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Privacy-preserving FairSwap: Fairness and
privacy interplay
Abstract: Fair exchange protocols are among the most
important cryptographic primitives in electronic com-
merce. A basic fair exchange protocol requires that two
parties who want to exchange their digital items either
receive what they have been promised, or lose nothing.
Privacy of fair exchange requires that no one else (other
than the two parties) learns anything about the items.
Fairness and privacy have been considered as two dis-
tinct properties of an exchange protocol. In this paper,
we show that subtle ways of leaking the exchange item
to the third parties affect fairness in fair exchange proto-
cols when the item is confidential. Our focus is on Fair-
Swap, a recently proposed fair exchange protocol that
uses a smart contract for dispute resolution, has proven
security in UC (Universal Composability) framework,
and provides privacy when both parties are honest. We
demonstrate, however, that FairSwap’s dispute resolu-
tion protocol leaks information to the public and this
leakage provides opportunities for the dishonest parties
to influence the protocol’s fairness guarantee. We then
propose an efficient privacy-enhanced version of Fair-
Swap, prove its security and give an implementation
and performance evaluation of our proposed system.
Our privacy enhancement uses circuit randomization,
and we prove its security and privacy in an extension of
universal composability model for non-monolithic ad-
versaries that would be of independent interest.
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1 Introduction
A growing number of interactions in cyber space are
commercial transactions that involve exchange of elec-
tronic “goods” that are in the form of signatures (e.g.
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contracts and receipts), confidential data (i.e. digital
items), or payments.

Transaction fairness provides confidence for a party
that they will not be worse off compared to other parties
in the protocol. There are a number of definitions for
fairness with slight differences that are motivated by
the exchange scenario. An exchange scenario includes
exchanging parties that have items to be exchanged,
and non-exchanging parties that assist with the correct
execution of the exchange.

In this paper, we focus on two-party exchange proto-
cols, where the two exchanging parties P1 and P2 want
to exchange their items x1 and x2, respectively. In gen-
eral, the items can be (i) confidential data, “which is not
known to the recipient beforehand and will be released
to it during the protocol run”, (ii) public data such as
the text of a contract “which may be released even if the
protocol execution has not been successful” and requires
exchange of non-repudiable evidences, such as signature
of the agreeing parties, and (iii) payments that transfer
“money” from the payer to the payee’s account [5]. We
consider confidential data in the form of digital items
with defined properties that can be efficiently checked
(e.g. by evaluating a predicate φ()) by the holder of the
item.

The exchange of items is called fair if it guaran-
tees that when one party behaves honestly, then the
exchange terminates, and either P1 gets x2 and P2 gets
x1, and both items satisfy the claimed properties, or
P1 gets no information about x2 and P2 gets no in-
formation about x1. A number of impossibility results
[20, 29, 42] have shown that two-party fair exchange
without a trusted entity is impossible. The structure of
the trusted party (e.g. a single entity or a collection of
entities), their involvement in the protocol (e.g. always
online, or offline), and the level of trust on them (fully
trusted, or semi-trusted) varies among different proto-
cols.

In optimistic fair exchange (OFE) the trusted party,
referred to as judge, is only invoked for resolving dis-
putes, and as long as the two parties behave honestly,
the judge will be offline. This makes OFE protocols op-
timal in terms of using non-exchanging entities.
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Privacy in fair exchange protocols requires no leak-
age of the exchanged items to the non-exchanging par-
ties, and captures various aspects of the exchange that
is relevant to the type of the exchanged items. Privacy
in the exchange of confidential items can protect as-
pects such as the value of the item (e.g. proprientary
digital items) or linkability of the item content to the
exchanging parties. In the exchange of public data (con-
tract signing) privacy protects intention and signatures
of exchanging parties from non-exchanging parties, and
privacy of payment in an exchange protects one or more
aspects of a payment such as the paid amount, the payer
or the payee.

We consider optimistic fair exchange of confidential
items when the judge (non-exchanging third party) is
implemented by a smart contract (SC), that may have
additional tasks such as transfer of coins (see [7, 10]).
We focus on FairSwap [24], a protocol for exchange of
a confidential item with payment where the judge is
implemented by a smart contract. We take the view
of the author’s: "One may view smart-contract based
solutions as a variant of optimistic protocols, where the
smart contract takes the role of the TTP" (Section 1.2,
paragraph 2 in FairSwap).

Smart contracts are transparent programs that en-
joy trusted execution on a blockchain consensus-based
computation network. Smart contracts cannot hold se-
crets, and their execution is visible to the public. Using
SC to implement the judge in an OFE (referred to as
SC-aided OFE) is attractive because the SC provides
trust and transparency for, and automates the execution
of, the judge algorithm. It also seamlessly integrates the
exchange with the blockchain cryptocurrency system.
Transparency of the SC, however, means any leakage to
the judge is effectively leakage to the public.

In this paper, we show that the dispute resolution
protocol in FairSwap leaks information about the digital
item, and this provides an opportunity for the buyer or
seller to influence the fairness of the exchange.

1.1 Our work
In FairSwap a buyer wants to buy a “digital commodity
x”, that we consider to be a confidential item, from a
seller and is willing to pay p coins if x satisfies a predi-
cate φ(x) = 1 that is represented by a circuit. If parties
are honest, buyer receives x and SC transfers the p coins
to the seller. If x does not satisfy φ(x) = 1, the buyer
invokes a dispute resolution (DR) protocol that allows
them to construct a proof of misbehavior (PoM) that is
sent to the SC. The PoM enables the SC to correctly
decide if it should transfer the coins to the seller, or

refund the buyer. Fairness of the exchange is proven in
the UC (Universal Composability) framework of Canetti
[16, 17].

Our main observation is that the dispute resolution
protocol in FairSwap leaks information about the con-
fidential item to the SC, and hence to the public and
this leakage provides opportunity for a malicious party
(buyer or seller) to influence execution of the protocol
in such a way that the honest party would be willing
to forego the guaranteed fairness of the protocol. This
motivates us to require privacy, in the sense that no in-
formation about the item is leaked to non-exchanging
parties, for the DR process in addition to the execu-
tion of the protocol by two honest parties. We propose
an approach to represent the computation and revise
the protocol accordingly to provide privacy while main-
taining efficiency of FairSwap. We model security of the
protocol and privacy against smart contract using an
extension of UC model, and prove security and privacy
of our protocol. We also provide implementation and ex-
perimental results on the efficiency of our design. These
are elaborated below.

The argument for preventing information leakage
during dispute resolution in SC-aided fair exchange pro-
tocols is general, and the approach for achieving privacy
in circuit based property checking protocol’s like Fair-
Swap can be of independent interest.

Fairness and privacy in FairSwap. FairSwap
consists of a main protocol π1 that is executed when
the two exchanging parties are honest, and a dispute
resolution protocol π2 that is called if the seller has not
fulfilled their promise. Thus, the execution of FairSwap
can involve execution of, (i) π1 alone, or (ii) π1◦π2 which
is the composition of two protocols. The exchange pro-
tocol must protect confidentiality of x with respect to
SC (and hence the public) when both parties are honest,
and so the protocol π1 must be privacy preserving. We
argue that π2 must not leak any information about the
item. This may appear an unusual requirement because
the DR protocol is designed to be called by the buyer to
complain about a dishonest seller, for whom one need
not be concerned about confidentiality of the item. How-
ever, as we show below the information leakage of DR
can be abused by a dishonest buyer by making unneces-
sary call to the protocol, or harm an honest buyer when
the seller is malicious and the protocol must be called. In
the following, we give hypothetical, yet realistic scenar-
ios, where leakage during DR puts the dishonest party
in a position to create credible threats that affect the
fairness guarantee of the protocol. Note that we take
the view that leakage during the protocol execution is
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distinct from leakage outside the protocol and only con-
sider the former here. Once the protocol is completed,
the protocol does not provide any guarantee for the in-
formation that participants hold. For example, a buyer
can always publish or leak the item that they have re-
ceived after the protocol ends. Protection of information
outside the protocol will rely on additional mechanisms,
technological and legal, and will be scenario dependent
and not our consideration.

Malicious buyer. Consider a contract that requires
payment of p1 when the item satisfies φ1, and payment
of p2 > p1, when the item satisfies φ2. The predicate
will be Φ = (φ1 ∧φ2). The SC will consider the protocol
execution as honest if the two parties agree on one of the
two φ1 or φ2, and the associated payment and execute
π1 only (no call to the DR, π2). The dishonest buyer
commits to the payment p2 and receives the item that
correctly satisfies φ2. The buyer will use an out-of-band
channel to request lower payment, else they would call
the DR protocol that will partially leak the item. If the
honest seller does not accept the lower payment p1, the
dishonest buyer could call the DR protocol during which
part of the item will be leaked to the public. The buyer
will ultimately lose the dispute resolution protocol and
will pay p2 for the item, as they were supposed to. If
the honest seller accepts the lower pay offer, the buyer
sends a transaction to the seller which claims that the
item satisfies p1, and the seller responds with a refund
transaction with the value p2− p1. These are additional
public transactions that will be exchanged before the
SC declares the protocol complete. In this scenario the
leakage of the dispute resolution has put the dishonest
buyer in an advantageous position.

Malicious seller controls their confidential item, and
can publish it as part of the protocol messages at their
will (e.g. use unencrypted channel to deliver the item to
the buyer). However, there can also be scenarios where
a malicious seller can benefit from the leakage of the
DR and create a privacy dilemma for the buyer. For ex-
ample, consider a malicious seller who claims to offer an
item with property φ1 for payment p. After an honest
buyer commits to the payment, the seller will provide
an item that does not satisfy φ and is personalised with
the buyer’s personal information (e.g. identity). If the
buyer uses DR, part of the item content will be leaked
through transaction traces of the protocol, and this leak-
age can be used to link the item content to the buyer.
Here the seller does not even need to communicate their
malicious intent; the buyer knows that if they complain,
their purchasing preferences will be made public.

Note that although the buyer may use a pseudonym
to provide some level of anonymity and untraceability
for their exchange, this is not a requirement of FairSwap
or a general SC-based OFE protocol. Here the leakage
of the DR puts the dishonest seller in an advantageous
position.

The above scenarios show that leakage from the DR
protocol can put one party in an advantageous posi-
tion. We note that through DR, a malicious party can
leak (part of) the content without fear of being prose-
cuted because DR is part of the protocol specification.
In contrast, leaking outside the protocol may have legal
consequences that would dissuade a malicious party or
require careful planning by them.

In both cases, the leakage of DR creates a credible
threat strategy for the malicious party in the sense that
the threat serves their interest, and they are willing to
carry out the threat without becoming disadvantaged.
Furthermore, both parties can use the DR protocol in
a way that maximizes the leakage and thus the effec-
tiveness of their threat. For example, the buyer is free
to choose the parts of x that is most sensitive and must
remain confidential.

One can design smart contracts to include incen-
tive mechanisms to remove these credible threats; for
example, add penalties for a false claim by the buyer.
This however requires additional mechanism design and
game theoretic analysis.

The above discussion highlights the peril of DR
leakage and its potential effect on the protocol fairness,
and motivates the need for privacy (preventing leakage
to non-exchanging parties) in all executions of SC-aided
OFE protocols.

We define fairness and privacy requirements of a
two-party SC-aided OFE for the exchange of a confi-
dential digital item for coins, as follows.
(FE1): Both exchanging parties are honest: Seller gets

p coins, buyer gets the item x.
(FE2): One party is honest:

(a) Buyer fairness: if buyer is honest, either buyer
receives correct x, or does not lose any coins.
(b) Seller fairness: if the seller is honest, either the
seller receives p coins, or does not reveal any infor-
mation about x to the buyer.

(PR): SC learns negligible information about the confi-
dential item, even if one exchanging party does not
follow the protocol.

This is the basic privacy requirement that is necessary
for the protection of the item’s confidentiality, and can
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be extended to include payment privacy which we leave
as a future work.

Privacy preserving FairSwap. In FairSwap φ is
expressed by a circuit that receives a digital item x as
input and outputs a binary value true or false. The seller
commits to a sequence that is the concatenation of the
encryption of x and the intermediate computation re-
sults of the gates in φ by constructing a Merkle tree
on the sequence, and sending its root to the SC. In the
case of a dispute, the buyer constructs a PoM using the
decrypted sequence and sends it to the SC. PoM leaks
at least 2γ where γ is the input bit length of the “gates”
(with fan-in 2) in φ. A gate in general can perform a
complex operation, and the leakage can even be much
larger than the security parameter. In FairSwap’s im-
plementation, for example, φ is constructed using “hash
gates” (keccak256 hash), each compressing its input.

To provide privacy for the computation, an imme-
diate solution is to express φ as a Boolean circuit in
which case the leakage is reduced to 2 bits and one can
argue that this is “negligible” in most cases. This, how-
ever, will have significant computation cost for the seller
(expressing the predicate as a Boolean circuit, and eval-
uating it on the binary sequence corresponding to the
input), making the protocol impractical for predicates
of interest (e.g. hash of a file). A second solution is to
express φ as an arithmetic circuit and use fully homo-
morphic encryption to perform the computation of the
circuit in encrypted domain. This again will have un-
acceptably high computation cost for the seller and the
SC.

Our approach is to use a circuit randomization tech-
nique that has been used for side channel protection [34]
in this new context, to hide the leakage of information
in DR to the SC. Our observation is that when φ is rep-
resented as an arithmetic circuit, the PoM includes the
values of wires in the circuit description of φ(x), and the
leakage can be modeled as a wire probing attack on the
circuit.

We then extend the circuit randomization approach
of [34] to arithmetic circuits over Fp, and construct
gadgets for addition and multiplication using additive
(m+1, m+1) secret sharing, where m = 2` and ` is the
number of wires that are observable by the adversary,
that effectively replaces each wire in the circuit with
m+ 1 wires. This ensures that the exposed wire to the
SC do not leak any information about the input.

Circuit randomization will be used by the buyer
and the seller. Both parties use a secure key agreement
protocol to obtain a common random seed that will
be used for generating the required randomness with a

cryptographic pseudorandom generator. This seed must
be kept private from SC. Using this randomization re-
quires modifying FairSwap to include commitments to
the random values that are used for circuit expansion (to
make it verifiable by the buyer and the SC if seller uses
different randomness), commitments to the encrypted
computation results of the expanded circuit, and the
description of the expanded circuit. The complete de-
scription of privacy preserving FairSwap, referred to as
pFairSwap is in Section 4.

Modeling and proving security and privacy.
To model fairness and privacy of pFairSwap, we need
to use an extension of UC model for non-monolithic ad-
versaries that was proposed in [35]. Standard UC frame-
work considers monolithic adversaries and uses a single
simulator to represent adversarial behaviours of the par-
ties in the ideal world. For security against dishonest
exchanging parties (i.e. buyer and seller) and privacy
against the SC (non-exchanging semi-honest party), we
use non-monolithic adversaries that model multiple (in
our case two) adversaries that do not collude. We ex-
tend the framework of [35] to include global functional-
ities (e.g. distributed ledger functionality), and modify
the ideal world in FairSwap to include SC as an en-
tity. The new FairSwap ideal functionality has the same
fairness description of [24], and additionally provides a
description of privacy against SC. The security proof
in Section 5 describes the interaction between the two
types of adversaries.

Proof of concept implementation: We demon-
strate the feasibility of pFairSwap in Section 6 with a
proof of concept implementation. To evaluate the cost
of circuit randomization we implement relevant subrou-
tines from the original FairSwap protocol to work with
an arithmetic circuit description of φ(). We implement
pFairSwap with subroutines that randomizes the cir-
cuit and its input. We use our implementation to com-
pare the performance of FairSwap and pFairSwap for
the buyer and seller (off-chain computation) and for the
smart contract.

To measure the on-chain computation we implement
an Ethereum smart contract that verifies a PoM. We
compare the computation cost to verify a PoM from an
original circuit and expanded private circuit. For the
off-chain computation, we measure the execution time
of the buyer and the seller. We use the Pinocchio Ver-
ifiable Computing suite [43] available on GitHub [31]
to build and execute arithmetic circuits. We implement
the scenario where a buyer would like to purchase a dig-
ital file x with a published hash value that is computed
using a universal hash function.
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Discussion and extensions. Our work points out
the subtle relation between information leakage in exe-
cutions of SC-aided OFE for confidential items with the
fairness guarantee of the protocol because of the trans-
parency of SC and leakage to the public. Requiring no
leakage to the SC in all executions of the protocol re-
stores fairness guarantee of the protocol in FairSwap.
An SC-aided FE is an example of a semi-honest third
party based FE with the additional restriction that the
SC cannot hold any secret. More fine-grained definitions
of privacy against a semi-honest third party is an in-
teresting research question. Our protection mechanism
requires the predicate to be described as an arithmetic
circuit. Design of specialized randomized transformation
for more general gates and with respect to an associated
PoM is also an interesting research question.

Multi-party computation (MPC) and fair exchange
(FE). MPC and FE problems have similarities but as
noted in [30], they originate in the two fields of cryptog-
raphy and distributed systems respectively, and so it is
not straightforward to compare and relate the results. In
[30], authors propose a common framework called fair
general computation to elucidate the relation between
the two. Using this framework, FE is modeled as a de-
terministic function F : (y1, ..., yn) = F (x1, ..., xn),
where xi and yi are input and output of party Pi respec-
tively, and the function F , when all parties are correct,
defines a permutation with no fixed points. Privacy and
fairness are two properties (in addition to other proper-
ties validity, uniqueness, nontriviality and termination)
that a FE protocol must satisfy. In particular, privacy
means that no party Pj outputs “the input value xi or
the output value yi of any correct process Pi, apart from
what is possibly given away by inputs and outputs of
Byzantine processes.” Fairness requires that “if a party
Pi outputs a value yi, with yi ∈ Yi, then every correct
process Pj outputs a value yj , with yj ∈ Yj , unless Pi
is Byzantine and yi is computable from the inputs of
Byzantine processes”.

A two party OFE with a single trusted party
(trusted party can be a set of participants) such as Fair-
Swap, can be seen as a three party protocol in the above
setting, where two exchanging parties have inputs x1
and x2, and a third non-exchanging party has input ⊥
(empty). The functional description of OFE is given by
FX(x1, x2, ⊥) = (out1, out2, out3) = (x2, x1, ⊥).
Fairness is the security of the exchange and effectively
requires that either both exchanging parties receive the
output of FE or none of them does. Privacy of the ex-
change means that the output of SC be empty. Our work
shows that because the output of SC is a public value,

even when one of the parties is dishonest, the output of
SC must be empty. A number of works have modeled
fair exchange protocols as an MPC problem [2, 3]. These
protocols use traditional TTPs and not an SC.

1.2 Related work
Impossibility of fair exchange without a trusted party
is proven in both synchronous model [29] and asyn-
chronous model [42]. A trusted party need not be cen-
tralized and can be implemented as a set of distributed
tamper-proof devices [8, 9, 28]. Fairness without TTP
can be achieved through gradual release or probabilistic
fairness [9, 11, 13, 21]. Asokan et al. introduced opti-
mistic fair exchange [5] which generated a large number
of follow up works [6, 7, 10, 14, 44] (and many more).
Privacy of two-party fair exchange is motivated differ-
ently depending on the type of exchanged data. For con-
fidential items privacy is required because of the value
of the items, and requires that non-exchanging parties
do not learn any information about the exchanged items
and this requirement can be extended to the case that
one of the parties deviates from the protocol also [9, 10].

In contract signing however the data (contract) can
be made public but the information about the signing
parties may need different types of protection. For ex-
ample in [32] the requirement is that all information
about the signatures of the signing parties, or “any ev-
idence about an exchange between them even after the
resolution of a dispute” must be hidden. Authors intro-
duce Privacy-Preserving OFE (P 2OFE) that requires
that the arbitrator not learn the signer’s full signa-
ture. In Ambiguous Optimistic Fair Exchange (AOFE)
[27, 33] however, the requirement is that a partial sig-
nature (initial commitment) not leak information about
the signer, as such partial signatures can reveal Alice’s
“will/intention to do exchange with Bob, from which
Bob may take advantage of and could be unfair to Al-
ice” [33].

Blockchain and smart contracts as a TTP has been
used in [4, 12, 19, 24, 25, 36, 38–40] (and many more).
Smart-contract based solutions can be seen as variants
of OFE where the smart contract takes the role of the
TTP. A recent line of work that achieves fairness is by
using cryptocurrencies such as Bitcoin to penalize dis-
honest behaviour and achieve fairness [4, 12, 36, 38, 39].
We study FairSwap [24] that is an efficient realization of
the claim-or-refund functionality that was introduced in
[4, 12]. OptiSwap optimizes FairSwap for the optimistic
case by reducing the initial computation and communi-
cation complexity at the cost of an interactive dispute
resolution protocol.



Privacy-preserving FairSwap 422

Privacy of smart contract is a growing research
topic. Approaches such as [37] use specific private func-
tions whose executions are off-chain using trusted en-
tities (that can be realized through trusted hardware)
and protect confidential data. Very recently, there has
been a large body of work on algorithm fairness and the
relation between privacy and fairness [22, 23, 26].

2 Preliminaries
In this section, we give notations and cryptographic
primitives that we have used in this paper.

2.1 Notation

We use S with Sender/Seller interchangeably and R
with Receiver/Buyer interchangeably. We stick with
many notation conventions presented in FairSwap, but
outline them here thoroughly for completeness. [n]
denotes the set of natural numbers {1, ..., n}. x =
(x1, ..., xn) is a digital good that R would like to buy
and S would like to sell. Concretely, x is a bit string
constructed by concatenating n chunks of x1, ..., xn.
We say that x is of length n. Each chunk xi where i ∈ [n]
is of length λ bits.
Proof of Misbehaviour (PoM) is the construction de-
veloped in FairSwap that allows the smart contract to
adjudicate a dispute between R and S. The proof of
misbehaviour π is a tuple of Merkle proofs that are sent
to and verified by the smart contract, we refer to this
tuple as π = (πφi

, πouti , πIi[i], πIi[j]); πφi
represents the

Merkle proof that gate φi is indeed in the circuit φ (its
description including its position, operation, and inputs
and outputs indices are all correct), πouti represents the
Merkle proof that the output of the gate has been com-
mitted by the sender, πIi[i] (and πIi[j]) is the Merkle
proof that shows the input Ii[i] (and Ii[j]) has been
committed by the sender. This tuple includes informa-
tion that is generated and committed to through out the
protocol. When we use PoM we refer to this process of
generating the information and commitments.

2.2 Cryptographic primitives

In this section, we describe some of the cryptographic
primitives that are used in our work.

Cryptographic hash functions: A hash function
H is a function that maps an arbitrarily sized input to a
fixed size output {1, 0}∗ → {1, 0}µ, for sufficiently large
µ. We consider a secure hash function H which is colli-
sion resistant (such as SHA3). We model H as a Global
(restricted programmable and observable) random ora-
cle function described in section 3.

Pseudorandom number generator (PRG):
PRG is used to generate a sequence of psuedorandom
numbers. A PRG is an efficient, deterministic algorithm
that expands a short uniformly random seed s0 to a
longer pseudorandom output y, such that no efficient
algorithm can distinguish the output of the PRG from
a truly random string y.

Symmetric encryption scheme: A symmet-
ric encryption scheme is defined by three algorithms
{Gen, Enc, Dec}. Key generation accepts a security pa-
rameter λ and outputs a key k of size λ bits, Gen(λ) = k.
The encryption takes a plaintext messagem and encryp-
tion key k and outputs a ciphertext z, Enc(k,m) = z.
The decryption algorithm decrypts a ciphertext z using
the key k to recover the plaintext m, Dec(k, z) = m.
An encryption scheme is IND-CPA secure if the success
probability of an adversary, with access to an encryption
oracle, distinguishing a ciphertext constructed on a ran-
domly chosen message from two-element message space,
is only negligibly higher than the success probability of
random guessing.

Commitment scheme: A commitment scheme
consists of two algorithms {commit, open} and it is used
to commit to a specific value without revealing what
that value is. To commit to a value k, we run the proba-
bilistic algorithm (c, d) = commit(k) that outputs com-
mitment c, and opening d. To validate the commitment,
we run open(k, d, c) which outputs either 1 (valid), or 0
(invalid). The commitment scheme needs to be hiding,
the commitment (c, d) reveals no information about k
and binding, only (k, d) will open the commitment c.

Merkle tree: A Merkle tree is used to commit to a
sequence of data elements x = (x1, ..., xn). A Merkle
tree is a tree where non-leaf nodes are the hash of
their children nodes concatenated together. We con-
sider a randomized Merkle tree Mtree that is used in
FairSwap (Appendix B.1 [24]) in which each leaf xi
node is concatenated with a distinct uniformly ran-
dom value di ∈ {0, 1}κ, where κ is the security pa-
rameter. We modify this Merkle tree by replacing the
leaf nodes by their corresponding hash values of xi||di.
Mtree accepts a sequence of elements xi||di and returns
a Merkle tree M . The pair (i) root of the Merkle tree
rx = root(Mtree(x||d)) and (ii) the vector of the chosen
random values d = (d1 , ..., dn), is a commitment to the
sequence of elements x1, x2, ..., xn and can be used
to verify that an element xi belongs to x at position i

through verifying a Merkle proof. A Merkle proof is a
path β in M , β = MProof(i,M). The function Mvrfy

can use the Merkle proof βi to verify membership of item
xi. This randomized Merkle root commitment is com-
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putationally hiding in the global random oracle model,
and it is computationally binding assuming one party
(either the committer or receiver) is honest.

Arithmetic circuit: Our protocol uses arithmetic
circuits (ACs) which are directed acyclic graphs (DAGs)
whose nodes are gates and edges are wires. Gates per-
form operations from an instruction set Γ = {×,+}
where × is multiplication and + is addition over a fi-
nite field Fp. Wires directed into a gate are called input
wires and wires directed from a gate are called output
wires. The number of input wires in a gate is called its
fan-in. Addition and multiplication gates have a fan-in
of two. We provide an `-private circuit transformer that
transforms arithmetic circuits into an `-private arith-
metic circuit. These circuits use negation gates which is
the combination of multiplication gate by −1 and an ad-
dition gate. The instruction set for the private circuits
is Γ = {−} ∪ {×,+}. Input to the circuit is denoted by
x = (x1, ..., xn). Each chunk of the input xi for i ∈ [n]
is modeled as a special input gate that has a fan-in zero
and outputs xi on it’s output wire(s). Each gate in a cir-
cuit φ is described as a tuple φi = (i, opi, Ii) (aka gate
description) where i is the index of the gate, opi ∈ Γ
is the gate operation, and Ii is an array of indices that
identify gates in φ whose output wires are directed into
gate φi. The output of φi is outi and can be expressed as
outi = opi(outIi[1], ..., outIi[t]). To denote the execution
of the circuit φ on an input x, we write φ(x).

Universal hash function: Universal hash func-
tions are keyed hash functions calculated over a prime
field Fp. They take an input x = (x1, ..., xv), where
xi ∈ Fp. This function computes the linear combina-
tion of the input blocks with v random elements from
Fp. This family of functions has the property that the
probability of h(x) = h(y) when x 6= y is 1

p when the
key is chosen independent of the input [18].

2.3 FairSwap protocol description
Fairswap [24] is an optimistic fair exchange protocol
that allows a receiver, R, to receive an item x that sat-
isfies a property φ from a sender, S, in exchange for a
price of p coins. We say x satisfies φ when φ(x) = 1. S
and R communicate through a secure channel. A smart
contract, called a Judge contract J transfers p coins and
resolves disputes between R and S.

The predicate φ is modeled as a circuit. S runs φ(x)
and encrypts the output outi of each gate φi in the cir-
cuit. The encrypted wires z = (z1, · · · , zm) is then sent
to R who decrypts and verifies each gate in φ. If R finds
that φ(x) 6= 1 they can prove this to J with a single gate
in φ(x), where this gate is corrupted and either it has

one input which is different from the value S has al-
ready committed, or the computation of the gate is not
correct. J can verify the validity of the complaint by
checking the commitments of S or performing the com-
putation of the single gate. FairSwap has three stages:

Initialization: S encodes x with a subroutine
Encode. Its inputs are x, φ, and a key k for a secure
symmetric key encryption algorithm Enc. It outputs the
encryption of all the output wires in φ(x) as an array
z = (z1, ..., zm) where z[i] = Enc(k, outi) and outi
is the output of each gate φi, and m is the number of
gates in φ. S sends the following commitments to J :
the Merkle root, rz = root(Mtree(z)), the Merkle root,
rφ = root(Mtree(φ)), and a commitment c to the key
(c, d) = commit(k). S then sends z to R through a
secure channel. R calculates its own Merkle roots of z
and φ and compares them with the root received from
J . If they are equal, R sends p coins to J where they
are locked until the last stage.

Reveal: S either reveals (k, d) to J and R, or
aborts.

Payout: If S reveals k and the commitment opening
is satisfied, open(k, c, d) = 1, then R runs the Extract
subroutine with inputs (z, φ, k). Extract decrypts and
verifies every gate φi ∈ φ, ∀i ∈ m by checking that
opi({ini}) = Dec(k, zi) whereDec is a secure symmetric
key decryption, and ini are the inputs to gate φi. If all
checks pass then Extract outputs (False, ⊥) and R
finds that φ(x) = 1. If any checks fail Extract output
(True, π) and R learns that φ(x) 6= 1. The variable
π denotes a proof of misbehavior and contains a single
gate needed to prove to J that φ(x) 6= 1. If Extract()
outputs (False, ⊥), R finalizes the round and p coins
are paid to S. Otherwise J verifies π. If the proof is
valid J learns that φ(x) 6= 1 and returns p coins to R.

2.4 Arithmetic circuit randomization
Protection of circuit computation against an adversary
who has access to a bounded number of wires (` wires)
was considered in [34], and circuit randomization tech-
nique was proposed to protect the system from prob-
ing. This work considers Boolean circuits consisting of
NOT and AND gates and gives a randomized transfor-
mation that replaces each gate in the circuit with an
(m + 1,m + 1) additive secret sharing scheme (all the
shares are required for reconstruction) where m = 2`.

In FairSwap the seller represents φ as a circuit us-
ing one or more types of gates, that can be thought
of as basic function, such as a hash function (in proof
of concept implementation of FairSwap). The leakage
of PoM is twice the input size of these gates, and for
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Boolean circuits can reduce the leakage to 2 bits. Not
all predicates can be efficiently implemented in Boolean
circuits such as ones that require computations over a
finite field. We extend the approach of [34] to define `-
private circuits, and design randomized arithmetic gates
and `-private arithmetic circuits. Designing randomiza-
tion for specialized gates is an interesting direction for
future work.

3 Security model
In this section, we formalize security and privacy of SC-
aided fair exchange. We first give an overview of the
model and the new definitions, and then describe the
ideal functionality of the SC-aided fair exchange that
captures the fairness and privacy.

3.1 UC model of the SC-aided OFE
In Canetti’s UC framework, security is defined by com-
paring the execution of the protocol in the real-world,
with the execution of its idealized version in the ideal-
world. In the real-world, each party is modeled by an in-
teractive probabilistic polynomial time Turing machine
(PPT) that interacts with other parties. An adversary
A can corrupt a set of parties. We consider a static ad-
versary in which the parties are corrupted at the start
of the protocol run.

In the ideal world, parties interact with an ideal
functionality that gives an abstract specification of the
required security properties. An ideal adversary, also
called simulator Sim, “attacks” the ideal functionality
through its interfaces.

In a UC-secure protocol there is an additional spe-
cial party called the environment Z that orchestrates
both worlds by providing the inputs for all parties, and
receives their outputs. A protocol is said to be UC-
secure if the environment Z cannot distinguish whether
it is interacting with the ideal or real world. This im-
plies that the real world is at least as secure as the
ideal functionality. This is formalized (UC theorem) by
showing that for every adversary A that attacks the real
world protocol, there exists an ideal world adversary (or
simulator) Sim that interacts with the ideal functional-
ity, and outputs a view that is indistinguishable by Z
from the one produced by A. The UC theorem allows
a modular design and construction of a hybrid world
where a protocol makes calls to the ideal functionalities
F1, ...,Fn′ as its subroutines. Each ideal functionality
can be replaced by a protocol which securely realizes it,
while maintaining security of the protocol.

In Generalized UC (GUC) [17] protocols can share
state through global functionalities. The important as-
sumption in GUC is that the global ideal functionalities
exist in both hybrid and ideal world and unlike UC, en-
vironment Z has access to them and can use them to
distinguish the two worlds.

In standard (G)UC framework the adversary is
monolithic and can corrupt multiple parties and coor-
dinate their attacks. To model security against a dis-
honest buyer and seller, and privacy against SC, we
need to model non-monolithic adversaries that have in-
dependent goals and are not willing to collude. Ka-
mara et al. [35] motivated the need for modeling non-
monolithic adversaries with different intentions in the
server-aided computation setting where the computa-
tion is outsourced to a semi-honest server. Our SC-aided
OFE is similar to this setting with the major difference
that SC has the role of the judge and its computation
must be minimized. We however need to extend this
framework to model a hybrid world with global func-
tionalities of ledger and random oracle that had been
used in FairSwap, and are slightly revised for our frame-
work.

Global ledger functionality L [24]. To handle
coin transfer between parties and support contracts that
lock coins, we need a global ledger functionality that
manages the transfer of funds. We use the ledger model
used by FairSwap that provides the basic properties of
a cryptocurrency. The internal state of L is public and
consists of the balances p1, ..., pn. L has three inter-
faces: update that is used by the environment to update
the balance of parties Pi; freeze is used to transfer p
coins from one party to a contract where they are locked;
unfreeze is used to transfer the coins from a contract to
the balance of a party (in FairSwap this is accessible to
ideal functionalities only). Please see Appendix A for
details.

Global (restricted programmable and ob-
servable) random oracle functionality H [15]. The
random oracle functionality H responds to all queries
with uniformly random sampled values r ← {0, 1}k , and
outputs the same value for the same query. All query-
response pairs are stored in the set Q. If the query has
been answered before, such that (q, r) ∈ Q is stored,
H responds with the same value r. We consider a pro-
grammable random oracle which lets the simulator Sim
control the random oracle and program its hash values
to specific responses using Program interface. Addition-
ally, the simulator can see all queries made by honest
or corrupted parties to H through Observe interface.
Please see Appendix A for details.
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Communication model. We assume a syn-
chronous communication model where the protocol is
executed in rounds and all parties are always aware of
the current round through interacting with the smart
contract and blockchain [36]. Smart contract keeps track
of the state of the protocol and parties can go to the next
round accordingly. If a party sends a message at round i
it will be received by the next party at the beginning of
the next round, i+ 1. Parties initially decide on the du-
ration of each round. For simplicity, we consider instan-
taneous channels, although in reality communication to
blockchain and smart contracts takes more time com-
pared to interactions between the sender and receiver.

3.2 Adapting and extending the Kamara
et al.’s framework

Using the framework of Kamara et al. [35], we model
SC, the buyer and the seller) as non-colluding, non-
cooperative independent adversaries, where SC is semi-
honest, and the buyer and the seller can deviate ar-
bitrarily from the protocol (one of the two). Indepen-
dent adversaries do not share information through non-
protocol messages. Non-cooperative adversaries do not
share information through protocol messages. The in-
dependence of the adversaries refers to their distinct
security goals.

Definition. (Non-cooperative adversary [35].) Let
F be a deterministic n-party functionality and Π be
an n- party protocol. Furthermore, let H, Inc, and Ic
be pairwise disjoint subsets of [n + 1] and let A =
(A1, ..., Am), where m = |Inc|, be a set of indepen-
dent PPT adversaries. For any i,j ∈ [m + 1] such that
i 6= j, we say that adversary Aj is non-cooperative with
respect to Ai if there exists a PPT simulator νi,j such
that for all x ∈ ({0, 1}∗)n and z ∈ ({0, 1}∗)n+1, and all
y ∈ Ran(fi) ∪ {⊥},
{νi,j(y, zi)}k∈N ≈ {viewi,j |outputi = y :

{OUT`}` ← Real
(i)
Π,A,Inc,Ic,z

(k, x)}k∈N
viewi,j denotes the messages between Ai and Aj in

the real world execution and outputi = y is the event
that party Pi receives output value y. Ran(fi) is the
range of fi, where fi is the output of F for party i.

An adversary Ai is isolated if all adversaries A|j 6=i
are non-cooperative with respect to Ai. In our model,
the smart contract is an isolated adversary.

To formulate security with respect to non-colluding
adversaries, Kamara et al. introduced the notion of par-
tial emulation for non-monolithic adversaries, where at
most one party is corrupted by an adversary. Partial
emulation states that “for each independent adversary
Ai, the joint distribution composed of the honest par-

ties’ output and a single adversary Ai’s view in the
real world, is indistinguishable from the joint distribu-
tion of the honest parties’ outputs and the Simulator
Simi’s output in the ideal world.” To specify the set
of adversaries and their behaviours the notion of ad-
versary structure ADV is used. For example ADV =
{A1[sh], A2[sh], A3[nc1, nc2]} states that A1 and A2
are semi-honest, and A3 is non-cooperative with respect
to A1 and A2.

Extensions of the framework. We build on the
framework of Kamara et al. and develop it in the follow-
ing two ways. Firstly, partial emulation in Kamara et al.
proof considers a single adversary. In FairSwap the pro-
tocol execution can follow two distinct path, first when
buyer and seller are honest, and the second when one
of the two is dishonest. In this latter case, the partial
emulation must consider two adversaries and so we need
to consider two simulators in the ideal world.

A second consideration is inclusion of global ideal
functionalities that allow sharing of state between ad-
versaries. This requires careful definition of interfaces to
the ideal functionalities. In Appendix B, we give details
of our approach to extend partial emulation to include
multiple adversaries, and the formal definition of secu-
rity and privacy for the SC-aided computation.

3.3 Security of SC-aided OFE
In the real world, the smart contract is an entity with
access to a Ledger functionality L as a subroutine, and
interacts with protocol parties to assist them in their
computation. In the ideal world, SC is a dummy entity
with no input. Each party in the protocol, except the
SC, receives an input from environment and hands it to
the functionality F . F proceeds according to its spec-
ification and returns the result to each party, and also
updates the Ledger functionality L, if necessary. We de-
fine two simulators Sim and Simsc. Sim captures the
effect of A attacking the protocol Π against its basic
properties, and Simsc captures the effect of Asc attack-
ing protocol Π against its privacy. In Appendix B, we
give the detailed description of the ideal/real world.

3.4 Ideal functionality for pFairSwap
Figure 1 shows the new ideal functionality FLcfe follow-
ing the above framework (the changes with respect to
FairSwap are highlighted in red). FLcfe describes a set-
ting where the sender S sells a witness x to the re-
ceiver R and obtains p coins if the witness is correct
(i.e. φ(x) = 1). Transfer of coins is performed by FLcfe
through interacting with the Ledger ideal functionality
L. The functionality proceeds in three phases (Initial-
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ize, Reveal, Payout). In the Initialize phase, S sends the
witness x and the description of the predicate circuit φ
to FLcfe. We let S also sends the leakage of φ, denoted by
le(φ), to the functionality. le(φ) models the real-world
leakage of pFairSwap (which is equal to the description
of the corrupted gate consisting of its index, type and
indexes of its inputs and outputs) in the ideal world
and is ⊥ when S is honest. For a malicious S, le(φ) is
non-empty and includes the description of the corrupted
gate in φ that can be seen by everyone and is provided
to FLcfe by the environment.

We also let FLcfe to leak the public information
about the circuit and its leakage le(φ) to both simula-
tors, Sim and Simsc that are present in the ideal world.
If R approves then FLcfe freezes p coins in the Ledger L.
In the Reveal phase, if a corrupted S aborts, FLcfe un-
freezes the p coins to R and sends a message to Simsc

to inform that S has aborted. This was not required in
FairSwap since Sim is able to see the messages of a cor-
rupted S. In the ideal world, Simsc is informed about
the state (flow) of the protocol which are public in the
real (hybrid) world. If S does not abort then FLcfe goes
to the next phase. In Reveal phase, if a corrupted R
aborts then FLcfe unfreezes the p coins in favor of S and
informs Simsc that R has aborted. Again, note that
FLcfe does not need to inform Sim about R aborting
since it sees and controls all the messages of the cor-
rupted parties. Else if R does not abort, FLcfe checks
φ(x) and unfreezes the coins to S if φ(x) = 1. This case
happens if all parties behave honestly. Otherwise, FLcfe
unfreezes the coins in favor of R which indicates the
corrupted sender has revealed an incorrect witness.

Security properties. This ideal functionality
guarantees the following properties:
– Sender fairness: An honest sender S is guaranteed that
the receiver R learns the witness iff they pay p coins.
– Receiver fairness: An honest receiver R is guaranteed
that they pay p coins iff the sender delivers the correct
witness in exchange.
– Smart contract privacy: SC does not learn the witness.
– Termination: If at least one party is honest, the fair
exchange protocol terminates in at most 5 rounds and
unlocks all coins from the contract (In round 4, if FLcfe
receives (abort, id) from the corrupted receiver, it waits
for one more round and terminates in round 5).

We now describe how FLcfe captures the above prop-
erties. Sender fairness is ensured because if φ(x) = 1,
irrespective of the receiver’s early abort, FLcfe unfreezes
the coins to the sender. Receiver fairness is ensured
since an honest receiver will receive their coins back
if the sender aborts before revealing the witness x, or

Privacy preserving coin-aided fair exchange
ideal functionality FLcfe

The ideal functionality FLcfe (in session id) interacts with
a receiver R, a sender S, a smart contract SC (does not
provide input but receives output from functionality),
the ideal adversaries Sim and Simsc, and the global
ledger L. Sim can corrupt either S or R. Simsc corrupts
SC.

Initialize
(Round 1) Upon receiving (sell, id, φ, le(φ), p, x)

with p ∈ N from S, leak (sell, id, φ, le(φ), p, S) to
Sim and Simsc, store witness x, circuit φ, leakage
about φ and price p.

(Round 2) Upon receiving (buy, id, φ, p) from re-
ceiver R in the next round, leak (buy, id, R) to
Sim and Simsc, send (freeze, id, R, p) and go to
Reveal phase.

Reveal
(Round 3) Upon receiving (abort, id) from the cor-

rupted sender S∗ in round 3, send (abort, id, S) to
Simsc and (unfreeze, id, p, R) to L in the next
round and terminate. Otherwise if do not receive
such message in round 3, then send (bought, id, x)
to R and go to Payout phase.

Payout
(Round 4) Upon receiving (abort, id) from the cor-

rupted receiver R∗, send (abort, id, R) to Simsc,
wait until round 5 to send (sold, id) to S,
(unfreeze, id, p, S) to L and terminate. Otherwise
if no such message was received:
1. If φ(x) = 1, send message (unfreeze, id, p, S)

to L and (sold, id) to S,
2. If φ(x) 6= 1, send message (unfreeze, id, p, R)

to L and (not sold, id) to S.

Fig. 1. Ideal functionality FLcfe for privacy preserving coin-aided
FE

when φ(x) = 0. Smart contract privacy is obtained since
Simsc is only allowed to see the public information. Ter-
mination is guaranteed since FLcfe proceeds in 5 rounds
in the worst case. Thus, any protocol that realizes this
ideal functionality can achieve all these properties that
we motivated our paper accordingly.

4 Enhancing privacy of FairSwap
In FairSwap, if the two parties behave honestly, the SC
will only receive commitments to the key, the root of
the Merkle tree constructed on the encrypted inputs
and the result of the computing circuit φ, as well as the
root of the Merkle tree constructed on the circuit φ; so
the leakage of the protocol can be estimated from its
static specification. We show that the leakage to the SC
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when one of the parties is dishonest can be estimated
and propose pFairSwap that realizes FLcfe.

4.1 Information leakage of PoM in
FairSwap

Let the corrupted gate be represented as φg =
(g, opg, Ii, Ij , Ik), where Ii and Ij are the indices
of the inputs, Ik is the index of the output, and opg is
the operation of gate φg. Note we make explicit the in-
dices of the input gates to φg. PoM consists of the gate
description φg, encrypted input and output values de-
noted, zi, zj and zk, corresponding to the outIi

, outIj
,

and outIk
. The Judge contract J knows the encryption

key k and hence revealing the encrypted values reveals
the corresponding plaintexts. In Appendix G we give a
detailed estimate of the leaked information in PoM.

We note that the leakage can be reduced to the
input and output values of a single gate, i.e. to at most
three wires, if the Merkle tree is constructed over the
hash values of the elements of z and the circuit φ. The
information leakage however will depend on the location
of the gate and a gate right above the input layer will
leak at least 2γ of the input data, where γ is the bit
length of each input chunk, γ ≥ λ, and λ is a security
parameter.

4.2 `-Private arithmetic circuits
Knowing the bound on the number of leaked wires al-
lows us to use the `-probing security model and use the
randomized transformation on gates that was proposed
in [34] to protect against the leakage. In Appendix C
we extend the transformation to addition and multipli-
cation gates and prove its security for Fp where p is a
prime that is chosen using the security parameter. The
gates use (m + 1 ,m + 1) secret sharing of each input
wires, and show how the m+ 1 wires of the output can
be calculated to provide privacy of the circuit output
against ` probed wire, m = 2`. Given the estimate of
the number of leaked wires in the modified (extra hash
layer) PoM, we will use ` = 1 in our work. Briefly, we can
use ` = 1 since the revealed wires are not independent
and they are all related to one gate.

Circuit randomization effectively replaces a wire in
the circuit withm+1 wires, and divides the value w ∈ Fp
that is sent over the original wire into m+ 1 shares that
are sent over the m+ 1 wires such that access to up to
m wires does not give any information about w.

4.3 Our scheme
We assume the predicate is described as an arithmetic
circuit over Fp. The sender uses the `-private circuit ran-

domization for ` = 1, that needs randomness for each
gate to expand circuit φ to φ′. The seed for the PRG
must be generated by a secure two-party computation
involving S and R. The seed will be private to the SC
and can be generated by the two parties using a secure
key agreement protocol. The sender must include this
randomness as part of their committed values. There-
fore, using circuit expansion requires us to change the
initialization phase (i.e. circuit expansion, commitments
and encoding the inputs and circuit computation), and
the payout phase (i.e. extracting the input). We divide
our scheme into three phases (see Appendix D).

Initialization phase: The sender S first expands φ
to φ′ with subroutine Expand (the psuedocode is given
in Section 6). The subroutine replaces gates in the orig-
inal circuit with gadgets that perform the operation of
the gate, while replacing each input and output wire of
the gate with a corresponding set of m + 1 wires such
that the sum of the inputs to the m + 1 wires is the
same as the value of the corresponding wire. In addi-
tion to multiplication and addition gates, a multipli-
cation gadget includes single-input identity gates with
randomly chosen inputs. Then, S encodes the input x =
{x1, ..., xn} with subroutine InputEncode to generate
the corresponding secret shares for each xi. We denote
the encoded input with x′ (which is used as the input of
the expanded circuit φ′). Afterwards, S samples a key
k and commits to it with (c, d) = commit(k). Then, S
generates nrand number of random values ρ1, ..., ρnrand

by applying a PRG on the shared seed for the identity
gates with random inputs (within each multiplication
gadget) in φ′ (the required number of randomness are
given in Appendix C) and stores (i, ρ1, ..., ρnrand) lo-
cally where i is the index of the corresponding multi-
plication gate in φ (obtained by linearizing the circuit
φ).
S runs the modified Encode subroutine on the ex-

panded circuit φ′, the encoded inputs x′, random values
ρ′, and key k. Encode generates the encoded inputs.
It also computes each gate (within the gadgets) in the
circuit φ′ and encrypts their outputs. Encode outputs
all the encrypted values denoted by z. S sends z to R
through the secure channel. S then sends the following
commitments to SC: the commitment c for key k, the
root rz of the Merkle tree constructed on z, the root rφ′

of the Merkle tree constructed on the circuit φ′, and the
root rρ′ of the Merkle tree constructed on the random
values ρ′.
R expands the circuit φ using Expand and con-

structs a Merkle tree on φ′ to get its Merkle root rφ′ .
R generates nrand random values ρ1, ..., ρnrand us-
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ing a PRG on the shared seed for the identity gates
which take random inputs (within the multiplication
gadgets) in φ′, and computes the Merkle root on ρ′ =
{(i, ρ1, ..., ρnrand)}. R then constructs a Merkle tree
on the z they received from S to get Merkle root rz.
R checks that these Merkle roots are the same as the
ones received by SC. If the Merkle roots are the same, R
sends a buy message to SC, which in turn locks p coins
from R in the ledger, and protocol proceeds to reveal
phase. Otherwise, R aborts.

Reveal phase: In this phase, S reveals the key k

and opening value d. R and SC checks open(k, c, d). If
the opening is not correct or S aborts, then SC transfers
the p coins to R through the ledger and terminates.
Otherwise, they proceed to the Payout phase.

Payout phase: In this phase, R extracts the orig-
inal input x using Extract on the expanded circuit φ′,
the encrypted values z and the key k. If Extract outputs
(False, ⊥), R finalizes the exchange and SC transfers p
coins to S. In this case the exchange is successful. Oth-
erwise, if Extract returns (True, π), then R complains
about S by sending π to SC. SC verifies the complaint
using the Judge subroutine (given in Appendix C and
the same as Judge in FairSwap). If the computation of
a single gate is incorrect, Judge checks the operation of
the gate on the inputs received from receiver (that has
already been committed to by sender) and compares the
obtained result with the output claimed by the sender.
Note that as we use circuit randomization, the input
wires contain two random values so they will not re-
veal any information about input even if the corrupted
gate is near input layer. If π is a valid proof of misbe-
havior, then SC refunds p coins to R and terminates
the exchange with not sold state. If π is not valid, SC
transfers p coins to S and terminates the exchange in
sold state. Additionally, if R aborts and does not send
any message at this phase S can finalize the exchange.
In Appendix C we give details of modified Encode and
Extract algorithms of pFairSwap.

5 Security analysis
We give proof sketches for the required security proper-
ties in section 3 (please see Appendix F for details).
– Sender fairness: To guarantee this property, the
sender should receive p coins when they reveal the item
x to the receiver. In our scheme, item x is encrypted
using key k and the key is committed in SC. From the
IND-CPA security of the encryption scheme and hid-
ing property of the commitment scheme, receiver can-
not learn anything about the item x with non-negligible

probability before SC locks p coins. As SC is semi-
honest, if sender reveals the key and receiver cannot
make a valid complaint, SC will pay p coins to the
sender. Because of the `-privacy of the circuit, i.e. a
single gate can be revealed without compromising the
privacy, even if receiver makes a fraudulent complaint
to the SC, only random values are leaked to the SC.
– Receiver fairness: We need to show that sender cannot
provide an incorrect item x′ 6= x such that a valid PoM
cannot be generated. Sender can only succeed if they
can generate an encoding such that Extract(φ′, z, k) =
(x′, π′), where φ′ is the expanded circuit, and π′ will not
be accepted by SC. This can only happen if the sender
breaks the binding property of the commitment scheme
or the collision resistant property of the hash function.
– Smart contract privacy: Regardless of the behavior
of the malicious sender and receiver, SC only observes
three random values since the expanded circuit satisfies
`-privacy.
– Termination: In the worst case if SC receives the
finalize message from receiver in round 5, it transfers
the coins and terminates (takes at most 5 rounds).

Theorem 1. For any PPT adversaries AS, AR
and Asc, corresponding to the sender, receiver and
smart contract, pFairSwap (ADV )-securely and pri-
vately realizes FLcfe where security and privacy
are according to Definition 1, where ADV =
{{AS [m]}, {AR[m]}, {Asc[sh]},
{AS [nc], Asc[sh]}, {AR[nc], Asc[sh]}}

Proof sketch. We prove two properties, security
(through defining the simulator Sim) and privacy
against public (SC) (through defining the simulator
Simsc). FairSwap only proves the security.

We assume Sim chooses a random value that will
be used as the seed by the sender and the receiver. This
simulates the seed generation at the start of the proto-
col. To prove privacy we show that the view of SC that
consists of all messages that are sent by S and R to
the SC can be simulated by Simsc using public infor-
mation that are available in the ideal world. The main
difference between the two simulators, Simsc and Sim,
is that Sim knows the item. For example when Sim

simulates a corrupted S, it can use private information
of the seller including the secret key k (by extracting k
from the key commitment). This will allow Sim to de-
crypt the ciphertexts of the corrupted seller and obtains
the item and all intermediate computation results. How-
ever Simsc, for this case, must simulate the PoM using
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The smart contract SC acts as a judge contract for
session id id and interacts with the global L

functionality and the parties S and R. It locally stores
addresses PkS and PkR, price p, commitment c,

decryption key k, Merkle tree root hashes rz, rφ′ , rρ′ ,
and state s.
Initialize

(Round 1) Upon receiving (init, id, p, c, rφ′ , rρ′ , rz)
from S, with p ∈ N , store rφ′ , rz, p, c, output
(initialized, id, p, rφ′ , rz, c), set s = initialized

and proceed to the reveal phase.
(Round 2) Upon receiving (accept, id) from R when

s = initialized, send (freeze, id, R, p) to L. If it
responds with (frozen, id, R, p), set s = active,
and output (active, id).

Reveal
(Round 3) Upon receiving (reveal, id, d, k) from

sender S when s = active and Open(c, d, k) = 1,
send (revealed, id, d, k) to all parties and set
s = revealed. Then proceed to payout phase. Other-
wise, if no such message from S was received, send
message (unfreeze, id, p, R) to L and abort.

Payout
(Round 4) Upon receiving a message m from the re-

ceiver R when s = revealed, set s = finalized and
do the following:
– If m = (complain, id, π) s.t.

Judge(k, rz, rφ′ , π) = 1 send
(unfreeze, id, p, R) to L, (not sold, id)
to S and terminate.

– Otherwise, send (unfreeze, id, p, S) to
L,(sold, id) to S and terminate.

(Round 5) Upon receiving message (finalized, id)
from the sender S, when s = revealed, send message
(unfreeze, id, p, S) to L. Then output (Sold, id)
to S and terminate.

Fig. 2. Description of the protocol for smart contract SC

only the public gate description provided in le(φ) and
without knowing the inputs.

The analysis of the scheme for security with respect
to adversary A = {AS , AR} is similar to FairSwap. In
the ideal world, FLcfe, with respect to Sim, is the same as
FLcfe in FairSwap, and in the hybrid world, our initial-
ization stage is mainly different from FairSwap where
the circuit is expanded and the details of algorithms
Encode and Extract. These modifications will not af-
fect the simulation. Please see Appendix F for details.

Simulation with respect to Asc. Simsc chooses ran-
dom values for the key k and ciphertexts z′, and ρ′.
Simsc sends the Merkle roots rz, rρ′ and rφ′ to SC on
behalf of the sender. In the second round, Simsc opens
the commitment to the key k and when FLcfe updates

The protocol consists of descriptions of the behavior of
the honest sender S and receiver R in exchanging item

x. S and R generate a shared seed s0.
Initialize

S: Upon receiving input (sell, id, φ, le(φ), p, x)
in round 1, assuming that property φ has nMult

number of multiplication gates, S applies PRG on
the seed s0 and generates nrand number of ran-
dom values ρ = {ρ1, ..., ρnrand} for each multi-
plication gate, where nrand = m(m+1)

2 , m = 2`,
and ` is the number of wires that can be revealed
(this information is provided in le(φ)). Lets con-
sider that ρ′ = {(i, ρ1, ..., ρnrand )} incorporates
the list of all random values for each multiplica-
tion gate i. Then S samples k ← Gen(1k), com-
putes (c, d) ← Commit(k), φ′ = Expand(φ, `),
x′ = InputEncode(x, `, λ), λ is the security
parameter, and z = Encode(φ′, x′, ρ′, k).
Then he sends (sell, id, z, φ, c) to R and
(init, id, p, c, rφ′ , rρ′ , rz) to SC, where rφ′ =
root(Mtree(φ′)), rρ′ = root(Mtree(ρ′)) and rz =
root(Mtree(z)). Then he continues to the reveal
phase.

R: Upon receiving input (buy, id, φ), R checks if he re-
ceived message (sell, id, z, φ, c) from S in round 1
and computes φ′ = Expand(φ, `), generates the ran-
dom values rho′, computes rρ′ = root(Mtree(ρ′)),
rz = root(Mtree(z)) and rφ′ = root(Mtree(φ′)).
Upon receiving (init, id, p, c, rφ′ , rρ′ , rz) from
SC, R responds with (accept, id) and proceeds to
the reveal stage.

Reveal
S: Upon receiving (active, id) from SC, S responds with

(reveal, id, d, k) and proceeds to the payout phase.
If no (active, id) message was received from SC in
the third round, he instead terminates the protocol.

R: Upon receiving (revealed, id, d, k) from SC,
R proceeds to payout phase. Otherwise, if no
(revealed, id, d, k) message was received from SC
in round 4, R terminates the protocol.

Payout
R: The receiver runs (x, π) = Extract(φ′, z, k). If

π =⊥, he sends message (finalize, id) to SC, oth-
erwise he sends (complain, id, π) instead. Then he
outputs (bought, id, x) and terminates the protocol
execution.

S: Upon receiving (Sold, id) or (not sold, id) from SC,
S outputs this message and terminates the protocol.
If no message has been received in round 4, he sends
(finalize, id) to SC.

Fig. 3. Formal protocol description for honest S and R



Privacy-preserving FairSwap 430

the ledger L, terminates. Z cannot distinguish the simu-
lation from the real world execution since the only way
to distinguish is to learn z′. The randomized Merkle
tree commitment scheme is information hiding, so the
probability to learn z′ is negligible.

Simulation with respect to AS and Asc. Simsc sam-
ples a random key k and chooses random ciphertexts
z′, and randomness ρ′, constructs a commitment on key
k, and Merkle roots rz, rρ′ and rφ′ . Then in the next
round if sender does not abort (in which case Simsc will
be notified through FLcfe), Simsc opens the commitment
to key k. As Z cannot observe z′ and the randomized
Merkle tree commitment is hiding, it cannot distinguish
the simulated Merkle roots from the real world values. In
the last round, Simsc checks the L to learn the transfer
of funds and infer whether the sender has provided an
incorrect x′ such that φ(x′) 6= 1 or not. If so, Simsc simu-
lates a valid complaint about one of the gates which has
been specified by Z in le(φ) and has been shared with
Simsc through FLcfe. Simsc uses random values for the
input and output of the specified gates and program H
to reveal specific values in the set z′ when queried by Z.
Since the expanded circuit provides `-privacy (please see
the Lemma in Appendix C), Z cannot distinguish the
real values from random ones. Additionally, Simsc can
successfully program H, except with negligible proba-
bility, so Z can distinguish the real and the ideal world
execution only with a negligible probability.

Simulation with respect to AR and Asc. Simsc sam-
ples a random key k, computes a commitment to k, and
outputs the commitment and three random values as
rz, rρ′ and rφ′ . If receiver aborts, Simsc will be noti-
fied by FLcfe and terminates the simulation. Otherwise,
Simsc checks le(φ); le(φ) is provided by environment
in the initialization stage and given to Simsc by FLcfe.
If le(φ) =⊥ then Simsc makes an invalid complaint for
the specified gate in le(φ). For that Simsc has to choose
random values as the inputs and outputs of the gates,
and a random proof π. The view of Z is indistinguish-
able from the real world execution since the complaint
does not reveal anything about the item x due to the
`-privacy of the circuit expansion.

6 Implementation
We evaluate the overhead of circuit expansion by im-
plementing FairSwap and pFairSwap where φ is a uni-
versal hash function (defined in Section 2.2 and im-
plemented as shown in Algorithm 1) and x is a text
file. Our goal is to compare the computation cost of
our privacy enhancement with original FairSwap. We

implement FairSwap as a set of subroutines {Encode,
Extract, Judge}, and pFairSwap as a set of {Encode,
Extract, Judge,InputEncode, Expand} subroutines. All
subroutines are written in Python except for Judge

which is implemented as a smart contract written in
Solidity. Our measurements are divided into off-chain
and on-chain measurements.

Off-chain (OFF) computation measurements:
As in FairSwap, we only consider S for our off-chain
measurements because they do similar work to R (R
does some extra equality checks). For FairSwap, we mea-
sure how long it takes Pinocchio to execute φ with input
x and Encode to encrypt the wires. For pFairSwap, we
do the same but first measure the time it takes to ran-
domize the circuit and inputs. Measurements are taken
with the Python time module and are in seconds (s). We
use the Pinocchio compiler [43] available on GitHub to
generate and run arithmetic circuits. We expect the size
of a circuit to have the greatest effect on the runtime of
S.

On-chain (ON) computation measurements:
In the on-chain environment we run Judge (given in
Appendix C.2.1) with the browser-based Remix IDE
and measure the Gas cost to verify the PoM from Fair-
Swap and pFairSwap. We only measure the computation
cost of the subroutine and not the communication cost.
Ethereum smart contracts execute in the Ethereum Vir-
tual Machine (EVM) where each machine operation has
a Gas cost. In practice, smart contracts are executed on
diverse machines in a distributed network. Gas cost pro-
vides a standardized unit of computational work done
by the EVM on each machine. The Gas cost is paid for in
Ether, Ethereum’s currency, and this means computa-
tional work on-chain has a direct financial cost. Miners
in the network set an Ether price for a unit of Gas and so
this cost fluctuates overtime. We expect that the size of
circuits and the work to perform finite field operations
will have a large impact on these measurements.

Arithmetic circuits: Our circuits compute a uni-
versal hash function that is efficient to implement as
an arithmetic circuit while provably providing collision
freeness if the key is chosen independent of the input
(see Section 2.2). To construct this hash function, we fol-
low Merkle’s construction for hashing arbitrarily large
files [41] which is shown in Algorithm 1. We construct
a subroutine that hashes a fixed number of message
blocks. We loop this function using the result from the
previous iteration as the first block in the next iteration.

Circuit parameters: Larger λ means we can hash
the file in fewer loops and reduce the circuit size, but
also means larger modular reductions to compute each
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Algorithm 1 Hash: Universal hash function
1: Input x
2: Pad x so that its length is multiple of v−1 & set result = 0
3: Set nt = len(x)

v−1
4: while nt > 0 do
5: result = result ∗ r1 +xi ∗ r2 + ...+xi+v−1 ∗ rv mod P

6: nt = nt − 1
7: Output result

gate. We expect the size of the circuit to have the great-
est influence of the off- and on-chain measurements. For
our experiment, we create 3 different circuits with prime
fields p ∈ {2127 − 1, 2107 − 1, 289 − 1}. The λ for each
circuit is {15, 13, 11} bytes respectively computed as
log2 p

8 .

6.1 Details and algorithms

Here we outline our implementation’s flow. We present
simplified algorithms that highlight the computation
steps relevant to the measurements we took. For more
details see Appendix C.2 and our GitHub repository 1.

Let x denote a text file divided into blocks (chunks),
with each block represented as an index and value pair
where index is the integer i of xi for i ∈ [n], and value
is the hexadecimal representation of xi. Circuits. φ,
are generated and executed on input x with Pinocchio.
Pinocchio outputs a file, wires, with the index and out-
put value of every gate in φ.

EncodeInputs (Algorithm 2 used in pFair-
Swap only) creates an encoding of the input where
each xi is mapped to a tuple of three secret shares
using pseudo-random values from the operating system
to generate the shares. It outputs a file x′.

Expand (Algorithm 3 used in pFairSwap only)
takes a file description of φ, generates a gadget for each
gate and builds an expanded circuit in a new file called
φ′. Input gadgets replace each input gate in the original
circuit with m input gates.

Encodesimp (Algorithm 4 used in FairSwap and
pFairSwap) takes as input a key k and text file wires.
We use hash-based encryption/decryption algorithms
given in FairSwap implemented with the soliditySha3
function from the web3 Python package. Encodesimp
outputs a text file called z. The Merkle roots rz and rφ′ ,
and merkle proofs are created with a straightforward
implementation of a MerkleTree object in Python.

1 The source code for our implementation can be found at
https://github.com/Prezzy/Private-FairSwap

Extract (pseudo-code ommited for space, see
Extract in Appendix C.2.1, used in FairSwap and pFair-
Swap) generates PoMs that can be validated by Judge.
In our implementation Extract takes two files, the en-
crypted wire file z from S and plaintext wire file wiresR
from R. It decrypts z and compares the result with the
corresponding values in wiresR. We edit a wire value
in z to corrupt the gate output. Extract finds the cor-
rupted value and creates the PoM.

To run Encodesimp and Extract in pFairSwap we
just give circuits and inputs that have been randomized
with InputEncode and Expand as inputs.

Judge is an Ethereum Smart contract (See Judge
in Appendix C.2.1, used in FairSwap and pFairSwap)
It validates the Merkle proofs, decrypts the encrypted
input and output wire values, and executes the gate op-
eration on the plaintext input wires. It finally compares
its computed gate operation with the plaintext output
wire value. If they are equal, it outputs true, otherwise
false. we implement Judge in a straightforward way so
omit the pseudo-code for brevity.

Algorithm 2 EncodeInputs: Used to encode the input
file x for pFairSwap
1: Input (x,p) .x is input file, p is finite

field
2: for xi ∈ x do
3: share1← pseudo− rand(p)
4: share2← pseudo− rand(p)
5: share3 = xi − (share1 + share2) mod p

6: xi = (share1, share2, share3)
7: Output x′ = (x′0, ..., x′n)

Algorithm 3 Expand: Expands and randomizes circuit
generated by Pinocchio for pFairSwap
1: Input (φ)
2: for φi ∈ φ do
3: Parse φi = (i, opi, Ii)
4: if opi = input then
5: op′i = Generate(input gadget)
6: else if opi = add then
7: op′i = Generate(addition gadget)
8: else if opi = mul then
9: op′i = Generate(multiplication gadget)
10: Output φ′ = (φ′0, ..., φ′m) .Gadgets connected by wires

according to φ
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Fig. 4. Left Axis: Off-chain (OFF) measurements for runtime in
seconds of S to execute a circuit and encrypt the intermediate
values with Encode algorithm. pFairSwap includes EncodeInput
and Expand runtimes as well. Right Axis: On-Chain (ON) mea-
surements of Gas Cost for Judge to verify PoM.

Algorithm 4 Encodesimp: Encrypts the intermediary
gate values.
1: Input wires .wires generated by Pinocchio
2: for wi ∈ wires do
3: zi = Enc(k, i, wi)
4: Output z = (z1, ..., zm)

6.2 Benchmarks

We use a 66KB UTF-8 encoding of “The Raven” by
Edgar Allan Poe [1] as our x. Our off-chain environment
is a 6 Core 3.6 GHz AMD Ryzen 5 3600 Processor with
16 GB of RAM. Our 3 circuits have different values of λ
in FairSwap and pFairSwap. The increase in number of
gates and execution time from FairSwap to pFairSwap
is linear by a factor of ≈ 10. These results indicate that
larger values of λ at the cost of larger modular reduc-
tions is preferable for both FairSwap and pFairSwap,
but is especially significant for pFairSwap.

For on-chain measurements, we expect the size of
circuits and the size of the modular reduction increase
the Gas cost of Judge to verify the PoM. The results are
shown in figure 4. Hashing operations in the decryp-
tion and Merkle proof verification algorithms account
for a significant amount of Gas cost. For this reason, the
growth in gas cost is logarithmic based on the length of
Merkle proofs which are logarithmic to the circuit size.
The gas cost to verify PoM’s from pFairSwap is high
but grows slowly as the circuit size increases.

7 Concluding remarks
OFE is a key cryptographic primitive, and implemen-
tation of the TTP by a SC appears a natural and at-
tractive application of SCs, in particular by integrating
automated coin transfer. Interaction with smart con-
tract and its computation however will be non-private.
The relation between fairness and privacy suggests that
implementing TTP of an OFE protocol by an SC needs
careful evaluation. In the following we outline a number
of direct extensions of our work:

Optimizing Private FairSwap: pFairSwap can be
made more efficient for the buyer by avoiding decryption
and verification of every value in z. Please see Appendix
H.

Making OptiSwap Private: Dispute resolution phase
in OptiSwap [25] is an interactive challenge and response
protocol and leaks a chain of gates that can be as long
as the depth of the circuit. Our circuit randomization
approach can be directly applied to OptiSwap. Captur-
ing security of the interactive dispute resolution requires
careful extension of our security model.

Optimizing circuit description: FairSwap’s imple-
mentation of file hashing uses a circuit whose gate op-
eration is the keccak256 hash. Our implementation is
general and uses arithmetic circuit to describe any pred-
icate. This, although attractive because of its generality
and possibility of applying circuit randomization, re-
quires significant effort for circuit construction of com-
plex predicates such as one-way hash functions like kec-
cak256.
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A Global ideal functionalities
Figure 5 shows the global ledger functionality L and
Figure 6 shows the global random oracle functionality
H.

Functionality L
Shared functionality L is globally available to all participants
P1, ..., Pn, SC, and the ideal functionalities. It stores bal-
ances p1, ..., pn where pi ∈ N for every party Pi ∈ [n]. It
also stores a partial function L for frozen cash.
Update funds
– Upon receiving (update, Pi, p) with p ≥ 0 from Z set
pi = p and send (updated, Pi, p) to every entity.
Freeze funds
– Upon receiving message (freeze, Id, Pi, p) from party SC
or an ideal functionality of session Id check if pi > p. If this
is not the case, reply with (nofunds, Pi, p). Otherwise, set
pi = pi − p, store (id, p) in L and send (frozen, Id, Pi, p)
to every entity.
Unfreeze funds
– Upon receiving message (unfreeze, Id, Pj , p) from party
SC or an ideal functionality of session Id, check if (Id, p′) ∈ L
with p′ ≥ p. If this check holds update (Id, p′) to (Id, p′−p),
set pj = pj + p and send (unfrozen, Id, Pj , p) to every
entity.

Fig. 5. Global Ledger functionality L, provides three interfaces
update funds, Freeze funds, and Unfreeze funds to lock and man-
age transfer of coins among parties.

Functionality H
Shared functionalityH is globally available to all participants.
It takes as input queries q ∈ {0, 1}∗ and outputs values r ∈
{0, 1}k. Internally, it stores initially empty sets Q, P , and a
set QId for all sessions Id.
Query
– Upon receiving (query, Id, q) from a party of session Id′

proceed as follows:
– If (Id, q, r) ∈ Q respond with (query, q, r).
– If (Id, q, r) /∈ Q, samples r ∈ {0, 1}k, store (Id, q, r) in

Q and respond with (query, q, r).
– If the query is made from a wrong session (Id 6= Id′),

store (q, r) in QId.
Program
– Upon receiving message (program, Id, q, r) by the
adversary A check if (Id, q, r′) is defined in Q. If this is the
case, abort. Otherwise, if r ∈ {0, 1}k store (Id, q, r) in Q
and (Id, q) in P .
– Upon receiving (isPrgrmd, q) from a party of session Id,
check if (Id, q) in P . If this is the case respond with
(isPrgmd, 1).
Observe
– Upon receiving message (observe) from the adversary A of
session id Id respond with (observe, QId).

Fig. 6. Global restricted programmable and observable random
oracle functionality H [15], provides three interfaces Query, Pro-
gram, and Observe to participants.

B Our UC framework
B.1 Extensions of the framework
We first extend the security definition given in [35] by
separating the adversaries to the sets of deviating and
semi-honest adversaries. We analyze the protocol in two
steps: (i) Ensuring security: the analysis of the malicious
adversaries will proceed as before (we can consider a
monolithic model of adversaries if they are allowed to
collude and achieve the standard UC security for them
or consider a non-monolithic model of adversary if they
are non-colluding). (ii)Ensuring privacy: when consid-
ering the semi-honest adversaries (like smart contract
in our protocol) we assume the deviating parties are
also present but they are non-cooperative with respect
to semi-honest adversaries. Note that this definition is
weaker than UC since the environment does not have
the same power and abilities that it has in UC defini-
tions. We need to clarify how the deviating adversaries
interact with the semi-honest adversaries in the ideal
world. This is important as we want to ensure they are
non-colluding. We require that the public information
that is needed to be seen by the semi-honest entities are
leaked by the ideal functionally to the semi-honest sim-
ulators in the ideal world. This is a critical task since we
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need to make sure we are not revealing more than it is
needed. We have shown how this is done for pFairSwap
ideal functionality.

To extend Kamara et al. framework to be used with
global ideal functionalities, we need to restrict the access
of isolated adversaries to interfaces that leaks informa-
tion about the private inputs of other parties. Addition-
ally, whenever Ai is non-cooperative with respect to Aj
we have to modify the global ideal functionalities such
that they do not leak any private information about Ai
to Aj .

In general, when dealing with global ideal func-
tionalities, we need to consider the existence of non-
monolithic adversaries and let the ideal functionality to
respond to each of the adversaries based on their type.
For example, the global random oracle functionality H
[15] gives Observe interface to adversaries A, which can
be used to observe a list of illegitimate queries for ses-
sion Id; illegitimate queries are made by parties that
are not part of session Id. So, this observability will not
give the adversary any new information, as it contains
only queries made by the adversary (honest parties only
send legitimate queries). In the ideal world, however, the
simulator Sim can observe all queries made by honest
and corrupted parties, as it is the ideal-world attacker,
which means it will see all legitimate queries, irrespec-
tive of the fact that they have been issued by honest or
corrupted parties. Therefore, this observability can leak
useful information about the private input of corrupted
parties to smart contract adversary Asc and in the ideal
world, it can leak the useful information of both honest
and corrupted parties to Simsc. To prevent this leak-
age we restrict the access of Asc (and hence Simsc) to
Observe interface of H. With this modification still the
corrupted protocol parties A have access to illegitimate
queries and Sim have access to all queries, and we can
preserve the functionality of H in our modeling. Note
that in reality smart contract adversary is independent
of the protocol parties and this separation of access is
meaningful and necessary.

B.2 Security of SC-aided OFE
Real world. In the real world, smart contract is an en-
tity with access to a Ledger functionality L as a subrou-
tine, and interacts with protocol parties to assist them
in their computation. We consider two types of adver-
saries, (i) a set of deviating adversaries adversary Ai
which can corrupt protocol parties pi and (ii) a semi-
honest adversary Asc that models leakage to the SC.
A is non-cooperative with respect to Asc. Environment
Z provide inputs xi and auxiliary information zi to

all parties except the smart contract which only re-
ceives auxiliary information. Smart contract interacts
with protocol parties and at the end all parties except
the smart contract sends an output to Z. Z has also
access to the ledger functionality L. Lets denote the out-
put of the protocol running with adversary A and the
honest parties by Realπ,A,z and the output of the proto-
col running with adversary Asc (which is run alongside
A) and the honest parties by Realπ,A,Asc,z. These two
ensembles depends on the random coin of all parties.

Ideal world. In the ideal world, SC is a dummy
entity with no input. Each party in the protocol, except
the SC, receives an input from environment and hands it
to the functionality F . F will compute f() and returns
the result to each party, and also updates the Ledger
functionality L, if necessary. We consider two simulators
Sim and Simsc. Sim captures the effect of A attacking
the protocol Π against its basic properties, and Simsc

captures the effect of Asc attacking protocol Π against
its privacy. Simsc has access to the Ledger functionality
and can observe the transfer of funds for any party that
it wants. Sim corrupts one of the parties pi and has
oracle access to A. Lets denote the output of the proto-
col running with adversary Sim and the honest parties
by IdealF,Sim,z and the output of the protocol running
with adversary Simsc (which is run alongside Sim) and
the honest parties is denoted by IdealF,Sim,Simsc,z.

Definition 1. Let π be a protocol that realizes a smart
contract aided n-party functionality F . Furthermore, let
H ⊆ [n], let Inc ⊆ [n] denote the set of non-colluding
parties, Ic ⊂ [n] denote the set of colluding parties, SC
denote the semi-honest smart contract, such that all
subsets are pairwise disjoint. Let ADV be the adversary
structure. We say that π (Inc, Ic, ADV )-securely real-
izes F , if for any PPT adversary Ai ∈ {Inc, Ic} and
smart contract adversary Asc there exist PPT trans-
formations Simi and Simsc respectively such that the
following are negligible:

Security:
|Pr[Real(i)Π,A,Z(k, x) = 1]− Pr[Ideal(i)F,Sim,Z(k, x) = 1]|.

Where Real(i)Π,A,z(k, x) denotes the view of the ad-
versary Ai and output of honest parties when running
protocol Π. Ideal(i)F,Sim,z is the view of malicious par-
ties and output of honest parties when running the ideal
process computing F . A = {A1, ...,Am} and Sim =
{Sim1, ..., Simm}.
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Smart contract privacy:

|Pr[Real(j)Π,A,Asc,Z
(k, x) = 1]−

Pr[Ideal(j)F,Sim,Simsc,Z
(k, x) = 1]|

Where Real
(j)
Π,A,Asc,z

denotes the view of the ad-
versary Asc and output of all other parties when
running protocol Π in the presence of adversary Aj .
Ideal

(j)
F,Sim,Simsc,z

is the view of the semi-honest par-
ties and output of all other parties when running the
ideal process computing F in the presence of adversary
Simj . k is the security parameter, and x is the set of
outputs provided to all parties. z is the set of auxiliary
inputs provided to all parties.

Note that in our definition the global ledger functional-
ity L only manages the transfer of coins which are public
information and would not make Asc stronger than it
is.

C `-Private arithmetic circuits
Input encoder I. Let Fp denote the finite field of order
p, where p is a large prime (chosen based on security
parameter λ) with two operations + and multiplication
×. Each input value x in Fp is blown up tom+1 random
values using (m+ 1, m+ 1)- secret sharing. For that m
random values r1, ..., rm ∈ Fp are chosen and rm+1 is
computed as rm+1 = x− (r1 + r2 + ...+ rm). Each input
value is determined independent of other input values
in the circuit.

Output decoder O. Each output value y in C is
expanded to m + 1 values in T (C) such that y =
y1 + y2 + ...+ ym+1.

Circuit transformer T . An arithmetic circuit con-
sists of multiplication and addition gates. We construct
a transformer which takes the original circuit C and
transforms it to circuit C′ such that any wire in C is
m+ 1 wires in C′ and they are additive (m+ 1, m+ 1)-
secret sharing in Fp where p is a large prime. C′ is
obtained by transforming each gate as below:
Addition gates. Transforming addition gates is
straightforward. Each addition gate in C′ takes two
m + 1 values as input. Lets denote such inputs as
a1, ..., am+1 and b1, .., bm+1 such that a = Σm+1

i=1 ai and
b = Σm+1

i=1 bi. To find c = a+b we have c = Σm+1
i=1 (ai+bi).

This is equivalent to generate the shares of c as
ci = (ai + bi), to get m + 1 values in the output.
Therefore each addition gate is converted to a gadget
with m+ 1 addition gates in Fp.

Multiplication gates. Now consider a multiplica-
tion gate in Fp with a and b as input and c as output. In
circuit C′ we have the corresponding a1, ..., am+1 and
b1, .., bm+1 values. Thus, c = a× b = Σm+1

i=1 (ai× bi). To
find the shares of c we follow the approach in [34] and
extend their AND gadget to a modular multiplication
gadget as below:
To transform this gate we first compute intermediate
values zi,j for i 6= j. For each 1 ≤ i < j ≤ m + 1 we
introduce a random gate which produces zi,j . Then we
compute zj,i = (−zi,j + ai × bj) + aj × bi. There-
fore zi,j is distributed randomly but zj,i depends on ai,
bj , aj and bi. Now we compute the output shares of
c1, ..., cm+1 in C′ as ci = ai × bi + Σj 6=izi,j). Thus,
each multiplication gate is expanded to a gadget with
O(m2) multiplication gates and O(m2) addition gates
in C′. The gadgets in C′ are connected in the same way
that the gates in C are connected. C′ is the transformed
version of C and we let T (C) = C′.

Theorem 2. There exists a perfectly `-private trans-
former (T, I,O) that maps a circuit C of size n and
depth d to a randomized circuit of size O(n`2).

Proof Simulation for a single multiplication gate. This
simulation proceeds the same as [34].

Simulation for a single addition gate. We determine
the set of indices I ⊂ [m+ 1] such that we can perfectly
simulate the view of adversary using a|I and b|I . I is de-
termined as follows: For each addition wire of the form
ai + bi add index i to I. When all indexes are deter-
mined, use the randomly assigned values to ai and bi to
compute ai+bi. Note that the size of I is at most ` since
each addition wire adds at most one index to I and there
are at most ` gates that can be queried by the adver-
sary. Since each ai and bi are the secret shares with the
property that any m values are uniformly distributed,
observing ` < m values will not allow the adversary to
distinguish a real computation of circuit C′ from the
simulated one.

Lemma. If attacker is restricted to observe t gates
in the circuit C′, with two input and one output wire,
then it is enough to set ` = t

3 .
The reason is that the inputs and output of the gates
are not independent which results in an efficiency gain
for transformation.

C.1 Complexity of the expanded circuit

Let m = 2` where ` is the number of wires that are
visible by the adversary. Number of multiplication gates
per Mult gates is nmult = (m+ 1)2. Number of addition
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gates per Mult gate is nadd = 2[m(m + 1)]. Number
of random values per Mult gates is nrand = m(m+1)

2 .
Number of addition gates per Add gates is m+ 1.

D Protocol flow
Figure 7 shows the flow of the SC-aided OFE protocol.

Fig. 7. Outline of the SC-aided fair exchange

E pFairSwap
Our private FairSwap is different than the original Fair-
Swap in that it operates on the expanded circuit φ′,
instead of φ itself. Using φ′ allows us to ensure the pri-
vacy of φ(x) when a PoM is constructed. In the case that
Extract runs and returns a PoM π, the receiver can send
π to SC that can verify the PoM without knowing any
of the wire values in the original circuit φ(x). The cir-
cuit expansion requires three subroutines InputEncode,
OutputDecode, and Expand.

The Algorithm 5 describes the modified Encode and
Algorithm 6 describes the modified Extract in details.
Function Encode (see Algorithm 5) is run by the Sender
to compute the expanded circuit φ′ on encoded input x′

and random values ρ′. It encrypts all the results with key
k using a symmetric encryption scheme. Encode takes
as input a circuit φ′, a digital good x′, randomness ρ′,
and symmetric encryption key k, and outputs the set z.
The algorithms algorithms 7 and 8 are also shown below.
InputEncode is the generalization of the EncodeInputs,
given in Section 6, for expansion factor m+ 1, and it is
omitted because of the space. The Judge algorithm is
the same as Judge in FairSwap.

Algorithm 5 Expand
1: set nI = n(m+ 1) .Set number of input blocks
2: set φ̄ : OutputDecoder .Represent the output decoder as a

circuit with fan-in 2 gates
3: set φ̂ = φ||φ̄ .Concatenate the OutputDecoder circuit with

the main circuit
4: for i ∈ [nI ] do
5: outi = xi .Assign witness to input wires
6: zi = Enc(k, outi) .Encrypt input values
7: for i ∈ [nmult] do
8: Parse ρ = (i, ρ1, ..., ρnrand )
9: for j ∈ [nrand] do
10: idx←Map(i, j) .Map the labels of the random

wires to the random inputs of the circuit φ
11: outidx = ρj .Assign random values to wires
12: set idx2 = nI + (i− 1)nrand + j .Set the index of

encryption
13: zidx2 = Enc(k, outi) .Encrypt random values
14: for i ∈ {nI + nMult × nrand + 1, .., N} do
15: Parse φ̂i = (i, opi, Ii)
16: outi = opi(outIi[1], ..., outIi[`]) .Compute the i-th

operation
17: zi = Enc(k, outi) .Encode output values
18: Output: z = (z1, ..., zN )

Algorithm 6 Extract
1: Set nI = n(m+ 1)
2: for i ∈ [nI ] do
3: outi = Dec(k, zi) .Decrypt first n outputs
4: xi = outi .Extract witness
5: for i ∈ {nI + 1, nI + nrand × nMult} do
6: idx||ρi = Dec(k, zi) .Decrypt random values
7: outidx = ρi .Extract random values
8: Mz = Mtree(z) .Compute Merkle tree over z
9: Mφ = Mtree(φ) .Compute Merkle tree over φ
10: for i ∈ {nI + nrand × nMult + 1, ..., N} do
11: Parse φi = (i, opi, Ii)
12: outi = opi(outIi[1], .., outIi[`]) .Compute output of

i-th gate
13: if Dec(k, zi) 6= outi or (i = N and outi 6= 1) then
14: πφ = Mproof(i, Mφ) .Proof that φi ∈ φ
15: πout = Mproof(i, Mz) .Proof that zi ∈ z
16: for k ∈ [`] do
17: set j = Ii[k] .j is the k-th index in the set Ii
18: πkin = Mproof(j, Mz) .Proof that zj ∈ z
19: set π = (πφ, πout, π1

in, .., π
`
in)

20: Output: ((x1, ..., xn), π)
21: Output: ((x1, ..., xn), ⊥)
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Algorithm 7 OutputDecode
1: set m = 2`
2: Parse y = {y1, ..., ym+1} .Obtain all secret shares

of the output
3: y′ = Σmi=1yi mod p .Reconstruct the output
4: Output: y′

Algorithm 8 Judge

1: Parse π = (πφ, πout, π1
in, ..., π

`
in)

2: Parse πφ = (φi, ρφ)
3: Parse φi = (i, opi, Ii)
4: if Mvrfy(φi, ρφ, rφ) 6= 1 then output: 0 .Reject

of φi not i-th step of φ(x)
5: Parse πout = (zi, ρout)
6: if Mvrfy(zi, ρout, rz) 6= 1 then output: 0 .Reject

of zi not i-th step of z
7: outi = Dec(k, zi)
8: if i = m and outi 6= 1 then output: 1 .accept if
φ(x) 6= 1

9: for j ∈ [`] do .j is the k-th index in the set I
10: Parse πjin = (zj , ρj)
11: if Mvrfy(zj , ρj , rz) 6= 1 then output: 0

.Reject of zj not z[j]
12: outIi[j] = Dec(k, zj)

13: if opi(outIi[1], ..., outIi[`]) 6= outi then output: 1
.Accept

14: else Output:0 .Reject complaint if evaluation
correct

F Security analysis
Simulation with respect to AS. For a malicious
sender S∗, SimS generates a random value taken from
uniform distribution and shares it as a seed s0 with
sender and receiver. SimS (with oracle access to the
code of S∗) has to use H(observe) (we use hash as a
commitment scheme) to find the encryption key k. Us-
ing k, SimS can run Extract (Algorithm 6) to decrypt
all the values received from S∗, find x, and generate a
proof of misbehavior π that can be used to simulate the
messages sent to FLcfe, and SC. SimS only internally
simulates the behavior of SC and the input and out-
put of SC are given to environment. The simulation is
indistinguishable from the real world execution if the
commitment scheme is binding.

Simulation with respect to AR. For a malicious
receiver R∗, SimR generates a random value taken from

uniform distribution and shares it as a seed s0 with
sender and receiver. SimR chooses a random key k∗

and random z∗ (encrypted values). When in the second
round SimR learns the key k, it uses Extract and gets
x. Then it computes φ(x), encrypts the results using k,
and program H to output z∗ when queried by environ-
ment. The simulation is indistinguishable from the real
world execution as long as the commitment scheme is
information hiding and the encryption scheme ensures
IND-CPA security.

Simulation with respect to Asc. – Upon re-
ceiving (sell, id, φ, le(φ), p, S), Simsc samples
k ← Gen(1λ), computes (c, d) ← Commit(k), φ′ =
Expand(φ, `). Additionally, chooses z′ and ρ′ randomly.
Then, he sends (init, id, p, c, rφ′ , rρ′ , rz) to SC
where rφ′ = root(Mtree(φ′)), rρ′ = root(Mtree(ρ′))
and rz = root(Mtree(z′)) where z′ is a set with length
equal to z but it consists of random values. Finally,
output (initialized, id, p, rφ′ , rρ′ , rz, c) and set
s = initialized.
– Upon receiving (buy, id, R), simulate (accept, id)
from R to SC and set s = active.
– Upon receiving (abort, id, S), abort. If no mes-
sage is received responds with (reveal, id, d, k), set
s = revealed, and send (revealed, id, d, k) to everyone.

Environment Z cannot distinguish the simulation
from the real world execution since the only way to dis-
tinguish is to learn z′. As the randomized Merkle tree
commitment scheme is information hiding, the proba-
bility to learn z′ is negligible.

Simulation with respect to AS and Asc –
Upon receiving (sell, id, φ, le(φ), p, S), samples
k ← Gen(1λ), computes (c, d) ← Commit(k), φ′ =
Expand(φ, `). Additionally, Simsc chooses z′ and ρ′

randomly. Then, he sends (init, id, p, c, rφ′ , rρ′ , rz) to
SC where rφ′ = root(Mtree(φ′)), rρ′ = root(Mtree(ρ′))
and rz = root(Mtree(z′)) where z′ is a set with length
equal to z but it consists of random values. Finally,
output (initialized, id, p, rφ′ , rρ′ , rz, c) and set
s = initialized.
– Upon receiving (buy, id, R), simulate (accept, id)
from R to SC and set s = active.
– Upon receiving (abort, id, S), abort. If no mes-
sage is received responds with (reveal, id, d, k), set
s = revealed, and send (revealed, id, d, k) to everyone.
– Upon receiving (abort, id, R), wait until round 5 and
send (sold, id) to S. Otherwise, check the Ledger L. If
there is a message (unfreeze, id, p, S) send (sold, id)
to S, Else if there is a message (unfreeze, id, p, R),
simulate a complain (complain, id, π) from R, where π
is generated for a gate that has been specified in le(φ),



Privacy-preserving FairSwap 439

and send (not sold, id) to S. In order to simulate a valid
complain for gate i which is parsed as (i, opi, Ii), Simsc

chooses random values for Ii and output of gate i, then
encrypts the inputs and outputs using key k and then
program the random oracle such that H queries on these
values lead to the leaves of the tree constructed on z′.
– If no message (sold, id) or (not sold, id) from SC is
received send (finalize, id) to SC and (sold, id) to S.

The expanded circuit provides `-privacy environ-
ment cannot distinguish the random values chosen for
the inputs and outputs of the gates from the real in-
puts and outputs. Additionally, PRG is secure and re-
vealed wires with random values are indistinguishable
from values taken from uniform distribution (note that
seed of PRG is private to sender and receiver). Finally,
Simsc can successfully program H, except with negligi-
ble probability, so the environment is not able to distin-
guish the real world and the ideal world execution with
non-negligible probability.

Simulation with respect to AR and Asc.
– Upon receiving (sell, id, φ, le(φ), p, S), store
le(φ). Then, samples k ← Gen(1k), computes (c, d) ←
Commit(k), output (initialized, id, p, rφ′ , rρ′ , rz, c)
to R where rφ′ , rρ′ and rz are chosen randomly, and set
s = initialized.
– Upon receiving (buy, id, R), simulate (accept, id)
from R to SC and set s = active.
– Upon receiving (abort, id, S), abort. If no mes-
sage is received responds with (reveal, id, d, k), set
s = revealed, and send (revealed, id, d, k) to everyone.
– Upon receiving (abort, id, R), abort. Otherwise, check
the Ledger L; if there is a message (unfreeze, id, p, S),
but le(φ) =⊥ terminate, otherwise simulate an invalid
complain (complain, id, π) from R, where π is gener-
ated for a gate which has been specified in le(φ).

The view of the environment is indistinguishable
from the real world execution since the complaint does
not reveal anything about the item x due to the `-
privacy of the circuit expansion and security of PRG.

G Information leakage in
FairSwap

The Merkle proofs in the PoM leaks sibling node of
their Merkle tree commitment (e.g. zi+1), and some
hash values H(Zi+1|Zi+3). The leaked information zi
is: MProof(zi, rz) = {zi+1, H(zi+2|Zi+3), ...}
Each Merkle proof leaks information about two wires.
In the best case the information leaked is about four
wires and in the worst case information about six wires

is revealed. If the corrupted gate takes two chunks of
items x as input then in the best case two chunks of x
will be revealed (plus some intermediary results of com-
puting φ). In the worst case four chunks of item x are
leaked (plus some intermediary results of computing φ).
This is equivalent to revealing the information of three
gates partially.

H Optimizations
The Extract algorithm does not need to decrypt and
verify every gate in z. Instead, it only needs to de-
crypt the secret shares of the input and output wires
of the gates in the original circuit, combine the secret
shares, and execute the operation of the original gate.
Any result computed by Extract that does not match
the decrypted secret shares implies a cheating gate in-
side the gadget. Extract can then decrypt the gates in-
side the suspect gadget to find at least one gate that
is corrupted. Then Extract can create a PoM for this
gate. To know which gates in z are the secret shares of
input and output wires in the original circuit, the buyer
must create a mapping from the index of the original
circuit to the indexes in the expanded circuit.
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