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Domain name encryption is not enough: privacy
leakage via IP-based website fingerprinting
Abstract: Although the security benefits of domain
name encryption technologies such as DNS over TLS
(DoT), DNS over HTTPS (DoH), and Encrypted Client
Hello (ECH) are clear, their positive impact on user
privacy is weakened by—the still exposed—IP address
information. However, content delivery networks, DNS-
based load balancing, co-hosting of different websites on
the same server, and IP address churn, all contribute to-
wards making domain–IP mappings unstable, and pre-
vent straightforward IP-based browsing tracking.
In this paper, we show that this instability is not a
roadblock (assuming a universal DoT/DoH and ECH
deployment), by introducing an IP-based website finger-
printing technique that allows a network-level observer
to identify at scale the website a user visits. Our tech-
nique exploits the complex structure of most websites,
which load resources from several domains besides their
primary one. Using the generated fingerprints of more
than 200K websites studied, we could successfully iden-
tify 84% of them when observing solely destination IP
addresses. The accuracy rate increases to 92% for pop-
ular websites, and 95% for popular and sensitive web-
sites. We also evaluated the robustness of the gener-
ated fingerprints over time, and demonstrate that they
are still effective at successfully identifying about 70%
of the tested websites after two months. We conclude
by discussing strategies for website owners and host-
ing providers towards hindering IP-based website fin-
gerprinting and maximizing the privacy benefits offered
by DoT/DoH and ECH.
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1 Introduction
Due to the increase of Internet surveillance in recent
years [13, 31], users have become more concerned about
their online activities being monitored, leading to the
development of privacy-enhancing technologies. While
various mechanisms can be used depending on the de-
sired level of privacy [48], encryption is often an in-
dispensable component of most privacy-enhancing tech-
nologies. This has led to increasing amounts of Internet
traffic being encrypted [3].

Having a dominant role on the Internet, the web
ecosystem thus has witnessed a drastic growth in
HTTP traffic being transferred over TLS [28]. Although
HTTPS significantly improves the confidentiality of
web traffic, it cannot fully protect user privacy on its
own when it comes to preventing a user’s visited web-
sites from being monitored by a network-level observer.
Specifically, under current web browsing standards, the
domain name information of a visited website can still
be observed through DNS queries/responses, as well as
the Server Name Indication (SNI) field of the TLS hand-
shake packets. To address this problem, several domain
name encryption technologies have been proposed re-
cently to prevent the exposure of domain names, in-
cluding DNS over TLS (DoT) [51], DNS over HTTPS
(DoH) [49], and Encrypted Client Hello (ECH) [88].

Assuming an idealistic future in which all network
traffic is encrypted and domain name information is
never exposed on the wire as plaintext, packet metadata
(e.g., time, size) and destination IP addresses are the
only remaining information related to a visited website
that can be seen by a network-level observer. As a result,
tracking a user’s browsing history requires the observer
to infer which website is hosted on a given destination IP
address. This task is straightforward when an IP address
hosts only one domain, but becomes more challenging
when an IP address hosts multiple domains. Indeed, re-
cent studies have shown an increasing trend of websites
being co-located on the same hosting server(s) [47, 95].
Domains are also often hosted on multiple IP addresses,
while the dynamics of domain–IP mappings may also
change over time due to network configuration changes
or DNS-based load balancing.
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Given these uncertainties in reliably mapping do-
mains to their IPs, we investigate the extent to which
accurate browsing tracking can still be performed by
network-level adversaries based solely on destination
IPs. In this work, we introduce a lightweight website fin-
gerprinting (WF) technique that allows a network-level
observer to identify with high accuracy the websites a
user visits based solely on IP address information, en-
abling network-level browsing tracking at scale [74]. For
instance, an adversary can use—already collected by ex-
isting routers—IPFIX (Internet Protocol Flow Informa-
tion Export) [101] or NetFlow [2] records to easily ob-
tain the destination IP addresses contacted by certain
users, and track their browsing history.

For our attack, we first crawl a set of 220K web-
sites, comprising popular and sensitive websites selected
from two website ranking lists (§5). After visiting each
website, we extract the queried domains to construct a
domain-based fingerprint. The corresponding IP-based
fingerprint is then obtained by continuously resolving
the domains into their IPs via active DNS measurement
(§4.1). By matching these IPs from the generated fin-
gerprints to the IP sequence observed from the network
traffic when browsing the targeted websites, we could
successfully fingerprint 84% of them (§6.3). The suc-
cessful identification rate increases to 92% for popular
websites, and 95% for popular and sensitive websites.

To further enhance the discriminatory capacity
of the fingerprints, we consider the critical rendering
path [38] to capture the approximate ordering structure
of the domains that are contacted at different stages
while a website is being rendered in the browser (§4.2).
Our results show that the enhanced fingerprints could
allow for 91% of the tested websites to be successfully
identified based solely on their destination IPs(§6.4).

Given the high variability of website content and
domain–IP mappings across time, we expect that once
generated, a fingerprint’s quality will deteriorate quickly
over time. To assess the aging behavior of the finger-
prints, we conducted a longitudinal study over a period
of two months. As expected, fingerprints become less
accurate over time, but surprisingly, after two months,
they are still effective at successfully identifying about
70% of the tested websites (§7).

As our WF technique is based on the observation
of the IPs of network connections that fetch HTTP re-
sources, it is necessary to evaluate the impact of HTTP
caching on the accuracy of the fingerprints. This is be-
cause cached resources can be loaded directly from the
browser’s cache when visiting the same website for a
second time, resulting in the observation of fewer con-

nections per fingerprint. Furthermore, our attack ex-
ploits the fact that websites often load many external re-
sources, including third-party analytics scripts, images,
and advertisements, making their fingerprints more dis-
tinguishable. We thus also investigated whether the re-
moval of these resources due to browser caching or ad
blocking could help to make websites less prone to IP-
based fingerprinting (§8).

By analyzing the HTTP response header of the web-
sites studied, we find that 86.1% of web resources are
cacheable, causing fewer network connections to be ob-
servable by the adversary if these resources are loaded
from the browser’s cache (§8.1). Moreover, using the
Brave browser to crawl the same set of websites, we
found that the removal of third-party analytics scripts
and advertisements can impact the order in which web
resources are loaded (§8.2), significantly reducing the ac-
curacy of the enhanced fingerprints from 91% to 76%.
Nonetheless, employing the initially proposed WF tech-
nique in which the critical rendering path [38] is not
taken into account, we could still fingerprint 80% of the
websites even when browser caching and ad blocking are
considered.

Regardless of the high degree of website co-location
and the dynamics of domain–IP mappings, our findings
show that domain name encryption alone is not enough
to protect user privacy when it comes to IP-based WF.
As a step towards mitigating this situation, we discuss
potential strategies for both website owners and hosting
providers towards hindering IP-based WF and maximiz-
ing the privacy benefits offered by domain name encryp-
tion. To the extent possible, website owners who wish to
make IP-based website fingerprinting harder should try
to (1) minimize the number of references to resources
that are not served by the primary domain of a website,
and (2) refrain from hosting their websites on static IPs
that do not serve any other websites. Hosting providers
can also help by (1) increasing the number of co-located
websites per hosting IP, and (2) frequently changing the
mapping between domain names and their hosting IPs,
to further obscure domain–IP mappings, thus hindering
IP-based WF attacks.

2 Background and Motivation
In this section, we review some background information
on domain name encryption technologies and discuss the
motivation behind our study. In particular, we highlight
how our IP-based fingerprinting attack is different from
prior works, allowing network-level adversaries to effec-
tively mount the attack at scale.
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2.1 Domain Name Encryption

In today’s web browsing environment, there are two
channels through which domain name information is
exposed on the wire: plaintext DNS requests/responses,
and the Server Name Indication (SNI) extension of TLS.

The plaintext nature of DNS not only jeopardizes
user privacy, but also allows network-level entities to in-
terfere with user connections. For example, an on-path
attacker can inject forged DNS responses to redirect a
targeted user to malicious hosts [27]. The domain name
information exposed via DNS packets and the SNI field
has also been intensively exploited by state-level net-
work operators for censorship purposes [14, 46, 75, 78,
82]. To cope with these security and privacy problems,
several solutions have been recently proposed to safe-
guard domain name information on the wire, including
DoT [51], DoH [49], and ECH [88].

By encrypting DNS traffic, DoT/DoH preserves the
integrity and confidentiality of DNS resolutions. Sev-
eral companies (e.g., Google [35], Cloudflare [4]) of-
fer free DoT/DoH services to the public, while popu-
lar web browsers including Chrome and Firefox already
support DoH [35, 67], with the latter enabling DoH
(through Cloudflare) by default for users in the US since
2019. However, the design choice of these vendors to
centralize all DNS resolutions to one trusted resolver
has raised several privacy concerns. As a result, more
privacy-centric DNS resolution schemes have also been
proposed, including DoH over Tor [71, 91], Oblivious
DNS [92, 97], and distributed DoH resolution [44], to
not only conceal DNS packets from on-path observers,
but also to deal with “nosy” recursors.

SNI has been incorporated into the TLS protocol
since 2003 [17] as a workaround for name-based virtual
hosting servers to co-host many websites that support
HTTPS. During the TLS handshake, the client includes
the domain name of the intended website in the SNI
field in order for the server to respond with the cor-
responding TLS certificate of that domain name. Until
TLS 1.2, this step takes place before the actual encryp-
tion begins, leaving the SNI field transmitted in plain-
text, and exposing users to similar security and privacy
risks as discussed above. TLS 1.3 provides an option
to encrypt the SNI field, concealing the domain name
information [87]. Since March 2020, ESNI has been re-
worked into the ECH extension [88]. In order for ECH
to function, a symmetric encryption key derived from
the server’s public key has to be obtained in advance.
This public key can be obtained via an HTTPS resource
record lookup. Thus, it is important to note that ECH

cannot provide any meaningful privacy benefit without
the use of DoT/DoH, and vice versa. Mozilla has sup-
ported ECH since Firefox 85 [52].

2.2 Website Fingerprinting

Website fingerprinting (WF) is a type of traffic analy-
sis attack, employed to construct fingerprints for a set
of websites based on the traffic pattern observed while
browsing them. Depending on which metadata is visible
from the encrypted traffic, different WF techniques can
be used to determine whether a user under surveillance
visited any of the monitored websites.

Numerous WF attacks targeting anonymized or
obfuscated communication channels have been pro-
posed [40, 58, 73, 79, 85, 98, 107, 108], in which
the actual destination IP address is hidden by means
of privacy-enhancing network relays [32, 48], such as
Tor [26] or the Invisible Internet Project (I2P) [43, 113].
However, WF attacks on standard encrypted web traf-
fic (i.e., HTTPS), in which no privacy-enhancing net-
work relays are employed, have not been comprehen-
sively investigated, especially at the IP-address level.
This is because the domain name information previ-
ously available in several plaintext protocols (e.g., DNS,
the SNI extension of TLS, and OCSP queries [90]) can
be easily obtained from the network traffic (§2.1). This
information alone can already be used for a straight-
forward inference of applications or web services being
visited [42, 102]. However, in an idealistic future where
domain name encryption (i.e., DoT/DoH and ECH) is
fully deployed, visibility to any information above the IP
layer will be lost. Under these conditions, and given the
high degree of web co-location [47], our ultimate goal
is to investigate the extent to which websites can still
be fingerprinted at scale, based solely on the IP address
information of the servers being contacted.

Given the numerous WF methods introduced in the
past, one may wonder why do we even need another
website fingerprinting method? In addition to the afore-
mentioned reasons and pitfalls of previous WF tech-
niques [53], the rationale behind our fingerprinting tech-
nique based solely on IP-level information stems from
the increasing deployment of domain name encryption
technologies [25, 61]. Currently, most web traffic does
expose domain information, as domain name encryption
has not been fully deployed [103], and thus network-level
browsing tracking at scale through DNS or SNI is much
easier. However, once this massive-scale monitoring ca-
pability is gone due to DoT/DoH and ECH, the next



Domain Name Encryption Is Not Enough: Privacy Leakage via IP-based Website Fingerprinting 423

best option for ISPs to continue tracking at a similar
scale will be to rely on IP addresses, which are already
collected as part of IPFIX (Internet Protocol Flow In-
formation Export) [101] or NetFlow [2] records by ex-
isting routers. Although more elaborate fingerprinting
schemes can certainly be conceived for HTTPS traffic,
these will require a significant deployment effort and
cost [74], both for constructing and maintaining the fin-
gerprints, as well as for matching them.

3 Threat Model
Internet service providers (ISPs) have been increasingly
harvesting user traffic for monetization purposes, such
as targeted advertising [18, 34, 55]. Our threat model
considers the real-world scenario in which a local adver-
sary (e.g., an ISP) passively monitors users’ traffic and
attempts to determine whether a particular website was
visited. The adversary carries out the following steps to
create website fingerprints.

First, the adversary visits a set of websites and
records all domain names that are contacted to fetch
their resources. A domain-based fingerprint for each
website is then built from this set of contacted domains.
After that, these domains are periodically resolved to
their hosting IPs, which are used to construct IP-based
fingerprints. Depending on the relationship between a
domain name and its hosting IP(s), a connection to a
unique IP can be used to easily reveal which website is
being visited if the IP only hosts that particular domain
name. Finally, to conduct the WF attack, the adversary
tries to match the sequence of IP addresses found in
the network trace of the monitored user with the IP-
based fingerprints constructed in the previous step to
infer which website was visited.

The effectiveness of our attack depends on two pri-
mary factors, namely, the uniqueness (§6) and stability
(§7) of the fingerprints. It is worth emphasizing that
our model does not assume fingerprinting of obfuscated
network traffic, in which the IP address information is
already hidden by means of privacy-enhancing technolo-
gies. This class of attacks, whose goal is to use sophisti-
cated traffic analysis methods to fingerprint anonymized
network traffic, has been extensively investigated by
prior studies [20, 40, 58, 79, 98]. Our threat model re-
quires only minimal information collected from the net-
work traffic, i.e., destination IPs.

We consider a browsing scenario in which one web-
site is visited at a time, which is particularly valid
when it comes to ordinary web users on devices with
smaller screens, and is also most often the case of ca-

sual browsing behavior (except, perhaps, the rare event
of a browser restart with many previously open tabs).
Although some users may visit more than one website
at a time, they mostly interact with one tab at a time.
There is also a time gap when changing from one tab to
another to open or reload a different website, especially
for users with a single screen. All these together allow
an observer to distinguish between individual website
visits, as also evident by existing techniques that can
be employed to split a network trace of such multi-tab
activity into individual traces [23, 24, 111]. Moreover,
although many individual users may be located behind
the same NAT network, Verde et al. [105] have devel-
oped a framework that can identify different individ-
uals behind a large metropolitan WiFi network based
on NetFlow records. To keep our study simple, we thus
assume that the adversary already employs the afore-
mentioned techniques to obtain the network trace of
different individuals before conducting our WF attack.

4 Fingerprint Construction
Next, we explain how we construct IP-based fingerprints
in more detail, from creating the initial domain-based
fingerprints to deriving the final IP-based fingerprints.
At a conceptual level, we first explore the straightfor-
ward approach of resolving all domains loaded while vis-
iting a website to their hosting IPs, from which we cre-
ate a set of unique IPs that can potentially be used as
the IP-based fingerprint for that website. We then take
the critical rendering path [38] into account to improve
the fidelity of the fingerprints, by considering the ap-
proximate order in which domains are loaded while the
website is being rendered on the screen.

4.1 Basic IP-based Fingerprint

Assuming an idealistic web browsing scenario in which
domain name information can no longer be extracted
from network traffic due to the full deployment of do-
main name encryption, the only remaining information
visible to the adversary is packet metadata (e.g., time,
size) and sequences of connections to remote IP ad-
dresses of contacted web servers. Under these condi-
tions, the adversary would need to fingerprint targeted
websites based primarily on this information. As intro-
duced in our threat model, the adversary first visits the
targeted websites and records all domains that are con-
tacted while browsing each website. Each domain can
then be resolved to its hosting IP address(es). As a re-
sult, the mapping between domains and hosting IP ad-
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dress(es) is the basic unit on which the adversary relies
to construct IP-based fingerprints.

When browsing a website, the browser first contacts
the web server to fetch the initial resource—usually
an HTML document. It then parses the HTML docu-
ment and subsequently fetches other web resources ref-
erenced. Based on this underlying mechanism of fetch-
ing a webpage, the adversary constructs domain-based
fingerprints as follows. For a given website, its domain-
based fingerprint consists of two parts: the primary do-
main, denoted as dp, and a set of secondary domains,
denoted as ds. The fingerprint then can be represented
as: dp + {ds1 , ds2 , ..., dsn}. The primary domain is the
domain of the URL shown in the browser’s address bar,
and typically corresponds to the server to which the
first connection is made for fetching the initial HTML
document of the visited webpage. Secondary domains
may be different from the primary one and are used for
hosting other resources needed to load the webpage.

From the domain-based fingerprints constructed
above, the adversary can then obtain their correspond-
ing IP-based fingerprints by repeatedly resolving the do-
main names into their hosting IP(s). Given that a do-
main name may be resolved to more than one IP, each
domain in a domain-based fingerprint is converted to a
set of IP(s) with at least one IP in it. As domain-based
fingerprints are comprised of two parts, the inherent
structure of IP-based fingerprints also consists of two
parts. The first part contains the IP(s) of the primary
domain name, while the second part is a set of sets of
IPs obtained by resolving the secondary domains. The
fingerprint then can be represented as:

{dpip1, dpip2, ..., dpipn}+ {{ds1 ip1, ds1 ip2, ..., ds1 ipn},
{ds2 ip1, ds2 ip2, ..., ds2 ipn}, ..., {dsn ip1, ..., dsn ipn}}

To simplify the construction and matching of finger-
prints, we reduce the above fingerprint by considering
the union of the sets of IP addresses of all secondary do-
mains (second part of the above fingerprint). The sim-
plified version of the IP-based fingerprint can thus be
represented by just two sets of IP addresses as:

{dpip1, dpip2, ..., dpipn}+ {ds1 ip1, ds1 ip2, ..., ds1 ipn,

ds2 ip1, ds2 ip2, ..., ds2 ipn, ..., dsn ip1, ..., dsn ipn}

Although it might seem that this simplification dis-
cards some part of the structural information of the
page, we found no significant difference in accuracy
when evaluating both fingerprint formats. Therefore, we
opt to use the latter fingerprint structure, as it is simpler
and allows for faster matching.

4.2 Enhanced IP-based Fingerprint with
Connection Bucketing

When a webpage is visited, besides the initial connec-
tion to the primary domain, multiple requests may then
be issued in parallel to fetch other resources referenced
in the initial HTML document. Once fetched, these re-
sources may sometimes trigger even more requests for
other sub-resources (e.g., JavaScript). The absolute or-
der of these requests on the wire can change from time to
time, depending on many uncertain factors, such as the
performance of the upstream network provider and the
underlying operating system. For that reason, we did
not consider the order in which domains are contacted
when constructing the domain-based fingerprints, and
thus we gather all secondary domains into one bucket,
as described in §4.1. However, when viewing all these
requests as a whole, there still exists a high-level order-
ing relationship that we can capture when considering
the critical rendering path [38]. Specifically, there are
certain render-blocking and critical objects that always
need to be loaded prior to some other objects.

The chain of events from fetching an initial HTML
file to rendering the website on screen is referred to as
the critical rendering path [38]. When visiting a web-
site, the browser first contacts the primary domain to
fetch the initial HTML file (e.g., index.html). Next,
this file is parsed to construct the DOM (Document
Object Model) tree. The browser then fetches several
web resources from remote destinations to render the
webpage. Depending on the complexity of the webpage,
these resources may include HTML, JavaScript, CSS,
image files, and third-party resources, which may in turn
load more sub-resources hosted on other third-party do-
mains [76]. According to the Internet Archive, a typi-
cal website loads an average of 70 web resources as of
this writing [7]. When considering this critical rendering
path, there are three important events that we can use
to cluster connections into three “buckets:” domLoad-
ing, domContentLoaded, and domComplete.
domLoading is triggered when the browser has re-
ceived the initial HTML file and parses it to construct
the DOM tree. As a result, multiple parallel connections
to fetch critical resources referenced by the DOM tree
are initiated right after this event is fired.
domContentLoaded is triggered when both the
DOM and CSSOM (CSS Object Model) are ready [38],
signaling the browser to create the render tree. The
event is typically fired without waiting for style sheets,
images, and subframes to load [69]. After this event, sub-
sequent connections can often be observed for fetching
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elements such as non-blocking style sheets, JavaScript
files, images, and subframes.
domComplete is triggered when the website and
its sub-resources have been loaded. After this event
is fired, non-essential objects can still be downloaded
in the background, leaving the critical rendering path
unaffected. For example, external JavaScript files are
known to be render-blocking and are recommended to
be moved to the end of the webpage or to be included
with a defer attribute of the <script> tag [36]. There-
fore, a small cluster of connections can often be observed
after this event is triggered.

Based on these observations about the critical ren-
dering path, we enhance the structure of our finger-
prints (both domain-based and the corresponding IP-
based ones) to comprise the primary domain and three
sets of domains corresponding to the three events afore-
mentioned. The enhanced domain-based fingerprint can
then be represented as:

dp + {ds1 , ds2 , ...}+ {ds2 , ds3 , ...}+ {..., dsn−1 , dsn}

Note that a domain can appear in more than one
bucket if multiple objects are fetched from that domain
at different times. Accordingly, the representation of the
enhanced IP-based fingerprint follows the same struc-
ture, comprising four sets of IP addresses: i) the set of
IP addresses of the primary domain, and ii) three sets of
IP addresses corresponding to the three buckets above.

5 Experiment Setup
In this section, we provide the details of how we set
up and conducted our experiments for assessing the ef-
fectiveness of IP-based website fingerprinting. In par-
ticular, we discuss the rationale behind our test list of
websites, and the duration and location of our measure-
ment.

5.1 Selection of Test Domains
From an adversarial point of view, it is desirable for an
attacker to be able to reveal as many websites as possi-
ble. It is, however, impractical to crawl the entire Inter-
net, given that there are more than 362.3 million domain
names registered across all top-level domains (TLDs) as
of 2020 [8]. In addition, many of them are dormant or
even unwanted domains [100] that the majority of In-
ternet users will never visit. As our goal is to assess the
extent to which domain name encryption would prevent
the leakage of the majority of users’ browsing activi-
ties via IP-based website fingerprinting, we opt to focus

on those websites that are legitimately visited in real-
world scenarios. Therefore, we choose to use domains
from the Tranco top-site ranking list [104], since it has
been shown to have a good overlap with the web traffic
observed by the Chrome User Experience Report [84].

The research community often relies on one of
the four top-site lists (Alexa [9], Majestic [11], Um-
brella [12], and Quantcast [5]). However, studies have
discovered several issues with these lists that can neg-
atively impact research outcomes if not handled prop-
erly [89, 104]. To remedy the shortcomings of these lists,
the Tranco list is curated to aggregate the four afore-
mentioned lists, resulting in a list of more than seven
million domains. Even then, due to the dynamic na-
ture of the web [15, 57], there are still domains that are
unstable, not responsive, or do not serve any web con-
tent in the Tranco list, especially in its long tail [84, 89].
Therefore, we select the top 100K popular domains from
the Tranco list for our study, because any ranking un-
der 100K is not statistically significant, as suggested by
both top-list providers and previous studies [9, 89].

While some websites are so common that visiting
them may be considered to be a very low privacy risk
(e.g., facebook.com, twitter.com, or youtube.com),
the leakage of visits to more “sensitive” websites is def-
initely an important concern. This is even more so in
oppressive regions, where browsing certain online con-
tent could be considered as a violation of local regu-
lations [39, 72, 112]. To that end, we complement our
dataset by manually choosing websites from the Alexa
list that belong to categories deemed “sensitive,”1 such
as LGBT, sexuality, gambling, medical, and religion. In
total, our dataset consists of 220,743 domains, includ-
ing the top 100K popular domains of the Tranco list2

and 126,597 domains from Alexa’s sensitive categories.
Among these, there are 5,854 common domains between
the two data sources.

Although one may consider our test list as a closed-
world dataset, it is infeasible to repeatedly crawl the
entire Internet, which has more than 362.3M domains
registered at the time of our experiment [8]. It is also
unlikely that a network-level adversary is interested in

1 It is worth noting that sensitivity can be different from site
to site, depending on who, when, and from where is visiting
the site [42]. We intuitively choose these complementary do-
mains based on our common sense of what is sensitive based on
those categories that are often blocked by many Internet censors
around the world [75].
2 The list was created on March 3rd 2020, and is available at
https://tranco-list.eu/list/J2KY.

https://tranco-list.eu/list/J2KY
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fingerprinting all websites on the Internet. However, the
ability of continuously conducting our WF attack on
more than 220K domains highlights the scalability of
our method. In fact, we cover an order of magnitude
more domains compared to previous WF attacks against
DoT/DoH traffic [19, 50, 96], in which the largest open-
world setting comprised fewer than 10K domains [19].

5.2 Measurement Duration and Location
Prior work often overlooks the temporal aspect when
constructing fingerprints. More specifically, many efforts
are conducted in a one-off manner or over a short pe-
riod of time, neglecting the temporal characteristics of
fingerprints whose websites’ content may evolve over
time [57]. For our work, in which we focus on IP-based
fingerprints, the churn in domain–IP mappings is also
another major concern [45]. Due to the variability of
website content and hosting IPs across time, a previ-
ously constructed fingerprint may not be valid after a
certain time period. Therefore, a longitudinal measure-
ment study is essential to examine the robustness of
fingerprints, which in turn impacts the efficacy of their
use in WF attacks.

Over a period of 60 days (from March 5th to May
3rd, 2020), we repeatedly crawled the 220K websites
from our test list curated in §5.1, using the Chrome
browser (desktop version 80.0), running on Ubuntu
20.04 LTS. When visiting each website, we extract all
domains contacted to construct the fingerprint for that
website using the steps discussed in §4. At the network
level, we capture the sequence of destination IPs con-
tacted, to evaluate the accuracy of our IP-based WF
method (§6). Note that the collection of this sequence
of IPs is oblivious to the domains extracted indepen-
dently when loading each website.

Due to DNS-based load balancing, many domains,
especially of popular websites, may map to different IP
addresses at different times [45]. Therefore, once the set
of domains that were contacted to render each web-
site is extracted, we continuously resolve them to ob-
tain their IP addresses until the next crawl. This best-
effort approach allows us to obtain as many IPs as pos-
sible for those domains that employ DNS-based load
balancing. However, to make sure our experiment does
not saturate DNS servers (thus affecting other legiti-
mate users), we enforce a rate limit of at least three
hours. In other words, contacted domains of a web-
site are only resolved again if they were not resolved
within the last three hours. The entire process for each
crawl batch takes approximately 2.5 days. As a result,

we have collected a total of 24 data batches during a
two-month period. To stimulate future studies in this re-
search domain, we make our dataset available to the re-
search community at https://homepage.np-tokumei.
net/publication/publication_2021_popets.

Our measurement is conducted from a cluster of ma-
chines located in a gigabit academic network in the US.
Due to the rapid increase in the use of content deliv-
ery networks (CDN), web content can be served from
multiple servers distributed across different locations,
depending on the origin of the request [45]. Although
our dataset can be considered as representative for web
users within our geographical area, it would have missed
some IP addresses of CDN-hosted websites which can
only be observed at other locations. Nonetheless, as
mentioned in §3, the adversary in our threat model is
local and also has access to the Internet from the same
network location as the monitored users (e.g., the ISP
of a home or corporate user), and will not observe any
other IPs of CDN-hosted websites either. Adversaries
at different locations can always set up machines within
their network of interest and conduct the same exper-
iment with ours to construct a dataset of fingerprints
that matches those websites browsed by users within
the network of their control.

6 Fingerprinting Accuracy
Next, we evaluate the accuracy of our WF techniques
using the data collected in §5. We begin with an analy-
sis of the information entropy that we can expect from
domain-based fingerprints, and then evaluate the accu-
racy of IP-based fingerprints.

6.1 Fingerprint Entropy

As discussed in §3, the creation of IP-based fingerprints
is based on the domains contacted while visiting the
targeted websites. Therefore, it is important to first ex-
amine the uniqueness of these domains, as it impacts
the effectiveness of IP-based WF. This will aid us in
deciding whether a domain should be included or not
as part of a fingerprint. For example, if a certain do-
main is contacted when visiting every single website,
then there is no point in including it. In contrast, if a
unique domain is only contacted when visiting a partic-
ular website, it will make the fingerprint more distin-
guishable. The more unique a domain is, the higher the
information entropy that can be gained [94], resulting
in a better fingerprint.

https://homepage.np-tokumei.net/publication/publication_2021_popets
https://homepage.np-tokumei.net/publication/publication_2021_popets
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Fig. 1. CDF of the information entropy gained per domain/IP as
a percentage of all the unique domains/IP addresses observed.

Let P (d) be the probability that a particular domain
will be contacted when visiting a given website among
the targeted websites. The information entropy in bits
gained if that particular domain is contacted can be
calculated using the following formula:

Information entropy = − log2 P (d)

The blue (solid) line in Figure 1 shows the entropy
gained from each domain as a percentage of the approx-
imately 475K unique domains observed in each crawl
batch. Almost 90% of these domains are unique to the
website from which they are referenced, yielding high
information entropy (17.7 bits). In contrast, there are
a few domains from which we can only gain a small
amount of entropy. This result aligns well with the study
of Greschbach et al. [37] in which the Alexa top-site list
was crawled and for 96.8% of the websites there exists at
least one domain that is unique only to these websites.

Table 1 lists the top-ten domains that provide the
least information entropy. Eight of them belong to
Google and two belong to Facebook. These domains
are commonly included in many websites, thus only
contributing a small amount of entropy. For instance,
www.google-analytics.com is included in more than
half of the websites. However, we opt to keep them
as part of our fingerprints, as most of them still pro-
vide more than one bit of information, helping to differ-
entiate between websites that reference these external
Google/Facebook services and those that do not.

Based on the entropy for each domain computed
above, we then calculate the entropy gained per IP ad-
dress, since our ultimate goal is to perform WF at the
IP level. Given an observed IP, there are two possibili-
ties regarding the domain(s) it may correspond to. First,
the IP may be associated with only a single domain, in
which case its entropy can be deduced directly from the
domain’s entropy. Second, the IP may co-host multiple
domains. In this case, the IP’s entropy is calculated by
taking the average of the entropy values of all domains

Table 1. Top-ten domains that yield the lowest entropy.

Domain name # Websites Entropy

www.google-analytics.com 114K (55%) 0.87
fonts.gstatic.com 102K (49%) 1.03
fonts.googleapis.com 102K (49%) 1.04
www.google.com 76K (37%) 1.44
stats.g.doubleclick.net 72K (35%) 1.53
www.googletagmanager.com 64K (31%) 1.71
www.facebook.com 53K (25%) 1.97
connect.facebook.net 53K (25%) 1.98
googleads.g.doubleclick.net 49K (24%) 2.09
ajax.googleapis.com 34K (16%) 2.62

(that have been observed to be) hosted on it. Note that
calculating the entropy using both average and median
gives us similar results because most co-hosted domains
on the same IP addresses often provide a similar amount
of information entropy. We thus choose the former one.

Considering these two possibilities, we then calcu-
late the information entropy of the 340K IPs observed
from our continuous DNS measurement in each crawl
batch. As indicated by the red (dashed) line of Figure 1,
50% of the IPs provide at least 9 bits of information en-
tropy, while there is a group of more than 30% of the
IPs that provide a high amount of information entropy
(17.7 bits), which correspond to IPs hosting only a sin-
gle domain.

6.2 Primary Domain to IP Matching

Before evaluating our WF techniques, we first investi-
gate whether WF is needed at all. Prior studies have
shown that a significant fraction of websites have a
one-to-one mapping between primary domains and their
hosting IP(s) [45]. This first connection can be distin-
guished from the subsequent requests since there is usu-
ally a noticeable time gap during which the browser
needs to contact the primary domain to download the
initial HTML file, parses it, and constructs the DOM
tree before multiple subsequent connections are initi-
ated to fetch referenced resources. As a result, it is
straightforward for an adversary to target this very first
connection to infer which website is being visited.

More specifically, when a domain is hosted on one
IP or multiple IPs without sharing its hosting server(s)
with any other domains, it is easy to infer the domain
from the IP(s) of its hosting server(s). We analyzed the
DNS records of all primary domains in our dataset to
quantify the fraction of websites that can be finger-
printed by just targeting their primary IP(s). We find
that 52% of the websites studied have their primary
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Table 2. Percentage of successfully identified websites using i) naive primary domain to IP matching (§6.2), ii) basic fingerprinting
(§4.1, §6.3), and iii) enhanced fingerprinting with connection bucketing (§4.2, §6.4).

Website type Total Primary Domain IP-based Fingerprinting Connection Bucketing

All websites crawled 208,191 107,455 (52%) 174,662 (84%) 189,527 (91%)
Popular websites 93,661 58,989 (63%) 86,147 (92%) 90,231 (96%)
Sensitive websites 120,293 51,538 (43%) 93,988 (78%) 104,983 (87%)
Sensitive and popular 5,763 3,072 (53%) 5,473 (95%) 5,687 (99%)

domain hosted on their own IP(s), while the remaining
48% are co-hosted on a server with at least another web-
site. This result means that an adversary can already
infer 52% of the targeted websites based solely on the
IP address of the very first connection to the primary
domain, without having to consider secondary connec-
tions. The third column of Table 2 shows the breakdown
of these websites in terms of their popularity and sen-
sitivity. Note that the total number of websites shown
here is lower than the total number of test websites se-
lected in §5 due to some unresponsive websites when
conducting our experiment.

6.3 Basic IP-based Website Fingerprinting

To fingerprint the remaining 48% of websites whose pri-
mary domains are co-hosted, an adversary would need
to analyze the second part of their IP-based fingerprint
that captures the IP addresses of secondary domains.

Going back to the way we build our IP-based fin-
gerprints in §4.1, the basic IP-based fingerprint has two
parts. The first part consists of the primary domain’s
IP(s), and the second part comprises a set of IPs ob-
tained by resolving all secondary domains. Given a se-
quence of IPs [ip0, ip1, ip2, ..., ipn] observed from a net-
work trace, we first scan ip0 against the primary part of
all IP-based fingerprints, which are created by repeated
active DNS measurements (§5.2). If ip0 is found among
the primary IPs of a given fingerprint, the fingerprint
is added to a pool of candidates. We then compare the
subset {ip1, ip2, ..., ipn} with the secondary part of each
candidate fingerprint. For each matching IP, we add the
entropy provided by that IP to the total amount of en-
tropy gained for that particular candidate fingerprint.
Finally, we choose the fingerprint with the highest total
entropy to predict the website visited.

Using this IP-based WF method we obtained an
increased matching rate of 84%—that is, 84% of the
websites in our data set were identified with 100% ac-
curacy. The breakdown of the fingerprinted websites is
shown in the fourth column of Table 2. Among these
fingerprinted websites, we could precisely match 92% of

the popular websites and 78% of the sensitive websites.
More worrisome is the fact that 95% of sensitive and
popular websites can be fingerprinted.

6.4 Enhanced Website Fingerprinting with
Connection Bucketing

We next evaluate the effectiveness of the enhanced
WF (§4.2), in which we take the critical rendering path
into consideration to cluster IPs into three buckets. Sim-
ilarly to the basic fingerprints (§6.3), given a sequence
of IPs [ip0, ip1, ip2, ..., ipn], we first scan ip0 against all
fingerprints to create a pool of candidate fingerprints.
For the subsequence [ip1, ip2, ..., ipn], our goal is to split
it into three buckets of connections that can potentially
be matched with the three buckets of IPs in the IP-
based fingerprints. Based on the time of each connection
initiation captured at the network level (§5.2), we use
k-means clustering [30, 60, 63] to split them into three
sets of IPs.

For every candidate fingerprint, we intersect each
bucket of IPs in the fingerprint to the corresponding
bucket of IPs captured from the network trace. Then,
for each matching IP, we add its entropy to the total
amount of entropy gained for that particular fingerprint.
Finally, we choose the fingerprint with the highest en-
tropy to predict the visited website.

Using this approach, the accuracy rate can be im-
proved to 91%. The breakdown of fingerprinted websites
is shown in the last column of Table 2. For the popular
and the sensitive websites, we obtain an accuracy rate
of 96% and 87%, respectively. However, a more alarm-
ing result is that 99% of sensitive and popular websites
can be precisely fingerprinted, posing a severe privacy
risk to their visitors.

We now look into the remaining 9% (18,664) of web-
sites for which we could not find an exact match. As
shown in Figure 2, 20% of these websites have only
two matching candidates, while about 50% of them
have only up to ten matching candidates. By manually
examining some of these fingerprints, we found many
cases in which the matching candidate domains actu-
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Fig. 2. CDF of candidate websites per fingerprint for the remain-
ing 9% (18,664) of websites that could not be matched.

ally point to the same website (but without redirect-
ing to the same domain). These are mostly owned by
organizations who have registered the same name un-
der different TLDs (e.g., bayer.de vs. bayer.com), or
variations of the domain (e.g., christianrock.net vs.
christianhardrock.net) to protect their brand against
domain squatting [100]. A more determined adversary
could invest the effort to implement more advanced
techniques for identifying such duplicate websites. For
instance, string similarity can be used to cluster similar
domains, while image similarity can be used to group
websites with similar screenshots of the start page.

7 Fingerprint Stability
As mentioned in our threat model, the efficacy of a WF
attack also depends on the stability of fingerprints over
time. There are two primary reasons why a website fin-
gerprint may go stale. First, the website may change
over time with existing elements removed and new ele-
ments added [57]. Second, the mapping between a do-
main and its hosting IP(s) may also change [45]. Con-
sequently, a previously constructed fingerprint may no
longer be valid after a certain time period.

Since our IP-based fingerprints are constructed
based on domains contacted while browsing the targeted
websites, we first examine the extent to which these
websites are stable in terms of the domains that they
reference. We introduce a difference metric to quantify
the change in this set of domains for a given website
over time as follows. Let Dt0 and Dt1 be the sets of
contacted domains observed when browsing a website
at time t0 and t1, respectively, the difference degree for
this website is calculated as:

Difference degree = (Dt0 ∪Dt1)− (Dt0 ∩Dt1)
Dt0 ∪Dt1

Based on this definition, we consider a website as
stable during a period t0 → t1 when the set of domains
observed at time t1 have not changed compared to those
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Fig. 3. CDF of the stability of domain names loaded in each web-
site as a percentage of all websites studied.

previously observed at time t0, yielding a difference de-
gree of 0. In contrast, a website is considered as unstable
when its difference degree is 1, meaning that all domains
observed at time t1 are different from those previously
seen at t0.

Figure 3 shows the stability of the websites studied
in terms of the domains contacted while visiting them.
About 30% of the websites contact the exact same set of
domains to download web resources for the whole two-
month period of our study. Within a five-day period,
80% of the websites are still almost completely stable,
with a difference degree lower than 0.1, while this per-
centage decreases to 50% over the two-month period.
Understandably, almost half of the websites we study
are the most popular on the Internet. Hence, it is ex-
pected that their content will be changed or updated on
a regular basis. However, even after two months, almost
80% of the websites are still stable, with a difference de-
gree lower than 0.3, meaning that 70% of observed do-
mains are still being used to host web resources needed
to render these websites.

This is a favorable result for the adversary, as it
shows that domains are an effective and consistent fea-
ture. The result particularly implies that the adversary
does not need to keep crawling all websites repeatedly
to construct domain-based fingerprints. Based on the
results of Figure 3, the adversary perhaps can divide
websites into two groups comprising stable and less sta-
ble websites. For instance, the stable group consists of
80% of websites with a difference degree lower than 0.2
after ten days, while the less stable group consists of the
remaining 20% of websites. Then, the adversary would
only need to re-crawl the less stable ones every ten days
to keep their domain-based fingerprints fresh, instead of
all websites.

However, in our threat model, what can be actu-
ally observed by the adversary is only IP addresses. We
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Fig. 4. CDF of the stability of IP addresses in each IP-based fin-
gerprint as a percentage of all websites studied.

thus apply the same difference formula to quantify the
stability of IP-based fingerprints. Unlike domain-based
fingerprints, IP-based fingerprints become stale faster,
as shown in Figure 4. We find that only 10% of the IP-
based fingerprints contain the same set of IPs over the
course of two months. After ten days, 60% of the finger-
prints have more than 30% of their IPs changed. After
two months, half of the IPs have changed in more than
50% of the fingerprints.

Given these results, we investigate how the instabil-
ity of the IP-based fingerprints impacts the accuracy of
our WF attack. We consider an attack scenario in which
the adversary uses fingerprints constructed in the past
to track the users’ browsing activities at a future time.
Figure 5 shows the accuracy (i.e., the percentage of suc-
cessfully identified websites) of our enhanced WF ap-
proach over the course of two months. Within 2.5 days3

after their generation, our fingerprints consistently yield
a high accuracy of 91%. Over the course of two months,
we can see a gradual decrease in the accuracy. However,
this decrease is quite modest, as after five to ten days
since their construction the fingerprints can still be used
to accurately identify about 80% of the websites. This
number only decreases to about 70% after two months.

Although IP-based fingerprints go stale faster com-
pared to their domain-based fingerprints, those IP ad-
dresses that change frequently mostly correspond to sec-
ondary domains, and only a small fraction corresponds
to primary domains (see Appendix A for details). The
vast majority of primary domains are hosted on mostly
static IP addresses for the whole period of our study.
As a result, the persistently stable IP addresses of these
primary domains in the IP-based fingerprints is the rea-

3 The lowest time granularity is 2.5 days because each crawl
batch in our dataset requires this amount of time to be collected,
as discussed in §5.
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Fig. 5. Fingerprint stability over time. Even after two months,
70% of the tested websites can still be fingerprinted.

son why our IP-based fingerprints are still effective at
revealing 70% of the targeted websites even though a
large number of IP-based fingerprints have changed sig-
nificantly after two months, as indicated in Figure 4.

The above finding means that the adversary can in-
telligently split domains into two groups, based on pre-
viously observed data. The first group consists of do-
mains whose IPs are dynamic, while the second group
contains domains whose IPs remain static over a config-
urable amount of time. The adversary then only needs
to periodically perform DNS lookups for the first group
after a desired amount of time has passed, depending on
the network overhead and resources the adversary can
sustain for conducting the attack.

8 Fingerprint Robustness
We next examine the impact of HTTP caching on the
effectiveness of our WF since resources are often cached
by web browsers to improve websites’ performance. In
addition, our WF also exploits the fact that websites
often load external resources, including images, style
sheets, fonts, and even “unwanted” third-party analytics
scripts, advertisements, and trackers [76], which result
in a sequence of connections to several servers with dif-
ferent IPs, making the fingerprints more unique. Thus,
we also investigate whether blocking these unnecessary
resources would help make websites less distinguishable,
thus reducing their fingerprintability.

8.1 Impact of HTTP Caching on Website
Fingerprinting Accuracy

When a website is revisited, cached resources can be
served from the local cache without the browser fetching
them again from their origins. Since our attack is based
solely on the observation of the IP of connections to
remote destinations, we are interested in examining the
fraction of cacheable resources and the extent to which
HTTP caching impacts the effectiveness of our WF.
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Fig. 6. CDF of the freshness timeline of HTTP resources.
(m: minute, h: hour, d: day, M: month, Y: year)

Analyzing the response header of 21.3M objects ob-
served while crawling the tested websites, we find that
86.1% of them are cacheable. In other words, these
HTTP resources can be stored and served from the local
cache without being downloaded again from the remote
servers when being revisited.

Utilizing the cache-control information in the
HTTP response header, we compute the freshness time-
line for each resource. The freshness timeline is the
amount of time during which the browser can store
and serve resources from its cache without download-
ing them again from their original servers. Figure 6
shows the distribution of the freshness timeline of 21.3M
objects. The value “-1” denotes uncachable resources
(13.9%) that must be downloaded again from their ori-
gin if revisited, while “0” indicates cacheable resources
(21.9%) that always need to be revalidated with their
origin. In other words, these two types of resources
will always cause a network connection to their original
servers if revisited. On the other hand, the remaining
64.2% of resources can be loaded directly from the local
cache without making any network connections.

Next, we evaluate the impact of cacheable resources
on our attack accuracy by excluding IPs on which
cacheable resources are hosted. We use the basic finger-
printing method here for our evaluation (§4.1) instead
of the enhanced one (§4.2), because revisited resources
may not be freshly loaded in the order of the critical
rendering path as in the first visit.

Although many web resources are cached, we could
still obtain a high accuracy. As shown in Figure 7,
even when websites are revisited after only five minutes,
meaning that the majority of resources can be served
from the local cache, an accuracy of 80% can still be
obtained—a decrease of just 4% (from 84%) compared
to when websites are visited for the first time. If web-
sites are revisited after one hour, one day, or one month,
our basic WF attack can obtain a gradually increased
accuracy of 80.8%, 81.4%, and 82.3%, respectively.
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Fig. 7. The accuracy of IP-based fingerprinting attack when ex-
cluding destinations where cacheable resources are hosted. (m:
minute, h: hour, d: day, M: month)

There are two primary reasons why our attack is
still highly effective although the majority of resources
are cacheable. First, excluded IPs often host long-term
cacheable shared resources, such as fonts and JavaScript
code, which contribute only a small amount of entropy
to the fingerprint if included. Second, for cacheable re-
sources hosted on IPs with high entropy, not all re-
sources have the same freshness timeline. In fact, we find
that half of the origins that host resources cacheable for
more than one hour also serve another resource with
a freshness timeline shorter than five minutes, causing
at least one network connection to the original server if
revisited.

8.2 Fingerprinting Under Ad Blocking
Due to the prevalence of ads and analytics scripts that
harvest users’ information [86], many advertisement and
tracker blocking tools have been developed to protect
user privacy. Of these tools, the Brave browser has stood
out to be one of the best browsers for user privacy on
the Clearnet to date [56].

Therefore, we opt to use the Brave browser for in-
vestigating the impact of ad blocking on IP-based WF.
During the last four batches of our data collection pro-
cess (i.e., ten days), at the same time with crawling the
test websites (without blocking ads and trackers), we in-
strumented the Brave browser (desktop version 1.6.30)
to crawl these websites a second time. While the Brave
browser is loading each website, we also capture (1) the
set of domains contacted to fetch web resources for ren-
dering the website, and (2) the sequence of IPs con-
tacted to fetch web resources.

Using the same fingerprinting techniques as in §6,
we then match the sequences of IP addresses observed
while browsing with the Brave browser to our IP-based
fingerprints. As expected, the fingerprinting accuracy
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rate decreases from 91% to 76% when using the en-
hanced fingerprints. Since our enhanced fingerprinting
approach (§4.2) primarily relies on the ordering struc-
ture in which web resources are loaded, the partial re-
moval of these resources by the Brave browser has im-
pacted the effectiveness of this approach.

However, when employing the initial (basic) finger-
printing approach (§4.1), in which the ordering structure
of loaded resources is not considered, we could still ob-
tain an accuracy rate of 80%. This is due to the removal
of external resources (e.g., analytics scripts, tracking im-
ages) whose information entropy is not significant. We
provide a further analysis of the filtered domain names
in Appendix B.

In practice, the use of ad blocking (if any) by a
client may not be explicit to an adversary since IPs are
the only information that can be observed. To detect
the use of ad blocking at the client side, the adversary
can obtain up-to-date IP blocklists of ads/trackers from
well-maintained sources (e.g., FireHOL [10]) to examine
if there are connections to IPs of servers where those
ads/trackers are hosted. Then, the adversary can decide
which matching mode to employ for obtaining a higher
fingerprinting accuracy. Note that the data collection
procedure does not change regardless of the mode.

9 Countermeasures
We next discuss potential directions for website own-
ers and hosting providers toward making IP-based WF
more challenging, thus maximizing the privacy benefits
provided by domain name encryption.

9.1 Website Owners
Our WF exploits the fact that websites typically load
resources from multiple servers. From the viewpoint of a
network observer, this makes their fingerprints more dis-
tinguishable. External resources such as ads and track-
ing scripts served from third-party domains may some-
times fetch even more “unwanted” objects from other
third-party domains without the knowledge of the web-
site owner [76]. As shown in §8, blocking these objects
hinders (to some extent) the fingerprintability of a web-
site. Owners who wish to provide increased privacy to
their visitors can thus minimize the inclusion of third-
party resources. On the other hand, privacy-conscious
users can use ad and tracker blocking tools to make
their browsing activities harder to fingerprint.

Another reason for contacting domains that are dif-
ferent from the primary domain is the web design strat-

egy known as domain sharding [68]. Since traditional
web browsers limit the number of concurrent connec-
tions per remote server according to the HTTP/1.1
specification [29], website owners often host resources
on different domains as a workaround to improve the
page load time by parallelizing connections to multiple
servers. However, the introduction of HTTP/2 makes
this strategy irrelevant.

Among the many new features of HTTP/2, server
push and request multiplexing play an important role in
improving page load time [110]. By eliminating round-
trip requests, the server can preemptively push refer-
enced resources to reduce latency. With multiplexing,
resource requests can be sent in parallel through a sin-
gle TCP connection. To gain any performance benefits
offered by these new mechanisms, it is recommended to
co-host web resources on the same server [110]. From the
perspective of IP-based fingerprinting, this is a welcome
change that will aid in reducing the fingerprintability of
websites, as a network-level observer will now see only
one connection stream to a single remote IP address.

9.2 Hosting Providers
Even with HTTP/2 and all resources served from the
same domain, if a website is exclusively hosted alone
on the same IP(s), it can still be trivially fingerprinted.
Hosting providers can aid in hindering IP-based WF by
maximizing two factors: the co-location degree of web-
sites and the dynamics of domain–IP mappings.

We have shown that websites that are not co-hosted
with other websites are the most vulnerable to our at-
tack due to the one-to-one mapping between their do-
main and hosting IP address(es). When a website is
co-hosted with many other websites, it becomes more
challenging to fingerprint—assuming their owners have
taken the steps discussed in §9.1. Otherwise, despite a
relatively high level of co-location of more than 1K web-
sites, we could still successfully fingerprint them because
their fingerprints are unique enough to differentiate a
given website from the rest of the co-hosted websites, as
shown in Appendix C.

In addition to increasing the co-location degree,
hosting providers can also maximize the dynamics of
domain–IP mappings to hinder WF further. By ana-
lyzing the dynamics of mappings between domains and
IPs throughout the whole period of our study, we find
that it is feasible to increase the dynamics of domain–
IP mappings from the perspective of hosting providers.
However, we only observe this behavior for a small num-
ber of primary and secondary domains, whereas almost
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80% of the studied websites have their primary domains
hosted on static IPs, allowing network-level observers to
easily fingerprint them (see Appendix A for details).

10 Limitations
In this section, we discuss the limitations and the ratio-
nale behind the experimental design of our study, espe-
cially in relation to the critical evaluation conducted by
Juarez et al. [53].

Most prior WF studies are often criticized for only
considering a very small number of websites in a closed-
world setting [53, 83]. However, it would be infeasible
to crawl the entire Internet of more than 362.3 mil-
lion domains registered across all TLDs [8], many of
which are dormant domains that most users would never
visit [100]. We thus use the Tranco top-site ranking
list [104] to focus on those websites that are likely visited
by most legitimate Internet users in real-world scenar-
ios [84]. Moreover, our test list is not only curated from
the most 100K popular domains, but is also comple-
mented by more than 100K less popular but sensitive
domains §5.1.

We believe that this is a reasonable trade-off for
the breadth of coverage, which yields a manageable yet
representative set of test domains, allowing us to con-
duct our experiment in a longitudinal fashion to shed
light on the aging behavior of fingerprints (§7)—an im-
portant factor that is often not considered by prior
studies. Regardless of the test list size, our WF at-
tack was conducted in a closed-world setting. In a truly
open-world setting, as the number of websites increases,
the proposed WF technique may become more error-
prone [53, 80, 83].

Another criticized assumption often made by pre-
vious studies is that the adversary can collect data un-
der the same conditions (e.g., network connection, web
browser, website localization) as the victim [53]. This
is a valid criticism, especially when it comes to WF at-
tacks on Tor traffic, because visiting the same domain
via different Tor paths (exit nodes) may result in differ-
ent localized versions of the website. The adversary in
our threat model, however, is a local attacker (e.g., ISPs,
corporate network administrators) who is in the same
network with the victim. Therefore, it is straightforward
for the adversary to set up an environment that is simi-
lar to that of the victim. Specifically, the availability of
several OS and device fingerprinting tools based on the
different implementations of the TCP/IP stack [16, 93],
together with well-known “home-phoning” traffic of dif-
ferent web browsers [56], can assist the adversary in fil-

tering background noise and resembling a similar brows-
ing environment with the victim.

To keep our experiment manageable, we opt to use
the Chrome browser for data collection because it is the
most popular at the time of this study, occupying about
65% of the browser market share [6]. Although the cross-
browser fingerprinting result in §8.2 has showed that our
basic WF technique can still achieve an accuracy rate
of 80%, we acknowledge that this accuracy could be im-
pacted in more complex scenarios if different extensions
and preferences are configured in the browser.

Our dataset is created by visiting the start page of
the test websites without going into any subpages or
interacting with them. We thus may have missed some
characteristics of individual pages that could only be
captured if some user interaction was involved (e.g., log-
ging in). However, similarly to DNS-based monitoring,
our attack model does not aim to distinguish between
different links, pages, or events under the same website,
which has been studied previously [64, 70]. Instead, the
primary goal of the proposed WF technique is to deter-
mine if a given website was visited.

When conducting our attack, the resources of each
website are considered independently for that given
website while there could be cases in which more than
one website is visited from the same browser, result-
ing in same resources (e.g., font, CSS, or JavaScript
files) being shared among the websites. We have shown
in the analysis of our fingerprint robustness (§8) that
excluding these resources from the fingerprints due to
browser caching or ad blocking can significantly impact
the effectiveness of our enhanced WF technique (§4.2).
Nonetheless, their removal does not completely thwart
our attack, as we could still identify 80% of the websites
studied using the basic WF technique (§4.1). This is be-
cause these shared resources are often hosted on com-
mon IP addresses that contribute only a small amount
of entropy to the fingerprints when included.

Finally, the proposed privacy-enhancing counter-
measure of increasing website co-location can lead to
another privacy concern related to hosting centraliza-
tion [59]. While this is a valid concern, this suggestion
is (1) for hosting providers who are already chosen by
the website owners to host their websites, and (2) based
on the already centralized nature of the web, which has
been an increasing trend for the last decade [47, 95].
Note that the adversary in our threat model (§3) cor-
responds to local attackers, such as ISPs and corporate
network administrators, but not hosting providers or
website owners. If a user’s privacy goal is to conceal
their online activities from hosting providers and web
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owners, browsing via privacy-enhancing network relays
(e.g., Tor [26]) would be a more suitable option.

11 Related Work
Encrypted network traffic analysis has gained more at-
tention in recent years as the Internet is on its way to
be fully encrypted since obtaining a TLS certificate has
become free of charge and easier than ever [3]. However,
some initial concept of this class of attack has been
established since the 90s [106]. As one of the first at-
tempts to apply traffic analysis on WF, Andrew Hintz
simply counts the number of downloaded files and their
size based on the number of connections, generating fin-
gerprints for a set of targeted websites [41]. Similarly,
Sun et al. [99] conduct a large-scale study on the fin-
gerprintability of 100K webpages based on the number
of objects requested as part of each website’s download.
However, this attack vector is no longer effective due
to the introduction of persistent HTTP (default since
HTTP/1.1 [29]) in which multiple files can be transmit-
ted over a single TCP connection.

In the same year of the two studies above, the pre-
alpha version of Tor was released [1], bringing online
privacy to another level by not only encrypting the net-
work traffic but also hiding the fact that a Tor user is
browsing a particular website from both local network
observers and the remote web server [26]. Since then,
the literature has witnessed numerous studies on WF
attacks on Tor using various techniques, ranging from
classical machine learning methods [40, 58, 79, 108] to
advanced deep neural networks [73, 98].

Similar to any other privacy-enhancing communica-
tions (e.g., Tor), encrypted DNS traffic is susceptible to
traffic analysis. Therefore, padding was added to rem-
edy this problem [66]. However, recent studies find that
current padding strategies are not sufficient to cope with
traffic analysis. Bushart et al. [19] show that padded en-
crypted DNS traffic is still vulnerable to traffic analysis
attacks. Based on the size and timing information of en-
crypted DNS packets, the authors could deanonymize
86.1% of 10K websites studied. Using the sequence of
bytes as a key feature to build a model for classifying
encrypted DoH traffic, Siby et al. [96] could obtain a pre-
cision of 94% on a dataset of 5K domains. In another
related work, Houser et al. [50] analyze DoT traffic us-
ing a classifier based on numerous statistical features
extracted from the time of DNS packets, obtaining an
accuracy of 83% for a dataset of 98 websites. Compared

to the scale of our measurement, these prior studies
employ several machine learning techniques on much
smaller datasets, with the largest open-world dataset
comprising only 10K domain names [19].

When WF attacks are designed based primarily on
traffic features, such as packet size and burst, they can
be thwarted by obfuscating or adding noise to the traffic,
as is evident by a series of defensive techniques for Tor
proposed previously [20, 22, 33, 54, 62, 77, 109]. Siby
et al. [96] has indeed come to a conclusion that rout-
ing DoH traffic via Tor can effectively mitigate their
WF attack. There have been several implementations
of DoH over Tor [71, 91], which can help to remedy the
situation. This is the fundamental reason why we care
about fingerprinting at the IP level, and refrain from us-
ing other traffic features. Specifically, while DoT/DoH
traffic can be obfuscated by tunneling via Tor to cope
with these prior attacks, our attack does not target the
DoT/DoH traffic itself but the actual destination IPs
contacted when a website is visited, which are more
challenging to hide or obfuscate. One may suggest the
use of Tor in this case as a countermeasure. Nonetheless,
it is important to stress that the fundamental privacy
risk that domain encryption techniques aim to address
is orthogonal to those of Tor.

In terms of attacks using the IP address informa-
tion, Hoang et al. [45] assess the privacy benefits of-
fered by domain name encryption by simply resolving
domains into IPs and estimate their co-location degree
without actually visiting any websites. The authors con-
clude that co-hosting can help to improve privacy. While
this observation is valid, our WF method could still
achieve a high accuracy rate regardless of many co-
hosted websites (see Appendix C for details). Martino
et al. [65] conducted a similar study and could convert
IP addresses to their associated domains for the Tranco
top 6K websites with an accuracy of 50.5%. Patil et
al. [81] conduct a one-off measurement study to exam-
ine the uniqueness of IP-based fingerprints and find that
95.7% of websites have a unique fingerprint. However,
similar to most prior WF studies, they do not consider
the impact of caching while also lacking the temporal as-
pect of fingerprints. In practice, these essential factors
cannot be neglected because the dynamics of web con-
tents [15, 57] and domain–IP mappings over time [45]
can impact the fingerprints [64]. We address these short-
comings by not only taking browser caching into con-
sideration but also conducting our measurement in a
longitudinal fashion to investigate the effectiveness of
our fingerprints over time.
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12 Conclusion
Domain name encryption is an important and necessary
step to safeguard the domain name information, which
is still largely being transferred in an unsecured manner
on the Internet. However, we have shown that encryp-
tion alone is not enough to protect web users’ privacy.
Especially when it comes to preventing nosy network ob-
servers from tracking users’ browsing activities, the IP
address information of remote servers being contacted
is still visible, which can then be employed to infer the
visited websites.

In this study, we construct IP-based fingerprints for
more than 200K websites by performing active DNS
measurement to periodically resolve the contacted do-
main names while visiting these websites. Using these
IP-based fingerprints, we could successfully identify 84%
of the websites based solely on the IP addresses observed
from the network traffic. Even when browser caching or
ad blocking is considered, reducing the network traf-
fic an on-path adversary can observe, our fingerprinting
technique can still identify 80% of the websites studied.

Our findings show that significant effort still needs
to be invested by both website owners and hosting
providers to maximize the privacy benefits offered by
domain name encryption. Specifically, website owners
should try to minimize references to web resources
loaded from domains other than their website’s pri-
mary domain, and refrain from hosting their website
on servers that do not co-host any other websites. Host-
ing providers can help to hinder IP-based WF by co-
locating many websites on the same server(s), while also
dynamically changing mappings between domains and
their hosting IPs.
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A Dynamics of Domain-IP
Mapping

In this appendix, we analyze the mappings between do-
mains and IP addresses observed throughout the whole
study period to examine the dynamics of domain–IP
mappings in today’s web ecosystem. Over the two-
month period, we observed 531K domain names, result-
ing in 693K unique IP address. Of these domains, 212K
belong to the primary domain group selected in §5, and
319K are secondary domains. In total, we have gathered
more than 7M domain–IP mappings.

Figure 8 shows the longevity analysis of domain–IP
mappings of the two domain groups. More than 60%
of the mappings in both groups last for less than a
week (i.e., observed in no more than three consecutive
data batches). In contrast, only 15% of primary and less
than 5% of secondary domain mappings can be observed
for the whole two-month period of our study. The high
churn rate of most mappings after a week is one of the
reasons why our IP-based fingerprints deteriorate after
ten days since being constructed (§7).

However, the picture changes completely when ex-
amining the number of domains and IP addresses in
each mapping group. We refer to the group of mappings
that are observed in no more than three consecutive
data batches as dynamic mappings, and to mappings
that are observed continuously for the whole period of
study as static mappings. Table 3 shows the breakdown
of the number of unique domains and IP addresses ob-
served in each mapping group. We can see two unbal-
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Fig. 8. Longevity of mappings between domains and their IPs.

anced allocations between (a) the total number of pri-
mary and secondary domain mappings, and (b) the dy-
namic and static mappings within the primary domains.

For (a), the number of secondary domain mappings
is almost four times larger than primary domains, due
to the fact that a visit to a primary domain loads several
secondary domains. For (b), there are only 36K (17%)
primary domains with a high IP address churn rate, oc-
cupying a pool of 169K unique IP addresses. In contrast,
167K (79%) primary domains remain stable on the same
IP addresses for the whole period of our study. This
explains the reason why many of our IP-based finger-
prints are still effective after two months (§7). Specif-
ically, although 50% of the IP addresses are changed
in more than 50% of the fingerprints, as shown in Fig-
ure 4, this is mainly due to the change of secondary
domains’ hosting IP addresses. On the other hand, af-
ter two months, almost 80% of primary domains are
still hosted on static IP addresses, contributing to the
validity of our IP-based fingerprints.

Although only a small number of domains whose
hosting IP addresses are changed frequently, our find-
ings show that it is totally possible to increase the
dynamics of domain–IP mappings from the perspec-
tive of hosting providers. One may consider that fre-
quently changing the hosting IP addresses is not feasi-
ble for those web servers that use “cruise-liner” certifi-
cates [21], in which numerous domains are aggregated in
each certificate to support non-SNI clients. However, to
the best of our knowledge, the use of “cruise-liner” cer-
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Table 3. Breakdown of the number of domains and IPs in dy-
namic and static mappings.

Domain & IP Total Dynamic Static
type mappings mappings mappings

Primary domains 1.5M 36K (17%) 167K (79%)
Primary IPs 169K (45%) 137K (36%)

Secondary domains 5.5M 208K (65%) 88K (28%)
Secondary IPs 306K (69%) 77K (17%)

tificates has been deprecated by most hosting providers
due to widespread support of SNI by all major browsers.
For instance, while Cloudflare used to employ “cruise-
liner” certificates for websites co-hosted on its CDNs,
the Subject Alternative Names field of Cloudflare’s cer-
tificates now contains only the websites’ domain and
sni.cloudflaressl.com. Thus, our suggestion is still
compatible with multiple certificates per IP address. In
fact, Cloudflare does allow website owners to upload
their own certificates instead of using Cloudflare’s.

B Domains Filtered by Brave
While the accuracy rate does decrease when fingerprint-
ing against websites browsed with Brave (§8.2), our ba-
sic fingerprinting approach could still obtain a relatively
high accuracy rate of 80%. To that end, we conduct an
additional analysis on the filtered domains to find the
underlying reason why removing these resources does
not substantially reduce websites’ fingerprintability.

As shown in Figure 9, the number of domains loaded
per website when browsing with Brave (dashed line)
is significantly lower than when using a non-blocking
browser (solid line). Specifically, almost 80% of web-
sites load less than ten domains with Brave, whereas
only 57% of websites load less than ten domains us-
ing a non-blocking browser. The average number of do-
mains loaded per website with Brave is only eight, whilst
there are 14 domains loaded per website on average for
a non-blocking browser. Of all websites studied, 41% of
websites do not have any domains filtered by the Brave
browser. The remaining 59% of these websites have at
least one domain filtered, as shown in Figure 10.

Table 4 shows the top-ten most blocked domains by
Brave, with www.google-analytics.com being the most
blocked domain. Among the 220K websites studied, it
is removed from 69K (31%) websites. Although the do-
main is referenced in more than half of the websites (as
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Fig. 10. CDF of domains filtered per website by Brave.

shown in Table 1), Brave does not entirely remove it
from all of them, depending on how it is referenced on
each website. Despite being removed from a large num-
ber of websites, as indicated in the third column of the
table, these domains only contribute a small amount of
information entropy to the fingerprint when included
(as discussed in §6.1). This is the reason why our fin-
gerprinting technique can still identify a relatively high
number (80%) of websites when browsing with Brave.
Analyzing the MIME type of objects loaded from these
domains, we find that the vast majority of them are used
to load images and scripts used for tracking and adver-
tisement services operated by Google and Facebook.

C Impact of Co-location and
Popularity on Attack Accuracy

We next analyze the co-location degree and popular-
ity ranking of the fingerprinted websites to investigate
whether there are any correlations between these prop-
erties of a given website and the chance that it can
be precisely fingerprinted. Figure 11 shows two scat-
ter plots of the popular websites and sensitive websites
that we could successfully fingerprint, with respect to
their co-location degree and popularity ranking. As ex-
pected, websites that are not co-hosted with any other
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Fig. 11. Co-location degree vs. popularity ranking distribution of successfully fingerprinted websites. “Popular” corresponds to 90,231
fingerprinted websites from the Tranco list’s top-100K most popular domains, while “Sensitive” corresponds to 104,983 fingerprinted
websites from 126,597 sensitive domains chosen from Alexa’s sensitive categories that span the whole ranking spectrum. 5,687 finger-
printed websites are common between the two sets.

Table 4. Top-ten domains removed by Brave.

Domain name # Blocked Entropy

www.google-analytics.com 69K (31%) 0.87
stats.g.doubleclick.net 57K (26%) 1.53
www.google.com 38K (17%) 1.44
www.googletagmanager.com 32K (15%) 1.71
www.facebook.com 31K (14%) 1.97
googleads.g.doubleclick.net 28K (13%) 2.10
tpc.googlesyndication.com 21K (10%) 3.08
connect.facebook.net 21K (10%) 1.98
adservice.google.com 18K (8%) 2.68
pagead2.googlesyndication.com 18K (8%) 3.03

websites are the most susceptible to our IP-based finger-
printing attack. Regardless of having a high co-location
degree, however, websites can still be fingerprinted with
our enhanced technique due to the inclusion of unique
secondary domains.

Hoang et al. [45] suggest an ideal co-location thresh-
old of at least 100 domains per hosting IP address, so
that the co-hosted websites can gain some meaningful
privacy benefit from the deployment of domain name
encryption. However, Figure 11 shows that even when
more than 100 websites are co-hosted, they can still be
fingerprinted. Again, the underlying reason is that these

websites often reference several external resources, mak-
ing their fingerprint more distinguishable compared to
the rest of the co-hosted websites.

In addition, Figure 12 shows the CDF of the popu-
larity ranking of the successfully fingerprinted websites.
We can see that the number of fingerprinted websites
slightly leans towards more popular rankings, which can
also be confirmed by the higher accuracy rates when it
comes to fingerprinting the popular websites compared
to the sensitive websites, as indicated in all three finger-
printing approaches in Table 2.
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Fig. 12. CDF of popularity ranking as a percentage of all success-
fully fingerprinted websites.
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