
Proceedings on Privacy Enhancing Technologies ; 2021 (4):139–162

José Cabrero-Holgueras* and Sergio Pastrana

SoK: Privacy-Preserving Computation
Techniques for Deep Learning
Abstract: Deep Learning (DL) is a powerful solution for
complex problems in many disciplines such as finance,
medical research, or social sciences. Due to the high
computational cost of DL algorithms, data scientists of-
ten rely upon Machine Learning as a Service (MLaaS)
to outsource the computation onto third-party servers.
However, outsourcing the computation raises privacy
concerns when dealing with sensitive information, e.g.,
health or financial records. Also, privacy regulations
like the European GDPR limit the collection, distribu-
tion, and use of such sensitive data. Recent advances in
privacy-preserving computation techniques (i.e., Homo-
morphic Encryption and Secure Multiparty Computa-
tion) have enabled DL training and inference over pro-
tected data. However, these techniques are still imma-
ture and difficult to deploy in practical scenarios. In
this work, we review the evolution of the adaptation
of privacy-preserving computation techniques onto DL,
to understand the gap between research proposals and
practical applications. We highlight the relative advan-
tages and disadvantages, considering aspects such as ef-
ficiency shortcomings, reproducibility issues due to the
lack of standard tools and programming interfaces, or
lack of integration with DL frameworks commonly used
by the data science community.

Keywords: Privacy Preserving Computation, Deep
Learning, Homomorphic Encryption, Secure Multipary
Computation.

DOI 10.2478/popets-2021-0064
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

1 Introduction

Deep Learning (DL) is the term given to a set of al-
gorithms based on Artificial Neural Networks (ANNs).

*Corresponding Author: José Cabrero-
Holgueras: CERN/Universidad Carlos III de Madrid, E-
mail:jose.cabrero.holgueras@cern.ch
Sergio Pastrana: Universidad Carlos III de Madrid, E-mail:
spastran@inf.uc3m.es

The term deep refers to the aggregation of multiple
layers of neurons linked together, forming deeper net-
works (DNNs). These connected layers apply linear and
non-linear transformations to the inputs, with the latest
layer providing the output.

During training, a dataset is presented to a DL
model that learns statistical properties and adapts its
internal parameters (i.e., weights) to correctly mimic the
distribution of the data (given the output). Then, in pro-
duction or testing time, new inputs are presented to the
model, which infers the output from the learned corre-
lations. Due to its potential to solve complex problems
and to deal with large datasets, DL is popular in multi-
ple disciplines such as finances [1], cybersecurity [2] and
medical research [3]. However, there are concerns regard-
ing its security in adversarial environments. For exam-
ple, since models enclose knowledge about the training
dataset, they can be abused to leak private informa-
tion [4].

Several available DL frameworks allow researchers
and practitioners to train models using their data and
use them internally in their local business processes [5–
7]. In this scenario, privacy is protected by appropriate
access control policies and perimetral security. However,
DL solutions are costly and often require high comput-
ing and memory resources. In some scenarios where it
is not cost-effective for data scientists to acquire hard-
ware, they rely upon ‘Machine Learning as a Service’
(MLaaS). In MLaaS, clients send their data to a cloud
infrastructure to build the models and later run the in-
ference. Despite its benefits, this paradigm has multiple
privacy implications since the data sent to third parties
may get exposed. [3, 8, 9]. Another application where
DL suffers from privacy issues is when multiple entities
share their data for collaboratively training a DL model.
A recurrent yet motivating example is on medical re-
search, where various hospitals would benefit from each
others’ patient records to learn how to detect and treat
rare diseases [10]. However, current technology is not
well prepared for the application of DL on shared data
while keeping its privacy [11]. Therefore, it is essential to
understand the current knowledge, the failures, and the
future research lines in the field of Privacy-Preserving
Deep Learning (PPDL).

SoK: Privacy-Preserving Computation Techniques for Deep Learning 140

There are two main research lines related to PPDL.
On the one hand, research focuses on attacks and coun-
termeasures related to classical DL models. On the other
hand, investigations looking for privacy-by-design DL
architectures, where training and inference phases reveal
neither the model nor the data. The former is related
to an extensive research line on Adversarial Machine
Learning, which aims at disclosing potential threats
on classical ML algorithms and providing countermea-
sures [4, 12]. The latter is the research line covered in
this paper. It requires the reformulation and adaptation
of inner functions and algorithms to provide a full train-
ing or inference pipeline.

In MLaaS, the data is sent to a third party, non-
necessarily trusted. In terms of privacy, this party be-
comes an adversary, so it is needed to protect the data,
e.g., through encryption. However, the main strength
of DL is precisely its ability to learn statistical proper-
ties from the training dataset and to infer these on test
samples. Accordingly, the main challenge of PPDL is to
meet two a priori opposed requirements. On the one
hand, the DL process needs access to meaningful data
to do either training or inference. On the other hand, a
server running the DL process must not learn anything
from the data. There are various approaches to achieve
PPDL (we provide a high-level overview of them in §2).
In this work, we focus on a subset of these, referred
to as Privacy-Preserving Computation Techniques, or
PPCT,1 i.e., Homomorphic Encryption (HE) and Secure
Multi-Party Computation (SMPC). These techniques
allow to perform computations over protected data and
thus are suitable for PPDL.

However, they incur a high computational and com-
munication overhead to the already-demanding DL op-
erations. PPCT for DL have attracted the attention of
cryptographers and computer scientists in recent years,
with an increasing number of proposals published at a
fast rate. However, despite the high amount of papers
addressing this topic, the technology is still immature,
and few actual deployments are being used in privacy-
preserving scenarios [11, 13].

In this paper, we study the past and present of
the literature on PPCT applied to DL. To this end, we
have studied more than 40 papers of impact from dif-
ferent fields (see §3 for a description of the scope and
methodology used). Various works have surveyed this

1 We use PPDL to refer to all the techniques aimed at Privacy-
Preserving DL, and PPCT for the subset of cryptographic com-
putation techniques.

topic [8, 9, 11, 13–15]. However, our work differs from
these in three main aspects. First, we provide a complete
overview of the whole spectrum of privacy requirements,
techniques, and settings for PPDL, and then we nar-
row down the analysis to a subset of these techniques,
i.e., PPCT. Second, we provide a multi-disciplinary view
of the problem, showing that advances in cryptography
and computation are equally important to streamline
this technology in efficient and accurate solutions. Fi-
nally, to the best of our knowledge, we are the first to
analyze and discuss reproducibility and deployment is-
sues of the different works, which, as we show, are key
features to foster research and improve the state-of-the-
art. We believe our analysis complements previous ones
and makes a step-forward towards narrowing down the
gap between academic works and deployments in the
industry. Overall, the main contributions of this paper
are:

1. We provide a basic but solid theoretical background
that eases the understanding of current approaches
and their limitations. Concretely, we describe some
preliminaries on DL (Appendix A), and also both
basic and advance topics related to SMPC and HE
(§4).

2. We describe the main privacy requirements, tech-
niques, and settings used for PPDL, and propose
a generic pipeline that covers both centralized and
distributed architectures and the different process-
ing steps (§2). Based on the defined taxonomy, we
outline the scope and selection methodology of the
article (§3).

3. We provide a systematic description of the literature
on PPCT, with a particular focus on the strengths
and weaknesses of the different proposals, to analyze
how these complement each other (§5).

4. We analyze the current limitations that prevent the
deployment of existing solutions in real-world set-
tings, mostly due to deficiencies related to efficiency
and usability of the proposals, and discuss research
lines that the community should address in the fol-
lowing years (§6)

This work highlights relevant challenges of PPCT for DL
that require further attention from both the academy
and industry. Also, we aim at easing comprehension of
these topics to data scientists from other disciplines,
not necessarily having the required mathematical back-
ground.

SoK: Privacy-Preserving Computation Techniques for Deep Learning 141

2 Privacy Settings and
Requirements in Deep Learning

PPDL considers a scenario where a set of one or more
entities (clients) aim to privately perform DL training
or inference. If any of these processes is outsourced to
external parties (in the MLaaS paradigm), it will in-
volve network communications with one or more servers.
First, a set of input training samples is fed to the DL
pipeline outputting a model. Then, in production time,
the model is employed over a set of inference samples,
producing output predictions.

In this paper, we focus on settings with the pres-
ence of external, non-trusted third parties (in §3, we
further detail and justify the scope and methodology of
our study). In this section, we describe various proper-
ties and settings related to the privacy of DL models and
data. We first present the privacy goals and adversarial
model. We then describe different techniques proposed
to achieve such goals, and finally, a description of the
architectures and data processing phases.

2.1 Privacy Goals

The main goal of PPDL is to enable training and in-
ference while preserving the privacy of the associated
entities (i.e., data providers, or clients, and service
providers). It means that the processing cannot reveal
additional information about their data. We identify the
following privacy goals, depending on the source of in-
formation being protected:
Input Privacy aims to preserve data privacy during
training or inference [16]. This requirement is needed
when the data is sent to an external, non-trusted party
(e.g., a cloud server) that performs the computation.
Output Privacy ensures the non-revelation of private
information about the data from the products of the
training (i.e., the model) or inference (i.e., the output
predictions). This requirement is needed when the model
is exposed and used by non-trusted parties, which might
obtain information from it [17, 18]. We note that when
the training process is outsourced to a non-trusted party,
both input and output privacy are required (i.e., the
data must be kept secret, and the model must be pro-
cessed so that it does not reveal information about the
input data).
Model Secrecy is the property ensuring the non-
revelation of the attributes that define a model (i.e.,
architecture and weights).

Due to the complexity and effort required to train
the models, these have a monetary value [13]. Also, gain-
ing information about how a model works ease inference
attacks against it [19]. Consequently, model secrecy is a
desirable privacy feature. Such secrecy can refer to two
components of the model. First, Architectural Secrecy
keeps secret the organization of the layers and their in-
ternal hyper-parameters. Second, Weight Secrecy pro-
tects the values of the different weights given to the
internal neurons after the training phase. The former is
often related to intellectual property (e.g., cloud services
not willing to expose how they process the data), and
the latter with the output privacy guarantees (since the
weights are adjusted to represent statistical properties
of the training data).

2.2 Adversarial Model

Security guarantees of the protocols used in distributed
systems, where multiple parties interact, often rely on
the ideal-real world simulation paradigm [20–22]. This
paradigm considers an ideal scenario where an ideal
functionality (i.e., inviolable third-party) receives data
from participants, computes a function in a centralized
way, and sends back the result of the execution. In the
ideal scenario, an adversary can only tamper with the
inputs of corrupted parties. A distributed protocol is
considered secure if, in the real world, the information
exchanged between the different parties does not reveal
more information to an adversary than what the ideal
world reveals. According to this paradigm, two adver-
sarial models are defined depending on their capabilities
and goals:
Honest-but-curious (HBC) is a passive adversary
that complies with the protocol and does not tamper
with the data for malicious purposes. However, it tries to
learn as much information from information exchanges.
Malicious is an active adversary with stronger capabil-
ities. In addition to having the HBC adversary capabil-
ities, it can tamper with the protocol (e.g., dynamically
changing the inputs to the computation, not executing
the process, or disconnecting at any point).

2.3 Privacy Techniques

Depending on privacy requirements, the adversarial
model faced, and the specific settings, existing solutions
for PPDL often use the following different techniques
(either in isolation or combined in hybrid approaches):

SoK: Privacy-Preserving Computation Techniques for Deep Learning 142

Data Privacy techniques aim at reducing the amount
of sensitive information that data carry. The goal is that
content of data released does not reveal private informa-
tion of the entities behind it. Two main techniques are
used for this. First, Differential Privacy (DP) provides
privacy guarantees for an individual of a larger popu-
lation [23] (i.e., guaranteeing the privacy of the indi-
vidual while allowing the calculation of population-wide
statistics). DP mechanisms often rely on adding noise
to the data reducing its expressiveness. Second, Data
Anonymization aims at de-identification of data owners
through generalization (i.e., removing identifying values
from samples), omission (i.e., not including an individ-
ual in the dataset), and suppression (i.e., deleting com-
plete identifying entries from the dataset) [24–26]. Data
privacy techniques allow carrying out regular operations
on the data, making them suitable for classical DL envi-
ronments. However, they also suffer from utility reduc-
tion given the information loss from modifications.

Privacy Preserving Computation Techniques
(PPCT) rely on cryptography to hide the information
while allowing computation over it. It provides data se-
crecy (and thus privacy). There are two main approaches
for this set of techniques (often used in combinations, as
we discuss later), i.e., Secure Multiparty Computation
(SMPC) and Homomorphic Encryption (HE). Different
from the data privacy techniques, data is hidden not
causing information loss. These techniques provide in-
put privacy. However, while the amount of available in-
formation is not reduced, the available operations are
limited. Another drawback is that these techniques suf-
fer from important performance and usability challenges
when they are used in PPDL (see §4).

Trusted Execution Environments (TEEs) are
hardware components that allow for the encryption of
a portion of a process memory [27–29] and keep the
confidentiality and integrity of the data and operations
loaded. Sometimes, hardware solutions such as TEE are
used to conduct attestation of the executed code. Some
approaches rely on TEEs for DL [30–32]. They are con-
sidered to preserve input privacy, though their security
guarantees are based on hardware and are subject to
side-channel attacks [33, 34]. For example, SLALOM re-
lies on TEEs for simple private operations and executes
complex computations in an external, not necessarily
trusted GPU, using ZKP to attest their correct execu-
tion [32]. Also, Chiron proposes a virtual server with a
limited instruction set running on top of a TEE so they
can be attested [30].

Federated Learning allows to collaboratively train a
model using local data from different entities without re-
vealing it to the other parties [35]. The clients use their
local data to train a local version of the model to com-
pute the updates (i.e., gradients). Then these updates
are sent back to a central server by sharing the result-
ing weights and parameters [36], which the central server
aggregates onto a global model. By itself, this technique
suffers from security issues since the generated model
and gradients are shared, and they may be abused to
breach privacy. Thus, it is often combined with other
techniques to preserve input and output privacy, such as
HE, SMPC [37] or Differential Privacy [36, 38]. We point
out for further information to the works by Kairouz et
al. [39], and Bonawitz et al. [40]

2.4 Architectures and Processing Steps

A PPDL pipeline generally involves 3 steps (see Figure
1 in Appendix B). In the preprocessing phase, the client
and server transform the input data and the model re-
spectively to evaluate the cryptographic protocol (e.g.,
linearization of activation functions for Homomorphic
Encryption evaluation). In the privacy-preserving pro-
cessing phase, the server receives the input data from
the client and performs the actual evaluation of the cir-
cuit. Finally, the post-processing phase consists of either
reconstruction of the data from the different pieces or
the decryption of the message. Only the preprocessing
phase requires modifying the functions used internally
in DL. The other two stages merely apply the modified
model on the privatized data according to the protocol.
Thus, most contributions focus either on improving the
adaptation of DL to cryptographic protocols or creating
new protocols (or combinations of them) which reduce
the changes needed.

The paradigm of MLaaS assumes a distributed pro-
tocol where different entities communicate in a network.
Based on that, we consider two general architectures,
depending on where and how the actual computation is
done:
Centralized Architectures load the exigent process-
ing on one party (i.e., a server with enough computa-
tional resources). As such, a single server obtains the
necessary information from the client and performs most
of the computation. Clients are not required to use high
computational resources or frequent interaction with the
server. In general, in a centralized model, the original
model is only held on the server-side and is often present
in solutions with Homomorphic Encryption. Centralized

SoK: Privacy-Preserving Computation Techniques for Deep Learning 143

architectures involve complex operations, but less com-
munication.
Distributed Architectures allow several parties to
distributively make processing on their data without
sharing the actual data. These architectures split the
processing among all the participants in a distributed
fashion, without a central server holding the entire
model. It is often done through Secure Multiparty Com-
putation techniques and requires computing infrastruc-
ture on all the parties. Distributed approaches perform
less and simpler operations at the cost of more commu-
nication and might require client interaction.

3 Scope and Methodology

In this work, the main goal is to understand
the landscape of MLaaS in data-sensitive contexts
through privacy-preserving cryptographic computation,
i.e., when the data sent to third-parties is never de-
crypted for processing. Privacy-Preserving Computation
Techniques (PPCTs) ensure both the privacy and se-
crecy of the input data. Furthermore, they relieve the
client endpoint from heavy workloads. Finally, they can
be deployed in collaborative settings, where different
stakeholders contribute with their data with a common
goal (e.g., various hospitals sharing privately medical in-
formation to investigate rare diseases). As a secondary
goal, we explore the adaptability of current DL tech-
niques to cryptographic PPCT constructions. PPCT are
often combined with other techniques (as explained in
§2.3). Only in these crossing points, we detail the use
of all PPDL techniques. Accordingly, while Differen-
tial Privacy is a widespread technique in the field of
PPDL [41–46], we only include proposals that intersect
with PPCT (we refer to previous work for details on
DP [47]). Also, Federated Learning (FL) is outside the
scope of the paper, given its need for computing infras-
tructure and the reduced use of PPCT construction in
the aggregation phase.

PPCT have two main challenges to address for their
proper use with Deep Learning, i.e. efficiency and usabil-
ity.

PPCT can compute a limited set of operations since
they suffer from performance issues when dealing with
complex computations. While they have been widely de-
ployed in other scenarios, such as private data aggre-
gation or statistics [48–50], their application for DL is
not straightforward. We consider that a proposal makes
an Efficiency improvement if it introduces modifica-

tions to previous protocols reducing their runtime on
DL workloads.

The second weakness is related to the deployability
of these techniques. Many frameworks and tools ease
the access for data scientists (not necessarily experts
in computing science) to complex DL [5–7]. However,
it is complex to adapt these frameworks for the use of
PPCT. In this regard, we consider improvements to Us-
ability if the proposal meets one of the following two
criteria. First, if it simplifies the adaptability of the solu-
tion to existing DL frameworks (i.e., by providing tools
aimed at reducing the overall programming effort). Ac-
cordingly, our study includes works that propose Ap-
plication Programming Interfaces (APIs), compilers, or
relevant practical tools that help to implement and de-
ploy the theoretical solutions into practical applications,
and thus foster their usability. Second, when the pro-
posal is accompanied by an open-source implementa-
tion. Besides allowing for further improvements on the
proposal, the presence of open-source implementations
allow for reproducibility of the results. Also, we check
whether the papers provides links to open-source imple-
mentations, or if these are released apart (e.g., looking
in the web page of the authors, or their GitHub repos-
itories). Additionally, we visit such open-source reposi-
tories and analyze two properties: i) whether the code
matches the theoretical claims (i.e., if it implements the
security mechanisms and features described in the pa-
per), and ii) the maintenance of the source code or its
integration with other existing frameworks (i.e., if the
original implementation has been updated after the ini-
tial release).

In summary, for each of the proposals using PPCT
for DL, we study the following: (i) the problem ad-
dressed, i.e., training or inference, (ii) the architec-
ture proposed, i.e., centralized, distributed, or hybrid,
(iii) the privacy goals and adversarial model assumed,
(iv) the particular techniques involved, i.e., SMPC, HE
and/or others, and, (v) the issues considered regarding
efficiency and usability.

To select relevant proposals, we conducted queries in
various research repositories and databases, looking for
specific keywords (e.g., Privacy-Preserving, Deep Learn-
ing, Secure [Multiparty] Computation or Homomorphic
Encryption). Then, we select those with higher impact
(in terms of the number of citations) and also those that
published in top venues. We proceed to read their ab-
stracts to check whether they fit in the scope of our
study. This gave us an initial set of works, which we
carefully analyzed. Then, we apply snowball sampling
using the references from the papers in the initial set to

SoK: Privacy-Preserving Computation Techniques for Deep Learning 144

add further relevant works. We know this process has
limitations, and we might have left out good research
works, since not always quality means popularity. De-
spite this limitation, we believe our study successfully
includes all the relevant works proposing PPCTs for DL.

4 Privacy-Preserving
Computation Techniques

This section provides an overview of the techniques used
to implement privacy-preserving computation on DL.
There are two main approaches: i) to conduct operations
over encrypted data (HE), and ii) to split the knowledge
of the data among different parties (SMPC). We next de-
scribe the basic notions underpinning these techniques,
and advances that have enabled their applications to
DL.

4.1 Homomorphic Encryption (HE)

Homomorphic Encryption (HE) is a property of en-
cryption schemes that permit operations over encrypted
data, guaranteeing that no information is released with
the operations and that the decryption of the ciphertext
yields the correct result.
Partially Homomorphic Encryption (PHE)
schemes allow for a single operation to be performed
over the encrypted data. The first notion of HE comes
from the RSA cryptosystem, where authors expose
the ability of this cryptosystem to multiply numbers
secretly [51]. The possibility of performing operations
under a given encrypted data opened up a new field and,
more advanced algorithms would appear over time, such
as ElGamal [52] or Paillier [53] cryptosystems.
Somewhat Homomorphic Encryption (SHE)
schemes allow the execution of two different operations,
i.e., addition and multiplication, which permit reproduc-
ing the behavior of a NAND gate, which is functionally
complete.
Learning with Errors (LWE) is the cryptographic
problem that forms the basis for most HE schemes. It
consists of hiding the secret message on a system of lin-
ear equations with noise [54]. Performing operations over
those systems causes an increment of the noise. When
the amount of noise grows over a certain threshold, the
secret becomes indecipherable. Thus, SHE can only eval-
uate circuits of bounded depth (i.e., it cannot perform
any arbitrary number of operations).

Fully Homomorphic Encryption (FHE) was first
proposed by Gentry in 2009 [55], supposing a break-
through for many applications. FHE allows performing
an unbounded number of computations. Gentry’s main
contribution is the notion of bootstrapping, which con-
sists of the homomorphic evaluation of the decryption
circuit over a ciphertext, followed by a re-encryption
(i.e., resetting the noise to zero). Despite its capabil-
ities and improvements, the use of bootstrapping is
still inefficient and suffers from a low runtime perfor-
mance [56, 57].
Leveled Homomorphic Encryption (LHE) avoids
bootstrapping by setting the depth of the circuit before-
hand. It relies on performing relinearization and modu-
lus reduction.

4.1.1 Advanced Constructions for DL

Based on the initial ideas proposed by Gentry, multiple
encryption schemes have been created using different
arithmetic types, like integer operations (e.g. BFV [58]
and BGV [59]) or boolean operations (e.g. GSW [60]
or TFHE [61]). Of particular interest for the context
of DL are floating-point operations. At the time of this
writing, we are only aware of one solution that supports
this arithmetic, i.e., CKKS [62]. It is also noteworthy
to mention the availability of multiple open-source li-
braries, such as Microsoft SEAL [63], IBM HElib [64],
Palisade [65] or TFHE [66].

Multiple projects propose abstraction layers to re-
duce the complexity of HE for DL.

RAMPARTS [67] relies on Palisade [65] and pro-
vides an environment to develop applications (in the
Julia language), simplifying the use of HE directives. It
uses symbolic execution to automate the construction
of optimized circuits and automatically selects the HE
parameters and the best encoding for the values. It re-
duces the complexity and provides an abstraction layer
for programmers without cryptographic background.

Armadillo [68] provides a toolchain that compiles
C++ code into HE operations, and transforms the arith-
metic to work on an FHE backend in modulo 2 (i.e.,
boolean arithmetic).

4.2 Secure Multiparty Computation

Secure Multiparty Computation (SMPC) is the term
used to refer to the techniques that permit a set of n par-

SoK: Privacy-Preserving Computation Techniques for Deep Learning 145

ties to perform computations on input data from each
party, without revealing it to the other parties, and to
output a shared, common result.

Multiple constructions support SMPC. Each of
these has particular requirements and benefits, and thus
they are usually combined. We refer to the recent work
by Lindell [20] for a detailed description of SMPC.
Oblivious Transfer (OT) is a 2-party cryptographic
protocol allowing a receiver to request k out of n pieces
from a sender. The protocol ensures that the sender
learns nothing about the sent pieces of information. The
receiver learns nothing about the pieces of information
that he does not receive [69]. This protocol can be ex-
tended to apply boolean SMPC [70]. Additionally, it is
used as a base for secure data exchange in other proto-
cols.
Yao’s Garbled Circuit (YGC) is a 2-party secure
computation cryptographic protocol for boolean cir-
cuits [71] in presence of HBC adversaries. It allows two
parties to perform a computation on their private inputs
x, y without neither knowing each others’ input, nor the
circuit.

In the basic protocol, a garbler (G) owns inputs x
and the circuit C, then it garbles the circuit g(C) = C′

and sends C′ and the garbling of g(x) to the evaluator
(E). The inputs of E (i.e., g(y)) are sent to the evaluator
using OT. The evaluator then blindly follows the proto-
col based on g(C), the garbling x, and its input (i.e.,y).
Several optimizations followed the initial proposal, in-
cluding the point-and-permute optimization [72], the
half gates [73], the free XOR gates [74, 75] or garbled
row reduction [76, 77]. To a great extent, the success of
GC for DL Inference involves using these optimization
techniques.
Zero-Knowledge Proofs (ZKP) are a cryptographic
constructions in which a prover P verifies that a state-
ment x is part of a language L to a verifier V , satisfying
completeness (i.e., if x ∈ L, V cannot reject the state-
ment), soundness (i.e., if x /∈ L, then V only accepts it
with 50% probability) and zero-knowledge (i.e, V learns
nothing from the statement rather than the commitment
and the truth of it) [78]. The probability of accepting
a false ZKP can be reduced from 50% by repeating the
procedure multiple times. In the scope of private compu-
tation techniques, ZKPs are commonly used to protect
against malicious adversaries, by requiring the different
parties to prove the correct execution of operations.
Secret Sharing (SS) is a cryptographic protocol that
permits creating n different ‘parts’ out of some se-
cret information x, which can only be rebuilt into the
original if at least k parties agree. SS is one of the

bases to create SMPC protocols with more than two
parties. More formally, a (k, n)-secret sharing scheme
consists of a pair of algorithms. First, Share(x) pro-
duces a tuple of n different shares (s1, s2, ..., sn). Then,
Reconstruction(si1, si2, ..., sik) computes and produces
the secret x out of k shares. Next, we describe three
main protocols used for SS.

– Shamir Secret Sharing is based on the Lagrange
Interpolation, which states that a polynomial P (x)
of degree n can be built from n+ 1 points [79]. The
sharing consists of generating a polynomial whose
independent term is the secret to be shared. Shamir
secret sharing is efficient since it does not need any
strong preprocessing. Moreover, it is homomorphic
for addition and multiplication. Its main inconve-
nience relies on the fact that the multiplication of
two degree-t shares generates a share of degree 2t+1.
Therefore, it requires degree reduction after each
multiplication [80], which requires communications,
thus incurring an overhead.

– Additive Secret Sharing is based on the idea
that a given secret x can be decomposed in the sum
of n random numbers [81]. The process for gener-
ating the share consists of selecting n − 1 random
numbers and computing the n-th share as the sum
of the rest. While additive secret sharing is only
homomorphic on the addition, Beaver Multiplica-
tion Triplets [82] extend it to perform multiplica-
tion. This approach is more efficient for computa-
tion because it moves the computational delay onto
a preprocessing phase (i.e., the multiplication can
be performed offline).

– Verifiable Secret Sharing schemes use homo-
morphic operations considering a malicious adver-
sary [83–86]. The main changes to the previous ap-
proaches are the sharing of commitments to ensure
the order does not interfere; the verification of the
correctness of the computations with zero knowl-
edge proofs [87]; the use of agreement schemes [88]
and distributed coin-flipping protocols [89].

4.2.1 Advanced Constructions for DL

The basic techniques form the basis for more advanced
protocols in terms of security, performance, versatility,
and usability. These protocols are nowadays at the core
of many of the proposals for PPDL. SPDZ [90] is an
SMPC protocol for n-parties secure against the corrup-
tion of n− 1 parties, which highly improves the security

SoK: Privacy-Preserving Computation Techniques for Deep Learning 146

of previous approaches. It relies on a computationally
expensive preprocessing phase that reduces the com-
putation of the subsequent processing phase. It com-
bines the following primitives: i) additive secret sharing
and beaver multiplication triplets for the computation,
ii) SHE for data encryption, iii) ZKP to guarantee the
correctness of the information, and iv) commitments to
avoid malicious inputs.

In MASCOT [91], authors introduce modifications
and remove the complexity from the preprocessing
phase, making the processing phase a bit slower than
SPDZ. According to their results, the secure protocol
is six times slower than its non-secure counterpart. Ad-
ditionally, Oblivious Transfer can be instantiated using
lattice-based primitives, which achieves post-quantum
security. The main drawback in MASCOT is the com-
munication delay incurred by the use of OT. Depending
on specific settings and the network infrastructure, this
delay may be higher or lower. Overdrive [92] improves
MASCOT [91] by introducing the use of Beaver Triplet
distribution with HE and distributed decryption. Since
the most expensive part of the protocol is the execution
of ZKP, the approach is to optimize the Schnorr-like
ZKP into a more efficient protocol [93].

Other works have attempted to speed up the com-
putation of these protocols. TinyGarble [94] presents a
methodology optimizing multiple aspects of Garble Cir-
cuits and defining an option for them to be executed
on a MIPS I processor instruction set. The optimization
permits scaling the amount of computation made.

4.3 Hybrid Techniques

Most PPCTs have a limited instruction set which is rela-
tively efficient to operate in a specific arithmetic domain.
However, many problems might require to operate on
different arithmetic domains, often forcing to partially
approximate the problem to specific arithmetic types.
These approximations cause inefficiencies in terms of
performance, precision, and flexibility. For example, in
the case of DL, linear functions are computed efficiently
with floating-point arithmetic, whereas non-linear acti-
vation functions require boolean arithmetic. To avoid
the use of approximations, some authors have proposed
what we define as Hybrid Techniques, also referred to
as share/ciphertext conversion protocol [95]. These tech-
niques permits switching from one PPCT algorithm to
a different one, thus adapting to use the required arith-
metic type while preserving the privacy of the construc-
tion. Hybrid techniques effectively improve the flexibil-

ity of the solutions, and preserve the efficiency and ac-
curacy of the computation since the internal function
are not approximated.

Hybrid techniques might combine different base
cryptographic protocols from a single PPCT, i.e., HE
or SMPC, and also propose conversions from one to the
other [96]. As we analyze in §5.2.3, due to the arithmetic
variety of internal functions applied in DL, various pro-
posals make use of such hybrid techniques.

For HE, CHIMERA [97] presents a framework that
allows for switching between three main HE schemes
without the need for decryption. Concretely, it proposes
using BFV [58], HEAAN (CKKS [62]) and TFHE [61]
for integer, floating-point and boolean arithmetic re-
spectively. It has a strong potential for DL since linear
functions can be executed in floating-point arithmetic,
whereas activation functions rely on boolean arithmetic,
thus not needing an approximation.

Similar to HE, SMPC suffers from using a sin-
gle arithmetic type. ABY [98] (Arithmetic-Boolean and
Yao’s sharing) gives the programmer access to three
different protected data types, namely arithmetic se-
cret shared, boolean secret shared, and Yao’s GC. The
most important contribution is that they provide effi-
cient cryptographic bridges between the different con-
structions. ABY is a key contribution that shows how
the provision of tools fosters research. Indeed, it serves
as a basis for various proposals for PPDL [99, 100]. Even
though ABY offers a higher-level abstraction due to the
provision of data types, it remains a complex low-level
notation, which requires detailed knowledge, and whose
optimal use is left to programmers. EzPC [101] partially
solves this problem by adding a new layer of abstraction
and generating a two-party computation protocol from
the high-level description of the language. This layer
hides the cryptographic details from the user and se-
lects the parameters automatically. It is implemented in
the form of a cross compiler that translates C++ into
2-party secure code by using ABY below it.

5 State of the Art

The interest in DL techniques for solving problems in
privacy-sensitive scenarios is growing. However, DL was
not designed considering privacy and security goals.
While the research area is relatively new, there are mul-
tiple precedents on private data analytics and Machine
Learning (§5.1) which are the basis of proposals for
PPDL inference (§5.2) and training (§5.3).

SoK: Privacy-Preserving Computation Techniques for Deep Learning 147

5.1 Preceding Approaches

The application of PPCT for data mining and machine
learning solutions has been addressed before the growth
in popularity of DL [12, 102]. Indeed, the idea of se-
cretly evaluating a neural network was first proposed in
2008 by Sadeghi and Schneider [48]. Authors propose
a distributed 2-party computation paradigm where the
security relies on the secrets each of the parties stores.
The authors use SMPC based on OT transforming the
NN using Generalized Universal Circuit (i.e., any circuit
can be simulated in Boolean arithmetic). In the follow-
ing paper, TASTY [103] presents a distributed 2-party
paradigm proposal where the aim is combining the Pail-
lier PHE cryptosystem with other structures to achieve
the execution of other operations such as multiplica-
tion. Additionally, the authors present a compiler that
simplifies the translation of code written in the Keras
framework [5] to the TASTY protocol. It constitutes
one of the first attempts to bring together the theo-
retical concepts with actual deployments. In ML Con-
fidential [104], the authors propose an approach to use
linear regression models with LHE. This paper is one of
the first attempts that propose a privacy-preserving ma-
chine learning solution using encryption and covers var-
ious architectural issues and problems such as the poly-
nomial approximations or the fixed-depth of circuits. In
CodedPrivateML [105], the authors train machine learn-
ing models (i.e., linear and logistic regression), using
Shamir’s secret sharing and speed it up with the La-
grange Coding. This paper proposes a solution based on
cloud computing by distributing the workload to train
the algorithms.

Collaborative data analytics have been an area of
research for PPCT. The work by Ohrimenko et al. [49]
enable different parties to interact through Trusted Exe-
cution Environments (TEE) and oblivious access to data
structures. In this case, the task to be carried out is
known by all the parties, but the access patterns are
hidden so no data needs to be released.

These works are examples of the ideas that form the
basis for posterior contributions in the area of DL infer-
ence and training, which are analyzed in the following
sections.

5.2 Privacy Preserving Deep Learning
Inference

In this section, we analyze proposals for protecting
the privacy of the data sent for inference. Thus, these

works do not provide mechanisms that allow for train-
ing over privacy-protected data. There are three main
approaches, i.e., using centralized (HE), distributed
(SMPC), or hybrid architectures. We also analyze pro-
posals that aim to ease the abstraction of these tech-
niques for existing DL frameworks, through program-
ming interfaces and tools (e.g., compilers).

5.2.1 PPDL Inference in Centralized Architectures
with Homomorphic Encryption

As mentioned before, the emergence of FHE schemes
supposed a step forward for PPDL. Due to the compu-
tational complexity incurred by these schemes, the first
approaches using FHE are designed for a centralized en-
vironment and make use of high-performance hardware.

One of the first solutions that used LHE with DL,
named Cryptonets, was proposed in 2017 [106, 107]. It
allows training over non-encrypted data, and inference
on encrypted data, in a centralized architecture. The
main contribution is the conversion of the internal oper-
ations and structures of the DL model to use only addi-
tion and multiplication. This way, they can be applied
to encrypted data using LHE. Concretely, the authors
proposed a modification of the ReLU activation func-
tion using a square function and the substitution of the
Max Pooling layer by an average pooling layer. Faster
Cryptonets [108] improves the original proposal using a
quantization scheme, i.e., a pruning technique for neural
networks, and optimal approximations. These optimiza-
tions reduce the number of operations performed and
thus the width of the circuits.

One of the weaknesses of Cryptonets [107] and its
subsequent optimization in Faster Cryptonets [108] is
that the activation functions are imprecise. It is due to
the ReLU activation functions being a paramount pro-
cess for the success of DL. Thus, in CryptoDL [109], au-
thors propose different approaches to approximate the
ReLU activation using low-degree polynomials. Their
solution relies on using the Chebyshev Polynomial ap-
proximation of the integral of the sigmoid function.

TAPAS proposes optimizations in the domain of
Boolean arithmetic [110]. Authors propose the use of
Binary Neural Networks (BNN) and the TFHE li-
brary [66]. TAPAS allows to first make the matrix multi-
plication faster-adapting multiplication functions to the
XNOR gate, and then to count the number of 1’s in the
result for the actual summation. TAPAS BNNs achieve
a reasonable speedup for DNN tasks but work less effi-
ciently on CNN tasks. Interestingly, the authors released

SoK: Privacy-Preserving Computation Techniques for Deep Learning 148

this tool open-source, which uses the general-purpose
HE evaluation framework SHEEP [111].

In FHE-DiNN [112], the contribution shifts the fo-
cus towards using discretized neural networks (i.e., using
integer weights) based on boolean arithmetics on top of
TFHE. The use of these primitives permits reducing the
size of the computation and an increase in performance.
Given the native use of boolean arithmetics, they claim
a performance improvement over Cryptonets. However,
due to the changes performed to the neural networks af-
ter training, there is a reduction in the accuracy of the
resulting model.

Finally, E2DM [113] is a framework that relies on
an encoding that accelerates matrix computations. Due
to the improvements in these operations, the authors
show an acceleration of DL inference using a specific en-
crypted CNN model (not trained from encrypted data)
to classify images from the well-known MNIST dataset.

5.2.2 PPDL Inference in Distributed Architectures
with Secure Multiparty Computation

Due to the limitations of HE in terms of performance
and scalability, various works propose the use of dis-
tributed architectures (i.e., SMPC) to enable DL infer-
ence. These works give continuity to the ideas proposed
in TASTY [103] (described in §5.1) for SMPC.

MiniONN [114] is the first proposal using boolean
arithmetics for a distributed architecture. It allows pri-
vate inference (both model and data) through SMPC
based on Oblivious Transfer. According to the proposed
protocol, any DNN can be transformed into MiniONN.
The main disadvantage of this work is the inherent com-
munication delay due to the use of OT for SMPC.

In DeepSecure [115], the authors propose a variation
of the preprocessing phase of Yao’s GC for the optimiza-
tion of the DL functions. Since most of the overhead
relies on the communication delay and the preprocess-
ing phase of garbled circuits, authors propose an op-
timized version of DL models reducing the information
exchanged. Still, the use of GC implies regarbling all the
circuit for each input, which entails considerable over-
head.

XONN [116] also applies boolean arithmetic, and
similar to TAPAS [110], they improve the efficiency for
BNNs Inference using a Yao’s GC. However, XONN pro-
poses optimized circuits of XNOR gates that permit
faster computations of matrix multiplications. Addition-
ally, the authors introduce a pruning algorithm for the
neural network to generate a compressed representation

for inference and improve the garbling to set a constant
number of communication rounds for architectures of up
to 21-layers. Finally, they provide a high-level API that
permits translating a Python Keras [5] model into their
proposed representation.

Dalskov et al. [117] propose a quantization scheme
that enhances transmission and speeds up the process-
ing of DNN, considering malicious adversaries. The pro-
posal is evaluated using 16-bit and 8-bit floating-point
numbers with a considerable reduction of communica-
tions.

5.2.3 PPDL Inference in Hybrid Architectures

In the previous section, we observed how HE is a good
technique for computing linear and polynomial opera-
tions. However, the conversion of non-linear functions
often comes at the cost of precision and efficiency. On
the other hand, SMPC scales poorly to many parties due
to communication delays. Moreover, the adaptation of a
DL model to a single arithmetic type (e.g., integer, fixed-
point, floating-point, or boolean) restricts its operations
and deteriorates its accuracy. Accordingly, hybrid tech-
niques, where both approaches are combined and that
support operations in different arithmetic types, are a
research direction that has been also explored.

Chameleon [100] leverages ABY [98] to switch be-
tween different arithmetic types during computation.
Concretely, it uses fixed-point arithmetic for the lin-
ear activation functions and boolean (based on Yao’s
GC and GMW [21, 118]) for the non-linear ones. This
work profits from the contributions from both Cryp-
tonets [107] and CryptoDL [109] due to the importance
of precision of the activation functions.

GAZELLE [96] proposes an SMPC protocol based
on a hybrid approach for DL inference considering an
HBC adversary. On the one hand, they use Packed Addi-
tively Homomorphic Encryption (PAHE) for the linear
activation functions. PAHE speeds up vector and matrix
computations and is designed to avoid bootstrapping.
On the other hand, they use Yao’s GC for non-linear
functions (e.g., ReLU or MaxPool). Due to the need to
combine PAHE and GC, they create a cryptographic
bridge for switching between these two structures. In
this way, they present a speedup of 30x compared to
Chameleon [100] and MiniONN [114].

Finally, DELPHI [119] proposes improvements to
GAZELLE based on combining GC and quadratic poly-
nomials for the activation functions. The key aspect
is to generate several models derived from the origi-

SoK: Privacy-Preserving Computation Techniques for Deep Learning 149

nal using different activation functions. Depending on
particular goals, these functions can be substituted by
either GC (i.e., accurate approach) or quadratic poly-
nomials (i.e., efficient approach). Since either perfor-
mance or accuracy is degraded, DELPHI uses a planner
to calculate an optimal trade-off that minimizes the loss.
They also claim that the protocol permits reducing the
amount of information exchanged by 90% with respect
to GAZELLE.

5.2.4 Programming Interfaces for PPDL Inference

While it is essential to improve the efficiency of PPDL
techniques, it is also fundamental to ease the integration
of this technology into existing frameworks. In general,
the techniques proposed in the literature require exper-
tise and mathematical background to be appropriately
deployed. Thus, while privacy and efficiency are two cor-
nerstones for PPDL deployment, usability and applica-
bility of the techniques are also important and desirable
features. In this section, we analyze proposals aimed at
bridging the gap between the theoretical proposals and
their actual implementations and deployment. We cover
two main types of contributions: works that propose
compilers from high-level programming languages into
privacy-preserving protocols (e.g. by means of libraries),
and works that automatically transform outputs from
common DL frameworks (e.g., Tensorflow, Keras, Py-
Torch) to a PPDL protocol.

CHET [120] is a compiler aimed at creating homo-
morphically encrypted code from a high-level represen-
tation. However, it is the first to provide DL primi-
tives. It performs a code translation process efficiently
by generating a homomorphically executable code for
DNN inference. Nevertheless, it does not use common
frameworks and requires specifically designed neural
networks. EVA [121] elaborates a parameter selector on
top of CHET which processes the circuit to be executed.

Intel nGraph HE Tranformer [122–124] implements
a compiler and runtime environment for inference with
HE over Tensorflow. A back-end process obtains the
graph from Tensorflow, generates encrypted data, and
executes the homomorphically encrypted inference. The
first version [122] relies on Intel nGraph [125] and imple-
ments high-level operations with HE to perform PPDL
inference. Additionally, it implements optimizations for
ciphertext packing that permit executing single instruc-
tion over multiple data (SIMD) operations. However, the
activation functions only allowed for non-linear approx-
imations with a low degree. Thus, the second version

of the compiler [123], was designed to avoid executing
non-linear operations on ciphertexts, by distributing the
computations between the server and the clients. Con-
cretely, for those non-linear functions, the information is
sent back to the client, who decrypts it, executes the ac-
tivation, and then sends back the results to the server.
Additionally, they further optimize the relinearization
operation, reducing the number of executions.

MP2ML [124] uses Yao’s GC to support the compu-
tation of the activation functions (i.e., in a similar way
as GAZELLE [96]). Contrary to Intel nGraph HE, the
computation of the activation through GC guarantees
the weights secrecy on the model.

PlaidML-HE [126] proposes a new HE compiler for
PlaidML (a library for speeding Machine Learning work-
loads using heterogeneous hardware back-ends). This
way, it provides an intermediate abstraction layer agnos-
tic to the machine learning framework being used. Tiny-
Garble2 [127] presents an evolution of TinyGarble [94]
that permits having an efficient representation of GCs
enabling the execution of Neural Networks in shorter
times. For that, they implement an interface to C++
and a DL library containing primitives to build CNNs
for inference.

The PySyft framework allows inference and train-
ing [128]. It combines PyTorch and SPDZ [90]. Ten-
sors built can be shared among the parties executing
the computation and make it seamless. Similarly, TFEn-
crypted is an open-source library that applies changes to
Tensorflow to make it usable with SecureNN and ABY3
as compiler and runtime. We note that, by June’21,
PySyft and TFEncrypted have not fully working im-
plementations of the proposed PPCT backends.

Finally, other proposals focus on the usability of
SMPC. CrypTFlow is an end-to-end approach that per-
mits translating Tensorflow code to different SMPC pro-
tocols [129]. CrypTFlow has three components: i) Athos
is an end-to-end compiler from TensorFlow to a va-
riety of semi-honest MPC protocols, ii) Porthos is an
improved semi-honest 3-party protocol that is allegedly
faster than State of the Art tools, especially for the con-
volution operation iii) Aramis is a tool that converts any
semi-honest MPC protocol into an MPC protocol that
provides malicious security based on the use of TEEs.

5.3 Privacy Preserving Deep Learning
Training

All the approaches covering DL inference assume the
existence of a pre-trained model and do not cover back-

SoK: Privacy-Preserving Computation Techniques for Deep Learning 150

propagation. In various scenarios, we want to outsource
the training to a third-party server. For example, if a
single entity lacks the necessary hardware. Or, for col-
laborative learning, when various entities share sensitive
data for DL training keeping input privacy.

5.3.1 HE for PPDL Training

The first constructions to cover training extend PPDL
inference to implement a two-party scenario where the
backpropagation is computed with the help of the client.

Hesamifard et al. [130] propose a continuation to
CryptoDL [109] for training with LHE. Given the lack
of efficient bootstrapping, they opt for sending back the
data to the client who re-encrypts it and sends it back to
the server for computation. In addition to the feasibil-
ity they test their approach on multiple datasets. Nan-
dakumar et al. [131] propose to make the full training
on the server side. For that, they adapt the complete DL
pipeline including the loss function and stochastic gradi-
ent descent function. They show a set of optimizations
that thanks to them permit performing an encrypted
training in 40 minutes.

5.3.2 SMPC for PPDL Training

Similarly, most approaches relying on SMPC perform
training among two parties nodes. Sometimes, these pro-
tocols introduce another party which acts as randomness
provider.

One of the first attempts to perform PPDL train-
ing was proposed in 2017 by Chase et al. [132]. In their
work, authors combine Differential Privacy for data pro-
tection with SMPC through additive secret sharing for
collaborative privacy computation. For their use case,
the authors show a detailed comparison between the ac-
curacy loss and the privacy budget. DP shows the prob-
lem of having to reduce the privacy budget (i.e.,ε > 8)
for achieving good accuracy.

In a more complex approach, SecureML firstly pro-
posed a semi-honest 2-party distributed approach to
train linear regression, logistic regression, and neural
networks [50]. The protocol consists of two phases: an
offline preprocessing phase and the private computation
online phase. The offline phase is expensive since it re-
quires generating Beaver Triplets for the rest of the com-
putation. Thus, SecureML optimizes this generation us-
ing vectorized LHE and OT. Then, the online phase uses

Additive Secret Sharing, Beaver Triplets for the shared
computation, and Yao’s GC for bit-level arithmetics.

QUOTIENT [133] approaches DL training through
two-party OT SMPC. For that, they introduce a novel
quantization scheme for the values. Additionally, they
adapt novel techniques such as layer normalization and
adaptive gradient methods to improve training effi-
ciency.

FLASH [134] is a 4-Party Computation with a ma-
licious adversary framework. It extends ASTRA [135],
a preceding version focused on ML. It includes Guaran-
teed Output Delivery, which ensures that the protocol
finishes even if the parties are dishonest. For that, they
create a bi-convey primitive that evolves from a commit-
ment scheme and permits two honest parties to discover
another party who is not being honest. Additionally, it
includes mechanisms in the secret sharing and circuit
computation to ensure honesty. This protocol is tested
and compared with ABY3 and SecureML, claiming effi-
ciency improvements for the training phase.

5.3.3 Hybrid Techniques for PPDL Training

While some SMPC techniques are designed for 3 and
more parties, their adaption to DL is not easy. With
hybrid techniques, we observe protocols adapting better
to DL training.

As we described in §4.3, ABY and EzPC provided
abstract layers to allow for standard SPMC computa-
tion. Likely, ABY3 [99] focuses on DL training and pro-
poses a similar protocol allowing for 3-party computa-
tion. It considers both HBC and a malicious adversary.
The most relevant contribution of this work is a compiler
solving the need for efficient computation and ciphertext
packing; and providing arithmetic switches for different
representations of information (GC, boolean, and arith-
metic secret sharing). While ABY3 releases the open-
source implementation it only provides the semi-honest
adversary version of the protocol.

SecureNN [95] improved previous works allowing 3
independent servers to perform privacy-preserving train-
ing and prediction. The protocol considers m parties
who want to share their data to train a model using 3
servers. Firstly, they use Secret Sharing from the m par-
ties onto the n servers. Then, two of the servers make
use of additive secret sharing which is collaboratively
performed with the third server. The third server pro-
vides beaver triplets for multiplication and participates
in the operation in a boolean sharing of some bits of
the computation. They also propose modifications and

SoK: Privacy-Preserving Computation Techniques for Deep Learning 151

optimizations for ReLU and MaxPool, reducing up to 8
times the computation overhead.

Finally, POSEIDON [37] proposes a framework for
training DNNs based on federated learning and multi-
key FHE. Concretely, the use of multi-key FHE permits
generating multiple private keys tied to a single pub-
lic key. This way, each party performs encryption on its
share, while decryption requires an agreement between
all the parties. Multi-key FHE uses SMPC protocols for
key-generation, bootstrapping, and key-switching. PO-
SEIDON modifies federated learning so that training
is fully executed under HE under multiple servers and
there is a hierarchical gradient aggregation under HE.

6 Current Challenges and
Research Directions

The analysis of the current state-of-the-art of PPCT for
DL helps to outline the current challenges that need to
be addressed by the community. Table 1 summarizes the
analysis of the proposals with respect to the attributes
defined in §3. We group works depending on whether
they address DL training or inference, or if they pro-
pose an API or tool to ease the use of the PPDL tech-
niques.We first provide an analysis of these proposals
and then summarize some interesting remarks and take-
aways from our study. For reference, the links to the
open-source repositories are provided in Appendix C.

6.1 Analysis

There are various problems addressed and chal-
lenges in which PPCT have been used. Regarding the
works that address privacy-preserving inference, we ob-
serve that those using HE uniquely in a centralized ar-
chitecture are progressively losing interest (the latest
proposal is from 2018). They often lose accuracy due
to the need for approximations of non-linear functions
and are computationally demanding. Other contribu-
tions rely on SMPC through distributed architectures,
trading off the computational performance and commu-
nication overhead. Both HE and SMPC proposals need
to modify DL structures to match the corresponding
cryptographic protocols, which affects accuracy and hin-
ders efficiency with existing frameworks. Thus, we ob-
serve an evolution towards hybrid techniques that adapt
cryptographic protocols to the DL structures. As an ex-
ample, GAZELLE [96] combines efficient constructions

for linear computations (e.g., efficient HE schemes) and
boolean SMPC for non-linear functions.

We observe that proposals that rely on HE and
Hybrid Techniques often provide an open-source imple-
mentation (i.e., 5 out of 7 and 2 out of 3 open-source
works, respectively), which allows for its reproducibility.
However, most of the works using SMPC focus on effi-
ciency improvements, leaving aside their reproducibility
and usability. Indeed, only the proposal by Dalskov et
al. [117] provides an open-source implementation, which
has been integrated into the MP-SPDZ framework [137].
Also, XONN [116] implements an API and compiler to
translate from high-level descriptions of neural networks
to low-level code, though it is not released open-source.

While works intended for PPDL inference are pro-
gressively improving performance and usability, solu-
tions covering PPDL training are still immature
in these terms. Similar to PPDL inference, the major
bottleneck for PPDL training is its high computational
overhead, preventing its application to complex, real-
world use cases. Indeed, we observe that, to lower the
computation, often the proposed test neural network ar-
chitectures are of reduced complexity (i.e., low number
of layers and dimensions). Furthermore, PPDL training
in distributed settings requires higher network commu-
nications. The comparison of the performance over Wide
Area Networks (WAN), where the network bandwidth
is lower than Local Area Networks, shows improvable
delays, as shown in SecureNN [95]. Finally, most PPDL
inference contributions provide specific implementation
details of the different DL components (e.g., linear lay-
ers and polynomial approximations strategy). In train-
ing, we have observed some proposals omit details such
as loss function or non-linear derivative approximation.
This, together with the fact only 3 out of 10 contribu-
tions share the source code, hinders their reproducibility
and usability.

An active area of research is the provision of pro-
gramming interfaces and compilers that allow
for smooth integration of existing frameworks and DL
projects using PPCT. For end-users to become familiar
with these technologies, it is essential to enable tools
in native languages. In the data science domain, inter-
faces adapted to DL frameworks such as Tensorflow [6],
Keras [5] or Pytorch [7] are fundamental. We high-
light Intel nGraph HE, where proposals from various
papers are integrated and maintained in an open-source
tool [122–124], which provides data scientists with seam-
less solutions. Additionally, we highlight proposals that
elaborate conversion routines (e.g., TASTY [103] or

SoK: Privacy-Preserving Computation Techniques for Deep Learning 152

Adv. Arith. SMPC HE
O
bj
ec
tiv

e

P
riv

ac
y
Te

ch
ni
qu

e

N
am

e

R
ef
er
en
ce

Ye
ar

N
um

be
r
of

Pa
rt
ie
s

In
pu

t
P
riv

ac
y

O
ut
pu

t
P
riv

ac
y

A
rc
hi
te
ct
ur
al

Se
cr
ec
y

W
ei
gh

ts
Se

cr
ec
y

H
on

es
t-
B
ut
-C
ur
io
us

M
al
ic
io
us

In
te
ge
r

B
oo

le
an

Fl
oa
tin

g
Po

in
t

O
bl
iv
io
us

Tr
an
sf
er

Ya
o’
s
G
ar
bl
ed

C
irc

ui
ts

A
dd

iti
ve

SS
&

B
ea
ve
r
Tr
ip
le
ts

Sh
am

ir’
s
SS

Ze
ro
-K

no
w
le
dg

e
P
ro
of
s

C
om

m
itm

en
t
Sc

he
m
es

Pa
rt
ia
lly

H
om

om
or
ph

ic
Le
ve
lle
d
H
om

om
or
ph

ic
Fu

lly
-H

om
om

or
ph

ic
Tr
us
te
d
Ex

ec
ut
io
n
En

vi
ro
nm

en
ts

D
iff
er
en
tia

lP
riv

ac
y

Effi
ci
en
cy

Im
pr
ov
em

en
t

U
sa
bi
lit
y
Im

pr
ov
em

en
t

O
pe

n
So

ur
ce

Im
pl
em

en
ta
tio

n
Pa

pe
r-
C
od

e
M
at
ch
in
g

C
od

e
M
ai
nt
en
an
ce

Te
ns
or
flo

w
/K

er
as
/P

yT
or
ch

D
L
In
fe
re
nc
e

H
E

TASTY† [103] 2010 2 3 5 3 3 s s 3 3 5 3

Cryptonets [106, 107] 2014 2 3 y 3 3 � � s s 3 3 5 5

CryptoDL [109] 2017 2 3 y 3 3 � � s y 5 ? ? ?
TAPAS [110] 2018 2 3 y 3 3 s s 3 3 5 5

Faster Cryptonets [108] 2018 2 3 3 3 3 � � � s y 5 ? ? ?
FHE DiNN [112] 2018 2 3 y 3 3 � � s s 3 3 5 5

Jiang et al. [113] 2018 2 3 y 3 3 � � s s 3 3 5 5

H
yb
rid

Chameleon [100] 2018 2 3 y 3 3 s y 5 ? ? ?
GAZELLE [96] 2018 2 3 y 3 3 � � s s 3 3 5 5

Delphi [119] 2020 2 3 y 3 3 � � s s 3 3 5 5

SM
PC

Reza Sadeghi et al. [48] 2008 2 3 y 3 3 s y 5 ? ? ?
MiniONN [114] 2017 2 3 y 3 3 s y 5 ? ? ?

Deep Secure [115] 2018 2 3 y 3 3 s y 5 ? ? ?
XONN† [116] 2019 2 3 y 5 3 s s 5 ? ? 3

Dalskov et al. [117] 2020 2 3 y 3 3 � � � s s 3 3 3 5

D
L
Tr
ai
ni
ng

H
E Hesamifard et al. [130] 2018 2 3 y 5 3 � � s y 5 ? ? ?

Nandakumar et al. [131] 2019 2 3 y 5 3 � � s y 5 ? ? ?

H
yb
rid

ABY3 [99] 2018 3 3 5 3 3 � s s 3 5 5 5

SecureNN [95] 2018 3 3 5 3 3 � � s s 3 3 5 5

Poseidon [37] 2020 n 3 5 5 3 s y 5 ? ? ?

SM
PC

Chase et al. [132] 2017 n 3 3 5 3 � s y 5 ? ? ?
SecureML [50] 2017 2 3 5 3 3 � � s s 3 3 5 5

QUOTIENT [133] 2019 2 3 y 5 3 s y 5 ? ? ?
Coded Private ML [105] 2019 n 3 5 3 3 s y 5 ? ? ?

FLASH [134] 2020 4 3 5 3 3 � � s y 5 ? ? ?

A
PI
s
an
d

Co
m
pi
le
rs

-

TASTY† [103] 2010 2 3 y 3 3 s s 3 3 5 3

PySyft [128] 2018 n 3 5 5 3 y s 3 5 3 3

TFEncrypted [136] 2018 n 3 5 5 3 y s 3 5 5 3

nGraph HE [122] 2018 2 3 5 5 3 y s 3 3 3 3

XONN† [116] 2019 2 3 y 5 3 s s 5 ? ? 3

CHET, EVA [120, 121] 2019 2 3 y 3 3 y s 3 3 3 5

nGraph HE 2 [123] 2019 2 3 5 5 5 y s 3 3 3 3

MP2ML [124] 2019 2 3 y 3 3 y s 3 3 3 3

PlaidML HE [126] 2019 2 3 y 3 3 y s 3 3 5 3

CrypTFlow [129] 2020 3 3 5 3 3 � y s 3 3 3 3

TinyGarble2 [127] 2020 2 3 y 3 3 y s 3 3 5 5

Table 1. Summary of the papers covered in this study, based on different criteria (protocols marked as † are purposely repeated for
clarity, due to their contributions to multiple objectives). For notation, we use 3 and 5 to denote whether the context of the contribu-
tion provides input and/or output privacy, model secrecy, and open-source implementation or adaptation to a DL framework. We also
use y when the feature is dependent on the specific implementation. We denote when the proposal either assumes a malicious ad-
versary, or it uses a specific arithmetic or technique. We use when the proposal only assumes a HBC adversary. We use � for tech-
niques that are used in the contribution, but we are not covering. We denote � and � when the contribution proposes the use of one
arithmetic (�) to emulate another (�). We also depict the improvement in Efficiency and Usability with s and y using the criteria
described in Section 3.

SoK: Privacy-Preserving Computation Techniques for Deep Learning 153

CrypTFlow [129]) to easily adapt existing trained mod-
els to PPDL protocols.

There is a lack of interoperability of the different
APIs and compilers for PPDL training. While all
these interfaces implement approaches that allow for
forward propagation, backpropagation is still not cov-
ered. Indeed, depending on the protocol, backpropaga-
tion may require the approximation of derivatives of the
different activation and loss functions, and also the opti-
mization of larger circuits. Furthermore, training often
requires multiple epochs, i.e., to perform an arbitrary
number of operations. Most APIs and compilers use fi-
nite circuit approaches and account for them for per-
formance improvements, i.e., do not allow for unlimited
operations to be performed.

Concerning arithmetic types, we highlight the
need for boolean and floating-point arithmetic types for
linear and non-linear activations (respectively). In this
line, hybrid approaches have shown a strong impact, and
solutions such as CHIMERA [97] open new paths for op-
timization. While authors have used integer and boolean
arithmetic for discretized and binary neural networks,
these are rare and difficult to adapt to modern DL so-
lutions for complex problems. Accordingly, CKKS [62]
which natively supports floating-point arithmetic, has
been used in various proposals that propose different
approximations from integer arithmetic.
Privacy goals are those security guarantees that a pro-
tocol aims to protect. As explained in Section 2.3, we
consider that a proposal provides input privacy if the
data processing reveals no user information. All the cov-
ered works provide input privacy (indeed, this is a key
feature of PPCT). Output privacy guarantees that the
result of a DL algorithm does not reveal additional in-
formation from the data. It involves the protection of
DL models against other attacks, such as membership
inference or model inversion. While this belongs to a
broader and active area of research (i.e., adversarial ma-
chine learning [12]), only two works propose mechanisms
to incorporate output privacy guarantees, i.e., Faster
Cryptonets [108] and the work by Chase et al. [132].
Note that most of the works on privacy-preserving in-
ference assume that DL models are securely pre-trained
(i.e., they do not contain or reveal private information).
Additionally, they consider the cloud provider as the
model owner or a trusted third party for the training
(i.e., it establishes security measures and does not at-
tack the model). Accordingly, while the proposals might
not address output privacy, providing such a guarantee
would involve combining it with other techniques such

as Differential Privacy. Regarding model secrecy, most of
the works address both weight secrecy and architectural
secrecy. However, the latter is more difficult to guaran-
tee, given the patterns present in common DL layers and
activations.
Adversarial Security Models define the threats and
adversary capabilities on a cryptographic protocol. Most
of the literature works usually assume an HBC adver-
sary, who is limited in its offensive capabilities. Con-
sidering this kind of adversary lowers the performance
requirements. Multiparty computation protocols can
be transformed into the malicious adversary setting
through commitment schemes, ZKP, and distributed
randomness protocols [80, 83–86]. However, it is unclear
whether cryptographic bridges such as the ones imple-
mented in GAZELLE [96] or ABY [98] can be attested,
and also what their performance would be on the mali-
cious setting. Indeed, some contributions tackling the
malicious adversary setting rely on trusted hardware
(i.e., TEE) for code verification and confidentiality [117].
We believe it is important to explore the translation of
hybrid protocols to malicious adversary models and ef-
ficient ZKP for distributed protocols.

6.2 Take-Aways

We enumerate key take-aways from our work, highlight-
ing lessons learned and points that deserve further re-
search effort:

1. While classical cryptography is relatively easy to use
(e.g., due to easy-to-use and curated libraries), mod-
ern cryptography such as HE requires more tuning
and expertise. It calls for schemes (e.g., CKKS [62])
and solutions (e.g., ABY [98]) that allow for au-
tomatic analysis and adaptation to specific circuits
and the election of optimal parameters [138]. For
efficient use of PPDL, these solutions should imple-
ment hybrid techniques to offer protocol conversion
mechanisms, which will improve the overall perfor-
mance of multi-arithmetic systems.

2. Efficiency and usability are confronting goals. Most
of the works focused on efficiency improvements
modify the original protocols to a great extent,
which is detrimental for their integration into other
frameworks. Meanwhile, works that focus on us-
ability (i.e., APIs and compilers) involve few ad-
justments from basic techniques and original proto-
cols, but have significant worse runtime performance
than those focused on efficiency. Additionally, as an-

SoK: Privacy-Preserving Computation Techniques for Deep Learning 154

alyzed before, current APIs and compilers are not
suitable for PPDL training, being this an area of re-
search deserving more attention in the near future.

3. Even if proposals release their source code openly
for reproducibility, the comparison in terms of effi-
ciency and accuracy among contributions is difficult
due to different benchmarking across articles. Dif-
ferent works claim different runtimes and accuracy
across different DL models and different comput-
ing architectures. Additionally, due to ad-hoc opti-
mizations applied on each proposal, we cannot eas-
ily measure the overall impact of each optimization
on the protocol. It is thus needed to provide stan-
dardized trained models and benchmarks for an ac-
curate and fair comparison of the proposals. Again,
this would need to ease the integration of new works
with said standard benchmarks.

4. To lower down the entry barrier for data scientists,
it is essential to provide privacy-preserving exten-
sions for existing DL frameworks, e.g., Tensorflow
or PyTorch. Currently, this adaptation requires sci-
entists to i) select a privacy-preserving solution or
protocol, ii) implement adaptions to the protocol,
and iii) provide an interface or bridge with the used
DL framework. That is, implementing a full software
stack. It is a challenging yet desirable goal to build
standard solutions to adapt existing PPDL solutions
by minimally changing the original code.

5. Depending on the scenario, providing only privacy
in the inference part is insufficient. For example,
output privacy is also needed to prevent fines due
to leakage of sensitive data, e.g. by means of mem-
bership inference attacks. However, as our analysis
suggests, current proposals on PPDL inference leave
this part aside. Data scientists and engineers might
require to combine techniques that guarantee both
input and output privacy on their protocols. But, as
mentioned before, integrating and combining these
proposals with others is not straightforward.

6. Except for classic Yao’s Garbled Circuits, most of
the PPCTs reveal the performed operations. As
pointed out in §2, architectural secrecy ensures the
non-revelation of the architecture to untrusted par-
ties. In contexts where the cloud server is not a
trusted third party, the common patterns in neural
network operations allow inferring the neural net-
work architecture to the party performing the pro-
cessing. Therefore, to better protect the privacy and
security of the DL models, works not only hiding
data but also processing (e.g., using whenever avail-
able Indistinguishable Obfuscation [139]).

7. In general, protocols assume participating entities
to these protocols are honest-but-curious. However,
we note a lack of works considering a malicious
setting, limiting the deployment of PPCTs to sce-
narios where honest-but-curious adversaries cannot
be guaranteed. However, previous experience shows
that honest-but-curious settings are limited, e.g.,
due to internal security breaches or insiders.

8. Similar to other Privacy-Enhancing Technologies,
there is the potential misuse of PPTC from mali-
cious adversaries. Indeed, since PPCTs ensure the
input privacy of users, this protection can conceal
adversarial behavior. For example, a user trying to
extract model parameters will carefully craft input
data to create inference samples that yield knowl-
edge about the model. Detecting these adversar-
ial samples might require monitoring the inputs. In
such cases, due to the use of PPCT, the detection
mechanisms become unusable. Thus, it would be de-
sirable to explore how to integrate this technology
in adversarial settings.

7 Conclusions

In this paper, we provide a comprehensive review of
Privacy-Preserving Computation Techniques for DL.
First, we describe a high-level overview of the differ-
ent privacy requirements, techniques, and architectures
used in DL. It allows understanding the broad spectrum
of PPDL and the benefits and constraints of the various
sub-areas depending on the goals and settings. Then, in-
tending to understand how to make MLaaS more attrac-
tive and privacy-friendly, we leverage the taxonomy to
narrow down the scope of the study into cryptographic
techniques for privacy-preserving computation (i.e., HE
and SMPC). We study the state-of-the-art and provide
an analysis according to attributes, such as the privacy
goal, architecture, efficiency, and usability. It allows us
to extract recurring insights and flaws from the cur-
rent solutions. We believe this work will guide future
researchers and practitioners towards a better deploy-
ment of privacy-preserving solutions for DL.

Acknowledgments

We thank the anonymous reviewers and our shep-
herd, Phillipp Schoppmann, for their valuable feed-
back. We also thank Alberto Di Meglio, Marco Manca

SoK: Privacy-Preserving Computation Techniques for Deep Learning 155

and Rosario Cammarota for their helpful comments.
This work was partially supported by CERN open-
lab, the CERN Doctoral Student Programme, the
Spanish grants ODIO (PID2019-111429RB-C21 and
PID2019-111429RB) and the Region of Madrid grants
CYNAMON-CM (P2018/TCS-4566), co-financed by
European Structural Funds ESF and FEDER, and Ex-
cellence Program EPUC3M17. The opinions, findings,
and conclusions or recommendations expressed are those
of the authors and do not necessarily reflect those of any
of the funders.

References
[1] James B Heaton, Nick G Polson, and Jan Hendrik Witte.

Deep learning for finance: deep portfolios. Applied Stochas-
tic Models in Business and Industry, 33(1):3–12, 2017.

[2] Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and
Cherita L Corbett. A survey of deep learning methods for
cyber security. Information, 10(4):122, 2019.

[3] Eric J Topol. High-performance medicine: the conver-
gence of human and artificial intelligence. Nature medicine,
25(1):44–56, 2019.

[4] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael P Wellman. Sok: Security and privacy in machine
learning. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 399–414. IEEE, 2018.

[5] François Chollet et al. Keras. https://github.com/fchollet/
keras, 2015.

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint:1603.04467, 2016.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. 2017.

[8] M Sadegh Riazi, Bita Darvish Rouani, and Farinaz
Koushanfar. Deep learning on private data. IEEE Secu-
rity & Privacy, 17(6):54–63, 2019.

[9] Harry Chandra Tanuwidjaja, Rakyong Choi, Seunggeun
Baek, and Kwangjo Kim. Privacy-preserving deep learning
on machine learning as a service—a comprehensive survey.
IEEE Access, 8:167425–167447, 2020.

[10] D Julkowska, CP Austin, CM Cutillo, D Gancberg,
C Hager, J Halftermeyer, AH Jonker, LPL Lau, I Norstedt,
A Rath, et al. The importance of international collabo-
ration for rare diseases research: a european perspective.
Gene therapy, 24(9):562–571, 2017.

[11] Huili Chen, Siam Umar Hussain, Fabian Boemer, Em-
manuel Stapf, Ahmad Reza Sadeghi, Farinaz Koushanfar,
and Rosario Cammarota. Developing privacy-preserving
ai systems: the lessons learned. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–4. IEEE,

2020.
[12] Battista Biggio and Fabio Roli. Wild patterns: Ten years af-

ter the rise of adversarial machine learning. Pattern Recog-
nition, 84:317–331, 2018.

[13] Ram Shankar Siva Kumar, Magnus Nyström, John Lam-
bert, Andrew Marshall, Mario Goertzel, Andi Comissoneru,
Matt Swann, and Sharon Xia. Adversarial machine learning-
industry perspectives. In 2020 IEEE Security and Privacy
Workshops (SPW), pages 69–75. IEEE, 2020.

[14] Monir Azraoui, Muhammad Bahram, Beyza Bozdemir,
Sébastien Canard, Eleonora Ciceri, Orhan Ermis, Ramy
Masalha, Marco Mosconi, Melek Önen, Marie Paindavoine,
et al. Sok: Cryptography for neural networks. In IFIP
International Summer School on Privacy and Identity Man-
agement, pages 63–81. Springer, 2019.

[15] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert,
and Rickmer F Braren. Secure, privacy-preserving and
federated machine learning in medical imaging. Nature
Machine Intelligence, pages 1–7, 2020.

[16] Ting Wang and Ling Liu. Output privacy in data mining.
ACM Transactions on Database Systems, 36(1):1–34, 2011.

[17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 3–18. IEEE, 2017.

[18] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1322–1333, 2015.

[19] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,
and Thomas Ristenpart. Stealing machine learning models
via prediction apis. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 601–618, 2016.

[20] Yehuda Lindell. Secure multiparty computation. Commun.
ACM, 64(1):86–96, December 2020.

[21] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, STOC ’87,
page 218–229, New York, NY, USA, 1987. Association for
Computing Machinery.

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
solve any protocol problem. In Proc. of STOC, 1987.

[23] Cynthia Dwork, Aaron Roth, et al. The algorithmic foun-
dations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[24] Latanya Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):557–570, 2002.

[25] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke,
and Muthuramakrishnan Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 1(1):3–es, 2007.

[26] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian.
t-closeness: Privacy beyond k-anonymity and l-diversity. In
2007 IEEE 23rd International Conference on Data Engi-
neering, pages 106–115. IEEE, 2007.

[27] Victor Costan and Srinivas Devadas. Intel sgx explained.
IACR Cryptol. ePrint Arch., 2016(86):1–118, 2016.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

SoK: Privacy-Preserving Computation Techniques for Deep Learning 156

[28] David Kaplan, Jeremy Powell, and Tom Woller. Amd mem-
ory encryption. White paper, 2016.

[29] Johannes Winter. Trusted computing building blocks for
embedded linux-based arm trustzone platforms. In Pro-
ceedings of the 3rd ACM workshop on Scalable trusted
computing, pages 21–30, 2008.

[30] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly
Shmatikov, and Emmett Witchel. Chiron: Privacy-
preserving machine learning as a service. arXiv
preprint:1803.05961, 2018.

[31] Nick Hynes, Raymond Cheng, and Dawn Song. Effi-
cient deep learning on multi-source private data. arXiv
preprint:1807.06689, 2018.

[32] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and
private execution of neural networks in trusted hardware.
arXiv preprint:1806.03287, 2018.

[33] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
Cachezoom: How sgx amplifies the power of cache attacks.
In International Conference on Cryptographic Hardware and
Embedded Systems, pages 69–90. Springer, 2017.

[34] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe
Wang, Jesse Liu, and Jesse Fang. Secure encrypted virtual-
ization is unsecure. arXiv preprint:1712.05090, 2017.

[35] Jakub Konečnỳ, H Brendan McMahan, Daniel Ram-
age, and Peter Richtárik. Federated optimization: Dis-
tributed machine learning for on-device intelligence. arXiv
preprint:1610.02527, 2016.

[36] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM SIGSAC con-
ference on computer and communications security, pages
1310–1321, 2015.

[37] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-
Pastoriza, David Froelicher, Jean-Philippe Bossuat, Joao Sa
Sousa, and Jean-Pierre Hubaux. POSEIDON: Privacy-
preserving federated neural network learning. arXiv
preprint:2009.00349, 2020.

[38] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov.
Salvaging federated learning by local adaptation. arXiv
preprint:2002.04758, 2020.

[39] Peter Kairouz, H Brendan McMahan, Brendan Avent, Au-
rélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated
learning. arXiv preprint:1912.04977, 2019.

[40] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe
Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale: Sys-
tem design. arXiv preprint:1902.01046, 2019.

[41] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 308–318, 2016.

[42] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian
Goodfellow, and Kunal Talwar. Semi-supervised knowl-
edge transfer for deep learning from private training data.
arXiv preprint:1610.05755, 2016.

[43] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth
Raghunathan, Kunal Talwar, and Úlfar Erlingsson. Scal-

able private learning with PATE. arXiv preprint:1802.08908,
2018.

[44] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014.

[45] James Jordon, Jinsung Yoon, and Mihaela van der Schaar.
PATE-GAN: Generating synthetic data with differential
privacy guarantees. In International Conference on Learning
Representations, 2018.

[46] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
Rappor: Randomized aggregatable privacy-preserving ordi-
nal response. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security,
pages 1054–1067, 2014.

[47] Damien Desfontaines and Balázs Pejó. Sok: Differential
privacies. CoRR, abs/1906.01337, 2019.

[48] Ahmad-Reza Sadeghi and Thomas Schneider. Generalized
universal circuits for secure evaluation of private functions
with application to data classification. In International
Conference on Information Security and Cryptology, pages
336–353. Springer, 2008.

[49] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on trusted
processors. In 25th USENIX Security Symposium (USENIX
Security 16), pages 619–636, 2016.

[50] Payman Mohassel and Yupeng Zhang. SecureML: A system
for scalable privacy-preserving machine learning. In Pro-
ceedings of the IEEE Symposium on Security and Privacy,
pages 19–38. IEEE, 2017.

[51] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A
method for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–126,
1978.

[52] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE transactions on
information theory, 31(4):469–472, 1985.

[53] Pascal Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume
1592, pages 223–238. Springer Verlag, 1999.

[54] Oded Regev. On lattices, learning with errors, random lin-
ear codes, and cryptography. Journal of the ACM (JACM),
56(6):1–40, 2009.

[55] Craig Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009. crypto.stanford.edu/
craig.

[56] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT),
6(3):1–36, 2014.

[57] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping
homomorphic encryption in less than a second. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 617–640. Springer, 2015.

[58] Junfeng Fan and Frederik Vercauteren. Somewhat practical
fully homomorphic encryption. IACR Cryptol. ePrint Arch.,

crypto.stanford.edu/craig
crypto.stanford.edu/craig

SoK: Privacy-Preserving Computation Techniques for Deep Learning 157

2012:144, 2012.
[59] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(leveled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT),
6(3):1–36, 2014.

[60] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Annual Cryptology
Conference, pages 75–92. Springer, 2013.

[61] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-
lika Izabachene. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In international
conference on the theory and application of cryptology and
information security, pages 3–33. Springer, 2016.

[62] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song. Homomorphic encryption for arithmetic of approxi-
mate numbers. In International Conference on the Theory
and Application of Cryptology and Information Security,
pages 409–437. Springer, 2017.

[63] Microsoft SEAL (release 3.6). https://github.com/
Microsoft/SEAL, November 2020. Microsoft Research,
Redmond, WA.

[64] Shai Halevi and Victor Shoup. Algorithms in helib.
Cryptology ePrint Archive, Report 2014/106, 2014.
https://eprint.iacr.org/2014/106.

[65] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. PAL-
ISADE lattice cryptography library user manual. Cyberse-
curity Research Center, New Jersey Institute of Technology
(NJIT), Tech. Rep, 2017.

[66] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-
lika Izabachène. Tfhe: fast fully homomorphic encryption
over the torus. Journal of Cryptology, 33(1):34–91, 2020.

[67] David W Archer, José Manuel Calderón Trilla, Jason Dagit,
Alex Malozemoff, Yuriy Polyakov, Kurt Rohloff, and Ger-
ard Ryan. Ramparts: A programmer-friendly system for
building homomorphic encryption applications. In Proceed-
ings of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 57–68, 2019.

[68] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Ar-
madillo: a compilation chain for privacy preserving applica-
tions. In Proceedings of the 3rd International Workshop on
Security in Cloud Computing, pages 13–19, 2015.

[69] Michael O Rabin. How to exchange secrets with oblivious
transfer. IACR Cryptol. ePrint Arch., 2005(187), 2005.

[70] Moni Naor and Benny Pinkas. Oblivious transfer and poly-
nomial evaluation. In Proceedings of the 31st ACM Sympo-
sium on Theory of Computing, pages 245–254, 1999.

[71] A. C. Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science,
pages 162–167, 1986.

[72] Benny Pinkas, Thomas Schneider, Nigel P Smart, and
Stephen C Williams. Secure two-party computation is
practical. In International conference on the theory and
application of cryptology and information security, pages
250–267. Springer, 2009.

[73] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 220–250. Springer, 2015.

[74] Vladimir Kolesnikov and Thomas Schneider. Improved
garbled circuit: Free XOR gates and applications. In In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, pages 486–498. Springer, 2008.

[75] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
FleXOR: Flexible garbling for xor gates that beats free-xor.
In Annual Cryptology Conference, pages 440–457. Springer,
2014.

[76] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy
preserving auctions and mechanism design. In Proceedings
of the 1st ACM conference on Electronic commerce, pages
129–139, 1999.

[77] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols. In Proceedings of
the twenty-second annual ACM symposium on Theory of
computing, pages 503–513, 1990.

[78] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM
Journal on computing, 18(1):186–208, 1989.

[79] Adi Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[80] Rosario Gennaro, Michael O Rabin, and Tal Rabin. Sim-
plified vss and fast-track multiparty computations with
applications to threshold cryptography. In Proceedings of
the seventeenth annual ACM symposium on Principles of
distributed computing, pages 101–111, 1998.

[81] George Robert Blakley. Safeguarding cryptographic keys.
In 1979 International Workshop on Managing Requirements
Knowledge (MARK), pages 313–318. IEEE, 1979.

[82] Donald Beaver. Efficient multiparty protocols using cir-
cuit randomization. In Annual International Cryptology
Conference, pages 420–432. Springer, 1991.

[83] Paul Feldman. A practical scheme for non-interactive verifi-
able secret sharing. In 28th Annual Symposium on Founda-
tions of Computer Science, pages 427–438. IEEE, 1987.

[84] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch
Awerbuch. Verifiable secret sharing and achieving simul-
taneity in the presence of faults. In 26th Annual Sympo-
sium on Foundations of Computer Science, pages 383–395.
IEEE, 1985.

[85] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs
that yield nothing but their validity or all languages in np
have zero-knowledge proof systems. Journal of the ACM
(JACM), 38(3):690–728, 1991.

[86] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC
’88, page 1–10, New York, NY, USA, 1988. ACM.

[87] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications. In Proceed-
ings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, page 103–112, New York, NY,
USA, 1988. Association for Computing Machinery.

[88] Paul Feldman and Silvio Micali. An optimal probabilis-
tic algorithm for synchronous byzantine agreement. In
International Colloquium on Automata, Languages, and
Programming, pages 341–378. Springer, 1989.

[89] Manuel Blum. Coin flipping by telephone a protocol
for solving impossible problems. ACM SIGACT News,

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2014/106

SoK: Privacy-Preserving Computation Techniques for Deep Learning 158

15(1):23–27, 1983.
[90] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Za-

karias. Multiparty computation from somewhat homomor-
phic encryption. In Annual Cryptology Conference, pages
643–662. Springer, 2012.

[91] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mas-
cot: faster malicious arithmetic secure computation with
oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pages 830–842, 2016.

[92] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: Making spdz great again. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 158–189. Springer, 2018.

[93] Claus-Peter Schnorr. Efficient identification and signatures
for smart cards. In Conference on the Theory and Applica-
tion of Cryptology, pages 239–252. Springer, 1989.

[94] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza
Sadeghi, Thomas Schneider, and Farinaz Koushanfar. Tiny-
garble: Highly compressed and scalable sequential garbled
circuits. In 2015 IEEE Symposium on Security and Privacy,
pages 411–428. IEEE, 2015.

[95] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
cureNN: Efficient and private neural network training. IACR
Cryptol. ePrint Arch., 2018:442, 2018.

[96] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework for
secure neural network inference. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1651–1669, 2018.

[97] Christina Boura, Nicolas Gama, Mariya Georgieva, and
Dimitar Jetchev. Chimera: Combining ring-lwe-based fully
homomorphic encryption schemes. Journal of Mathematical
Cryptology, 14(1):316–338, 2020.

[98] Daniel Demmler, Thomas Schneider, and Michael Zohner.
ABY-A framework for efficient mixed-protocol secure two-
party computation. In NDSS, 2015.

[99] Payman Mohassel and Peter Rindal. mixed protocol frame-
work for machine learning. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security, pages 35–52, 2018.

[100] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz
Koushanfar. Chameleon: A hybrid secure computation
framework for machine learning applications. In Proceed-
ings of the 2018 on Asia Conference on Computer and
Communications Security, pages 707–721, 2018.

[101] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul
Sharma, and Shardul Tripathi. EzPC: programmable, ef-
ficient, and scalable secure two-party computation for ma-
chine learning. ePrint Report, 1109, 2017.

[102] Jaideep Vaidya and Chris Clifton. Privacy-preserving data
mining: Why, how, and when. IEEE Security & Privacy,
2(6):19–27, 2004.

[103] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi,
Thomas Schneider, and Immo Wehrenberg. TASTY: tool
for automating secure two-party computations. In Pro-
ceedings of the 17th ACM conference on Computer and
communications security, pages 451–462, 2010.

[104] Thore Graepel, Kristin Lauter, and Michael Naehrig. ML
confidential: Machine learning on encrypted data. In Inter-

national Conference on Information Security and Cryptol-
ogy, pages 1–21. Springer, 2012.

[105] Jinhyun So, Basak Guler, A Salman Avestimehr, and Pay-
man Mohassel. CodedPrivateML: A fast and privacy-
preserving framework for distributed machine learning.
arXiv preprint:1902.00641, 2019.

[106] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-
Bachrach, Kristin Lauter, and Michael Naehrig. Crypto-
nets: Neural networks over encrypted data. arXiv
preprint:1412.6181, 2014.

[107] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on
Machine Learning, pages 201–210, 2016.

[108] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Al-
bert Haque, and Li Fei-Fei. Faster cryptonets: Lever-
aging sparsity for real-world encrypted inference. arXiv
preprint:1811.09953, 2018.

[109] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi.
Cryptodl: Deep neural networks over encrypted data. arXiv
preprint:1711.05189, 2017.

[110] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun
Kanade. TAPAS: Tricks to accelerate (encrypted) predic-
tion as a service. In International Conference on Machine
Learning, pages 4490–4499, 2018.

[111] Nick Barlow and Oliver Strickson. SHEEP is a ho-
momorphic encryption evaluation framework. https:
//github.com/alan-turing-institute/SHEEP, 2018.

[112] Florian Bourse, Michele Minelli, Matthias Minihold, and
Pascal Paillier. Fast homomorphic evaluation of deep dis-
cretized neural networks. In Annual International Cryptol-
ogy Conference, pages 483–512. Springer, 2018.

[113] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo
Song. Secure outsourced matrix computation and applica-
tion to neural networks. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1209–1222, 2018.

[114] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan.
Oblivious neural network predictions via minionn trans-
formations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 619–631, 2017.

[115] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz
Koushanfar. Deepsecure: Scalable provably-secure deep
learning. In Proceedings of the 55th Annual Design Au-
tomation Conference, pages 1–6, 2018.

[116] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim
Laine, Kristin Lauter, and Farinaz Koushanfar. XONN:
XNOR-based oblivious deep neural network inference. In
28th USENIX Security Symposium (USENIX Security 19),
pages 1501–1518, 2019.

[117] Anders Dalskov, Daniel Escudero, and Marcel Keller. Se-
cure evaluation of quantized neural networks. Proceed-
ings on Privacy Enhancing Technologies, 2020(4):355–375,
2020.

[118] Goldreich Oded. Foundations of cryptography: Volume 2,
basic applications, 2009.

[119] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan,
Wenting Zheng, and Raluca Ada Popa. DELPHI: A cryp-

https://github.com/alan-turing-institute/SHEEP
https://github.com/alan-turing-institute/SHEEP

SoK: Privacy-Preserving Computation Techniques for Deep Learning 159

tographic inference service for neural networks. In 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[120] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine,
Kristin Lauter, Saeed Maleki, Madanlal Musuvathi, and
Todd Mytkowicz. CHET: an optimizing compiler for fully-
homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 142–156,
2019.

[121] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei
Dai, Kim Laine, and Madan Musuvathi. Eva: an encrypted
vector arithmetic language and compiler for efficient ho-
momorphic computation. Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Jun 2020.

[122] Fabian Boemer, Yixing Lao, Rosario Cammarota, and
Casimir Wierzynski. nGraph-HE: a graph compiler for deep
learning on homomorphically encrypted data. In Proceed-
ings of the 16th ACM International Conference on Comput-
ing Frontiers, pages 3–13, 2019.

[123] Fabian Boemer, Anamaria Costache, Rosario Cammarota,
and Casimir Wierzynski. nGraph-HE2: A high-throughput
framework for neural network inference on encrypted data.
In Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pages
45–56, 2019.

[124] Fabian Boemer, Rosario Cammarota, Daniel Demmler,
Thomas Schneider, and Hossein Yalame. MP2ML: a mixed-
protocol machine learning framework for private inference.
In Proceedings of the 15th International Conference on
Availability, Reliability and Security, pages 1–10, 2020.

[125] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla,
Jayaram Bobba, Matthew Brookhart, Avijit Chakraborty,
Will Constable, Christian Convey, Leona Cook, Omar
Kanawi, et al. Intel ngraph: An intermediate represen-
tation, compiler, and executor for deep learning. arXiv
preprint:1801.08058, 2018.

[126] Huili Chen, Rosario Cammarota, Felipe Valencia, and
Francesco Regazzoni. PlaidML-HE: Acceleration of deep
learning kernels to compute on encrypted data. In 2019
IEEE 37th International Conference on Computer Design
(ICCD), pages 333–336. IEEE, 2019.

[127] Siam Hussain, Baiyu Li, Farinaz Koushanfar, and Rosario
Cammarota. Tinygarble2: Smart, efficient, and scalable
yao’s garble circuit. In Proceedings of the 2020 Workshop
on Privacy-Preserving Machine Learning in Practice, pages
65–67, 2020.

[128] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner,
Jason Mancuso, Daniel Rueckert, and Jonathan Passerat-
Palmbach. A generic framework for privacy preserving deep
learning. arXiv preprint:1811.04017, 2018.

[129] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow:
Secure tensorflow inference. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 336–353. IEEE, 2020.

[130] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and
Rebecca N Wright. Privacy-preserving machine learning as
a service. Proceedings on Privacy Enhancing Technologies,
2018(3):123–142, 2018.

[131] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and
Shai Halevi. Towards deep neural network training on en-
crypted data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops,
pages 0–0, 2019.

[132] Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin E
Lauter, and Peter Rindal. Private collaborative neural
network learning. IACR Cryptol. ePrint Arch., 2017:762,
2017.

[133] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and
Adrià Gascón. Quotient: two-party secure neural network
training and prediction. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1231–1247, 2019.

[134] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith
Suresh. Flash: fast and robust framework for privacy-
preserving machine learning. Proceedings on Privacy En-
hancing Technologies, 2020(2):459–480, 2020.

[135] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and
Ajith Suresh. Astra: High throughput 3pc over rings with
application to secure prediction. In Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security
Workshop, pages 81–92, 2019.

[136] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste,
Morgan Giraud, Ian Livingstone, Justin Patriquin, and
Gavin Uhma. Private machine learning in tensorflow us-
ing secure computation. arXiv preprint:1810.08130, 2018.

[137] Marcel Keller. MP-SPDZ: A versatile framework for multi-
party computation. Cryptology ePrint Archive, Report
2020/521, 2020. https://eprint.iacr.org/2020/521.

[138] A. Viand, P. Jattke, and A. Hithnawi. Sok: Fully homo-
morphic encryption compilers. In 2021 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1166–1182, Los
Alamitos, CA, USA, may 2021. IEEE Computer Society.

[139] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguisha-
bility obfuscation from well-founded assumptions. arXiv
preprint:2008.09317, 2020.

[140] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436–444, 2015.

[141] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT press Cam-
bridge, 2016.

[142] Mohamad H Hassoun et al. Fundamentals of artificial
neural networks. MIT press, 1995.

[143] Balázs Csanád Csáji et al. Approximation with artificial
neural networks. Faculty of Sciences, Etvs Lornd University,
Hungary, 24(48):7, 2001.

[144] Nathan O Hodas and Panos Stinis. Doing the impossible:
Why neural networks can be trained at all. Frontiers in
psychology, 9:1185, 2018.

[145] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis,
Kurt Wan-Duo Ma, and Brian McWilliams. The shattered
gradients problem: If resnets are the answer, then what
is the question? In International Conference on Machine
Learning, pages 342–350. PMLR, 2017.

[146] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541–
551, 1989.

https://eprint.iacr.org/2020/521

SoK: Privacy-Preserving Computation Techniques for Deep Learning 160

[147] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[148] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift, 2015.

[149] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014.

[150] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan,
and Stephen Marshall. Activation functions: Comparison of
trends in practice and research for deep learning, 2018.

[151] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-
Robert Müller. Efficient backprop. In Neural networks:
Tricks of the trade, pages 9–48. Springer, 2012.

[152] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010.

A Deep Learning Background

Deep Learning is a machine learning technique de-
rived from Artificial Neural Networks (ANN) [140, 141].
ANNs are biologically inspired statistical models that
resemble the neural connections, where neurons are con-
nected in a network, and they activate each other’s based
on a stimulus [142]. An ANN consists of a layered net-
work of neurons that are instrumented, through a train-
ing process, to learn how to solve complex problems.
The inner mathematical function of each neuron con-
sists of a linear part that computes the product of inter-
nal weights with the inputs from previous neurons; and
a non-linear part used as activation function expressing
distinctive behaviors of neurons. In ANNs, neurons are
grouped in layers and connected to the following layers
in specific patterns. The organization of the layers is also
known as architecture. Once the model is defined, the
training consists of two steps. Firstly, forward propaga-
tion infers the prediction on an input training sample.
Secondly, backward propagation evaluates the influence
of each neuron on the result, and modifies the weights
according to a loss function. Often, ANNs implement
Gradient Descent (or variations of it).

Learning Theory states that a single layer would
be enough to learn any function [141, 143]. However,
it does not account for the computational complexity
of such neurons. Advances in computations and also
mathematical science have shown that combining vari-
ous networks in deeper (i.e., with more layers) architec-
tures obtain similar results than making shallower and

wider ANNs efficiently [144, 145]. This is what consti-
tutes Deep Learning (DL). Moreover, there are software
frameworks that facilitate the training and use of DL
for data scientists (e.g., Tensorflow [6], Keras [5] or Py-
Torch [7]). The science in DL consists of finding the best
architecture for a particular problem, and training the
model to approximate a function that better fits the in-
put data. We next describe the linear and non-linear
structures of Deep Neural Networks (DNN).

A.1 Linear Structures

We describe the two most popular common linear layers.
Dense Layer. In this layer, all the neurons receive the
input from the all the neurons of the previous layer and
send its output to the next one. The process to compute
the output activation is a = σ(w0 +w1 ·x1 + ...+wn ·xn)
which multiplies the weights wi by the inputs of the
previous layer xi and applies the activation function σ.
Convolutional Layer. This layer is based on the con-
cept of image filters and thus only considers a subset of
the input [146, 147]. This layer typically applies to im-
age processing applications. It operates over a subset of
n by n pixels and reduces it to a single output. The filter
is shifted all over the pixels of the input image, resulting
in a reduced representation of a feature. The operations
carried on the filter are determined by weights that are
computed during training. In that way, neural networks
can infer about different shapes found in images. Con-
volutional layers reduce the number of parameters and
training time. They are often used in conjunction with
batch normalization layers [148] and dropout layers [149]
to improve its training convergence.

A.2 Non-Linear Structures

For the non-linear structures, we differentiate those
aimed at activating and pooling the neurons.

A.2.1 Activation Functions

Activation functions are fundamental components that
determine the intensity of the output of a neuron [150],
and they control the learning factor for the different
weights. They are a key aspect of DL training, since
otherwise a neural network without activation becomes
a linear regression [141]. There are several examples of
it, but the most commonly used ones are:

SoK: Privacy-Preserving Computation Techniques for Deep Learning 161

Sigmoid σ(x) = (1 + e−x)−1 This activation shifts
towards values being either 0 or 1. It is used as the
last layer activation. It enables a faster minimization of
the cost function (i.e., values are shifted towards 0 or
1) [151].
ReLU ReLU(x) = max(0, x) This function [152] is used
in intermediate layers of the NN. It has the advantage
of allowing gradient updates to propagate correctly to
the first layers. That is, for very deep architectures, the
use of ReLU is essential.
Softmax σ(zi) = ezi∑K

j=1 e
zj

This function has similar

behavior to the sigmoid function but for multiclass clas-
sification outputting a higher probability of one class
and lower for the rest.

A.2.2 Max Pooling and Average Pooling

The max-pooling and average pooling layers are sub-
sampling structures that permit obtaining significant
values from the results of previous layers. Pooling layers
act on N ×N areas of the matrix and compute the max
or average of it. Thus, they further reduce the represen-
tation of the input and speed up the computation. In
CNN’s Max Pooling layers are directly coupled to the
success of convolutional layers [141], and thus, they are
always used together. In the case of PPDL, the use of
max-pooling layers is minimal due to the complexity to
approximate the max function, and therefore the aver-
age pooling is often used.

B Generic DL Pipeline

Figure 1 shows an schematic view of the generic archi-
tecture for Privacy-Preserving Deep Learning.

C Open-Source Repositories

Table 2 shows the URLs for the various open-source
repositories analysed in this work.

SoK: Privacy-Preserving Computation Techniques for Deep Learning 162

Local Premises

11

2

N

Preprocessing Privacy Preserving Processing Postprocessing

A

B

A
Local Premises

B
Local Premises Local Premises

Fig. 1. Generic Architecture for Privacy Preserving Data Processing.

Proposal Ref. URL Last Update

Dalskov et al. [117] github.com/data61/MP-SPDZ 27/05/2021
PySyft [128] github.com/OpenMined/PySyft 24/05/2021
CrypTFlow [129] github.com/mpc-msri/EzPC 12/05/2021
CHET/EVA [120, 121] github.com/microsoft/EVA 01/05/2021
ABY3 [99] github.com/ladnir/aby3 08/03/2021
PlaidML HE [126] github.com/plaidml/plaidml 21/11/2020
TinyGarble2 [127] github.com/IntelLabs/TinyGarble2.0 16/11/2020
MP2ML [124] github.com/IntelAI/he-transformer 03/11/2020
nGraph HE 2 [123] github.com/IntelAI/he-transformer 03/11/2020
nGraph HE [122] github.com/IntelAI/he-transformer 03/11/2020
SecureNN [95] github.com/snwagh/securenn-public 01/11/2020
Dalskov et al. [117] github.com/anderspkd/SecureQ8 06/10/2020
TFEncrypted [136] github.com/tf-encrypted/tf-encrypted 19/08/2020
Delphi [119] github.com/mc2-project/delphi 14/08/2020
SecureML [50] github.com/shreya-28/Secure-ML 01/10/2019
Cryptonets [106, 107] github.com/microsoft/CryptoNets 12/09/2019
Jiang et al. [113] github.com/K-miran/HEMat 07/08/2019
TAPAS [110] github.com/amartya18x/tapas 28/05/2019
GAZELLE [96] github.com/chiraag/gazelle_mpc 17/09/2018
FHE DiNN [112] github.com/mminelli/dinn 21/11/2017
TASTY [103] github.com/tastyproject/tasty 13/11/2014

Table 2. URLs for the open-source repositories of the different contributions analyzed [Last review on May 27th, 2021].

https://github.com/data61/MP-SPDZ
https://github.com/OpenMined/PySyft
https://github.com/mpc-msri/EzPC
https://github.com/microsoft/EVA
https://github.com/ladnir/aby3
https://github.com/plaidml/plaidml
https://github.com/IntelLabs/TinyGarble2.0
https://github.com/IntelAI/he-transformer
https://github.com/IntelAI/he-transformer
https://github.com/IntelAI/he-transformer
https://github.com/snwagh/securenn-public
 https://github.com/anderspkd/SecureQ8
https://github.com/tf-encrypted/tf-encrypted
https://github.com/mc2-project/delphi
https://github.com/shreya-28/Secure-ML
https://github.com/microsoft/CryptoNets
https://github.com/K-miran/HEMat
https://github.com/amartya18x/tapas
https://github.com/chiraag/gazelle_mpc
https://github.com/mminelli/dinn
https://github.com/tastyproject/tasty

	SoK: Privacy-Preserving Computation Techniques for Deep Learning
	1 Introduction
	2 Privacy Settings and Requirements in Deep Learning
	2.1 Privacy Goals
	2.2 Adversarial Model
	2.3 Privacy Techniques
	2.4 Architectures and Processing Steps

	3 Scope and Methodology
	4 Privacy-Preserving Computation Techniques
	4.1 Homomorphic Encryption (HE)
	4.1.1 Advanced Constructions for DL

	4.2 Secure Multiparty Computation
	4.2.1 Advanced Constructions for DL

	4.3 Hybrid Techniques

	5 State of the Art
	5.1 Preceding Approaches
	5.2 Privacy Preserving Deep Learning Inference
	5.2.1 PPDL Inference in Centralized Architectures with Homomorphic Encryption
	5.2.2 PPDL Inference in Distributed Architectures with Secure Multiparty Computation
	5.2.3 PPDL Inference in Hybrid Architectures
	5.2.4 Programming Interfaces for PPDL Inference

	5.3 Privacy Preserving Deep Learning Training
	5.3.1 HE for PPDL Training
	5.3.2 SMPC for PPDL Training
	5.3.3 Hybrid Techniques for PPDL Training

	6 Current Challenges and Research Directions
	6.1 Analysis
	6.2 Take-Aways

	7 Conclusions
	A Deep Learning Background
	A.1 Linear Structures
	A.2 Non-Linear Structures
	A.2.1 Activation Functions
	A.2.2 Max Pooling and Average Pooling

	B Generic DL Pipeline
	C Open-Source Repositories

