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Abstract: Source code authorship attribution can be
used for many types of intelligence on binaries and exe-
cutables, including forensics, but introduces a threat to
the privacy of anonymous programmers. Previous work
has shown how to attribute individually authored code
files and code segments. In this work, we examine au-
thorship segmentation, in which we determine author-
ship of arbitrary parts of a program. While previous
work has performed segmentation at the textual level,
we attempt to attribute subtrees of the abstract syntax
tree (AST). We focus on two primary problems: identi-
fying the primary author of an arbitrary AST subtree
and identifying on which edges of the AST primary au-
thorship changes. We demonstrate that the former is a
difficult problem but the later is much easier. We also
demonstrate methods by which we can leverage the eas-
ier problem to improve accuracy for the harder problem.
We show that while identifying the author of subtrees is
difficult overall, this is primarily due to the abundance
of small subtrees: in the validation set we can attribute
subtrees of at least 25 nodes with accuracy over 80% and
at least 33 nodes with accuracy over 90%, while in the
test set we can attribute subtrees of at least 33 nodes
with accuracy of 70%. While our baseline accuracy for
single AST nodes is 20.21% for the validation set and
35.66% for the test set, we present techniques by which
we can increase this accuracy to 42.01% and 49.21%
respectively. We further present observations about col-
laborative code found on GitHub that may drive further
research.
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1 Introduction
The attribution of source code has numerous potential
security and forensic applications, but also poses serious
risks to privacy.While there are clear benefits to being
able to attribute malware, cyber-attacks, and deliberate
software vulnerabilities, the same forensics techniques
used for these purposes may also be used to violate the
privacy of other programmers. Activists developing cen-
sorship circumvention tools or programmers contribut-
ing to open source projects when discouraged by their
employers are likely to suffer significant consequences if
their anonymous or pseudonymous code is attributed.

While the problem of attributing source code sam-
ples known to be written by a single author has been ex-
amined in some depth, attribution of collaborative code
files has been the subject of less research. In this work,
we perform supervised authorship segmentation of open
source code projects. We note that many modern pro-
grams, both proprietary and open source, are the result
of collaboration. We also note that while many open
source contributors are known by name, many others
are only known by pseudonyms. While identifying the
contributors to a code project is a privacy risk by itself,
fine-grained attribution of portions of code may pose
even greater threats. Additionally, such techniques may
prove useful for reinforcing membership in the set of
collaborators.

Unlike natural language, which can only be seg-
mented at the textual level, source code can be seg-
mented at either the textual level or the underlying level
- the abstract syntax tree, or AST. The AST is a tree
representation of source code with nodes representing
syntactic constructs in the code [3]. While segmenting
by lines of code offers readability, segmenting the ab-
stract syntax tree may allow greater granularity and
segmentation by functional components. This may al-
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low for identification of authors of small but significant
changes to a codebase and be extensible to binaries.

1.1 Contributions

Our exhaustive literature review demonstrates this to
be the first work which performs authorship attribu-
tion of collaborative source code while guaranteeing that
training data and the code being attributed come from
different code projects. We searched on Google Scholar
for combinations and variations of “stylometry,” “stylo-
metric,” “segmentation,” “authorship,” “programmer,”
“attribution,” “collaborative,” “open source,” “code,”
and “deanonymization.” While we found many papers
in our search, most were either about single program-
mer source code or about collaborative natural language
documents. The only two papers on attribution of col-
laborative code found at the time of this writing are
cited in the next section, and while both guarantee not
training and testing on code from the same code file, nei-
ther makes any such guarantee at the level of projects.

While this restricts our ability to capture authors
in our suspect set, it provides a more realistic scenario
for many use cases. This is also the first work to apply
source code authorship segmentation under open world
conditions, in which we attempt to identify when code
originates outside our suspect set. We show that it is
possible to detect changes in authorship based on the
abstract syntax tree. We present techniques for attribut-
ing subtrees of the abstract syntax tree and demonstrate
their effectiveness under varying conditions. We demon-
strate that we can attribute arbitrary abstract syntax
tree subtrees of suitable size with relatively high accu-
racy; we present techniques which can alleviate some of
the difficulty of attributing small subtrees.

2 Related Work

2.1 Source Code Authorship Attribution

Our work builds primarily on two previous pieces of
work. First is the work of Caliskan-Islam et al. using
random forests to attribute Google Code Jam submis-
sions, using features extracted from the abstract syntax
tree (AST) [9]. They achieved over 90% accuracy with
suspect sets of 1600 authors on samples averaging 70
lines of code. This method was extended by Dauber et
al. to work for code segments belonging to accounts on

version control systems such as GitHub [10]. Our work
similarly extracts AST based features, but instead of us-
ing these features to attribute files or code segments, we
use them to attribute segments of the AST. As a result,
we also use a reduced feature set, leaving out layout and
lexical features.

Abuhamed et al. used deep learning to perform
highly accurate code segmentation using a system they
called Multi-χ [2]. Their technique uses a sliding-window
approach over lines of code to perform attribution.
We note four main differences between their work and
ours, one technical and three in evaluative methodol-
ogy. First, their technique relies on word2vec, a method
of representing text for deep learning, for features, as
opposed to our method using AST nodes [19]. While
this works well for source code, we expect it would
adapt poorly to compiled binaries. Second, they make
no strong guarantee that they do not train and test on
files from the same project, instead randomly selecting
files for testing and training. Ours is the first work to
add this guarantee to the collaborative code problem on
GitHub. We note that allowing training and testing on
files from the same project is necessary for building a
large training set with good coverage of the set of true
authors, but it admits code into the training set which
may be inherently related to the code in the testing
set. Thus, not enforcing this guarantee both potentially
inflates the accuracy and coverage of the method com-
pared to many interesting use cases. Third, they select
a set of nine major collaborative projects. We collected
a larger set of projects, including a mix of project sizes.
Finally, they specifically exclude test segments from pro-
grammers outside of their training set, considering the
open world problem out of scope. Conversely, we con-
sider addressing the open world problem an essential
part of our methodology, as it allows us to segment files
with only a single author with available training sam-
ples.

Abuhamad et al. proposed a system called DL-CAIS
which effectively attributes code at large scale and cross-
language [1]. While they do test on code from GitHub,
their work does not address the problem of collaborative
code, nor the problem of small code samples.

There are many other proposed methods and fea-
ture sets for source code authorship attribution but
compared to the previously discussed methods these had
worse accuracy, smaller suspect sets, or were highly spe-
cialized. Frantzeskou et al. used byte level n-grams to
achieve high accuracy with small suspect sets [13–15].
Ding and Samadzadeh studied a set of 46 programmers
and Java using statistical methods [11]. MacDonnel et
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al. analyzed C++ code from a set of 7 professional
programmers using neural networks, multiple discrim-
inant analysis, and case-based reasoning [18]. Burrows
et al. proposed techniques that achieved high accuracy
for small suspect sets but had poor scalability [6–8].

2.2 Text Authorship Attribution

Fifield et al. used a sliding window approach for seg-
mentation [12]. In a series of papers, Koppel et al. and
later Akiva and Koppel, performed segmentation using
sentence level classification using a technique involving
clustering to identify representative sentences to use
to classify the remaining sentences with a gap filling
technique to deal with difficult to attribute sentences
[4, 5, 16]. Both of these perform unsupervised segmen-
tation of large documents. The work of Abuhamed et al.
on Mulit-χ is similar to the work of Fifield et al., while
our work is closer to the work by Akiva and Koppel.

3 Methodology

3.1 Problem Statement

In this paper, we take on the role of an analyst attempt-
ing to perform authorship segmentation on a collabo-
rative code project. We assume that we have accurate
information about the set of authors involved in the
project but that this information may not be complete.
In other words, we assume that while we may not have
identified the complete set of contributors, any program-
mer we believe to be a contributor is one. Our goal is to
segment over the known programmers, identifying when
code segments may be by an unidentified programmer.

More formally, given a code project P and a set of
n programmers, S = {A1 . . . An}, known to be contrib-
utors to P , we attempt to attribute every possible AST
subtree in P to one of n+ 1 classes: one for each of the
n programmers and one for everyone outside of S. We
note that while there are alternate ways to address the
open world problem, we believe that using a class to rep-
resent out of world authors is essential to enhance the
range of projects for which our techniques can be ap-
plied. Our dataset includes many projects for which we
would otherwise only have a single programmer in our
training set, which is not well suited for classification
and would require a separate method to handle.

3.2 Problem Model

We assume an analyst has access to a corpus of source
code repositories containing collaborative code projects
of known authorship history, including contributions
from known contributors of the target project. While it
may be possible to supplement training data with indi-
vidually written code, we do not assume access to such.
We assume programmers have contributed to collabora-
tive code files and have not concealed their coding style
more than necessary for collaboration.

3.3 Data

We collected a set of 155 collaborative C++ projects
from GitHub . These projects were collected by starting
with a collection of seed projects, some of which were
large with many programmers and some of which were
small with few programmers. For each programmer, we
collected other projects that programmer contributed
to, and repeated the process of identifying programmers
and collection projects until we terminated for computa-
tional reasons. Some projects are related, and some are
forks. Some projects lacked even a single programmer for
whom we were able to build a training set. Ultimately,
we built a validation set of 53 projects and a test set of
29 projects. In building our validation and test sets, our
first step was to remove all projects which either had
parsing errors or which only had unique programmers.
We further extended this criterion to remove projects
which only had programmers if we were to admit iden-
tical code samples or related projects. Additionally, we
discarded projects for which we were unable to program-
matically link AST nodes back to lines of code. We then
grouped the remaining projects into groups based on the
number of classes, and for each group randomly selected
members for the validation and test sets, ensuring that
each group was represented in both sets proportionally
to the overall size of the group. Our dataset was addi-
tionally constrained by language and by practical con-
siderations including computational resources and time.

As part of our data processing, we use the fuzzy
parser joern to extract ASTs for each file in our dataset
[20]. We also use git blame to assign ground truth to
every line of code in the file and programmatically link
each AST node back to the line or lines of code which
created it to propagate ground truth to every AST node.

Our validation set spanned 43 classes while our test
set spanned 39 classes. We further identified a subset of
the validation set of 35 projects spanning 14 classes for
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which we were able to build training sets of at least 100
samples per class to use for additional experimentation.
We note that our data is inherently unbalanced, with
projects being of different sizes and authors contributing
different amounts.

3.4 Features

In this work, we use a feature set derived from the work
of Caliskan-Islam et al., focusing primarily on AST fea-
tures [9]. In line with our objective to make our system
independent of the text of the code, the only non-AST
based features we use are any keywords which are pre-
served in the parsing process. The full list of keywords
can be found in Table 1. The other features include
the number of AST nodes, the number of functions, the
maximum and average depth of the AST, the maximum
and average breadth of the AST, counts and average
depths of types of AST nodes, and the counts of AST
bigrams. Additionally, we count sibling bigrams and tri-
grams of the same node type. We define a sibling ngram
as n AST nodes which share a parent and are adjacent in
left-to-right read order. In order to address the size dif-
ference in AST subtree sizes, we normalize our feature
space by the number of AST nodes. For each experi-
ment, we discard features which do not vary at all or
which only apply to a single programmer. Our final fea-
ture vectors are sparse, but smaller than those observed
in the work of Dauber et al. [10]. In the validation set we
have an average of 11.03 non-zero features and 210.64
zero-valued features per subtree. In the test set we have
an average of 11.38 non-zero features and 210.47 zero-
valued features per subtree. We note that this reduced
feature set will necessarily result in a weaker classifier
than the ones produced in these prior works.

3.5 Learning Methodology

We use a random forest classifier with 100 trees and
a max depth of 50. These parameters are based on the
prior works. While a full parameter search may result in
improved accuracy, this is beyond the scope of this work.
We examine the classification results for four different
attribution techniques. First, we directly attribute each
subtree to the class predicted by the classifier, defining
our baseline.

Second, we perform a technique we call adjustment
in which we adjust the output confidence distribution
based on the confidence distributions of the parent and

Table 1. C++ Keywords

alignas alignof and_eq and
asm auto bitand bitor
bool break case catch
char char16_t char32_t class
compl const_cast const constexpr
continue decltype default delete
do double dynamic_cast else
enum explicit export extern
FALSE final float for
friend goto if inline
int long mutable namespace
new noexcept not_eq not
nullptr operator or_eq or
override private protected public
register reinterpret_cast return short
signed sizeof static_assert static_cast
static struct switch template
this thread_local throw TRUE
try typedef typeid typename
union unsigned using virtual
void volatile wchar_t while
xor_eq xor

child as well as predictions of the likelihood of author-
ship change. Specifically, for class i, original classifier
confidence sd[i], parent contribution pc[i], children con-
tributions cc[j][i] for each child j from 1 to n, we calcu-
late the new confidence nd[i] using Equation 1.

nd[i] = sd[i] + pc[i] +
∑n−1

j=0 cc[j][i]
n

(1)

We calculate the individual parent and child con-
tributions c[i] based on weight parameter w, authorship
change factor cf , original parent or child confidence d[i],
and parent or child prediction dmax using Equation 2.


i 6= dmax c[i] = w ∗ cf ∗ d[i]
i = dmax c[i] = w ∗ cf ∗ d[i] ∗ −1
Parent/Child does not exist c[i] = 0

(2)
We compute the change factor cf as a function of

a threshold parameter t and classifier confidence of au-
thorship change da using Equation 3, noting that when
t = 0, cf = da. Based on our parameterization experi-
ments, we selected a threshold of 0 and a weight 0.02.

da = t cf = 0.0
da > t cf = da−t

1.0−t

da < t cf = da−t
t

(3)
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Third, we perform a technique we call blocking in
which we set a threshold based on which we group con-
necting subtrees which are predicted to belong to the
same author and average the classification results to
attribute the entire block at once. Optionally, we can
also apply a penalty between adjacent blocks to decrease
the likelihood that adjacent blocks get attributed to the
same programmer. For blocking, we note that a thresh-
old of 0 will result in the entire project being treated
as single-authored while a threshold of 1 will require a
classifier confidence of 1 to link two subtrees. Based on
our parameterization experiments, we selected a thresh-
old of 0.85 and no penalty. This technique is based on
the work of Dauber et al. on account code segments, but
instead of having a known account we must first predict
whether the samples belong to the same individual [10].

Fourth, we perform a technique we call blocking-
adjustment. This technique starts out by blocking and
then performing adjustment on the new distributions
using the original distributions, with one modification:
we add a weighted contribution from the original distri-
bution of the target subtree. The result of this is that
we gain the benefit of a larger number of linked sam-
ples, but then can offset in the event that our linking of
samples was incorrect. Based on our parameterization
experiments, we set our blocking threshold and penalty
to 0, our adjustment threshold to 0, and our adjustment
weight to 0.02.

Finally, we examine a combination technique where
we can vary technique and parameters based on the size
of the subtree we are examining. Based on our param-
eterization experiments, we identified best results with
blocking-adjustment with blocking threshold of 0.05 and
penalty of 0.8 and adjustment weight of 0.01 and thresh-
old of 0 for subtrees up to 9 nodes. From 10 to 35 nodes,
we continue with blocking-adjustment but change the
adjustment weight to 0.03. For all larger subtrees, we
just use adjustment, with the same parameters as iden-
tified previously.

3.6 Experimental Design

We attribute each project individually and train on the
remaining projects. We perform experiments on the full
validation and test sets and also control for the number
of classes and training examples. To control for number
of classes, we exclude projects with different numbers of
classes, rather than removing classes or adding distrac-
tors. While this results in fewer projects in the datasets,
it reduces other potential confounding factors. To con-

trol for the number of training examples, we randomly
remove excess examples. We note that training exam-
ples are AST subtrees, not files or projects.

We evaluate our methods primarily using accuracy.
This accuracy represents the percentage of total AST
subtrees in the dataset correctly attributed. This met-
ric gives a high-level measure of success. However, our
dataset is unbalanced. We have projects of varying
scales and programmers with varying amounts of con-
tributions to the dataset. As a result, we also consider
project average accuracy and balanced accuracy. Project
average accuracy, shortened to average accuracy, is com-
puted by computing the accuracy for each individual
project and taking the average. Balanced accuracy is
computed by computing the accuracy for each program-
mer and taking the average. These metrics allow us to
account for the fact that the dominating projects and
classes may not be representative of the entire set.

To further contextualize our results, we break down
accuracy based on sample size. In this case, our reported
accuracy represents the percentage of samples of that
size which are correctly attributed. In the case of larger
samples which may have multiple contributors, the cor-
rect author is considered to be the author with the most
nodes contributed to that AST subtree.

We note that while the projects we are examin-
ing are typically larger than the samples studied by
Caliskan et al., the individual samples are much smaller
[9]. Additionally, we use a smaller feature set due to
omitting textual features. However, our suspect sets are
smaller, with n+1 classes for each project where n is the
number of project contributors for whom we were able
to prepare training data. The result is that while there
is less information to be used for the learning task, the
baseline random-chance probability of success is higher.

4 Results
For brevity, we have omitted the details of our parame-
terization experiments. We only summarize the relevant
results here. Interested readers can find more details in
Appendix A.

4.1 Change in Authorship Detection

Our techniques depend on our ability to identify changes
in authorship. In these experiments, we use the entire
validation set. We performed two-class classification to
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determine if each node had the same author as the par-
ent node, excluding project and file root nodes. Figure
1 shows our accuracy for identifying authorship changes
above the threshold.

Fig. 1. This graph shows the results for identifying a change in
authorship as percent accuracy vs. threshold. Average refers to
computing accuracy or balanced accuracy for each project and
taking the average, while total refers to computing accuracy or
balanced accuracy for the entire set of nodes in the dataset.

For identifying authorship change above the thresh-
old, we observe that thresholds between .15 and .30
maximize balanced accuracy, while overall accuracy is
maximized at a threshold of 1.00 because of the im-
balanced data. For identifying that authorship remains
the same above the threshold, we observe a near mir-
ror image with the critical thresholds occurring between
.70 and .80. Because the results are a near mirror im-
age, we have omitted a figure for these results. We note
that authorship remains the same for most nodes. We
also note that adjustment relies on identifying changes
above a threshold while blocking relies on identifying
consistency above a threshold.

4.2 Validation Set Experiments

We performed our parameterization experiments on our
validation set. While full details are left for the ap-
pendix, we summarize the results for the selected pa-
rameterizations in Table 2. We note that our param-
eters were chosen based on improvement for all three
observed metrics over the baseline. Because we noted
a tension between improving all accuracy metrics and
optimizing a single metric, and because overall accu-
racy is the easiest metric to compute and interpret, for
the combination approach we chose to optimize overall
accuracy, and did not compute average and balanced

accuracy. The overall accuracy for this approach was
46.63%. Not only is this greater than our accuracy for
our other approaches when selecting parameters based
on all three metrics, but it also exceeds any other over-
all accuracy for any set of parameters evaluated for any
individual technique.

Table 2. Summary of Validation Experiments

Analysis Method Total Average Balanced
Baseline 24.97% 42.98% 63.42%
Adjustment 25.15% 43.33% 64.56%
Blocking 25.67% 46.60% 66.36%
Blocking-Adjustment 28.30% 45.92% 64.84%

Dauber et al. proposed associating samples with
their classification confidence and using this to deter-
mine whether or not to trust the attribution [10]. We at-
tempted a similar analysis on our results. Figure 2 shows
these results. We note that blocking-adjustment shows
no notable change in accuracy as confidence changes.
Each of the other techniques shows minimal change un-
til reaching high confidence, at which point accuracy de-
creases. As a result, for these circumstances we cannot
rely on classification confidence for enhanced attribu-
tion. We note that due to poor performance as a pre-
dictor of success on the individual methods, we did not
perform this analysis for our combined technique. Con-
sidering that the abundance of small samples might be
a factor in these results, we examined confidence for our
baseline for selected subtree sizes. Figure 3 shows these
results. We note that for medium sized subtrees there
is some improvement for high confidence attributions,
but the range of subtree sizes for which classification
confidence may be useful is limited.

Fig. 2. This graph shows the accuracy based on classification
confidence for our validation set.
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Fig. 3. This graph shows how accuracy changes as we discard
attributions with low classification confidence for various sized
subtrees in the base experiments.

Thus far we attempt to attribute all subtrees of the
AST, regardless of size. But we know that low informa-
tion samples are innately harder to classify than higher
information samples. In order to examine the effect of
sample size on attribution accuracy, we separated our
samples by subtree size. Figure 4 shows these results.
We note that we have larger samples than those shown
here, but accuracy does not continue to substantively
change beyond this point. This graph confirms that our
low overall accuracy is due to the abundance of small
samples in our dataset. Further examination determines
that approximately half of our dataset consists of sub-
trees consisting of only a single leaf node. Once subtrees
become large enough, they become easy to attribute. We
can use this graph to set a limit on the granularity re-
ported by our method based on acceptable error rate.
We note that the large improvement in our combined ap-
proach suggests that not only should we change analysis
techniques for different subtree sizes, but also parame-
terizations. We also note that each line of code typically
corresponds to many AST nodes, with Leßenich et al.
reporting an average of 7 AST nodes per line of code
[17]. Thus, a sample with 35 AST nodes, for which we
obtain approximately 90% accuracy, would average to 5
lines of code. We note that this is similar in size to the
samples on which Multi-χ perform well [2].

4.3 Test Set Experiments

Because our techniques are highly parameterized, we
withheld a set of projects to use as a test set. Using the
parameters selected on our validation set, we repeated
our experiments on the test set. Because we observed
no notable positive change in accuracy relating to clas-

Fig. 4. This graph shows the accuracy based on subtree size for
our validation set.

sification confidence, we omitted that analysis. Table 3
shows the results from our experiments. For the com-
bined technique, our accuracy was 42.43%.

Table 3. Summary of Results on Test Set

Experiment Total Average Balanced
Baseline 29.53% 44.11% 63.11%
Adjustment 29.42% 44.38% 65.41%
Blocking 29.79% 46.82% 66.97%
Blocking-Adjustment 29.43% 45.62% 64.74%

Due to the importance of subtree size in attribu-
tion accuracy, we repeated our size analysis for the test
set. Figure 5 shows these results. We note again that we
have larger samples than shown here. Blocking accuracy
continues to slightly increase, while the accuracy for the
remaining techniques slightly decreases. We note a few
important differences between our test results from our
validation results. First, we note that small subtrees
start at a higher accuracy in the test set, but large sub-
trees reach higher accuracy in the validation set. While
it would take additional analysis beyond the scope of
this paper to explain, our test set leaf nodes are easier
to attribute than in the validation set, but the larger
subtrees are harder to attribute than in the validation
set. However, we can still set a size threshold based on
acceptable attribution error rate.

5 Discussion and Analysis

5.1 Discussion

Dauber et al. discussed the importance of uncorrelated
prediction errors between samples in their aggregation
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Fig. 5. This graph shows the accuracy based on subtree size for
the test set.

approach [10]. The small number of classes and the rela-
tionship between samples makes this condition impos-
sible to guarantee in our work, but we still see bene-
fit from similar approaches. However, they also found
that higher classification confidence corresponded to in-
creased accuracy. This trend did not hold for our data,
and in fact very high confidence samples yielded lower
accuracy. While it would require further analysis to fully
explain this, the abundance of low information sam-
ples provides one likely explanation. When samples have
such little information, there is little possibility for al-
ternate decisions by decision trees. Since smaller sam-
ples are harder to attribute and more abundant than
larger samples, this would explain the low accuracy cor-
responding to high confidence.

Our overall accuracy is less than 50%. However,
once we reach samples over 35 nodes, which correspond
to an average of 5 lines of code, accuracy for the valida-
tion set exceeds 90% while accuracy for the test set is
approximately 75%. Table 4 summarizes the accuracy
for key node sizes in both the validation and test accu-
racy, along with an estimate of number of lines of code
based on the average of 7 nodes per line. While these
techniques have the potential for greater granularity of-
fered than lines of code, lines of code makes for an easily
understandable metric for discussing the privacy threat
of these techniques. Contributors of patches even 3 lines
of code long can be identified in our validation set with
nearly 80% accuracy and over 50% accuracy in our test
set.

A determined analyst will use multiple complimen-
tary techniques to attribute a code segment. Even if
the target attribution is wrong, if attribution of nearby
code segments, including ancestors and descendants of
the target segment, are correct, those can be used to in-
form other investigative methods. While relaxed attri-
bution is beyond the scope of this work, it is known that

Table 4. Key Size Threshold Summary

Nodes Est. LOC Validation Acc. Test Acc.
1 < 1 46.63% 42.43%
2 < 1 50.62% 36.84%
7 1 58.43% 37.93%
14 2 68.82% 42.39%
21 3 78.06% 52.74%
28 4 87.48% 64.04%
35 5 91.11% 72.42%
42 6 93.01% 76.76%
49 7 93.43% 78.40%

accuracy for relaxed attribution can be no worse than
the accuracy we report. With all of these factors, even
attributions with medium accuracy can pose a greater
privacy threat. With these techniques, even minor con-
tributors to a project risk attribution.

5.2 Observations

This subsection presents a qualitative analysis of the
state of authorship on GitHub, and is limited to the sub-
set of projects encountered in our data collection pro-
cess. We acknowledge that these observations are anec-
dotal, but they may provide insight when considering
future research directions.

We found many GitHub projects have only a single
author. When collaboration does occur, it tends to be
primarily in the form of projects consisting of multiple
nearly singly-authored files. When collaborative files ex-
ist, they typically have a single dominant author with
other authors providing small changes. Many of the au-
thors we came across in our study either only partici-
pated in a single collaborative project or used a variety
of programming languages.

5.3 Baseline Control Experiments

Our dataset contains projects with a variety of number
of classes for attribution. Additionally, the classes have
varying numbers of training samples. While this rep-
resents real-world use cases well, it leads to additional
possible factors that can affect accuracy results.

In these experiments we use subsets of the valida-
tion set to control for the number of classes and training
samples. Figure 6 shows the overall accuracy results for
fixed numbers of classes. We note that average accu-
racy has a similar graph, with slower drops in accuracy,
corresponding to greater resilience when projects are
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dropped. The results for balanced accuracy begin simi-
larly, but after approximately 300 training samples bal-
anced accuracy no longer changes. We omit those figures
for simplicity. Figure 7 shows the number of projects in
each of these experiments.

Fig. 6. This graph shows overall accuracy for fixed numbers of
classes, represented as percent accuracy vs. number of training
samples per class. ?Classes refers to using all available projects. 0
training samples refers to using all available training samples.

Fig. 7. This graph shows the number of validation projects for
fixed numbers of classes. The ?Classes line and x-axis origin are
as defined as in Figure 6.

These results show that when the included projects
remain fixed, accuracy tends to increase or stay constant
as the number of training examples increases. However,
large changes in accuracy in either direction tend to
correspond to changes in the number of projects, sug-
gesting that the projects themselves are the dominating
factors. It is worth noting that the base result for our
large experiment is a balanced accuracy of 63.42%, aver-

age per project accuracy of 42.98%, and overall accuracy
of 24.97%.

Figure 8 shows the overall accuracy for baseline
results with a fixed number of training examples per
class. Figure 9 shows the balanced accuracy results for
the same experiments. The results for average accuracy
start higher, for small numbers of classes, but otherwise
the graphs look the same, so those results are omitted.
Figure 10 shows the number of projects in each experi-
ment. Together, these sets of experiments suggest a re-
lationship between accuracy and the number of classes.
It will require additional data and experiments to de-
termine if this relationship is coincidence or causation.

Fig. 8. This graph shows overall accuracy for fixed numbers of
training examples per class, represented as percent accuracy vs.
number of classes. ?TrainingSamples refers to using all available
training samples. 0 classes refers to using all available projects.

Fig. 9. This graph shows the balanced accuracy results for fixed
numbers of training examples per class, represented as percent
accuracy vs. number of classes. The ?TrainingSamples line and 0
classes are defined as in Figure 8.
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Fig. 10. This graph shows the number of validation projects for
the experiments with a variable number of classes and fixed num-
ber of training examples per class. The ?TrainingSamples line and
0 classes are defined as in Figure 8.

Based on the relationships observed in the previous
experiments, we selected a subset of projects for which
each class has at least 100 training examples, and var-
ied the number of training examples per class from 2
to 100. Table 5 shows the number of projects for each
number of classes. Figure 11 shows the baseline results
for this subset as we vary the number of training sam-
ples for each class. The results for average accuracy are
similar, except the results for projects with 3 classes
are higher, so we omit a figure for these results. The
balanced accuracy results for 2 classes are higher, but
follow a similar pattern. For other numbers of classes,
balanced accuracy is higher than overall or average ac-
curacy, but after approximately 10 training samples the
results level out, so we omit a figure for simplicity.

Table 5. Number of Projects Per Number of Classes

Number of Classes Number of Projects
2 25
3 8
4 1
5 1
Total 35

In these experiments, changes in accuracy are more
likely going to be the result of increased training data,
since the set of projects will be held constant. We have
not confirmed why we observe high accuracy for some
experiments with very little training data, but other-
wise accuracy generally increases or remains constant
with increased number of training examples. Combined
with our previous results, we observe that the amount

Fig. 11. This graph shows the overall accuracy results for fixed
numbers of classes on a subset of our validation set, represented
as percent accuracy vs. number of training samples per class. 0
training samples and the ?Classes line are defined as in Figure 6.

of training examples is important, but less important
than the specific projects and authors involved.

5.4 Accuracy Variability Between Projects

Throughout the experiments presented previously, we
have noticed a high level of variability in accuracy be-
tween individual projects. In previous sections, we have
discussed average accuracy. In this section, we investi-
gate the range by examining minimum and maximum
accuracy. Table 6 summarizes the accuracy and bal-
anced accuracy minima and maxima observed in each
of our experiments. Balanced accuracy is abbreviated
as Ba., adjustment is abbreviated as Adj., blocking is
abbreviated as Blo., average is abbreviated as avg., and
values are rounded to one place after the decimal point.
This table reveals that for some projects we fail to per-
form any meaningful attribution, while other projects
can be segmented nearly perfectly without any addi-
tional steps. It will take further research to determine
what makes a project easier or harder to segment. This
variability can also help explain the differences in ac-
curacy between our validation set experiments and our
test set experiments.

Table 6. Summary of Minimal, Average & Maximal Accuracy

Method Min Avg. Max Min Ba. Max Ba.
Baseline 0.6% 43.0% 99.7% 12.1% 99.9%
Adj. 1.8% 43.3% 99.7% 14.3% 99.9%
Blo. 0.0% 46.6% 100% 0.0% 100%
Blo.-Adj. 0.0% 45.9% 100% 0.0% 100%
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6 Limitations
We acknowledge that our study has some limitations.
First, as discussed previously, training data was diffi-
cult to obtain and even in cases where we had training
data it was often insufficient. Second, while our method
allows for both training and attribution at the level
of AST nodes, our ground truth was at the line level.
Third, there were cases in which our preprocessing tech-
niques failed to successfully identify the ground truth for
AST nodes, for which we had to create a separate class.
We further acknowledge that there are combinations of
techniques and parameterizations that have not been
fully explored which could yield additional insights for
improved attribution.

7 Future Work
We believe the most essential future work lies in the
realm of data collection and processing. Difficulties with
data are among the primary limiting factors for perfor-
mance and application of the techniques presented in
this paper. We believe it is essential to continue to build
substantive collaborative data sets. It is also important
to continue to refine our expectations and definitions
of collaboration and authorship. This work would also
be enhanced by the development of a parser capable of
authorship tagging, as well as further advancements in
identifying ground truth from commit histories. Given
our observations about the nature of GitHub accounts
belonging to prolific programmers, we believe it is also
essential to develop language-agnostic techniques for
source code stylometry.

In this work, we introduce an extension to the set
of stylometry AST features. We believe that continuing
to extend this feature set may further improve accu-
racy, both for this work and for the single programmer
attribution problem.

In this work, we observe that subtree size is an im-
portant contributor to accuracy. Thus, finding ways to
boost the accuracy of the more common, smaller sub-
trees is the best way to improve upon the techniques
presented here. We also observed that varying meth-
ods and parameters based on the size of the subtree
may yield much higher accuracy. While we provided an
initial exploration of such combinations, further evalua-
tion may yield better outcomes. There may also be addi-
tional ways to leverage prediction of authorship changes
to further enhance attribution accuracy.

For our adjustment technique, we only look to par-
ent and child nodes to influence our prediction. We be-
lieve that looking to other surrounding nodes, includ-
ing siblings, grandparents, and grandchildren, may al-
low this technique to perform even better. Similarly, for
our experiments to predict authorship changes we only
determine if an AST subtree has a different author than
its parent. We believe that a similar method could be
applied to determine change in authorship between sib-
ling subtrees (subtrees which share a parent node) but
leave this to future work. If successful, adjustment and
blocking mechanisms could be developed for this axis,
and it may be possible to combine the two directions for
even greater accuracy gains.

During our result analysis, we observed a wide range
of accuracy values between projects, both before and af-
ter applying adjustment and blocking. While in-depth
analysis of the reasons for this was beyond the scope of
this work, it would make for a natural follow up which
would have both forensic and privacy preserving impli-
cations. Similarly, questions regarding the effects of the
number of collaborators and amount of training data
remain and would require a larger dataset than gath-
ered here. We also observed tension between accuracy
for small subtrees and accuracy for larger subtrees which
is worth further investigation. During parameterization,
we also observed a tension between optimizing for a sin-
gle accuracy metric and improving all metrics. As a re-
sult, further investigation of parameterization may yield
more useful information.

In this work, our ground truth was obtained at
the line level using git blame and we handled multi-
authored subtrees by identifying the primary author of
the subtree. To maximize the utility of this technique,
we believe it will be important to develop tools to assign
ground truth at the node level.

Finally, the ability to attribute even small segments
of code means that programmer privacy is at great risk.
In order to protect the privacy of programmers, it is
necessary to develop highly effective and granular pro-
grammer obfuscation methods.

8 Conclusion
We have shown that it is possible to perform several
segmentation operations on ASTs. We have shown that
we can identify changes in authorship between parent
and child nodes at over 80% balanced accuracy. In the
validation set we can attribute subtrees of at least 25
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nodes with accuracy over 80% and at least 33 nodes
with accuracy over 90%, while in the test set we can
attribute subtrees of at least 33 nodes with accuracy of
70%. Subtrees in this range correspond to segments of
code of approximately 4 or 5 lines of code on average.
While this level of segmentation may not be sufficient
for all circumstances, it is will be for many uses.

While our baseline accuracy for single AST nodes
is 20.21% for the validation set and 35.66% for the
test set, we present techniques by which we can in-
crease this accuracy to 42.01% and 49.21% respectively.
To achieve this, we presented multiple techniques and
examined parameterizations and combinations of these
techniques. We demonstrate that even in the low infor-
mation circumstances of AST subtrees we are able to
perform attribution and use analysis techniques to par-
tially counter the low accuracy inherent in such data.
We also show that the low overall accuracy is due to
the abundance of extremely small subtrees which are
inherently difficult to attribute.

Being able to perform any level of attribution on
samples this small presents a threat to privacy - even
small, well distributed contributions do not guarantee
protection against malicious attribution. While many
open source projects already have segment authorship
information available due to being developed in the pub-
lic eye, there are many other code projects for which this
information is not publicly available. This includes not
only code written by corporations, governments, and
malicious groups, but also code written by non-profit
organizations and activist groups. While previous work
has shown how to attribute code segments or segment
based on the text of the code, here we show how it is
possible to use the abstract syntax tree to segment code
based on the machine interpretation of the code. While
our accuracy is not exceptionally high for small seg-
ments, once we reach the equivalent of 4 or more lines
of code, the privacy threat is much higher.

While some of our results may give the appearance
that it is possible to anonymously contribute smaller
patches to code, we would advise caution. Even the ac-
curacy we achieve here may be sufficient to guide an
active adversary to a successful attribution, and even
more powerful attribution methods are likely to con-
tinue to be developed. Additionally, technologies allow-
ing greater granularity for training labels and experi-
mental ground truth may further extend the usefulness
of this method.
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Appendix A Parameterization
In this appendix, we examine the experiments used to
select our parameters. These experiments informed our
selection of parameters, and may serve as guidance for
future development and application.

A.1 Adjustment Experiments

In these experiments we use the entire validation set.
Note that the amount of training data is widely variable

between classes and projects. For these experiments, we
test thresholds of 0, 0.15, 0.20, 0.25, 0.30, 0.95, and 1,
labeled in figures as 0, 15, 20, 25, 30, 95, and 100 re-
spectively. Figures 12, 13, and 14 show these results.

Fig. 12. This graph shows the overall accuracy results for the
adjustment experiments with variable weights, represented as
percent accuracy vs. adjustment weight.

Fig. 13. This graph shows the average per project accuracy re-
sults for the adjustment experiments with variable weights, repre-
sented as percent accuracy vs. adjustment weight.

We note here that low thresholds and weights give
the best accuracy and balanced accuracy. A threshold of
0 and weight of 0.02 yields overall accuracy of 25.15%,
average project accuracy of 43.33%, and balanced ac-
curacy of 64.56%. Recall that the baseline results were
overall accuracy of 24.97%, average per project accu-
racy 42.98%, and balanced accuracy of 63.42%. We also
conducted these experiments with our validation subset,
and found that while a threshold of 0 was still best, the
effect of weight was negligible. For the same parameters
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Fig. 14. This graph shows the balanced accuracy results for the
adjustment experiments with variable weights, represented as
percent accuracy vs. adjustment weight.

above, we achieved overall accuracy of 32.08%, average
accuracy of 48.98%, and balanced accuracy of 71.97%.

A.2 Blocking Experiments

In these experiments we use the entire validation set.
We note in advance that the amount of training data
is widely variable between classes and projects. We test
thresholds of 0, 0.05, 0.70, 0.75, 0.80, 0.85, and 1, la-
beled in the figures as 0, 5, 70, 75, 80, 85, and 100 re-
spectively. To further evaluate the blocking technique,
we constructed a version which replaces the threshold-
ing with an oracle that identifies change in authorship.
Note that the oracle does not know the identities of the
authors, only whether the subtree rooted at the child
has the same author as the subtree rooted at the par-
ent. Figures 15, 16, and 17 show the results of these
experiments.

From the blocking experiments we can observe a
few trends. First, we see that the oracle always leads to
better accuracy and balanced accuracy than any of our
thresholds for detecting changes. The effects of adding
a penalty towards consecutive blocks belonging to the
same author level out by a penalty of 0.80 for all of our
experiments. Balanced accuracy is best with either no
or low penalty and high threshold, with a threshold of
0.85 performing the best. Average accuracy is best with
a threshold of 0 followed by 0.05. While accuracy with
the oracle generally increases with the penalty, using a
threshold we do best with no penalty. For total accuracy,
we are best served with a threshold of 0.05 followed by
a threshold of 1, and for these cases as well as using
the oracle accuracy generally improves with increased
penalty.

Fig. 15. This graph shows the overall accuracy results for the
blocking experiments with variable penalties, represented as per-
cent accuracy vs. blocking penalty.

Fig. 16. This graph shows the average per project accuracy re-
sults for the blocking experiments with variable penalties, repre-
sented as percent accuracy vs. blocking penalty.

While for adjustment we were able to identify su-
perior parameters, for blocking we are forced to select
different choices depending on our objective. For over-
all accuracy, we would select a threshold of 0.05 and a
penalty of at least 0.75. For average accuracy, we would
select either a threshold of 0 or of 0.05. For a threshold
of 0 penalty does not matter, while for 0.05 we would
select a penalty of 0. For balanced accuracy, we would
select a threshold of 0.85 and no penalty. Due to the
wide range of possible threshold and penalty selections,
we have chosen to summarize key points from the graphs
in Table 7. Recall that the results for attributing AST
subtrees individually were overall accuracy of 24.97%,
average project accuracy 42.98%, and balanced accu-
racy of 63.42%. Applying the criteria that all metrics
should improve, we would decide that a threshold of .85
and no penalty is the optimal parameterization. This set
of parameters yields overall accuracy of 25.67%, average
accuracy of 46.60%, and balanced accuracy of 66.36%.
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Fig. 17. This graph shows the balanced accuracy results for the
blocking experiments with variable penalties, represented as per-
cent accuracy vs. blocking penalty.

Table 7. Summary of Blocking Accuracy

Threshold Penalty Total Average Balanced
0 0 27.03% 51.79% 44.17%
0.05 0 26.95% 51.37% 50.81%
0.05 0.75 47.78% 49.62% 46.79%
0.85 0 25.67% 46.60% 66.36%
Oracle 0.05 37.96% 60.10% 71.20%
Oracle 0.80 55.89% 63.00% 69.34%

We repeated the analysis on our selected subset of
data. The patterns are similar to the previous figures,
with higher accuracy values. In the interest of space,
we omit graphs in favor of the summary provided in
Table 8. We note that the optimal parameterizations
have shifted for this subset but will continue to report
based on the parameterizations previously identified.

Table 8. Summary of Blocking Accuracy on Data Subset

Threshold Penalty Total Average Balanced
0 0 36.25% 60.75% 47.40%
0.05 0 36.20% 60.23% 57.06%
0.05 0.75 45.25% 48.58% 51.83%
0.85 0 33.27% 53.31% 74.27%
Oracle 0.05 41.73% 65.54% 78.51%
Oracle 0.80 59.90% 69.10% 77.78%

A.3 Blocking-Adjustment Experiments

Figures 18 and 19 show the accuracy of our experiments
with the blocking-adjustment technique while Figure 20
shows the balanced accuracy. Table 9 summarizes key

blocking threshold, penalty, and weight combinations.
In all cases, the best adjustment threshold is 0. Recall
that the results for attributing AST subtrees individ-
ually were overall accuracy of 24.97%, average project
accuracy 42.98%, and balanced accuracy of 63.42%. Set-
ting our blocking threshold to 0, the blocking penalty
to 0, and the adjustment weight to .02 results in overall
accuracy of 28.30%, average accuracy of 45.92%, and
balanced accuracy of 64.84%.

Fig. 18. This graph shows overall accuracy for the blocking-
adjustment experiments, represented as percent accuracy vs.
adjustment weight. AT represents adjustment threshold, BT rep-
resents blocking threshold, and P represents blocking penalty.

Fig. 19. This graph shows the average per project accuracy for
blocking-adjustment, represented as percent accuracy vs. adjust-
ment weight. AT, BT, and P are defined as in Figure 18.

We repeated this analysis on the validation subset.
The patterns are similar to those shown previously. We
summarize notable results in Table 10.
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Fig. 20. This graph shows balanced accuracy for the blocking-
adjustment experiments, represented as percent accuracy vs. ad-
justment weight. AT, BT, and P are defined as in Figure 18.

Table 9. Summary of Blocking-Adjustment Accuracy

Thresh. Penalty Weight Total Avg. Bal.
0 0 .02 28.30% 45.92% 64.84%
0.05 0.8 .01 46.03% 46.83% 54.64%
0.05 0.8 .03 43.76% 47.51% 56.97%
Oracle 0.05 .01 35.50% 51.13% 66.77%
Oracle 0.80 .01 51.36% 56.88% 66.37%

Table 10. Summary of Blocking-Adjustment Subset Experiments

Thresh. Penalty Weight Total Avg. Bal.
0 0 .02 36.79% 52.39% 72.80%
0.05 0.8 .01 46.81% 47.13% 59.49%
0.05 0.8 .03 49.15% 49.84% 62.76%
Oracle 0.05 .01 39.88% 54.69% 73.60%
Oracle 0.80 .01 55.84% 62.57% 74.47%
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