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Abstract: Mercurial signatures are a useful building
block for privacy-preserving schemes, such as anony-
mous credentials, delegatable anonymous credentials,
and related applications. They allow a signature σ on
a message m under a public key pk to be transformed
into a signature σ′ on an equivalent message m′ under
an equivalent public key pk′ for an appropriate notion of
equivalence. For example, pk and pk′ may be unlinkable
pseudonyms of the same user, and m and m′ may be
unlinkable pseudonyms of a user to whom some capa-
bility is delegated. The only previously known construc-
tion of mercurial signatures suffers a severe limitation:
in order to sign messages of length `, the signer’s public
key must also be of length `. In this paper, we elimi-
nate this restriction and provide an interactive signing
protocol that admits messages of any length. We prove
our scheme existentially unforgeable under chosen open
message attacks (EUF-CoMA) under a variant of the
asymmetric bilinear decisional Diffie-Hellman assump-
tion (ABDDH).
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1 Introduction
Suppose Alice is known by a public key pkAlice, and
Bob is known by a public key pkBob. Suppose also that
Alice has a certificate on her public key and relevant
attributes from some certification authority (CA). At-
tributes may include the expiration date of the certifi-
cate or information about resources to which a user has
been granted access. Alice’s certificate consists of her
public key pkAlice and attributes attrAlice and a signa-
ture on them from the CA: σCA→Alice. Suppose Bob ob-
tains a certificate from Alice, rather than directly from
the CA. As a result, Bob’s certificate consists of Al-
ice’s pkAlice and attrAlice and certificate from the CA,
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σCA→Alice, as well as his own public key pkBob and at-
tributes attrBob and certificate from Alice, σAlice→Bob.

A conventional signature scheme allows Alice to cer-
tify Bob as above. However, a mercurial signature al-
lows the signer, Alice, to sign a message, such as Bob’s
public key and attributes, with two important blinding
features that make it attractive in privacy-preserving
applications. The first feature is message-blinding: the
original message m and its corresponding signature σ
can be transformed into an equivalent message m′ and
corresponding signature σ′. The second feature is public
key-blinding, which allows the original public key and
corresponding signature to be transformed as well.

Let us see how these two privacy-preserving features
may be used in the scenario above. Mercurial signatures
allow Bob to transform the public keys on his certifica-
tion chain and derive valid signatures for these trans-
formed values. Specifically, he can transform pkAlice into
an equivalent pk′Alice, where Alice’s secret key will also
correspond to this new public key. Bob can then adapt
σCA→Alice into σ′CA→Alice, which is the CA’s signature
on the transformed public key pk′Alice and attributes
attrAlice. This can be done using the message-blinding
feature of mercurial signatures. Using the public key-
blinding feature, Bob can also adapt σAlice→Bob into
σ′Alice→Bob, which is a valid signature on pkBob and at-
tributes attrBob under pk′Alice. He can then repeat the
process to transform his own public key pkBob into an
equivalent but unlinkable p̃kBob and derive the corre-
sponding signature σ̃Alice→Bob. It is easy to see that this
can be extended to longer certification chains. These
blinding features are desirable because certificate hold-
ers do not have to disclose all of the information on their
certification chains every time they use them. In partic-
ular, the public keys on certification chains are blinded,
concealing the identities of the users operating under
them.

Mercurial signatures were introduced in a recent
paper by Crites and Lysyanskaya [15]. The construc-
tion consists of messages and public keys that are vec-
tors of group elements of a certain fixed length. Specif-
ically, messages and public keys are of the form M =
(M1, . . . ,M`) and pk = (X̂1, . . . , X̂`) for a fixed length
`, where M and pk are defined over bilinear groups G1
and G2, respectively. Mercurial signatures allow a mes-
sage M to be transformed into an equivalent message
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M ′ = (Mµ
1 , . . . ,M

µ
` ) using a scalar µ, and public keys

may be transformed similarly.
We present a construction of mercurial signatures

that inherits this structure but allows for messages of
unbounded length. A message space that consists of
vectors of any length is very convenient because, in
particular, it allows for signatures on public keys and
any number of attributes. Consider anonymous creden-
tials, wherein users receive credentials directly from
the CA. (Such directly issued credentials are referred
to as level-1 credentials.) Suppose Alice’s public key
is pkAlice = (X̂1, . . . , X̂`) and her attributes are some
values (a1, . . . , ak) that represent access to a particu-
lar set of buildings at particular times. If Alice intends
to reveal her attributes every time she uses her certifi-
cate, she may encode them as (X̂a1

1 , . . . , X̂ak
1 ) and sim-

ply append them to the vector representing her pub-
lic key. (Of course, a limitation of encoding attributes
this way is that they are exposed. In this paper, we do
not address limited disclosure of attributes.) Her certifi-
cate is then the CA’s signature on this combined vec-
tor M = (X̂1, . . . , X̂`, X̂

a1
1 , . . . , X̂ak

1 ) of length ` + k. If
the message is transformed into an equivalent message
M ′ = (X̂µ

1 , . . . , X̂
µ
` , X̂

µ·a1
1 , . . . , X̂µ·ak

1 ), the attributes re-
main the same relative to the base X̂µ

1 , so Alice’s certifi-
cate still authorizes access to the same buildings at the
same times. A message space that consists of vectors of
any length is also desirable because the CA does not
need to know how many attributes a user has ahead of
time.

Now consider delegatable anonymous credentials,
wherein a user receives a level-L credential from a level-
L-1 user. In particular, suppose Alice issues a level-2 cre-
dential to Bob that grants him access to the same build-
ings or a subset of the buildings to which she has access,
potentially limiting the hours during which Bob is au-
thorized. Under the mercurial signature scheme of [15],
if Alices’s public key is of length ` and her attributes
are of length k, the CA’s public key must be of length
` + k. This, in turn, severely limits the kinds of key-
attribute pairs that Alice can sign with a public key of
length ` and Bob can sign with a public key of length
` − |attrBob| (and so on down the chain). Furthermore,
while the construction of [15] permits this kind of dele-
gation, the proofs of security do not. Delegatable anony-
mous credentials in [15] are proven secure only when all
public keys and messages are of the same fixed length `.
The mercurial signature scheme presented in this work
allows messages to include any number of elements.

1.1 Related Work and Applications

Our motivating application is anonymous credentials [5–
8, 14, 24, 25]. In an anonymous credential system, users
can obtain credentials anonymously as well as prove pos-
session of credentials without revealing any other infor-
mation (via zero-knowledge proofs). Anonymous creden-
tials are well studied and have been incorporated into
industry standards (such as the TCG standard [4]) and
government policy (such as the NSTIC document re-
leased by the Obama administration1).

Mercurial signatures are a natural building block
for anonymous credentials. In order to anonymously ob-
tain a credential, Alice requests a signature from the CA
on one of her many equivalent public keys. In order to
anonymously use her credential, Alice blinds her public
key and the CA’s signature and gives a zero-knowledge
proof of knowledge (ZKPoK) of the secret key corre-
sponding to her public key. Crucially, it is difficult to
distinguish whether or not a pair of public keys (and
thus identities) are equivalent.

Mercurial signatures are used as a building block
for even more interesting applications, such as delegat-
able anonymous credentials [15]. In this setting, a par-
ticipant may use her credential anonymously as well as
anonymously delegate it to others, all while remaining
oblivious to the true identities of the users on her creden-
tial chain. All prior constructions of delegatable anony-
mous constructions relied on costly non-interactive zero-
knowledge (NIZK) proofs [2, 12, 13], such as Groth-
Sahai proofs [23], which made them too inefficient for
practical use. (Some required hundreds of group ele-
ments to represent a chain of length two.) Mercurial
signatures allow for modular constructions of delegat-
able anonymous credentials that do not require NIZKs
and are substantially more efficient: in the construction
of [15], only five group elements are needed to represent
each link in a credential chain.

A user may in fact be in possession of several types
of credentials: a credential issued by her employer, one
issued by the government, and another issued by a ser-
vice provider, for example. Multi-authority delegatable
anonymous credentials allow users to anonymously ob-
tain, demonstrate possession of, and delegate creden-
tials under different certification authorities, all with
the same underlying identity. For example, suppose Al-
ice has a level-1 credential from her employer and a
level-2 credential from the government. Under the mer-

1 https://obamawhitehouse.archives.gov/sites/default/files/rss_viewer/
NSTICstrategy_041511.pdf
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curial signature scheme of [15], Alice could not possess
a single underlying secret key. To see why, suppose a
credential has just one single attribute. Following [15],
to give Alice a level-1 credential, her employer signs a
representative of the equivalence class of her public keys.
If her secret key is a vector of length `, then her public
key is also a vector of length `. To issue a level-2 creden-
tial, Alice signs a representative of the equivalence class
of Bob’s public keys; however, using a length-` key, she
may only sign length-`-1 vectors, so Bob’s secret key
must be shorter than Alice’s. By the same logic, any
user who has a level-2 credential must have a secret key
of shorter length than that of a user with a level-1 cre-
dential (under the same CA). In particular, if Alice’s
level-2 government credential chain is government →
Carol → Alice for some user Carol with a secret key
also of length `, then Alice’s secret key would need to
be of length ` − 1. This is a contradiction since Alice’s
secret key is of length `.

Mercurial signatures for variable-length messages al-
low users to have the same underlying secret key un-
der different CAs as well as any number of attributes
(although note that delegators at the same level must
have the same number of attributes or else their signa-
tures are trivially distinguishable). This is a first step
towards achieving efficient multi-authority delegatable
anonymous credentials.

Mercurial signatures were inspired by Fuchsbauer,
Hanser and Slamanig’s work on structure-preserving sig-
natures on equivalence classes (SPS-EQ) [22], which
introduces the idea of transforming a signature σ on
a fixed-length message m into a signature σ′ on an
equivalent but unlinkable message m′. Mercurial signa-
tures [15] additionally allow the fixed-length public key
pk to be transformed into an equivalent public key pk′,
where pk and pk′ are unlinkable even when given sig-
natures under both keys. A related concept, signatures
with flexible public key [1], allows blinding of the public
key, but not the message.

1.2 Our Contribution

The only previously known construction of mercurial
signatures [15] was restricted to messages of fixed length,
which limits its use in applications. Thus, our goal was
to construct mercurial signatures that allow messages
of any length to be signed under public keys of a small,
fixed length. This is desirable because public keys are
pseudonyms, which users may wish to be shorter than
the messages they are signing.

While the prior construction of mercurial signa-
tures [15] achieved the standard notion of unforgeability,
namely existential unforgeability under chosen message
attacks (EUF-CMA), the construction presented here
is unforgeable in a more limited sense. Instead of the
adversary having access to the usual signing oracle that
simply responds with its signature σ on input a message
m, the adversary obtains signatures via a signing proto-
col in which it is required to prove knowledge of the dis-
crete logarithm of each message vector component. This
proof of knowledge is needed for proving unforgeability.
(The reduction must use these discrete logarithms.) This
variant of unforgeability was defined by Fuchsbauer and
Gay [20] as existential unforgeability under chosen open
message attacks (EUF-CoMA).

The construction of mercurial signatures presented
here also differs from that of [15] as far as message-
blinding is concerned. Recall that Bob needs to blind
a message m signed by a potentially malicious Alice by
transforming it into a new message m′ and adapting her
signature σ into σ′ accordingly. A property of mercurial
signatures called origin-hiding guarantees that the re-
sulting signature σ′ is distributed identically to what
Bob would have received had m′ been signed anew. Our
construction guarantees origin-hiding if the signer fol-
lows the signing algorithm, but a malicious signer could
issue improperly formed signatures that would allow it
to tell whether σ′ was adapted from σ or was freshly is-
sued. To mitigate this, the signer convinces the recipient
that the signature was formed properly via an efficient
zero-knowledge proof as part of the signing protocol.

Though our construction satisfies a weaker notion
of unforgeability and origin-hiding, for the purpose of
anonymous credentials, our results constitute a success.
This is because the protocol for issuing anonymous
credentials typically requires that the recipient prove
knowledge of her secret key anyway, so relaxing unforge-
ability to EUF-CoMA comes for free. Relaxing origin-
hiding so it holds only when signatures were issued prop-
erly adds an additional step to the signing protocol; how-
ever, it can be executed efficiently and is therefore also
a reasonable relaxation.

Our construction of variable-length mercurial signa-
tures uses the fixed-length mercurial signature scheme
of [15] as a building block and is proven secure (under
the variants of unforgeability and origin-hiding above)
assuming (1) the security of the underlying mercurial
signature scheme and (2) the ABDDH+ assumption,
which was introduced in [21] and is reminiscent of the
decisional Diffie-Hellman assumption for Type III bilin-
ear pairings.
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Towards constructing variable-length mercurial
signatures. A naive approach to extending mercurial
signatures to allow messages of any length would be to
hash the messages down to the correct fixed length and
use the fixed-length mercurial signature scheme of [15].
In general, this does not work because we do not readily
have a hash function H such that H(m) and H(m′) are
equivalent when m and m′ are equivalent.

In order to maintain the equivalence relation
among messages, we instead break a message m =
(ĝ, u1, . . . , un), where ĝ is a base group element and
ui = ĝmi for some mi ∈ Z∗p, into its n constituent group
elements ui. Each ui, together with powers of a base g̃ in-
dicating the index i, is signed using the fixed-length mer-
curial signature scheme. However, an adversary may be
able to mix and match elements of the n new messages
being signed under the fixed-length scheme. To mitigate
this, an additional group element is included in each of
the n messages to link them together and to the origi-
nal message m in an unforgeable way. We call this addi-
tional element the "glue" element. Specifically, we repre-
sent the message m to be signed as a sequence of n mes-
sages M1 = (g̃, g̃1, g̃n, g̃s, u1), M2 = (g̃, g̃2, g̃n, g̃s, u2),. . .,
Mn = (g̃, g̃n, g̃n, g̃s, un), where g̃s is the glue element.
This allows the message m to be transformed into an
equivalent message m′ = mµ = (ĝµ, uµ1 , . . . , u

µ
n), for any

µ ∈ Z∗p, by simply changing each Mi to M ′i = Mµ
i =

(g̃µ, (g̃µ)i, (g̃µ)n, (g̃µ)s, uµi ) and invoking the underlying
algorithm of the fixed-length scheme that updates the
signature. The problem with this approach, however, is
that different signatures receive different glue values, so
origin-hiding does not hold in a statistical sense. In or-
der to satisfy the origin-hiding property, the glue ele-
ment g̃s must be computed (relative to g̃) as a function
of the entire equivalence class to which the message be-
longs. That way, no matter which message in the class
is signed, the glue element’s discrete logarithm base g̃
is the same. Our main technical insight is how to com-
pute the glue element such that it is a function of the
entire equivalence class that a message represents, and
not just the message itself.

2 Preliminaries
A function ν : N→ R is called negligible if for all c > 0,
there exists a k0 such that ν(k) < 1

kc for all k > k0. Let
y ← A(x) denote running a probabilistic algorithm A

on input x and assigning the output to y.

Definition 1 (Bilinear pairing). Let G1,G2, and GT
be multiplicative groups of prime order p, and let P and
P̂ be generators of G1 and G2, respectively. A bilinear
pairing is a map e : G1 ×G2 → GT that satisfies (1) bi-
linearity: e(P a, P̂ b) = e(P, P̂ )ab = e(P b, P̂ a) ∀ a, b ∈ Zp;
(2) non-degeneracy: e(P, P̂ ) 6= 1GT (i.e., e(P, P̂ ) gener-
ates GT ); and (3) computability: there exists an efficient
algorithm to compute e.

Bilinear pairings can be classified into three types. We
consider Type III (asymmetric) pairings, where G1 6=
G2 and there is no efficiently computable homomor-
phism between them.

Definition 2 (Bilinear group generator). A bilinear
group generator BGGen is a (possibly probabilistic)
polynomial-time algorithm that takes as input a security
parameter 1k and outputs a bilinear group description
BG = (G1,G2,GT , P, P̂ , e) with a Type III pairing.

Definition 3 (Discrete logarithm assumption (DL)).
Let BGGen be a bilinear group generator that out-
puts BG = (G1,G2,GT , P1, P2, e). For i ∈ {1, 2}, the
discrete logarithm assumption holds in Gi for BGGen
if for all probabilistic, polynomial-time (PPT) adver-
saries A, there exists a negligible function ν such that:
Pr[BG ← BGGen(1k), x ← Zp, x′ ← A(BG, Pxi ) : Px′i =
Pxi ] ≤ ν(k).

Definition 4. (Decisional Diffie-Hellman assumption
(DDH)). Let BGGen be a bilinear group generator that
outputs BG = (G1,G2,GT , P1, P2, e). For i ∈ {1, 2}, the
decisional Diffie-Hellman assumption holds in Gi for
BGGen if for all probabilistic, polynomial-time (PPT)
adversaries A, there exists a negligible function ν such
that: Pr[b ← {0, 1},BG ← BGGen(1k), s, t, r ← Zp,
b∗ ← A(BG, P si , P ti , P

(1−b)·r+b·st
i ) : b∗ = b]− 1

2 ≤ ν(k).

3 Definition
We begin with the definition of mercurial signatures.
The following definition is mostly a restatement of [15]
with a few adaptations to accommodate messages of any
length. We denote by Mn the message space consist-
ing of all message vectors of length n. The key gen-
eration algorithm KeyGen no longer takes as input a
fixed length parameter, and the signature conversion al-
gorithm ConvertSig now takes as input a message con-
verter µ to transform (m,σ) into (m′, σ̃). The original
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construction of mercurial signatures [15] satisfies this
revised definition for a fixed-length message space.

Definition 5 (Mercurial signature). A mercurial sig-
nature scheme for parameterized equivalence relations
Rm, Rpk, Rsk is a tuple of the following polynomial-
time algorithms, which are deterministic algorithms un-
less stated otherwise:

PPGen(1k) → PP: On input the security parameter
1k, this probabilistic algorithm outputs the public
parameters PP. This includes parameters for the pa-
rameterized equivalence relations Rm, Rpk, Rsk so
they are all well defined. It also includes parame-
ters for the algorithms sampleρ and sampleµ, which
sample key and message converters, respectively.

KeyGen(PP) → (pk, sk): On input the public parame-
ters PP, this probabilistic algorithm outputs a key
pair (pk, sk). This algorithm also defines a corre-
spondence between public and secret keys: we write
(pk, sk) ∈ KeyGen(PP) if there exists a set of random
choices that KeyGen could make that would result
in (pk, sk) as the output.

Sign(sk,m)→ σ: On input the signing key sk and a mes-
sage m ∈M, this probabilistic algorithm outputs a
signature σ.

Verify(pk,m, σ) → 0/1: On input the public key pk, a
message m, and a purported signature σ, output 0
or 1.

ConvertSK(sk, ρ)→ s̃k: On input sk and a key converter
ρ ∈ sampleρ, output a new secret key s̃k ∈ [sk]Rsk .

ConvertPK(pk, ρ) → p̃k: On input pk and a key con-
verter ρ ∈ sampleρ, output a new public key p̃k ∈
[pk]Rpk . (Correctness of this operation, defined be-
low, will guarantee that if pk corresponds to sk, then
p̃k corresponds to s̃k = ConvertSK(sk, ρ).)

ChangeRep(pk,m, σ, µ)→ (m′, σ′): On input pk, a mes-
sage m, a signature σ, and a message converter
µ ∈ sampleµ, this probabilistic algorithm computes a
new message representative m′ ∈ [m]Rm and a new
signature σ′ and outputs (m′, σ′). (Correctness of
this will require that whenever Verify(pk,m, σ) = 1,
it will also be the case that Verify(pk,m′, σ′) = 1.)

ConvertSig(pk,m, σ, ρ, µ)→ (m′, σ̃): On input pk, a mes-
sage m, a signature σ, a key converter ρ ∈ sampleρ,
and a message converter µ ∈ sampleµ, this prob-
abilistic algorithm computes a new message rep-
resentative m′ ∈ [m]Rm and a new signature σ̃

and outputs (m′, σ̃). (Correctness of this will re-
quire that whenever Verify(pk,m, σ) = 1, it will

also be the case that Verify(p̃k,m′, σ̃) = 1, where
p̃k = ConvertPK(pk, ρ).)

Definition 6 (Correctness). A mercurial signa-
ture scheme (PPGen,KeyGen,Sign,Verify,ConvertSK,
ConvertPK,ChangeRep,ConvertSig) for parameterized
equivalence relations Rm,Rpk,Rsk is correct if it
satisfies the following conditions for all k, for all
PP ∈ PPGen(1k), and for all (pk, sk) ∈ KeyGen(PP):

Verification: For all m ∈ M, for all σ ∈ Sign(sk,m),
Verify(pk,m, σ) = 1.
Key conversion: For all ρ ∈ sampleρ, (ConvertPK(pk, ρ),
ConvertSK(sk, ρ)) ∈ KeyGen(PP). Moreover,ConvertSK(sk,
ρ) ∈ [sk]Rsk and ConvertPK(pk, ρ) ∈ [pk]Rpk .
Change of message representative: For all m ∈
M, for all σ such that Verify(pk,m, σ) = 1, for all
µ ∈ sampleµ, for all (m′, σ′) ∈ ChangeRep(pk,m, σ, µ),
Verify(pk,m′, σ′) = 1, where m′ ∈ [m]Rm .
Signature conversion: For all m ∈ M, for all σ such
that Verify(pk,m, σ) = 1, for all ρ ∈ sampleρ, for all
µ ∈ sampleµ, for all (m′, σ̃) ∈ ConvertSig(pk,m, σ, ρ, µ),
Verify(ConvertPK(pk, ρ),m′, σ̃) = 1, where m′ ∈ [m]Rm .

Correct verification, key conversion, and change of mes-
sage representative are exactly as in [15]. Correct signa-
ture conversion means that if a key converter ρ is applied
to a public key pk to obtain an equivalent p̃k, and the
same ρ together with a message converter µ is applied to
a valid message-signature pair (m,σ) to obtain (m′, σ̃),
then the signature σ̃ is valid on the equivalent message
m′ under the public key p̃k.

Definition 7 (Unforgeability). A mercurial signa-
ture scheme (PPGen,KeyGen,Sign,Verify,ConvertSK,
ConvertPK,ChangeRep,ConvertSig) for parameterized
equivalence relations Rm,Rpk,Rsk is unforgeable if for
all probabilistic, polynomial-time (PPT) algorithms
A having access to a signing oracle, there exists a
negligible function ν such that:

Pr[PP ← PPGen(1k); (pk, sk)← KeyGen(PP); (Q, pk∗,m∗,

σ∗)← ASign(sk,·)(pk) : ∀ m̄ ∈ Q, [m∗]Rm 6= [m]Rm ∧
[pk∗]Rpk = [pk]Rpk ∧ Verify(pk∗,m∗, σ∗) = 1] ≤ ν(k)

where Q is the set of discrete logarithms m̄ of messages
m that A has queried to the signing oracle.

This definition is similar to existential unforgeability un-
der chosen open message attacks (EUF-CoMA) defined
by Fuchsbauer and Gay [20]. EUF-CoMA differs from
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EUF-CMA in that the adversary must provide the dis-
crete logarithm m̄ of the message m to be signed. This
has the advantage that the adversary’s success is effi-
ciently verifiable [20]. Our notion of unforgeability is
similar to EUF-CoMA, except the adversary’s winning
condition is slightly altered. As in the EUF-CoMA game,
the adversary is given the public key pk and is allowed
to query the signing oracle that knows the correspond-
ing secret key sk. Eventually, the adversary outputs a
public key pk∗, a message m∗, and a purported signa-
ture σ∗. Unlike the EUF-CoMA game, the adversary
has the freedom to output a forgery under a different
public key pk∗, as long as pk∗ is in the same equivalence
class as pk. This seemingly makes the adversary’s task
easier. At the same time, the adversary’s forgery is not
valid if the message m∗ is in the same equivalence class
as a previously queried message m, making the adver-
sary’s task harder. The definition of unforgeability for
mercurial signatures in [15] allows a forgery under an
equivalent public key, but does not require the adver-
sary to provide the discrete logarithm of the message to
be signed by the oracle.

Remark. In Section 4.1, we define an interactive signing
protocol in which the recipient of the signature gives
a zero-knowledge proof of knowledge (ZKPoK) of the
discrete logarithm of the message.

Definition 8 (Class- and origin-hiding). A mercu-
rial signature scheme (PPGen, KeyGen,Sign,Verify,
ConvertSK,ConvertPK,ChangeRep,ConvertSig) for pa-
rameterized equivalence relations Rm,Rpk,Rsk is
class-hiding if it satisfies the following two properties:

Message class-hiding: For all polynomial-length pa-
rameters n(k), and for all probabilistic, polynomial-time
(PPT) algorithms A, there exists a negligible function ν
such that:

Pr[PP ← PPGen(1k); m1 ←Mn(k); m0
2 ←Mn(k);

m1
2 ← [m1]Rm ; b← {0, 1};

b′ ← A(PP,m1,m
b
2) : b′ = b] ≤ 1

2 + ν(k)

Public key class-hiding: For all probabilistic,
polynomial-time (PPT) algorithms A, there exists a
negligible function ν such that:

Pr[PP ← PPGen(1k); (pk1, sk1)← KeyGen(PP);
(pk0

2, sk0
2)← KeyGen(PP); ρ← sampleρ(PP);

pk1
2 = ConvertPK(pk1, ρ); sk1

2 = ConvertSK(sk1, ρ);

b← {0, 1}; b′ ← ASign(sk1,·),Sign(skb2,·)(pk1, pkb2)
: b′ = b] ≤ 1

2 + ν(k)

A mercurial signature is also origin-hiding if the follow-
ing two properties hold:

Origin-hiding of ChangeRep: For all k, for all PP ∈
PPGen(1k), for all pk∗ (in particular, adversarially gen-
erated ones), for all m, σ, if Verify(pk∗,m, σ) = 1,
if µ ← sampleµ, then with overwhelming probabil-
ity ChangeRep(pk∗,m, σ, µ) outputs a uniformly random
m′ ∈ [m]Rm and a uniformly random σ′ ∈ {σ̂ |
Verify(pk∗,m′, σ̂) = 1}.
Origin-hiding of ConvertSig: For all k, for all PP ∈
PPGen(1k), for all pk∗ (in particular, adversarially gen-
erated ones), for all m, σ, if Verify(pk∗,m, σ) = 1,
if ρ ← sampleρ and µ ← sampleµ, then with over-
whelming probability ConvertSig(pk∗,m, σ, ρ, µ) outputs
a uniformly random m′ ∈ [m]Rm and a uniformly ran-
dom σ̃ ∈ {σ̂ | Verify(ConvertPK(pk∗, ρ),m′, σ̂) = 1)}.
ConvertPK(pk∗, ρ) outputs a uniformly random element
of [pk∗]Rpk .

Remark. This definition of origin-hiding is a relaxation
of the prior definition [15] in that there is a small proba-
bility that the outputs of ChangeRep and ConvertSig are
not distributed correctly. It will become clear why in
Section 4.1.

4 Construction
Let G1,G2, and GT be multiplicative groups of prime or-
der p with a Type III bilinear pairing e : G1×G2 → GT .
Similar to the prior mercurial signature scheme [15], the
message space for our new mercurial signature scheme
consists of vectors of group elements from G∗1, where
G∗1 = G1\{1G1}. Unlike the prior scheme, these can
be vectors of any length. The message space is Mn =
{(ĝ, u1, . . . , un) ∈ (G∗1)n+1}, where ĝ is a generator of
G1, and for all 1 ≤ i ≤ n, ui = ĝmi for some mi ∈ Z∗p.
The space of secret keys consists of vectors of elements
from Z∗p. The space of public keys, similar to the mes-
sage space, consists of vectors of group elements from
G∗2. A scheme with messages over G∗2 and public keys
over G∗1 can be obtained by simply switching G∗1 and
G∗2 throughout. Once the prime p, G1, and G2 are well
defined, for a length parameter n ∈ N the equivalence
relations are as follows:

Rm = {(m,m′) ∈ (G∗1)n+1 × (G∗1)n+1 | ∃ µ ∈ Z∗p s.t. m′ = mµ}

Rsk = {(skX, s̃kX) ∈ (Z∗p)10 × (Z∗p)10 | ∃ ρ ∈ Z∗p s.t. s̃k = ρ · sk}

Rpk = {(pkX, p̃kX) ∈ (G∗2)10 × (G∗2)10 | ∃ ρ ∈ Z∗p s.t. p̃k = pkρ}

Our variable-length mercurial signature scheme, de-
noted MSX, is an extension of the prior fixed-length
scheme, denoted MSf [15], which can be found in Ap-
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pendix A. The subscript X, for extension, is used to
denote all keys and algorithms associated with the
variable-length scheme MSX.

Let us discuss the security properties of the fixed-
length scheme MSf . It satisfies the definition of secu-
rity in Section 3, but only for the fixed-length mes-
sage space M5 = (G∗1)5. If given as input a message
m /∈ M5, the signing algorithm rejects. Correspond-
ingly, correctness only holds for messages of the cor-
rect length. MSf satisfies the definition of unforgeabil-
ity in Section 3 as well as message and public key class-
hiding. As for origin-hiding, ChangeRepf (pk,m, σ, µ) out-
puts (m′, σ′), where m′ = mµ ∈ [m]Rm for a message
converter µ ∈ Z∗p and σ′ is a valid signature on m′ un-
der pk, and ConvertSigf (pk,m, σ, ρ) outputs σ̃, where σ̃
is a valid signature on m under p̃k = pkρ ∈ [pk]Rpk for a
key converter ρ ∈ Z∗p. Both ChangeRepf and ConvertSigf
satisfy origin-hiding with probability 1. The following
theorem summarizes the security properties of MSf .

Theorem 1. [15]. The mercurial signature scheme MSf
is correct for fixed-length messages, unforgeable, and sat-
isfies class- and origin-hiding in the generic group model
for Type III bilinear groups.

MSX can be constructed from MSf on messages of
length ` = 5 as follows. A message m is written as
m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1, where ĝ is a generator of
G1 and for all 1 ≤ i ≤ n, ui = ĝmi for some mi ∈ Z∗p.
For a generator g̃ of G1 and "glue" element h̃ ∈ G∗1 (dis-
cussed shortly), the message m can be represented as
a set of n messages that are in the message space of
the mercurial signature scheme MSf as follows, where
ũi = g̃mi for all 1 ≤ i ≤ n:

M1 = (g̃, g̃1, g̃n, h̃, ũ1)
M2 = (g̃, g̃2, g̃n, h̃, ũ2)

...
Mn = (g̃, g̃n, g̃n, h̃, ũn)

Each message Mi = (g̃, g̃i, g̃n, h̃, ũi) is signed using
the mercurial signature scheme MSf , resulting in a sig-
nature σi. The verification consists of checking the n
message-signature pairs (Mi, σi) using the prior mercu-
rial signature Verifyf algorithm.

How might we form the glue element h̃? As dis-
cussed in the introduction, it is important for the origin-
hiding property that h̃ for a messagem = (ĝ, u1, . . . , un),
where ui = ĝmi , be a function of the mi’s so that if
another representative m′ ∈ [m]Rm gets signed, the cor-
responding M ′i ’s are in the same equivalence classes as

the original Mi’s for the original m (i.e., M ′i ∈ [Mi]Rm
for all 1 ≤ i ≤ n). Computing h̃ as g̃R(m1,...,mn) for a
random function R of the mi’s would work, but how
would the signer compute such a value? A pseudoran-
dom function could be used instead, but it is not obvi-
ous how to compute it since the signer has the group
elements u1, . . . , un, but not their discrete logarithms
m1, . . . ,mn.

Our solution is as follows. Consider a polynomial
pm(x) parameterized by the mi’s: pm(x) = m1 +m2x+
m3x

2 · · ·+mnx
n−1. The signer evaluates this polynomial

at a secret value x̂ known only to him: pm(x̂). The glue
element could be computed by the signer as ĥ = ĝpm(x̂);
however, to ensure that it is pseudorandom, the signer
picks a uniformly random w ← Z∗p, sets g̃ = gw, and
computes the glue element as h̃ = g̃pm(x̂). Additionally,
the signer picks a uniformly random y ← Z∗p and raises
g̃pm(x̂) to y, resulting in the following:

h̃ =
(
g̃pm(x̂)

)y
=
(
g̃

∑n

i=1
mix̂

i−1)y
=
( n∏
i=1

g̃mix̂
i−1
)y

(1)

Note that w is fresh for each signature, but y is the same
for all signatures issued by the same signer. In reality,
the signer does not know the mi’s required to form the
polynomial pm(x̂); however, he is given as input the orig-
inal ui’s, which have the relationship ui = ĝmi , so h̃ can
be computed directly as follows, where ũi = uwi = g̃mi :
h̃ =

(∏n
i=1 ũ

x̂i−1

i

)y
. This is exactly Equation (1).

We now describe our construction formally. We first
provide a non-interactive construction that satisfies the
input-output specification in the definition of mercurial
signatures. The final construction (Section 4.1) involves
an interactive signing protocol carried out between the
signer and the recipient of the signature.

Construction. The following algorithms are invoked
from the fixed-length mercurial signature scheme
MSf : ChangeRepf (pk,m, σ, µ) → (m′, σ′), where
m′ = mµ ∈ [m]Rm for a message converter µ ∈ Z∗p and
Verifyf (pk,m′, σ′) = 1, and ConvertSigf (pk,m, σ, ρ)→ σ̃,
where Verifyf (p̃k,m, σ̃) = 1 and p̃k = pkρ ∈ [pk]Rpk for a
key converter ρ ∈ Z∗p.

PPGenX(1k) → PPX: Run PP ← PPGenf (1k) and out-
put PPX = PP = BG = (G1,G2,GT , P, P̂ , e).

KeyGenX(PPX) → (pkX, skX): Run (pk, sk) ←
KeyGenf (PP, ` = 5), where sk = (x1, x2, x3, x4, x5) ∈
(Z∗p)5 and pk = (X̂1, X̂2, X̂3, X̂4, X̂5) ∈ (G∗2)5 for
X̂i = P̂xi . Pick uniformly at random a secret point
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x̂ ← Z∗p and secret seeds y1, y2 ← Z∗p. Also pick
x6, x8 ← Z∗p and set x7 = x6 · x̂ and x9 = x8 · y1 and
x10 = x8 · y2. Set skX = (sk, x6, x7, x8, x9, x10) and
pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), where X̂i = P̂xi ,
and output (pkX, skX).

SignX(skX,m)→ (ĥ, σ): On input skX = (sk, x6, x7, x8,

x9, x10) and a message m = (ĝ, u1, . . . , un) ∈
(G∗1)n+1, where ĝ is a generator of G1, compute x̂ =
x7 · x−1

6 and y1 = x9 · x−1
8 and y2 = x10 · x−1

8 . Then,
compute y := y1 · y2 and ĥ =

(∏n
i=1 u

x̂i−1

i

)y
. Com-

pute ĝ2, . . . , ĝn. For all 1 ≤ i ≤ n, form the message
Mi = (ĝ, ĝi, ĝn, ĥ, ui) and run σi ← Signf (sk,Mi).
Output the signature (ĥ, σ = {σ1, σ2, . . . , σn}).

VerifyX(pkX,m, (ĥ, σ))→ 0/1: On input pkX = (pk, X̂6,

X̂7, X̂8, X̂9, X̂10), m = (ĝ, u1, . . . , un), and a signa-
ture (ĥ, σ = {σ1, . . . , σn}), compute ĝ2, . . . , ĝn. For
all 1 ≤ i ≤ n, form the messageMi = (ĝ, ĝi, ĝn, ĥ, ui)
and check whether Verifyf (pk,Mi, σi) = 1. If these
checks hold, output 1; otherwise output 0.

ConvertSKX(skX, ρ)→ s̃kX: On input skX = (sk, x6, x7,

x8, x9, x10) and ρ ∈ Z∗p, run s̃k ← ConvertSKf (sk, ρ),
where s̃k = ρ · sk, compute x̃i = ρ · xi for all
6 ≤ i ≤ 10, and output the new secret key s̃kX =
(s̃k, x̃6, x̃7, x̃8, x̃9, x̃10).

ConvertPKX(pkX, ρ)→ p̃kX: On input pkX = (pk, X̂6,

X̂7, X̂8, X̂9, X̂10) and ρ ∈ Z∗p, run p̃k← ConvertPKf (
pk, ρ), where p̃k = pkρ, compute X̃i = X̂ρ

i for all
6 ≤ i ≤ 10, and output the new public key p̃kX =
(p̃k, X̃6, X̃7, X̃8, X̃9, X̃10).

ChangeRepX(pkX,m, (ĥ, σ), µ) → (m′, (ĥ′, σ′)): On in-
put pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10),m = (ĝ, u1, . . . ,

un), (ĥ, σ = {σ1, . . . , σn}), and µ ∈ Z∗p, compute
ĝ2, . . . , ĝn. For all 1 ≤ i ≤ n, form the messageMi =
(ĝ, ĝi, ĝn, ĥ, ui) and run (M ′i , σ′i)← ChangeRepf (pk,
Mi, σi, µ), where M ′i = (ĝµ, (ĝµ)i, (ĝµ)n, ĥµ, uµi ). Set
m′ = (ĝ′, u′1, . . . , u′n) = (ĝµ, uµ1 , . . . , u

µ
n) and ĥ′ = ĥµ

and output (m′, (ĥ′, σ′ = {σ′1, . . . , σ′n})).
ConvertSigX(pkX,m, (ĥ, σ), ρ, µ) → (m′, (ĥ′, σ̃)): On in-

put pkX, m, (ĥ, σ), and ρ, µ ∈ Z∗p, run (m′, (ĥ′, σ′))
← ChangeRepX(pkX,m, (ĥ, σ), µ), where m′ = (ĝ′,
u′1, . . . , u

′
n) and σ′ = {σ′1, . . . , σ′n}. Compute (ĝ′)2,

. . . , (ĝ′)n. For all 1 ≤ i ≤ n, form the message M ′i =
(ĝ′, (ĝ′)i, (ĝ′)n, ĥ′, u′i) and run σ̃i ← ConvertSigf (pk,
M ′i , σ

′
i, ρ). Output (m′, (ĥ′, σ̃ = {σ̃1, . . . , σ̃n})).

4.1 Signing Protocol

Our construction satisfies the input-output specification
in the definition of mercurial signatures; however, unfor-
tunately, our proofs of unforgeability and origin-hiding
do not allow a signer to simply sign any message given to
it as input. Instead, the signer must run a signing proto-
col with the receiver of the signature. When a signature
is queried on a message m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1,
the signer first has the recipient give a ZKPoK that, for
all 1 ≤ i ≤ n, the recipient knows mi such that ui = ĝmi .
This ZKPoK is requisite for proving unforgeability, as
the reduction’s algorithm must use the exponent mi’s.
The signer then carries out the signing algorithm SignX
as specified in the construction above, with one modi-
fication: the signer picks a uniformly random w ← Z∗p,
sets g̃ = ĝw, and computes the glue element h̃ relative to
base g̃. The additional randomness w ensures that the
glue element is pseudorandom, as discussed in Section 4.

In addition to the usual unforgeability property that
protects the signer, mercurial signatures also have the
origin-hiding property that protects the privacy of the
signature recipient. Intuitively, origin-hiding means that
a message-signature pair (m,σ) is distributed exactly
the same way whether (1) the signature σ on m was
issued directly by the signer, or (2) (m,σ) was obtained
by running ChangeRep(pk,m′, σ′) on an equivalent m′.
The reason it protects the signature recipient is that
the resulting (m,σ) is not linkable to the specific point
in time when this recipient was issued this signature.

In order to satisfy the origin-hiding property, the
glue element h̃ must be computed (relative to g̃) as a
function of the entire equivalence class to which the mes-
sage belongs. That way, no matter which message in
the class is signed, the glue element’s discrete logarithm
base g̃ is the same. A dishonest signer might try to com-
pute the glue element incorrectly, depriving the recipi-
ent of the benefits that origin-hiding confers. Thus, as
a final step in the signing protocol, the recipient verifies
that the glue element was indeed computed correctly
via a ZKPoK, so origin-hiding holds for all signers, not
just honest ones.

Signing Protocol: This is an interactive protocol be-
tween a Signer, who runs the Sign side of the protocol,
and a Receiver, who runs the Receive side.

[SignX(skX,m) ↔ ReceiveX(pkX,m, (m1, . . . ,mn))] →
(m̃, (h̃, σ)) : The Signer takes as input his signing
key skX = (sk, x6, x7, x8, x9, x10) and a message m =
(ĝ, u1, . . . , un). The Receiver takes as input the corre-
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sponding public key pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10),
the message m, and a vector (m1, . . . ,mn) ∈ (Z∗p)n.

0. The Receiver checks that in fact ui = ĝmi for all
1 ≤ i ≤ n.

1. The Signer acts as the verifier while the Receiver
gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows
mi such that ui = ĝmi . If the verification fails, the
Signer denies the Receiver the signature.

2. The Signer computes ĥ as in the construction above.
He then picks uniformly at random w ← Z∗p and
computes h̃ = ĥw and m̃ = (g̃, ũ1, . . . , ũn) =
(ĝw, uwi , . . . , uwn ). He also computes g̃2, . . . , g̃n. For
all 1 ≤ i ≤ n, he forms the message Mi =
(g̃, g̃i, g̃n, h̃, ũi) and runs σi ← Signf (sk,Mi). The
Signer sends the message m̃ and signature (h̃, σ =
{σ1, . . . , σn}) to the Receiver.

3. The Receiver acts as the verifier while the Signer
gives a ZKPoK that he has computed the glue ele-
ment h̃ correctly. If verification of the glue and sig-
nature passes, the Receiver outputs the message m̃
and signature (h̃, σ).

The algorithms VerifyX, ChangeRepX, and ConvertSigX
must be modified to take as input the message m̃ =
(g̃, ũ1, . . . , ũn):

VerifyX(pkX, m̃, (h̃, σ))→ 0/1: Form Mi = (g̃, g̃i, g̃n, h̃,
ũi) and check whether Verifyf (pk,Mi, σi) = 1 for all
1 ≤ i ≤ n.

ChangeRepX(pkX, m̃, (h̃, σ), µ) → (m̃′, (h̃′, σ′)): Form
Mi = (g̃, g̃i, g̃n, h̃, ũi) and run (M ′i , σ′i) ←
ChangeRepf (pk,Mi, σi, µ) for all 1 ≤ i ≤ n. Output
(m̃′ = (g̃µ, ũµ1 , . . . , ũ

µ
n), (h̃′ = h̃µ, σ′ = {σ′1, . . . , σ′n})).

ConvertSigX(pkX, m̃, (h̃, σ), ρ, µ) → (m̃′, (h̃′, σ̃)): Run
(m̃′, (h̃′, σ′ = {σ′1, . . . , σ′n}))← ChangeRepX(pkX, m̃,

(h̃, σ), µ). Form M ′i = (g̃′, (g̃′)i, (g̃′)n, h̃′, ũ′i) and run
σ̃i ← ConvertSigf (pk,M ′i , σ′i, ρ) for all 1 ≤ i ≤ n.
Output (m̃′, (h̃′, σ̃ = {σ̃1, . . . , σ̃n})).

Remark. While the elements X̂6 = P̂x6 , X̂7 = P̂x6·x̂, X̂8
= P̂x8 , X̂9 = P̂x8·y1 , X̂10 = P̂x8·y2 of the public key are
not used in signature verification, they are used in Step
3 of the signing protocol. The secret values x̂, y1, and
y2 are defined relative to random bases in order for the
hiding proofs to go through. The secret value y is broken
into two components, y1 and y2, in order for the proof
of unforgeability to go through (specifcally, Claim 3).

Efficiency analysis. Group operations and elements for
the construction of MSX can be found in Figure 4.1.
The ZKPoKs are not part of the signature itself and

KeyGen exp: 10; grp: 10
Sign exp: 9n+ 1; mult: 6n− 2; grp: 4n+ 2
Verify pair: 8n; mult: 5n− 1
ConvertSK field: 10
ConvertPK exp: 10; grp: 10
ChangeRep exp: 4n+ 2; grp: 4n+ 2
ConvertSig exp: 4n+ 2; grp: 4n+ 2

Fig. 1. Table of efficiency for MSX. Here, exp denotes the
number of group exponentiations, mult denotes the number of
group multiplications, and pair denotes the number of pairings.
Field operations are ignored. Group and field elements, grp
and field, are given as the total number of elements output.

are therefore not counted in the group operations. They
can be formed using a combination of Σ-protocols,
which can be compiled into efficient non-interactive zero-
knowledge proofs using the Fiat-Shamir transform with
a reliance on the random oracle model [18]. See Ap-
pendix B.

Theorem 2 (Correctness). Let MSf be a mercurial sig-
nature scheme on message space (G∗1)5 as in Theorem 1,
and let MSX be the variable-length mercurial signature
scheme on message space (G∗1)n+1 constructed above,
where all signatures are issued via the interactive signing
protocol. Then, MSX is correct.

Correct verification and key conversion can be seen by
inspection. We show correct change of message repre-
sentative, and signature conversion is similar.

Change of message representative: We wish to
show that for all messages m ∈ Mn, for all signa-
tures (h̃, σ) such that VerifyX(pkX, m̃, (h̃, σ)) = 1, for all
µ ∈ sampleµ, for all (m̃′, (h̃′, σ′)) ∈ ChangeRepX(pkX, m̃,

(h̃, σ), µ), it holds that VerifyX(pkX, m̃
′, (h̃′, σ′)) = 1,

where m̃′ ∈ [m̃]Rm . First, observe that the Mi’s cor-
responding to (m̃, (h̃, σ = {σ1, . . . , σn})) are Mi =
(g̃, g̃i, g̃n, h̃, ũi). ChangeRepX invokes ChangeRepf as fol-
lows: for all 1 ≤ i ≤ n, ChangeRepf (pk,Mi, σi, µ) outputs
(M ′i , σ′i), where M ′i = (g̃µ, (g̃µ)i, (g̃µ)n, h̃µ, ũµi ). By cor-
rect change of message representative of ChangeRepf
(Theorem 1), we have that Verifyf (pk,M ′i , σ′i) = 1 for all
1 ≤ i ≤ n, which implies that VerifyX(pkX, m̃

′, (h̃′, σ′)) =
1, where m̃′ = (g̃µ, ũµ1 , . . . , ũ

µ
n) ∈ [m̃]Rm .

4.2 Origin-hiding

Theorem 3 (Origin-hiding). Let MSf be a mercurial
signature scheme on message space (G∗1)5 as in Theo-
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rem 1, and let MSX be the variable-length mercurial sig-
nature scheme on message space (G∗1)n+1 constructed
above. Suppose all signatures are issued via the interac-
tive signing protocol described in Section 4.1, where the
proof system used in Step 3 is sound under sequential
(or concurrent) composition. Then, MSX is origin-hiding
under sequential (or concurrent) composition.

Origin-hiding of ChangeRepX: Let pk∗X, m̃, (h̃, σ =
{σ1, . . . , σn}) be such that VerifyX(pk∗X, m̃, (h̃, σ)) = 1,
where pk∗X is possibly adversarially generated.
ChangeRepX(pk∗X, m̃, (h̃, σ), µ) outputs (m̃′, (h̃′, σ′)) =
(m̃µ, (h̃µ, {σ′1, . . . , σ′n})), where m̃µ is shorthand for
m̃µ = (g̃µ, ũµ1 , . . . , ũ

µ
n). By soundness of the ZKPoK

in Step 3 of the signing protocol, the glue element
h̃ is computed correctly with overwhelming probabil-
ity. The Mi’s corresponding to (m̃, (h̃, σ)) are Mi =
(g̃, g̃i, g̃n, h̃, ũi). ChangeRepX invokes ChangeRepf as fol-
lows: for all 1 ≤ i ≤ n, ChangeRepf (pk,Mi, σi, µ) outputs
(M ′i , σ′i), whereM ′i = (g̃µ, (g̃µ)i, (g̃µ)n, h̃µ, ũµi ). By origin-
hiding of ChangeRepf (Theorem 1), σ′i is distributed the
same as a fresh signature on M ′i for all 1 ≤ i ≤ n. Note
that the glue element h̃µ is correct if h̃ is correct, and
h̃µ is distributed the same as a fresh glue element for a
fresh signature on m̃µ. Thus, m̃µ is a uniformly random
element of [m̃]Rm , and (h̃µ, (σ′1, . . . , σ′n)) is a uniformly
random element in the space of signatures (h̄, σ̄) sat-
isfying VerifyX(pk∗X, m̃µ, (h̄, σ̄)) = 1 with overwhelming
probability.
Origin-hiding of ConvertSigX: Let pk∗X, m̃, (h̃, σ =
{σ1, . . . , σn}) be such that VerifyX(pk∗X, m̃, (h̃, σ)) = 1,
where pk∗X is possibly adversarially generated.
ConvertSigX(pk∗X, m̃, (h̃, σ), ρ, µ) outputs (m̃′, (h̃′, σ̃)) =
(m̃µ, (h̃µ, (σ̃1, . . . , σ̃n))), where m̃µ is shorthand for
m̃µ = (g̃µ, ũµ1 , . . . , ũ

µ
n). By soundness of the ZKPoK

in Step 3 of the signing protocol, the glue element
h̃ is computed correctly with overwhelming probabil-
ity. The Mi’s corresponding to (m̃, (h̃, σ)) are Mi =
(g̃, g̃i, g̃n, h̃, ũi). The output of ConvertSigX is com-
puted in two steps. First, ChangeRepX(pk∗X, m̃, (h̃, σ), µ)
outputs (m̃′, (h̃′, σ′)) = (m̃µ, (h̃µ, (σ′1, . . . , σ′n))). Then,
ConvertSigf (pk∗,M ′i , σ′i, ρ) outputs σ̃i for all 1 ≤ i ≤ n.
ChangeRepX is origin-hiding, as shown above, and
ConvertSigf is origin-hiding by Theorem 1. Thus,
m̃µ is a uniformly random element of [m̃]Rm ,
and (h̃µ, (σ̃1, . . . , σ̃n)) is a uniformly random ele-
ment in the space of signatures (h̄, σ̄) satisfying
VerifyX(ConvertPKX(pk∗X, ρ), m̃µ, (h̄, σ̄)) = 1 with over-
whelming probability (where ConvertPKX(pk∗X, ρ) =
(pk∗X)ρ is a uniformly random element of [pk∗X]Rpk). Note

that origin-hiding does not hold if h̃ = 1, but this occurs
with negligible probability.

4.3 Unforgeability

Unforgeability of MSX holds under a variant of the
asymmetric bilinear decisional Diffie-Hellman assump-
tion (ABDDH+) introduced by Fuchsbauer et al. [21].

Definition 9 (ABDDH+ assumption [21]). Let BGGen
be a bilinear group generator that outputs BG =
(p,G1,G2,GT , P, P̂ , e). The ABDDH+ assumption holds
in G1 if for all probabilistic, polynomial-time (PPT) al-
gorithms A, there exists a negligible function ν such
that:

Pr[b← {0, 1}; BG← BGGen(1k);u, v, w, r ← Z∗p;

b∗ ← A(BG, P̂u, P̂ v, Pu, Puv, Pw, P (1−b)·r+b·(wuv))
: b∗ = b]− 1

2 ≤ ν(k)

Proposition 1. [21] The ABDDH+ assumption holds
in generic groups.

Theorem 4 (Unforgeability). Let MSf be a mercurial
signature scheme on message space (G∗1)5 as in Theo-
rem 1, and let MSX be the variable-length mercurial sig-
nature scheme on message space (G∗1)n+1 constructed
above. Suppose all signatures are issued via the inter-
active signing protocol described in Section 4.1, where
the proof system used in Step 1 is extractable under se-
quential (or concurrent) composition. Then, unforgeabil-
ity of MSX holds sequentially (or concurrently) under
the discrete logarithm (DL) assumption in G2 and the
ABDDH+ assumption in G1. The same holds when G1
and G2 are swapped.

Proof. We wish to show that if there exists a probabilis-
tic, polynomial-time (PPT) adversary A that breaks un-
forgeability of MSX with non-negligible probability, then
we can construct a PPT adversary A′ that breaks un-
forgeability of MSf with non-negligible probability, or
the discrete logarithm (DL) or ABDDH+ assumption
doesn’t hold.

Suppose there exists such a PPT adversary A.
Then, we construct a PPT adversary A′ as a reduc-
tion BMSf running A as a subroutine. We construct
the reduction BMSf for breaking unforgeability of MSf
as follows. BMSf receives as input public parameters
PP = BG = (G1,G2,GT , P, P̂ , e) and a fixed public
key pk = (X̂1, X̂2, X̂3, X̂4, X̂5) for the mercurial sig-
nature scheme MSf on messages of length ` = 5 for
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which he will try to produce a forgery. He chooses uni-
formly at random a secret point x̂ ← Z∗p and secret
seeds y1, y2 ← Z∗p. He also picks x6, x8 ← Z∗p and sets
x7 = x6 · x̂ and x9 = x8 · y1 and x10 = x8 · y2. He then
sets pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), where X̂i = P̂xi .
BMSf forwards PPX = PP and pkX to A and acts
as A’s challenger C. As in the unforgeability game for
MSf , BMSf has access to a signing oracle Signf (sk, ·),
where sk is the secret key corresponding to pk. A pro-
ceeds to make signature queries on messages of the form
m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1. For each signature query,
BMSf acts as the verifier while A gives a ZKPoK that,
for all 1 ≤ i ≤ n, he knows mi such that ui = ĝmi . If
the verification fails, BMSf denies A the signature; other-

wise, BMSf computes y = y1 ·y2 and ĥ =
(∏n

i=1 u
x̂i−1

i

)y
.

BMSf picks uniformly at random w ← Z∗p and computes
g̃ = ĝw, h̃ = ĥw, and ũi = uwi for all 1 ≤ i ≤ n.
He also computes g̃2, . . . , g̃n. He forwards n messages
of the form Mi = (g̃, g̃i, g̃n, h̃, ũi) to his signing ora-
cle Signf (sk, ·) and receives n signatures σ1, . . . , σn. He
sends the message m̃ = (g̃, ũ1, . . . , ũn) and the signature
(h̃, σ = {σ1, . . . , σn}) to A, along with a ZKPoK that h̃
was computed correctly.

After some polynomial number of signature queries,
A produces a forgery (pk∗X, m̃∗, (h̃∗, σ∗)), where pk∗X =
(pk∗, X̂∗6 , X̂∗7 , X̂∗8 , X̂∗9 , X̂∗10), m̃∗ = (g̃∗, ũ∗1, . . . , ũ∗n), and
σ∗ = {σ∗1 , . . . , σ∗n}. A’s forgery can be represented
as a set of messages that are in the message
space of MSf : M∗1 = (g̃∗, (g̃∗)1, (g̃∗)n, h̃∗, ũ∗1),M∗2 =
(g̃∗, (g̃∗)2, (g̃∗)n, h̃∗, ũ∗2), . . . ,M∗n = (g̃∗, (g̃∗)n, (g̃∗)n, h̃∗,
ũ∗n). BMSf chooses i ← {1, . . . , n} uniformly at random
and outputs (pk∗,M∗i , σ∗i ) as his forgery. Let us analyze
BMSf ’s success probability.

Suppose A’s forgery (pk∗X, m̃∗, (h̃∗, σ∗)) is success-
ful. Then, by definition, it satisfies [pk∗X]Rpk = [pkX]Rpk

and ∀ m̄ ∈ Q, [m̃∗]Rm 6= [m]Rm and VerifyX(pk∗X, m̃∗,
(h̃∗, σ∗)) = 1, where Q is the set of discrete logarithms
m̄ = {m1, . . . ,mn} ∈ (Z∗p)n of messages m that A
has queried to the signing oracle. Note that the forged
g̃∗ and h̃∗ must be repeated for each message M∗i be-
cause the verification algorithm accepts the signature
(h̃∗, σ∗ = {σ∗1 , . . . , σ∗n}).

There are two ways in which the forged message m̃∗

could have been derived by A:
(1) Good Case: There exists some i ∈ {1, . . . , n}

for which [M∗i ]Rm 6= [M ]Rm for any M previously
queried by BMSf to his signing oracle. We will see that
with overwhelming probability, the Good Case is the
way in which A forms his forgery.

(2) Bad Case: Every M∗i is such that [M∗i ]Rm =
[M ]Rm for some M previously queried by BMSf to his
signing oracle. In this case, A is able to "mix and match"
mi’s from different messages for which signatures have
been issued. We claim that A cannot do this, except
with negligible probability, or the DL or ABDDH+ as-
sumption doesn’t hold.

First, note that if a glue element h̃ is formed as
g̃R(m1,...,mn) for some random function R : (Z∗p)n →
Z∗p, then A cannot mix and match. This is because if
the vectors (m1, . . . ,mn) are distinct, then the values
R(m1, . . . ,mn) are distinct as well as the glue elements
g̃R(m1,...,mn). Our goal is to demonstrate that a glue
element formed as g̃R(m1,...,mn) is indistinguishable from
a real glue element g̃y·q, where q = p(x̂) =

∑n
i=1mix̂

i−1.
Then, A can’t mix and match when real glue elements
are used, except with negligible probability.

We achieve this goal in two steps. We first demon-
strate that g̃R(m1,...,mn) is indistinguishable from g̃R(q),
where R : Z∗p → Z∗p is a random function, under the
DL assumption. We then demonstrate that g̃R(q) is in-
distinguishable from a real glue element g̃y·q under the
ABDDH+ assumption. This gives the desired result.

Consider the following set of games. In Game 0,
the real signing game, the glue element is computed
directly, without extraction of the mi’s or simulated
proofs. Game 1 includes simulated proofs. In Games 2-5,
the challenger acts as the zero-knowledge extractor to
extract the mi’s necessary to compute the glue element
and provides a simulated proof that it was computed cor-
rectly. The overall proof structure is as follows. Arrows
indicate why consecutive games are indistinguishable.
Game 0. h̃ = g̃y·q. No extraction or simulation. This

is the real signing game.
l Claim 1: zero-knowledge property
Game 1. h̃ = g̃y·q. No extraction, but simulation.
l Claim 2: knowledge extractor property
Game 2. h̃ = g̃y·q, q = p(x̂). Extraction and simulation

henceforth.
l Claim 3: ABDDH+ assumption in G1

Game 3. h̃ = g̃R(q), q = p(x̂), R : Z∗p → Z∗p random.
l Claim 4: polynomial collision argument / Claim 5: DL

assumption in G2

Game 4. h̃ = g̃R(q̇), q̇ = p(α) for "fake" secret α ∈ Z∗p.
l Claim 6: polynomial collision argument
Game 5. h̃ = g̃R(m1,...,mn), R : (Z∗p)n → Z∗p random.

We now provide descriptions of the games and proofs of
the claims.
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Game 0. In this real signing game, the glue element
is h̃ = g̃y·q. There is no extraction or zero-knowledge
simulation.

The challenger C computes the public parameters
PP and keys (pk, sk) = ((X̂1, X̂2, X̂3, X̂4, X̂5),
(x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf
on messages of length ` = 5. C chooses uniformly at ran-
dom a secret point x̂← Z∗p and secret seeds y1, y2 ← Z∗p.
He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂ and
x9 = x8 · y1 and x10 = x8 · y2. He then sets pkX =
(pk, X̂6, X̂7, X̂8, X̂9, X̂10), where X̂i = P̂xi . C forwards
PPX and pkX to A.
A proceeds to make signature queries on messages of

the form m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1. For each signa-
ture query, C acts as the verifier while A gives a ZKPoK
that, for all 1 ≤ i ≤ n, he knows mi such that ui = ĝmi .
If the verification fails, C denies A the signature; other-
wise, C computes y = y1 · y2 and ĥ =

(∏n
i=1 u

x̂i−1

i

)y
.

C picks uniformly at random w ← Z∗p and computes
g̃ = ĝw, h̃ = ĥw, and ũi = uwi ∀i. He also com-
putes g̃2, . . . , g̃n. He then signs n messages of the form
Mi = (g̃, g̃i, g̃n, h̃, ũi) using his secret key sk for MSf and
sends m̃ = (g̃, ũ1, . . . , ũn) and (h̃, σ = {σ1, . . . , σn}) to A,
along with a ZKPoK that h̃ was computed correctly. A
issues queries for signatures on messages a polynomial
number of times. The game ends when A produces a
forgery or terminates without producing a forgery.

Game 1. In this game, the glue element remains h̃ =
g̃y·q. There is no extraction, but now there is simulation.

Game 1 is the same as Game 0, except the challenger C
simulates the ZKPoK that h̃ was computed correctly.

Claim 1. A PPT adversary cannot distinguish Game 0
from Game 1, except with negligible probability.

The only difference between the two games is zero-
knowledge simulation. In Game 1, the challenger simu-
lates the ZKPoK that the glue h̃ was computed correctly,
whereas in Game 0, the challenger gives a real ZKPoK. If
an adversary could distinguish the two games, it would
break the zero-knowledge property.

Game 2. In this game, the glue element remains h̃ =
g̃y·q, where q = p(x̂). There is now extraction and simu-
lation (and for all games henceforth).

The challenger C computes the public parameters
PP and keys (pk, sk) = ((X̂1, X̂2, X̂3, X̂4, X̂5),
(x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf
on messages of length ` = 5. C chooses uniformly at ran-
dom a secret point x̂← Z∗p and secret seeds y1, y2 ← Z∗p.

He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂ and
x9 = x8 · y1 and x10 = x8 · y2. He then sets pkX =
(pk, X̂6, X̂7, X̂8, X̂9, X̂10), where X̂i = P̂xi . C forwards
PPX and pkX to A.
A proceeds to make signature queries on messages

of the form m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1. For each
signature query, C acts as the extractor while A gives
a ZKPoK that, for all 1 ≤ i ≤ n, he knows mi such
that ui = ĝmi . C extracts the mi’s, or if the extraction
fails, C denies A the signature. Otherwise, C computes
the polynomial p(x) = m1 + m2x + · · · + mnx

n−1 and
evaluates p(x) at the secret point x̂. Let q = p(x̂) denote
this evaluation. C computes y = y1 · y2 and ĥ = ĝy·q.
C picks uniformly at random w ← Z∗p and computes
g̃ = ĝw, h̃ = ĥw, and ũi = uwi ∀i. He also computes
g̃2, . . . , g̃n. He then signs n messages of the form Mi =
(g̃, g̃i, g̃n, h̃, ũi) using his secret key sk for MSf and sends
m̃ = (g̃, ũ1, . . . , ũn) and (h̃, σ = {σ1, . . . , σn}) to A, along
with a simulated ZKPoK that h̃ was computed correctly.
A issues queries for signatures on messages a polynomial
number of times. The game ends when A produces a
forgery or terminates without producing a forgery.

Claim 2. A PPT adversary cannot distinguish Game 1
from Game 2, except with negligible probability.

In Game 2, the challenger C extracts the mi’s from the
message m, forms the polynomial p(x) = m1 + m2x +
· · · + mnx

n−1, and evaluates q = p(x̂). C then forms
the glue element as h̃ = g̃y·q, where g̃ = ĝw for some
uniformly random w ← Z∗p. In Game 1, the challenger

C forms the glue element as h̃ =
(∏n

i=1(uwi )x̂i−1
)y

for a uniformly random w ← Z∗p. But note that h̃ =(∏n
i=1(ĝmi·w)x̂i−1

)y
=
(∏n

i=1 g̃
y·mi·x̂i−1

)
= g̃y·q.

Thus, the glue elements h̃ in both games are iden-
tical. The only difference between the two games is ex-
traction. In Game 2, the challenger extracts the mi’s to
compute the glue h̃, whereas in Game 1, the challenger
computes the correct h̃ directly from the ui’s, without
extracting the mi’s. If an adversary could distinguish
the two games, it would break the knowledge extractor
property.

Game 3. In this game, the glue element is h̃ = g̃R(q),
where q = p(x̂) and R : Z∗p → Z∗p is a random function.

Game 3 is the same as Game 2, except the challenger
C chooses a random function R : Z∗p → Z∗p and for each
signature computes ĥ = ĝR(q), where q = p(x̂). The rest
of the signing protocol is carried out as in Game 2.
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Claim 3. A PPT adversary cannot distinguish Game 2
from Game 3 under the ABDDH+ assumption in G1.

Consider the following decisional problem related to the
ABDDH+ assumption.

Definition 10. (ABDDH† problem). Let BGGen be a
bilinear group generator that outputs BG = (G1,G2,

GT , P, P̂ , e). The ABDDH† problem in G1 is to distin-
guish between the distributions D0 and D1 defined by:

D0 ={BG← BGGen(1k); α, β, u, v, ω ← Z∗p;
(BG, P̂α, P̂αu, P̂αv, Pβ , Pβuv, Pω, Pωuv)}

D1 ={BG← BGGen(1k); α, β, u, v, ω, r ← Z∗p;
(BG, P̂α, P̂αu, P̂αv, Pβ , Pβuv, Pω, P r)

Lemma 1. If the ABDDH+ assumption holds for a bi-
linear group generator BGGen, then the ABDDH† prob-
lem is also hard for BGGen.

Indeed, a reduction B given an ABDDH+ instance

(BG, P̂u, P̂ v, Pu, Puv, Pω, P (1−b)·r+b·(ωuv))

can pick uniformly at random α, β ← Z∗p and provide
an ABDDH† instance

(BG, P̂α, (P̂u)α, (P̂ v)α, Pβ , (Puv)β , Pω, P (1−b)·r+b·(ωuv))

to an adversary A whose non-negligible advantage in dis-
tinguishing ABDDH† tuples becomes B’s non-negligible
advantage in breaking ABDDH+.

We now prove Claim 3 via a hybrid argument.
Let Γ(k) be a polynomial. For 0 ≤ i ≤ Γ(k), let
Hi be the hybrid experiment defined as the following
game. The challenger C computes the public parame-
ters PP and keys (pk, sk) = ((X̂1, X̂2, X̂3, X̂4, X̂5),
(x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf
on messages of length ` = 5. C chooses uniformly at ran-
dom a secret point x̂ ← Z∗p and secret seeds y1, y2 ←
Z∗p. He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂
and x9 = x8 · y1 and x10 = x8 · y2. He then sets
pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), where X̂i = P̂xi . He
also chooses a random function R : Z∗p → Z∗p and for-
wards PPX and pkX to A.

Let A’s jth signature query be on message mj =
(ĝj , uj,1, . . . , uj,n). C acts as the extractor while A gives
a ZKPoK that, for all 1 ≤ i ≤ n, he knowsmj,i such that
uj,i = ĝ

mj,i
j . C extracts the mj,i’s, or if the extraction

fails, C denies A the signature. Otherwise, C computes
the polynomial pj(x) = mj,1 + mj,2x + · · · + mj,nx

n−1

and evaluates qj = pj(x̂). C also computes y = y1 · y2.
(1) If j ≤ i, C computes R(qj) and ĥj = ĝ

R(qj)
j .

C picks uniformly at random wj ← Z∗p and computes

g̃j = ĝ
wj
j , h̃j = ĥ

wj
j , and ũj,i = u

wj
j,i ∀i. He also com-

putes g̃2
j , . . . , g̃

n
j . He then signs n messages of the form

Mj,i = (g̃j , g̃ij , g̃nj , h̃j , ũj,i) using his secret key sk for
MSf and sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj =
{σj,1, . . . , σj,n}) to A, along with a simulated ZKPoK
that h̃j was computed correctly.

(2) If j > i, C computes: ĥj = ĝ
y·qj
j . C picks

uniformly at random wj ← Z∗p and computes g̃j =
ĝ
wj
j , h̃j = ĥ

wj
j , and ũj,i = u

wj
j,i ∀i. He also com-

putes g̃2
j , . . . , g̃

n
j . He then signs n messages of the form

Mj,i = (g̃j , g̃ij , g̃nj , h̃j , ũj,i) using his secret key sk for
MSf and sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj =
{σj,1, . . . , σj,n}) to A, along with a simulated ZKPoK
that h̃j was computed correctly.

By definition, H0 corresponds to the game in which
all glue elements are formed as h̃j = g̃

y·qj
j (Game 2),

while HΓ(k) corresponds to the game in which all glue
elements are formed as h̃j = g̃

R(qj)
j (Game 3).

Let A be an adversary, let Γ(k) be the number of
queries A makes, and let 0 ≤ i ≤ Γ(k) − 1. We wish to
show that A’s advantage ε = Adv(A, k, i) in distinguish-
ing Hi from Hi+1 is negligible; in fact, ε ≤ ν, where ν is
the best advantage in distinguishing ABDDH† tuples.

Suppose not; that is, suppose ε = Adv(A, k, i) >

ν for some A, k, i. Then, let us show that there exists
a probabilistic, polynomial-time B that can distinguish
between the distributions D0 and D1.

We construct B as a reduction running A as a
subroutine. B serves as the challenger for A in the
hybrid game and as the adversary for his own chal-
lenger in the ABDDH† game. B receives as input
(BG, Â0, Â1, Â2, B1, C,B2, D), where implicitly Â0 =
P̂α, Â1 = P̂αu, Â2 = P̂αv, B1 = Pβ , C = Pβuv, B2 =
Pω, and D = Pωuv or P r for some uniformly random
α, β, u, v, ω, r ∈ Z∗p.
B computes the public parameters PP and keys

(pk, sk) = ((X̂1, X̂2, X̂3, X̂4, X̂5), (x1, x2, x3, x4, x5))
for a mercurial signature scheme MSf on messages of
length ` = 5. B chooses uniformly at random a secret
point x̂← Z∗p but does not know the secret seeds y1, y2.
He also picks x6 ← Z∗p and sets x7 = x6 · x̂. He then
sets pkX = (pk, X̂6, X̂7, Â0, Â1, Â2), where X̂i = P̂xi . B
chooses a random function R : Z∗p → Z∗p and forwards
PPX and pkX to A.
A proceeds to make queries to the signing oracle.

Acting as the challenger for A, B is responsible for com-
puting the responses to the signature queries and for-
warding them to A. B responds to the signature queries
as follows.
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Let A’s jth signature query be on message mj =
(ĝj , uj,1, . . . , uj,n). B acts as the extractor while A gives
a ZKPoK that, for all 1 ≤ i ≤ n, he knowsmj,i such that
uj,i = ĝ

mj,i
j . B extracts the mj,i’s, or if the extraction

fails, B denies A the signature. Otherwise, B computes
the polynomial pj(x) = mj,1 + mj,2x + · · · + mj,nx

n−1

and evaluates qj = pj(x̂).
(1) If j ≤ i, B computes R(qj) and ĥj = ĝ

R(qj)
j .

B picks uniformly at random wj ← Z∗p and computes
g̃j = ĝ

wj
j , h̃j = ĥ

wj
j , and ũj,i = u

wj
j,i ∀i. He also com-

putes g̃2
j , . . . , g̃

n
j . He then signs n messages of the form

Mj,i = (g̃j , g̃ij , g̃nj , h̃j , ũj,i) using his secret key sk for
MSf and sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj =
{σj,1, . . . , σj,n}) to A, along with a simulated ZKPoK
that h̃j was computed correctly.

(2) If j = i + 1, B computes ĥj = Dqj . B sets g̃j =
B2, h̃j = ĥj , and ũj,i = B

mj,i
2 ∀i. He also computes

B2
2 , . . . , B

n
2 . He then signs nmessages of the formMj,i =

(B2, B
i
2, B

n
2 , D

qj , B
mj,i
2 ) using his secret key sk for MSf

and sends m̃j = (B2, B
mj,1
2 , . . . , B

mj,n
2 ) and (Dqj , σj =

{σj,1, . . . , σj,n}) to A, along with a simulated ZKPoK
that h̃j was computed correctly.

(3) If j > i + 1, B computes: ĥj = Cqj .
B picks uniformly at random wj ← Z∗p and
computes g̃j = B

wj
1 , h̃j = ĥ

wj
j , and ũj,i =

(Bwj1 )mj,i ∀i. He also computes (Bwj1 )2, . . . , (Bwj1 )n.
He then signs n messages of the form Mj,i =
(Bwj1 , (Bwj1 )i, (Bwj1 )n, Cqj ·wj , (Bwj1 )mj,i) using his secret
key sk for MSf and sends m̃j = (Bwj1 , (Bwj1 )mj,1 , . . . ,
(Bwj1 )mj,n) and (Cqj ·wj , σj = {σj,1, . . . , σj,n}) to A,
along with a simulated ZKPoK that h̃j was computed
correctly.

Finally, when A terminates, without loss of general-
ity he outputs either 0 or 1. He outputs 0 if he thinks
he has observed Hi and 1 if he thinks he has observed
Hi+1. If A outputs 0, B outputs 0; otherwise, B outputs
1. Let us analyze B’s success probability.

First, note that in the public key pkX, the values
X̂8, X̂9, X̂10 can’t be computed as P̂x8 , P̂x9 , P̂x10 , where
x9 = x8 ·y1 and x10 = x8 ·y2, because B does not know y1
or y2; however, (Â0, Â1, Â2) is implicitly (P̂α, P̂αu, P̂αv),
which is distributed the same as (P̂x8 , P̂x8·y1 , P̂x8·y2)
for uniformly random x8, y1, y2 ∈ Z∗p. Thus, pkX is dis-
tributed correctly.

The case j ≤ i is exactly as in the hybrid game. For
the case j > i + 1, B1 is implicitly Pβ , so g̃j = Pβwj ,
which is distributed the same as ĝwjj because wj is uni-
formly random in Z∗p. C is implicitly Pβuv, so h̃j =
Cqj ·wj = (Pβwj )uv·qj = (Bwj1 )uv·qj = g̃

uv·qj
j , which is

distributed the same as g̃y1y2·qj
j = g̃

y·qj
j for uniformly

random y1, y2 ∈ Z∗p. For the case j = i + 1, B2 is im-
plicitly Pω, so g̃j = Pω, which is distributed the same
as ĝwjj for a uniformly random wj ∈ Z∗p. D is implicitly
Pωuv or P r for the uniformly random u, v, ω, r ∈ Z∗p
given as input to the reduction. If D = Pωuv, then
h̃j = Dqj = B

uv·qj
2 , which is distributed the same as

g̃
y1y2·qj
j = g̃

y·qj
j for uniformly random y1, y2 ∈ Z∗p. If

D = P r, then h̃j = Dqj = P r·qj , which is distributed
the same as g̃R(qj)

j since the r given as input to the re-
duction is uniformly random in Z∗p. Thus, D = Pωuv

corresponds to hybrid Hi and D = P r corresponds to
hybrid Hi+1.

The above description of B’s responses to A’s ora-
cle queries demonstrates that B is able to emulate the
appropriate hybrid and compute each step of A’s oracle
queries exactly as A’s challenger in the game would. If
A outputs 0, it means the input looks like it came from
Hi, so B outputs 0 to indicate the distribution D0. If
A outputs 1, it means the input looks like it came from
Hi+1, so B outputs 1 to indicate the distribution D1.
Then, A’s advantage translates into B’s advantage: if A
is able to distinguish Hi from Hi+1 with non-negligible
probability ε, then B is able to distinguish ABDDH†

tuples with the same non-negligible probability.

Game 4. In this game, the glue element is h̃ = g̃R(q̇),
where q̇ = p(α) for a "fake" secret point α ∈ Z∗p and
R : Z∗p → Z∗p is a random function.

Game 4 is the same as Game 3, except in addition to
the secret point x̂, the challenger C also chooses a "fake"
secret point uniformly at random α← Z∗p and computes
ĥ = ĝR(q̇), where q̇ = p(α). The rest of the signing pro-
tocol is carried out as in Game 3.

Claim 4. A PPT adversary can distinguish Game 3
from Game 4 only if a collision pi(x̂) = pj(x̂) occurs in
Game 3 with non-negligible probability.

Let a PPT adversary A’s jth signature query be on mes-
sage mj = (ĝj , uj,1, . . . , uj,n), where uj,i = ĝ

mj,i
j ∀i. In

Game 3, the challenger C extracts the mj,i’s, forms the
polynomial pj(x) = mj,1 +mj,2x+ · · ·+mj,nx

n−1, and
evaluates qj = pj(x̂). He then computes R(qj) for some
random function R : Z∗p → Z∗p and forms the glue ele-
ment as h̃j = g̃

R(qj)
j .

In Game 4, the challenger C extracts the mj,i’s,
forms the polynomial pj(x) = mj,1 + mj,2x + · · · +
mj,nx

n−1, and evaluates q̇j = pj(α) at the "fake" se-
cret point α ∈ Z∗p. He then computes R(q̇j) and forms
the glue element as h̃j = g̃

R(q̇j)
j .
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The only difference between the two games is that in
Game 4, the polynomials pj(x) are evaluated at α, which
is independent of the true secret point x̂. If q̇i = q̇j for
some pi(x) 6= pj(x), then R(q̇i) = R(q̇j), so A learns
that pi(α) = pj(α). The value α is independent of the
adversary’s view unless such a collision occurs. We will
show that a collision occurs with negligible probability
by induction on the number of queries.

For the base case, suppose q̇1 = q̇2. Then, α is a root
of the difference polynomial p1(x)− p2(x). A’s probabil-
ity of successfully constructing a difference polynomial
with root α is maximized by choosing n−1 distinct roots
for it. The probability that one of these n − 1 distinct
roots is α is (n−1)/p. Thus, the probability that q̇1 = q̇2
is at most (n− 1)/p, which is negligible. For the induc-
tion step, suppose ∀i ≤ t, ∀j ≤ t, q̇i 6= q̇j . The probability
that q̇t+1 collides with one of the first t q̇i’s, conditioned
on the fact that there are no collisions among the first
t q̇i’s, is at most (t + 1)(n − 1)/p, which is negligible,
completing the induction step.

Thus, A can distinguish Game 4 from Game 3 only
if a collision pi(x̂) = pj(x̂) occurs in Game 3 with non-
negligible probability. We now show that such a collision
occurs in Game 3 with negligible probability or the DL
assumption doesn’t hold.

Claim 5. A collision pi(x̂) = pj(x̂) occurs in Game 3
with negligible probability under the DL assumption in
G2.

We wish to show that if there exists a PPT adversary
A that produces a collision pi(x̂) = pj(x̂) for some poly-
nomials pi(x) 6= pj(x) with non-negligible probability,
then we can construct a PPT adversary A′ that breaks
the DL assumption.

Suppose there exists such a PPT algorithm A. Then,
we construct a PPT adversary A′ as a reduction B run-
ning A as a subroutine. We construct the reduction B
for breaking the DL assumption as follows.
B receives as input (Â, B̂) ∈ G∗2, where implicitly

B̂ = Âx̂ for some uniformly random x̂ ∈ Z∗p. (Note that
this variant of the DL assumption is equivalent to the
one in which x̂ is drawn from Zp.)
B computes the public parameters PP and keys

(pk, sk) = ((X̂1, X̂2, X̂3, X̂4, X̂5), (x1, x2, x3, x4, x5))
for a mercurial signature scheme MSf on messages of
length ` = 5. B chooses uniformly at random secret val-
ues y1, y2 ← Z∗p but does not know the secret point
x̂. He also picks x8 ← Z∗p and sets x9 = x8 · y1 and
x10 = x8 · y2. He then sets pkX = (pk, Â, B̂, X̂8, X̂9, X̂10),
where X̂i = P̂xi , and forwards PPX and pkX to A.

A proceeds to make queries to the signing oracle.
Acting as the challenger for A, B is responsible for com-
puting the responses to the signature queries and for-
warding them to A. B responds to the signature queries
as follows.

Let A’s jth signature query be on message mj =
(ĝj , uj,1, . . . , uj,n). B acts as the extractor while A gives
a ZKPoK that, for all 1 ≤ i ≤ n, he knowsmj,i such that
uj,i = ĝ

mj,i
j . B extracts the mj,i’s, or if the extraction

fails, B denies A the signature. Otherwise, B computes
the polynomial pj(x) = mj,1 +mj,2x+ · · ·+mj,nx

n−1.
For all 1 ≤ t < j, B computes the difference polyno-

mial pj(x)−pt(x) and finds its n−1 roots rt,1, . . . , rt,n−1.
Since B knows Â, he can compute Ârt,i ∀t, ∀i and check
if Ârt,i = B̂. If this holds for some rt,i, then rt,i = x̂

and B wins the DL game. If this does not hold, B
picks uniformly at random R̃j ← Z∗p and computes
ĥj = ĝ

R̃j
j since he cannot correctly compute ĝR(qj); how-

ever, note that A’s view is identical because he receives
random values. B picks uniformly at random wj ← Z∗p
and computes g̃j = ĝ

wj
j , h̃j = ĥ

wj
j , and ũj,i = u

wj
j,i

∀i. He also computes g̃2
j , . . . , g̃

n
j . He then signs n mes-

sages of the form Mj,i = (g̃j , g̃ij , g̃nj , h̃j , ũj,i) using his
secret key sk for MSf and sends m̃j = (g̃j , ũj,1, . . . , ũj,n)
and (h̃j , σj = {σj,1, . . . , σj,n}) to A, along with a simu-
lated ZKPoK that h̃j was computed correctly. A issues
queries for signatures on messages a polynomial number
of times. A’s success in producing a difference polyno-
mial pj(x)− pt(x) with root x̂ with non-negligible prob-
ability translates into B’s success in breaking the DL
assumption.

From Claim 4 and Claim 5, we can conclude that
a PPT adversary A cannot distinguish Game 3 from
Game 4, except with negligible probability.

Game 5. In this game, the glue element is h̃ =
g̃R(m1,...,mn), where R : (Z∗p)n → Z∗p is a random func-
tion.

Game 5 is the same as Game 4, except the challenger C
does not choose a "fake" secret point α ∈ Z∗p and does
not compute or evaluate the polynomial p(x). Instead,
C chooses a random function R : (Z∗p)n → Z∗p and for
each signature computes ĥ = ĝR(m1,...,mn) The rest of
the signing protocol is carried out as in Game 4.

Claim 6. An adversary’s view in Game 4 is the same
as it is in Game 5, except with negligible probability.

Let a (possibly unbounded) adversary A’s jth signature
query be on message mj = (ĝj , uj,1, . . . , uj,n), where
uj,i = ĝ

mj,i
j ∀i. In Game 5, the challenger C extracts
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the mj,i’s, computes R(mj,1, . . . ,mj,n) for some ran-
dom function R, and forms the glue element as h̃j =
g̃
R(mj,1,...,mj,n)
j , where g̃j = ĝ

wj
j for some uniformly ran-

dom wj ← Z∗p.
In Game 4, the challenger C extracts the mj,i’s,

forms the polynomial pj(x) = mj,1 + mj,2x + · · · +
mj,nx

n−1, and evaluates q̇j = pj(α) at the "fake" secret
point α ∈ Z∗p. He then computes R(q̇j) for some random
function R and forms the glue element as h̃j = g̃

R(q̇j)
j ,

where g̃j = ĝ
wj
j for some uniformly random wj ← Z∗p.

If q̇i = q̇j for some pi(x) 6= pj(x), then R(q̇i) = R(q̇j),
so A learns that pi(α) = pj(α). The value α is indepen-
dent of the adversary’s view unless such a collision oc-
curs. We showed in Claim 4 that a collision pi(α) = pj(α)
occurs in Game 4 with negligible probability. If there are
no such collisions, A’s view is identical in both games
because he receives random values.

This completes the proof of unforgeability for MSX
(Theorem 4).

4.4 Class-hiding

Message class-hiding states that given two messages m1
and m2, it is hard to tell if m2 ∈ [m1]Rm . Public key
class-hiding states that given two public keys pkX,1 and
pkX,2 and oracle access to the signing algorithm for both
of them, it is hard to tell if pkX,2 ∈ [pkX,1]Rpk .

Theorem 5 (Message class-hiding). Let MSf be a mer-
curial signature scheme on message space (G∗1)5 as in
Theorem 1, and let MSX be the variable-length mercurial
signature scheme on message space (G∗1)n+1 constructed
above. Then, message class-hiding of MSX holds under
the decisional Diffie-Hellman assumption (DDH) in G1.
The same holds when G1 and G2 are swapped.

The proof is a straightforward hybrid argument inher-
ited from Fuchsbauer et al. [22].

Theorem 6 (Public key class-hiding). Let MSf be a
mercurial signature scheme on message space (G∗1)5,
and let MSX be the variable-length mercurial signature
scheme on message space (G∗1)n+1 constructed above.
Suppose all signatures are issued via the interactive sign-
ing protocol described in Section 4.1, where the proof
system used in Step 1 is extractable under sequential (or
concurrent) composition. Then, public key class-hiding
of MSX holds sequentially (or concurrently) under the
DL assumption in G2, the ABDDH+ assumption in G1,

and the DDH assumption in G1 and G2. The same holds
when G1 and G2 are swapped.

For the proof, consider two public keys for MSX:

pkX,1 = (pk1, P̂
x1,6 , P̂x1,6·x̂1 , P̂x1,8 , P̂x1,8·y(1)

1 , P̂x1,8·y(1)
2 )

pkX,2 = (pk2, P̂
x2,6 , P̂x2,6·x̂2 , P̂x2,8 , P̂x2,8·y(2)

1 , P̂x2,8·y(2)
2 )

where xδ,6, xδ,8, x̂δ, y
(δ)
1 , y

(δ)
2 ∈ Z∗p for δ ∈ {1, 2}. They

are independent if these values are sampled uniformly
at random from Z∗p and equivalent if pkX,2 = pkβX,1 for
some β ∈ Z∗p. They are said to be 1/2 independent and
1/2 equivalent if pk2 = pkβ1 , but the remaining elements
are independent.

We construct a sequence of games beginning with
the real signing game in which pkX,1, pkX,2 are indepen-
dent (Game 0). In the real signing game, a signature
query on a message m under chosen public key pkX,δ
for δ ∈ {1, 2} results in a glue element computed as
h̃ = g̃y

(δ)·qδ , where qδ = p(x̂δ) and y(δ) := y
(δ)
1 · y(δ)

2 . The
sequence of games ends with the real signing game in
which pkX,1, pkX,2 are equivalent (Game 13). We show
that Game 0 and Game 13 are indistinguishable via
a sequence of intermediate games. These games cycle
through public keys pkX,1, pkX,2 that are independent,
1/2 independent and 1/2 equivalent, and equivalent, as
well as glue elements that are computed in the various
ways specified in the proof of unforgeability. Since the
real signing game in which pkX,1, pkX,2 are independent
(Game 0) is indistinguishable from the real signing game
in which pkX,1, pkX,2 are equivalent (Game 13), MSX sat-
isfies public key class-hiding. The proof can be found in
Appendix C.
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A Prior Construction [15]
The prior construction of mercurial signatures is as fol-
lows [15]. The message space consists of vectors of group
elements from G∗1, the space of secret keys consists of
vectors of elements from Z∗p, and the space of public keys
consists of vectors of group elements from G∗2. Once the
prime p, G1, G2, and a fixed length parameter ` are well
defined, the equivalence relations are as follows:

RM = {(M,M ′) ∈ (G∗1)` × (G∗1)` | ∃ µ ∈ Z∗p s.t. M ′ = Mµ}

Rsk = {(sk, s̃k) ∈ (Z∗p)` × (Z∗p)` | ∃ ρ ∈ Z∗p s.t. s̃k = ρ · sk}

Rpk = {(pk, p̃k) ∈ (G∗2)` × (G∗2)` | ∃ ρ ∈ Z∗p s.t. p̃k = pkρ}

The message space for this mercurial signature scheme
is (G∗1)`, but a mercurial signature scheme with message
space (G∗2)` can be obtained by simply switching G∗1 and
G∗2 throughout. The algorithms are as follows:

PPGen(1k)→ PP: Compute BG← BGGen(1k). Output
PP = BG = (G1,G2,GT , P, P̂ , e).

KeyGen(PP, `) → (pk, sk): For 1 ≤ i ≤ `, pick xi ← Z∗p,
set sk = (x1, . . . , x`), pk = (X̂1, . . . , X̂`), where X̂i =
P̂xi for 1 ≤ i ≤ `. Output (pk, sk).

Sign(sk,M) → σ: On input sk = (x1, . . . , x`), M =
(M1, . . . ,M`) ∈ (G∗1)`, sample y ← Z∗p, output σ =

(Z, Y, Ŷ ), where Z =
(∏`

i=1M
xi
i

)y
, Y = P

1
y , and

Ŷ = P̂
1
y .

Verify(pk,M, σ) → 0/1: On input pk = (X̂1, . . . , X̂`),
M = (M1, . . . ,M`), and σ = (Z, Y, Ŷ ), check∏`
i=1 e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ ). If

this holds, output 1; otherwise, output 0.
ConvertSK(sk, ρ) → s̃k: On input sk = (x1, . . . , x`) and

key converter ρ ∈ Z∗p, output new s̃k = ρ · sk.
ConvertPK(pk, ρ) → p̃k: On input pk = (X̂1, . . . , X̂`)

and key converter ρ ∈ Z∗p, output new p̃k = pkρ.
ConvertSig(pk,M, σ, ρ) → σ̃: On input pk, M , σ =

(Z, Y, Ŷ ), key converter ρ ∈ Z∗p, sample ψ ← Z∗p.
Output σ̃ = (Zψρ, Y

1
ψ , Ŷ

1
ψ ).

ChangeRep(pk,M, σ, µ) → (M ′, σ′): On input pk, M ,
σ = (Z, Y, Ŷ ), µ ∈ Z∗p, sample ψ ← Z∗p. Compute
M ′ = Mµ, σ′ = (Zψµ, Y

1
ψ , Ŷ

1
ψ ). Output (M ′, σ′).

B Zero-Knowledge Proofs
Let us now address which zero-knowledge proof of
knowledge (ZKPoK) protocol ought to be used in the
signing protocol (Section 4.1) . There is a rich literature

on ZKPoK protocols for discrete logarithm-based rela-
tions that are both practical and provably secure. For
our purposes, a ZKPoK protocol needs to be secure un-
der the appropriate notion of composition: our unforge-
ability game allows the adversary to issue many signing
queries, so the challenger must be able to respond to
many queries. The best security for our purposes would
be UC security [11], but it may come at an efficiency
cost. For efficient and UC-secure Σ-protocols [16], Dodis,
Shoup, and Walfish [17] offer a solution, but it relies on
verifiable encryption [10] or similar, which adds com-
plexity and setup assumptions. In the random oracle
model, Fischlin [19] as well as Bernhard, Fischlin, and
Warinschi [3] show how to get an extractor that does not
need to rewind, thereby allowing composition. If all we
want is sequential composition, then we can rely on the
fact that proofs of knowledge compose under sequential
composition, but that means that in our unforgeabil-
ity game, the signer can only respond to one signature
query at a time.

At the heart of all of these approaches is an efficient
Σ-protocol [16] that is then compiled (using the tech-
niques cited above) into a ZKPoK. Depending on which
flavor of ZKPoK is needed, the compiler may be very
efficient (e.g., if a Fiat-Shamir proof is good enough)
or relatively more involved (e.g., if we want UC secu-
rity with the Fischlin compiler). Below, we give the Σ-
protocols that are needed and refer the reader to the
cited literature for the details of how to compile them
to obtain a ZKPoK.

The signing protocol features two ZKPoKs. In Step
1, the Receiver of the signature on a message m =
(ĝ, u1, . . . , un) gives a ZKPoK that, for all 1 ≤ i ≤ n,
he knows mi such that ui = ĝmi . This can be in-
stantiated using a standard transformation from a Σ-
protocol for proving knowledge of a discrete logarithm
(Figure 2) [26].

In Step 3 of the signing protocol, the Signer gives a
ZKPoK that he has computed the glue element h̃ cor-
rectly. If verification of the glue and signature passes,
the Receiver outputs the message m̃ = (g̃, ũ1, . . . , ũn)
and signature (h̃, σ). The Σ-protocol for this ZKPoK can
be viewed as a combination of the following Σ-protocols:
(1) a proof of knowledge of a discrete logarithm; (2) a
proof of knowledge of the opening of a commitment (Fig-
ure 2); (3) a proof of equality of two committed values;
and (4) a proof that a committed value is the product
of two other committed values (Figure 3) [24]. This last
proof can be used to show that a committed value is
the square of another committed value and, furthermore,
that a committed value is the nth power of another.
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Common inputs: Common inputs:
(p, g) (p, g, h)
X = gx public key of a

commitment scheme
X = gxhy

Prover’s inputs: x Prover’s inputs: x, y

Prove 7→ Verify Prove 7→ Verify
r ← Z∗p r1, r2 ← Z∗p
send R← gr send R← gr1hr2

Verify 7→ Prove Verify 7→ Prove
send c← Z∗p send c← Z∗p

Prove 7→ Verify Prove 7→ Verify
send s← r + cx s1 ← r1 + cx

s2 ← r2 + cy

send s1, s2

Verify Verify
return (RXc = gz) return (RXc = gs1hs2 )

Fig. 2. Σ-protocols for proving knowledge of a discrete log-
arithm (left-hand side) and knowledge of the opening of a
commitment (right-hand side).

The honest verifier zero-knowledge property holds
for these Σ-protocols information-theoretically. The
knowledge extraction holds under the discrete logarithm
assumption: the extractor algorithm either outputs the
desired values or solves the instance of the discrete loga-
rithm problem defined by the parameters of the system.
Note that for the Σ-protocol proving the equality of com-
mitted values, the proof of security goes through as long
as one of the commitment keys was chosen uniformly at
random during setup; the other may be chosen arbitrar-
ily. This was observed by Camenisch and Michels [9].

We can construct a Σ-protocol for a ZKPoK of the
glue element h̃ as follows. The Signer (Prover) engages
in following protocols with the Receiver (Verifier):

1. Prove knowledge of the discrete logarithm of X̂6 =
P̂x6 and X̂7X̂

−1
6 = P̂ x̂. Let X̂ = P̂ x̂ and form

a commitment Ĉx̂ = P̂ x̂Ĥ r̂x̂ . Prove knowledge of
the discrete logarithm of Ĉx̂X̂−1 = Ĥ r̂x̂ . Repeat
for P̂x8 , P̂x8·y1 , P̂x8·y2 and Ĉy1 = P̂ y1Ĥ r̂y1 , Ĉy2 =
P̂ y2Ĥ r̂y2 .

2. Form the commitments Cx̂ = ĝx̂Hrx̂ , Cy1 =
ĝy1Hry1 , Cy2 = ĝy2Hry2 , Cw = ĝwHrw . Prove
knowledge of the discrete logarithm of g̃ = ĝw and

Common inputs: Common inputs:
(p, g1, h1, g2, h2) (p, g, h)
public key of a public key of a
commitment scheme commitment scheme
X = gx1h

y
1 Cx = gxhrx

Y = gx2h
z
2 Cy = gyhry

Cz = gxyhrz

Prover’s inputs: x, y, z Prover’s inputs:
x, y, rx, ry, rz

Prove 7→ Verify Prove↔ Verify
r1, r2, r3 ← Z∗p Two steps:
R1 ← gr1

1 hr2
1 1. PK{(α, ρx) :

R2 ← gr2
2 hr3

2 Cx = gαhρx}
send R1, R2 2. PK{(β, ρy, ρ′) :

Cy = gβhρy∧
Verify 7→ Prove Cz = C

β
xh

ρ′
}

send c← Z∗p

Prove 7→ Verify
s1 ← r1 + cx

s2 ← r2 + cy

s3 ← r3 + cz

send s1, s2, s3

Verify
return (R1X

c = gs1
1 hs2

1 )∧
(R2Y

c = gs1
2 hs3

2 )

Fig. 3. Σ-protocols for proving the equality of committed
values (left-hand side) and that a committed value is the
product of two other committed values (right-hand side).

Cw g̃
−1 = Hrw . Prove the equality of the committed

values in Ĉx̂ = P̂ x̂Ĥ r̂x̂ and Cx̂ = ĝx̂Hrx̂ .
3. Form the following commitments:

C1 = uw·y1·y2
1 Hr1

C2 = uw·y1·y2·x̂
2 Hr2

...
Cn−1 = uw·y1·y2·x̂n−2

n−1 Hrn−1

and prove that they are products of the contents of the
commitments Cw, Cy1 , Cy2 , Cx̂. (Note that the Ci’s may
be computed using ui’s as bases because their coun-
terparts in the proofs of equality contain bases cho-
sen from the public parameters.) Now compute Cn =
uw·y1·y2·x̂n−1

n Hrn , where rn = −
∑n−1
i=1 ri. Then:

n∏
i=1

Ci =
( n∏
i=1

ũx̂
i−1

i

)y
= h̃
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Lemma 2. Under the discrete logarithm assumption,
the protocol described for computing the glue element h̃
is a Σ-protocol zero-knowledge proof of knowledge.

Proof. Since all of the Σ-protocols used are proofs of
knowledge, the appropriate values can be extracted. As
for the zero-knowledge property, form each commitment
C1, . . . , Cn−1 at random. Then set

Cn = h̃∏n−1
i=1 Ci

.

Next, invoke the zero-knowledge simulator of all of the
constituent Σ-protocols.

C Public Key Class-Hiding Proof
Proof. We now provide descriptions of the games and
proofs of the claims in Section 4.4.

Game 0. In this real signing game, the public keys
pkX,1, pkX,2 are independent, and the glue element is
h̃ = g̃y

(δ)·qδ , where qδ = p(x̂δ) for δ ∈ {1, 2}. There is no
extraction or zero-knowledge simulation.

The challenger C computes the public parameters
PP = BG = (G1,G2,GT , P, P̂ , e) and two sets of keys
for a mercurial signature scheme MSf on messages of
length ` = 5: (sk1, pk1) = ((x1,1, x1,2, x1,3, x1,4, x1,5),
(X̂1,1, X̂1,2, X̂1,3, X̂1,4, X̂1,5)), (sk2, pk2) = ((x2,1, x2,2,

x2,3, x2,4, x2,5), (X̂2,1, X̂2,2, X̂2,3, X̂2,4, X̂2,5)), where
X̂i,j = P̂xi,j . C chooses uniformly at random secret
points x̂1, x̂2 ← Z∗p and secret seeds y(1)

1 , y
(2)
1 , y

(1)
2 , y

(2)
2

← Z∗p. He also picks x1,6, x2,6, x1,8, x2,8 ← Z∗p and sets:
x1,7 = x1,6 · x̂1, x1,9 = x1,8 · y(1)

1 , x1,10 = x1,8 · y(1)
2 ,

x2,7 = x2,6 · x̂2, x2,9 = x2,8 · y(2)
1 , x2,10 = x2,8 · y(2)

2 .
C then sets: pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10),
pkX,2 = (pk2, X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂2,10), where X̂i,j =
P̂xi,j . C forwards PPX = PP and pkX,1, pkX,2 to A.
A proceeds to make signature queries on messages

of the form m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1, where ĝ is
a generator of G1. For each signature query, A selects
whether he would like m to be signed under skX,1 or
skX,2. C acts as the verifier while A gives a ZKPoK that,
for all 1 ≤ i ≤ n, he knows mi such that ui = ĝmi . If the
verification fails, C denies A the signature; otherwise, C
computes y(1) = y

(1)
1 · y(1)

2 and y(2) = y
(2)
1 · y(2)

2 and:

ĥ =
(∏n

i=1 u
x̂i−1
δ
i

)y(δ)

, where δ ∈ {1, 2} corresponds to
the secret key skX,δ A selected. C picks uniformly at
random w ← Z∗p and computes g̃ = ĝw, h̃ = ĥw, and

ũi = uwi ∀i. He also computes g̃2, . . . , g̃n. He then signs
n messages of the form Mi = (g̃, g̃i, g̃n, h̃, ũi) using his
secret key skδ for MSf and sends m̃ = (g̃, ũ1, . . . , ũn) and
(h̃, σ = {σ1, . . . , σn}) to A, along with a ZKPoK that h̃
was computed correctly. A issues queries for signatures
on messages a polynomial number of times.

Game 1. In this game, the public keys pkX,1, pkX,2 are
again independent, and the glue element is again h̃ =
g̃y

(δ)·qδ , where qδ = p(x̂δ) for δ ∈ {1, 2}; however, now
there is simulation.

Game 1 is the same as Game 0, except the challenger C
simulates the ZKPoK that h̃ was computed correctly.

Claim 1. A PPT adversary cannot distinguish Game 0
from Game 1, except with negligible probability.

The only difference between the two games is zero-
knowledge simulation. In Game 1, the challenger simu-
lates the ZKPoK that the glue h̃ was computed correctly,
whereas in Game 0, the challenger gives a real ZKPoK. If
an adversary could distinguish the two games, it would
break the zero-knowledge property. This is the same as
Claim 1 in the proof of unforgeability.

Game 2. In this game, the public keys pkX,1, pkX,2 are
again independent, and the glue element is again h̃ =
g̃y

(δ)·qδ , where qδ = p(x̂δ) for δ ∈ {1, 2}; however, now
there is extraction and simulation.

Game 2 is the same as Game 1, except for each signa-
ture query, the challenger C acts as the extractor while
A gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows mi

such that ui = ĝmi . C extracts the mi’s, or if the extrac-
tion fails, C denies A the signature. C computes h̃ as in
Game 1, signs n messages Mi = (g̃, g̃i, g̃n, h̃, ũi) using
his secret key skδ for MSf , and sends m̃ = (g̃, ũ1, . . . , ũn)
and (h̃, σ = {σ1, . . . , σn}) to A, along with a simulated
ZKPoK that h̃ was computed correctly.

Claim 2. A PPT adversary cannot distinguish Game 1
from Game 2, except with negligible probability.

The glue elements h̃ in both games are identical. The
only difference between the two games is extraction. In
Game 2, the challenger extracts themi’s to compute the
glue h̃, whereas in Game 1, the challenger computes the
correct h̃ directly from the ui’s, without extracting the
mi’s. If an adversary could distinguish the two games,
it would break the knowledge extractor property. This
is the same as Claim 2 in the proof of unforgeability.
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Game 3. In this game, the public keys pkX,1, pkX,2 are
now half in the same equivalence class and half indepen-
dent, but the glue element remains h̃ = g̃y

(δ)·qδ , where
qδ = p(x̂δ) for δ ∈ {1, 2}.

Game 3 is the same as Game 2, except the challenger
C computes pk2 as pkβ1 for a uniformly random β ← Z∗p.
C computes h̃ as in Game 2, signs n messages Mi =
(g̃, g̃i, g̃n, h̃, ũi) using his secret key skδ for MSf , and
sends m̃ = (g̃, ũ1, . . . , ũn) and (h̃, σ = {σ1, . . . , σn}) to
A, along with a simulated ZKPoK that h̃ was computed
correctly.

Claim 3. If a PPT adversary can distinguish Game 2
from Game 3 with non-negligible probability, then public
key class-hiding of MSf doesn’t hold.

Suppose a PPT adversary A can distinguish Game 2
from Game 3 for MSX on messages of length n∗. Then,
we construct a PPT reduction B for breaking public
key-class hiding of MSf as follows. B receives as in-
put PP and two fixed public keys pk1, pkb2 for a mer-
curial signature scheme MSf on messages of length
` = 5. His goal is to determine if pkb2 ∈ [pk1]Rpk

or not. He constructs public keys pkX,1, pkX,2 as fol-
lows: pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10), pkbX,2 =
(pkb2, X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂2,10), where the X̂i,j ’s are
computed independently. B then forwards PPX = PP
and pkX,1, pkbX,2 to A.

For each signature query, A selects whether he
would like the message m to be signed under skX,1
or skbX,2. B extracts the mi’s, or if the extraction
fails, B denies A the signature. B computes h̃ as
in Game 2/Game 3, forwards n∗ messages Mi =
(g̃, g̃i, g̃n∗ , h̃, ũi) to the appropriate signing oracle, either
Signf (sk1, ·) or Signf (skb2, ·), and forwards the signature
m̃ = (g̃, ũ1, . . . , ũn∗) and (h̃, σ = {σ1, . . . , σn∗}) to A,
along with a simulated ZKPoK that h̃ was computed
correctly. It is clear that pkbX,2 is half in the same equiv-
alence class as pkX,1 and half independent (Game 3) if
and only if pkb2 ∈ [pk1]Rpk , so A’s success in distinguish-
ing Game 2 from Game 3 translates directly into B’s
success in breaking public key class-hiding of MSf .

Game 4. In this game, the public keys pkX,1, pkX,2 are
again half in the same equivalence class and half inde-
pendent, but the glue element is h̃ = g̃Rδ(qδ), where
qδ = p(x̂δ) and Rδ : Z∗p → Z∗p is a random function for
δ ∈ {1, 2}.

The challenger C computes the public keys as:
pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10), pkX,2 =
(pkβ1 , X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂1,10), where the X̂i,j ’s are

computed independently. C chooses two random func-
tions R1, R2 : Z∗p → Z∗p and computes h̃ = g̃Rδ(qδ)

according to the secret key skX,δ A selected. He then
signs n messages Mi = (g̃, g̃i, g̃n, h̃, ũi) using his se-
cret key skδ for MSf , and sends m̃ = (g̃, ũ1, . . . , ũn)
and (h̃, σ = {σ1, . . . , σn}) to A, along with a simulated
ZKPoK that h̃ was computed correctly.

Claim 4. A PPT adversary cannot distinguish Game 3
from Game 4 under the ABDDH+ assumption in G1.

This is very similar to Claim 3 (ABDDH+) in the proof
of unforgeability.

Game 5. In this game, the public keys pkX,1, pkX,2 are
again half in the same equivalence class and half inde-
pendent, but the glue element is h̃ = g̃Rδ(q̇δ), where
q̇δ = p(αδ), αδ is a "fake" secret point, and Rδ : Z∗p → Z∗p
is a random function for δ ∈ {1, 2}.

Game 5 is the same as Game 4, except the challenger
C computes the glue element as h̃ = g̃Rδ(q̇δ), where δ ∈
{1, 2} corresponds to the secret key skX,δ A selected.

Claim 5. A PPT adversary A cannot distinguish
Game 4 from Game 5 under the DL assumption in G2.

The only difference between the two games is that in
Game 5, the polynomials pj(x) are evaluated at a "fake"
secret point αδ, which is independent of the true secret
point x̂δ. If qδ,i = qδ,j for some pi(x) 6= pj(x) and some
δ ∈ {1, 2}, then Rδ(qδ,i) = Rδ(qδ,j), so A learns that
pi(x̂δ) = pj(x̂δ). We showed in Claim 4 of the proof
of unforgeability that a collision pi(αδ) = pj(αδ) occurs
with negligible probability, so A can distinguish Game 4
from Game 5 only if a collision pi(x̂δ) = pj(x̂δ) occurs
in Game 4 with non-negligible probability. We showed
in Claim 5 of the proof of unforgeability that such a
collision occurs with negligible probability, or the DL
assumption doesn’t hold.

Game 6. In this game, the public keys pkX,1, pkX,2 are
again half in the same equivalence class and half in-
dependent, but the glue element is h̃ = g̃Rδ(m1,...,mn),
where Rδ : (Z∗p)n → Z∗p is a random function for
δ ∈ {1, 2}.

Game 6 is the same as Game 5, except the challenger C
computes the glue element as h̃ = g̃Rδ(m1,...,mn), where
δ ∈ {1, 2} corresponds to the secret key skX,δ A selected.

Claim 6. An adversary’s view in Game 5 is the same
as it is in Game 6, except with negligible probability.
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If q̇δ,i = q̇δ,j for some pi(x) 6= pj(x) and some δ ∈ {1, 2},
then Rδ(q̇δ,i) = Rδ(q̇δ,j), so A learns that pi(αδ) =
pj(αδ). The value αδ is independent of the adversary’s
view unless such a collision occurs. We showed in
Claim 4 of the proof of unforgeability that a collision
pi(αδ) = pj(αδ) occurs with negligible probability. If
there are no such collisions, A’s view is identical in both
games because he receives random values.

Game 7. In this game, the public keys pkX,1, pkX,2 are
again half in the same equivalence class and half in-
dependent, but the glue element is h̃ = g̃R(m1,...,mn),
where R : (Z∗p)n → Z∗p is a random function.

Game 7 is the same as Game 6, except the challenger
C computes the glue element as h̃ = g̃R(m1,...,mn). Note
that the same function R is used regardless of which
secret key skX,δ A selected.

Claim 7. A PPT adversary cannot distinguish Game 6
from Game 7 under the DDH assumption in G1.

We prove this via a hybrid argument. Suppose a PPT
adversary A can distinguish hybrids Hi from Hi+1 (de-
scribed below) for some i with non-negligible probabil-
ity (bounded by the best advantage in breaking DDH).
Then, we construct a PPT reduction B for breaking
the DDH assumption as follows. B receives as input
(g0, A,B,C), where g0 is a generator of G1 and im-
plicitly A = ga0 , B = gb0, and C = gab0 or gr0 for
some uniformly random a, b, r ∈ Z∗p. He computes pub-
lic parameters PP and public keys pkX,1, pkX,2 as fol-
lows: pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10), pkX,2 =
(pkβ1 , X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂2,10), where the X̂i,j ’s are
computed independently. B chooses random functions
R1, R2 : (Z∗p)n → Z∗p and forwards PPX = PP and
pkX,1, pkX,2 to A.

Let A’s jth signature query be on message mj =
(ĝj , uj,1, . . . , uj,n). B acts as the extractor while A gives
a ZKPoK that, for all 1 ≤ i ≤ n, he knowsmj,i such that
uj,i = ĝ

mj,i
j . B extracts the mj,i’s, or if the extraction

fails, B denies A the signature. Otherwise,
(1) If j ≤ i, B computes: h̃

(1)
j =

(g̃(1)
j )R1(mj,1,...,mj,n), h̃

(2)
j = (g̃(2)

j )R2(mj,1,...,mj,n). He
signs n messages M (1)

j,i = (g̃(1)
j , (g̃(1)

j )i, (g̃(1)
j )n, h̃(1)

j , ũ
(1)
j,i )

using the secret key sk1 for MSf and also signs n

messages M
(2)
j,i = (g̃(2)

j , (g̃(2)
j )i, (g̃(2)

j )n, h̃(2)
j , ũ

(2)
j,i ) us-

ing the secret key sk2 for MSf . B sends m̃
(1)
j =

(g̃(1)
j , ũ

(1)
j,1 , . . . , ũ

(1)
j,n), (h̃(1)

j , σ
(1)
j = {σ(1)

j,1 , . . . , σ
(1)
j,n}),

m̃
(2)
j = (g̃(2)

j , ũ
(2)
j,1 , . . . , ũ

(2)
j,n), and (h̃(2)

j , σ
(2)
j =

{σ(2)
j,1 , . . . , σ

(2)
j,n}) to A, along with simulated ZKPoKs

that h̃(1)
j and h̃(2)

j are computed correctly.
(2) If j = i + 1, B computes: g̃(1)

j = g0, h̃
(1)
j =

B, ũ
(1)
j,i = g

mj,i
0 ∀i, g̃(2)

j = A, h̃
(2)
j = C, ũ

(2)
j,i = Amj,i ∀i.

He then signs n messages M (1)
j,i = (g0, g

i
0, g

n
0 , B, g

mj,i
0 )

using sk1 and n messages M (2)
j,i = (A,Ai, An, C,Amj,i)

using sk2 and sends the signatures and simulated proofs
to A.

(3) If j > i + 1, B computes: h̃
(1)
j =

(g̃(1)
j )R1(mj,1,...,mj,n), h̃(2)

j = (g̃(2)
j )R1(mj,1,...,mj,n). He

signs the messages M (1)
j,i ,M

(2)
j,i and forwards the signa-

tures and simulated proofs to A.
Let Γ(k) be the number of queries A makes. Hybrid

H0 corresponds to the game in which all glue elements
are formed as h̃j = g̃

R1(m1,...,mn)
j (Game 7), while HΓ(k)

corresponds to the game in which all glue elements are
formed as h̃j = g̃

Rδ(m1,...mn)
j for δ ∈ {1, 2} (Game 6).

C = gab0 corresponds to hybrid Hi and C = gr0 corre-
sponds to hybrid Hi+1. Thus, if A is able to distinguish
Hi from Hi+1 for some i with non-negligible probability,
then B breaks the DDH assumption.

Game 8. In this game, now pkX,2 ∈ [pkX,1]Rpk , but
the glue element remains h̃ = g̃R(m1,...,mn),where R :
(Z∗p)n → Z∗p is a random function.

Game 8 is the same as Game 7, except the challenger
C computes the public keys as pkX,2 = pkβX,1 for a uni-
formly random β ← Z∗p.

Claim 8. A PPT adversary cannot distinguish Game 7
from Game 8 under the DDH assumption in G2.

Consider the following set of games. In each game,
h̃ = g̃R(m1,...,mn), and the reduction B receives as input
(ĝ0, Â, B̂, Ĉ), where ĝ0 is a generator of G2 and implicitly
Â = ĝa0 , B̂ = ĝb0, and Ĉ = ĝab0 or ĝr0 for some uniformly
random a, b, r ∈ Z∗p.
Game 7. Recall that pkX,1 and pkX,2 are of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂1
1,6, X̂1,8, X̂

y
(1)
1

1,8 , X̂
y

(1)
2

1,8 ), pkX,2 =
(pkβ1 , X̂

γ
1,6, (X̂

γ
1,6)x̂2 , X̂λ

1,8, (X̂λ
1,8)y

(2)
1 , (X̂λ

1,8)y
(2)
2 ), where

β, γ, λ, x̂1, x̂2, y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p are all uniformly

random.

Intermediate Game 1. Consider pkX,1 and pkX,2 of

the form: pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y
(1)
1

1,8 , X̂
y

(1)
2

1,8 ),
pkX,2 = (pkβ1 , X̂

γ
1,6, (X̂

γ
1,6)x̂, X̂λ

1,8, (X̂λ
1,8)y

(2)
1 , (X̂λ

1,8)y
(2)
2 ),

where β, γ, λ, y(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p are all uniformly

random.
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The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ)

as follows: pkX,1 = (pk1, ĝ0, Â, X̂1,8, X̂
y

(1)
1

1,8 , X̂
y

(1)
2

1,8 ),
pkX,2 = (pkβ1 , B̂, Ĉ, X̂λ

1,8, (X̂λ
1,8)y

(2)
1 , (X̂λ

1,8)y
(2)
2 ), where

β, λ, y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p are all uniformly random.

Thus, we have that x̂1 = a and γ = b. If Ĉ = ĝab0 , then
x̂2 = a = x̂1 (Int. Game 1). If Ĉ = ĝr0, then x̂1 and x̂2
are independent (Game 7).

Intermediate Game 2. Consider pkX,1 and pkX,2 of

the form: pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y
(1)
2

1,8 ),
pkX,2 = (pkβ1 , X̂

γ
1,6, (X̂

γ
1,6)x̂, X̂λ

1,8, (X̂λ
1,8)y1 , (X̂λ

1,8)y
(2)
2 ),

where β, γ, λ, y(1)
2 , y

(2)
2 ← Z∗p are all uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ)

as follows: pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, ĝ0, Â, ĝ

y
(1)
2

0 ), pkX,2 =
(pkβ1 , X̂

γ
1,6, (X̂

γ
1,6)x̂, B̂, Ĉ, B̂y

(2)
2 ), where β, γ, y(1)

2 , y
(2)
2 ←

Z∗p are all uniformly random. Thus, we have that y(1)
1 =

a and λ = b. If Ĉ = ĝab0 , then y(2)
1 = y

(1)
1 (Int. Game 2).

If Ĉ = ĝr0, then y
(1)
1 and y

(2)
1 are independent (Int.

Game 1).

Intermediate Game 3. Consider pkX,1 and pkX,2 of
the form: pkX,1 = (pk1, X̂1,6, X̂

x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y2
1,8),

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, X̂λ

1,8, (X̂λ
1,8)y1 , (X̂λ

1,8)y2),
where β, γ, λ← Z∗p are all uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ)
as follows: pkX,1 = (pk1, X̂1,6, X̂

x̂
1,6, ĝ0, ĝ

y1
0 , Â), pkX,2 =

(pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, B̂, B̂y1 , Ĉ), where β, γ ← Z∗p are uni-

formly random. Thus, we have that y(1)
2 = a and λ = b.

If Ĉ = ĝab0 , then y
(2)
2 = y

(1)
2 (Int. Game 3). If Ĉ = ĝr0,

then y(1)
1 and y(2)

1 are independent (Int. Game 2).

Intermediate Game 4. Consider pkX,1 and pkX,2 of
the form: pkX,1 = (pk1, X̂1,6, X̂

x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y2
1,8),

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, X̂γ

1,8, (X̂
γ
1,8)y1 , (X̂γ

1,8)y2),
where β, γ ← Z∗p are uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ)
as follows: pkX,1 = (pk1, ĝ0, ĝ

x̂
0 , B̂, B̂

y1 , B̂y2), pkX,2 =
(pkβ1 , Â, Âx̂, Ĉ, Ĉy1 , Ĉy2). Thus, we have that γ = a. If
Ĉ = ĝab0 , then λ = a = γ (Int. Game 4). If Ĉ = ĝr0, then
Ĉ is distributed the same as B̂λ for λ independent from
γ (Int. Game 3).
Game 8. Recall that pkX,1 and pkX,2 are of the
form: pkX,1 = (pk1, X̂1,6, X̂

x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y2
1,8), pkX,2 =

(pkβ1 , X̂
β
1,6, (X̂

β
1,6)x̂, X̂β

1,8, (X̂
β
1,8)y1 , (X̂β

1,8)y2), where β ←
Z∗p is uniformly random.

The reduction plugs in the DDH chal-
lenge (ĝ0, Â, B̂, Ĉ) as follows: pkX,1 =

(ĝ0, ĝ
x1,2
0 , ĝ

x1,3
0 , ĝ

x1,4
0 , ĝ

x1,5
0 , Â, Âx̂, Âω, (Âω)y1 , (Âω)y2),

pkX,2 = (B̂, B̂x1,2 , B̂x1,3 , B̂x1,4 , B̂x1,5 , Ĉ, Ĉx̂, Ĉω, (Ĉω)y1 ,
(Ĉω)y2), where the xi,j ’s and ω are uniformly random.
If Ĉ = ĝab0 , then pkX,2 = (pkX,1)b, so pkX,2 ∈ [pkX,1]Rpk

(Game 8). If Ĉ = ĝr0, then Ĉ is distributed the same as
Âγ for some γ independent from b (Int. Game 4).

Game 8. pkX,2 ∈ [pkX,1]Rpk , h̃ = g̃R(m1,...,mn).
l Claim 9: polynomial collision argument, same as un-

forgeability Claim 6
Game 9. pkX,2 ∈ [pkX,1]Rpk , h̃ = g̃R(q̇).
l Claim 10: polynomial collision argument and DL as-

sumption in G2, similar to unforgeability Claims 4/5
Game 10. pkX,2 ∈ [pkX,1]Rpk , h̃ = g̃R(q).
l Claim 11: ABDDH+, same as unforgeability Claim 3
Game 11. pkX,2 ∈ [pkX,1]Rpk , h̃ = g̃y·q.
l Claim 12: knowledge extractor property, same as un-

forgeability Claim 2
Game 12. pkX,2 ∈ [pkX,1]Rpk , h̃ = g̃y·q. No extraction.
l Claim 13: ZK property, same as unforge Claim 1
Game 13. pkX,2 ∈ [pkX,1]Rpk , h̃ = g̃y·q. No extraction

or ZK simulation. This is the real signing game.


