there is no universal FHE scheme that is effi-
cient in all possible use cases. In this work, we show that
FHE schemes suitable for arithmetic circuits (e.g. BGV
or BFV) have a similar performance as FHE schemes
for non-arithmetic circuits (TFHE) in basic comparison
tasks such as less-than, maximum and minimum oper-
ations. Our implementation of the less-than function in
the HElib library is up to 3 times faster than the prior
work based on BGV/BFV. It allows to compare a pair
of 64-bit integers in 11 milliseconds, sort 64 32-bit in-
tegers in 19 seconds and find the minimum of 64 32-bit
integers in 9.5 seconds on an average laptop without
multi-threading.

Keywords: secure computation, fully homomorphic en-
cryption, comparison operations, sorting, array mini-
mum

DOI 10.2478/popets-2021-0046
Received 2020-11-30; revised 2021-03-15; accepted 2021-03-16.

1 Introduction
Fully Homomorphic Encryption (FHE) can perform any
kind of computations directly on encrypted data. It
is therefore a natural candidate for privacy-preserving
outsourced storage and computation techniques. Since
Gentry’s breakthrough in 2009 [25], FHE has received
a worldwide attention which has resulted in numerous
improvements. As a result, FHE can now be used in
practice in many practical scenarios, e.g. genome anal-
ysis [30], energy forecasting [7], image recognition [9]
and secure messaging [4]. In addition, FHE is currently
going through a standardization process [1].

In practice, homomorphic encryption (HE) schemes
can be classified into three main categories:

*Corresponding Author: Ilia Iliashenko: imec-COSIC,
KU Leuven, E-mail: ilia@esat.kuleuven.be
Vincent Zucca: DALI, Université de Perpignan Via
Domitia, France, E-mail: vincent.zucca@univ-perp.fr ,
LIRMM, Univ Montpellier, Montpellier, France, E-mail: vin-
cent.zucca@lirmm.fr

– The schemes encrypting their input bit-wise mean-
ing that each bit of the input is encrypted into a
different ciphertext. From there, the operations are
carried over each bit separately. Examples of such
schemes include FHEW [22] and TFHE [18]. These
schemes are believed to be the most efficient in prac-
tice with relation to the total running time.

– The second category corresponds to word-wise en-
cryption schemes that allow to pack multiple data
values into one ciphertext and perform computa-
tions on these values in a Single Instruction Mul-
tiple Data (SIMD) fashion [36]. In particular, en-
crypted values are packed in different slots such that
the operations carried over a single ciphertext are
automatically carried over each slot independently.
Schemes with these features include BGV [11] and
BFV [10, 24]. Although homomorphic operations in
these schemes are less efficient than for bit-wise en-
cryption schemes, their running time per SIMD slot
can be better than of the binary-friendly schemes
above. We refer to this performance metric as the
amortized running time.

– The CKKS scheme [14], which allows to perform
computations over approximated numbers, forms
the third category. It is similar to the second cate-
gory in the sense that one can pack several num-
bers and compute on them in a SIMD manner.
The CKKS scheme does not have the algebraic con-
straints that lower the packing capacity of BGV and
BFV. Hence, it is usually possible to pack more
elements in CKKS ciphertext, thus resulting with
the best amortized cost. Unlike previous schemes,
CKKS encodes complex, and thus real, numbers na-
tively. However, homomorphic computations are not
exact, which means that decrypted results are only
valid up to a certain precision.

Each category of schemes is more efficient for a cer-
tain application. Thus, when comparing the efficiency
of different homomorphic schemes, one must take into
account the given use case.

It is commonly admitted that schemes of the first
category are the most efficient ones for generic applica-
tions. Since they operate at the bit level, they can com-
pute every logical gate very efficiently. The total running
time being in this case the sum of the times needed to
evaluate each gate of the circuit. As a result, to opti-

Faster homomorphic comparison operations for BGV and BFV 247

mize the computations for a given application, the only
possibility is to reduce the length of the critical compu-
tational path and parallelize the related circuit as much
as possible. However, as this becomes more and more
difficult as the size of the circuit grows, it is possible to
optimize only some parts of the circuit by identifying
some patterns [5]. Another advantage of these schemes
is that they have very fast so-called ‘bootstrapping’ al-
gorithms that ‘refresh’ ciphertexts for further computa-
tion. This is very convenient in practice as one can set a
standard set of encryption parameters without knowing
what function should be computed.

Schemes of the second category operate naturally
on p-ary arithmetic circuits, i.e. they are very efficient
to evaluate polynomial functions over Fp, for a prime p.
However, these schemes become much less efficient when
considering other kinds of computations, e.g. compari-
son operations, step functions. To alleviate this prob-
lem, one can use tools from number theory to evaluate
specific functions with relatively efficient p-ary circuits.
Nonetheless, in general this techniques are too weak
to outperform schemes of the first category. Moreover,
bootstrapping algorithms of these schemes are quite
heavy and usually avoided in practice.

CKKS, similarly to second category schemes, is very
efficient when operating on arithmetic circuits. How-
ever, unlike other schemes which perform modular arith-
metic, it allows to perform computations on complex
(and thus real) numbers. Although this is an impor-
tant advantage for many use cases, CKKS lacks simpli-
fication tools for evaluation of certain functions due to
number-theoretic phenomena as for the second category.
However, since CKKS usually supports huge packing ca-
pacity, it usually presents the best amortized cost. The
bootstrapping algorithm of CKKS is fundamentally dif-
ferent from the above schemes as it refreshes ciphertexts
only partially and introduces additional loss of output
precision. Therefore, the CKKS bootstrapping is usually
avoided in practice.

Although FHE now offers a relatively efficient al-
ternative for secure computation, some functions re-
main difficult to evaluate efficiently regardless the con-
sidered scheme. Step functions, which are required in
many practical applications, form a good example of
such functions because of their discontinuous nature.
The difficulty to evaluate discontinuous functions comes
from the hardness to evaluate a quite basic and rel-
atively simple function: the comparison function. Al-
though comparison is an elementary operation required
in many applications including the famous Millionaires
problem of Yao [39] or advance machine learning tasks of

the iDASH competition∗, it remains difficult to evaluate
homomorphically.

By now, schemes of the first category look much
more suitable for such non-arithmetic tasks, but they
are hopelessly inefficient for evaluating arithmetic func-
tions. Hence, one should resort to heavy conversion algo-
rithms [8] to leverage the properties of different schemes.

1.1 Contributions

In this work, we describe the structure of the circuits
corresponding to comparison functions for the BGV and
BFV schemes. For theses schemes, there exists two ap-
proaches: either compare two numbers x and y directly
by evaluating a bivariate polynomial in x and y, or study
the sign of the difference z = x− y by evaluating a uni-
variate polynomial in z.

By exploiting the structure of these two polynomi-
als, we show that it is possible to evaluate them more
efficiently than what was proposed in the state of the
art. In particular, we prove that these polynomials have
multiple zero coefficients that can be ignored during
polynomial evaluation.

The benefit of our approach results in significant
performance enhancement for both methods. On the
one hand, our bivariate circuit can compare two 64-
bit integers with an amortized cost of 21ms, which is
a gain of 40% with relation to the best previously re-
ported results of Tan et al. [37] (See Table 1). On the
other hand, our univariate circuit shows even better re-
sults with an amortized cost of 11ms for 64-bit numbers
– which is, to the best of our knowledge, more than
3 times faster than previously reported results for this
kind of scheme [37]. Note that we can compare two 20-
bit numbers with an amortized cost of 3ms, which is
better by a factor 1.9 than what can be achieved with
CKKS-based algorithms and is comparable to TFHE-
based implementations (see Table 5).

We also apply our comparison methods to speed
up popular computational tasks such as sorting and
computing minimum/maximum of an array with N ele-
ments. For example, for N = 64, we obtain an amortized
cost of 6.5 seconds to sort 8-bit integers and 19.2 sec-
onds for 32-bit integers, which is faster than the prior
work by a factor 9 and 2.5 respectively (see Table 3).
For N = 64, we can find the minimum of 8-bit integers
with an amortized running time of 404 ms and of 32-

∗ http://www.humangenomeprivacy.org/2020/index.html

Faster homomorphic comparison operations for BGV and BFV 248

bit integers with an amortized time of 9.57 seconds (see
Table 4).

1.2 Related art

Comparison is a common function required in many ap-
plications; as a consequence, its homomorphic evalua-
tion has been the object of several works. Since inputs
are encrypted, a comparison algorithm cannot termi-
nate whenever it finds the first difference between most
significant bits. As a result, homomorphic comparison
has a complexity corresponding to the worst-case com-
plexity in the plain domain. The practical efficiency of
homomorphic comparison depends on the type of HE
schemes considered.

For bit-wise HE schemes (FHEW, TFHE),
Chillotti et al. [19, 20] showed that one could com-
pare two n-bit integers by evaluating a deterministic
weighted automata made of 5n CMux gates. Using the
TFHE scheme, evaluating a CMux gate takes around
34 microseconds on a commodity laptop, meaning that
one can homomorphically compare two n-bit numbers
in around 170n microseconds. Note that these esti-
mations correspond to the fastest (leveled) version of
TFHE which avoids bootstrapping. If one wants to use
the bootstrapped version then the best method requires
to evaluate 7n Mux gates, where each gate takes around
26 millisecond to be evaluated, which makes a total of
182n millisecond.

Schemes from the second category (BGV and BFV)
can use SIMD techniques to batch several plaintexts into
a single ciphertext [36]. Therefore, a natural idea would
be to pack the input bits into a single ciphertext. Cheon
et al. [13, 17] studied comparison functions in this con-
text using the bivariate polynomial interpolation. Some
of the algorithmic tools they have used – e.g. computa-
tion of running sums and products – are optimal in the
homomorphic setting, i.e. regarding the multiplicative
depth and the number of multiplications, and have laid
the ground for future works in this direction.

Some works have tried to exploit other features
of these schemes by encoding integers modulo an odd
prime p instead of bits. In [33], Narumanchi et al. com-
pare integer-wise comparison algorithms based on the
univariate interpolation with bit-wise counterparts. The
SIMD packing was ignored in this study. They con-
cluded that bit-wise methods are more efficient because
they have a smaller multiplicative depth. In particular,
n-bit numbers can be compared with a circuit of depth
O(logn) instead of O(n) in the case of integer-wise al-

gorithms. This comes from the fact that integer-wise
comparison circuits require to evaluate a Lagrange in-
terpolation polynomial of degree p− 1 ≥ 2n.

In [29], Kim et al. noticed that SIMD packing tech-
niques reduce the multiplicative complexity of homo-
morphic comparison circuits. In addition, they took ad-
vantage of the nature of the finite field Fpd , which cor-
responds to the plaintext space of a SIMD slot. Namely,
any power xpi can be evaluated with the homomor-
phic Frobenius automorphism x 7→ xp, which does not
consume any homomorphic multiplicative depth level.
This allowed to reduce the depth of the equality cir-
cuit EQ(x, y) = 1 − (x − y)pd−1 from dd log2(p)e to
dlog2(d)e+ dlog2(p− 1)e.

Tan et al. [37] proposed a method to perform digit-
wise comparison using SIMD and the bivariate polyno-
mial interpolation. Their idea consists in decomposing
input integers into digits of size pr encoded into a sub-
field of Fpd , with r|d, in order to reduce the degree of
the Lagrange interpolation polynomial of a comparison
function. To compare input integers, one should extract
digits, compare them and combine the results of digit
comparison using the lexicographical order. Note that
their evaluation of the lexicographical order intensively
uses the efficient equality circuit of Kim et al. [29]. Over-
all, they have used their method to compare integers up
to 64-bit while reporting, to the best of our knowledge,
the current best timings for performing homomorphic
comparison with BGV scheme.

Finally, in [35], Shaul et al. used the univariate ap-
proach to evaluate comparison functions in the context
of top-k selection with integer-wise circuits. However,
they did not use the decomposition method of Tan et
al. [37], thus obtaining relatively poor performance of
comparison.

Note that all these works did not exploit the struc-
ture of comparison interpolation polynomials neither in
the bivariate nor in the univariate case. Kaji et al. [28]
described basic properties of the polynomial expressions
of max, argmax and other non-arithmetic functions over
non-binary prime fields Fp. However, their results do not
allow to evaluate these functions very efficiently, as an
example their homomorphic circuit to evaluate max has
a quadratic complexity in p.

The situation for the CKKS scheme is quite dif-
ferent since its plaintext space natively supports com-
plex/real numbers. Therefore, circuit optimizations re-
lated to data encoded into finite fields are not applica-
ble for CKKS. Nonetheless, the approximated nature of
computations in CKKS makes it suitable to use iterative
methods from real analysis to compute close approxima-

Faster homomorphic comparison operations for BGV and BFV 249

tions of non-arithmetic functions. Bajard et al. [6] used
Newton iteration to evaluate the sign function, while
independently Cheon et al. [15, 16] generalized this ap-
proach and studied its efficiency in more details. Using
the methods of [15], one can compare 20-bit numbers
with an amortized cost comparable, although slower,
to TFHE. However, to obtain these timings one has
to use quite large encryption parameters (ring dimen-
sion 217 and ciphertext modulus up to 2200 bits). Since
the running time of homomorphic operations increases
quasi-linearly with the ring dimension, while the num-
ber of slots only increases linearly, increasing the dimen-
sion would affect significantly the timings. Therefore, it
would be interesting to know whether these methods
can be used in practice to compare larger inputs – e.g.
64-bit integers – without degrading the performance.

2 Background

2.1 Notations

Vectors will be written in column form and denoted by
boldface lower-case letters. The set of integers {`, . . . , k}
is denoted by [`, k]. For a non-negative integer a, let
wt(a) be the Hamming weight of its binary expansion.
We denote the set of residue classes modulo p by Zp
and the class representatives of Zp are taken from the
half-open interval [−p/2, p/2).

2.2 Comparison of integers with finite
fields operations

Let S be a totally ordered set with a binary relation <.
For any x, y ∈ S, we can define the less-than and the
equality functions as follows.

LTS(x, y) =

{
1, if x < y;
0, if x ≥ y,

EQS(x, y) =

{
1, if x = y;
0, if x 6= y.

2.2.1 Functions over finite fields

The map defined by χ : x 7→ xp
d−1 from Fpd to the bi-

nary set {0, 1} is called the principal character. Accord-
ing to Euler’s theorem, it returns 1 if x is non-zero and 0
otherwise. Using the principal character, every function

from Fl
pd to Fpd can be interpolated by a unique poly-

nomial according to the following well-know lemma.

Lemma 1. Every function f : Fl
pd → Fpd is a poly-

nomial function represented by a unique polynomial
Pf (X1, . . . , Xl) of degree at most pd − 1 in each vari-
able. In particular,

Pf (X1, . . . , Xl) =
∑

a∈Fl

pd

f(a)
l∏
i=1

(1− χ(Xi − ai)) .

where ai is the ith coordinate of vector a.

2.2.2 Comparison of integers

Let Fpd = Fp[X]/ 〈f(X)〉 for some irreducible monic
polynomial f(X) of degree d. Let d′ ≤ d and S ⊆
[0, pd′ − 1], we can map S into Fpd by using the de-
composition of integers in base p:

ιp : S → Fpd ,
d′−1∑
i=0

aip
i 7→

d′−1∑
i=0

aiX
i−1 .

Note that the map ιp is injective and gives a one-to-one
correspondence between S and Fpd when d′ = d and
S = [0, pd−1]. Therefore, we identify integers belonging
to S with their image by ιp and thus omit ιp when the
situation is clear from the context.

Let a, b ∈ S be two integers to be compared and∑d′−1
i=0 aiX

i and
∑d′−1
i=0 biX

i with ai, bi ∈ Fp are their
respective encodings into Fpd . The order of the set S
induces a polynomial function in Fpd , which can be in-
terpolated by Lemma 1. However, since LTS(0, y) = 1
for any non-zero y ∈ Fpd and zero otherwise, we obtain
LTS(0, y) = χ(y). Hence, the total degree of the inter-
polation polynomial is at least pd − 1, which might be
prohibitive in practice.

Tan et al. [37] proposed an alternative approach
where S = [0, p − 1]. If input integers a and b belong
to S, the result of LTS(a,b) is computed with its in-
terpolation polynomial over Fp. If a, b are larger, e.g.
a, b ∈ [0, pd′−1], they are encoded into Fpd as above,
but their comparison is performed via the lexicographic
order defined on Fd

′

p . This method is based on the ex-
traction of coefficients ai, bi ∈ Fp thanks to the following
result from the theory of finite fields (see [31, Theorem
2.24] for the proof).

Faster homomorphic comparison operations for BGV and BFV 250

Lemma 2. The linear transformations from Fpd to Fp
are exactly the mappings Lα(x) = TrF

pd/Fp
(αx) for some

α ∈ Fpd . Furthermore, Lα 6= Lβ if α 6= β.

This lemma implies that for any i ∈ [0, d′ − 1] there
exist αi ∈ Fpd such that Lαi(a) = ai for any a from the
vector subspace Fd

′

p of Fpd . Such αi’s can be computed
by solving the following system of equations over Fpd

XA = Id

where

X =


1 1 . . . 1
x xp . . . xp

d−1

...
...

. . .
...

xd−1 x(d−1)p . . . x(d−1)pd−1

 ,

A =


α0 α1 . . . αd−1
αp0 αp1 . . . αpd−1
...

...
. . .

...
αp

d−1

0 αp
d−1

1 . . . αp
d−1

d−1


and Id ∈ Fd×d

pd is the identity matrix. Hence, the ith col-

umn of X−1 contain the powers αi, αpi , . . . , α
pd−1

i , which
define the linear map Lαi .

Given the input encodings
∑d′−1
i=0 aiX

i and∑d′−1
i=0 biX

i, we can extract and then compare their
vectors of coefficients a = (a0, a1, . . . , ad′−1) and b =
(b0, b1, . . . , bd′−1) ∈ Fd

′

p using the lexicographical order
< on Fd

′

p defined by

a < b⇔ ∃i ∈ [0, d′ − 1] such that ai < bi and
aj = bj ∀j > i .

The corresponding less-than function is equal to

LTSd′ (a, b) =
d′−1∑
i=0

LTS(ai, bi)
d′−1∏
j=i+1

EQS(aj , bj) ,

whereas the equality function is defined by

EQSd′ (a, b) =
d′−1∏
i=0

EQS(ai, bi) ,

Notice that the above construction is generic for any
set S embedded into Fp. For example, if S = [0, s − 1]
for some s < p, then one can encode input integers via
decomposition in base s and compare them using LTSd′ .

2.2.3 Comparison of large integers

When the size of input integers exceeds |S|d, we can de-
compose integers in base |S|d′ and then compare their

vectors of digits using the lexicographical order < on(
Fd
′

p

)l
, for some d′ ≤ d. In fact, we compute two lexi-

cographical orders on top of each other.
Let a, b ∈ [0, |S|ld′ − 1] be input integers. We rep-

resent an integer a =
∑l
i=0 ai|S|

id′ by the vector

a = (a0,a1, . . . ,al−1) ∈
(
Fd
′

p

)l
of its digits of length

l. The comparison of two integers a and b is thus
equivalent to the comparison of their vector of digits
a = (a0,a1, . . . ,al−1) and b = (b0, b1, . . . , bl−1) using

the lexicographical order < on
(
Fd
′

p

)l
defined as follows

a < b⇔ ∃i ∈ [0, l − 1] such that ai < bi and
aj = bj ∀j > i .

As done in [37], we can employ EQSd′ and LTSd′ to com-
pute the corresponding less-than function LT(a,b) as
follows

LT(a,b) =
l−1∑
i=0

LTSd′ (ai, bi)
l−1∏
j=i+1

EQSd′ (aj , bj). (1)

2.3 Homomorphic encryption

We are interested in homomorphic encryption schemes
that support SIMD operations on their plaintexts. This
section aims at giving the necessary background regard-
ing these schemes.

2.3.1 Cyclotomic fields and Chinese remainder
theorem

Letm be a positive integer and n = ϕ(m) where ϕ is Eu-
ler’s totient function. Let K = Q(ζm) be the cyclotomic
number field constructed by adjoining a primitive m-th
root of unity ζm ∈ C to the field of rational numbers.
The ring of integers of K, denoted by R, is isomorphic
to Z[X]/ 〈Φm(X)〉 where Φm(X) is the m-th cyclotomic
polynomial. Let p > 1 be a prime number coprime to
m, then Φm(X) splits modulo p into ` irreducible factors
of same degree d, i.e. Φm(X) = F1(X) · · ·F`(X) mod p.
The degree d is actually the order of p modulo m, and
` = n/d. The Chinese Remainder Theorem (CRT) states
that in this case the following ring isomorphism holds:

Rp = Zp[X]/ 〈Φm(X)〉
∼= Zp[X]/ 〈F1(X)〉 × . . .× Zp[X]/ 〈F`(X)〉

For each i ∈ [1, `] the quotient ring Zp[X]/ 〈Fi(X)〉 is
isomorphic to the finite field Fpd . Hence, the above iso-

Faster homomorphic comparison operations for BGV and BFV 251

morphism can be rewritten as Rp ∼= F`
pd . We call ev-

ery copy of Fpd in this direct product a slot. There-
fore, every element of Rp contains ` slots, which implies
that an array of ` independent Fpd -elements can be en-
coded as a unique element of Rp. The slot isomorphic
to Zp[X]/ 〈Fi(X)〉 is referred to as the ith slot.

Additions and multiplications of Rp-elements re-
sults in the corresponding coefficient-wise operations of
their respective slots. In other words, each ring oper-
ation on Rp is applied to every slot in parallel, which
resembles the Single-Instruction Multiple-Data (SIMD)
instructions used in parallel computing. Therefore, the
above encoding method from F`

pd to Rp is often called
the SIMD packing.

The HE schemes that support SIMD packing and
exact computations over encrypted data include BGV [11]
and FV [24]. These schemes have a common framework
described below.

2.3.2 Basic setup

Let λ be the security level of an HE scheme. Let L be the
maximal multiplicative depth of homomorphic circuits
we want to evaluate. Let d be the order of the plaintext
modulus p modulo the order m of R. Assume that the
plaintext space Rp has ` SIMD slots, i.e. Rp ∼= F`

pd . The
basic part of any HE schemes consists of key generation,
encryption and decryption algorithms.

KeyGen(1λ, 1L)→ (sk, pk). Given λ and L, this func-
tion outputs the secret key sk and the public key pk.

Encrypt(pt ∈ Rp, pk) → ct. The encryption algo-
rithm takes a plaintext pt and the public key pk and
outputs a ciphertext ct.

Decrypt(ct, sk) → pt. The decryption algo-
rithm takes a ciphertext ct and the secret key sk
and returns a plaintext pt. For freshly encrypted
ciphertexts, the decryption correctness means that
Decrypt(Encrypt(pt, pk), sk) = pt.

2.3.3 Homomorphic operations

The homomorphic addition (multiplication) algorithm
takes two input ciphertexts ct1 and ct2 encrypting
plaintexts pt1 and pt2 respectively. It outputs a cipher-
text ct that encrypts the sum (product) of these plain-
texts in the ring Rp. It implies that homomorphic addi-
tion (multiplication) sums (multiplies) respective SIMD
slots of pt1 and pt2. Similar operations between cipher-
texts and plaintexts are defined as well.

Every homomorphic ciphertext contains a special
component called noise that is removed during decryp-
tion. However, the decryption function can deal only
with noise of small enough magnitude; otherwise, this
function fails. This noise bound is defined by encryption
parameters in a way that larger parameters result in a
larger bound. The ciphertext noise increases after every
homomorphic operation and, therefore, approaches its
maximal possible bound. It implies that to reduce en-
cryption parameters one needs to avoid homomorphic
operations that significantly increase the noise. There-
fore, while designing homomorphic circuits, we need to
take into account not only the running time of homo-
morphic operations but also their effect on the noise.

The most expensive homomorphic operation with
relation to both noise and running time is ciphertext-
ciphertext multiplication (Mul). This operations takes
place when two expressions containing input values are
multiplied. Such multiplication is called non-scalar. In
contrast, ciphertext-plaintext multiplication (MulPlain)
is used when an expression with input values is multi-
plied by an unencrypted or publicly known value. This is
a scalar multiplication. Since Mul is much more expen-
sive than MulPlain, the multiplicative depth and com-
plexity of a homomorphic circuit is usually calculated
with relation to the number of Mul’s, or non-scalar mul-
tiplications. Thus, in the following sections we focus on
the non-scalar complexity of comparison circuits.

3 Optimising the comparison
circuits over Fp

In this section, we study the structure of basic com-
parison circuits over Fp used in Section 2 to compare
integers, namely LTS and EQS for some S ⊆ [0, p− 1].

For any choice of S, the corresponding equality func-
tion over Fp is equal to

EQS(x, y) = 1− (x− y)p−1.

Unfortunately, LTS is not that simple and universal and
we have to rely on Lagrange interpolation (Lemma 1) to
compute it. Yet, there are two different ways to evaluate
it. The first method (as done in [37]) uses S = [0, p− 1]
and directly interpolates LTFp

(x, y) as a bivariate poly-
nomial over Fp. The second approach (as done in [33]
and [35]) has S = [0, (p − 1)/2] and interpolates a uni-
variate polynomial of LTS(z, 0) with z = x − y. In this
section, we show how to exploit the structure of these
polynomials to speed-up their evaluation.

Faster homomorphic comparison operations for BGV and BFV 252

3.1 Bivariate interpolation of LTS.

Let S = [0, p − 1]. The less-than function can be inter-
polated using Lemma 1 and the following truth table.

< 0 1 2 · · · p− 1
0 0 1 1 · · · 1
1 0 0 1 · · · 1
2 0 0 0 · · · 1
...

...
...

...
. . .

...
p− 1 0 0 0 · · · 0

In particular, the interpolation polynomial of LTS
over Fp is equal to

PLTS (X,Y) =
p−2∑
a=0

EQS(X, a)
p−1∑
b=a+1

EQS(Y, b)

=
p−2∑
a=0

(
1− (X − a)p−1

) p−1∑
b=a+1

(
1− (Y − b)p−1

)
.

Surprisingly, the total degree of PLTS (X,Y) is only p

and its coefficients can be described by the following
theorem.

Theorem 1. Let p > 2 be a prime number and S =
[0, p− 1], then the interpolation polynomial of LTS over
Fp has the following form

PLTS (X,Y) = Y p−1 − p− 1
2 (XY)

p−1
2 +

∑
i,j>0,
i6=j,
i+j≤p

aijX
iY j

where aij =
∑p−2
a=0

∑p−1
b=a+1 a

p−1−ibp−1−j ∈ Fp. The to-
tal degree of PLTS (X,Y) is p.

Proof. See Appendix A.

From the definition of LTS , one can easily prove the
following facts about PLTS :

– PLTS (X, 0) = 0, thus Y divides PLTS (X,Y);
– PLTS (X,X) = PLTS (Y, Y) = 0, thus (X − Y) divides
PLTS (X,Y);

– PLTS (p− 1, Y) = 0 thus X + 1 divides PLTS (X,Y).

Hence, there exists a bivariate polynomial f(X,Y) of
total degree p− 3 over Fp such that:

PLTS (X,Y) = Y (X − Y)(X + 1)f(X,Y). (2)

The following theorem describes the structure of
f(X,Y).

Theorem 2. Let p be an odd prime and S = [0, p− 1].
Let PLTS (X,Y) be the interpolation polynomial of LTS
over Fp and PLTS (X,Y) = Y (X − Y)(X + 1)f(X,Y).
Then, for any z ∈ Fp we have

f(z, z) = f(z, 0) = f(p− 1, z). (3)

As a consequence, there exists (p − 1)/2 polynomials
fi(X) over Fp, 0 ≤ i ≤ (p− 3)/2, such that:

f(X,Y) =
(p−3)/2∑
i=0

fi(X)Zi, (4)

with Z = Y (X − Y) and deg(fi(X)) = p− 3− 2i.

Since our proof of Theorem 2 is quite long and with
no real interest for the purpose of this work, we defer
it to an extended version of this paper. In our experi-
ments, we used the decompositions (4) of f(X,Y) only
for small p (between 3 and 7), which you can find in
Appendix B.

Complexity analysis. In [37], the authors pro-
posed to evaluate PLTS (X,Y) by evaluating each mono-
mials separately before summing them up. Given x, y ∈
Fp, they precompute the powers of x and y up to p− 1
for a total of 2p − 4 non-scalar multiplications. Then,
another p − 1 non-scalar multiplications are needed to
evaluate each monomial ((

∑
i ciX

i)Y j)j where ci’s are
scalars in Fp, before summing them together to get the
final result. Overall their evaluation of PLTS (X,Y) re-
quires 3p− 5 non-scalar multiplications.

Following this idea and using the decomposition of
f(X,Y) given in Eq. (4) one needs:

– 2 multiplications to compute (X + 1)Z if p ≥ 3 or 1
multiplication when p = 2;

and then for p ≥ 5:

– p − 4 multiplications to compute the Xi’s for 2 ≤
i ≤ p− 3 required to compute the terms fi(X);

– (p− 5)/2 multiplications to compute the Zi for 2 ≤
i ≤ (p− 3)/2;

– (p − 5)/2 multiplications to compute the products
fi(X) · Zi;

– 1 final multiplication (X + 1)Z · f(X,Y).

Overall, at most 2p − 6 non-scalar multiplications are
needed to homomorphically evaluate PLTS (X,Y) for
p ≥ 5. This number can be slightly reduced by optimiz-
ing the way of computing fi’s. For instance, it can be

Faster homomorphic comparison operations for BGV and BFV 253

done with only 6 multiplications for p = 7, (see Ap-
pendix B), which is smaller than 2p− 6 = 8.

Overall, for p ≥ 5, our method saves p + 1 multi-
plications over the method of Tan et al. [37]. However,
the complexity of the bivariate circuit remains linear
in p which is unpractical for performing homomorphic
comparisons using large digits (i.e. a large p).

3.2 Univariate interpolation of LTS

Unlike bivariate polynomials, it is possible to evaluate
univariate polynomials of degree p − 1 in O(√p) non-
scalar multiplications using the Paterson-Stockmeyer al-
gorithm [34]. The Paterson-Stockmeyer algorithm has
been used in various works related to homomorphic en-
cryption in order to speed-up polynomial evaluation. As
a recent example, it was applied by Shaul et al [35] in
the context of top-k selection, which uses small-number
comparison as a subroutine. However, in our case the
study of the structure of LTS as a univariate polyno-
mial will allow us to speed-up its evaluation for large p
beyond what could be achieved using only the Paterson-
Stockmeyer algorithm.

To evaluate LTS as a univariate polynomial, we com-
pute the difference x − y of the two input values and
check its sign. To compute the sign function using finite
field arithmetic, we need to split finite field elements into
two classes: negative (F−p) and non-negative (F+

p). In
addition, for any x, y ∈ S the following property should
hold:

x− y ∈

{
F+
p if LTS(x, y) = 0,

F−p if LTS(x, y) = 1.

It is easy to see that these constraints are satisfied by
S = [0, (p− 1)/2]. Let us split Fp into F+

p = [0, (p− 1)/2]
and F−p = [−(p− 1)/2,−1]. Notice that for any x, y ∈ S,
their difference x− y belongs to F−p if and only if x < y.

Let χF−p (z) be a function that outputs 1 if z is neg-
ative and 0 otherwise. According to Lemma 1, χF−p (z) is
equal to

χF−p (z) =
−1∑

a=− p−1
2

1− (z − a)p−1.

Combining the above facts, the LTS function can be in-
terpolated by the following polynomial over Fp

QLTS (X,Y) =
−1∑

a=− p−1
2

1− (X − Y − a)p−1 .

The following theorem describes all the coefficients of
this interpolation polynomial.

Theorem 3. For an odd prime p and S = [0, (p−1)/2],
the LTS function can be interpolated by the following
polynomial over Fp

QLTS (X,Y) = p+ 1
2 (X − Y)p−1 +

p−2∑
i=1,odd

ci(X − Y)i.

(5)

where ci =
∑ p−1

2
a=1 a

p−1−i.

Proof. See Appendix C

Remark 1. The polynomial QLTS (X,Y) yields the inter-
polation polynomial of the sign function sgnS′ defined
on S ′ = [−(p − 1)/2, (p − 1)/2] as sgnS′(x) = 1 if x < 0
and sgnS′(x) = 1 if x ≥ 0. In particular, we have

QsgnS′ (X) = QLTS (X, 0) . (6)

Complexity analysis. The above theorem implies that
the less-than function can be expressed by a univariate
polynomial of degree p − 1. In general, such polynomi-
als are evaluated in p − 1 multiplications according to
Horner’s method.

To reduce the number of non-scalar multiplications,
we can resort to the Paterson-Stockmeyer algorithm [34]
that requires

√
2(p− 1) + log2(p− 1) +O(1) such mul-

tiplications. However, we can improve this complexity
by exploiting the fact that the polynomial in (5) has
only one coefficient with an even index, the leading one.
Thus, if Z = X − Y , we can rewrite (5) as follows

αp−1Z
p−1 + Z

p−3∑
i=0,even

αi+1Z
i = αp−1Z

p−1 + Zg(Z2)

where αi =
∑ p−1

2
a=1 a

p−1−i and g(X) is a polynomial
of degree (p − 3)/2. To evaluate g(X), the Paterson-
Stockmeyer algorithm requires

√
p− 3 + log2

(
p−3

2
)

+
O(1) non-scalar multiplications. Furthermore, the pre-
processing phase of this algorithm computes the powers
Z2, Z4, . . . , Z2k and Z4k, Z8k, . . . , Z2rk with 2k(2r−1) =
p− 3. We can use these powers to compute the leading
term in r non-scalar multiplications, namely

Z2Z2kZ4k · · ·Z2rk = Z2+2k(2r−1) = Z2+p−3 = Zp−1.

Since the optimal k is about
√

(p− 3)/2, we obtain that
r must be about log2

√
p− 3. Hence, the total non-scalar

complexity of evaluating (5) is equal to√
p− 3 + 3 log2 (p− 3)

2 +O(1).

Faster homomorphic comparison operations for BGV and BFV 254

Remark 2. A careful reader can notice that the leading
term of (5) is equal to (X − Y)p−1, which is the heavi-
est part of the equality circuit EQS(X,Y). Thus, we can
get EQS(X,Y) almost for free (at the cost of one homo-
morphic subtraction) after evaluating LTS(X,Y), which
saves O(log(p− 1)) non-scalar multiplications.

This feature of the univariate circuit allows to com-
pute all the equality operations while comparing large
integers using the less-than function LT from (1). This
saves O((d′ − 1)(k − 1) log(p − 1)) homomorphic multi-
plications, thus leading to a better running time than
for the bivariate circuit.

The downside of the univariate circuit is that only
(1/2)d of the plaintext space is used to encode input
integers in comparison to the bivariate method.

3.3 Min/max function

Given the less-than function LT defined on some set, one
can compute the minimum of two elements x, y of this
set in the following generic way

min(x, y) = x · LT(x, y) + y · (1− LT(x, y))
= y + (x− y) · LT(x, y) . (7)

Notice that the input difference x−y naturally emerges
in this expression, thus hinting that the univariate cir-
cuit from (5) might be useful here. Indeed, by replacing
X − Y with a variable Z we obtain the univariate poly-
nomial representation of the minimum function on the
set S = [0, (p− 1)/2]

QminS (X,Y) = Y + Z ·QLTS (X,Y)

= Y + p+ 1
2 Z +

p−1
2∑
i=1

Z2i

p−1
2∑

a=1
ap−2i

= p+ 1
2 (X + Y) +

p−1
2∑
i=1

Z2i

p−1
2∑

a=1
ap−2i

= p+ 1
2 (X + Y) + g(Z2) ,

where g(X) is a polynomial of degree (p−1)/2. As a re-
sult, minS(x, y) can be computed with O(

√
p− 1) non-

scalar multiplications via the Paterson-Stockmeyer al-
gorithm.

Following the above reasoning, the maximum func-
tion can be computed with the following polynomial

QmaxS (X,Y) = p+ 1
2 (X + Y)−

p−1
2∑
i=1

Z2i

p−1
2∑

a=1
ap−2i.

Remark 3. Maximum and minimum functions are basic
building blocks in the design of neural networks. For ex-
ample, one of the most popular activation functions in
neural networks is the rectifier, or ReLU, which is equal
to max(x, 0). By analogy with (7), we have max(x, 0) =
x · (1− sgnS′(x)) where S ′ = [−(p− 1)/2, (p− 1)/2] (see
Remark 1). Thus, Eq. (6) yields the following interpo-
lation polynomial of the ReLU function on S ′

QReLUS′ (X) = X · (1−QsgnS′ (X))

= p+ 1
2 X −

p−1
2∑
i=1

X2i

p−1
2∑

a=1
ap−2i.

3.4 Impact on the overall complexity

In this section, we summarize the complexities of our
method as compared to the work of Tan et al. for the
evaluation of the less-than function using the lexico-
graphical order method described in Section 2.

For fixed p and d, Tan et al. [37, Section 4.4] de-
termined that the depth of the circuit evaluating the
less-than function of two b-bits integers is equal to

blog2 dc+ blog2(p− 1)c+ blog2(logp 2b)/d)c+ 4. (8)

Note that our algorithms do not decrease the depth of
the circuit. Similarly, Tan et al. showed that the number
of homomorphic multiplications required to evaluate the
less-than function of two b-bit integers with the bivariate
interpolation is

d · (T + dlog2(p− 1)e+ dlog2 de) + blog2(logp 2b)/d)c+ 2.

where T is the number of homomorphic multiplications
required to evaluate the comparison circuit over Fp. In
the work of Tan et al. T = 3p− 5, while in our case it is
T = 2p− 6.

The univariate method saves even more multiplica-
tions since one can extract 1− EQS(x, y) while comput-
ing LTS(x, y). Hence, we obtain EQS(x, y) almost for free
when evaluating the lexicographical order (Remark 2).
Thus, in this case the comparison of two b-bits integers
requires

d · (T + dlog2 de) + blog2(logp 2b)/d)c+ 2.

with T ≈
√

2p− 4 + 3(log2(2p − 4))/2 by using the
Paterson-Stockmeyer algorithm.

Faster homomorphic comparison operations for BGV and BFV 255

4 Applications
The previous results can help improving the perfor-
mance of any task involving comparisons performed
homomorphically such as private database queries, k-
nearest neighbour search, top-k selection or step func-
tion evaluation in neural nets. In this section we choose
to demonstrate the gain brought by our approach for
sorting and min/max search which are subroutines
needed for the aforementioned tasks.

4.1 Sorting

To demonstrate the efficiency of our comparison algo-
rithms, we applied them to a popular computational
task that demands multiple comparisons, sorting. The
best homomorphic sorting algorithm in terms of run-
ning time is the direct sorting algorithm due to Çetin
et al. [12]. For a given array A = [a0, . . . , aN−1], this
algorithm computes a comparison matrix L defined by

Lij =


LT(ai, aj) if i < j,

0 if i = j,

1− LT(aj , ai) if i > j.

Example : for A = [5, 1, 7, 2, 3], the matrix L ∈
{0, 1}5×5 is given by:

L =


0 0 1 0 0
1 0 1 1 1
0 0 0 0 0
1 0 1 0 1
1 0 1 0 0


It is easy to see that the Hamming weight of the

ith row of L is unique and equal to the array index
of ai after sorting the array A in the descending order.
For example, the zero weight indicates that there are no
elements of A bigger than ai. Thus, ai has a zero index
in A after sorting; in other words, ai is the maximum
element of A.

Let A′ be a sorted version of A in the descending
order. To compute A′[i] for any i ∈ [0, N − 1], we homo-
morphically select an element aj such that wt(L[j]) = i.
This can be done with the following sum

A′[i] =
N−1∑
j=0

EQ[0,N−1](i, wt (L[j])) · aj . (9)

Note that the equality function should be defined on
the set [0, N − 1], which implies that N must be smaller
than the plaintext modulus p.

Remark 4. Since the matrix L is defined by N(N−1)/2
elements, it can be costly to keep it in memory for
large N . Instead, we can compute the Hamming weights
of its rows by iteratively computing one comparison
LT(ai, aj) with i < j at a time. To achieve this, we create
an array of size N initialized with zeros that eventually
will store the Hamming weights. Then, we add the out-
come of LT(ai, aj) to the ith element of this array and
the result of 1−LT(ai, aj) to the jth element. In this ap-
proach, only N elements of the Hamming weight array
are being kept in RAM.

The direct sorting algorithm requires N(N − 1)/2 less-
than operations to compute the matrix L and N2 equal-
ity operations to compute sorted elements of A′. While
computing equalities, we can reduce the total number of
non-scalar multiplications if N is large enough. Recall
EQS needs M = log2(p − 1) + wt(p − 1) − 1 non-scalar
multiplications for any S ⊆ [0, p−1]. Hence, to compute
EQ[0,N−1](i, wt (L[j])) for all i ∈ [0, N − 1], we should
perform NM multiplications. Using Lemma 3 (see Ap-
pendix A), we can rewrite:

EQ[0,N−1] (i, wt (L[j])) = 1−
p−1∑
k=0

ik · wt (L[j])p−1−k .

If we precompute the powers wt (L[j])p−1−k, then we
need only p − 2 non-scalar multiplications to compute
all the equalities EQ(i, wt (L[j])) as the index i is not en-
crypted. Hence, if N > (p− 2)/M , this approach results
in a smaller number of non-scalar multiplications. Yet,
this method introduces p− 1 scalar multiplications (by
powers ik) and p − 2 additions. However, these oper-
ations are much faster in HE schemes than non-scalar
multiplication such that the gain from reducing non-
scalar multiplications becomes dominant.

The main advantage of direct sorting is that its
multiplicative depth is independent of the array length,
namely d = d (LT) + dlog2(p− 1)e + 1 with d (LT) given
in Equation (8).

This allows to avoid large encryption parameters
and costly bootstrapping operations.

4.2 Minimum and maximum of an array

Another application of our comparison algorithms is
concerned with finding a minimum (or maximum) ele-
ment of an array. To find the minimum of an array with
N elements, at least N − 1 calls of the pairwise mini-
mum function are required [21, Chapter 9], which can
be achieved, for instance, by the tournament method.

Faster homomorphic comparison operations for BGV and BFV 256

a0

a1

a2

a3

min

min

min min(a0, a1, a2, a3)

Fig. 1. The tournament method of finding the minimum of an
array. In each stage, the array elements are divided into pairs.
Only minimum of a pair go to the next stage.

The tournament method consists of dlogNe itera-
tions. In each iteration, the input array is divided into
pairs. If the array length is odd, one element is stashed
for the next iteration. Then, the maximum of each pair
is removed from the array. The algorithm stops when
only one element is left; this is the minimum of the in-
put array, see Figure 1. Unfortunately, the tournament
method has a big multiplicative complexity, namely
dlogNe · d(min(x, y)). In the HE world, this enforces us
to use either impractical encryption parameters [38] or
a slow bootstrapping function.

To reduce the depth of the array minimum algo-
rithm, we can combine the tournament method and
direct sorting. Let A = [a0, . . . , aN−1] be an input
array. First, we perform T iterations of the tourna-
ment algorithm, which leaves us with an array A′ =
[a′0, . . . , a′N ′−1] of length N ′ =

⌈
N/2T

⌉
containing mini-

mal elements of A. Then, we can find the minimum by
computing the comparison table L as in direct sorting
and extracting one of the minimal elements. If M(f) is
the non-scalar multiplicative complexity of a function
f , then the total number of non-scalar multiplications
to find the minimum of an array is approximately equal
to

(N −N ′) ·M (min(x, y)) + N ′(N ′ − 1)
2 ·M (LT)

+M(Extraction).

The extraction of a minimum element can be done
with two methods. In the first approach, we use the fact
that the Hamming weight of the comparison table row
corresponding to the minimum is equal to N ′−1. Hence,

we can retrieve the minimum as in (9)

min(A′) =
N ′−1∑
i=0

EQ[0,N ′−1](N ′ − 1, wt (L[i])) · a′i. (10)

Here, the multiplicative depth is equal to

T · d(min(x, y)) + d(LT) + dlog2(p− 1)e+ 1

which is independent of the input array length N . Since
EQ[0,N ′−1] need log2(p − 1) + wt(p − 1) − 1 non-scalar
multiplications, then the number of non-scalar multipli-
cations needed to extract the array minimum is equal
to

M(Extraction) = N ′(log2(p− 1) + wt(p− 1)− 1).

Shaul et al. [35] proposed another circuit to extract the
array minimum that exploits the fact that the compar-
ison table row related to the minimum contains only 1
except for the main diagonal entry. In other words, the
product of

∏N ′

j=1,j 6=i Lij = 1 if and only if a′i = min(A′).
Hence, the minimal element is equal to

min(A′) =
N ′−1∑
i=0

a′i ·
N ′∏

j=1,j 6=i

Lij . (11)

The resulting depth of this circuit amounts to

T · d (min(x, y)) + d(LT) +
⌈
log(N ′ − 1)

⌉
+ 1.

This extraction circuit requires the following number of
multiplications

M(Extraction) = N ′(N ′ − 2).

This implies that for small enough N ′, Shaul’s cir-
cuit (11) has a smaller depth or/and a smaller multipli-
cation complexity than the circuit in (10). Furthermore,
Shaul’s circuit supports any length N ′ > p, whereas (10)
requires N ′ ≤ p such that wt(L[i]) do not overflow mod-
ulo p.

In the experiments conducted in Section 5, we use
the best of these approaches for given N , T and p.

5 Implementation results
We implemented the lexicographic order algorithm (LT,
Eq. 1) using the BGV scheme [11]. The code is writ-
ten in the HElib library [27]. For a fair comparison with
the prior work, we also implemented the algorithm of
Tan et al. [37]. The code is publicly available via https:

https://github.com/iliailia/comparison-circuit-over-fq

Faster homomorphic comparison operations for BGV and BFV 257

//github.com/iliailia/comparison-circuit-over-fq. In all
the experiments, we used an average commodity laptop
equipped with an Intel Dual-Core i5-7267U CPU (run-
ning at 3.1 GHz) and 8 GB of RAM. Multi-threading
was turned off.

In the results presented below, the following nota-
tion is used:

p : the plaintext modulus of the BGV scheme;
q : the initial ciphertext modulus of the BGV scheme;
m : the cyclotomic order of the ring R;
n : the degree of the ring R (n = φ(m));
` : the number of SIMD slots;
d : the dimension of a slot subspace used for digit en-

coding (d′ in Eq. 1);
l : the dimension of digit vectors encoding input inte-

gers over Fdp;
k : the number of input integers encoded in one cipher-

text (k = b`/lc).

In all the experiments, the encryption parameters
of BGV are chosen according to the following strategy.
The plaintext modulus p is a prime number such that
SIMD slots are isomorphic to a finite field. Next, we
choose the order m of R with large enough n to support
our homomorphic algorithms (n > 12000). The order
of p modulo m should be as small as possible, which
maximizes the number of SIMD slots, thus reducing the
amortized running time of our algorithms. In addition,
m is chosen to be a prime number or a product of a
few primes. This constraint makes sure that the slot
permutation group is cyclic or a product of a few cyclic
groups, which results in a better performance (for more
details, see [26, Appendix C.3]).

Every input integer is encoded into exactly one ci-
phertext. First, it is decomposed into a vector of l digits
over Fdp (see Section 2.2.3). Then each digit embedded
into one SIMD slot. Thus, each ciphertext encrypts ex-
actly k = `/l integers.

Note that although our algorithms save some homo-
morphic multiplications as compared to [37], the depth
of the circuits remains unchanged. Since the ciphertext
size depends mainly on the depth of the circuit one
wants to evaluate and the desired level of security, we
obtain similar bandwidth requirements than previous
works.

To compare our algorithms with the state of the
art, we ran the lexicographic order algorithm (LT) to
compute the less-than function on 64-bit integers. The
results of these experiments are presented in Table 1. In
addition, we ran the direct sorting and the array min-

3 5 7 11 13 17 19 23 29 31

1.61 1.71
2.29

2.83
3.38

3.74

4.92
5.16 5

7

1.29
1.71 1.78 1.55 1.54 1.44 1.46 1.43 1.46 1.49

plaintext modulus p

Sp
ee

du
p

fa
ct

or
ov

er
[3

7]

Univariate circuit
Bivariate circuit

Fig. 2. Less-than function via different methods. The running
time speedup factor of our lexicographic order algorithms over the
algorithm of Tan et al. [37]. These factors are computed using
the data from Table 1.

imum algorithms from Section 4; see Tables 3 and 4,
respectively.

We ran our algorithms with p ∈ [3, 659]. However,
Table 1 contains the best results for small p’s, where the
bivariate and the univariate comparison circuits have a
comparable running time. Table 2 contains the results
with the best observed amortized running time. For the
sorting and the array minimum applications (Tables 3
and 4), we showed only the results with p and m sup-
porting reasonable security levels and giving the best
running time for arrays of length N = 64.

As shown in Table 1 and Figure 2, our lexicographic
order circuits have a better running time than the prior
work of Tan et al. [37] even for small plaintext mod-
uli. In particular, using our bivariate circuit, the less-
than function is 1.71 times faster than with the cir-
cuit of Tan et al. on their fastest set of parameters
((p, d, l) = (5, 7, 4)). The best running time per integer
was achieved by our univariate circuit, which outper-
forms any bivariate circuit for any p > 5 at the cost
of larger encryption parameters. As shown in Figure 2,
the speedup factor of the lexicographic order with the
univariate circuit over [37] is increasing with the plain-
text modulus. This trend is perturbed when p = 23 and
29 because the structure of the related slot permuta-
tion groups introduces additional computational over-
head and ciphertext noise, thus leading to larger en-
cryption parameters.

Table 2 shows that for p = 131, the univariate cir-
cuit takes only 11 milliseconds to compare two 64-bit

https://github.com/iliailia/comparison-circuit-over-fq

Faster homomorphic comparison operations for BGV and BFV 258

(p,m, n) Type (d, l) log2 q λ k Total time, s Amortized time
per slot, ms

(3, 34511, 34510)
[37] (6, 7) 324 298 290 26.24 90
B (6, 7) 324 298 290 20.17 70
U (16, 4) 472 189 507 28.45 56

(5, 19531, 19530)
[37] (7, 4) 324 155 697 24.97 36
B (7, 4) 324 155 697 14.50 21
U (7, 6) 354 141 465 9.89 21

(7, 20197, 19116)
[37] (6, 4) 354 137 531 37.50 71
B (6, 4) 354 137 531 21.35 40
U (8, 4) 406 110 531 16.53 31

(11, 15797, 15796)
[37] (5, 4) 342 162 359 35.20 99
B (5, 4) 342 162 359 22.76 64
U (5, 5) 378 145 287 9.79 35

(13, 30941, 30940)
[37] (5, 4) 354 338 1547 82.02 54
B (5, 4) 354 338 1547 54.05 35
U (4, 6) 378 313 1031 15.56 16

(17, 41761, 41760)
[37] (4, 4) 413 402 1305 130.81 101
B (4, 4) 413 402 1305 91.14 70
U (7, 3) 472 344 1740 45.29 27

(19, 29989, 29988)
[37] (4, 4) 378 302 833 101.75 123
B (4, 4) 378 302 833 69.92 84
U (5, 4) 385 296 833 20.76 25

(23, 37745, 30192)
[37] (5, 3) 413 275 838 194.41 232
B (5, 3) 413 275 838 135.40 162
U (9, 2) 456 245 1258 56.49 45

(29, 18157, 17820)
[37] (5, 3) 360 175 990 103.28 105
B (5, 3) 360 175 990 70.82 72
U (6, 3) 413 150 990 19.98 21

(31, 52053, 34700)
[37] (5, 3) 512 252 2313 437.11 189
B (5, 3) 512 252 2313 293.27 127
U (4, 4) 512 252 1735 46.58 27

Table 1. Less-than function via different methods. The running time of our lexicographic order algorithms and the algorithm of Tan
et al. [37] to compare 64-bit integers with encryption parameters supporting λ bits of security. The second column (Type) indicates
which comparison circuit is used: the univariate (U), bivariate from this work (B) or bivariate one from [37]. The total time is averaged
over 50 trials.

integers, which is more than 3 times faster than the
best running time achieved by the circuit of Tan et al.

Table 3 illustrates that our homomorphic sorting
implementation achieves the best running time in the
existing literature. Note that the best result [12] in this
area is based on an SHE scheme that was successfully
attacked by Albrecht et al. [2]. Hence, this result is hard
to compare directly to our work.

The existing literature on homomorphic array mini-
mum/maximum algorithms [35, 38] is based on the tech-
niques described in Section 4.2. Hence, our improvement
of comparison circuits automatically results in a better
performance over these works. For example, Togan et
al. [38] needed 346.9 seconds to find maximal elements

of 960 arrays of 16 8-bit integers, which is 361 millisec-
onds per array. Our work can perform this task in 74
milliseconds, see Table 4. To find the minimum of 64
32-bit integers, our array minimum algorithm requires
about 9.5 seconds.

5.1 Comparison to other HE schemes

As mentioned in the introduction, there are three types
of HE schemes suitable in different use cases includ-
ing TFHE, CKKS and BGV/BFV. Our algorithms are
designed for BGV/BFV, which support SIMD packing
and are the most efficient FHE schemes for exact com-

Faster homomorphic comparison operations for BGV and BFV 259

(p,m, n) (d, l) log2 q λ k Total time, s Amortized time
per slot, ms

(131, 17293, 17292) (3, 4) 431 96 1441 16.07 11
(167, 28057, 28056) (3, 4) 494 146 2338 30.69 13
(173, 30103, 30102) (2, 5) 521 148 2006 24.57 12

Table 2. Less-than function via the univariate circuit. The best empirical running time of our lexicographic order algorithm to com-
pare 64-bit integers with encryption parameters supporting λ bits of security. The algorithm is based on the univariate circuit. The
total time is averaged over 50 trials.

N log2 q #Trials Average
total
time, s

Amortized
time per
slot, ms

Amortized
time
per slot,
ms [12]

8-bit integers (d = 2, l = 1, k = 9352)

4 589 32 186.28 20 140
8 599 20 867.46 93 690
16 599 20 3652.23 391 3140
32 599 20 14769.23 1579 13900
64 604 10 60351.02 6453 60000

32-bit integers (d = 3, l = 2, k = 4676)

4 659 20 299.17 64 200
8 671 20 1356.19 290 944
16 671 20 5700.12 1219 4280
32 684 20 23017.03 4922 18600
64 684 10 89972.27 19241 49700

Table 3. Sorting. The running time needed to sort N 8-bit or
32-bit integers with p = 167, m = 28057 and n = 28056. The
minimal security level is 92 bits according to the LWE estima-
tor [3]. Note that the amortized timing per slot from [12] is ob-
tained with the LTV scheme [32], which was attacked by Albrecht
et al. [2].

putation in arithmetic circuits. However, the amortized
running time per data value of our comparison algo-
rithms is comparable to efficient FHE schemes for bi-
nary circuits (TFHE) and HE supporting approximate
arithmetic over complex numbers (CKKS).

In Table 5, our implementation of the less-than
function is compared to the implementations of this
function in TFHE [19, 20] and CKKS [15].

Chilloti et al. [19, 20] constructed a deterministic
weighted automata that can compute the maximum
function using the TFHE scheme. The same automata
can compute the less-than function without any per-
formance loss. In this case, the running time of the
less-than function of two b-bit integers takes 170b mi-
croseconds on a hardware similar to ours and with the
encryption parameters supporting at least 152 bits of
security. This security level might be lowered by a re-

N T log2 q #Trials Average to-
tal time, s

Amortized time
per slot, ms

8-bit integers (d = 3, l = 1, k = 5220)

2 1 232 20 12.35 2.37
4 2 406 20 50.55 9.68
8 3 579 20 151.75 29.07
16 4 766 20 386.87 74.11
32 3 825 20 883.68 169.29
64 3 854 20 2111.56 404.51

32-bit integers (d = 6, l = 2, k = 2610)

2 1 406 20 37.71 14.54
4 2 753 20 157.80 60.46
8 1 825 20 506.24 193.96
16 1 839 20 1694.15 649.10
32 1 854 20 6440.27 2467.54
64 1 884 20 24986.04 9573.20

Table 4. Array minimum. The running time needed to find the
minimum of N 8-bit or 32-bit integers with p = 17, m = 41761
and n = 41760. The parameter T denotes the number of the
tournament method stages. The minimal security level is 121 bits
according to the LWE estimator [3].

cent attack of Espitau et al. [23]. Note that this running
time is achieved in the leveled mode of TFHE, i.e. with-
out bootstrapping. Unfortunately, we could not manage
to run the code of this implementation on our machine.

Cheon et al. [15] designed a polynomial approxima-
tion of the less-than function over real numbers. Since
the precision of this approximation depends on the ci-
phertext noise which cannot be reduced in CKKS, only
a few consecutive comparisons are possible to perform
correctly unlike in TFHE and BGV/BFV. Nevertheless,
the number of SIMD slots in CKKS is always half of the
ring dimension (n/2), which significantly reduces the
amortized running time per value.

We ran the comparison method of Cheon et al. on
our machine with multi-threading turned off. Since the
implementation in [15] uses parallelization with 8 cores,
our running time of this method presented in Table 5 is
significantly larger than in [15]. The encryption param-

Faster homomorphic comparison operations for BGV and BFV 260

eters of the CKKS scheme are set to support a security
level of at least 128 bits.

Our implementation runs with p = 131, m = 17293
(n = 17292), which corresponds to 5764 integers of 8-16
bits or 2882 20-bit integers encoded into one ciphertext.
The encryption parameters corresponds to a security
level of at least 126 bits.

Bit
length

FHE scheme Total
time, s

Amortized time
per slot, ms

8
TFHE 0.001* 1.36*
CKKS 89.61 1.37
BGV(this paper) 7.09 1.23

12
TFHE 0.002* 2.04*
CKKS 127.54 1.95
BGV(this paper) 7.09 1.23

16
TFHE 0.003* 2.72*
CKKS 296.96 4.53
BGV(this paper) 12.11 2.10

20
TFHE 0.003* 3.4*
CKKS 373.76 5.70
BGV(this paper) 8.66 3.01

Table 5. Comparison with other HE schemes. Total and amor-
tized running time of the less-than function implemented with dif-
ferent HE schemes including TFHE, CKKS and BGV. Note that
TFHE does not support SIMD packing, which implies that the
total and amortized running time of this scheme are the same.
The encryption parameters of each scheme are set to support the
following security levels: 152 bits for TFHE (might be smaller due
to [23]), 128 bits for CKKS and 126 bits for BGV.
*TFHE timings are estimated from [20].

As shown in Table 5, our algorithm for the less-
than function demonstrates a similar performance as
the TFHE-based implementation and is up to 2 times
faster than the CKKS-based work. This means that in
use cases that involve arithmetic and non-arithmetic
functions (e.g. artificial neural networks) one might re-
sort to only an HE scheme supporting exact arithmetic
circuits (i.e. BGV/BFV) instead of combining it with
an HE scheme efficient for a non-arithmetic part of the
computation (i.e. TFHE).

6 Conclusion
In this work, we constucted more efficient homomor-
phic circuits of comparison operations for the BGV and
BFV FHE schemes. Our results are based on structural

properties of comparison functions over finite fields. We
proved that less-than functions of two input variables x
and y can be represented either by bivariate polynomi-
als or univariate polynomials (in variable z = x−y) with
multiple zero coefficients, which simplifies computation.
Moreover, our computation of the univariate less-than
functions yields the output of the equality function al-
most for free, which allowed us to speed up the lex-
icographic order of vectors over finite fields and thus
comparison of large integers encoded by these vectors.

The implementation of our circuits in HElib is faster
than the state-of-the-art work [37] by more than a fac-
tor of 3. Furthermore, the running time of our circuits
is comparable to implementations of comparison algo-
rithms in TFHE, which is believed to be the most ef-
ficient FHE scheme for non-arithmetic homomorphic
computations. As a side contribution, we applied our
comparison algorithms to the tasks of sorting and array
minimum search. In both cases we achieved the best
running time present in the literature. For instance, our
sorting algorithm can sort 4676 batches of 64 32-bit in-
tegers in about 25 hours, which results in an amortized
time equal to about 19 seconds per batch. Our minimum
circuit can find minimal elements of 2610 batches of 64
32-bit integers in approximately 7 hours; the amortized
time is 9.5 seconds per batch.

We hope that this work will draw attention to the
study of arithmetic circuits over finite fields represent-
ing non-arithmetic functions over integers, thus leading
to practically efficient homomorphic implementations of
useful algorithms.

Acknowledgments
This work was supported in part by the Re-
search Council KU Leuven grant C14/18/067, and
by CyberSecurity Research Flanders with refer-
ence number VR20192203. The first author is sup-
ported by a Junior Postdoctoral Fellowship from
the Research Foundation – Flanders (FWO). The au-
thors would like to thank the anonymous reviewers
whose comments helped to improve this paper.

References
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding,

Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey
Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele

Faster homomorphic comparison operations for BGV and BFV 261

Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and
Vinod Vaikuntanathan. Homomorphic encryption security
standard. Technical report, HomomorphicEncryption.org,
Toronto, Canada, November 2018.

[2] Martin R. Albrecht, Shi Bai, and Léo Ducas. A sub-
field lattice attack on overstretched NTRU assump-
tions - cryptanalysis of some FHE and graded encoding
schemes. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
153–178. Springer, Heidelberg, August 2016.

[3] Martin R Albrecht, Rachel Player, and Sam Scott. On the
concrete hardness of learning with errors. Journal of Mathe-
matical Cryptology, 9(3):169–203, 2015.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V.
Setty. PIR with compressed queries and amortized query
processing. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 962–979. IEEE Computer Society Press, May
2018.

[5] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. Faster
Homomorphic Encryption is not Enough: Improved Heuristic
for Multiplicative Depth Minimization of Boolean Circuits.
In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA
2020, pages 345–363, Cham, 2020. Springer International
Publishing.

[6] J. Bajard, P. Martins, L. Sousa, and V. Zucca. Improving
the Efficiency of SVM Classification With FHE. IEEE Trans-
actions on Information Forensics and Security, 15:1709–
1722, 2020.

[7] Joppe W. Bos, Wouter Castryck, Ilia Iliashenko, and Fred-
erik Vercauteren. Privacy-friendly forecasting for the smart
grid using homomorphic encryption and the group method
of data handling. In Marc Joye and Abderrahmane Nitaj, ed-
itors, Progress in Cryptology - AFRICACRYPT 2017, pages
184–201, Cham, 2017. Springer International Publishing.

[8] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dim-
itar Jetchev. Chimera: Combining ring-lwe-based fully ho-
momorphic encryption schemes. Journal of Mathematical
Cryptology, 14(1):316–338, 2020.

[9] Florian Bourse, Michele Minelli, Matthias Minihold, and
Pascal Paillier. Fast Homomorphic Evaluation of Deep Dis-
cretized Neural Networks. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology – CRYPTO
2018, pages 483–512, Cham, 2018. Springer International
Publishing.

[10] Zvika Brakerski. Fully homomorphic encryption without
modulus switching from classical GapSVP. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 868–886. Springer, Heidelberg,
August 2012.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(Leveled) Fully Homomorphic Encryption without Bootstrap-
ping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, page 309–325,
New York, NY, USA, 2012. Association for Computing Ma-
chinery.

[12] Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas.
Depth optimized efficient homomorphic sorting. In Kristin E.
Lauter and Francisco Rodríguez-Henríquez, editors, LATIN-
CRYPT 2015, volume 9230 of LNCS, pages 61–80. Springer,
Heidelberg, August 2015.

[13] J. H. Cheon, M. Kim, and M. Kim. Optimized Search-and-
Compute Circuits and Their Application to Query Evalua-
tion on Encrypted Data. IEEE Transactions on Information
Forensics and Security, 11(1):188–199, 2016.

[14] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song. Homomorphic encryption for arithmetic of approx-
imate numbers. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology – ASIACRYPT 2017, pages
409–437, Cham, 2017. Springer International Publishing.

[15] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Ef-
ficient homomorphic comparison methods with optimal
complexity. Cryptology ePrint Archive, Report 2019/1234,
2019. https://eprint.iacr.org/2019/1234, to appear in ASI-
ACRYPT 2020.

[16] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun-Hee
Lee, and Keewoo Lee. Numerical method for comparison on
homomorphically encrypted numbers. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part II, vol-
ume 11922 of LNCS, pages 415–445. Springer, Heidelberg,
December 2019.

[17] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-
and-compute on encrypted data. In Michael Brenner, Nico-
las Christin, Benjamin Johnson, and Kurt Rohloff, editors,
Financial Cryptography and Data Security, pages 142–159,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Faster Fully Homomorphic Encryption: Boot-
strapping in Less Than 0.1 Seconds. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Faster packed homomorphic operations and ef-
ficient circuit bootstrapping for TFHE. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, vol-
ume 10624 of LNCS, pages 377–408. Springer, Heidelberg,
December 2017.

[20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. TFHE: Fast fully homomorphic encryption over
the torus. Journal of Cryptology, 33(1):34–91, January
2020.

[21] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest,
and Clifford Stein. Introduction to algorithms. MIT press,
2009.

[22] Léo Ducas and Daniele Micciancio. FHEW: Bootstrap-
ping Homomorphic Encryption in Less Than a Second. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology – EUROCRYPT 2015, pages 617–640, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[23] Thomas Espitau, Antoine Joux, and Natalia Kharchenko.
On a hybrid approach to solve small secret LWE. Cryptology
ePrint Archive, Report 2020/512, 2020. http://eprint.iacr.
org/2020/512.

[24] Junfeng Fan and Frederik Vercauteren. Somewhat Practical
Fully Homomorphic Encryption. Cryptology ePrint Archive,
Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

[25] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In Michael Mitzenmacher, editor, 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009.

https://eprint.iacr.org/2019/1234
http://eprint.iacr.org/2020/512
http://eprint.iacr.org/2020/512
https://eprint.iacr.org/2012/144

Faster homomorphic comparison operations for BGV and BFV 262

[26] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Ho-
momorphic Encryption with Polylog Overhead. In David
Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, pages 465–482, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[27] HElib: An implementation of homomorphic encryption
(2.0.0). https://github.com/homenc/HElib, January 2021.
IBM.

[28] Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide
Numata. Polynomial expressions of p-ary auction functions.
Journal of Mathematical Cryptology, 13(2):69–80, 2019.

[29] M. Kim, H. T. Lee, S. Ling, and H. Wang. On the Effi-
ciency of FHE-Based Private Queries. IEEE Transactions on
Dependable and Secure Computing, 15(2):357–363, 2018.

[30] Miran Kim and Kristin Lauter. Private Genome Analysis
Through Homomorphic Encryption. BMC medical informat-
ics and decision making, 15, December 2015.

[31] Rudolf Lidl and Harald Niederreiter. Introduction to finite
fields and their applications. Cambridge University Press,
1986.

[32] Adriana López-Alt, Eran Tromer, and Vinod Vaikun-
tanathan. On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, 44th ACM STOC,
pages 1219–1234. ACM Press, May 2012.

[33] H. Narumanchi, D. Goyal, N. Emmadi, and P. Gauravaram.
Performance analysis of sorting of fhe data: Integer-wise
comparison vs bit-wise comparison. In 2017 IEEE 31st In-
ternational Conference on Advanced Information Networking
and Applications (AINA), pages 902–908, 2017.

[34] Michael S Paterson and Larry J Stockmeyer. On the number
of nonscalar multiplications necessary to evaluate polynomi-
als. SIAM Journal on Computing, 2(1):60–66, 1973.

[35] Hayim Shaul, Dan Feldman, and Daniela Rus. Secure k-
ish nearest neighbors classifier. Proceedings on Privacy
Enhancing Technologies, 2020(3):42–61, 2020.

[36] N. P. Smart and F. Vercauteren. Fully Homomorphic SIMD
Operations. Des. Codes Cryptography, 71(1):57–81, April
2014.

[37] B. H. M. Tan, H. T. Lee, H. Wang, S. Q. Ren, and
A. M. M. Khin. Efficient private comparison queries over
encrypted databases using fully homomorphic encryption
with finite fields. IEEE Transactions on Dependable and
Secure Computing, pages 1–1, 2020.

[38] Mihai Togan, Luciana Morogan, and Cezar Plesca.
Comparison-based applications for fully homomorphic en-
crypted data. Proceedings of the Romanian Academy-Series
A: Mathematics, Physics, Technical Sciences, Information
Science, 16:329, 2015.

[39] Andrew C. Yao. Protocols for Secure Computations. In
Proceedings of the 23rd Annual Symposium on Foundations
of Computer Science, SFCS ’82, page 160–164, USA, 1982.
IEEE Computer Society.

A Proof of Theorem 1
To prove Theorem 1 we need the following lemmas.

Lemma 3. For all (a, b) ∈ Z2 we have:

(a− b)p−1 =
p−1∑
i=0

aibp−1−i mod p.

Proof. Using the binomial theorem we obtain

(a− b)p−1 =
p−1∑
i=0

(
p− 1
i

)
ai(−b)p−1−i.

Computing the binomial coefficient modulo p(
p− 1
i

)
= (p− 1)!
i!(p− 1− i)!

= (p− 1)(p− 2) . . . (i+ 1)
1 · 2 . . . (p− (1 + i))

= (−1)p−1−i mod p ,

we prove the lemma.

Lemma 4. Let P (X) be a polynomial of degree d less
than p− 1. For any prime number p > 2, it holds

p−1∑
a=0

P (a) = 0 mod p.

Proof. Since
∑p−1
a=0 b = 0 mod p for any b ∈ Fp, it is

enough to prove that the sum
∑p−1
a=0 a

n = 0 mod p for
any 0 ≤ n < p − 1. Since the case n = 0 is straightfor-
ward, let us assume n > 0. Let g be a primitive element
of Fp. Since p > 2, we have g 6= 1. Thus, we can rewrite
the above sum as follows.

p−1∑
i=1

gin = gpn − gn

gn − 1 .

Since gpn ≡ gn mod p, the sum turns into zero modulo
p.

Now, we have all the ingredients to prove Theorem 1.

Proof of Theorem 1. Assume that all computations are
done modulo p. Using Lemma 3, we obtain that
PLTS (X,Y) is equal to

p−2∑
a=0

(
1−

p−1∑
i=0

Xiap−1−i

)
p−1∑
b=a+1

1−
p−1∑
j=0

Y jbp−1−j



https://github.com/homenc/HElib

Faster homomorphic comparison operations for BGV and BFV 263

Let us expand this expression distributively.

p−2∑
a=0

p−1∑
b=a+1

1−
p−1∑
i=0

Xiap−1−i −
p−1∑
i=0

Y ibp−1−i

+
p−1∑
i=0

p−1∑
j=0

XiY jap−1−ibp−1−j .

Let us compute individual polynomial coefficients. The
constant term is equal to

p−2∑
a=0

p−1∑
b=a+1

1− ap−1 − bp−1 + ap−1bp−1

=
p−2∑
a=0

p−1∑
b=a+1

1− ap−1 − 1 + ap−1 = 0 .

Coefficients byXi with i > 0 can be computed as follows

p−2∑
a=0

p−1∑
b=a+1

(
−ap−1−i)+ ap−1−ibp−1 = 0 .

Next, we compute coefficients by Y i with i > 0.

−
p−2∑
a=0

p−1∑
b=a+1

bp−1−i − ap−1bp−1−i

= −
p−1∑
b=1

bp−1−i −
p−2∑
a=1

p−1∑
b=a+1

bp−1−i − bp−1−i

= −
p−1∑
b=1

bp−1−i.

If i = p−1, this sum is equal to 1. According to Lemma 4,
it is 0 if i < p− 1.

To compute coefficients by XiY j with i, j > 0, we
will use Faulhaber’s formula below

n∑
k=1

ke = 1
e+ 1

e+1∑
i=1

(−1)δie

(
e+ 1
i

)
Be+1−i · ni ,

where δie is the Kronecker delta and Bi is the ith
Bernoulli number. This implies that there exist a poly-
nomial P (X) ∈ Fp[X] of degree e+ 1 such that

n∑
k=1

ke = P (n). (12)

Note that P (0) = 0. The coefficient by XiY j for some
positive i and j is equal to

p−2∑
a=0

p−1∑
b=a+1

ap−1−ibp−1−j =
p−1∑
b=1

bp−1−j
b−1∑
a=0

ap−1−i .

According to (12), there exist a polynomial Pi(X) of
degree p − i such that

∑b−1
a=0 a

p−1−i = Pi(b). Since
Qij(X) = Xp−1−jPi(X) has degree 2p − 1 − i − j,
Lemma 4 implies that if i+ j > p, then

p−1∑
b=1

bp−1−j
b−1∑
a=0

ap−1−i =
p−1∑
b=1

bp−1−jPi(b)

=
p−1∑
b=1

Qij(b) =
p−1∑
b=0

Qij(b)−Qij(0) = 0.

Thus, all the coefficient XiY j with i + j > p are zero,
which means that the total degree of PLTS (X,Y) is at
most p.

In addition, we consider the case when i = j and
i, j ≤ (p− 1)/2. Let us consider the following sum

p−1∑
a=0

ap−1−i
p−1∑
b=0

bp−1−i = 0 .

We can rewrite it as follows
p−1∑
a=0

ap−1−i
p−1∑
b=0

bp−1−i

= 2
p−2∑
a=0

ap−1−i
p−1∑
b=a+1

bp−1−i +
p−1∑
a=0

a2(p−1−i) .

This implies that

p−2∑
a=0

ap−1−i
p−1∑
b=a+1

bp−1−i = −1
2

p−1∑
a=0

a2(p−1−i) .

Note that the inverse of 2 is well defined modulo p since
p is an odd prime. If i < (p− 1)/2, then Lemma 4 says
the sum on the right side is zero. Thus, the coefficient by
XiY i, which is exactly the sum on the left side, is equal
to zero. If i = (p − 1)/2, the above equality yields that
the coefficient by (XY)(p−1)/2 is equal to −(p−1)/2.

B Decomposition of f(X,Y) for
3 ≤ p ≤ 7

Let Z = Y (X − Y). One non-scalar multiplication is
needed to compute Z.

p=3.
f(X,Y) = 2 .

Since the polynomial f(X,Y) is constant, it can be
computed without any homomorphic multiplication.

p=5.
f(X,Y) = 4X2 + 4X + Z .

Faster homomorphic comparison operations for BGV and BFV 264

Two non-scalar multiplications are needed to com-
pute X2 and Z.

p=7.

f(X,Y) = 1+4X(X+1)+6[X(X+1)]2+(X2+3X)Z+6Z2

In this case, four non-scalar multiplications are
needed (indicated in bold) when rewritten as follows

f(X,Y) = 1+2(X2+X)·[2+3(X2+X)]+Z·[(X2+3X)+6Z] .

C Proof of Theorem 3
Let Z = X − Y . Thus we can rewrite QLTS (X,Y) as the
univariate function χF−p , namely

QLTS (X,Y) = χF−p (Z) =
−1∑

a=− p−1
2

1− (Z − a)p−1.

Thanks to Lemma 3, we can expand (Z − a)p−1 and
obtain

−1∑
a=− p−1

2

1−
p−1∑
i=0

Ziap−1−i =
p−1∑
i=1

Zi
−1∑

a=− p−1
2

(−ap−1−i).

If i is even and i < p−1, then the ith coefficient is equal
to

−
−1∑

a=− p−1
2

ap−1−i = −

p−1
2∑

a=1
ap−1−i = −1

2

p−1
2∑

a=− p−1
2

ap−1−i.

This coefficient is equal to 0 for any even 0 < i < p− 1
thanks to Lemma 4. The (p − 1)-th coefficient is equal
to −(p−1)/2 = (p+ 1)/2 mod p. If i is odd, then we can
rewrite the ith coefficient in the following way

−
−1∑

a=− p−1
2

ap−1−i =

p−1
2∑

a=1
ap−1−i,

which finishes the proof.

	Faster homomorphic comparison operations for BGV and BFV
	1 Introduction
	1.1 Contributions
	1.2 Related art

	2 Background
	2.1 Notations
	2.2 Comparison of integers with finite fields operations
	2.2.1 Functions over finite fields
	2.2.2 Comparison of integers
	2.2.3 Comparison of large integers

	2.3 Homomorphic encryption
	2.3.1 Cyclotomic fields and Chinese remainder theorem
	2.3.2 Basic setup
	2.3.3 Homomorphic operations

	3 Optimising the comparison circuits over Fp
	3.1 Bivariate interpolation of LTS.
	3.2 Univariate interpolation of LTS
	3.3 Min/max function
	3.4 Impact on the overall complexity

	4 Applications
	4.1 Sorting
	4.2 Minimum and maximum of an array

	5 Implementation results
	5.1 Comparison to other HE schemes

	6 Conclusion
	A Proof of Theorem 1
	B Decomposition of f(X,Y) for 3p 7
	C Proof of Theorem 3

