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Abstract: Tor has millions of daily users seeking pri-
vacy while browsing the Internet. It has thousands of
relays to route users’ packets while anonymizing their
sources and destinations. Users choose relays to for-
ward their traffic according to probability distributions
published by the Tor authorities. The authorities gen-
erate these probability distributions based on estimates
of the capacities of the relays. They compute these esti-
mates based on the bandwidths of probes sent to the
relays. These estimates are necessary for better load
balancing. Unfortunately, current methods fall short of
providing accurate estimates leaving the network un-
derutilized and its capacities unfairly distributed be-
tween the users’ paths. We present MLEFlow, a max-
imum likelihood approach for estimating relay capaci-
ties for optimal load balancing in Tor. We show that
MLEFlow generalizes a version of Tor capacity estima-
tion, TorFlow-P, by making better use of measurement
history. We prove that the mean of our estimate con-
verges to a small interval around the actual capacities,
while the variance converges to zero. We present two
versions of MLEFlow: MLEFlow-CF , a closed-form ap-
proximation of the MLE and MLEFlow-Q, a discretiza-
tion and iterative approximation of the MLE which
can account for noisy observations. We demonstrate the
practical benefits of MLEFlow by simulating it using a
flow-based Python simulator of a full Tor network and
packet-based Shadow simulation of a scaled down ver-
sion. In our simulations MLEFlow provides significantly
more accurate estimates, which result in improved user
performance, with median download speeds increasing
by 30%.
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1 Introduction
Tor [9] is a system for preserving online privacy and
circumventing Internet censorship, with several million
estimated daily users [29]. Tor operates by using a net-
work of volunteer relays to forward an encrypted version
of users’ traffic, thus obscuring the source and/or the
destination of network traffic. These relays have highly
heterogeneous capacities, thus load balancing is essen-
tial to ensure consistent service to the users.

Load balancing is a well-studied topic; the security
and privacy constraints of Tor, however, create some
specific challenges for load balancing. First, for pri-
vacy reasons, Tor clients use source routing, where ev-
ery client chooses which relays to use, precluding the
use of a traditional feedback-based load-balancer. In-
stead, clients stochastically select relays based on a set
of weights, corresponding to their network capacities.
Second, trusting relays to report their own capacities,
as was done in earlier versions of Tor, allows adversaries
to compromise anonymity by lying about capacity to at-
tract traffic to their nodes [3].

This motivated the development of TorFlow, a
bandwidth monitoring system [22]. TorFlow uses exter-
nal probes to monitor the performance of individual re-
lays and uses this value to adjust the bandwidth value
reported by the relay itself. The capacity estimates pro-
duced by TorFlow, however, vary considerably over time
and between different TorFlow instances.

Our goal is to better understand the dynamics of
bandwidth measurement and path allocation in Tor and
design an improved measurement scheme. To this end,
we developed a mathematical model of bandwidth mea-
surement in the Tor network. This model makes a few
simplifying assumptions but allows us to model the be-
havior of estimation algorithms. In particular, we find
that an older version of TorFlow that was briefly de-
ployed actually performs maximum likelihood estima-
tion (MLE) of relay bandwidth according to our model.
Furthermore, we derive bounds both on the mean and
the variance of this estimate. We then propose a re-
vised estimation mechanism that performs MLE using
multiple observations, called MLEFlow; we derive both
a closed-form and numerical approximations that can
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be used to efficiently compute this estimate. We show
that with multiple rounds of observations the variance
of MLEFlow quickly drops, providing an increasingly
accurate estimate of relays’ capacities.

We then perform extensive simulations of both
TorFlow and our MLE algorithm to validate the re-
sults of our analysis in more realistic settings. We use
a custom-built flow-based simulator, written in Python,
to simulate the behavior of the entire Tor network under
both TorFlow and our proposed MLEFlow. We also use
Shadow [15], a simulation framework that runs actual
Tor code and simulates network events at a packet level;
Shadow provides higher-fidelity simulation but can only
be run on a scaled-down version of the Tor network.

In both cases, we confirm our analytical results,
showing that MLEFlow results in much more accurate
estimation of network capacities of relays, which, in
turn, results in significantly better balancing of load for
user traffic. When simulating simultaneous downloads,
75% of the users see improved download speeds, with a
median improvement of 30%.

2 Path Allocation in Tor
The current Tor network consists of around 6000 re-
lays [28] that are used to forward user traffic. To create
a connection, a user chooses a path of three different re-
lays to construct a circuit that forwards traffic in both
directions. Only the user knows the entire path; the re-
lays know only their predecessor and successor, obscur-
ing the relationship between clients and destinations.
The traffic is also encrypted / decrypted at each node
to hide the correspondence between incoming and out-
going traffic from a network observer.

Relays in Tor have network capacity1 sizes that dif-
fer by orders of magnitude (see Figure 3). This creates
a need to balance the load between relays to better uti-
lize the relays’ capacity and to ensure that users do not
encounter bottlenecks.

Relays also have different capabilities and can be di-
vided into three classes: exits, which can be used in the
last position of the path, guards, which can be used in

1 By “capacity” we refer to the smaller of upload and download
bandwidth limit on the relay. This may be imposed by the ISP,
the network configuration, or manually configured by the relay
operator. In some cases, there may exist other bottlenecks on
the path between two relays but a per-node bandwidth limit is
a common and useful model of network capacity constraints.

the first or second position, and middles which can only
be used in the second position [27]. We denote the corre-
sponding sets of relays by E, G, andM , respectively. To
create a path, relays are sampled from these sets with a
probability proportional to their estimated capacity. For
example, if we define C[j] to be the estimated capacity
of relay j, then the probability of choosing relay j ∈ E
as the last node in a path is we[j] = C[j]/

(∑
k∈E C[k]

)
;

likewise for guard nodes being chosen in the first po-
sition. The middle position can be chosen from both
guard and middle nodes; to balance bandwidth among
classes, guard node capacity is adjusted by a multiplier
Wmg; i.e., a guard node j ∈ G is chosen for the middle
position with probability:

wm[j] =
WmgC[j]∑

k∈GWmgC[k] +
∑
k∈M C[k] .

The multiplier is computed as:2:

Wmg =
∑
k∈G C[k]−

∑
j∈M C[j]

2
∑
k∈G C[k] .

It is easy to see that, in this scenario, if the estimated ca-
pacities are equal to the true relay capacities, which we
will call C∗[j], the expected number of paths using each
exit relay will be proportional to its bandwidth; likewise,
the expected number of paths using each guard and mid-
dle node will be proportional to their bandwidth. Using
X[j] to denote the number of paths on relay j, we have:

E[X[j]]/C∗[j] = E[X[k]]/C∗[k] for j, k ∈ E
E[X[j]]/C∗[j] = E[X[k]]/C∗[k] for j, k ∈ G ∪M

Thus, in expectation, each path would have the same
bandwidth—C∗[j]/E[X[j]] for j ∈ E. Our goal is there-
fore to estimate these capacities as accurately as possi-
ble.3

2.1 Security Considerations

Since capacity estimation is used as input for path se-
lection, it is intricately intertwined with security and

2 This is a somewhat simplified presentation that describes the
scenario where exit bandwidth is scarce and there is more guard
bandwidth than middle bandwidth, as is the case in the actual
Tor network. See the Tor Directory Specification for more details
on how other cases would be handled [27].
3 Note that some research suggests allocation other than pro-
portional to bandwidth results in better performance [13, 24];
nevertheless, an accurate capacity estimate is still needed for
these alternative path allocation strategies.
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privacy properties of Tor. If a user picks a path that con-
sists of nodes under the control of an adversary, that ad-
versary will have full visibility into the path and render-
ing Tor’s anonymity protections entirely ineffective. In
fact, with the use of timing analysis, it suffices to merely
observe the network traffic at the first and last Tor re-
lay [34] to link a user with a destination. Therefore, if
capacity estimation gives the adversary’s selected relays
higher weight, this will increase the chance of anonymity
compromise.4

A relay itself has the greatest visibility into its own
network capacity, however, a compromised relay can
simply lie and inflate its capacity without deploying
high-bandwidth relays [3]. An alternative approach is
to use probes to determine the network capacity. This
is the approach we take in this paper, but it does not
eliminate the possibility of attack. A relay may identify
probes and treat them preferentially, rather than having
them compete with regular traffic, thus inflating its esti-
mate [30]. Alternately, an adversary may predict when
a certain relay will be probed and perform denial-of-
service on the relay, or the prober, to artificially reduce
this estimate [17]. The latter attack can easily be de-
feated by randomization; the former is harder to defend,
but we are optimistic that censorship circumvention re-
search that aims to prevents identification of undesirable
types of traffic can be brought to bear on this problem.

Some alternative approaches to probing, and their
security tradeoffs, are discussed in Section 6

2.2 Tor Capacity Estimation

We next explain how capacity estimation is done in Tor.
Each relay estimates its own network capacity by com-
puting the maximum sustained download and upload
bandwidth over a 5-second period over the last 5 days
and reports this value to directory authorities, who then
compile it across all relays and distribute the informa-
tion to the clients in a consensus document, published
every hour. The Tor directory specification [27] calls this
value the observed bandwidth but we will refer to it as
self-reported bandwidth to emphasize that it is supplied

4 Simply running a high-capacity relay, or many moderate-
capacity relays, can also be used to carry out this attack with-
out tampering with capacity estimation (and has been in the
past [7, 33]). There have been some proposals (e.g., [10, 24]) and
several deployed strategies to increase the diversity of selected
paths rather than selecting them solely according to bandwidth
to make such attacks less likely.

by the relay. We will use bt[j] to refer to the self-reported
bandwidth of relay j in the consensus document pub-
lished at time t.

This self-reported value is adjusted based on the re-
sults of a probe, which we will call the measured band-
width, denoted by mt[j]. Intuitively, if the consensus
weights are properly set, the measured bandwidth of all
relays should be roughly similar. The adjustment is com-
puted by first calculating the average measured band-
width across all relays, µt, and then multiplying the
self-reported bandwidth by the ratio of the measured
bandwidth and the average: CAt+1[j] = bt[j]mt[j]/µt.

This version of capacity estimation has been in use
in Tor since 2012, first implemented in TorFlow [22].
This method, however, has a number of disadvantages.
A relay that is not sufficiently loaded may underesti-
mate its self-reported bandwidth; this leads to a well-
documented ramp-up period of new relays, where their
low self-repoted bandwidth leads to a small estimated
capacity and low load, which in turn leads to low self-
reported bandwidth [6]. But even established relays see
their self-reported bandwidth change. Figure 1 shows
the self-reported bandwidth of 10 randomly selected re-
lays over the month of May 2020, demonstrating signif-
icant variation over the period. Figure 1 also plots the
ratio between the minimum and maximum self-reported
bandwidth for all relays that were present for the entire
month. The median such ratio is 20% and many relays
have a ratio that is much higher. An additional prob-
lem is that the use of self-reported bandwidth makes it
possible for a relay to influence its bandwidth. Johnson
et al. [18] observe that a very large self-reported value
is likely to result in a high consensus weight (although
it may be conspicuous).

A previous configuration of TorFlow did not use
self-reported bandwidth; instead, it adjusted the previ-
ous weight based on the current observation: CTFt+1[j] =
CTFt [j]mt[j]/µt[C].5 The intuition is similar: if the cur-
rent weight of the relay is too high, it will have a below-
average performance, and its weight will be adjusted
down, and vice versa. We will denote this version by
TorFlow-P and we will study its properties in more de-
tail in Section 3. We will note that Tor switched away
from TorFlow-P because, when deployed, the feedback
mechanism allowed the weights to significantly deviate

5 This version of TorFlow actually was designed as a full-fledged
PID controller, but its default configuration set the integral and
derivative parameters to 0, and the proportional parameter to
1 [21].
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Fig. 1. Variation in self-reported bandwidth in Tor relays over the
month of May 2020: plot of 10 randomly selected relays and a box
plot of the ratio between the minimum and maximum self-reported
bandwidth of all relays that were present for the entire month.

from network capacities, an issue we will discuss in Sec-
tion 4.1.

A recent effort to upgrade and re-engineer TorFlow
has resulted in the development of sbws [19]. sbws
changes the way measurements are collected, but im-
plements a version of the TorFlow scaling, which is
intended to mimic TorFlow with only minor differ-
ences [26]. However, upon a review of sbws source code,
we discovered an undocumented change in the way
that weights are adjusted: sbws uses the minimum of
the self-reported and the consensus weight: CSt+1[j] =
min(CSt [j], bt[j])mt[j]/µt. This makes the sbws imple-
mentation a hybrid between TorFlow and TorFlow-P.
It is still susceptible to underweighting relays with low
self-reported bandwidth, but is more resilient to self-
reported bandwidth that is too high. As of this writing,
sbws and Torflow are each deployed on several Tor band-
width authorities, with the consensus bandwidth being
computed as the median of all authorities.

2.3 Simulation Frameworks and Baselines

The Shadow simulation framework [15] is a state-of-the-
art discrete event simulator that is commonly used to
study the Tor network. Shadow runs the actual imple-
mentation of Tor to emulate a number of relays run-
ning on a single host, communicating over a custom-
built simulated network. Shadow has been widely used
to analyze various properties of Tor as well as potential
improvements.

Shadow cannot run Python, which is used to imple-
ment TorFlow and sbws. A C TorFlow plugin for Shadow
has been previously developed, which mimics some of
the behavior of TorFlow. However, it in effect imple-
ments TorFlow-P instead of TorFlow because the relay
self-reported bandwidth is not reasonably available to
the simulation: in the real-world, this value takes many

days to stabilize [6], which is an impractical time inter-
val to simulate in Shadow.

We have adapted the Shadow TorFlow plugin to
simulate TorFlow, TorFlow-P, sbws, and MLEFlow. To
better model TorFlow and sbws, we have used an ide-
alized self-reported bandwidth, where the self-report is
the actual (ground truth) bandwidth available to the re-
lay. This is the value that the self-reported bandwidth is
intended to capture, and relays frequently report values
close to the actual available bandwidth, but at times fall
short due to periods of low load (fig. 1). Thus our ideal-
ized simulations capture a "best-case" scenario for Tor-
flow and sbws; to highlight this we denote our simula-
tions as sbws∗ and TorFlow∗. MLEFlow and TorFlow-P
do not use the self-reported bandwidth and thus do not
encounter this issue.

As Shadow is running the actual Tor implementa-
tion, it provides a highly realistic simulation, as has been
validated in previous studies [14]. However, this causes
it to be resource-intensive, and in practice it can only
simulate a fraction of the Tor network. For example,
our simulations of a Tor network scaled down to 3% of
its actual number of relays runs approximately 36 times
slower than real-time, despite using an 80-core 2.4,GHz
Intel Xeon E7-8870 with 1TB of RAM. To be able to
simulate the entire network, we implement a simpler
model of Tor, where each client stream is modeled as a
flow and bandwidth is divided between flows using the
max-min fairness, described in greater detail in Section
4. The flow-based simulator does not capture the in-
tricacies of packet scheduling, flow and congestion con-
trol; as a result, it can simulate an entire Tor network
with thousands of relays and up to millions of clients in
Python on a desktop computer. Despite its simplifica-
tions, it captures essential behavior of Tor, as we show
in appendix B by comparing its results to higher-fidelity
Shadow simulations.

The flow-based model does not, however, well cap-
ture changes in load and ramp-up effects that cause self-
reported bandwidth to vary over time; therefore, our
flow-based simulations of sbws and TorFlow also use the
idealized self-reported bandwidth.

2.4 Deployment

As discussed above, the sbws project was intended to
re-engineer and modernize the bandwidth measurement
and reporting mechanisms used in TorFlow, while keep-
ing the consensus weight computation algorithm similar
to TorFlow. Our goal with MLEFlow is complementary:
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we intend to redesign the weight computation while
reusing existing measurement and reporting infrastruc-
ture as implemented in sbws. The sbws implementation
supports a configurable weight computation algorithm,
termed scaling in its implementation and documenta-
tion; therefore, deployment of MLEFlow would require
adding it as a new scaling algorithm in sbws and deploy-
ing it as a bandwidth authority.

For security and stability reasons, Tor directory au-
thorities vote on a consensus document that combines
data from multiple bandwidth authorities by taking the
median reported value. As a first step, a single author-
ity running MLEFlow could be added to the current
mix of sbws and TorFlow authorities. The diversity of
implementations may actually be a net security benefit,
as an adversary would have to influence several differ-
ent algorithms, making attacks more complex. To re-
alize the full benefits of MLEFlow, however, most or
all bandwidth authorities should be upgraded to the
new algorithm. This would result in improved perfor-
mance from better load-balancing, which in itself can
lead to better anonymity [8], and it would remove the
reliance on the easy-to-manipulate self-reported band-
width of TorFlow and sbws. An additional deployment
security consideration is the ramp-up period of new re-
lays [6]: MLEFlow learns correct relay capacities much
more quickly (see Section 4), making it easier to add
new relays to the network, which could potentially help
adversaries. Tor operators should examine whether the
de facto probationary period for new relays created by
TorFlow/sbws is a desirable tradeoff and implement ex-
plicit mechanisms for such a period if it is.

3 MLEFlow: Maximum
Likelihood Estimation of Relays
Capacities

We propose a new method MLEFlow for estimating the
capacity of relays based on maximum likelihood estima-
tion (MLE). To do this, we create a probabilistic model
of the relationship between the actual relay capacities
C∗[j]’s and the bandwidth measurements m[j]’s.

While this model simplifies some aspects of the op-
eration of Tor, it allows us to induce a posterior proba-
bility on capacities based on the measurements and then
apply MLE. Our analysis shows that TorFlow-P actu-
ally is equivalent to performing MLE in our model based
on a single set of measurements per relay. Our frame-

work MLEFlow, however, allows us to perform MLE
based on multiple measurements of each relay over time;
although this complicates the calculations, we are able
to derive a closed-form approximation to the solution,
which we name MLEFlow-CF ; and a discretized compu-
tation that divides capacities into bins and uses these
quantized capacities to iteratively finds the maximizer
of the objective function, which we name MLEFlow-Q.

We show theoretically that both TorFlow-P and
MLEFlow-CF converge to a value close to the actual ca-
pacities of the relays, but MLEFlow-CF has a variance
that converges to 0 and is always lower than TorFlow-P.
We confirm these results empirically, in addition to sim-
ilar results for MLEFlow-Q, in Section 4. We also extend
MLEFlow-Q to account for noisy measurements.

3.1 Simplified Model Description

We now introduce a simple model of the Tor network
described in Section 2 for the purpose of analyzing
TorFlow-P and MLEFlow theoretically. We assume the
following:

1. Relays fall into a single category and each user path
goes through only a single relay. This greatly simpli-
fies our analysis, and yet gives useful results when
users are bottlenecked at the exit relays, as is the
case for the real Tor network (see Figure 3). Since
exit bandwidth is scarce, and exits are only used in
the final position, the bandwidth allocated to each
three-hop path will be approximately equal to the
scenario where each path is replaced by a one-hop
path through its exit relay only. Thus our model
should produce useful results for estimating exit
bandwidth. Our simulations show that our model
is also useful for estimating the capacity of guard
and middle relays, albeit with larger estimation er-
rors. However, as these relay classes have surplus
bandwidth, estimation errors in these classes have
a smaller impact on client performance.

2. A synchronized model where time is divided into
epochs and user connections all terminate at the
end of each epoch. During the tth epoch, each client
selects relays according to a weight vector wt over
all the relays. Since all relays can be used for single-
relay paths, the distribution wt over all the relays is
published by the Tor authority instead of wgt , wmt ,
and wet , over the three different categories. At the
end of the epoch the weight vector is updated and
the new vector is used by all users in the next epoch.
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In reality, measurements are not synchronized with
consensus periods; additionally, users may use a
consensus document that is up to three hours out of
date. However, as long as each relay is measured at
most every 4 hours, at measurement time all users
will be using a weight vector that reflects the esti-
mate updated based on the previous measurement.

3. Users arrive to the network randomly following a
Poisson process with rate λs, denoted by Pois(λs).
We denote the number of paths passing through the
jth relay in the ith epoch by xi[j]. Hence, given wi,
the number of paths using the jth relay during the
ith epoch is a random variable Xi[j] with distribu-
tion Pois(λswi[j]).

We will relax the single-relay path assumption in our
experiments of Sections 4 and 5. There, we will use the
realistic model described in Section 2 with three-relay
user paths, while keeping the random Poisson arrival
and the synchronized joining and leaving of the network.
Formal proofs for the results given in this section can
be found in Appendix A.

Given that the paths consist of single relays, the ca-
pacity of any relay is divided equally among all the paths
passing through it. Formally, mi[j] = C∗[j]

xi[j]+1 , where
the added one in the denominator corresponds to the
added test path. Hence, given wi, the measurement of
the jth relay at the ith iteration is a random variable
Mi[j] = C∗[j]

Xi[j]+1 . We add a normalization factor to the
TorFlow-P update equation discussed in 2.2 to express
it in terms of a probability weight vector:

Definition 1 (TorFlow-P). For any relay j ∈ [n] and
t ∈ N, TorFlow-P updates the weight vector by:

wTF
t+1[j] = mt[j]wt[j]∑n

k=1mt[k]wt[k]
, (1)

where we use the supersctipt TF in wTF
t to identify

TorFlow-P.

3.2 MLE Capacities Estimation

In this section, we will show how to compute MLE esti-
mates of the relay capacities given a sequence of noisy
measurements and weights published by the Tor author-
ity. Maximum likelihood estimation is based on finding
the parameter (here the relay capacity C∗[j]) that max-
imizes the probability of observing a certain measure-
ment (here the bandwidths of the sequence of observa-
tion probes assigned to the jth relay over t + 1 periods

m[t][j]). MLE is equivalent to Bayesian estimation with
a uniform prior distribution on the parameters, i.e. each
capacity in C, the set of all possible capacities, is equally
probable before the measurements are made.

More specifically, for any relay j ∈ [n], the MLE es-
timate of its actual capacity C∗[j] is the maximizer in
C ⊂ Rn≥0 of the probability of observing the full history
of measurements m[t][j], given the published weights
w[t][j] over the first t + 1 periods. We add the super-
script H to the capacity estimate to denote that the full
history is considered. That is,

CHt+1[j] = argmax
κ∈C

f(κ,m[t][j], w[t][j]), where (2)

f(κ,m[t][j], w[t][j]) = Pr
X[t][j]∼Pois(λsw[t][j])

(
κ

X[t][j] + 1
= m[t][j]

)
,

(3)

while all operations are done element-wise.
We now write the probability in equation (3) in

terms of the known quantities: λs, w[t], and m[t]. For
any j ∈ [n] and t ∈ N the function f of equation (3) can
be written as follows:

f(κ,m[t][j], w[t][j]) =
t∏
i=0

e−λswi[j](
κ

mi[j] − 1
)
!
(λswi[j])

κ
mi[j]

−1
,

(4)

where f is only supported where the number of paths
in each round κ

mi[j] , is an integer.
Accordingly, we derive a closed form approximation

of the maximization problem in (2) in the following the-
orem, for which the proof is in the appendix.

Theorem 1 (MLE closed form approximation). For
any j ∈ [n] and t ∈ N, the MLE estimate of C∗[j] given
the weight and observation vectors w[t][j] and m[t][j] is

CHt+1[j] ≈ exp

(∑t
i=0

1
mi[j] log(mi[j]λswi[j])∑t

i=0
1

mi[j]

)
, (5)

where the approximation tends to equality as the user
arrival rate λs gets large.

Definition 2 (MLEFlow-CF). For any j ∈ [n] and t ∈
N, our method MLEFlow-CF updates its weight in the
tth iteration by normalizing the MLE estimate CHt [j]
that uses the full history. Formally,

wMF
t [j] = CHt [j]∑n

k=0 C
H
t [k]

. (6)

3.3 TorFlow-P is an MLE Estimate

In this section, we show that TorFlow-P is the special
case of MLEFlow in which the full history of measure-
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Fig. 2. TorFlow-P estimates relay capacity by MLE using only
the most recent measurement; in contrast, MLEFlow uses the full
history.

ments o[t][j] and weight vectors w[t][j] in equation (2)
is replaced with only the most recent ones mt[j] and
wt[j], respectively (see Figure 2). Below we will use su-
perscript R to indicate the most recent value.

Using Theorem 1, the MLE estimate of C∗[j] while
considering only the last measurement would be:

CRt+1[j] = mt[j]λswt[j]. (7)

The normalized estimates in equation (7) would re-
sult in the same update as TorFlow-P:

wTF
t+1[j] = mt[j]wt[j]∑n

k=1mt[k]wt[k]
=

CRt+1[j]∑n
k=1 C

R
t+1[k]

. (8)

Thus, TorFlow-P is equivalent to estimating the ca-
pacities using ML considering only the last measure-
ment and then normalizing to get the weight vector.

Fix any j ∈ [n] and t ∈ N. If MLEFlow-CF was
used to generate the weight vectors over the first t + 1
periods, we denote CHt+1[j] by CMF

t+1 [j]. If TorFlow-P was
used instead, we denote CRt+1[j] by CTF

t+1[j].

3.4 Convergence of TorFlow-P and
MLEFlow-CF Estimates

We show that, starting with any initial weight vector,
the mean of the MLE estimates for any relay capacity,
whether considering the full history in every update as
in MLEFlow (Definition 2) or only the most recent mea-
surement in every update as in Torflow (Definition 1),
converges to a small interval around the actual relay
capacity (Theorem 2).

Now, let’s define the optimal distribution w∗[j] =
C[j]∑n

k=1
C[k]

, which we will use in the following theorem.
Its proof is in the appendix. It relies on Taylor series
expansion and Cauchy convergence test.

Theorem 2 (Estimates of both methods converge).
For any j ∈ [n], t ∈ N, and a method y ∈

{TorFlow-P,MLEFlow-CF},

E[Cyt [j]] ≤ C∗[j]. (9)

Moreover, as t→∞, E[Cyt [j]] ≥ C∗[j]
(

1− 1
λsw∗[j]

)
.

(10)

Corollary 3 (More users paths leads to a better conver-
gence). As the rate of users arrival λs →∞, for any j ∈
[n], t ∈ N, and method y ∈ {TorFlow-P,MLEFlow-CF},
E[Cyt [j]]→ C∗[j].

Hence, from inequality (10), for the expected value
of the estimate CTF

t [j] or CMF
t [j] of relay j to converge

to a value within 20% of C∗[j], the rate of arrival of
new users to the network λs and the normalized actual
capacity of the jth relay w∗[j] must satisfy λsw∗[j] ≥ 5.
This is the same as saying that the expected value of
the number of paths allocated to the jth relay by the
optimal distribution w∗ must be at least 5.

On the other hand, the relays that have very small
capacities relative to the other relays, their λsw

∗[j]
would be small. This would lead to larger error bound
in (10). However, from (9), their expected estimated ca-
pacities would still be smaller than their actual ones.
Hence, their entries in the probability distributions wi
would still be small.

Therefore, incoming users will be directed away
from those relays for relays with higher capacities which
we can estimate more accurately.

3.5 Variance of TorFlow-P > Variance
of MLEFlow-CF

In this section, we show that the variance of the es-
timates generated by MLEFlow-CF is upper bounded
by the estimates generated by TorFlow-P at any pe-
riod. Furthermore, we show that the variance of our
estimates converge to zero. This shows that our method
MLEFlow-CF provides more stable and consistent esti-
mates compared to TorFlow-P.

Theorem 4 (Variance of TorFlow-P > Variance of
MLEFlow-CF). For λs big enough, for all j ∈ [n], and
starting with the same initial weights, Var [CMF

1 [j]] =
Var [CTF

1 [j]] and for t > 1,

Var [CTF
t+1[j]]

Var [CMF
t+1 [j]]

>
t+ 1
ζ

. (11)

with ζ = 1 + 1
e2 + 2

e .
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Moreover, as t→∞, Var [CMF
t [j]]→ 0.

The proof of the above theorems is in the appendix.
It shows that the ratio of variance of TorFlow-P to that
of MLEFlow-CF increases linearly with the number of
epochs after the first one, at which they are equal. We
further show that Var [CTF

t ] is bounded, and it follows
that Var [CMF

t ] converges to zero.
Hence the variances of the MLE estimates when

considering the full history of weights and measurements
in MLEFlow-CF are close to the actual capacities more
frequently than those of the estimates found using only
the last measurement as in TorFlow-P.

We will show this experimentally in the next sec-
tion.

3.6 Noisy Observations Model

In this section, we consider the case of noisy observa-
tions. We consider a noisy measurement model to cap-
ture network variations, whereby a measurement is ran-
domly distributed around the mean C∗[j]

Xi[j]+1 . We use a
multiplicative noise model, i.e., the new observations are
random variables of the form:

Mi[j] = C∗[j]Yi[j]
Xi[j] + 1 , (12)

where Yi[j] ∼ N [ymin,ymax](1, 1/20), a truncated normal
distribution with mean one, standard deviation 1/20, and
truncated to be over the interval [ymin, ymax]. The inter-
val [ymin, ymax] can be tuned based on empirical obser-
vations (see Section 5).

3.7 MLEFlow-Q: Quanitzation-Based
MLE

The MLE estimation of the capacity of relay j ∈ [n] at
time t ∈ N, can be adjusted to account for the noise:

CNt+1[j] = argmax
κ∈C

g(κ,m[t][j], w[t][j]), where (13)

g(κ,m[t][j], w[t][j]) =

Pr
Yi[j]∼N [ymin,ymax](1, 1

20 ),
X[t][j]∼Pois(λsw[t][j])

( κYi[j]
Xi[j] + 1 = m[t][j]).

(14)

The number of paths passing through a relay is al-
ways finite. Also, the added noise is finite because of

its truncated distribution. Given a measurement and
the bounds on the noise, one can get the minimum and
maximum numbers of paths that pass through the jth

relay. We solve the maximization problem in (14) by
iterating over all possible numbers of paths, the sup-
port of the random variable Xi[j], and computing the
corresponding probability explicitly.

For any j ∈ [n], t ∈ N, an index i ∈ [t], and κ ∈ C,
we define xu,i[j] = b κyumi[j] − 1c and xl,i[j] = d κylmi[j] − 1e.
Then,

g(κ,m[t][j], w[t][j]) =
t∑
i=0

log

[ xu,i[j]∑
x=xl,i[j]

1
x! (λswi[j])

x

exp
(
− λswi[j]−

1
2

(mi[j](x+ 1)− κ
κσe

)2
)]

. (15)

With the introduction of noise in observations, the
closed form solution of the MLE in MLEFlow-CF would
not be accurate anymore. Hence, we introduce a third
method, MLEFlow-Q, which discretizes the bounded ca-
pacity set C and iteratively find the maximizer of (15).
This method can be applied to the non-noisy case as well
by following the same steps to get an approximate max-
imizer of (4). Note that quantization requires knowing
a lower and upper bound on the relay capacity, which
can be estimated based on past observations.

MLEFlow-Q Implementation
Consider a partition C̄ of C into bins. The set C̄ contains
the centers of the bins of C. For any j ∈ [n], t ∈ N, and
κ ∈ C̄, we define Lt(j, κ) in the noiseless case to be:

−λswt[j] + log( 1(
κ

mt[j] − 1
)
!
(λswt[j])

κ
mt[j]

−1), (16)

the tth term of the sum when taking the log of (4),
and in the noisy case to be the argument of the log in
the tth term of the sum in (15).

The sum of Lt(j, κ) over measurement periods is
stored in a variable St+1(j, κ):

St+1(j, κ) = St(j, κ) + Lt(j, κ),

with S0(j, κ) = 0. Then, the approximation of the MLE
by MLEFlow-Q is computed by iteratively searching for
the maximizer κ over the discretized capacity set C̄ in
the following equation:

CQt+1[j] := max
κ∈C̄

St+1(j, κ). (17)
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4 Flow-Based Simulation
To understand the properties and performance of the ex-
isting Tor capacity estimation and our proposed meth-
ods, we evaluated them using a flow-based simulation
of the Tor network. These simulations model each flow
in the network but do not capture details such as cir-
cuit construction, congestion, or flow control. The sim-
ulations are implemented in Python; see [4] for the
algorithm implementation. We evaluate two versions
of MLEFlow: MLEFlow-CF and MLEFlow-Q. We also
evaluate TorFlow-P as well as the current Tor capacity
estimation. As discussed in section 2.3, we use an ideal-
ized version of self-reported bandwidth when simulating
sbws, denoting this by calling the simulation sbws∗.

We also evaluate the two cases Actual and
Quantized, where actual capacities are given and quan-
tized, respectively, and not estimated, for generating
weight vectors for paths allocations to use their results
as baselines to compare the results of other methods to.

We evaluate the performance of the different meth-
ods using two metrics: (a) the accuracy of the relay
capacity estimates, and (b) the amount of bandwidth
allocated to the user paths resulting from the weight
vectors generated using the capacity estimates.

The simulation algorithm we have used is shown
in Algorithm 1. The algorithm takes as input: the
number of relays per path pathsize ∈ {1, 3}, the
Poisson arrival rate of users λs (equals 106 in our
simulations), the total number of measurement pe-
riods T to be simulated (equals 50 in our simu-
lations), a method ∈ {Actual,Quantized,TorFlow-P,
sbws∗,MLEFlow-CF ,MLEFlow-Q} to compute the ca-
pacities of the relays from measurements, an indicator
noisy ∈ {0, 1} for noisy observations, as described in
Section 3.6, and lower and upper bounds on the multi-
plicative noise. In our simulations, we chose that noise
to be distributed as N [0.7,1.3](1, 1

20 ) based on high fi-
delity simulations shown in Section 5. The algorithm
outputs the bandwidth allocated to each user path and
the weight vectors published over all periods between 0
and T .

The simulation algorithm iterates over measure-
ment periods. In each period i, it generates the total
number of users paths Ni that will join the network by
sampling a Poisson distribution with rate λs in line 3.
Then, it uses the weight vector wi computed in the pre-
vious period as a probability distribution for the users to
choose the relays of their paths from in line 4. In line 5,
it uses the max-min fairness bandwidth allocation al-

gorithm (corresponding to round-robin circuit schedul-
ing [5]) to get the bandwidth allocated for each path,
and thus generate the observation vector mi. If noisy is
true (or 1), then it multiplies mi by a Gaussian noise
clipped to be between ymin and ymax in line 6. After
that, it computes wi+1 using the given method in line 7.
Finally, it deletes all the paths for a fresh start of the
next period.

Algorithm 1 Low fidelity simulation
1: input: pathsize, λs, T , method ∈ {Actual,Quantized,

TorFlow-P,MLEFlow-CF ,MLEFlow-Q},
noisy ∈ {0 , 1}, ymin, ymax, w0.

2: for i ∈ [0, ..., T ] do
3: Pick the number of users Ni ∼ Poi(λs).
4: Construct users paths of pathsize relays using wi.
5: Compute mi using max-min bandwidth alloc.
6: Multiply mi by Yi ∼ N [ymin,ymax](1, 1

20 ) if noisy.
7: Compute wi+1 based onmi and wi using method.
8: Delete all paths in the network.
9: return: m0:T , w0:T

We consider a network analogous to the current Tor
network with 6481 relays as of April 2021. The relays
are distributed as follows: 2733 are guard relays, 2570
are middle relays, and 1178 are exit relays (this in-
cludes any relays that have both the Exit and Guard
flags set). Lacking a ground truth, we used the highest
reported observed bandwidth over a period of a month
to as the actual capacity of the relay in our simulation,
similar to Traudt et al. [31]. The maximum capacity of
all relays was 122 601 KB/s. Hence, the capacity set is
C = [0, 122 601]. The distributions of the relays’ capaci-
ties are shown in Figure 3.

To use MLEFlow-Q, whether for the noiseless or
noisy observations case, we need to partition C into
bins. From Figure 3, we can see that the relay capaci-
ties roughly follow a truncated exponential distribution.
Thus, we choose the bins to be intervals of the form
[ab−1, ab] where a is a strictly positive real number and
b ∈ [1, ..., bmax] where bmax = d log(max(C[j]))

log(a) e for j ∈ [n].
Detailed numerical results of the simulation are re-

ported in Table 1 in the Appendix.
Discretization of C does not hurt perfor-

mance. We tried different discretization resolutions of
C and we chose bins with a = 1.1 as it results in a low
quantization error and relatively small number of bins,
bmax = 196. The maximum resulting quantization error
is less than 5%.
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Fig. 3. Relays capacity distribution.

Fig. 4. Estimation error distribution in a single relay paths net-
work after the 50th measurement period in the noiseless and noisy
observations scenario. For clarity the plot cuts off the maximum
value for TorFlow-P, which is 288% in the noiseless case and
381% in the noisy case; and the maximum value for sbws∗, which
is 497% in the noiseless case and 865% in the noisy case.

Moreover, using the quantized capacities to gener-
ate the weight vector instead of the actual capacities
has a minimal impact on the balance of user paths: us-
ing the true capacities have a mean of 22.41KB/s and
a standard deviation of 0.77KB/s, whereas using quan-
tized values the paths have an identical mean and only
a standard deviation of 0.99KB/s.

Our simulations support our theoretical anal-
ysis in Section 3 for single relays paths. We tested
the same network of Figure 3, but with users paths con-
sisting of single relays, to validate our theoretical deriva-
tions in Section 3. The results are shown in Figure 4 and
the grey columns in Table 1 (Appendix C). All three
methods TorFlow-P, MLEFlow-CF , and MLEFlow-Q’s
average estimation errors converge to zero. The aver-
age estimation error stayed below 5% for MLEFlow-CF
and MLEFlow-Q, while it was higher for TorFlow-P
and sbws∗ at around 22% when the observations are
noisy. Moreover, the standard deviation of the estima-
tion error was at most 4.75% for our methods while it
was up to 21% for TorFlow-P. This reflects that the
variance of the capacity estimates of MLEFlow-CF and
MLEFlow-Q are much smaller than those of TorFlow-P,
in accordance with our theoretical analysis.

Fig. 5. Estimation error distribution in a three relays paths net-
work for each type of relay after the 50th measurement period in a
noisy observations scenario. The maximum values for TorFlow-P
and sbws∗ are cropped for clarity; they range between 200% and
1150%

Our methods’ advantages extend to the
three-relays paths scenario. Figure 5 shows the
estimation error distribution when users create paths
of three relays rather than one. Both of our methods
MLEFlow-CF and MLEFlow-Q preserved the average
capacities’ estimation error below 5%, while TorFlow-P
and sbws∗ increased significantly to around 82.17% for
the Exit relays. For guard relays, the error increased to
around 17% for our methods versus increasing to around
70% for TorFlow-P and 68% for sbws∗. Similarly, for
middle relays, the estimation error increased to around
18% in our methods versus up to 84% for TorFlow-P
and sbws∗.

Exit relays are the relays expected to be the bot-
tlenecks of the users paths since they have the smallest
total capacity of all three classes (see Figure 3) and
each user path must use an exit relay. Being a bottle-
neck relay for a path, that relay determines the band-
width allocated for the path in the network. If a relay
is a bottleneck for most of the paths passing through it,
it would allocate bandwidths to these paths in a simi-
lar way to the case where these paths were a single-relay
ones which was described in Section 3. That means that
we expect that our theoretical derivations would bet-
ter extend to this type of relays first, more than the
guard and middle counterparts. This can be seen by
comparing the capacities estimation error statistics for
guard and middle relays versus the exit ones in Figure 5.
There is a noticeable increase in capacity estimation er-
ror of guard and middle relays compared to the exit
ones. Fortunately, because exit relays are the usual bot-
tlenecks, estimation errors in the capacity of middle and
guard relays have a smaller impact on the user perfor-
mance. This is supported by results in Figure 6: the
bandwidth allocation to paths when using the actual
(ground truth) capacity is very similar to that achieved
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Fig. 6. Distribution of bandwidth allocated to paths using differ-
ent estimation algorithms in a noisy observations scenario. We cut
off the graph at the 95th percentile since the highest bandwidth
paths in TorFlow-P are allocated over 30 000KB/s.

by MLEFlow-CF and MLEFlow-Q, whereas TorFlow-P
and sbws∗ have much wider variation in the bandwidth
allocated to user paths due to larger estimation errors.

MLEFlow-CF and MLEFlow-Q give better and
fairer bandwidth allocation than TorFlow-P and
sbws∗. The means of the bandwidths allocated for paths
using MLEFlow-CF and MLEFlow-Q are equal to that
of the Actual scenario, while that of TorFlow-P and
sbws∗ are slightly smaller. The bigger advantage of our
methods is the small range of bandwidth allocation. The
maximum standard deviation is 1.23 while that of Ac-
tual is around 0.77. In contrast, TorFlow-P has a max-
imum standard deviation of around 175 and that of
sbws∗ is around 176, orders of magnitude larger than
that of our method. Moreover, the maximum and min-
imum bandwidths allocated of our methods are similar
to that of Actual while TorFlow-P and sbws∗ had or-
ders of magnitude larger maximum. That means that
our methods distribute bandwidths more fairly than
TorFlow-P and sbws∗, making the experience of using
Tor more predictable. This can also be seen in Figure 6
for the 50th measurement period. The bandwidths al-
located for paths when using MLE estimation methods
overlap those of the case when the actual capacities are
used. They are flat curves resembling fair distribution
of bandwidths versus the exponentially shaped distri-
bution resulting from using TorFlow-P and sbws∗. This
holds for both the noiseless and noisy observations cases.

Having a wrong estimate of the rate of the
users arrival λs does not affect the quality of the
estimates of MLEFlow-CF and MLEFlow-Q.We used
an actual λs to generate users paths in our simulations
in line 3 of Algorithm 1, while we used a different one
in updating our weights in line 7. The results shown in
Table 2 (see Appendix C), when compared to those in
Table 1, show that the results are almost intact with
reasonable deviations from the actual rate.

Fig. 7. The normalized estimated capacity of an exit relay join-
ing the network after 15 measurement periods and staying for 30
periods, estimated using TorFlow-P and MLEFlow-Q.

Fig. 8. The estimated capacity of a relay changing capacity using
MLEFlow with windowed and non-windowed approach.

MLEFlow handles new relays better than
TorFlow-P and sbws∗.We show the result of estimating
the capacity of a relay joining the network 15 iterations
after we started estimating the capacities of all existing
relays at the time. The results are shown in Figure 7.
MLEFlow estimate converged to the actual capacity in
couple of epochs while TorFlow-P and sbws∗ stayed hav-
ing large errors, even after 30 measurement epochs.

MLEFlow estimation accuracy is not affected
when relays change capacities. We evaluate the ef-
fect of relays changing capacities on the estimates we get
using MLEFlow. The results are shown in Figure 8. As
can be seen in the figure, MLEFlow can track the change
in the capacity of a relay. We also test the idea of using
a window of previous observations and not the whole
history of observations as input to the MLEFlow algo-
rithm. We simulate MLEFlow using the observations of
the last 10 epochs only. As can be seen in the figure Fig-
ure 8, the number of epochs needed in order to converge
to the new capacity is reduced significantly when using
the windowed version of the algorithm.
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4.1 Simulations of Underloaded Networks

Our theoretical analysis, as well as simulations in
this section, assume that clients can utilize arbitrary
amounts of bandwidth and are only bottlenecked on
the Tor network. In practice, at times the client de-
mand on Tor is lower than the overall available band-
width, which changes the assumptions behind TorFlow
and MLEFlow. Let us first consider TorFlow-P. Under
high load, if the consensus weights are set in direct pro-
portion to the relay capacities, the realized probe band-
width at each node is expected to be the same. When
load is low, however, this is no longer the case; propor-
tional weighting results in each relay having a similar
percentage of spare capacity, a large fraction of which
can all be dedicated to the probe. Thus the probe band-
width will be proportional to the relay capacity, and the
algorithm will try to correct this imbalance. Relays that
have above-average bandwidth will see their weights ad-
justed upwards, and other relays will be adjusted down-
wards.

This behavior was observed in the Tor network
when TorFlow-P was deployed in 2011. High-bandwidth
relays were receiving an increasingly large proportion of
the weight, whereas low-bandwidth ones would see their
weight drop, concentrating traffic on a smaller fraction
of relays. Note that this is actually a sensible strategy
for optimizing the available bandwidth of new circuits:
the spare capacity of high-bandwidth nodes allows new
circuits to realize performance that is simply impossi-
ble with nodes that are significantly below average.6

However, such concentration of traffic at the fast relays
raised concerns about potential compromise of those re-
lays, which motivated the switch to adjusted bandwidth
in Tor. It is notable that the latter approach also suffers
in low-load conditions, as an underutilized relay may
observe a bandwidth that is lower than its capacity (see
fig. 1).

MLEFlow will likewise tend to misestimate capac-
ity in an low-load scenario. In our simulations, the com-
bined guard and middle capacity was nearly 4x higher
than the exit capacity, resulting in lower utilization of
guards and exits. Consequently, we can see in fig. 5 that
estimation errors for these relays are significantly higher
than for exits (though much lower than for TorFlow-P).

6 Indeed, the average network performance during this
time did not suffer and may have even increased, see
https://metrics.torproject.org/torperf.html?start=2011-12-
01&end=2011-12-31&server=public&filesize=1mb.

However, we wanted to understand how the estimation
would behave if the entire network was underloaded.

To simulate this, we adjusted simulation to add a
bandwidth cap to each client flow, selected uniformly at
random from the interval [8,18]KB/s. Since the average
bandwidth of flows in the full utilization scenario was
approximately 22KB/s, the cap means that the flows
can utilize at most about 60% of the Tor network capac-
ity. We simulated MLEFlow, TorFlow-P, and TorFlow
with adjusted observed capacity.

As expected, with an underloaded network,
MLEFlow significantly overestimated the capacity. In
fact, with quantized estimates, a large number of re-
lays got classified into the largest bin. However, when
we adjusted the bins to extend the upper limit of es-
timates, we found that the relative capacity estimate
for exit nodes was reasonably accurate (fig. 9a). The
estimates for middle relays were significantly worse,
and we can see that low-bandwidth relays are as-
signed very small weights (fig. 9b). Notably, we do not
see the same effect, concentrating weight among high-
bandwidth nodes, among guard nodes, likely because
guards have a high minimum required bandwidth. We
observe that the estimation noise does not impact the
performance of circuits; as can be seen in fig. 9c, nearly
all circuits are able to realize their full capped band-
width. TorFlow-P and TorFlow perform significantly
worse in this scenario; the imbalance observed in our
previous simulations, combined with client bandwidth
caps, result in much worse utilization of the Tor net-
work. An average circuit achieves only 50% of its band-
width cap using TorFlow-P, and 18% using TorFlow.

5 High-Fidelity Packet-Based
Simulations

We compare the performance of MLEFlow-Q,
TorFlow-P and sbws∗ in a simulated Tor network using
Shadow [15], a high-fidelity event driven simulator for
Tor. Shadow runs the actual C implementation of Tor
relays, combined with a simulated network; to make
the simulation manageable, Shadow uses a scaled down
version of the Tor network that samples a fraction of
relays and simulated clients. In our case, we configured
a 1% and a 3% network. The 1% network contains
65 Tor relays: 21 guards, 36 middle relays, and 8 exits.
The total bandwidth of the relays is 417MB/s, split into
238MB/s for the guards, 82MB/s for the middle relays,
and 97MB/s for the exits. We simulate 500 clients, 3

https://metrics.torproject.org/torperf.html?start=2011-12-01&end=2011-12-31&server=public&filesize=1mb
https://metrics.torproject.org/torperf.html?start=2011-12-01&end=2011-12-31&server=public&filesize=1mb
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(a) Exit relay estimation in a low-load network. (b) Middle relay estimation in a low-load net-
work.

(c) Circuit bandwidth in a low-load network
using MLEFlow, TorFlow-P, and TorFlow.

Fig. 9. Simulation results in a low-load network, where client capacities are capped to [8,18] KB/s, and as a result only 60% of the exit
capacity can be utilized.

directory authorities, and a bandwidth authority. The
3% network contains 196 Tor relays (61 guards, 109
middle relays, and 26 exits). The total throughput is
1.3GB/s (guards: 713MB/s, middles: 252MB/s, ex-
its: 359MB/s). We simulate 2000 clients, 3 directory
authorities, and a bandwidth authority. Each client
maintains a single file download stream during a con-
sensus round. All streams are dropped and restarted at
a new consensus round to make sure that the down-
loads utilize circuits generated by the latest consensus.
We’ve also set the duration of each consensus round to
10 minutes to reduce the time needed to simulate each
round; in real-life Tor, directory authorities generate a
new consensus every hour. Clients also reuse consensus
documents for up to 3 rounds. However, bandwidth
authorities in the real world have a much longer refresh
period. It can take as long as several days to complete
a scan of the entire Tor network.

For MLEFlow-Q, we added functionalities of the al-
gorithm to the Tor plugin run by the directory author-
ities. At each consensus round, the modified directory
authorities read the measured observation of each relay
from the prober (bandwidth authority) and execute the
MLEFlow-Q algorithm to generate published bandwidth
values for all relays. Each directory authority also main-
tains maximum likelihood score vectors to keep track of
the published bandwidth history for each relay. The ma-
trix is updated with the scores generated from the latest
observations at each round.

To support TorFlow-P, we used the latest TorFlow
implementation in the Shadow Tor plugin. The plugin
reimplements the logic of TorFlow in C, as Shadow does
not support running Python code used to implement
TorFlow as well as the newer sbws system. As discussed
in 2.3, Shadow does not run long enough to produce
useful self-reported bandwidth. The existing TorFlow
plugin uses the consensus weights instead, effectively
implementing TorFlow-P. We extended the plugin to

Fig. 10. CDF of noise ratios calculated as the ratio between the
bandwidth of relay j observed in simulation, o[j] and the modeled
bandwidth—C∗[j]/(1 + X[j]), where X[j] is the actual number of
paths using relay j and C∗[j] is the true capacity of relay j.

also implement TorFlow and sbws∗ while using the ac-
tual, rather than self-reported capacities, just as in the
flow-based Python simulations.

Estimating the noise ratio in the high fidelity
simulation. The noise-free model we use in our band-
width estimation assumes that the bandwidth of a relay
is split evenly between all the circuits going through it
(including the observation circuit). In practice, this will
not be the case because some of the circuits may be bot-
tlenecked at other relays; furthermore, congestion and
flow control mechanisms in Tor and TCP will cause oc-
casional imbalance between flows. To understand this
effect, we ran a simulation of the 1% network and com-
pared the bandwidth of the observation circuit to the
bandwidth predicted by the model, i.e., the actual ca-
pacity of the relay divided by the number of circuits
using the relay, C∗[j]/(1 + Xi[j]). We call the ratio be-
tween these two values the noise ratio. Figure 10 shows
the maximum and minimum noise ratio of all relays in
each round. We can see that the noise ratio is bounded
between 0.7 and 1.3 for all rounds. These numbers are
used to determine the plausible range of noisy measure-
ments for MLEFlow-Q.

MLEFlow-Q handles newly joining relays bet-
ter than TorFlow-P. Our first analysis evaluates
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(a) 13 MB/s (b) 3.6 MB/s

Fig. 11. Published capacities of a previously unseen relay joining the 1% network. The target relay joins the network after 10 consensus
rounds have already been simulated.

the performance of each algorithm when a new re-
lay joins an already-converged network. We first run
both TorFlow-P and MLEFlow-Q for 10 rounds (6000
seconds), after which a previously unseen relay joins
the network. The new relay, whose true capacity is
13 MB/s, first start with zero published weight. The
subsequent estimates generated by both algorithms are
shown in figure 11a. For MLEFlow-Q, we observe that
the estimation is stable and within a 10% error after
5 consensus rounds, with the estimation inching even
closer to the true capacity after 40 rounds. Meanwhile,
TorFlow-P’s estimates have larger errors throughout the
simulation and shows significant fluctuations compared
to MLEFlow-Q. We also ran the same experiment to es-
timate a previously unseen relay with a smaller capacity
at 3.6 MB/s. We see similar results with this experiment
where MLEFlow-Q manages to maintain a stable esti-
mate with 5% error. Meanwhile TorFlow-P’s fluctuates
around the true capacity (figure 11b).

MLEFlow-Q achieve a lower average estima-
tion error than TorFlow-P with a narrower range
of error. Our second analysis looks at how each al-
gorithm performs when estimating all relays with zero
initial information. That is, all relays are assumed to
have equal bandwidth in the beginning. We calculate
the average estimation error of all exit relays in a
whole network estimation run. The results are shown
in figure 12a. We can see that MLEFlow-Q outperforms
TorFlow-P by maintaining a low average estimation er-
ror around 10% after running for 10 consensus rounds.
TorFlow-P, meanwhile, is only able to maintain an aver-
age error between 30% and 50%. The minimum achieved
error by MLEFlow-Q is 8%, which is nearly optimal con-
sidering that quantization can introduce an error of up
to 10%. We see similar results in the 3% network, where

MLEFlow-Q achieved a sub 10% average estimation er-
ror after 20 rounds compared to TorFlow-P’s higher esti-
mation error. Moreover, MLEFlow-Q outperforms sbws∗

for which the average estimation error of the exit relays
is above 50%. We aggregated the estimation error distri-
bution for all categories of relays, shown in Figure 12b.
In all cases, MLEFlow-Q achieved a lower average error
with a narrower range of error. The appendix contains
more plots of final estimation results and a comparison
of estimation using flow- and packet-based simulations.

MLEFlow-Q estimates give fairer bandwidth
allocation than TorFlow-P and sbws∗ estimates.
Finally, we analyze the effects of MLEFlow-Q and
TorFlow-P on the bandwidth distribution across the
entire network. Figure 12e shows the distribution of
download speed across the 2000 clients in the simu-
lated 3% network using consensus weights generated
by MLEFlow-Q, TorFlow-P and sbws∗ after 22 con-
sensus rounds. The figure shows the effects that each
algorithm has on the load balancing across the entire
network. Around 75% of all clients under MLEFlow-Q
achieved a higher bandwidth compared to TorFlow-P
and sbws∗. MLEFlow-Q resulted in a more even band-
width distribution with a higher average bandwidth
at 162KB/s compared to TorFlow-P’s 153KB/s and
sbws∗’s 139KB/s. The load balancing effect can also
be seen in the round-to-round analysis shown in fig-
ures 12c and 12d. For MLEFlow-Q, we see a smaller
average bandwidth for the top performing clients, but
a larger overall average and a better average for the
worst performing clients compared to TorFlow-P in
all rounds. The standard deviation of bandwidths in
MLEFlow-Q is also much lower than TorFlow-P in all
rounds, which implies a fairer bandwidth allocation
when using MLEFlow-Q.
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(a) Comparing average estimation errors
of all exit relays in each round.

(b) Estimation error distributions for each
type of relay.

(c) Aggregate mean progression of client
download bandwidth distribution in each
consensus round.

(d) Aggregate std deviation progression of client down-
load bandwidth distribution in each consensus round.

(e) Client download bandwidth distribution after
bandwidth estimation has converged.

Fig. 12. Results are obtained after 22 consensus rounds in the 3% network using Shadow.

5.1 Measurement Bandwidth

MLEFlow-Q, like TorFlow, relies on active probes to
measure bandwidth. This imposes resource costs on the
scanner, and, to a lesser extent, the relays being mea-
sured. For example, the documentation of sbws, the suc-
cessor of TorFlow, suggests that 12–15 GB/day band-
width will be used during scanning [25]. To understand
this better, we decided to measure the amount of band-
width used by the scanner. Note that TorFlow and sbws
use a fixed limited number of parallel scanners, whereas
in our simulations our bandwidth authority simultane-
ously scans all the relays. We found that our scanner
used about 300MB/s to do this in our simulations.

This figure can be used to characterize the trade-
off between scanner bandwidth utilization and scanning
speed. A scanner can partition the network into a set
of shards, and scan each shard individually. For exam-
ple, our 3% network simulations suggest that splitting
the network into 33 shards of 3% each would require
300MB/s at the scanner. A scanner with lower capacity
can split the network into more shards; e.g., a common
1 Gbit uplink can be used to scan shards representing
1% of the network. Conversely, a scanner with very high
bandwidth could conceivably scan the entire network at

once; using our flow-level Python simulations, we es-
timate that a simultaneous scan of the entire network
would require 14GB/s.

We performed simulations to verify that bandwidth-
limited scanners can still produce accurate results. We
configured a Shadow simulation of a 1% network with a
scanner limited to 100MB/s (achievable with a 1Gbps
network connection) and found no significant difference
in estimation errors. We expect that bandwidth sav-
ings can also come from limiting the bandwidth of each
measurement flow; this will underestimate underloaded
relays (such as new arrivals), but the underestimate will
be corrected within a small number of rounds. Indeed,
we found that in our Shadow simulations, a measure-
ment flow would not exceed 4MB/s even when more
spare capacity was available. We also ran a flow-level
simulation where each flow was capped at 500KB/s.
This reduced the bandwidth utilization from 14GB/s
to only 1.8GB/s, while achieving the same estimation
accuracy for guards and exits, while increasing the mid-
dle estimatio error only slightly, from 22% to 26%.
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6 Related Work
Improving the performance of the Tor network has been
the subject of much research; we refer the reader to the
survey by AlSabah and Goldberg for an overview [1].
Here we summarize related work specifically focusing
on relay capacity estimation.

Snader and Borisov proposed using opportunistic
measurements, where each relay measures the band-
width of each other relay it communicates with as part
of normal operation, and designed EigenSpeed [23],
which combines these measurements using principal
component analysis to derive a single relay capacity.
EigenSpeed was designed to avoid certain types of col-
lusion and misreporting attacks; however, Johnson et
al. [18] discovered that it is subject to a number of
other attacks that allow colluding adversaries to inflate
their bandwidth. They also designed PeerFlow, which
is a more robust mechanism to combine opportunistic
measurements from relays with provable limits on infla-
tion attacks. These bounds, however, depend on having
a fraction of bandwidth being on trusted nodes, and it
has slow convergence properties due to its limitations on
changing bandwidth values. A point of future research
is to investigate whether MLE-style estimation can be
used to improve the estimate quality and convergence
of opportunistic estimates.

FlashFlow [31] is a new proposal to replace Tor-
Flow. FlashFlow uses several servers that measure a
relay simultaneously, generating a large network load
intended to max out its capacity. FlashFlow has a guar-
anteed inflation bound of only 33% but it is based on
the assumption that a relay capacity is based on a hard
limit that cannot be exceeded, as TorFlow uses traf-
fic that is explicitly labeled for for bandwidth prob-
ing. In practice, it is often easier and cheaper to ob-
tain high peak bandwidth capability than sustaining the
same bandwidth continuously. For example, in our quick
survey of Internet hosting providers, servers with un-
metered 10Gbps traffic cost well over $1,000 per month,
whereas a 10Gbps server with traffic restrictions could
be ordered for $200/month or less. FlashFlow also re-
quires coordinating several moderate-bandwidth probe
servers, whereas MLEFlow can be used with consider-
ably lower capacity probes. (Indeed, in our Shadow sim-
ulations we found that a probe to a completely unloaded
server maxed out at 4MB/s, but this did not signifi-
cantly affect the convergence speed of MLEFlow).

Jansen and Johnson evaluate the accuracy of the
current Tor capacity estimation algorithms [16] and

found that there are significant estimation errors. Sim-
ilar to our theoretical and simulation results, they find
that lower-capacity relays have a larger variance in their
relay estimates. Unlike our results, they find that guard
relays have lower variation, whereas our simulations
show less variance among exit relays. This may be due
to patterns of traffic in guard relays that are not cap-
tured for the simulator, or the long-term stability of
such relays. Their analysis also shows that a too-low ob-
served bandwidth is a large source of error, and can dra-
matically underestimate the actual bandwidth of large-
capacity exit nodes. This suggests that our simulations
of sbws∗ present an optimistic picture of Tor capacity
estimation and in practice the estimation errors will be
larger. It also motivates the use of a capacity estimation
method that does not use the observed bandwidth.

Several approaches aim to improve load-balancing
by detecting and avoiding bottlenecks in real time [2, 5,
11, 32]. These mechanisms still fundamentally rely on
relay capacity estimation and their functionality could
be improved by using MLEFlow. SmarTor [12] aims to
decentralize the bandwidth measurement and operation
by using trusted execution environment to run the mea-
surements and a smart contract to aggregate them. It
does not propose changes to the estimation technique
from current TorFlow, but it could be adapted to take
advantage of MLEFlow instead.

7 Conclusion
We have developed a new method for estimating the re-
lay capacities in the Tor network, MLEFlow, based on
performing maximum likelihood estimation using a se-
ries of bandwidth measurement probes taken over time.
Our mathematical analysis showed that MLEFlow ca-
pacity estimates converge to their true value as the num-
ber of users increases, while the estimate variance con-
verges to 0, as the number of observations grows. We
showed how to efficiently compute capacity estimates
in MLEFlow using either closed-form approximations,
or quantization; the latter approach allows us to in-
corporate a model of the measurement noise into the
estimates. We validated the performance of MLEFlow
with extensive simulations using a our custom flow-
based simulator and Shadow [15]. Our results show that
MLEFlow produces much more accurate estimates of re-
lay capacities, which in turn results in much better load
balancing of user traffic across the network, as compared
with current methods.
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A Proofs
Deriving equation (4): When evaluating the objec-
tive function of the MLE in equation (2), the observa-
tion random variable of the jth relay Mi[j] can be writ-
ten as a function of κ, as if we are assuming κ = C∗[j],
and the random variable Xi[j] for i ∈ [t]:

Mi[j] = κ

Xi[j] + 1 . (18)

Recall that we assume that the random variable Xi[j]
follows a Poisson distribution with parameter λswi[j]
and all users leave at the end of each epoch. Hence,
given wi[j] for j ∈ [n], the Mi[j]’s at different iterations
are independent random variables. Thus eq. (3) can be
written as the product of the probability of the inde-
pendent random variables [M1[j], ...,Mt[j]]:

CHt+1[j] = argmax
κ∈C

Pr
X[t][j]∼Pois(λsW[t][j])

(M[t][j] = m[t][j] |W[t][j] = w[t][j])

CHt+1[j] = argmax
κ∈C

t∏
i=0

Pr(Mi[j] = mi[j] | Wi[j] = wi[j]).

Rearranging eq. (18) results in:

Xi[j] = κ

Mi[j]
− 1. (19)

When the measurement is made and the observation
is fixed, i.e. Mi[j] = mi[j], the probability in eq. (19)
can be expressed in terms of the random variable Xi[j]:
Xi[j] = κ

mi[j] − 1.

CHt+1[j] = argmax
κ∈C

t∏
i=0

Pr(Xi[j] = xi[j]| Wi[j] = wi[j])

(20)
Using the Poisson distribution probability mass func-
tion, we can write:

CHt+1[j] = argmax
κ∈C

t∏
i=0

e−λswi[j]
1

(xi[j])!
(λswi[j])xi[j]

= argmax
κ∈C

t∏
i=0

e−λswi[j]
1(

κ
mi[j] − 1

)
!
(λswi[j])

κ
mi[j]

−1

(21)

Theorem 1 (MLE closed form approximation). For
any j ∈ [n] and t ∈ N, the MLE estimate of C∗[j] given
the weight and observation vectors w[t][j] and m[t][j] is

CHt+1[j] ≈ exp

(∑t
i=0

1
mi[j] log(mi[j]λswi[j])∑t

i=0
1

mi[j]

)
, (5)

where the approximation tends to equality as the user
arrival rate λs gets large.

Proof. As we derived in eq. (21), we know that for any
j ∈ [n], the weight at iteration (t+ 1) should satisfy the
following equation:

CHt+1[j] = argmax
κ∈C

∏t
i=0 e

−λswi[j] 1(
κ

mi[j]
−1
)

!
(λswi[j])

κ
mi[j]

−1

(22)
Since the logarithm function is a strictly increasing func-
tion, the maximum likelihood estimate of the capacity
of a relay j ∈ [n] using full history can be found:

CHt+1[j] = argmax
κ∈C

t∏
i=0

e−λswi[j]
1(

κ
mi[j] − 1

)
!
(λswi[j])

κ
mi[j]

−1

= argmax
κ∈C

t∏
i=0

e−λswi[j]
κ

mi[j](
κ

mi[j]

)
!
(λswi[j])

κ
mi[j] (λswi[j])−1

= argmax
κ∈C

t∑
i=0
−λswi[j] + log

( κ

mi[j]

)
− log

(( κ

mi[j]

)
!
)

+ κ

mi[j]
log(λswi[j])− log(λswi[j])

(23)
Using Stirling’s approximation, we have log(x!) ≈

x log(x)− x. Thus substituting in eq. (23):
CHt+1[j] =

argmax
κ∈C

t∑
i=0
−λswi[j] + log

( κ

mi[j]

)
− κ

mi[j]
log
( κ

mi[j]

)
+ κ

mi[j]
+ κ

mi[j]
log(λswi[j])− log(λswi[j])

(24)
Hence in order to find CHt+1[j], we differentiate the right
hand side of eq. (24) with respect to κ, and find the
value of CHt+1[j] for which the derivative is zero.

t∑
i=0

1
mi[j]

1
κ

mi[j]
− 1
mi[j]

log
( κ

mi[j]

)
− 1
mi[j]

+ 1
mi[j]

+ 1
mi[j]

log(λswi[j]) = 0

t∑
i=0

1
κ
− 1
mi[j]

log(κ) + 1
mi[j]

log(mi[j]) + 1
mi[j]

log(λswi[j]) = 0

t∑
i=0

1
κ
− 1
mi[j]

log(κ) + 1
mi[j]

log(mi[j]λswi[j]) = 0

t∑
i=0

1
mi[j]

log(κ) =
t∑
i=0

1
κ

+ 1
mi[j]

log(mi[j]λswi[j])

log(κ)
( t∑
i=0

1
mi[j]

)
= t+ 1

κ
+

t∑
i=0

1
mi[j]

log(mi[j]λswi[j])

log(κ) = t+ 1
κ(
∑t
i=0

1
mi[j] )

+
∑t
i=0

1
mi[j] log(mi[j]λswi[j])∑t

i=0
1

mi[j]

log(κ)− t+ 1
κ(
∑t
i=0

1
mi[j] )

=
∑t
i=0

1
mi[j] log(mi[j]λswi[j])∑t

i=0
1

mi[j]

κe
− t+1

κ(
∑t

i=0
1

mi[j]
) = e

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]∑t
i=0

1
mi[j]

t+ 1 κe
− t+1

κ(
∑t

i=0
1

mi[j]
) =

∑t
i=0

1
mi[j]

t+ 1 e

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

(25)
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Letting z = t+1
κ(
∑t

i=0
1

mi[j]
)
in eq. (25), we have:

1
z
e−z =

∑t
i=0

1
mi[j]

t+ 1 e

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

1
zez

=
∑t
i=0

1
mi[j]

t+ 1 e

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

zez = t+ 1∑t
i=0

1
mi[j]

e
−

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

(26)

We know that the inverse image of the function zez is
the Lambert W function which has real solutions along
its principal branch for z > −1

e , denoted W0. Thus we
can solve for z:

t+ 1
κ(
∑t
i=0

1
mi[j] )

= z = W0

(
t+ 1∑t
i=0

1
mi[j]

e
−

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

)

(27)
And hence solving for κ:

CHt+1[j] = κ = t+ 1∑t
i=0

1
mi[j]

1

W0

(
t+1∑t

i=0
1

mi[j]
e
−

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

)

(28)

CHt+1[j] = t+ 1∑t
i=0

1
mi[j]

1

W0

(
t+1∑t

i=0
1

mi[j]
e
−

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

) ,

(29)
whereW0 is the LambertW function along the principal
branch. The Lambert W function is the multi-valued
complex function (zez)−1 and W0 is the unique-valued
real function that takes the unique real value ofW when
z > −1

e . Implementations of Lambert function exist in
multiple software libraries 7.

W0 has the following Taylor series expansion for z
in the neighborhood of 0: W0(z) = z + o(z2). Moreover,
the argument of W0 in Theorem 1 is small if the rate of
users arrival to the network λs is large enough. Hence,
the Taylor expansion around zero is valid and therefore:

7 https://kite.com/python/docs/mpmath.lambertw

CHt+1[j] ≈ e

∑t

i=0
1

mi[j]
log(mi[j]λswi[j])∑t

i=0
1

mi[j]

= e

∑t

i=0
1

mi[j]
log(

mi[j]λswi[j]C
∗[j]

C∗[j] )∑t

i=0
1

mi[j]

= e

∑t

i=0
1

mi[j]
log(

mi[j]λswi[j]
C∗[j] )+ 1

mi[j]
log(C∗[j])∑t

i=0
1

mi[j]

= e

∑t

i=0
1

mi[j]
log(

mi[j]λswi[j]
C∗[j] )∑t

i=0
1

mi[j] e

log(C∗[j])
∑t

i=0
1

mi[j]∑t

i=0
1

mi[j]

= C∗[j]e

∑t

i=0
1

mi[j]
log(

mi[j]λswi[j]
C∗[j] )∑t

i=0
1

mi[j] .

(30)

Theorem 2 (Estimates of both methods converge).
For any j ∈ [n], t ∈ N, and a method y ∈
{TorFlow-P,MLEFlow-CF},

E[Cyt [j]] ≤ C∗[j]. (9)

Moreover, as t→∞, E[Cyt [j]] ≥ C∗[j]
(

1− 1
λsw∗[j]

)
.

(10)

Proof. Mean of the estimates when using
MLEFlow-CF : In this proof, we consider that
weight vectors are generated using method MF , i.e.
MLEFlow-CF . The Lambert W function along the prin-
cipal branch has the following Taylor series expansion
for z in the neighborhood of 0: W0(z) = z + o(z). Thus
for our case:

CMF
t+1 [j] ≈ e

∑t

i=0
1

mi[j]
log(mi[j]λsw

MF
i

[j])∑t

i=0
1

mi[j]

= e

∑t

i=0
1

mi[j]
log(

λsw
MF
i

[j]
1

mi[j]
)∑t

i=0
1

mi[j]

(31)

The aim of this proof is to find the expected value
of the estimates. We know that Mi[j] = C∗[j]

Xi[j]+1 and
1

Mi[j] = Xi[j]+1
C∗[j] , thus using the fact that the random

variable Xi[j] follows a Poisson distribution with pa-
rameter λswi[j]:

E( 1
Mi[j]

) = E(Xi[j] + 1
C∗[j] ) = 1

C∗[j] (E(Xi[j]) + 1) = 1
C∗[j] (λswi[j] + 1)

(32)
Using first order Taylor expansion approximation

around the expected value, we can find that for any

https://kite.com/python/docs/mpmath.lambertw
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random variable Y , E[f(Y )] ≈ f(E[Y ]) [20]. For a more
detailed proof of the derivation of the expected value re-
fer to proof of theorem 4. We use this approximation
to find the expected value of the estimates CMF

t+1 [j] by
taking Y = 1

mi[j] . We also use the fact that given wMF
i [j]

for j ∈ [n], the observations of a relay at different iter-
ations are independent events; thus using eq. (31),

E[CMF
t+1 [j]] ≈ e

∑t

i=0
E[ 1
mi[j]

] log(
λsw

MF
i

[j]

E[ 1
mi[j]

]
)∑t

i=0
E[ 1
mi[j]

]

= e

∑t

i=0

λsw
MF
i

[j]+1
C∗[j] log(

C∗[j]λswMF
i

[j]

λsw
MF
i

[j]+1
)∑t

i=0
1

C∗[j] (λswMF
i

[j]+1)

= e

∑t

i=0
1

C∗[j] (λswMF
i

[j]+1) log(C∗[j](1− 1
λsw

MF
i

[j]+1
))∑t

i=0
1

C∗[j] (λswMF
i

[j]+1)

= e

∑t

i=0
(λswMF

i
[j]+1)(log(C∗[j])+log(1− 1

λsw
MF
i

[j]+1
))∑t

i=0
(λswMF

i
[j]+1)

= C∗[j]e

∑t

i=0
(λswMF

i
[j]+1) log(1− 1

λsw
MF
i

[j]+1
)∑t

i=0
(λswMF

i
[j]+1)

= C∗[j]
t∏
i=0

(1− 1
λswMF

i [j] + 1
)

λsw
MF
i

[j]+1∑t

τ=0
(λswMF

τ [j]+1)

(33)

For any j ∈ [n] and t ∈ N,

E[CMF
t+1 [j]] = C∗[j]

∏t
i=0(1− 1

λswMF
i

[j]+1 )
λsw

MF
i

[j]+1∑t

τ=0
(λswMF

τ [j]+1)
.

(34)
Mean of the estimates when using TorFlow-P:

In this proof we consider that the weight vectors are gen-
erated using method T , i.e. TorFlow-P. Using the same
Taylor expansion used in the proof of eq. (34), we have
that E[f(Y )] ≈ f(E[Y ]). We use this approximation to
find the expected value of CTF

t+1[j] = mt[j]λswTF
t [j] =

λsw
TF
t [j]
1

mt[j]
by taking Y = 1

mt[j] and f(Y ) = λsw
TF
t [j]
Y . Thus

using eq. (32),

E[CTF
t+1[j]] = E[mt[j]λswTF

t [j]] = E[λsw
TF
t [j]
1

mt[j]
]

≈ (λsw
TF
t [j]

E[ 1
mt[j] ]

)

= C∗[j] λsw
TF
t [j]

λswTF
t [j] + 1

= C∗[j](1− 1
λswTF

t [j] + 1
)

(35)

For any j ∈ [n] and t ∈ N,

E[CTF
t+1[j]] = C∗[j](1− 1

λswTF
t [j] + 1

). (36)

Proof of Theorem 2 for MLEFlow-CF : In the
first part of the proof we consider that the weight vec-
tors are generated using method MF , i.e. MLEFlow-CF .
From eq. (34), we know that,

E[CMF
t+1 [j]] ≈ C∗[j]

t∏
i=0

(1− 1
λswMF

i [j] + 1
)

λsw
MF
i

[j]+1∑t

τ=0
(λswMF

τ [j]+1)

(37)
Since λswMF

i [j] > 0, the multiplicative term in the
right hand side of eq. (37) is always between 0 and 1.
Let δi[j] ∈ [0, 1] for i ∈ [t+ 1] denote the multiplicative
term in eq. (37), and hence we can write E[CMF

t+1 [j]] =
C∗[j]δt+1[j]. with δt+1[j] ∈ [0, 1].

We know that wMF
i [j] = CMF

i [j]∑
k∈[j]

CMF
i

[k]
=

C∗[j]δi[j]∑
k∈[j]

δi[k]C∗[k]
. Thus,

δi[j]w∗[j] ≤
δi[j]

maxk∈[n]δi[k]w
∗[j] ≤ wMF

i [j]

≤ δi[j]
mink∈[n] δi[k]w

∗[j] ≤ max
i∈[t]

( δi[j]
mink∈[n] δi[k] )w

∗[j] = L̄[j]w∗[j]

(38)
The first inequality follows from the fact that
maxk∈[n] δi[k] ≤ 1.

In what follows, we should remember that, for a < 1
and for b > 0, ab decreases as b increases.

We now have δi[j]w∗[j] ≤ wMF
i [j] ≤ L̄[j]w∗[j], re-

placing in eq. (37), since (1 − 1
λsw∗δi[j]+1 ) ≤ 1, we can

find the following lower bound on δt+1[j]:

1 ≥ δt+1[j] ≥
t∏
i=0

(1− 1
λsw∗δi[j] + 1)

λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ+1)

(39)

Assuming that δi[j] is equal to the lower bound for
all i ∈ [t+ 1] (worst case scenario). We can write δt+1[j]
as a function of δt[j]:

δt+1[j] = δt[j]

[
t−1∏
i=0

((1− 1
λsw∗δi[j] + 1)λsw

∗[j]L̄[j]+1)
1∑t

τ=0
(λsw∗[j]δτ [j]+1)

− 1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)

]

(1− 1
λsw∗δt[j] + 1)

λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ [j]+1)

(40)
Since λsw

∗[j]δi[j] + 1 > 0 for all i ∈ [t]
then 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

< 1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
, thus

1∑t

τ=0
(λsw∗[j]δτ [j]+1)

− 1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
< 0. Thus
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we can write:

δt+1[j] = δt[j]
(1− 1

λsw∗δt[j]+1 )

λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ [j]+1)

∏t−1
i=0

((1− 1
λsw∗δi[j]+1 )λsw∗[j]L̄[j]+1)

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

(41)
We proceed by induction to prove that the se-

quence [δ0, ..., δt+1] is a monotonically increasing se-
quence. Thus assuming δt > δt−1 > ... > δ0, we need
to show that δt+1 > δt. In order to show that, it is suf-
ficient to show that the term multiplying δt in eq. (41)
is greater than 1. Since δt > δt−1 > ... > δ0 we have for
all i < t that

1− 1
λsw∗δt[j]+1 > 1− 1

λsw∗δi[j]+1

Since (λsw∗[j]L̄[j] + 1)
[

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
−

1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]
> 0 we can write for all i ∈ [t−1]:

(1− 1
λsw∗δt[j] + 1)

(λsw∗[j]L̄[j]+1)
[

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]
>

(1− 1
λsw∗δi[j] + 1)

(λsw∗[j]L̄[j]+1)
[

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]

By multiplying the above t inequalities (since all
terms are positive) we can find that:

(1− 1
λsw∗δt[j] + 1)

[
(t)(λsw∗[j]L̄[j]+1)

][
1∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]
>

t−1∏
i=0

(1− 1
λsw∗δi[j] + 1)

(λsw∗[j]L̄[j]+1)
[

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]

Which is equivalent to:

(1− 1
λsw∗δt[j] + 1)

[
(λsw∗[j]L̄[j]+1)∑t−1
τ=0

(λsw∗[j]δτ [j]+1)

(t)(λsw∗[j]δt[j]+1)∑t

τ=0
(λsw∗[j]δτ [j]+1)

]
>

t−1∏
i=0

(1− 1
λsw∗δi[j] + 1)

(λsw∗[j]L̄[j]+1)
[

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]

Since we are assuming that δt > δt−1 > ... > δ0, we have
that t(λsw∗[j]δt[j]+1) >

∑t−1
τ=0(λsw∗[j]δτ [j]+1). Thus,

(1− 1
λsw∗δt[j] + 1)

[
λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]
>

(1− 1
λsw∗δt[j] + 1)

[
λsw
∗[j]L̄[j]+1∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

(t)(λsw∗[j]δt[j]+1)∑t

τ=0
(λsw∗[j]δτ [j]+1)

]

Thus we now have,

(1− 1
λsw∗δt[j] + 1)

[
λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]
>

t−1∏
i=0

(1− 1
λsw∗δi[j] + 1)

(λsw∗[j]L̄[j]+1)
[

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

]

Thus we just showed that δt+1 > δt and the se-
quence [δ0, ..., δt+1] is a monotonically increasing se-
quence.

Since δi ∈ [0, 1] for all i ∈ [t+ 1], then λsw∗[j]δi[j] ≤
λsw

∗[j] and thus 1− 1
λsw∗[j]δi[j]+1 ≤ 1− 1

λsw∗[j]+1 . From
which we have

δt+1 =
∏t
i=0(1− 1

λsw∗[j]δi+1 )
λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ+1) ≤

(1− 1
λsw∗[j]+1 )

(t+1)(λsw∗[j]L̄[j]+1)∑t

τ=0
(λsw∗[j]δτ+1)

Since w∗δi[j] ≤ w∗L̄[j] for all i ∈ [t], then,

δt+1 ≤ (1− 1
λsw∗[j]+1 )

(t+1)(λsw∗[j]L̄[j]+1)∑t

τ=0
(λsw∗[j]δτ+1) ≤

(1− 1
λsw∗[j]+1 )

∑t

τ=0
(λsw∗[j]δτ+1)∑t

τ=0
(λsw∗[j]δτ+1) = (1− 1

λsw∗[j]+1 )

Hence the sequence [δ0, ..., δt+1] is monotonically in-
creasing and is bounded from above by (1− 1

λsw∗[j]+1 ),
hence δt converges.

The Cauchy’s convergence test states that a series
δt[j] converges if and only if for every ε1 > 0, there exist
N ∈ N such that |δp[j]−δt[j]| < ε1 for all t, p > N . Since
we showed that δt[j] is an increasing sequence, this is
equivalent to saying that for every ε2 > 0, there exist
N ∈ N such that 1 < δp[j]

δt[j] < 1 + ε2 for all p > t > N .
Thus taking p = t+ 1 from eq. (41) we have that,

δt+1[j]
δt[j] =

(1− 1
λsw∗δt[j]+1 )

λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ [j]+1)

∏t−1
i=0

((1− 1
λsw∗δi[j]+1 )λsw∗[j]L̄[j]+1)

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

< 1 + ε2

Hence, for every ε3 > 0, there exist N ∈ N such that for
all t > N ,

(1− 1
λsw∗δt[j] + 1)

λsw
∗[j]L̄[j]+1∑t

τ=0
(λsw∗[j]δτ [j]+1)

<

t−1∏
i=0

((1− 1
λsw∗δi[j] + 1)λsw

∗[j]L̄[j]+1)
1∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

− 1∑t

τ=0
(λsw∗[j]δτ [j]+1) + ε3

(42)
For simplicity in the derivation we drop ε3, we will

then add it at the end of the derivation. Thus, eq. (42)
is equivalent to

(1− 1
λsw∗δt[j]+1 )

1∑t

τ=0
(λsw∗[j]δτ [j]+1)

<
∏t−1
i=0(1−

1
λsw∗δi[j]+1 )

1∑t−1
τ=0

(λsw∗[j]δτ [j]+1)
− 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

(1− 1
λsw∗δt[j]+1 )

1∑t

τ=0
(λsw∗[j]δτ [j]+1)

<
∏t−1
i=0(1−

1
λsw∗δi[j]+1 )

(

∑t

τ=0
(λsw∗[j]δτ [j]+1)∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

−1) 1∑t

τ=0
(λsw∗[j]δτ [j]+1)

(1− 1
λsw∗δt[j]+1 ) <

∏t−1
i=0(1− 1

λsw∗δi[j]+1 )
(

∑t

τ=0
(λsw∗[j]δτ [j]+1)∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

−1)

(1− 1
λsw∗δt[j]+1 ) <∏t−1

i=0(1− 1
λsw∗δi[j]+1 )

λsw
∗[j]δt[j]+1∑t−1

τ=0
(λsw∗[j]δτ [j]+1)
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Since we know that δt > δt−1 > ... > δ0,

thus (1 − 1
λsw∗δi[j]+1 )

λsw
∗[j]δt[j]+1∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

< (1 −

1
λsw∗δi[j]+1 )

λsw
∗[j]δi[j]+1∑t−1

τ=0
(λsw∗[j]δτ [j]+1) for all i ∈ [t− 1]. Thus,

(1− 1
λsw∗δt[j]+1 ) <∏t−1

i=0(1− 1
λsw∗δi[j]+1 )

λsw
∗[j]δi[j]+1∑t−1

τ=0
(λsw∗[j]δτ [j]+1)

From definition of δt+1[j], we can see that the right hand
side is equal to δt[j],

(1− 1
λsw∗δt[j]+1 ) < δt[j]

Solving for δt[j], We can hence say that for every ε4 > 0,
there exist N ∈ N such that for all t > N ,

δt[j] + ε4 > 1− 1
λsw∗

Thus as t→∞ we have,

1 ≥ δt[j] ≥ 1− 1
λsw∗

(43)

Taking ε = 1
λsw∗[j] , prove the theorem.

Proof of Theorem 2 for TorFlow-P: Similarly
for TorFlow-P, we have from eq. (36) that the expected
value of the estimates of the capacities using TorFlow-P
is,

E[CTt+1[j]] = C∗[j](1− 1
λswTt [j] + 1

) (44)

In this part of the proof, we consider that weight vectors
are generated using method T . Since λswTF

t [j] > 0 for
all t ∈ N, the multiplicative term in the right hand side
of eq. (44) is always between 0 and 1. Let δ′t+1[j] ∈ [0, 1]
for t ∈ N denote the multiplicative term in eq. (44),
and hence we can write E[CTF

t+1[j]] = C∗[j]δ′t+1[j]. with
δ′t+1[j] ∈ [0, 1].

We know that wTF
t [j] = CTF

t [j]∑
k∈[j]

CTF
t [k]

=

C∗[j]δ′t[j]∑
k∈[j]

δ′t[k]C∗[k]
. Thus,

δ′t[j]w∗[j] ≤
δ′t[j]

maxk∈[n]δ
′
t[k]w

∗[j] ≤ wTF
t [j] (45)

The first inequality follows from the fact that
maxk∈[n]δ

′
t[k] ≤ 1.

Thus we can find the following lower bound on
δ′t+1[j]:

1 ≥ δ′t+1[j] ≥ 1− 1
λsw∗δ′t[j] + 1 (46)

Assuming that δ′t+1[j] is equal to the lower bound
for all t ∈ N (worst case scenario). We can find the ratio
of δ′t+1[j] over δ′t[j],

δ′t+1[j]
δ′t[j]

=
1− 1

λsw∗δ′t[j]+1

1− 1
λsw∗δ′t−1[j]+1

(47)

We proceed by induction to prove that the se-
quence [δ′0, ..., δ′t+1] is a monotonically increasing se-
quence. Thus assuming δ′t > δ′t−1 > ... > δ′0, we need
to show that δ′t+1 > δ′t. In order to show that, it is suf-
ficient to show that the ratio in eq. (47) is greater than
or equal to 1. Since δ′t > δ′t−1, we have for all t ∈ N that
1− 1

λsw∗δ′t[j]+1 > 1− 1
λsw∗δ′t−1[j]+1 , and thus δ′t+1[j]

δ′t[j]
> 1.

We hence showed that the sequence [δ′0, ..., δ′t+1] is a
monotonically increasing sequence.

Since δ′t ∈ [0, 1] for all t ∈ N, then λsw
∗[j]δ′t[j] ≤

λsw
∗[j] and thus 1 − 1

λsw∗[j]δ′t[j]+1 ≤ 1 − 1
λsw∗[j]+1 .

From which we have that δt+1[j] ≤ 1− 1
λsw∗[j]+1 for all

t ∈ N. Hence the sequence [δ′0, ..., δ′t+1] is monotonically
increasing and is bounded from above by (1− 1

λsw∗[j]+1 ),
hence δ′t converges.

The Cauchy’s convergence test states that a series
δ′t[j] converges if and only if for every ε′1 > 0, there exist
N ∈ N such that |δ′p[j]−δ′t[j]| < ε′1 for all t, p > N . Since
we showed that δ′t[j] is an increasing sequence, this is
equivalent to saying that for every ε′2 > 0, there exist
N ∈ N such that 1 < δ′p[j]

δ′t[j]
< 1 + ε2 for all p > t > N .

Thus taking p = t+ 1 from eq. (47) we have that,

δ′t+1[j]
δ′t[j]

=
1− 1

λsw∗δ′t[j]+1

1− 1
λsw∗δ′t−1[j]+1

< 1 + ε′2

Hence, for every ε′3 > 0, there exist N ∈ N such that for
all t > N ,

1− 1
λsw∗δ′t[j] + 1 <

1− 1
λsw∗δ′t−1[j] + 1 + ε′3 = δ′t + ε′3.

(48)

Solving for δ′t[j], We can hence say that for every
ε′4 > 0, there exist N ∈ N such that for all t > N ,

δ′t[j] + ε′4 > 1− 1
λsw∗

Thus as t→∞ we have,

1 ≥ δ′t[j] ≥ 1− 1
λsw∗

(49)

Taking ε = 1
λsw∗[j] , prove the theorem.
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Theorem 4 (Variance of TorFlow-P > Variance of
MLEFlow-CF). For λs big enough, for all j ∈ [n], and
starting with the same initial weights, Var [CMF

1 [j]] =
Var [CTF

1 [j]] and for t > 1,

Var [CTF
t+1[j]]

Var [CMF
t+1 [j]]

>
t+ 1
ζ

. (11)

with ζ = 1 + 1
e2 + 2

e .

Moreover, as t→∞, Var [CMF
t [j]]→ 0.

Proof. Finding an upper bound for the variance
of the estimates when using MLEFlow-CF :

In this proof, we consider that weight vectors are
generated using method MF . First, from eq. (32) we
have,

E( 1
Mi[j]

) = E(Xi[j] + 1
C∗[j] ) = 1

C∗[j] (E(Xi[j]) + 1) = 1
C∗[j] (λswi[j] + 1)

(50)
Analogously, we can find,

Var( 1
Mi[j]

) = Var(Xi[j] + 1
C∗[j] ) = 1

C∗[j]2 Var [Xi[j] + 1] = λswi[j]
C∗[j]2

(51)
We have from theorem 1 the closed form of our es-

timate at time t for any j ∈ [n].

CMF
t+1 [j] ≈ C∗[j]e

∑t

i=0
1

mi[j]
log(

mi[j]λsw
MF
i

[j]
C∗[j] )∑t

i=0
1

mi[j] .

Using a first order Taylor expansion approximation [20],
we can find that for any random variable Y , E[f(Y )] ≈
f(E[Y ]) and Var [f(Y )] ≈ (f ′(E[Y ]))2Var [Y ] . We use
this approximation to find the expected value and vari-
ance of 1

mi[j] log(mi[j]λsw
MF
i [j])

C∗[j] by taking Y = 1
mi[j] and

f(Y ) = −Y log( C∗[j]
λswMF

i
[j]Y ). Thus using eq. (50) and

eq. (51),

Var [ 1
mi[j]

log(
mi[j]λswMF

i [j]
C∗[j] )] = (log(

λsw
MF
i [j]

λswMF
i [j] + 1

)− 1)2 λsw
MF
i [j]

C∗[j]2

E[ 1
mi[j]

log(
mi[j]λswMF

i [j]
C∗[j] )] =

λsw
MF
i [j] + 1
C∗[j] log(

λsw
MF
i [j]

λswMF
i [j] + 1

)

(52)
Given wMF

i [j] for j ∈ [n], the observations of a relay at
different iterations are independent events. Thus we can
find, with

(σ1
t [j])2 = Var [

t∑
i=0

1
mi[j]

log(
mi[j]λswMF

i [j]
C∗[j] )] =

t∑
i=0

(log(
λsw

MF
i [j]

λswMF
i [j] + 1

)− 1)2 λsw
MF
i [j]

C∗[j]2

µ1
t [j] = E[

t∑
i

1
mi[j]

log(
mi[j]λswMF

i [j]
C∗[j] )] =

t∑
i=0

λsw
MF
i [j] + 1
C∗[j] log(

λsw
MF
i [j]

λswMF
i [j] + 1

)

(53)

From eq. (50) and eq. (51), we also have,

(σ2
t [j])2 = Var [

t∑
i

1
mi[j]

] =
t∑
i=0

λsw
MF
i [j]

C∗[j]2

µ2
t [j] = E[

t∑
i

1
mi[j]

] =
t∑
i=0

1
C∗[j] (λsw

MF
i [j] + 1)

(54)

Using the same approach applied earlier we
can find that for any two random variables Y

and Z we have, E[g(Y, Z)] ≈ g(E(Y ), E(Z))
and Var [g(Y,Z)] ≈ g′y(E[Y ], E[Z])2Var [Y ] +
2g′y(E[Y ], E[Z])g′z(E[Y ], E[Z])Cov(Y, Z)
+ g′z(E[Y ], E[Z])2Var [Z]. Using Cauchy-Schwarz in-
equality we can upper bound the |Cov(Y,Z)| by√

Var [Y ]Var [Z]. Hence, we have,

Var [g(Y, Z)] ≤ g′y(E[Y ], E[Z])2Var [Y ] + 2g′y(E[Y ], E[Z])g′z(E[Y ], E[Z])
√

Var [Y ]Var [Z]

+ g′z(E[Y ], E[Z])2Var [Z]

(55)
For the special case of g(Y,Z) = Y

Z , we have,

Var [Y
Z

] ≤ E[Y ]2

E[Z]2 (Var [Y ]
E[Y ]2 − 2

√
Var [Y ]Var [Z]
E[Y ]E[Z] + Var [Z]

E[Z]2 )

= E[Y ]2

E[Z]2 ( σ[Y ]
E[Y ] −

σ[Z]
E[Z] )

2

(56)
Taking Y =

∑t
i=0

1
mi[j] log(mi[j]λsw

MF
i [j]

C∗[j] ) and Z =∑t
i

1
mi[j] , we can find that,

Var [
∑t
i=0

1
mi[j] log(mi[j]λsw

MF
i [j]

C∗[j] )∑t
i

1
mi[j]

] ≤ (µ1
t [j])2

(µ2
t [j])2 (σ

1
t [j]
µ1
t [j]
− σ2

t [j]
µ2
t [j]

)2

= V [j]
(57)

Similarly as before,

E[
∑t
i=0

1
mi[j] log(mi[j]λsw

MF
i [j]

C∗[j] )∑t
i

1
mi[j]

] ≈ µ1
t [j]
µ2
t [j]

(58)

Using similar argument and taking X =∑t

i=0
1

mi[j]
log(

mi[j]λsw
MF
i

[j]
C∗[j] )∑t

i

1
mi[j]

and f(X) = C∗[j]eX , we

can find E[C∗[j]eX ] ≈ C∗[j]eE[X] and Var [C∗[j]eX ] ≈
(C∗[j]eE[X])2Var [X]. Thus,

Var [Ct+1[j]] ≤ C∗[j]2(e
µ1
t
[j]

µ2
t
[j] )2V [j] (59)

E[Ct+1[j]] ≈ C∗[j]e
µ1
t
[j]

µ2
t
[j] (60)
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For any j ∈ [n] and t ∈ N, the variance of CMF
t+1 [j] is

upper bounded by,

Var [CMF
t+1 [j]] ≤ C∗[j]2(e

µ1
t
[j]

µ2
t
[j] )2V [j], (61)

where

V [j] = (µ1
t [j])2

(µ2
t [j])2 (σ

1
t [j]
µ1
t [j]
− σ2

t [j]
µ2
t [j]

)2,

(σ1
t [j])2 =

t∑
i=0

(log(
λsw

MF
i [j]

λswMF
i [j] + 1

)− 1)2 λsw
MF
i [j]

C∗[j]2
,

µ1
t [j] =

t∑
i=0

λsw
MF
i [j] + 1
C∗[j] log(

λsw
MF
i [j]

λswMF
i [j] + 1

),

(σ2
t [j])2 =

t∑
i=0

λsw
MF
i [j]

C∗[j]2 , and

µ2
t [j] =

t∑
i=0

1
C∗[j] (λsw

MF
i [j] + 1).

Finding the variance of the estimates when
using TorFlow-P: In this proof we consider that the
weight vectors are generated using method TF , i.e.
TorFlow-P. Using the same Taylor expansion used in the
proof of eq. (61), we have that E[f(Y )] ≈ f(E[Y ]) and
Var [f(Y )] ≈ (f ′(E[Y ])2Var [Y ]. We use this approxima-
tion to find the variance of CTF

t+1[j] = mt[j]λswTF
t [j] =

λsw
TF
t [j]
1

mt[j]
by taking Y = 1

mt[j] and f(Y ) = λsw
TF
t [j]
Y . Thus

using eq. (50) and eq. (51),

Var [mt[j]λswTF
t [j]] = Var [λsw

TF
t [j]
1

mt[j]
]

≈ (λsw
TF
t [j]

E[ 1
mt[j] ]

)2Var [ 1
mt[j]

]

= ( C
∗[j]2λswTF

t [j]
(λswTF

t [j] + 1)2 )2 λsw
TF
t [j]

C∗[j]2

= C∗[j]2 (λswTF
t [j])3

(λswTF
t [j] + 1)4

(62)

For any j ∈ [n] and t ∈ N, the variance of CTF
t+1[j] is

as follows:

Var [CTF
t+1[j]] = C∗[j]2 (λswTF

t [j])3

(λswTF
t [j] + 1)4 . (63)

Comparing the two variances: From eq. (61), we
have the upper bound on the variance of the estimates
of MLEFlow-CF ,

Var [CMF
t+1 [j]] ≤ C∗[j]2(e

µ1
t
[j]

µ2
t
[j] )2V [j], (64)

Since λsw
MF
i [j]

λswMF
i

[j]+1 < 1, log( λsw
MF
i [j]

λswMF
i

[j]+1 ) < 0 for all
i ∈ [t] and all j ∈ [n], thus,

µ1
t [j] =

t∑
i=0

λsw
MF
i [j] + 1
C∗[j] log(

λsw
MF
i [j]

λswMF
i [j] + 1

) < 0 (65)

Since µ2
t [j] =

∑t
i=0

1
C∗[j] (λsw

MF
i [j] + 1) > 0, then

e

µ1
t
[j]

µ2
t
[j] < 1. (66)

Since σ1
t [j] and σ2

t [j] are the standard deviation of
two random variables, σ1

t [j] > 0 and σ2
t [j] > 0 for all

j ∈ [n]. From eq. (61),

V [j] = (µ1
t [j])2

(µ2
t [j])2 (σ

1
t [j]
µ1
t [j]
− σ2

t [j]
µ2
t [j]

)2

= (σ1
t [j])2

(µ2
t [j])2 + (µ1

t [j])2(σ2
t [j])2

(µ2
t [j])4 − 2µ

1
t [j]σ1

t [j]σ2
t [j]

(µ2
t [j])3

(67)
Since for any y > 0, log(y) ≥ 1 − 1

y , we have

that 0 > log( λsw
MF
i [j]

λswMF
i

[j]+1 ) − 1 ≥ −λsw
MF
i [j]+1

λswMF
i

[j] , hence

(log( λsw
MF
i [j]

λswMF
i

[j]+1 ) − 1)2 ≤ (λswMF
i [j]+1)2

(λswMF
i

[j])2 for all i ∈ [t] and
j ∈ [n]. Thus from eq. (61),

(σ1
t [j])2 =

t∑
i=0

(log(
λsw

MF
i [j]

λswMF
i [j] + 1

)− 1)2 λsw
MF
i [j]

C∗[j]2

≤ 1
C∗[j]2

t∑
i=0

(λswMF
i [j] + 1)2

λswMF
i [j]

(68)
Hence taking the square root we have,

σ1
t [j] ≤ 1

C∗[j]

√√√√ t∑
i=0

(λswMF
i [j] + 1)2

λswMF
i [j]

(69)

Using simple mathematical arguments (table of
variation of the difference), we can find that for y > 0,
log(y) > −1/e

y . Thus, log( λsw
MF
i [j]

λswMF
i

[j]+1 ) ≥ −1
e
λsw

MF
i [j]+1

λswMF
i

[j] .
From eq. (61),

0 > µ1
t [j] =

t∑
i=0

λsw
MF
i [j] + 1
C∗[j] log(

λsw
MF
i [j]

λswMF
i [j] + 1

)

> − 1/e
C∗[j]

t∑
i=0

(λswMF
i [j] + 1)2

λswMF
i [j]

(70)
Thus,

− µ1
t [j] <

1/e
C∗[j]

t∑
i=0

(λswMF
i [j] + 1)2

λswMF
i [j]

(71)
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And,

(µ1
t [j])2 <

1/e2

C∗[j]2 (
t∑
i=0

(λswMF
i [j] + 1)2

λswMF
i [j]

)2 (72)

From eq. (61), we have,

(σ2
t [j])2 = Var [

t∑
i

1
mi[j]

] =
t∑
i=0

λsw
MF
i [j]

C∗[j]2 (73)

µ2
t [j] = E[

t∑
i

1
mi[j]

] =
t∑
i=0

1
C∗[j] (λsw

MF
i [j] + 1) (74)

Taking the square root of the equation of (σ2
t [j])2

above, we can find that,

σ2
t [j] = 1

C∗[j]

√√√√ t∑
i=0

λswMF
i [j] (75)

Using eq. (68) and eq. (74), we can find,

(σ1
t [j])2

(µ2
t [j])2 ≤

∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j]

(
∑t
i=0 λsw

MF
i [j] + 1)2

(76)

Using eq. (72), eq. (73) and eq. (74), we can find,

(µ1
t [j])2(σ2

t [j])2

(µ2
t [j])4 <

1
e2

(
∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j] )2(
∑t
i=0 λsw

MF
i [j] + 1)

(
∑t
i=0 λsw

MF
i [j] + 1)4

= 1
e2

(
∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j] )2

(
∑t
i=0 λsw

MF
i [j] + 1)3

(77)
Using eq. (71), eq. (75), eq. (69) and eq. (74), we

can find that,

− 2µ
1
t [j]σ1

t [j]σ2
t [j]

(µ2
t [j])3 = 2(−µ1

t [j])σ1
t [j]σ2

t [j]
(µ2
t [j])3

<
2
e

(
∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j] )(
√∑t

i=0
(λswMF

i
[j]+1)2

λswMF
i

[j] )(
√∑t

i=0 λsw
MF
i [j])

(
∑t
i=0 λsw

MF
i [j] + 1)3

(78)
Using eq. (76), eq. (77) and eq. (78), we can hence

find an upper bound on V [j],

V [j] <
(
∑t
i=0 λsw

MF
i [j] + 1)

∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j]

(
∑t
i=0 λsw

MF
i [j] + 1)3

+ 1
e2

(
∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j] )2

(
∑t
i=0 λsw

MF
i [j] + 1)3

+ 2
e

(
∑t
i=0

(λswMF
i [j]+1)2

λswMF
i

[j] )(
√∑t

i=0
(λswMF

i
[j]+1)2

λswMF
i

[j] )(
√∑t

i=0 λsw
MF
i [j])

(
∑t
i=0 λsw

MF
i [j] + 1)3

(79)

Factorising the numerator by λs,

V [j] <
(λs)2(

∑t
i=0 w

MF
i [j] + 1

λs
)
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j]

(
∑t
i=0 λsw

MF
i [j] + 1)3

+ 1
e2

(λs)2(
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )2

(
∑t
i=0 λsw

MF
i [j] + 1)3

+ 2
e

(λs)2(
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )(
√∑t

i=0
(wMF
i

[j]+ 1
λs

)2

wMF
i

[j] )(
√∑t

i=0 w
MF
i [j])

(
∑t
i=0 λsw

MF
i [j] + 1)3

(80)
From from eq. (80), eq. (66) and eq. (61), we replace

V [j] and e
µ1
t
[j]

µ2
t
[j] by their upper bounds to get

Var [CMF
t+1 [j]] < C∗[j]2(

(λs)2(
∑t
i=0 w

MF
i [j] + 1

λs
)
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j]

(
∑t
i=0 λsw

MF
i [j] + 1)3

+ 1
e2

(λs)2(
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )2

(
∑t
i=0 λsw

MF
i [j] + 1)3

+ 2
e

(λs)2(
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )(
√∑t

i=0
(wMF
i

[j]+ 1
λs

)2

wMF
i

[j] )(
√∑t

i=0 w
MF
i [j])

(
∑t
i=0 λsw

MF
i [j] + 1)3

(81)
We know that Var [CTF

t+1[j]] = C∗[j]2 (λswTF
t [j])3

(λswTF
t [j]+1)4 , thus

we now have,

Var [CTF
t+1[j]]

Var [CMF
t+1 [j]]

>
(λswTF

t [j])3(
∑t
i=0 λsw

MF
i [j] + 1)3

(λswTF
t [j] + 1)4(λs)2((

∑t
i=0 w

MF
i [j] + 1

λs
)(
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )

+ 1
e2 (
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )2

+ 2
e (
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )(
√∑t

i=0
(wMF
i

[j]+ 1
λs

)2

wMF
i

[j] )(
√∑t

i=0 w
MF
i [j]))

(82)
Which is equivalent to,

Var [CTF
t+1[j]]

Var [CMF
t+1 [j]]

>
(λs)6(wTF

t [j])3(
∑t
i=0 w

MF
i [j] + 1

λs
)3

(λs)6(wTF
t [j] + 1

λs
)4((
∑t
i=0 w

MF
i [j] + 1

λs
)(
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )

+ 1
e2 (
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )2

+ 2
e (
∑t
i=0

(wMF
i [j]+ 1

λs
)2

wMF
i

[j] )(
√∑t

i=0
(wMF
i

[j]+ 1
λs

)2

wMF
i

[j] )(
√∑t

i=0 w
MF
i [j]))

(83)
Thus for λs big enough we have,

Var [CTF
t+1[j]]

Var [CMF
t+1 [j]]

>
(wTF
t [j])3(

∑t
i=0 w

MF
i [j])3

(wTF
t [j])4((

∑t
i=0 w

MF
i [j])2 + 1

e2 (
∑t
i=0 w

MF
i [j])2 + 2

e (
∑t
i=0 w

MF
i [j])2)

(84)
From eq. (34) and eq. (36), for λs big enough, we have
E[CMF

i [j]] ∼ C∗[j] and E[CTF
t [j]] ∼ C∗[j]. And thus

for λs big enough, we have E[wMF
i [j]] ∼ w∗[j] and

E[wTF
t [j]] ∼ w∗[j]. Hence from eq. (84),

Var [CTF
t+1[j]]

Var [CMF
t+1 [j]]

>
(w∗[j])6(t+ 1)3

(1 + 1
e2 + 2

e )(t+ 1)2(w∗[j])6

= t+ 1
(1 + 1

e2 + 2
e )

(85)
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Thus for t ≥ 1, we have that Var[CTF
t+1[j]]

Var[CMF
t+1[j]] > 1, and thus

the variance of TorFlow-P is greater than the variance
of MLEFlow-CF . We also know that at t = 0 and start-
ing at the same initial weight vector, both algorithms
are equivalent since they both are a one step maximum
likelihood optimization. Thus for λs big enough, for all
t ≥ 1, the variance of the ML estimation is at most equal
to the variance of TorFlow-P.

Proof (Convergence of variance of
MLEFlow-CF) As t→∞, Var [CMF

t [j]]→ 0.

V ar[CTF
t [j]] is bounded since λs is constant and wt ∈

[0, 1]. Substituting these in equation (63), results in
V ar[CTF

1 [j]] ≤ C∗[j]2λ3
s. Substituting this in equa-

tion (11), results in the statement.

Deriving equation (15): Since [M0[j], ...,Mt[j]]
are independent random variables, we can write the es-
timate as:

CNt+1[j] = argmax
κ∈C

t∏
i=0

fo(Mi[j] = mi[j] | wi[j]) (86)

From eq. (12), given C[j] = κ and wi[j], we let
hC(Xi[j], Yi[j]) = Mi[j] = κYi[j]

Xi[j]+1 for i ∈ [t]. Thus from
eq. (86), replacing Mi[j] by hC(Xi[j], Yi[j]):

CNt+1[j] = argmax
κ∈C

t∏
i=0

fo(hC(Xi[j], Yi[j]) = mi[j]) (87)

We know from the law of total probability that for i ∈
[t]:

fo(hC(Xi[j], Yi[j]) = mi[j]) =
∫
y∈Yi[j] fo(hC(Xi[j], Yi[j]) = mi[j] | Yi[j] = y)fnormal(Yi[j] = y)

(88)
where fnormal refers to the probability density function
of the normal distribution with mean 1 and standard
deviation σe.

Replacing eq. (88) in eq. (87), we get:

CNt+1[j] = argmax
κ∈C

∏t
i=0
∫
y∈Yi[j] fo(hC(Xi[j], Yi[j]) = mi[j] | Yi[j] = y)fnormal(Yi[j] = y)

(89)
From the definition of hC(Xi[j], Yi[j]), given that Yi[j] =
y and hC(Xt[j], Yt[j]) = mt[j], we can find that:

fo(hC(Xt[j], Yt[j]) = mt[j] | Yt[j] = y) =


e−λswi[j] 1

(x)! (λswi[j])
xδ(y)

where x ∈ [0, ..., n]
and y = mi[j](x+1)

κ ∈ [ymin, ymax]

(90)

Thus using eq. (90) in eq. (89), we can formulate
the estimate to be:

CNt+1[j] = argmax
κ∈C

t∏
i=0

n∑
x=0

e−λswi[j]
1

(x)! (λswi[j])
xfnormal(Yt[j] = y)

= argmax
κ∈C

t∏
i=0

n∑
x=0

e−λswi[j]
1

(x)! (λswi[j])
x 1
σe
√

2π
e
− 1

2

( mi[j](x+1)
κ

−1
σe

)2
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If we consider the expression of x in terms of y, x =
κy
mi[j] − 1, we see that it is a continuous and increasing
function of y. Since y ∈ [ymin, ymax], thus we can find
the maximum value of x for y = ymax and the mini-
mum value for y = ymin. Thus given mt[j], we can find
xmax,i[j] = bκymaxmi[j] − 1c and xmin,i[j] = dκyminmi[j] − 1e for
all i ∈ [t]. Thus in order to find the maximum likelihood
estimate:

CNt+1[j] = argmax
κ∈C

∏t
i=0
∑xmax,i[j]
x=xmin,i[j] e

−λswi[j] 1
(x)! (λswi[j])

x 1
σe
√

2π e
− 1

2

( mi[j](x+1)
κ

−1
σe

)2

(92)
Applying the same strategy using the logarithm func-
tion,and since 1

σe
√

2π is a positive constant, the maxi-
mum likelihood estimate of C can be found:

CNt+1[j] = argmax
κ∈C

∑t
i=0 log

[∑xmax,i[j]
x=xmin,i[j] e

−λswi[j] 1
(x)! (λswi[j])

xe
− 1

2

( mi[j](x+1)
κ

−1
σe

)2

(93)

B Unbiased Python Simulations
In order to show that the Python implementation of
MLEFlow is not biased, we simulated the same 3% net-
work using both our Python simulator and Shadow. The
3% network contains 196 Tor relays (61 guards, 109
middle relays, and 26 exits). The total throughput is
1.3GB/s (guards: 713MB/s, middles: 252MB/s, exits:
359MB/s). We simulated Algorithm 1 in Python using
λs = 2000 and T = 22 as well as in Shadow. Addition-
ally, we set noisy = 1 in the Python simulator to capture
the noise observed in our Shadow simulations. The aver-
age estimation error of MLEFlow-Q converged to below
10% while that of TorFlow-P stayed around 60% for
both simulators as can be seen in figures 13a and 14a.
Figures 13b and 14b show that the estimation errors
of all relays have similar distribution for both simula-
tors: the median estimation errors for MLEFlow-Q are
around 15%, 40% and 5% for the Guard, middle and
exit relays, respectively. For TorFlow-P, these median
errors were around 50%, 100% and 30%, respectively.
The distribution of bandwidth between users through-
out the rounds are also similar in Python and Shadow
as can be seen in figures 13c and 14c.
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(a) Comparing average estimation errors
of all exit relays in each round.

(b) Estimation error distributions for each
type of relay.

(c) Aggregate mean progression of client
download bandwidth distribution in each
consensus round.

(d) Aggregate std deviation progression of client down-
load bandwidth distribution in each consensus round.

(e) Client download bandwidth distribution after
bandwidth estimation has converged.

Fig. 13. Results are obtained after 22 consensus rounds in the 3% network using Python.

(a) Comparing average estimation errors
of all exit relays in each round.

(b) Estimation error distributions for each
type of relay.

(c) Aggregate mean progression of client
download bandwidth distribution in each
consensus round.

(d) Aggregate std deviation progression of client down-
load bandwidth distribution in each consensus round.

(e) Client download bandwidth distribution after
bandwidth estimation has converged.

Fig. 14. Results are obtained after 22 consensus rounds in the 3% network using Shadow.
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C Additional Tables and Figures

Table 1. Low-fidelity simulation results done in Python3. Est. method is the method we use to update the weight vector in each itera-
tion. stats are the statistics that we report for each experiment. noisy indicates if noiseless or noisy observations are considered. relays
cap. est. error are the estimation errors for each category of relays. It is computed as follows: error = |wt−w∗|

w∗ × 100. paths bw are
the bandwidths allocated for users when the weight vectors are updated using different methods. The reported results are for the 50th

measurement period.

Single relay paths Three relays paths
observations relays cap. paths bw relays cap. est. err. (%) paths bw

Est. method stats noise est. err. (%) (kb/s) guard middle exit (kb/s)
mean - 0 81.48 0 0 0 22.41
std. - 0 6.57 0 0 0 0.77

Actual max - 0 409.60 0 0 0 102.40
min - 0 22.94 0 0 0 8.48

mean - 2.4 81.48 2.4 2.4 2.3 22.41
std. - 1.4 6.98 1.4 1.4 1.4 0.99

Quantized max - 5 478.23 5 5 5 102.40
min - 0 18.70 0 0 0 8.19

mean noiseless 14.30 81.47 69.22 81.86 80.25 19.76
noisy 21.62 81.47 68.00 83.92 82.17 19.73

std. noiseless 20.85 9.27 63.09 79.60 47.57 174.86
noisy 20.90 17.24 64.99 84.41 50.82 173.62

TorFlow-P max noiseless 381.90 522.68 760.20 809.75 342.56 31092.96
noisy 288.30 1048.58 1150.70 792.92 372.22 24591.96

min noiseless 0 17.19 0 0 0 3.30
noisy 0 18.72 0 0 0 2.59

mean noiseless 14.13 81.45 68.49 79.70 82.03 19.60
noisy 21.79 81.47 68.47 83.11 81.54 19.63

std. noiseless 21.11 9.37 64.78 78.07 48.38 175.49
noisy 21.61 17.40 64.46 83.05 51.70 171.21

sbws∗ max noiseless 385.76 524.30 874.24 1045.23 360.92 37369.87
noisy 450.45 1024.00 1116.13 959.45 438.55 33227.31

min noiseless 0 14.98 0 0 0 2.66
noisy 0 17.39 0 0 0 2.70

mean noiseless 2.01 81.48 17.19 15.88 0.66 22.41
noisy 3.29 81.48 17.23 16.20 2.21 22.41

std. noiseless 2.75 6.84 9.48 7.65 0.72 0.86
noisy 3.31 7.09 10.39 8.07 1.92 1.04

MLEFlow-CF max noiseless 24.78 559.41 44.51 36.88 8.38 51.20
noisy 30.41 524.29 55.77 39.78 17.65 65.54

min noiseless 0 20.48 0 0 0 10.75
noisy 0 17.07 0 0 0 11.42

mean noiseless 4.35 81.48 16.41 17.47 2.44 22.41
noisy 3.84 81.48 15.21 17.66 3.32 22.41

std. noiseless 4.75 7.33 8.95 8.58 1.67 1.10
noisy 3.41 7.32 9.61 10.30 2.51 1.23

MLEFlow-Q max noiseless 30.76 524.28 52.47 43.34 15.53 62.84
noisy 26.62 614.40 49.26 57.44 18.77 51.20

min noiseless 0 25.60 0 0 0 11.87
noisy 0 19.20 0 0 0 10.24
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Table 2. Sensitivity of estimates to inaccurate λs.

Estimated relays cap. est. err. (%) paths bw
Est. method λs stats noisy guard middle exit (kb/s)

double mean 0 16.38 15.77 4.24 17.74
the 1 19.19 17.49 7.32 17.74

actual std. 0 12.66 10.45 3.86 1.10
rate 1 13.44 11.6 6.27 1.69

MLEFlow-CF half mean 0 17.29 16.32 4.2 17.74
the 1 19.31 20.04 7.26 17.74

actual std. 0 12.45 11.5 3.41 1.03
rate 1 13.22 12.08 6.19 1.71

double mean 0 17.78 18.48 4.29 17.74
the 1 19.88 23.16 6.31 17.74

actual std. 0 12.07 12.52 4.06 1.11
rate 1 13.52 14.04 6.10 1.38

MLEFlow-Q half mean 0 17.05 22.37 4.05 17.74
the 1 19.93 23 6.27 17.74

actual std. 0 12.52 13.5 3.87 1.07
rate 1 13.63 14.11 5.42 1.40

guard middle exit
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Fig. 15. Comparison of relay capacity estimates after 22 rounds of simulation in Shadow. Each subfigure shows the normalized weights
of each corresponding category of relays. Each relay’s estimated weight and true weight are plotted in the figure. i.e. In the MLEFlow-Q
3% network simulation at the exit column, 26 exit relays were plotted. The distribution of estimated weights align with the distribution
of actual weights.
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Single relay Three relays paths
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Fig. 16. Normalized relays capacities estimates using three methods for the single-relay paths and three-relay paths scenarios. The re-
ported results are for the 50th measurement period.
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