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AriaNN: Low-Interaction Privacy-Preserving
Deep Learning via Function Secret Sharing
Abstract: We propose AriaNN, a low-interaction
privacy-preserving framework for private neural network
training and inference on sensitive data.
Our semi-honest 2-party computation protocol (with a
trusted dealer) leverages function secret sharing, a re-
cent lightweight cryptographic protocol that allows us
to achieve an efficient online phase. We design optimized
primitives for the building blocks of neural networks
such as ReLU, MaxPool and BatchNorm. For instance,
we perform private comparison for ReLU operations
with a single message of the size of the input during
the online phase, and with preprocessing keys close to
4× smaller than previous work. Last, we propose an ex-
tension to support n-party private federated learning.
We implement our framework as an extensible system
on top of PyTorch that leverages CPU and GPU hard-
ware acceleration for cryptographic and machine learn-
ing operations. We evaluate our end-to-end system for
private inference between distant servers on standard
neural networks such as AlexNet, VGG16 or ResNet18,
and for private training on smaller networks like LeNet.
We show that computation rather than communication
is the main bottleneck and that using GPUs together
with reduced key size is a promising solution to over-
come this barrier.
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1 Introduction
The massive improvements of cryptography techniques
for secure computation over sensitive data [20, 22, 37]
have spurred the development of the field of privacy-
preserving machine learning [3, 56]. Privacy-preserving
techniques have become practical for concrete use cases,
thus encouraging public authorities to use them to pro-
tect citizens’ data especially in healthcare applications
[24, 35, 49].

However, tools are lacking to provide end-to-end
solutions for institutions that have little expertise in
cryptography while facing critical data privacy chal-
lenges. A striking example is hospitals, which han-
dle large amounts of data while having relatively con-
strained technical teams. Secure multi-party computa-
tion (SMPC) is a promising technique that can be ef-
ficiently integrated into machine learning workflows to
ensure data and model privacy, while allowing multiple
parties or institutions to participate in a joint project. In
particular, SMPC provides intrinsic shared governance:
because data is shared, none of the parties can decide
alone to reconstruct it.
Use case. The main use case driving our work is the
collaboration between a healthcare institution and an
AI company. The healthcare institution, an hospital for
example, acts as the data owner and the AI company
as the model owner. The collaboration consists of ei-
ther training the model with labelled data or using a
pre-trained model to analyze unlabelled data. Training
can possibly involve several data owners, as detailed in
Section 5. Since the model can be a sensitive asset (in
terms of intellectual property, strategic asset or regu-
latory and privacy issues), it cannot be trained directly
on the data owner(s) machines using techniques like fed-
erated learning [11, 38]: it could be stolen or reverse-
engineered [26, 31].

We will assume that the parties involved in the com-
putation are located in different regions, and that they
can communicate large amounts of information over the
network with a reasonable latency (70ms for example).
This corresponds to the Wide Area Network (WAN)
setting, as opposed to the Local Area Network (LAN)
setting where parties are typically located in the same
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data center and communicate with low latency (typi-
cally <1ms). Second, parties are honest-but-curious, [28,
Chapter 7.2.2] and care about their reputation. Hence,
they have little incentive to deviate from the original
protocol, but they will use any information available in
their own interest.
Contributions. By leveraging function secret sharing
(FSS) [14, 15], we propose a low-interaction framework
for private deep learning which drastically reduces com-
munication to a single round for basic machine learn-
ing operations, and achieves the first private evaluation
benchmark on ResNet18 using GPUs.

• We improve upon existing work of [15] on func-
tion secret sharing to design compact and ready-
to-implement algorithms for tensor private compar-
ison, which is a building block for neural networks
and can be run with a single round of communica-
tion. In particular, we significantly reduce the key
size from roughly n(4λ+n) to n(λ+ 2n), which is a
crucial parameter as the computation time is linear
in the key size.

• We show how function secret sharing can be used
in machine learning and provide privacy-preserving
implementations of classical layers, including ReLU,
MaxPool and BatchNorm, to allow secure evalua-
tion and training of arbitrary models on private
data.

• Last, we provide a GPU implementation and a
hardware-accelerated CPU implementation of our
private comparison protocol1. As AriaNN is built
over PyTorch for other tensor operations, it can
run either completely on the GPU or on the CPU.
We show its practicality both in LAN and WAN
settings by running private inference on CIFAR-10
and Tiny Imagenet with models such as AlexNet
[40], VGG16 [58] and ResNet18 [30], and private
training on MNIST using models like LeNet.

Related work. Related work in privacy-preserving ma-
chine learning encompasses SMPC and fully homomor-
phic encryption (FHE) techniques.

FHE only needs a single round of interaction but
does not support efficient non-linearities. For example,
nGraph-HE [9] and its extensions [8] build on the SEAL
library [55] and provide a framework for secure evalua-
tion that greatly improves on the CryptoNet seminal
work [27], but it resorts to polynomials (like the square)
for activation functions.

1 The code is available at github.com/LaRiffle/AriaNN.

SMPC frameworks usually provide faster implemen-
tations using lightweight cryptography. MiniONN [44],
DeepSecure [52] and XONN [50] use optimized garbled
circuits [63] that allow very few communication rounds,
but they do not support training and alter the neural
network structure to speed up execution. Other frame-
works such as ShareMind [10], SecureML [46], SecureNN
[59], QUOTIENT [2] or more recently FALCON [60]
rely on additive secret sharing and allow secure model
evaluation and training. They use simpler and more ef-
ficient primitives, but require a large number of rounds
of communication, such as 11 in [59] or 5 + log2(n) in
[60] (typically 10 with n = 32) for ReLU. ABY [23],
Chameleon [51] and more recently ABY3 [45], CrypT-
Flow [41] and [21] mix garbled circuits, additive or bi-
nary secret sharing based on what is most efficient for
the operations considered. However, conversion between
those can be expensive and they do not support training
except ABY3. There is a current line of work including
BLAZE [47], Trident [18] and FLASH [17] which im-
proves over ABY3 to reduce communication overheads:
BLAZE and Trident achieve for example 4 rounds of
communication for ReLU.

Last, works like Gazelle [33] combine FHE and
SMPC to make the most of both, but conversion can
also be costly.

Works on trusted execution environments are left
out of the scope of this article as they require access to
dedicated and expensive hardware [32].

A concurrent work from Boyle et al. [13] was made
public shortly after ours. Their approach also provides
improvement over previous algorithms for private com-
parison using function secret sharing, and their imple-
mentation results in the same number of rounds than
ours and similar key size (approximately n(λ+n), where
n is the number of bits to encode the value, it accounts
for correctness and is typically set to 32, and λ is the
security parameter and usually equals 128). However,
[13] is not intended for machine learning: they only pro-
vide an implementation of ReLU, but not of MaxPool,
BatchNorm, Argmax or other classic machine learning
components. In addition, as they do not provide exper-
imental benchmarks or an implementation of their pri-
vate comparison, we are not able to compare it to ours
in our private ML framework. They avoid the negligi-
ble error rate that we study in Section 3, which has no
impact in the context of machine learning as we show.

https://github.com/LaRiffle/AriaNN


AriaNN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing 293

2 Background
Notations. All values are encoded on n bits and live
in Z2n . The bit decomposition of any element x of Z2n

into a bit string of {0, 1}n is a bijection between Z2n

and {0, 1}n. Therefore, bit strings generated by a pseudo
random generator G are implicitly mapped to Z2n . In
addition, we interpret the most significant bit as a sign
bit to map them in [−2n−1, 2n−1 − 1], notably in Algo-
rithms 1, 2, 3, 4, 5, where the modulo operation makes
the conversion between n bit strings and signed integers
explicit.

The notation [[x]] denotes 2-party additive secret
sharing of x, i.e., [[x]] = ([[x]]0, [[x]]1) where the shares
[[x]]j are random in Z2n , are held by distinct parties and
verify x = [[x]]0 + [[x]]1 mod 2n. In return, x[i] refers to
the i-th bit of x. The comparison operator ≤ is taken
over the natural embedding of Z2n into Z.

2.1 Function Secret Sharing

Unlike classical data secret sharing, where a shared in-
put [[x]] is applied on a public f , function secret sharing
applies a public input x on a private shared function
[[f ]]. Shares or keys ([[f ]]0, [[f ]]1) of a function f satisfy
f(x) = [[f ]]0(x) + [[f ]]1(x) mod 2n and they can be pro-
vided by a semi-trusted dealer. Both approaches output
a secret shared result.

Let us take an example: say Alice and Bob respec-
tively have shares [[y]]0 and [[y]]1 of a private input y,
and they want to compute [[y ≤ 0]]. They first mask
their shares using a random mask [[α]], by computing
[[y]]0 + [[α]]0 and [[y]]1 + [[α]]1, and then reveal these values
to reconstruct x = y+α. Next, they apply this public x
on their function shares [[fα]]j of fα : x→ (x ≤ α), to ob-
tain a shared output ([[fα]]0(x), [[fα]]1(x)) = [[fα(y+α)]] =
[[(y+α) ≤ α]] = [[y ≤ 0]]. [14, 15] have shown the existence
of such function shares for comparison which perfectly
hide y and the result. From now on, to be consistent
with the existing literature, we will denote the function
keys (k0, k1) := ([[f ]]0, [[f ]]1).

Note that for a perfect comparison, y + α should
not wrap around and become negative. Because typi-
cally values of y used in practice in machine learning
are small compared to the n-bit encoding amplitude
with typically n = 32, the failure rate is less than one
comparison in a million, as detailed in Section 3.2.

2.2 2-Party Computation in the
Preprocessing Model

Preprocessing is performed during an offline phase by a
trusted third party that builds and distributes the func-
tion keys to the 2 parties involved in future computation.
This is standard in function secret sharing, and as men-
tioned by [16], in the absence of such trusted dealer, the
keys can alternatively be generated via an interactive
secure protocol that is executed offline, before the in-
puts are known. This setup can also be found in other
privacy-preserving machine learning frameworks includ-
ing SecureML [46]. This trusted dealer is not active dur-
ing the online phase, and he is unaware of the compu-
tation the 2 parties intend to execute. In particular, as
we are in the honest-but-curious model, it is assumed
that no party colludes with the dealer. In practice, such
third party would typically be an institution concerned
about its reputation, and it could be easy to check that
preprocessed material is correct using a cut-and-choose
technique [65]. For example, the third party produces n
keys for private comparison. The 2 parties willing to do
the private computation randomly check some of them:
they extract from their keys s0, s1 and also reconstruct
α from [[α]]j , j ∈ {0, 1}. They can then derive the com-
putations of KeyGen and verify that the correlated ran-
domness of the keys was correct. They can then use the
remaining keys for the private computation.

2.3 Security Model of the Function Secret
Sharing Protocol

We consider security against honest-but-curious adver-
saries, i.e., parties following the protocol but trying to
infer as much information as possible about others’ in-
put or function share. This is a standard security model
in many SMPC frameworks [7, 10, 51, 59] and is aligned
with our main use case: parties that would not follow the
protocol would face major backlash for their reputation
if they got caught. The security of our protocols relies on
indistinguishability of the function shares, which infor-
mally means that the shares received by each party are
computationally indistinguishable from random strings.
More formally, we introduce the following definitions
from [15].

Definition 2.1 (FSS: Syntax). A (2-party) function
secret sharing (FSS) scheme is a pair of algorithms
(KeyGen, Eval) with the following syntax:
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– KeyGen(1λ, f̂) is a PPT key generation algorithm,
which on input 1λ (security parameter) and f̂ ∈
{0, 1}∗, description of a function f : Z2n → Z2n ,
outputs a pair of keys (k0, k1).

– Eval(i, ki, x) is a polynomial-time evaluation algo-
rithm, which on input i ∈ {0, 1} (party index),
ki (the i-th function key) and x ∈ Z2n , outputs
[[f ]]i(x) ∈ Z2n (the i-th share of f(x)).

Definition 2.2 (FSS: Correctness and Security). We
say that (KeyGen, Eval) as in Definition 2.1 is a FSS
scheme for a family of function F if it satisfies the
following requirements:
– Correctness: For all f : Z2n → Z2n ∈ F , f̂

a description of f , and x ∈ Z2n , if (k0, k1) ←
KeyGen(1λ, f̂) then Pr[Eval(0, k0, x)+Eval(1, k1, x) =
f(x)] = 1.

– Security: For each i ∈ {0, 1}, there is a PPT algo-
rithm Simi (simulator), such that for every infinite
sequence (f̂j)j∈N of descriptions of functions from
F and polynomial size input sequence xj for fj , the
outputs of the following experiments Real and Ideal
are computationally indistinguishable:
– Realj : (k0, k1)← KeyGen(1λ, f̂j) ; Output ki
– Idealj : Output Simi(1λ)

[15] has proved the existence of efficient FSS schemes
in particular for equality. Such protocols and the ones
that we derive from this work are proved to be secure
against semi-honest adversaries, and as mentioned by
[16], they could be extended to guarantee security with
abort against malicious adversaries using MAC authenti-
cation [22], which means that the protocol would abort
if parties deviated from it.

2.4 General Security Guarantees and
Threats

The 2-party interaction for private prediction, i.e. when
the model is already trained, is an example of Encrypted
Machine Learning as a Service (EMLaaS). In this sce-
nario, as stated above, even a malicious model owner
could not disclose information about the private inputs
or predictions. However, it could use a different model
where the weights have been modified to make poor
or biased predictions. It is difficult for the data owner
to realize that the model owner is misbehaving or us-
ing a model whose performance is inferior to what it
claims, and this is an issue users also have with stan-
dard Machine Learning as a Service (MLaaS). Proving

that the computation corresponds to a certified given
model would require to commit the model and would
be costly. On the other side, the information obtained
by the data owner about the model (i.e. the prediction
on a given input) is the same as in MLaaS. Model in-
version techniques [64] can leverage multiple calls to the
model to try to build a new model with similar perfor-
mance. There are not many defenses against this, except
limiting access to the model, which is usually the case in
MLaaS where data owners are given a quota of requests.
Also, attacks like membership inference [57] or reverse-
engineering [26, 31] methods could be used to unveil
information about the dataset on which the model was
originally trained. Using differential privacy [1, 25] dur-
ing the initial training of the model can provide some
guarantees [48] against these threats, but it has a trade-
off between privacy and utility as differentially private
models usually have poorer performance.

Beyond evaluation, the case of fully-encrypted train-
ing can also expose the parties to some threats. The
most common one is data poisoning and consists of the
data owner undermining the training by providing irrel-
evant data or labels that are wrong or biased [5]. This
attack however does not affect privacy. In return, if the
model owner gets the final model in plaintext at the end
of the training, the privacy of the data owner is at risk
because the model owner could use the aforementioned
techniques to get information about the training data.
Using differential privacy during the private training is
important to mitigate this privacy leakage, and should
also be applied in a n-party training setting.

All these threats must be taken seriously when
building production-ready systems. However, they are
independent of the function secret sharing protocol and
can be addressed separately by combining our work with
differential privacy libraries for deep learning.

3 Function Secret Sharing
Primitives

Our algorithms for private equality and comparison are
built on top of the work of [15], so the security assump-
tions are the same as in this article. We first present
an algorithm for equality which is very close to the one
of [15] but which is used as a basis to build the com-
parison protocol. We then describe the private compar-
ison protocol, which improves over the work of [15] on
Distributed Interval Functions (DIF) by specializing on
the operations needed for neural network evaluation or
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training. In particular, we are able to reduce the func-
tion key size from roughly n(4λ+ n) to n(λ+ 2n).

3.1 Equality Test

We start by describing private equality as introduced by
[15], which is slightly simpler than comparison and gives
useful hints about how comparison works. The equality
test consists in comparing a public input x to a pri-
vate value α. Evaluating the input using the function
keys can be viewed as walking a binary tree of depth n,
where n is the number of bits of the input (typically 32).
Among all the possible paths, the path from the root
down to α is called the special path. Figure 1 illustrates
this tree and provides a compact representation which
is used by our protocol, where we do not detail branches
for which all leaves are 0. Evaluation goes as follows: two
evaluators are each given a function key which includes
a distinct initial random state (s, t) ∈ {0, 1}λ × {0, 1}.
Each evaluator starts from the root, at each step i goes
down one node in the tree and updates his state de-
pending on the bit x[i] using a common correction word
CW (i) ∈ {0, 1}2(λ+1) from the function key. At the end
of the computation, each evaluator outputs t. As long
as x[i] = α[i], the evaluators stay on the special path
and because the input x is public and common to them,
they both follow the same path. If a bit x[i] 6= α[i] is
met, they leave the special path and should output 0 ;
else, they stay on it all the way down, which means that
x = α and they should output 1.
Intuition. The main idea is that while they are on the
special path, evaluators should have states (s0, t0) and
(s1, t1) respectively, such that s0 and s1 are i.i.d. and
t0 ⊕ t1 = 1. When they leave it, the correction word
should act to have s0 = s1 but still indistinguishable
from random and t0 = t1, which ensures t0 ⊕ t1 = 0. To
reconstruct the result in plaintext, each evaluator should
output its tj and the result will be given by t0⊕ t1. The
formal description of the protocol is given below and is
composed of two parts: first, in Algorithm 1, the KeyGen
algorithm consists of a preprocessing step to generate
the functions keys, and then, in Algorithm 2, Eval is
run by two evaluators to perform the equality test. It
takes as input the private share held by each evalua-
tor and the function key that they have received. They
use G : {0, 1}λ → {0, 1}2(λ+1), a pseudorandom genera-
tor (PRG), where the output set is {0, 1}λ+1×{0, 1}λ+1,
and operations modulo 2n implicitly convert back and
forth n-bit strings into integers.

Fig. 1. (Above) Binary decision tree with the special path for
n = 3. Given an input x = x[1] . . . x[n], at each level i, one
should take the path labeled by the value in the square equal to
the bit value x[i]. (Below) Flat representation of the tree.

Correctness. Intuitively, the correction words CW (i)

are built from the expected state of each evaluator on
the special path, i.e., the state that each should have
at each node i if it is on the special path given some
initial state. During evaluation, a correction word is ap-
plied by an evaluator only when it has t = 1. Hence, on
the special path, the correction is applied only by one
evaluator at each bit. If at step i, the evaluator stays on
the special path, the correction word compensates the
current states of both evaluators by xor-ing them with
themselves and re-introduces a pseudorandom value s
(either sR

0 ⊕ sR
1 or sL

0 ⊕ sL
1), which means the xor of their

states is now (s, 1) but those states are still indistin-
guishable from random.

On the other hand, if x[i] 6= α[i], the new state takes
the other half of the correction word, so that the xor
of the two evaluators states is (0, 0). From there, they
have the same states and both have either t = 0 or t = 1.
They will continue to apply the same corrections at each
step and their states will remain the same, meaning that
t0⊕t1 = 0. A final computation is performed to obtain a
shared [[T ]] modulo 2n of the result bit t = t0⊕t1 ∈ {0, 1}.
Security. From the privacy point of view, when the seed
s is random, G(s) is indistinguishable from random (this
is a pseudorandom bit-string). Each half is used either
in the cw or in the next state, but not both. Therefore,
the correction words CW (i) do not contain information
about the expected states and for j = 0, 1, the output kj
is independently uniformly distributed with respect to
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Initialisation: Sample random α
$← Z2n

Sample random s
(1)
j

$← {0, 1}λ and set t(1)
j ← j, for j = 0, 1

1 for i = 1..n do
2 (sL

j || tLj , sR
j || tRj )← G(s(i)

j ) ∈ {0, 1}λ+1 × {0, 1}λ+1, for j = 0, 1
3 if α[i] then cw(i) ← (0λ || 0, sL

0 ⊕ sL
1 || 1)

4 else cw(i) ← (sR
0 ⊕ sR

1 || 1, 0λ || 0);
5 CW (i) ← cw(i) ⊕G(s(i)

0 )⊕G(s(i)
1 ) ∈ {0, 1}λ+1 × {0, 1}λ+1

6 statej ← G(s(i)
j )⊕ (t(i)j · CW (i)) = (statej,0, statej,1), for j = 0, 1

7 Parse s(i+1)
j || t(i+1)

j = statej,α[i] ∈ {0, 1}λ+1, for j = 0, 1

8 CW (n+1) ← (−1)t
(n+1)
1 ·

(
1− s(n+1)

0 + s
(n+1)
1

)
mod 2n

9 return kj ← [[α]]j || s(1)
j || CW (1) || · · · || CW (n+1), for j = 0, 1

Algorithm 1: KeyGen: function key generation for equality (from [15])

Input: (j, kj , [[y]]j) where j ∈ {0, 1} refers to the evaluator id
1 Parse kj as [[α]]j || s(1) || CW (1) || · · · || CW (n+1)

2 Publish [[α]]j + [[y]]j mod 2n and get revealed x = α+ y mod 2n

3 Let t(1) ← j

4 for i = 1..n do
5 state← G(s(i))⊕ (t(i) · CW (i)) = (state0, state1)
6 Parse s(i+1) || t(i+1) = statex[i]
7 return [[T ]]j ← (−1)j ·

(
t(n+1) · CW (n+1) + s(n+1)) mod 2n

Algorithm 2: Eval: evaluation of the function key for the equality test y = 0 (from [15])

α and s(1)
1−j , in a computational way. As a consequence,

at the end of the evaluation, for j = 0, 1, [[T ]]j also fol-
lows a distribution independent of α. Until the shared
values are reconstructed, even a malicious adversary can-
not learn anything about α nor the inputs of the other
player.
Implementation. Function keys should be computed
by a third party dealer and sent to the evaluators in ad-
vance, which requires one extra communication of the
size of the keys. We use the trick of [15] to reduce the
size of each correction word in the keys, from 2(1+λ) to
(2 + λ) by reusing the pseudo-random λ-bit string ded-
icated to the state used when leaving the special path
for the state used for staying onto it, since for the lat-
ter state the only constraint is the pseudo-randomness
of the bitstring. Regarding the PRG, we use a Matyas-
Meyer-Oseas one-way compression function with an
AES block cipher, as in [36] or [61]. We concatenate
several fixed key block ciphers to achieve the desired
output length: G(x) = Ek1(x) ⊕ x || Ek2(x) ⊕ x || . . . .
Using AES helps us to benefit from hardware accelera-
tion: we used the aesni Rust library for CPU execution
and the csprng library of PyTorch for GPU. More de-

tails about implementation can be found in Appendix
C.1.

3.2 Comparison

Our main contribution to the function secret sharing
scheme is for the comparison function, which is inten-
sively used in neural network to build non-polynomial
activation functions like ReLU: we build on the idea of
the equality test to provide a synthetic and efficient pro-
tocol whose structure is very close to the previous one,
and improves upon the former DIF scheme of [15] by
significantly reducing the key size.

3.2.1 Intuition

Instead of seeing the special path as a simple path, we
can see it as a frontier for the zone in the tree where
x ≤ α. To evaluate x ≤ α, we could evaluate all the
paths on the left of the special path and then sum up
the results, but this is highly inefficient as it requires
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Fig. 2. (Above) Binary decision tree with all the paths corre-
sponding to x ≤ α for n=3. (Below) Flat representation of the
tree.

exponentially many evaluations. The key idea here is to
evaluate all these paths at the same time, noting that
each time one leaves the special path, it either falls on
the left side (i.e., x < α) or on the right side (i.e., x > α).
Hence, we only need to add an extra step at each node
of the evaluation, where depending on the bit value x[i],
we output a leaf label which is 1 only if x[i] < α[i] and
all previous bits are identical. Only one label between
the final label (which corresponds to x = α) and the leaf
labels can be equal to one, because only a single path
can be taken. Therefore, evaluators will return the sum
of all the labels to get the final output.

3.2.2 Correctness

Correctness of the comparison protocol. Consider
(k0, k1) generated by KeyGen (Algorithm 3) with a ran-
dom offset α ∈ Z2n . Consider a public input x ∈ Z2n .
Let us show that Eval(0, k0, x) + Eval(1, k1, x) = (x ≤ α)
mod 2n, where (x ≤ α) ∈ {0, 1}. We add a subscript 0 or
1 to the variables of Algorithm 4 to identify the party
to which they belong.

Consider i ∈ [1, n] such that the evaluators remained
on the special path until i (i.e. ∀j < i, x[j] = α[j]).
In particular, G(s(i)

0 ) ⊕ G(t(i)0 · CW (i)) ⊕ (s(i)
1 ) ⊕ (t(i)1 ·

CW (i)) = cw(i). Let us study the 4 possible cases
and show that 1) (outi,0 + outi,1 mod 2n) ∈ {0, 1}; 2)
outi,0 + outi,1 = 1 mod 2n ⇐⇒ x[i] < α[i]; and 3)
the evaluators stay on the special path if and only if
x[i] = α[i].

– If x[i] = 0, we keep the left part of state′ at line 4.
– If α[i] = 1, we have τ (i+1)

0 ⊕ τ (i+1)
1 = 1. Thanks

to line 10 of KeyGen, we have outi,0 + outi,1 =(
τ

(i+1)
0 − τ (i+1)

1

)
CW

(i)
leaf + (σ(i+1)

0 − σ(i+1)
1 ) =

(1 − 2τ (i+1)
1 )(−1)τ

(i+1)
1 (σ(i+1)

1 − σ
(i+1)
0 + 1) +

(σ(i+1)
0 − σ

(i+1)
1 ) = 1 mod 2n. We also have

t
(i+1)
0 ⊕ t(i+1)

1 = 0 and s
(i+1)
0 ⊕ s(i+1)

1 = 0, so
the evaluators leave the special path.

– If α[i] = 0, we use line 5 of KeyGen to
generate cw(i), so σ

(i+1)
0 ⊕ σ

(i+1)
1 = 0 and

τ
(i+1)
0 ⊕ τ

(i+1)
1 = 0. Hence, outi,0 + outi,1 =(

τ
(i+1)
0 − τ (i+1)

1

)
CW

(i)
leaf +(σ(i+1)

0 −σ(i+1)
1 ) = 0

mod 2n. We also have t(i+1)
0 ⊕ t

(i+1)
1 = 1 and

s
(i+1)
0 , s

(i+1)
1 stay on the special path.

– If x[i] = 1, we keep the right part of state′ at line 4.
– If α[i] = 1, we use line 4 of KeyGen to gener-

ate cw(i), so σ
(i+1)
0 ⊕ σ(i+1)

1 = 0 and τ
(i+1)
0 ⊕

τ
(i+1)
1 = 0. Hence, similarly as the case where

(x[i], α[i]) = (0, 0), we have outi,0 + outi,1 = 0
mod 2n and the evaluators stay on the special
path.

– If α[i] = 0, we use line 5 of KeyGen and get
cw(i) =

(
(sR

0 ⊕ sR
1 || 1, 0λ || 0), (0λ || 0, σL

0 ⊕
σL

1 || 1)
)
. We keep the right part of state′

at line 9 of KeyGen for CW
(i)
leaf . We use the

same right part at line 5 of Eval, so we have
τ

(i+1)
0 ⊕ τ

(i+1)
1 = 1. Finally, outi,0 + outi,1 =(

τ
(i+1)
0 − τ (i+1)

1

)
CW

(i)
leaf + (σ(i+1)

0 − σ(i+1)
1 ) =

(1 − 2τ (i+1)
1 )(−1)τ

(i+1)
1 (σ(i+1)

1 − σ
(i+1)
0 + 0) +

(σ(i+1)
0 − σ

(i+1)
1 ) = 0 mod 2n. We also have

t
(i+1)
0 ⊕ t(i+1)

1 = 0 and the evaluators leave the
special path.

If the evaluators leave the special path at step i,
their bistrings remain equal until the end of the eval-
uation: ∀j ∈ [i, n + 1], s(j)

0 = s
(j)
1 and σ

(j)
0 = σ

(j)
1 , so

∀j ∈ [i, n+ 1], outj,0 + outj,1 = 0 mod 2n.
Finally, if the evaluators never leave the special path

(i.e. x = α), we have ∀j ∈ [1, n], outj,0 + outj,1 = 0
mod 2n, and outn+1,0 + outn+1,1 = 1. Indeed, step n+ 1
is identical to the equality case (Algorithm 2).

In the end, the sum [[T ]]j of the outi’s is a share of
1 either if outn+1 was a share of 1 (i.e. x = α) or if one
of the other outi was a share of 1, which is possible only
if α[i] = 1 and x[i] < α[i] (i.e. x < α). Otherwise (i.e.
x > α), [[Tj ]] is a share of 0.

Failure rate of the sign protocol. Algorithm 5
details how we build a sign protocol thanks to our com-
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Initialisation: Sample random α
$← Z2n

Sample random s
(1)
j

$← {0, 1}λ and set t(1)
j ← j, for j = 0, 1

1 for i = 1..n do
2 for j = 0, 1 do
3 ((sL

j || tLj , sR
j || tRj ), (σL

j || τL
j , σ

R
j || τR

j ))← G(s(i)
j ) ∈ {0, 1}λ+1 × {0, 1}λ+1 × {0, 1}n+1 × {0, 1}n+1

4 if α[i] then cw(i) ←
(
(0λ || 0, sL

0 ⊕ sL
1 || 1), (σR

0 ⊕ σR
1 || 1, 0λ || 0)

)
5 else cw(i) ←

(
(sR

0 ⊕ sR
1 || 1, 0λ || 0), (0λ || 0, σL

0 ⊕ σL
1 || 1)

)
;

6 CW (i) ← cw(i) ⊕G(s(i)
0 )⊕G(s(i)

1 )
7 for j = 0, 1 do
8 statej ← G(s(i)

j )⊕ (t(i)j · CW (i)) = ((statej,0, statej,1), (state′j,0, state′j,1))
9 Parse s(i+1)

j || t(i+1)
j = statej,α[i] and σ

(i+1)
j || τ (i+1)

j = state′j,1−α[i]

10 CW
(i)
leaf ← (−1)τ

(i+1)
1 ·

(
α[i]− σ(i+1)

0 + σ
(i+1)
1

)
mod 2n

11 CW
(n+1)
leaf ← (−1)t

(n+1)
1 ·

(
1− s(n+1)

0 + s
(n+1)
1

)
mod 2n

12 return kj ← [[α]]j || s(1)
j || (CW (i))i=1..n || (CW (i)

leaf )i=1..n+1, for j = 0, 1

Algorithm 3: KeyGen: function key generation for comparison x ≤ α (new)

Input: (j, kj , x) where j ∈ {0, 1} refers to the evaluator id
1 Parse kj as [[α]]j || s(1) || (CW (i))i=1..n || (CW (i)

leaf )i=1..n+1

2 Let t(1) ← j

3 for i = 1..n do
4 state← G(s(i))⊕ (t(i) · CW (i)) = ((state0, state1), (state′0, state′1))
5 Parse s(i+1) || t(i+1) = statex[i] and σ(i+1) || τ (i+1) = state′x[i]

6 outi ← (−1)j ·
(
τ (i+1) · CW (i)

leaf + σ(i+1)
)

mod 2n

7 outn+1 ← (−1)j ·
(
t(n+1) · CW (n+1)

leaf + s(n+1)
)

mod 2n

8 return [[T ]]j ←
∑
i outi mod 2n

Algorithm 4: Eval: evaluation of the function key for comparison x ≤ α (new)

parison primitive (Algorithm 4), following the secret
sharing workflow introduced in Section 2.1. Our sign
protocol can fail if y+α wraps around and becomes neg-
ative. We cannot act on α because it must be completely
random to act as a perfect mask and to make sure the
revealed x = y+α mod 2n does not leak any information
about y, but the smaller y is, the lower the error proba-
bility will be. [16] suggests a method which uses 2 invo-
cations of the protocol to guarantee perfect correctness
but because it incurs an important runtime overhead,
we rather show that the failure rate of our comparison
protocol is very small and is reasonable in contexts that
tolerate a few mistakes, as in machine learning. Consider
y ∈ [−2n−1, 2n−1−1], a pair of comparison keys (k0, k1),
and note Ŝign(y) := Sign(0, k0, [[y]]0) + Sign(1, k1, [[y]]1)
mod 2n the reconstructed result of the sign protocol. We

have Pr
[
Ŝign(y) 6= 1[y ≤ 0]

]
= |y|/2n ≤ Y/2n where Y

is the maximum amplitude for |y|.
We quantify this failure rate on real world examples,

namely on Network-2 and on the 64×64 Tiny Imagenet
version of VGG16, with a fixed precision of 3 decimals,
and find respective failure rates of 1 in 4 millions com-
parisons and 1 in 100 millions comparisons, which is low
compared to the number of comparisons needed for an
evaluation, respectively ∼ 10K and ∼ 1M. In practice,
such error rates do not affect the model accuracy, as
Table 4 shows.

3.2.3 Security

The formal proof of security is provided in Appendix A.
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Input: (j, kj , [[y]]j) where j ∈ {0, 1} refers to the evaluator id
1 Parse the first n bits of kj as [[α]]j
2 Publish [[α]]j + [[y]]j and get revealed x = α+ y mod 2n

3 return [[T ]]j ← Eval(j, kj , x)

Algorithm 5: Sign: protocol for sign([[y]])

3.2.4 Implementation and Communication
Complexity

In all these computations modulo 2n, the bitstrings
s

(i)
j and σ

(i)
j are respectively in {0, 1}λ and {0, 1}n,

where we have typically λ = 128 and n = 32. The
PRG used here is G : {0, 1}λ → {0, 1}2(λ+1)+2(n+1)

where the output is seen as a pair of pairs of elements
in
(
{0, 1}λ+1 × {0, 1}λ+1)×({0, 1}n+1 × {0, 1}n+1). For

the right-hand part, we only need n bits instead of λ
bits since the σ(i) deriving from the PRG are not used
for anything other than masking the n-bit output. This
allows us to use fewer AES block ciphers in our PRG im-
plementation and hence to achieve faster computation.
In addition, because our comparison protocol works very
similarly to the equality protocol, we can reuse the trick
that consists of reusing randomness of the state corre-
sponding of leaving the special area for the state corre-
sponding of staying into it, as it does not compromise
the fact that this state only needs to be pseudo-random.
Thanks to this, we almost divide by 2 the size of the
CW (i) from 2(λ+1)+2(n+1) to λ+2+n+2. Compared
to the previous Distributed Interval Function (DIF) pro-
tocol of [15], our algorithm is not only much simpler as
it does not require inspecting binary trees and searching
for paths, but it also reduces significantly the key size
from roughly n(4λ+n) to n(λ+2n+4)+λ+2n bits. This
allows for faster transmission of keys over the network
to the parties doing the evaluation.

4 Application to Deep Learning
We now apply these primitives to a private deep learn-
ing setup in which a model owner interacts with a data
owner. The data and the model parameters are sensitive
and are secret shared to be kept private. The shape of
the input and the architecture of the model are however
public, which is a standard assumption in secure deep
learning [44, 46].

4.1 Additive Sharing Workflow with
Preprocessing

All our operations are modular and follow this additive
sharing workflow: inputs are provided secret shared and
are masked with random values before being revealed.
This disclosed value is then consumed with preprocessed
function keys to produce a secret shared output. Each
operation is independent of all surrounding operations,
which is known as circuit-independent preprocessing [16]
and implies that key generation can be fully outsourced
without having to know the model architecture. This
results in a fast runtime execution with a very efficient
online communication, with a single round of commu-
nication and a message size equal to the input size for
comparison.

Additionally, values need to be converted from float
to fixed point precision before being secret shared. The
fixed point representation allows one to store decimal
values with some approximation using n-bits integers.
For example, when using a fixed precision of 3, a decimal
value x is stored as

⌊
x · 103⌋ in Z2n . Fixed precision is

used to simplify operations like addition because the
inputs can be summed up directly in Z2n .

4.2 Common Machine Learning
Operations

ReLU activation function is supported as a direct ap-
plication of our comparison protocol, which we combine
with a point wise multiplication. As mentioned in Sec-
tion 2, this construction is not exact and is associated
with an error rate which is below 1 in a million for
typical ML computations. The comparison made in Ta-
ble 4 between fixed point and private evaluation of pre-
trained models shows that this error rate does not affect
model accuracy.
Matrix Multiplication (MatMul), as mentioned by
[16], fits in this additive sharing workflow. We use
Beaver triples [6] to compute [[z]] = [[x · y]] from [[x]], [[y]]
and using a triple ([[a]], [[b]], [[c]] := [[a ·b]]), where all values
are secret shared in Z2n . The mask is here [[(−a,−b)]]
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and is used to reveal (δ, ε) := (x− a, y − b). The func-
tional keys are the shares of ([[a]], [[b]], [[c]]) and are used to
compute δ · [[b]] + ε · [[a]] + δ · ε+ [[c]] = [[z]]. Matrix multi-
plication is identical but uses matrix Beaver triples [46].
Convolution can also be computed using Beaver
triples. Using the previous notations, we can now con-
sider y to be the convolution kernel, and the operation
· now stands for the convolution operator. We use this
method for the CPU and GPU implementations, which
enables us to use the PyTorch Conv2d function to com-
pute the · operation. Note that convolution can also be
computed as a matrix multiplication using an unrolling
technique as described in [19], but it incurs an overhead
in terms of communication because the unrolled matrix
is bigger than the original one when the stride is smaller
than the kernel size. More details about unrolling can
be found in Appendix C.2 with Figure 3.
Argmax is used to determine the predicted label for
classification tasks (i.e. compute the index of the high-
est value of the last layer). Algorithm 6 shows how to
compute this operator in a constant number of rounds
using pairwise comparisons, in a fashion similar to [29].
This algorithm outputs the indices in the one-hot for-
mat, meaning that the output vector is of a similar
shape to the input, and contains 1 where the maxi-
mum was found and 0 elsewhere. This protocol does
not guarantee one-hot output: if the last layer outputs
two identical maximum values, both will be retrieved.
This sounds acceptable for machine learning evaluation
as it informs that the model cannot choose between two
classes. For training, the output signal only needs to
be normalized. Probabilistic techniques are available to
break ties, which only require an additional comparison.

In our algorithm, the first loop (line 2) requires
m(m − 1) parallel comparisons, and the second loop
(line 4) requires m equality checks. Hence, the argmax
uses 2 rounds of communication and sends O(m2) val-
ues over the network. This is reasonable for a neural
network where the number of outputs m is about 100 or
less.
MaxPool can be implemented by combining the ideas
of the unrolling-based convolution and the argmax: the
matrix is first unrolled like in Figure 3 and the argmax of
each row is then computed using parallel pairwise com-
parisons. This argmax is then multiplied with the row
to get the maximum value, and the matrix is rolled back.
These steps are illustrated in Figure 4 in Appendix C.3
and is formally described in Algorithm 7. It requires 3
rounds of communication, but we also provide an opti-
mization when the kernel size k equals 2, which reduces

Input: [[x1]], . . . , [[xm]]
Output: arg maxi∈[1,m] xi

1 for j ∈ [1,m] do
2 [[sj ]]←

∑
i 6=j [[xi − xj ≤ 0]]

3 for j ∈ [1,m] do
4 [[δj ]]← [[sj = m− 1]]
5 return [[δ1]], . . . , [[δm]]

Algorithm 6: Argmax functionality using FSS

the computation complexity by a factor 4× but uses an
additional round of communication, and is very useful
for some deep models such as VGG16.

Input: [[X]] = ([[xi,j ]])i,j=1...m
Output: [[MaxPool(X, k)]]

1 Set n = b(m− k)/s+ 1c
2 Define [[Xunrolled]] of shape n2 × k2

3 Define [[~y]] of size n2

4 for i, j ∈ [0, s, 2s, . . . ,m− k] do
5 [[xunrolled

i,j ]] = ([[xi,j ]], . . . , [[xi+k,j+k]])
6 for i ∈ [0, n2 − 1] do
7 [[yi]]← 〈[[~xi]],Argmax([[~xi]])〉
8 where [[~xi]] = [[xi,0]], . . . , [[xi,k2 ]]
9 return ~y reshaped as a n× n matrix.

Algorithm 7: MaxPool functionality using FSS.
k is the kernel size, the stride is fixed to 2,
padding to 0 and dilation to 1.

BatchNorm is implemented using Newton’s method
as in [60] to implement the square inverse of the vari-
ance, as computing batch normalization exactly in a
private way is very costly [59]. Given an input ~x =
(x0, . . . , xm−1) with mean µ and variance σ2, we return
γ · θ̂ · (~x− µ) + β. Variables γ and β are learnable pa-
rameters and θ̂ is the estimate inverse of

√
σ2 + ε with

ε� 1 and is computed iteratively as such:

θi+1 = θi ·
(C + 1)− (σ2 + ε) · θ2

i

C

Compared to [60], we do not make any costly initial
approximation, therefore instead of C = 2 which corre-
sponds to the classic Newton’s method, we use higher
values of C (like C = 6 for the intermediate layers) which
can reduce the convergence speed of the method but
spares the initialisation cost.

The requirements on the approximation depend
whether we are doing training or evaluation. If we are
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Table 1. Accuracy of training ResNet18 on the Hymenoptera
classification task with exact or approximated BatchNorm (BN)

BatchNorm init. with Newton Accuracy Average comm.
last batch iterations rounds per BN

Exact - - 93.59 -
Approx. True 3 89.15 9
Approx. False 20 88.24 60
Approx. False 10 84.97 30
Approx. False 3 60.13 9

evaluating a pre-trained secret-shared neural network,
having a very precise approximation is crucial, especially
if the model is deep like ResNet18. Indeed, the deeper
the model is, the more errors in the BatchNorm lay-
ers will propagate in the model and make it unusable.
However, if the model has a running mean and variance
which is the default for PyTorch, we only need to com-
pute once the square inverse of the running variance at
the beginning of the computation.

For training however, we can use less precise ap-
proximations, since the goal of the batch normalization
layer is to normalize the signal and this does not need
to be done exactly as we show. We have found it very
useful to reuse the result of the computation on the
previous batch as an initial guess for the next batch.
Moreover, we observe that for deep networks such as
ResNet18, we can reduce the number of iterations of
the Newton method from 4 to only 3 compared to [60],
except of the first batch (which does not have a proper
initialisation), and for the initial and last BatchNorm
layers. For those layers, which either suffer from a too
high or too low variance, we increase the number of
iterations. For all layers, typical relative error never
exceeds 5% and moderately affects learning capabilities,
as our analysis on ResNet18 shows in Table 1. We train
the model on the Hymenoptera binary classification
task2 using different approximated BatchNorm layers
for which we report the associated number of rounds
per layer when computed in a private way. More details
about our experiments on ResNet18 can be found in
Appendix C.5.

Table 2 summarizes the online communication cost
of each ML operation presented above, and shows that
basic operations such as comparison have a very efficient

2 https://download.pytorch.org/tutorial/hymenoptera_data.zip

online communication. We also report results from [60]
which achieve good experimental performance.

4.3 Training Phase Using Autograd

These operations are sufficient to evaluate real world
models in a fully private way. To also support private
training of these models, we need to perform a private
backward pass. As we overload operations such as con-
volutions or activation functions, we cannot use the
built-in autograd functionality of PyTorch. Therefore,
we have used the custom autograd functionality of the
PySyft library [54], where it should be specified how to
compute the derivatives of the operations that we have
overloaded. Backpropagation also uses the same basic
blocks than those used in the forward pass, including
our private comparison protocol. Therefore, the training
procedure Train described in Algorithm 8 closely follows
the steps of plaintext training, except that the interac-
tions between the secret shared data and model param-
eters use the protocols we have described in Section 4.2.

Input: [[x]], [[yreal]], [[θ]]
Output: [[θ̂]]

1 opt = Optim([[θ]])
2 [[ypred]] = Forward([[θ]], [[x]])
3 ` = L([[ypred]], [[yreal]])
4 [[∇θ]] = Backward(`, [[θ]])
5 [[θ]] = opt([[∇θ]], [[θ]])
6 return [[θ]]

Algorithm 8: Train procedure, that uses data
x to update the model θ. Lines 2 − 5 often
run on batches extracted from [[x]] and hence
are iterated until [[x]] has been completely used.
Optim refers here to the optimizer that im-
plements (stochastic) gradient descent. Forward
and Backward are the forward and backward
passes of the model θ. L is the loss function
(mean square error or cross entropy).

5 Extension to Private Federated
Learning

This 2-party protocol between a model owner and a data
owner can be extended to an n-party federated learning
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Table 2. Theoretical online communication complexity of our protocols. Input sizes into brackets are those of the layers’ parameters,
where k stands for the kernel size and s for the stride. Communication is given in number of values transmitted, and should be multi-
plied by their size (typically 4 bytes). Missing entries mean that data was not available.

Protocol Input size Rounds Online Communication
Ours FALCON [60] ABY3 [45] Ours FALCON [60] ABY3 [45]

Equality m 1 - 2 m - ∼ λm
Comparison m 1 7 2 m 2m ∼ λm
MatMul m1 ×m2,m2 ×m3 1 1 1 m1m2 +m2m3 m1m3 m1m3

Linear m1 ×m2, {m2 ×m3} 1 1 - m1m2 +m2m3 m1m3 -
Convolution m×m, {k, s} 1 1 - ((m− k)/s+ 1)2k2 + k2 ∼ m2k2 -
ReLU m 2 10 - 3m 4m -
Argmax m 2 - - m2 - -
MaxPool m×m, {k, s} 3 12(k2 − 1) - ((m− k)/s+ 1)2(k4 + 2) ∼ 5m2 -
BatchNorm m×m 9 335 - 18m2 ∼ 56m2 -

protocol where several clients contribute their data to
a model owned by an orchestrator server. We assume
that the clients have the same set of features but have
different samples in their data sets. This approach is
sometimes called Horizontal Federated Learning and is
used widely, like in secure aggregation [12]. The idea
is that the server sends a version of the model to all
clients, so that all clients start training the same model
in parallel using their own data. With a frequency that
varies depending on the settings, the server aggregates
the models produced by each clients and sends back the
aggregated version to be further trained by all clients.
This way, clients federate their effort to train a global
model, without sharing their data. Compared to secure
aggregation [12], we are less concerned with parties drop-
ping before the end of the protocol (we consider institu-
tions rather than phones), and we do not reveal the up-
dated model at each aggregation or at any stage, hence
providing better privacy.

Algorithm 9 shows one possible implementation of
fully private federated learning using 2-party function
secret sharing. It prevents collusion between at most k
out of n clients, the threat being that a client receiv-
ing the share of another client during aggregation phase
could collude with the server to help reconstructing the
model contributed by this client, and infer information
about its private data. This aggregation requires extra
communication rounds but this is in practice negligi-
ble compared to the training procedure Train initiated
between a server and a client. Note that other aggrega-
tion mechanisms could be used, including using n-party
MPC protocols or homomorphic encryption, but we pro-
posed masking as this is quite in line with the concept
of FSS where we mask the private input with α.

6 Experiments
In order to simplify comparison with existing work, we
follow a setup very close to the work of [60]. The rea-
son why we compare our work to [60] is that it provides
the most extensive experiments of private training and
evaluation we are aware of. We are aware that [60] also
provides honest-majority malicious security, but we only
report their results in the honest but curious setting
(where they obtain the best runtimes). We assess private
inference of several networks on the datasets MNIST
[43], CIFAR-10 [39], 64×64 Tiny Imagenet [53, 62] and
224×224 Hymenoptera which is a subset of Imagenet,
and we also benchmark private training on MNIST.
More details about the datasets used can be found in
Appendix E.1. More precisely, we assess 6 networks: a 3
layers fully-connected network (Network-1), a small con-
volutional network with maxpool (Network-2), LeNet
[42], AlexNet [40], VGG16 [58] and ResNet18 [30] which
to the best of our knowledge has never been studied be-
fore in private deep learning. The description of these
networks is available in Appendix E.2.

Our implementation provides a Python interface
and is tightly coupled with PyTorch to provide both the
ease of use and the expressiveness of this library. To use
our protocols that only work in finite groups like Z232 ,
we convert our input values and model parameters to
fixed precision. To do so, we rely on the PySyft library
[54] which extends common deep learning frameworks
including PyTorch with a communication layer for fed-
erated learning and supports fixed precision. The exper-
iments are run on Amazon EC2 using m5d.4xlarge ma-
chines for CPU benchmarks and g4dn.4xlarge for GPU,
both with 16 cores and 64GB of CPU RAM, and we
report our results both in the LAN and in the WAN
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Input: Model on the server S, initialized with parameters θ
Output: Model trained using the data from the clients (Ci)i=1..n

1 Initialisation S secret shares θ with the clients.
2 [[θ]]←share θ

3 for i ∈ [1, n] do
4 [[θi]]←copy [[θ]]
5 S stores [[θi]]0 and sends [[θi]]1 to Ci
6 Training S runs in parallel n training procedures.
7 for i ∈ [1, n] do
8 [[θ̂i]]← Train([[xi]], [[yi]], [[θi]]), where [[xi]] and [[yi]] are the data and corresponding labels from Ci
9 Aggregation All updated models are aggregated with a scheme secure against collusion between the

server and k clients.
10 S computes [[θ̂]]0 :=

∑
i=1..n[[θ̂i]]0

11 C∗
$← (Ci)i=1..n

12 for i ∈ [1, n] do
13 Ci generates k seeds and sends them to Ci+1 mod n, . . . , Ci+k mod n

14 Ci receives k seeds from Ci−k mod n, . . . , Ci−1 mod n

15 Ci derives k random masks (mj)j=1..k from its own seeds
16 Ci derives k random masks (m̂j)j=1..k from the seeds received
17 Ci builds a global mask µi =

∑
j=1..kmj − m̂j

18 Ci sends [[θi]]1 + µi to C∗

19 C∗ receives [[θ̂]]1 :=
∑
i=1..n[[θi]]1 +

∑
i=1..n µi =

∑
i=1..n[[θi]]1.

20 C∗ broadcasts [[θ̂]]1 to all clients.
21 Iterate Training and Aggregation using [[θ̂]] until the training is complete.
22 return [[θ̂]]

Algorithm 9: Federated Learning algorithm using 2-party Function Secret Sharing

setting. Latency is of 70ms for the WAN setting and is
considered negligible in the LAN setting. Last, all values
are encoded on 32 bits.

6.1 Inference Time and Communication

Comparison of experimental runtimes should be taken
with caution, as different implementations and hardware
may result in significant differences even for the same
protocol. We report our online inference runtimes in
Table 3 and show that they compare favourably with
existing work including [44–46, 59, 60]. For example,
our CPU implementation of Network-1 outperforms all
other studied frameworks by at least a factor 2× in the
LAN setting and even more in the WAN setting. For
larger networks such as AlexNet and VGG16, we have
an execution time which is slightly higher than [60].
One reason for this can be that we use a Python in-
terface to serialize messages and communicate between
parties, while [60] uses exclusively C code. However, we
are more communication-efficient than [60] for models

starting from LeNet, with a typical gain of 7% to 30%
on CIFAR-10. Regarding the high advantage we have
on AlexNet and 64×64 Tiny Imagenet, this is explained
by the fact that [60] uses a modified and more complex
AlexNet while we use the one from PyTorch. Details
about our networks architecture is given in Appendix
E.3.

Results are given for a batched evaluation with a de-
fault batch size of 128 to amortize the communication
cost, as in other works compared here. For larger net-
works, we reduce the batch size to have the preprocess-
ing material (including the function keys) fitting into
RAM, which reduces the benefit of amortization. The
exact values chosen are available in Appendix D.

We have also added the results of our GPU imple-
mentation, which offers a clear speed-up compared to
CPU with an execution which is between 10% and 100%
faster. While this already shows the usefulness of using
GPUs, one could expect a greater speed-up. One rea-
son is that classic GPUs currently offer 16GB of RAM,
which is a clear limitation for our work where we store
keys in RAM. Storing the keys on the CPU would come
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Table 3. Comparison of the inference time between secure frameworks on several popular neural network architectures. FALCON,
SecureNN, and ABY3 are 3-party protocols. XONN and Gazelle are 2-party protocols. All protocols are evaluated in the honest-but-
curious setting. For each network we report in order the runtime for computing the preprocessing (if any) using CPUs, the runtime for
the online phase in LAN using CPUs, the runtime for the online phase in LAN using GPUs, the runtime for the online phase in WAN
using CPUs, and the communication needed during the online phase. Runtime is given in seconds and communication in MB. Missing
entries mean that data was not available.

Network-1 Network-2 LeNet
LAN LAN LAN WAN LAN LAN LAN WAN LAN LAN LAN WAN

Framework Dataset Prep. CPU GPU CPU Comm. Prep. CPU GPU CPU Comm. Prep. CPU GPU CPU Comm.
AriaNN MNIST 0.002 0.004 0.002 0.043 0.022 0.028 0.041 0.024 0.133 0.28 0.041 0.055 0.035 0.143 0.43
FALCON MNIST - 0.011 - 0.990 0.012 - 0.009 - 0.760 0.049 - 0.047 - 3.06 0.74
SecureNN MNIST - 0.043 - 2.43 2.1 - 0.130 - 3.93 8.86 - - - - -
XONN MNIST - 0.130 - - 4.29 - 0.150 - - 32.1 - - - - -
Gazelle MNIST 0 0.030 - - 0.5 0.481 0.330 - - 22.5 - - - - -
ABY3 MNIST 0.005 0.003 - - 0.5 - - - - - - - - - -
CrypTFlow MNIST - 0.008 - - - - 0.034 - - - - 0.058 - - -

AlexNet VGG16 ResNet18
LAN LAN LAN WAN LAN LAN LAN WAN LAN LAN LAN WAN

Framework Dataset Prep. CPU GPU CPUComm.Prep. CPU GPU CPU Comm. Prep. CPU GPU CPUComm.
AriaNN CIFAR-10 0.091 0.15 0.078 0.34 0.95 0.94 1.75 1.55 1.99 12.59 - - - - -
FALCON CIFAR-10 - 0.043 - 0.13 1.35 - 0.79 - 1.27 13.51 - - - - -
AriaNN 64×64 ImageNet 0.27 0.33 0.20 0.48 1.75 3.42 7.51 6.83 8.00 53.11 - - - - -
FALCON 64×64 ImageNet - 1.81 - 2.43 19.21 - 3.15 - 4.67 52.56 - - - - -
AriaNN 224×224 Hymenoptera - - - - - - - - - - 10.02 19.88 13.90 24.07 148

Table 4. Accuracy of pre-trained neural network architectures,
evaluated over several datasets in plaintext, fixed precision and
privately using FSS. Time for private evaluation in the LAN
setting is also reported.

LAN Accuracy
Model Dataset time (h) Private Fix prec. Public
Network-1 MNIST 0.01 98.2 98.2 98.2
Network-2 MNIST 0.18 99.0 99.0 99.0
LeNet MNIST 0.24 99.2 99.3 99.3
AlexNet CIFAR-10 0.60 70.3 70.3 70.3
AlexNet 64×64 ImageNet 0.48 38.3 38.6 38.6
VGG16 CIFAR-10 5.19 87.4 87.4 87.4
VGG16 64×64 ImageNet 9.97 55.2 56.0 55.9
ResNet18 Hymenoptera 0.95 94.7 94.7 95.3

at a marginal cost of importing them on the GPU during
the online phase but would allow to use bigger batches
and hence better amortize the computation.

6.2 Test Accuracy

Thanks to the flexibility of our framework, we can train
each of these networks in plaintext and need only one
line of code to turn them into private networks where
all parameters are secret shared, or to fixed precision

Table 5. Accuracy of neural network architectures trained over
several datasets in plaintext, fixed precision and privately using
FSS. Time for private training in the LAN setting is given in
hours per epoch.

LAN time Accuracy
Model Dataset per epoch (h) Private Fix prec. Public Epochs
Network-1 MNIST 0.78 98.0 98.0 98.2 15
Network-2 MNIST 2.8 98.3 99.0 99.0 10
LeNet MNIST 4.2 99.2 99.2 99.3 10

networks where all parameters are converted to fixed
precision but computation is still in plaintext. Compar-
ing the performance of private models with their fixed
precision version helps us to understand if fixed preci-
sion by itself reduces the accuracy of the model, and
gives an estimate of the loss that is related to using
secret shared computation.

We compare the accuracy of several pre-trained net-
works in these 3 modes in Table 4 by running a private
evaluation with FSS, a fixed precision using only PySyft
and a public evaluation where the model is not modified.
We observe that accuracy is well preserved overall and
that converting to fixed precision has no impact on the
accuracy of the model. We have a small reduction in
accuracy for the two private models evaluated on 64×64
ImageNet but it remains close to the plaintext baseline.
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This gap can be explained by the fact that PySyft uses a
basic and approximate private truncation after multipli-
cation where truncation is directly applied on the shares,
and by the error rate of our FSS comparison protocol.
The drop in accuracy on ResNet18 is also minor and
corresponds to a single mislabeled item.

If we degrade the encoding precision which by de-
fault considers values in Z232 , or the fixed precision
which is by default of 4 decimals, performance degrades
as shown in Appendix B.

6.3 Training Accuracy

We have also assessed the ability of training neural net-
works from scratch in a private way using AriaNN. Pri-
vate training is an end-to-end private procedure, which
means the model or the gradients are never accessible
in plaintext. We use stochastic gradient descent (SGD)
with momentum, a simple but popular optimizer, and
support several losses such as mean square error (used
for Network-1) and cross entropy (used for Network-2
and LeNet). We report the runtime and accuracy ob-
tained by training from scratch and evaluating several
networks in Table 5, in plaintext, in fixed precision and
in a fully private way, just as we did for inference. Note
that because of the training setting, accuracy might not
match best known results, but the training procedure
is the same for all training modes which allows for fair
comparison.

We observe that the training is done almost per-
fectly both in fixed precision and private mode com-
pared to the plaintext counterpart. The only notice-
able difference we observe is for Network-2, where the
privately-trained model achieves 98.3% while 99.0% is
expected. The fixed-precision accuracy which is 99.0%
suggests that our autograd functionality is working
properly, so the difference must be explained by the
small failure rate of FSS. Training profiles show that
the accuracy starts decreasing roughly after 3 epochs,
while it is supposed to keep increasing smoothly up to
the 10th epoch. Instability caused by some FSS failures
could account for this behaviour. However, training on
LeNet did not suffer from the same phenomenon.

Recently, [21] also reports accuracy results when
training securely Network-1 on MNIST, using a 3-party
semi-honest protocol that mixes [45] and [4]. They
achieve 97.8 % of accuracy in 15 epochs with a run-
time of only 33.8s per epoch in the LAN setting. How-
ever, they do not provide a detailed comparison between
the accuracy achieved with private training, and clear-

text training. One major difference with our work is
that we are more communication efficient. We only re-
quire 10.3MB of communication during the online phase
while they use 33.8MB per epoch. In addition, they rely
on ABY3, which mean they use much more interaction
rounds, which could be costly in the WAN setting al-
though this is not monitored by this work.

Training cannot complete in reasonable time for
larger networks such as VGG16, which in practice might
be fine-tuned rather than trained from scratch. Note
that training time includes the time spent building the
preprocessing material, as it is too large to be fully pro-
cessed and stored in RAM in advance.

6.4 Computation and Communication
Analysis

We have provided in Table 6 a small analysis of how the
compute time can be decomposed. We use AlexNet on
the Tiny Imagenet dataset as it is the biggest network
on which we could use a batch size higher than 64 both
on CPU and GPU and hence amortize the serialization
and communication cost.

Table 6. Distribution of the compute time during inference of
AlexNet on the Tiny Imagenet dataset using either CPUs or
GPUs.

MatMul and Serialization
Processor FSS Convolution and Deser. Other
CPU 16% 72% 4% 8%

53ms 238ms 13ms 26ms
GPU 51% 39% 8% 2%

102ms 78ms 16ms 4ms

Thanks to the efficiency of our Rust implementation,
function secret sharing only accounts for 16% for the on-
line runtime when we use CPUs, and most of the time
is spent doing matrix multiplications and convolutions.
This last part uses the underlying PyTorch functions on
integers which are significantly slower than when they
run on floats. This motivates us to use GPUs for which
such operations are far more efficient. In the GPU set-
ting, the distribution of time is indeed much more bal-
anced, and having function secret sharing directly run-
ning on GPUs avoids going back and forth between the
CPU and the GPU.

Regarding the trade-off between computation and
communication time, we show in Table 7 that in the
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WAN setting and using CPUs, computation appears
to be the main bottleneck especially for bigger models.
This also encourages us to further improve the GPU im-
plementation, as any optimization of the computation
efficiency will have an important impact on the overall
runtime.

Table 7. Proportion of the overall runtime spent on computation
versus communication, in the WAN setting using CPUs

Model Dataset Computation (%) Comm. (%)
Network-1 MNIST 9 91
Network-2 MNIST 31 69
LeNet MNIST 38 62
AlexNet CIFAR-10 44 56
AlexNet 64×64 ImageNet 69 31
VGG16 CIFAR-10 88 12
VGG16 64×64 ImageNet 93 7
ResNet18 Hymenoptera 83 17

6.5 Discussion

Regarding experiments on larger networks, we could not
use batches of size 128. This is mainly due to the size of
the comparison function keys, which is currently propor-
tional to the size of the input tensor, with a multiplica-
tive factor of nλ where n = 32 and λ = 128. Optimizing
the function secret sharing protocol to reduce the size
of those keys would allow to better amortize batched
computations and would also reduce the runtime as we
would manipulate smaller arrays during the private com-
parison. An interesting other improvement would be to
run experiments on n = 16 bits instead of 32. Classic ML
frameworks like PyTorch or TensorFlow now support 16
bits encoding both on CPU and GPU.

We have proposed a first implementation of FSS on
GPU, which can still be improved to reduce the memory
footprint of they keys. Further efforts could be made to
decrease it roughly by 50% to match the theoretical key
size. In addition, and as the small difference between the
LAN and the WAN runtime shows, especially for bigger
networks, most of the time is now spent on computation.
Therefore, optimizing computation on GPUs will have
a direct impact on the overall efficiency of the inference
or the training.

We have shown the relevance of using FSS for pri-
vate training and evaluation of models in machine learn-
ing. Compared to concurrent works like [13], we have

shown that we have very competitive protocols, and that
the failure rate of the comparison protocol has no im-
pact for machine learning applications. Our protocol has
been used in one recent work [34] where it was applied
to the field of medical imaging on chest X-rays.

7 Conclusion
In this work, we improve over the best known proto-
cols for private comparison using function secret shar-
ing by reducing the keys size by almost a factor ×4.
We show how this new algorithm helps us implement
efficient machine learning components and we provide
constructions for ReLU and MaxPool with only 2 and
3 rounds of communication. Additionally, we show that
AriaNN can implement a large diversity of neural net-
works, from convolutional networks to ResNet18, which
are very competitive in terms of runtime and commu-
nication compared to existing work. Last, we provide
an implementation of AriaNN which can run both on
CPU and GPU, providing promising runtime improve-
ments for the next generation of hardware accelerated
privacy-preserving machine learning models.
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A FSS Comparison Protocol -
Security Proof

For this proof, we follow the same process than [15].
We prove that each party’s key kj is pseudorandom. This
is done via a sequence of hybrid distributions, where in
each step we replace two correction words CW (i) and
CW

(i)
leaf within the key from being honestly generated

to being random. In the initial game, all the correction
words are as in the real distribution, and in the last
game, they are all random. As every gaps are indistin-
guishable for any polynomially-bounded adversary, the
real distribution is indistinguishable from random: this
proves the pseudo-randomness of the keys.

The high-level argument for security will go as fol-
lows. Each party j ∈ {0, 1} begins with a share [[α]]j and
a random seed s(1)

j that are completely unknown to the
other party. In each level of key generation (for i = 1 to
n), the parties apply a PRG to their seed s(i)

j to gener-
ate 8 items: namely, 2 seeds sL

j , s
R
j , 2 bits tLj , tRj , 2 n-bits

values σL
j , σ

R
j and 2 other bits τL

j , τ
R
j . This process is al-

ways done on a seed which appears completely random
given the view of the other party. Hence, the security of
the PRG guarantees that the 8 resulting values appear
similarly random given the view of the other party. The
ith level correction word CW (i) will “use up” the secret
randomness of 3 of the 4 first pieces: the two bits tLj , tRj ,
and the seed sLose

j corresponding to the direction exiting
the special path i.e. Lose = L if α[i] = 1 and Lose = R if
α[i] = 0. However, given this CW (i), the remaining seed
sKeep
j for Keep 6= Lose is still unpredictable to the other
party, as it is kept hidden. Similarly, the ith level cor-
rection word CW

(i)
leaf uses up the secret randomness of

the 4 last pieces, σL
j , σ

R
j and τL

j , τ
R
j , and appears random

given the view of the other party. The argument is then
continued in similar fashion to the next level, which uses
sKeep
j as an input to the PRG.

For each i ∈ {0, 1, . . . , n + 1}, we will consider a
hybrid distribution Hybi defined roughly as follows, for
j ∈ {0, 1}:

1. s(1)
j

$← {0, 1}λ chosen at random (honestly), and
t
(1)
j = j.

2. CW (1), . . . , CW (i) ← {0, 1}2(λ+n+2) and
CW

(1)
leaf , . . . , CW

(i)
leaf ← {0, 1}

n chosen at random.
3. For k < i, s

(k+1)
j ||t(k+1)

j , σ
(k+1)
j ||τ (k+1)

j com-
puted honestly, as a function of s(0)

j || t(0)
j and

CW (1), . . . , CW (k).

http://cs231n.stanford.edu/reports/ 2017/pdfs/930.pdf
http://cs231n.stanford.edu/reports/ 2017/pdfs/930.pdf
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4. For i, the other party’s seed s(i)
1−j ← {0, 1}λ is chosen

at random, t(i)1−j = 1− t(i)j , σ(i)
1−j = σ

(i)
j , and τ (i)

1−j =
τ

(i)
j .

5. For k ≥ i: the remaining values s(k+1)
j || t(k+1)

j

, s
(k+1)
1−j || t

(k+1)
1−j , CW (k), σ

(k+1)
j || τ

(k+1)
j ,

σ
(k+1)
1−j || τ (k+1)

1−j , CW (k)
leaf all computed honestly, as

a function of the previously chosen values.
6. The output of the experiment is kj :=

[[α]]j || s(1)
j || (CW (i))i=1..n || (CW (i)

leaf )i=1..n+1.

Hybi is formally described in Algorithm 10. When
i = 0, the algorithm corresponds to the honest key
generation, while when i = n + 1, it generates a com-
pletely random key. We only need to prove that for any
i ∈ {1, . . . n+ 1}, Hybi−1 and Hybi are indistinguishable
based on the security of our PRG.

More precisely, let us first consider i ≤ n.

Claim A.1. There exists a polynomial p′ such that for
any (T, εPRG)-secure pseudorandom generator G, then
for every i ≤ n, j ∈ {0, 1}, and every non-uniform ad-
versary A running in time T ′ ≤ T − p′(λ), it holds that∣∣Pr[kj ← Hybi−1(1λ, j); c← A(1λ, kj) : c = 1] −

Pr[kj ← Hybi(1λ, j); c← A(1λ, kj) : c = 1]
∣∣ < εPRG

Proof. Let’s fix i ∈ {1, . . . n}, j ∈ {0, 1}. Let A be a
Hyb-distinguishing adversary with advantage ε for these
values. We use A to construct a corresponding PRG ad-
versary B. Recall that in the PRG challenge for G, the
adversary B is given a value r that is either computed
by sampling a seed s← {0, 1}λ and computing r = G(s),
or is sampled truly at random r ← {0, 1}2(λ+n+2). Al-
gorithm 11 describes the PRG challenge of B embedded
in the Hyb-distinguishing challenge of A.

Now, consider B’s success in the PRG challenge as
a function of A’s success in distinguishing Hybi−1 from
Hybi. This means that if A succeeds, then B will suc-
ceeds at its challenge, which implies Claim A.1. If, in
Algorithm 11, r is computed pseudorandomly using the
PRG, then it is clear the generated kj is distributed as
Hybi−1(1λ, j).

It remains to show that if r was sampled at ran-
dom then the generated kj is distributed as Hybi(1λ, j).
That is, if r is random, then the corresponding
computed values of s

(i+1)
1−j , CW (i) and CW

(i)
leaf are

distributed randomly conditioned on the values of
s

(1)
j || t(1)

j || (CW (i))i=1..i−1 || (CW (i)
leaf )i=1..i−1, and

the value of t(i)1−j is given by 1 − t(i)j . Note that all re-

maining values (for k > i) are computed as a function
of the values computed up to step i.
First, consider CW (i), which is computed as such:

CW (i) = cw(i) ⊕G(s(i)
j )⊕ r

In particular, when α[i] = 1:

cw(i) ⊕ r
=
(
(0λ || 0, sL

0 ⊕ sL
1 || 1), (σR

0 ⊕ σR
1 || 1, 0λ || 0)

)
⊕
(
(sL

1−j || tL1−j , sR
1−j || tR1−j),

(σL
1−j || τL

1−j , σ
R
1−j || τR

1−j)
)

=
(
(0λ || 0, sL

j || 1), (σR
j || 1, 0λ || 0)

)
⊕
(
(sL

1−j || tL1−j , sL
1−j ⊕ sR

1−j || tR1−j),
(σL

1−j || τL
1−j , σ

L
1−j ⊕ σR

1−j || τR
1−j)

)
When α[i] = 0:

cw(i) ⊕ r
=
(
(sR

0 ⊕ sR
1 || 1, 0λ || 0), (0λ || 0, σL

0 ⊕ σL
1 || 1)

)
⊕
(
(sL

1−j || tL1−j , sR
1−j || tR1−j),

(σL
1−j || τL

1−j , σ
R
1−j || τR

1−j)
)

=
(
(sR
j || 1, 0λ || 0), (0λ || 0, σL

j || 1)
)

⊕
(
(sL

1−j ⊕ sR
1−j || tL1−j , sR

1−j || tR1−j),
(σL

1−j || τL
1−j , σ

L
1−j ⊕ σR

1−j || τR
1−j)

)
Independently of the value of α[i], when r is random,
the right hand side of the ⊕ acts as a perfect one-time
pad, and so CW (i) is distributed uniformly.

Consider now CW
(i)
leaf , computed as such:

CW
(i)
leaf ← (−1)τ

(i+1)
1 ·

(
σ

(i+1)
1 − σ(i+1)

0 + α[i]
)

mod 2n

Since σ(i+1)
1−j is distributed randomly conditioned on the

previous values computed, it acts as a one-time pad,
which ensures that CW (i)

leaf is distributed uniformly.
Now, condition on CW (i) as well, and consider the

value of s(i+1)
1−j . s(i+1)

1−j is extracted from r⊕ t(i)1−j ·CW (i),
see Line 15. If t(i)1−j = 0, s(i+1)

1−j is immediately uniformly
distributed. If t(i)1−j = 1, r⊕(t(i)1−j ·CW (i)) = r⊕CW (i) =
r ⊕ cw(i) ⊕G(s(i)

j )⊕ r = cw(i) ⊕G(s(i)
j ). When α[i] = 1,

the part of cw(i) contributing to s(i+1)
1−j is sL

j ⊕sL
1−j . sL

1−j
is random and hence acts as a perfect one-time pad, so
s

(i+1)
1−j is uniformly distributed. When α[i] = 0, the same
result is derived using sR

1−j .
Finally, consider the value of t(i+1)

1−j . We show that
t
(i+1)
1−j = 1− t(i)j . By construction,

t
(i+1)
1−j = tKeep1−j ⊕ t

(i)
1−j · t

Keep
CW

where Keep = L if α[i] = 0 else R, and where tKeepCW =
1⊕ tKeep0 ⊕ tKeep1 . Further more, by noting that t(i)1−j was
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Input: (1λ, i, j)
Initialisation: Sample random α

$← Z2n

Sample random s
(1)
0 , s

(1)
1

$← {0, 1}λ and set t(1)
0 = 0, t(1)

1 = 1
1 for k = 1..n do
2 ((sL

j || tLj , sR
j || tRj ), (σL

j || τL
j , σ

R
j || τR

j ))← G(s(k)
j )

3 if k < i then
4 CW (k) $← {0, 1}2(λ+n+2)

5 else
6 if k = i then s

(i)
1−j

$← {0, 1}λ and t(i)1−j = 1− t(i)j ;
7

(
(sL

1−j || tL1−j , sR
1−j || tR1−j), (σL

1−j || τL
1−j , σ

R
1−j || τR

1−j)
)
← G(s(k)

1−j)
8 if α[k] then
9 cw(k) ←

(
(0λ || 0, sL

0 ⊕ sL
1 || 1), (σR

0 ⊕ σR
1 || 1, 0λ || 0)

)
10 else
11 cw(k) ←

(
(sR

0 ⊕ sR
1 || 1, 0λ || 0), (0λ || 0, σL

0 ⊕ σL
1 || 1)

)
12 CW k ← cw(k) ⊕G(s(k)

0 )⊕G(s(k)
1 )

13 state1−j ← G(s(k)
1−j)⊕ (t(k)

1−j · CW k) = ((state1−j,0, state1−j,1), (state′1−j,0, state′1−j,1))
14 Parse s(k+1)

1−j || t(k+1)
1−j = state1−j,α[k] and σ

(k+1)
1−j || τ (k+1)

1−j = state′1−j,1−α[k]

15 statej ← G(s(k)
j )⊕ (t(k)

j · CW k) = ((statej,0, statej,1), (state′j,0, state′j,1))
16 Parse s(k+1)

j || t(k+1)
j = statej,α[k] and σ

(k+1)
j || τ (k+1)

j = state′j,1−α[k]
17 if k < i then
18 CW k

leaf
$← {0, 1}n

19 else
20 CW k

leaf ← (−1)τ
(k+1)
1 ·

(
σ

(k+1)
1 − σ(k+1)

0 + α[k]
)

mod 2n if k < i else {0, 1}n

21 CW
(n+1)
leaf ← (−1)t

(n+1)
1 ·

(
1− s(n+1)

0 + s
(n+1)
1

)
mod 2n if i ≤ n else {0, 1}n

22 return kj ← [[α]]j || s(1)
j || (CW (i))i=1..n || (CW (i)

leaf )i=1..n+1

Algorithm 10: Hybi: Hybrid distribution i, in which the first i correction words are sampled completely
at random, and the remaining correction words are computed honestly.
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Input: (1λ, (i, j), r)
1 Sample random α

$← Z2n

2 Sample s(1)
j

$← {0, 1}λ and set t(1)
j ← j

3 for k = 1..i− 1 do
4 CW (k) $← {0, 1}2(λ+n+2)

5 CW
(k)
leaf ← {0, 1}

n

6 statej ← G(s(k)
j )⊕ (t(k)

j · CW (k) = ((statej,0, statej,1), (state′j,0, state′j,1))
7 Parse s(k+1)

j || t(k+1)
j = statej,α[k] and σ

(k+1)
j || τ (k+1)

j = state′j,1−α[k]

8 Take t(k+1)
1−j = 1− t(k+1)

j

9 ((sL
j || tLj , sR

j || tRj ), (σL
j || τL

j , σ
R
j || τR

j ))← G(s(i)
j )

10 ((sL
1−j || tL1−j , sR

1−j || tR1−j), (σL
1−j || τL

1−j , σ
R
1−j || τR

1−j))← r ; // The PRG challenge

11 if α[i] then cw(i) ←
(
(0λ || 0, sL

0 ⊕ sL
1 || 1), (σR

0 ⊕ σR
1 || 1, 0λ || 0)

)
12 else cw(i) ←

(
(sR

0 ⊕ sR
1 || 1, 0λ || 0), (0λ || 0, σL

0 ⊕ σL
1 || 1)

)
;

13 CW (i) ← cw(i) ⊕G(s(i)
j )⊕ r

14 for x = 0, 1 do
15 statex ← G(s(i)

x )⊕ (t(i)x · CW (i)) if x = j else r ⊕ (t(i)x · CW (i))
16 statex = ((statex,0, statex,1), (state′x,0, state′x,1))
17 Parse s(i+1)

x || t(i+1)
x = statex,α[i] and σ

(i+1)
x || τ (i+1)

x = state′x,1−α[i]

18 CW
(i)
leaf ← (−1)τ

(i+1)
1 ·

(
σ

(i+1)
1 − σ(i+1)

0 + α[i]
)

mod 2n

19 for k = i+ 1..n do
20 for x = 0, 1 do
21 ((sL

x || tLx, sR
x || tRx), (σL

x || τL
x , σ

R
x || τR

x ))← G(s(k)
x )

22 if α[k] then cw(k) ←
(
(0λ || 0, sL

0 ⊕ sL
1 || 1), (σR

0 ⊕ σR
1 || 1, 0λ || 0)

)
23 else cw(k) ←

(
(sR

0 ⊕ sR
1 || 1, 0λ || 0), (0λ || 0, σL

0 ⊕ σL
1 || 1)

)
;

24 CW (k) ← cw(k) ⊕G(s(k)
0 )⊕G(s(k)

1 )
25 for x = 0, 1 do
26 statex ← G(s(k)

x )⊕ (t(k)
x · CW (k)) = ((statex,0, statex,1), (state′x,0, state′x,1))

27 Parse s(k+1)
x || t(k+1)

x = statex,α[k] and σ
(k+1)
x || τ (k+1)

x = state′x,1−α[k]

28 CW
(k)
leaf ← (−1)τ

(k+1)
1 ·

(
σ

(k+1)
1 − σ(k+1)

0 + α[k]
)

mod 2n

29 CW
(n+1)
leaf ← (−1)t

(n+1)
1 ·

(
1− s(n+1)

0 + s
(n+1)
1

)
mod 2n

30 return kj = [[α]]j || s(1)
j || (CW (i))i=1..n || (CW (i)

leaf )i=1..n+1

Algorithm 11: PRG Challenge for adversary B



AriaNN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing 313

set to 1− t(i)j ,

t
(i+1)
j ⊕ t(i+1)

1−j
= (tKeepj ⊕ t(i)j · t

Keep
CW )⊕ (tKeep1−j ⊕ t

(i)
1−j · t

Keep
CW )

= tKeepj ⊕ tKeep1−j ⊕ (t(i)j ⊕ t
(i)
1−j) · t

Keep
CW )

= tKeepj ⊕ tKeep1−j ⊕ 1 · (1⊕ tKeep0 ⊕ tKeep1 )
= 1

Combining these pieces, we have that in the case of
a random PRG challenge r, the resulting distribution
of kj as generated by B is precisely distributed as is
Hybi(1λ, j). Thus, the advantage of B in the PRG chal-
lenge experiment is equivalent to the advantage ε of A in
distinguishing Hybi−1(1λ, j) from Hybi(1λ, j). The run-
time of B is equal to the runtime of A plus a fixed poly-
nomial p′(λ). Thus for any T ′ ≤ T − p′(λ), it must be
that the distinguishing advantage ε of A is bounded by
εPRG, which concludes the proof of Claim A.1.

Combining all the steps, for i ∈ {1, . . . n}, we have
thus proven that Hyb0(1λ, j) and Hybn(1λ, j) are com-
putationally indistinguishable for any adversary, for j ∈
{0, 1}. On the other hand, we can also prove:

Claim A.2.

Hybn(1λ, j) = Hybn+1(1λ, j)

Proof. In Hybn+1, CW
(n+1)
leaf

$← {0, 1}n. In Hybn,
CW

(n+1)
leaf = (−1)t

(n+1)
1 · (1 − s

(n+1)
0 + s

(n+1)
1 ) mod 2n,

with s
(n+1)
1−j distributed randomly conditioned on the

previous values computed. s(n+1)
1−j acts as a one-time pad

which perfectly hides other values. Hence, CW (n+1)
leaf is

also uniformly distributed in this case.
This concludes the proof of security of our FSS com-

parison protocol.

B Encoding Precision
We have studied the impact of lowering the encoding
space of the input to our function secret sharing proto-
col from Z232 to Z2k with k < 32. Finding the lowest
k guaranteeing good performance is an interesting chal-
lenge as the function keys size is directly proportional to
it. This has to be done together with reducing fixed pre-
cision from 3 decimals down to 1 decimal to ensure pri-
vate values aren’t too big, which would result in higher
failure rate in our private comparison protocol. We have
reported in Table 8 our findings on Network-1, which is
pre-trained and then evaluated in a private fashion.

Decimals Z212 Z216 Z220 Z224 Z228 Z232

1 - - - - - 9.5
2 69.4 96.0 97.9 98.1 98.0 98.1
3 10.4 76.2 96.9 98.1 98.2 98.1
4 9.7 14.3 83.5 97.4 98.1 98.2

Table 8. Accuracy (in %) of Network-1 given different precision
and encoding spaces

What we observe is that 3 decimals of precision is
the most appropriate setting to have an optimal preci-
sion while allowing to slightly reduce the encoding space
down to Z224 or Z228 . Because this is not a massive gain
and in order to keep the failure rate in comparison very
low, we have kept Z232 for all our experiments.

C Implementation Details

C.1 Pseudo-Random Generator

The PRG is implemented using a Matyas-Meyer-Oseas
one-way compression function as in [61], with an AES
block cipher. We concatenate several fixed key block
ciphers to achieve the desired output length: G(x) =
Ek1(x)⊕ x || Ek2(x)⊕ x || . . . . Those keys are fixed and
hard-coded. We set λ = 127 to be able to use only 2
blocks for equality and 4 blocks for comparison. Note
that for comparison we would theoretically only need 3
blocks, although our current implementation uses 4.

C.2 Unrolling Convolutions

Figure 3 illustrates how to transform a convolution op-
eration into a single matrix multiplication.

Fig. 3. Illustration of unrolling a convolution with kernel size
k = 2 and stride s = 2.



AriaNN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing 314

C.3 MaxPool and Optimisation

Figure 4 illustrates how MaxPool uses ideas from matrix
unrolling and argmax computation. Notations present
in the figure are consistent with the explanation of
argmax using pairwise comparison in Section 4.2. The
m×m matrix is first unrolled to a roughly (m/s)2 × k2

matrix. It is then expanded on k2 layers, each of which is
shifted by a step of 1. Next, (m/s)2k2(k2 − 1) pairwise
comparisons are then applied simultaneously between
the first layer and the other ones, and for each xi we
sum the result of its k − 1 comparison and check if it
equals k − 1. We multiply this boolean by xi and sum
up along a line (like x0 to x3 in the figure). Last, we
restructure the matrix back to its initial structure.

Fig. 4. Illustration of MaxPool with kernel size k = 2 and stride
s = 2.

In addition, when the kernel size k is 2, rows are
only of length 4 and it can be more efficient to use a bi-
nary tree approach instead, i.e. compute the maximum
of columns 0 and 1, 2 and 3 and the max of the re-
sult: it requires 2 log2(k2) = 4 rounds of communication
but only approximately (k2− 1)(m/s)2 private compar-
isons, compared to a fixed 3 rounds and approximately
k4(m/s)2. We found in practice that this 4× speed-up
factor in computation is worth an additional communi-
cation round.

Interestingly, average pooling can be computed lo-
cally on the shares without interaction because it only
includes mean operations, but we didn’t replace Max-
Pool operations with average pooling to avoid distorting
existing neural networks architecture.

C.4 Breaking Ties in Argmax

Algorithm 12 provides a probabilistic method to break
ties in the argmax output, which can be used on secret
shared input as well.

Input: ~δ = (δ1, . . . , δm), with ∀i, δi ∈ {0, 1}
Output: δj with j $← {i, δi = 1}

1 ~x = CumSum(~δ)
2 r

$← [0, ~x[−1][
3 ~c = ~x > r

4 Compute ~c� by shifting ~c by one number on
the right and padding with 0

5 return ~c− ~c�

Algorithm 12: BreakTies algorithm to guaran-
tee one-hot output

C.5 BatchNorm Approximation

The BatchNorm layer is the only one in our implemen-
tation which requires a polynomial approximation dur-
ing training. We have therefore experimented how this
approximation can alter the behaviour of a deep net-
work such as ResNet18 on a simple dataset like the
hymenoptera dataset3. We follow the PyTorch trans-
fer learning tutorial4 and use a pretrained version of
ResNet18. We retrain all the layers for 25 epochs, but
we replace the BatchNorm layers with our approximated
version which behaves as such: as a general rule the in-
verse for the variance is computed using 3 iterations of
the Newton methods and we use the result of the pre-
vious batch as an initial approximation. For the first
batch of the epoch where no approximation is available,
we use instead 50 iterations. For the first BatchNorm
layer, since the variance can change significantly because
of the input diversity, we systematically use more itera-
tions, up to 60. For the last layer, as the variance is very
small, its inverse can have a large amplitude. Therefore
we don’t use the result of the previous batch and per-
form 10 iterations instead. We report in Figure 5 the evo-
lution of the error as the model train on more batches.
As one can see, the error dramatically shrinks after 10
batches, which shows how beneficial it is to use previous
batch computations. It almost stays below 5%, except
for the error of the first layer, for which we would need
even more iterations to have significant improvements.
The average error per layer is reported in Figure 6, and
is around 2%.

This is of course an experimental result, but it shows
that the BatchNorm approximation can be tailored for

3 https://download.pytorch.org/tutorial/hymenoptera_data.
zip
4 https://pytorch.org/tutorials/beginner/transfer_learning_
tutorial.html

https://download.pytorch.org/tutorial/hymenoptera_data.zip
https://download.pytorch.org/tutorial/hymenoptera_data.zip
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
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Fig. 5. BatchNorm relative error as training goes on

Fig. 6. Relative error of the BatchNorm layers across the model

specific models to allow for efficient training with lit-
tle round overhead. Table 1 shows that we can indeed
achieve a high accuracy, especially using the initial guess
of the previous batch, although it remains below the ac-
curacy of a model trained with an exact BatchNorm.

D Extended Results about
Private Inference

We provide additional results about our inference exper-
iment in Table 9.

E Datasets and Networks
Architecture

E.1 Datasets

This section is taken almost verbatim from [60].
We select 4 datasets popularly used for training im-

age classification models: MNIST [43], CIFAR-10 [39],

64×64 Tiny Imagenet [62] and Hymenoptera, a subset
of the Imagenet dataset [53] composed 224×224 pixel
images.

MNIST MNIST [43] is a collection of handwritten
digits dataset. It consists of 60,000 images in the train-
ing set and 10,000 in the test set. Each image is a 28×28
pixel image of a handwritten digit along wit a label be-
tween 0 and 9. We evaluate Network-1, Network-2, and
the LeNet network on this dataset.

CIFAR-10 CIFAR-10 [39] consists of 50,000 images
in the training set and 10,000 in the test set. It is com-
posed of 10 different classes (such as airplanes, dogs,
horses, etc.) and there are 6,000 images of each class
with each image consisting of a colored 32×32 image.
We perform private training of AlexNet and inference
of VGG16 on this dataset.

Tiny ImageNet Tiny ImageNet [62] consists of
two datasets of 100,000 training samples and 10,000 test
samples with 200 different classes. The first dataset is
composed of colored 64×64 images and we use it with
AlexNet and VGG16. The second is composed of colored
224×224 images and is used with ResNet18.

Hymenoptera Hymenoptera is a dataset extracted
from the ImageNet database. It is composed of 245 train-
ing and 153 test colored 224×224 images, and was first
proposed as a transfer learning task.

E.2 Model Description

We have selected 6 models for our experimentations.
Description on the first 5 models is taken verbatim from
[60].

Network-1 A 3-layered fully-connected network
with ReLU used in SecureML [46].

Network-2 A 4-layered network selected in Min-
iONN [44] with 2 convolutional and 2 fully-connected
layers, which uses MaxPool in addition to ReLU activa-
tion.

LeNet This network, first proposed by LeCun et al.
[42], was used in automated detection of zip codes and
digit recognition. The network contains 2 convolutional
layers and 2 fully connected layers.

AlexNet AlexNet is the famous winner of the 2012
ImageNet ILSVRC-2012 competition [40]. It has 5 con-
volutional layers and 3 fully connected layers and it can
use batch normalization layers for stability and efficient
training.
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Table 9. Comparison of the inference time between secure frameworks on several popular neural network architectures. For each
network we report in order the batch size used and the size of the preprocessing material in MB for the CPU setting.

Network-1 Network-2 LeNet
Batch Size Preprocessing Batch Size Preprocessing Batch Size Preprocessing

Framework Dataset CPU GPU Comm. (MB) CPU GPU Comm. (MB) CPU GPU Comm. (MB)
AriaNN MNIST 128 128 0.36 128 128 9.98 128 128 14.7

AlexNet VGG16 ResNet18
Batch Size Preprocessing Batch Size Preprocessing Batch Size Preprocessing

Framework Dataset CPU GPU Comm. (MB) CPU GPU Comm. (MB) CPU GPU Comm. (MB)
AriaNN CIFAR-10 128 128 24.6 64 14 277 - - -
AriaNN 64×64 ImageNet 128 64 88.4 16 3 1124 - - -
AriaNN 224×224 Hymenoptera - - - - - - 8 1 3254

VGG16 VGG16 is the runner-up of the ILSVRC-
2014 competition [58]. VGG16 has 16 layers and has
about 138M parameters.

ResNet18 ResNet18 [30] is the runner-up of the
ILSVRC-2015 competition. It is a convolutional neural
network that is 18 layers deep, and has 11.7M param-
eters. It uses batch normalisation and we are the first
private deep learning framework to evaluate this net-
work.

E.3 Models Architecture

Unless otherwise specified, our models follow their stan-
dard architecture as provided by the torchvision li-
brary (version 0.5), except for smaller models such as
Network-1, Network-2 and LeNet which are respectively
detailed in [46], [44] and [42].

For the CIFAR-10 version of AlexNet, we follow the
architecture of [60] which includes BatchNorm layers
and is available on the FALCON GitHub. For the 64×64
Tiny Imagenet version of AlexNet however, we used the
standard architecture from PyTorch since it allows us to
have a pretrained network and the version of FALCON
seemed non-standard.

We have adapted the classifier parts of AlexNet,
VGG16 and ResNet18 to the different datasets we use.

– For AlexNet on Tiny Imagenet, we use 3 fully con-
nected layers with respectively 1024, 1024 and 200
neurons, and ReLU activations between them.

– For VGG16 we use 3 fully connected layers with
respectively 4096, 4096 and 10 or 200 neurons for
the last layer depending on the dataset used. We
also use ReLU activations between them.

– For ResNet18, we use a single fully connected layer
to map the 512 output logits to the appropriate
number of classes.

Note also that we permute ReLU and Maxpool
where applicable like in [60], as this is strictly equiva-
lent in terms of output for the network and reduces the
number of comparisons. More generally, we don’t pro-
ceed to any alteration of the network behaviour except
with the approximation on BatchNorm. This improves
the usability of our framework as it allows us to use
pre-trained neural networks from standard deep learn-
ing libraries like PyTorch and to encrypt them with a
single line of code.

https://github.com/snwagh/falcon-public/blob/b0d209f64b68f28374b40ab5c6239db185b10d14/src/secondary.cpp#L1041
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