
Proceedings on Privacy Enhancing Technologies ; 2022 (2):344–362

James K Holland* and Nicholas Hopper

RegulaTor: A Straightforward Website
Fingerprinting Defense
Abstract:Website Fingerprinting (WF) attacks are used
by local passive attackers to determine the destination
of encrypted internet traffic by comparing the sequences
of packets sent to and received by the user to a previ-
ously recorded data set. As a result, WF attacks are
of particular concern to privacy-enhancing technologies
such as Tor. In response, a variety of WF defenses have
been developed, though they tend to incur high band-
width and latency overhead or require additional infras-
tructure, thus making them difficult to implement in
practice. Some lighter-weight defenses have been pre-
sented as well; still, they attain only moderate effec-
tiveness against recently published WF attacks. In this
paper, we aim to present a realistic and novel defense,
RegulaTor, which takes advantage of common patterns
in web browsing traffic to reduce both defense overhead
and the accuracy of current WF attacks. In the closed-
world setting, RegulaTor reduces the accuracy of the
state-of-the-art attack, Tik-Tok, against comparable de-
fenses from 66% to 25.4%. To achieve this performance,
it requires 6.6% latency overhead and a bandwidth over-
head 39.3% less than the leading moderate-overhead
defense. In the open-world setting, RegulaTor limits a
precision-tuned Tik-Tok attack to an F1-score of .135,
compared to .625 for the best comparable defense.

Keywords: website fingerprinting, traffic analysis

DOI 10.2478/popets-2022-0049
Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

1 Introduction
The low-latency anonymity network Tor protects the
privacy of its users’ internet browsing habits, allowing
them to evade surveillance, tracking, and censorship.
To do this, it encrypts internet traffic while routing it
through a series of volunteer-run nodes, preventing any

*Corresponding Author: James K Holland: University
of Minnesota, E-mail: holla556@umn.edu
Nicholas Hopper: University of Minnesota, E-mail: hop-
pernj@umn.edu

single node from knowing both the origin and destina-
tion of the communications [19]. As a result, traffic des-
tinations cannot determine the identities of their users,
and local observers (such as network administrators or
ISPs) cannot see the destinations of users’ traffic.

In the last decade, Tor’s user base has increased to
millions of daily users [9]; over the same period, a series
of papers have shown that Tor is vulnerable to a type
of traffic analysis attack known as website fingerprint-
ing (WF) [17, 22, 27, 35, 38, 42, 45]. In a WF attack,
a passive eavesdropper attempts to determine the des-
tination of encrypted traffic by observing the sequences
of packets sent and received by the user. The attack
takes place between the user and the first node in the
Tor network using features such as the volume of in-
coming and outgoing packets and the relative timing of
packet bursts. With this information, the attacker then
compares the collected packet trace to a database of
website-trace pairs and classifies each trace accordingly.

WF attacks are straightforward to carry out, as they
require only passive eavesdropping from a local adver-
sary, ISP, or Tor guard. Thus, WF attacks against Tor
users represent a realistic threat and may be used to
identify users who visit ‘censored’ or forbidden web-
sites. As this poses an obvious threat to users’ pri-
vacy, researchers have developed a variety of defenses
[16, 17, 21, 29, 30, 46, 47]. The goal of these defenses
is to alter traffic in a manner that makes it difficult to
determine which website is associated with each packet
trace, and they typically operate by strategically adding
‘dummy’ packets or by delaying packets.

However, the Tor Project has been hesitant to im-
plement past defenses, as most would either impact user
experience with increased latency, burden the Tor net-
work with increased bandwidth, or require the creation
and maintenance of additional infrastructure. Addition-
ally, many of these defenses have been proven ineffective
against the latest attacks, which utilize large data sets
and sophisticated deep learning techniques. In response,
we present RegulaTor, which provides strong protec-
tion against state-of-the-art WF attacks with moderate
bandwidth overhead and a small latency penalty, but
without requiring additional infrastructure or knowl-
edge of other traces.



A Straightforward Website Fingerprinting Defense 345

Our key observation is that defenses that “regular-
ize” traffic so that traces from different web pages are
identical tend to be the most effective. However, these
defenses are often the least efficient, as they incur high
latency overhead in periods of heavy traffic and high
bandwidth overhead in periods of light traffic. Still, con-
stant rate traffic is just one of many potential patterns
for traffic regularization. Based on empirical evaluation
of Tor web traffic, we find that there are common traffic
patterns that avoid these traffic rate mismatches, allow-
ing users to achieve the security benefits of regulariza-
tion while greatly reducing the associated overhead.

Accordingly, RegulaTor works by regularizing the
size and shape of packet ‘surges’ that frequently oc-
cur in download traffic, masking potentially revealing
features. In this paper, ‘surge’ is broadly defined as a
large number of packets sent over a short period of
time. To do this, whenever a download traffic ‘surge’
arrives, RegulaTor starts sending packets at a set ini-
tial rate to avoid leaking information about the volume
and length of the surge. Then, it decreases the packet
sending based on a set ‘decay rate’ parameter, which de-
fines the shape of the surge. If no packets are available
when one is scheduled, a dummy packet is sent instead.
However, due to the heavy ‘burstiness’ of web-browsing
traffic, this download padding approach can be carried
out with limited overhead. At the same time, RegulaTor
sends upload packets at some fraction of the download
packet sending rate. Moreover, sending upload packets
based on download traffic usually incurs little latency
overhead, as upload traffic mimics the download traf-
fic (albeit with less volume) in web browsing traffic, as
shown later in this paper.

The RegulaTor approach deviates significantly from
previously proposed WF defenses. First, it alters traf-
fic in a time-sensitive manner with a focus on sending
standardized surges, while other defenses (with FRONT
[21] a notable exception) tend to insert padding consis-
tently along the packet sequence. Furthermore, it uses
entirely different strategies to alter upload and down-
load traffic, while other defenses pad traffic consistently
regardless of direction. Lastly, RegulaTor uses the ob-
served similarity between upload and download traffic
to send upload traffic as a function of download traf-
fic, preventing upload traffic from leaking any further
information.

We also re-evaluate previously presented attacks
and defenses on our data set to enable direct compari-
son. In the closed-world setting with 95 websites, Regu-
laTor reduces the accuracy of the state-of-the-art attack,
Tik-Tok, to only 25.4% compared to 66.0% for FRONT-

2500. Furthermore, it requires a latency overhead of
6.6% and a bandwidth overhead of only 79.7%, while
FRONT-2500 requires a bandwidth overhead of 119%.
In the open-world setting, RegulaTor’s performance ad-
vantage is even more severe, reducing the F1-score of
a precision-tuned Tik-Tok attack to .135 compared to
.625 for FRONT-2500. Thus, RegulaTor drastically out-
performs comparable defenses in terms of efficiently de-
fending traffic in the open-world setting.

2 Preliminaries

2.1 Website Fingerprinting Background

For WF attacks, the threat model is a passive, local
adversary who eavesdrops on network traffic. Potential
attackers include ISPs, network administrators, and the
guard node of the Tor network, as shown in Figure 1.
However, the attacker is not able to modify traffic in any
way. To carry out the attack, the attacker first collects
the traffic trace associated with the target’s web brows-
ing. Then, the attacker compares the trace to a data
set of (trace, web page) pairs, finding the matching web
page based on a chosen set of features.

WF attacks are typically tested in two different set-
tings: closed-world and open-world. In the closed-world
setting, we assume that the target visits one of a de-
fined set of web pages, and the attacker simply has to
determine which of those web pages was visited. Be-
cause a real-world target may visit any number of web
pages, this setting is unrealistic. Still, the closed-world
accuracy is useful for comparing and evaluating defenses
against a relatively strong WF attacker.

On the other hand, the open-world setting provides
a much more realistic setting where the target can visit
any number of web pages. In this case, the attacker’s
goal is to determine whether or not the target visited a
monitored web page using information from the packet

Fig. 1. WF Attack on Tor



A Straightforward Website Fingerprinting Defense 346

trace. While this task may be significantly more difficult
given that the attacker cannot possibly train a model
on all possible web pages, it is much more similar to the
real-world scenario of an adversary trying to catch users
visiting censored web pages.

Furthermore, we make two major assumptions
about the attacker’s abilities as originally stated by
Juarez et al. [28]. First, we assume that the attacker can
detect the beginning and end of the page load, which is
necessary to store a packet sequence representative of
a given web page. Then, we also assume that the at-
tacker can create a data set representing the targets’s
unique conditions. Some of these conditions include the
Tor Browser Bundle (TBB) version, operating system,
device hardware, and geographic location. Because these
assumptions all favor the attacker, we expect that real-
world defense performance is at least as high as demon-
strated in this paper.

Hintz et al. [25] were the first to demonstrate success
in WF attacks using the set of file transfer sizes to distin-
guish web pages. While this attack appeared to be effec-
tive against other privacy and anonymity systems, such
as VPNs [24, 40], Tor at first appeared to be immune due
to constant-size cell-padding, circuit multiplexing, and
network-induced delays. However, later attacks utilized
packet volume and timing features to greatly increase
WF attack effectiveness against Tor [17, 35].

Wang et al. then made further improvements [45],
first by improving data gathering and pre-processing,
and later by using a large feature set with the k-nearest
neighbors algorithm [44]. Later, the k-fingerprinting ap-
proach [22], which used a series of simple but impor-
tant features along with random forests and k-nearest
neighbors, further improved accuracy. But, most impor-
tantly, k-fingerprinting demonstrated effectiveness in an
open-world setting with a world size much larger than
in previous works. Soon afterward, The CUMUL ap-
proach [34] was presented by Panchenko et al. By sam-
pling features from the cumulative representation of a
trace, CUMUL outperforms previous attacks while stay-
ing computationally efficient.

While these models demonstrate high accuracy, the
Deep Fingerprinting approach by Sirinam et al. [42] uses
convolutional neural networks to further improve the
state-of-the-art in WF attack performance. Most im-
portantly, Deep Fingerprinting manages to defeat the
WTF-PAD defense and achieve high accuracy against
the Walkie-Talkie defense in the closed-world scenario.
As a result, this paper uses Deep Fingerprinting as a
benchmark to test the RegulaTor defense and its rivals.
The Tik-Tok attack [38] further improves the Deep Fin-

gerprinting attack by using burst-level timing features.
While previous attacks have ignored granular timing in-
formation, Tik-Tok uses the combination of directional
and timing features to further improve performance
against WF defenses, including the Walkie-Talkie de-
fense. Accordingly, we use Tik-Tok as a benchmark in
this paper as well. Other WF attacks and related tech-
niques are discussed in the related works section.

Defenses evaluated in this paper include Tamaraw,
WTF-PAD, and FRONT. Tamaraw [16] serves as a
baseline defense that regularizes traffic while providing
proven security guarantees. However, it is not a practi-
cal defense, as it requires high bandwidth and latency
overhead. WTF-PAD [28] uses adaptive padding to fill
gaps in packet sequences to reduce the amount of infor-
mation leaked by each trace. Alternatively, FRONT [21]
adds varying amounts of dummy packets to the begin-
ning of packet sequences, making them more difficult
to distinguish. Both WTF-PAD and FRONT require
moderate bandwidth overheads and add no latency.
Moreover, neither WTF-PAD nor FRONT require ad-
ditional infrastructure or detailed descriptions of other
traces; thus, they are suitable comparisons for Regu-
laTor, which can also be implemented in a relatively
straightforward manner. For a more in-depth summary
of WF defenses, see the related works section.

2.2 Metrics

In the closed-world setting, the evaluation is straight-
forward, as the attacker simply needs to determine the
correct website with the highest possible accuracy. How-
ever, the open-world setting is more complicated due
to the imbalanced classes, as the attacker may only be
able to monitor a small portion of web pages a user
could visit. Thus, there is a strong potential for false
positives to outnumber the true positive results. This
possibility was discussed in the Tor community [2], and
attacks have since aimed to maximize the precision of
their classifiers. In the open-world scenario, the preci-
sion represents the monitored web pages that were de-
tected compared to all of the web pages predicted to be
in the monitored set. Accordingly, precision is a much
more useful metric for evaluating the usefulness of a
WF attack in a realistic scenario. Alternatively, recall,
representing the fraction of monitored web pages that
were retrieved, is also used in the open-world setting to
demonstrate the sensitivity of an attack. An ideal at-
tack has both high precision and high recall; however,
one often comes at the expense of the other.



A Straightforward Website Fingerprinting Defense 347

2.3 Defense Overhead

WF defenses have the potential to impact user expe-
rience and increase strain on the Tor network by in-
creasing latency, delaying page loading, and increasing
the required bandwidth. As a result, we evaluate the la-
tency overhead and bandwidth overhead of each defense.
We find latency overhead by calculating the additional
time required to send the defended trace compared to
the undefended trace and dividing by the time required
to send the original trace. In practice, we do this by
subtracting the sending time of the last real packet in
the defended trace from the sending time of the last
packet in the undefended trace. Intuitively, the latency
overhead metric aims to indicate how much longer the
user will have to wait to load a web page.

The bandwidth overhead is found by dividing the
number of dummy packets sent in the defended trace by
the number of packets in the undefended trace. Essen-
tially, it represents how much more data will be trans-
mitted while loading a web page with the WF defense
enabled.

Though increased bandwidth may strain the Tor
network, discussion in the Tor community indicates that
it is preferable to latency overhead. This is because a
reasonable degree of bandwidth overhead can be man-
aged by Tor without affecting the user experience, but
increased latency would increase page load time and po-
tentially contradict Tor’s position as a ‘low latency’ pro-
tocol [1].

As a result, the RegulaTor defense design aims to
defeat WF attacks primarily through increased band-
width, while delaying traffic only when the increased
packet sending rate would ‘leak’ a significant amount of
information about the target web page. Due to its im-
portance, latency overhead is one of the primary metrics
used to evaluate RegulaTor and comparable defenses.

2.4 Data Sets

Our primary evaluation uses two data sets provided by
Sirinam et al. that were originally collected in 2016
to test their Deep Fingerprinting attack [41, 42]. The
closed-world data set was collected by visiting the home-
pages of the Alexa Top 100 sites 1,250 times each using
tor-browser-crawler on ten low-end machines [8]. The
homepage visits were split into five batches where for
each batch, each machine would access a website 25
times before moving on to the next website. Batching
the crawling in this manner controls for both long and

short-term variance, as described by Wang et al. [45].
After discarding corrupted traces, 1000 instances of 95
sites were included in the final data set, which we refer
to as DF-CW.

The open-world data set was collected using tor-
browser-crawler [8] to visit the sites in the Alexa Top
50,000, excluding the top 100 sites crawled for the
closed-world data set. Again, ten low-end machines were
used, with each machine making one visit to the home
pages of 5000 different sites. After discarding corrupted
visits, 40,716 traces were included in the open-world
data set, which we refer to as DF-OW.

Other data sets include the recently collected Good-
enough data set provided by Pulls [36] and the cell traces
provided by Wang et al. [44] to demonstrate the k-
nearest neighbors attack. Both are used to test Regula-
Tor’s generalizability. The former data set contains data
for 100 websites with 90 instances each and was collected
in 2014. The latter data set, created in 2020, collected
20 samples from each of 10 web pages for 50 websites,
resulting in a total of 10,000 samples. For both data sets,
only the closed-world traces are used for straightforward
evaluation and comparison between defense settings. In
this paper, we refer to the k-nearest neighbors data set
as KNN and the Goodenough data set as GE.

Furthermore, to test RegulaTor parameters in a
real-world implementation, we use our pluggable trans-
port implementation to collect 100 defended samples
from each of the websites in the Alexa top 100. This
data set was collected over one month in August 2021
and is referred to as PT.

3 RegulaTor

3.1 RegulaTor Justification

Given that the majority of relatively efficient previous
WF defenses have been defeated, we aim to design a de-
fense that can resist WF in both open-world and closed-
world settings. We aim to keep the implementation sim-
ple and functional without requiring frequent tuning or
collection of data sets, which is generally required in
machine learning-based defenses. While this task is dif-
ficult, we find that there are common traffic patterns in
Tor traffic that allow for an effective defense to operate
with moderate overhead.

First, we analyzed DF-CW and found that the
packet traces are particularly surge-heavy in that
they consist of infrequent and irregular ‘surges’ of pack-



A Straightforward Website Fingerprinting Defense 348

0 20 40 60 80 100 120
Tim e(s)

0

200

400

600

800

1000

1200

Pa
ck

e
ts

 s
e

n
t

Fig. 2. Examples of Tor download traffic during
web page visits

0 20 40 60 80 100 120
Seconds after 10th packet

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
u

m
b

e
r 

o
f 

p
a

ck
e

ts

1e6

Fig. 3. Decay of undefended download packet
sending volume

ets sent with little inter-packet delay. To illustrate this,
we have plotted the download packet timing patterns
from several randomly chosen traces (colored to distin-
guish between them) in Figure 2. Note that the traf-
fic is characterized by occasional high-volume packet
surges followed by periods of low traffic. We also find
that, even though the average web page visit in DF-
CW lasts about 28 seconds, the median interquartile
range of packet times is only 3.96 seconds. This further
demonstrates that the bulk of traffic is sent over a rel-
atively short period of time. Furthermore, the location,
size, and timing of these surges represent coarse features
that leak a significant amount of information about the
traces. To prevent these coarse features from leaking
information about the traces, padding can be done in
a more randomized manner to obfuscate the features,
which was done in the FRONT defense; or, the surges
in the packet sequences can be regularized in terms of
size and location, which is the approach presented in
this paper.

Luckily, the packet sequences show that surge pat-
terns are often predictable. To be specific, a major-
ity of the packet sequences consist of an early sequence
of upload packets followed by a sudden surge of down-
load packets. While the download surge varies in terms
of size and start time, it generally decays in volume soon
after the initial spike as the web page finishes loading.
This is shown in Figure 3, which represents the packet
distribution for 10,000 randomly chosen traces. In order
to control for the start time of the first surge, only traffic
after the 10th packet is shown. Additionally, the median
packet is sent 7.57 seconds after the 10th packet, further
emphasizing how the bulk of traffic is sent soon after the
beginning of a web page visit. Accordingly, regularizing
the download packet sequences can be done efficiently
by adding dummy packets to sequences with smaller ini-
tial surges and delaying packets in sequences with larger
initial surges.

Furthermore, the timing of upload packets im-
itates the timing of download packets, despite the
relatively low volume of upload traffic, as outgoing re-
quests are generally quickly responded to by the web
page. The correlation between upload and download
traffic volume is illustrated in Figure 4, where the traf-
fic from 30 randomly chosen traces is split into 1-second
bins and plotted based on the number of upload and
download packets sent in that period. Most importantly,
Figure 4 shows that if a substantial number of down-
load packets are being sent, then upload packets are
being sent concurrently. This presents an opportunity
for RegulaTor to defend the upload packet sequence as
well: by modeling upload packet sending as a function of
the download packet sequence, the upload traffic leaks
no further information about the destination web page.
Additionally, RegulaTor can minimize upload packet la-
tency increases by intentionally overestimating the up-
load sending rate, which is relatively efficient given the
lower volume of upload packets.

For a visual representation of the RegulaTor de-
fense, see Figure 5, which illustrates the rate of down-
load and upload packet sending at different points in
time for a single defended web page visit.

3.2 RegulaTor Design

To enact the defense, the client pads the upload
packets, while the download padding can be carried out
by a Tor bridge, middle node, or guard node. However,
padding to the middle node is likely the most effective
method, as a WF adversary may be located at the guard



A Straightforward Website Fingerprinting Defense 349

0 20 40 60 80 100
Upload packets sent

0

200

400

600

800

1000

D
o

w
n

lo
a

d
 p

a
ck

e
ts

 s
e

n
t

Fig. 4. Download vs. upload traffic for each
second

0 5 10 15 20 25 30 35 40
Tim e(s)

0

20

40

60

80

100

120

140

Pa
ck

e
t 

v
o

lu
m

e

Download Traffic

Upload Traffic

Fig. 5. RegulaTor-defended Trace

node. By only padding the traffic between the client and
one of the first relays in the circuit, the real-world cost
of the bandwidth overhead can be substantially mini-
mized. In fact, Tor is generally bandwidth-limited by
the relatively limited number of exit nodes [29], further
minimizing the impact that RegulaTor-defended traffic
will have on the network.

The RegulaTor defense pads the download packets
as follows: the first download packets are sent at a con-
stant rate until 10 packets have been sent. This is done
to avoid sending the initial RegulaTor surge before the
surge of original data has been scheduled while also al-
lowing the circuit-building and TLS handshake to fin-
ish. At this point, RegulaTor begins to send a surge of
packets at the initial surge rate, R, which represents the
number of packets sent per second. However, the send-
ing rate is reduced according to the decay constant, D,
such that the sending rate is RDt, where t is the number
of seconds since the surge began. Afterward, if the origi-
nal packet sequence again calls for a significant number
of packets to be sent and the queue of waiting pack-
ets increases to some threshold, then RegulaTor sends

Parameters Description

R Initial surge rate (packets s−1)
D Packet sending decay rate (s−1)
T Surge threshold ratio
N Padding budget (packets)
U Download-upload packet ratio
C Delay cap (s)

Table 1. RegulaTor parameter
descriptions

another surge of download packets to minimize the po-
tential for increased latency. This threshold is calculated
as the surge threshold, T , multiplied by the target rate.

To minimize additional bandwidth overhead, the
defense draws a random padding budget from (0, N),
where N is the maximum padding size. Once N dummy
packets have been sent, the sending of dummy packets is
stopped, though real packets may still be delayed. The
random choice of N also functions to vary the total vol-
ume of the packet sequences, which reduces the amount
of information leaked by the volume of the sequence.

RegulaTor pads the upload trace at a constant rate
until the initial download surge begins to arrive to ac-
commodate the initial web page request. At this point,
the client schedules upload packets to send at some ra-
tio, U , of the download packet sending rate (e.g. the
client will send upload packets at 1/3 the rate of the
download packets for U = 3). U is chosen to minimize
upload packet sending latency, so it will typically send
a significant number of dummy packets; however, this
is not costly bandwidth-wise, as the upload packet se-
quences are typically small. Additionally, if any upload
packets have been delayed for more than C seconds, then
they are sent immediately to prevent excessive latency.

Algorithm 1 demonstrates how the download pack-
ing sending schedule is determined, and table 1 contains
the relevant parameters and their descriptions.

3.3 Parameter Tuning

To determine the specific parameter values for Reg-
ulaTor, we used the Tree-Structured Parzen Estima-
tor (TPE) technique, which is usually used for hyper-
parameter optimization for learning algorithms [13]. To
implement parameter tuning, we used the Python li-
brary hyperopt [5] and determined RegulaTor’s perfor-
mance by simulating RegulaTor on DF-CW and testing
the performance of Tik-Tok [38] against the RegulaTor-



A Straightforward Website Fingerprinting Defense 350

Algorithm 1 RegulaTor download padding main loop
while < 10 packets scheduled do

wait
end while

surge-time← CURRENT-TIME
next-packet-time← CURRENT-TIME
while web page downloading do

if CURRENT-TIME ≥ next-packet-time then

target-rate← RD(CURRENT-TIME−surge-time)

if target-rate < 1 then
target-rate← 1

end if

if waiting-packets > T · target-rate then
surge-time← current-time

end if

if NUM-WAITING-PACKETS = 0 then
if sent-dummy-packets < N then

SEND-DUMMY-PACKET
sent-dummy-packets← sent-dummy-packets + 1

end if
else

SEND-PACKET
end if

time-gap← target-rate−1

next-packet-time← next-packet-time + time-gap

end if
end while

defended data set. We chose Tik-Tok as the WF attack
so that RegulaTor would be tuned to avoid leaking tim-
ing information, which Tik-Tok can detect with consid-
erable effectiveness.

Then, to determine the performance of parameter
combinations, we created a loss function based on a
weighted combination of the latency overhead, band-
width overhead, and WF attack accuracy. This also al-
lows us to alter RegulaTor based on which properties
(e.g. low latency) are most desired. In our evaluation,
we present two RegulaTor defenses: one that achieves
high performance at the expense of increased overhead
(RegulaTor-Heavy), and another that aims to achieve
moderate performance with lower overhead (RegulaTor-
Light). Further details regarding the parameter tuning
are available in the appendix.

4 Defense Evaluation
In this section, we evaluate RegulaTor and several other
WF defenses in terms of their closed-world performance,
open-world performance, and overhead. Table 2 presents
the parameters used in each of the examined defenses.
For defenses other than RegulaTor, default parameters
were used as provided by their authors [16, 21, 29].

For evaluation, we simulated each defense on the
undefended data sets DF-CW and DF-OW to create
defended data sets for the closed-world and open-world
settings. To simulate WTF-PAD and FRONT, we used
the code provided by their authors. For Tamaraw, we
used Tao Wang’s implementation [3]. Then, we re-
trained each WF attack on the defended data sets. The
attacks used in this section used default parameters as
well, except for CUMUL, which performs SVM hyper-
parameter tuning.

To demonstrate RegulaTor’s generalizability, we
also simulate RegulaTor on data sets used in past
works, present the performance of a real-world Regula-
Tor implementation, and investigate parameter trade-
offs. Then, we discuss parameter stability over time and
the practicality of RegulaTor deployment.

4.1 Closed-World

Table 3 presents the accuracy achieved by WF attacks
on the examined defenses. Since the experiment was
done in the closed-world setting, accuracy is the only
metric presented, and the DF-CW data set was used.
Each attack achieved high accuracy on the undefended
data set with Deep Fingerprinting achieving the high-
est accuracy. Tik-Tok and Deep Fingerprinting were
highly effective against WTF-PAD, demonstrated mod-
erate effectiveness against FRONT defenses, and were
only marginally effective against RegulaTor defenses.
However, CUMUL accuracy sharply decreased for all de-
fenses. No attack was effective against Tamaraw, which
is included as an example of a defense with strong the-
oretical foundations but impractically high overhead.

Tik-Tok outperformed Deep Fingerprinting against
the RegulaTor defense, likely due to the use of packet
timing to provide further information. Given that Reg-
ulaTor generally sends upload packets at regular inter-
vals, attacks that represent the traces using only packet
direction, such as Deep Fingerprinting, are unable to
achieve high accuracy. The usefulness of timing infor-
mation was most apparent with RegulaTor-Light, which



A Straightforward Website Fingerprinting Defense 351

Defenses Parameters

Tamaraw ρout = .04, ρin = .012, L = 100
WTF-PAD normal_rcv
FRONT-1700 Ns = Nc = 1700,Wmin = 1,Wmax = 14
FRONT-2500 Ns = Nc = 2500,Wmin = 1,Wmax = 14
RegulaTor-
Light

R = 260, D = .860, T = 3.75, N = 2080, U =
4.02, C = 2.08

RegulaTor-
Heavy

R = 277, D = .940, T = 3.55, N = 3550, U =
3.95, C = 1.77

Table 2. Defense Parameters

Defenses Tik-Tok DF CUMUL

Undefended 97.0% 98.4% 97.2%
WTF-PAD 94.2% 92.4% 59.4%
FRONT-1700 78.2% 77.5% 31.6%
FRONT-2500 66.0% 69.8% 17.1%
RegulaTor-Light 34.8% 23.3% 20.8%
RegulaTor-Heavy 25.4% 19.6% 16.3%
Tamaraw 10.1% 9.9% 17.0%

Table 3. Closed-World Accuracy

reduced Tik-Tok accuracy to 34.8% compared to 23.3%
for Deep Fingerprinting. However, it should be noted
that the RegulaTor parameters were tuned based on
defense performance against Tik-Tok, while WTF-PAD
and the FRONT defenses used default parameters. As
a result, the RegulaTor defenses may have had a slight
advantage against Tik-Tok.

Both RegulaTor-Heavy and RegulaTor-Light re-
duced Tik-Tok and Deep Fingerprinting accuracy sig-
nificantly more than any other practical defense. Even
when comparing the ‘light’ version of RegulaTor to the
bandwidth-heavy version of FRONT, Tik-Tok accuracy
is decreased from 66.0% to 34.8% and Deep Finger-
printing accuracy is decreased from 69.8% to 23.3%.
However, CUMUL accuracy is not necessarily decreased
when comparing FRONT to RegulaTor-Light. We sus-
pect that this is because CUMUL derives a majority
of its features from the cumulative representation of the
trace, and FRONT effectively obfuscates early incoming
and outgoing bursts in the trace, modifying the cumu-
lative representation substantially.

Furthermore, RegulaTor-Light manages to outper-
form its rivals while incurring a small latency overhead
and a bandwidth overhead similar to that of WTF-
PAD. RegulaTor-Heavy then further increases this mar-
gin with a bandwidth overhead still less than that of the
lower-overhead version of FRONT.

4.2 Open-world

4.2.1 Open-World Setup

While the closed-world setting is useful for illustrating
the relative effectiveness of WF attacks and defenses, it
is not a particularly strong indicator of real-world use-
fulness. As described earlier, the open-world model is
characterized by a user who can visit any web page and
an attacker who monitors a subset of those web pages
while training a classifier to determine whether the vis-
ited web page is in that monitored set. This attack is
typically more difficult to carry out, given that the at-
tacker cannot train the model on many of the packet
sequences in the unmonitored set.

In this experiment, when the attacker determines
that a packet sequence represents a visit to a monitored
web page, this prediction is a true positive if correct
and a false positive otherwise. Similarly, if the attacker
determines that a packet sequence represents a visit to
an unmonitored web page, it is a true negative if correct
and a false negative otherwise. An attacker is said to
have determined that a web page is in the monitored
set if the attacker’s output probability is above a certain
threshold. By varying this threshold, we can calibrate
the attacks to achieve high recall or high precision.



A Straightforward Website Fingerprinting Defense 352

Fig. 6. Tik-Tok Precision-Recall

However, true positive rate (TPR) and false pos-
itive rate (FPR) are not relevant measures of model
performance, since the set of unmonitored web pages
may be much larger than the set of monitored ones,
causing heavily unbalanced classes. Furthermore, as the
unmonitored class size grows, the number of false posi-
tives may begin to rival or surpass the number of true
positives, making WF attacks impractical [2, 28]. Thus,
as described in previous discussions of WF open-world
metrics [21, 28, 29, 34, 42], we instead use precision-
recall curves to evaluate WF attacks and defenses.

To carry out the open-world experiment, we use the
two strongest WF attacks (Tik-Tok and Deep Finger-
printing) and evaluate them against the defenses used
in the closed-world setting (except for Tamaraw, which
prevented both attacks from reporting more than neg-
ligible true positives for many thresholds used). Our
training and testing setup models that of the open-
world experiment in Deep Fingerprinting [42], which
used 85,500 monitored traces (900 each from 95 web
pages) with 20,000 unmonitored traces in the training
set and 9500 monitored traces (100 each from 95 web
pages) with 20,000 unmonitored traces in the testing
set.

4.2.2 Open-World Results

The precision-recall curves for the Tik-Tok attack
against the WF Defenses are shown in Figure 6. As ex-
pected, Tik-Tok achieves both high precision and high
recall in the undefended data set, demonstrating the ef-
fectiveness of the attack in the open-world setting.

WTF-PAD and the FRONT defenses, alternatively,
manage to drive down the precision-recall curve, forcing
the attacker to choose between high precision with mod-

Fig. 7. Deep Fingerprinting
Precision-Recall

erate recall and vice versa. However, FRONT-1700 does
this more effectively than WTF-PAD, and FRONT-
2500 further increases defense performance.

As shown, the RegulaTor defenses outperform their
rivals, allowing for high precision only with very low re-
call. As a result, the effectiveness of the Tik-Tok attack
is significantly reduced, as few packet sequences can be
determined to be in the monitored set with high relia-
bility.

Against the open-world Deep Fingerprinting attack,
the defenses are moderately more effective in terms
of driving down precision and recall values, and the
RegulaTor settings are about equal in terms of perfor-
mance. The similarity between the RegulaTor defenses
is likely the result of RegulaTor’s ability to mask most
features based on directional information. Again, Reg-
ulaTor shows significantly higher defense performance
compared to FRONT, while both FRONT settings show
improved performance over WTF-PAD.

To better compare the open-world performance of
the tested defenses, consider that the F1-scores of a
precision-tuned Tik-Tok are .870, .625, and .135 against
WTF-PAD, FRONT-2500, and RegulaTor-Heavy re-
spectively. Note that a lower F1-score implies that the
associated defense is more effective. The relatively small
F1-score associated with RegulaTor further demon-
strates its ability to prevent Tik-Tok from detecting a
substantial number of monitored web pages without a
high false positive rate as well.

Essentially, the open-world results indicate that the
RegulaTor defenses prevent the studied WF attacks
from achieving high degrees of precision and recall in
a realistic setting. This is made even more apparent by
the fact that the open-world setup used in this paper
favored the attacker by using a test set where 9500 of
the 29,500 traces were from the monitored class. In the



A Straightforward Website Fingerprinting Defense 353

real-world setting, it is unlikely that this proportion of
all web pages would be monitored.

4.3 Alternate Data Sets

To confirm that the RegulaTor defense generalizes be-
yond a given data set, we test its performance on
two other publicly available website fingerprinting data
sets. For simplicity, we only evaluate Regulator-Heavy
against the most effective WF attack (Tik-Tok) in the
closed-world setting.

First, we test whether the parameters determined
from tuning on one data set provide effective defense for
other data sets. To do this, we simulated the Regulator-
Heavy defense setting on KNN and tested its perfor-
mance against Tik-Tok. We found that it performed
well, reducing Tik-Tok accuracy to 17.8% with 5.1%
latency overhead and 77.3% bandwidth overhead. For
comparison, Front-2500 defends KNN with a Tik-Tok
accuracy of 44.9% and 98.3% bandwidth overhead. In
both cases, slightly reduced accuracy is expected given
that there are only 90 instances of each website com-
pared to 1000 in DF-CW, limiting the data available
to Tik-Tok. Still, it appears that RegulaTor parameters
can generalize across data sets, especially given that the
data sets were collected a few years apart.

However, it is important to note that the ideal sizes
of the packet surges in the RegulaTor defense are de-
pendent on the volume of the undefended traffic se-
quence. If the RegulaTor surges are too small, then la-
tency will unnecessarily increase as data waits to be
sent. While DF-CW and KNN contained similar traf-
fic volume, we may not be able to make this assump-
tion in the real-world setting. To demonstrate this situ-
ation, we simulate RegulaTor-Heavy on GE, which con-
tains much higher traffic volume at 5663.9 packets per
trace compared to 2100.9 for DF-CW and 1807.6 for
KNN. After simulating RegulaTor on GE, we find that
RegulaTor-Heavy reduces Tik-Tok to an attack accu-
racy of 11.3% with 15.1% latency overhead and 39.6%
bandwidth overhead. Here, the defense performance is
high, but latency overhead is higher as well.

To adjust for the volume of traffic in the data set, we
can increase the initial surge rate and padding budget
of the defense proportionally to the increased volume
of the traffic in the target data set. While this implies
that some data collection should be occasionally done
to implement the defense, this collection can be fairly
minimal, as the adjustment only needs a rough estimate
of relative traffic volume.

To demonstrate this adjustment using GE, we mul-
tiply the initial surge rate by 2.431, as this represents a
relative increase of traffic volume in GE. Additionally,
we increase the padding budget by a similar amount.
This results in an altered Regulator-Heavy defense with
an initial surge rate of 673 and a padding budget of 8030.
When simulated on GE, Tik-Tok accuracy is only 5.2%,
defense latency overhead is 2.9%, and bandwidth over-
head is 82.9%. So, while bandwidth is increased, the al-
tered defense is significantly more effective and operates
with reduced latency overhead. For comparison, we test
a FRONT defense with increased dummy packet vol-
ume to match the FRONT-2500 bandwidth overhead
in the original paper [21]. Using a padding budget of
2830 on both the upload and download packets, we find
that the FRONT defense reduces Tik-Tok accuracy to
43.4% with a bandwidth overhead of 45.8%. Thus, ad-
justed RegulaTor is still effective relative to FRONT.

In summary, RegulaTor-Heavy remains effective
even when tuned on one data set and then used on an-
other. However, differences in traffic volume between
the data set used for tuning and the target data set
may cause RegulaTor to incur excess latency or band-
width overhead. As a result, the initial surge rate and
padding budget should be proportionally adjusted as
described previously. Then, RegulaTor-Heavy remains
highly effective while incurring the intended bandwidth
and latency overhead.

4.4 Real-world Performance

To obtain more accurate overhead estimates and con-
firm that RegulaTor could be smoothly used with Tor,
we implemented the RegulaTor defense as a pluggable
transport [10]. Pluggable Transports (PTs) transform
traffic between the client and a bridge in order to dis-
guise the Tor traffic and prevent censorship. Our spe-
cific approach was to host a Tor bridge and use the
WFPadTools framework [12], which is based on the
Obfsproxy pluggable transport [6], to build the Reg-
ulaTor defense. Additionally, we used a modified ver-
sion of tor-browser-crawler [28, 38] to collect the traces
for both the RegulaTor-Heavy defense and a ‘dummy’
transport for comparison. The parameters used in the
pluggable transport version of RegulaTor were based on
the RegulaTor-Heavy parameters, except that the initial
surge rate and download-upload packet ratio parameters
were adjusted based on the observed traffic patterns, as
described in section 4.3.



A Straightforward Website Fingerprinting Defense 354

Defenses Latency OH Bandwidth OH
Tamaraw 36.9% 196%
WTF-PAD 0% 54.0%
FRONT-1700 0% 81.0%
FRONT-2500 0% 119.0%
RegulaTor-
Light

8.9% 48.3%

RegulaTor-
Heavy

6.6% 79.7%

Table 4. Defense Overheads on
DF-CW

Then, we used our pluggable transport implemen-
tation to collect a RegulaTor-defended data set, PT,
consisting of 100 websites and 100 samples per website.
To determine the initial surge rate and padding budget,
we first collected 10 samples from each of the websites
and calculated that the average trace length was 2697.2.
Comparing this to the traffic volume found in DF-CW,
which was used to tune the original Regulator-Heavy,
we then proportionally increased the initial surge rate
to 356 and the padding budget to 4564. The remain-
ing parameters were left unchanged, as they appear to
generalize regardless of traffic volume.

Using Tik-Tok to test the closed-world WF attack
on PT, we record an accuracy of 11.6%. Compared to
the traces collected using a dummy pluggable trans-
port, the adjusted RegulaTor-Heavy defense operates
with a latency overhead of 13.9% and a bandwidth over-
head of 78.2%. While the observed latency overhead
appears somewhat higher than our original prediction
(as discussed in section 4.5), the adjusted RegulaTor-
Heavy defense is more effective as expected. These re-
sults demonstrate that RegulaTor can be effective on
live traffic and that the parameters found from tuning
on a previously collected data set are still valid for a
real-world implementation.

4.5 Overhead

Table 4 summarizes the bandwidth and estimated la-
tency overheads for each of the tested defenses on DF-
CW. The WTF-PAD and FRONT defenses operate
with no additional latency, while the RegulaTor defenses
incur a small delay on some packet sequences, and the
Tamaraw defense causes a substantial delay. Still, since
this paper measures latency overhead as the delay of the
last ‘real’ packet, rather than the last dummy packet
sent, Tamaraw’s latency overhead may appear smaller

than in previous works. Here, RegulaTor’s latency over-
head is an estimate based on the sum of the delay of
the last real download packet and the maximum de-
lay of any upload packet. The maximum delay of any
upload packet is used because delayed upload requests
may delay requests to the web server, delaying download
packets even more so.

To illustrate how latency and bandwidth overhead
are distributed across various websites, Figure 8 pro-
vides the bandwidth and latency multiples as functions
of the original trace length, load time, and sending rate
for 500 web sites randomly sampled from DF-CW.

As expected, nearly all ‘short’ traces and traces with
a low sending rate have very low latency overhead. This
is likely because RegulaTor schedules packets at a much
higher rate than the original traces, delaying few pack-
ets. However, it is notable that packets with a very short
load time often experience high latency overheads as
well. This may be because traces with low loading times
but high volume send packets at a high rate, which may
exceed RegulaTor’s sending rate. For the same reason,
the sending rate of a trace appears to be correlated with
latency overhead. Overall, a majority of traces incur lit-
tle latency overhead, while traces with a high sending
rate more often incur high latency overhead. Also, note
that the distribution of latency overhead based on the
web page being loaded is particularly important, as in-
creased latency directly harms the user experience.

Additionally, low trace length and sending rate cor-
respond with increased bandwidth overhead. This is ex-
pected, as RegulaTor will likely schedule packets at a
much faster rate, which results in the frequent sending
of dummy packets. Accordingly, traces with high send-
ing rates are associated with low bandwidth overhead
ratio. Also, a moderate number of traces with low load
time incur high bandwidth overhead. This negative re-
lationship appears to be because traces with low loading
time tend to have smaller packet counts, with occasional
exceptions.

4.5.1 Overhead-performance Trade-offs

To understand the impact of parameter choice, we also
simulate RegulaTor on DF-CW with varied parameter
values and record the latency overhead, bandwidth over-
head, and Tik-Tok performance on the defended data
set. To be specific, we used the RegulaTor-Heavy param-
eters and one by one varied the values of each parameter
over a wide range. The results of these experiments are
shown in Figure 9.



A Straightforward Website Fingerprinting Defense 355

Fig. 8. Overhead as a function of trace volume, load time, and packet sending rate

The experiments indicate that RegulaTor perfor-
mance is fairly stable. Furthermore, varying the param-
eters allows for RegulaTor to choose different trade-
offs between latency overhead, bandwidth overhead,
and defense performance. Specifically, increasing the ini-
tial rate increases bandwidth and slightly decreases la-
tency, while increasing the upload ratio decreases the
bandwidth but weakens defense performance. Addition-
ally, increasing the padding budget increases bandwidth
overhead and defense performance while slightly de-
creasing latency overhead.

Varying burst threshold and delay cap parame-
ter values had little effect on bandwidth overhead and
defense performance, though increasing delay cap in-
creased latency overhead. Lastly, increasing decay rate
improved defense performance and decreased latency at
the expense of increased bandwidth overhead.

4.5.2 Real-world Latency Overhead

While latency overhead can be estimated by simulating
RegulaTor on Tor traces, the exact overhead is more
difficult to determine, as one would have to accurately
predict how the web server would respond to delayed

upload packets. However, we can use the latency ob-
served in the real-world data set, which was collected
using a PT RegulaTor implementation.

By comparing the loading time between the
‘dummy’ PT and the RegulaTor PT, we find that the
average web page loading time for the RegulaTor de-
fense increased 13.9%. While this exceeds the estimated
latency for DF-CW, we find that this is partially ex-
plained by differences in traffic patterns.

Specifically, the standard deviation of load time
recorded by our dummy PT, at 42.3, is substantially
larger than that of DF-CW, which was 28.0. As a re-
sult, the real-world RegulaTor implementation more fre-
quently encounters web pages with short load time and
high volume or web pages with particularly long load-
ing times. In the former case, RegulaTor will likely de-
lay loading, as it will send packets slower than the high
rate in the original trace. In the latter case, RegulaTor
will have significantly slowed packet sending near the
end of the trace, which may then cause increased la-
tency if a late surge of packets is sent. Even with some-
what increased latency, RegulaTor defense performance
in the real-world is strong, reducing Tik-Tok accuracy
to 11.6%. If lower latency is desired, then parameters



A Straightforward Website Fingerprinting Defense 356

Fig. 9. Overhead and closed-world performance by parameter value

may be tuned to decrease it at the expense of a slight
bandwidth or performance penalty.

4.6 Practicality

Due to RegulaTor’s simplicity, it appears that the pa-
rameters do not have to be frequently re-tuned over
time. Specifically, as long as web traffic can be char-
acterized as predictably ‘bursty’ (as described in sec-
tion 3.1), then the surge threshold, delay cap, and de-
cay rate parameters will remain stable. This is further
supported by RegulaTor’s effectiveness on various data
sets with these parameters unchanged. Furthermore, the
download-upload packet ratio will remain stable as long
as the real-world ratio of download to upload traffic re-
mains constant. While this is difficult to predict, it is no-
table that both DF-CW and the data collected with the
dummy PT, which are collected with similar methodolo-
gies but several years apart, report a download-upload
packet ratio of 5.96 and 6.66 respectively. Thus, we ex-
pect that the download-upload packet ratio parameter
will remain somewhat stable.

However, the initial surge rate and padding budget
should be increased in response to changes in the aver-
age page load bandwidth. This increase appears likely
to happen: according to the HTTP Archive [7], the av-

erage resource transfer size of tracked URLs increased
from 1412.1 KB on July 1, 2017 to 2148.7 KB on July
1, 2021. Accordingly, the ideal initial surge rate and
padding budget for the RegulaTor defense may change
over time; fortunately, this change is likely to be pre-
dictable and straightforward to determine, as one only
has to crawl a set of web pages and determine the change
in average traffic volume.

In terms of the practicality of a real-world im-
plementation, RegulaTor offers several advantages over
previous defenses. First, RegulaTor’s overhead is rel-
atively moderate compared to existing regulation de-
fenses, which tend to incur very high latency and band-
width overhead. RegulaTor also operates without a
database of traces associated with other websites, while
defenses such as Glove [31], Supersequence [44], and
Traffic Morphing [47] require knowledge of other traces.
Lastly, RegulaTor does not require additional infras-
tructure or major changes to the Tor network, while
application-level defenses such as HTTPOS [30] require
browser modifications and traffic splitting defenses such
as TrafficSliver-Net involve major Tor modifications. As
a result of these advantages and RegulaTor’s compu-
tational simplicity, RegulaTor can be straightforwardly
implemented as a pluggable transport.



A Straightforward Website Fingerprinting Defense 357

However, a pluggable transport implementation
does introduce drawbacks. While PTs protect against
the ISP and attackers on the client network, they do
not protect against malicious bridges. Moreover, PTs
require extra steps for users to set up and use, so many
users are likely to remain unprotected. While a circuit
padding framework exists [1], allowing developers to
inject padding cells between the client and any node
within the circuit, it does not allow for real cells to
be delayed. Additionally, the circuit padding framework
uses adaptive padding-style [11, 29] state machines to
describe defenses. As a result, it is unable to support
RegulaTor’s approach of padding based on the timing of
packet surges and buffering packets if necessary. There-
fore, updating the circuit padding framework to support
this style of defense is a remaining hurdle for the full de-
ployment of RegulaTor.

5 Related Work

5.1 Website Fingerprinting Attacks

While we use Tik-Tok and Deep Fingerprinting to eval-
uate WF defenses in this paper, they are not the only
deep learning-based techniques that demonstrate high
effectiveness. For example, Automated Website Finger-
printing by Rimmer et al. [39] collected a large data
set and trained three models: stacked denoising autoen-
coders, convolutional neural networks, and long short-
term memory networks. In addition, Oh et al. presented
p-FP [33], which demonstrates that deep neural net-
works can be used to generate feature vectors to im-
prove previous WF attacks in a variety of settings, and
Bhat et al. released Var-CNN [14], which achieves high
accuracy while using a reduced data set.

Other works have primarily aimed to improve ex-
isting WF attacks. These include Triplet Fingerprinting
[43], which uses N-shot learning to allow attackers to
train effective WF models on data sets of limited size,
and GANDaLF [32], which uses generative adversarial
networks to generate "fake" data. Both of these tech-
niques demonstrate that WF attacks can be carried out
without the large data sets used in earlier deep learning-
based attacks. Lastly, Pulls et al. [37] have shown that
the Website Oracle security notion can be combined
with website fingerprinting attacks to greatly reduce the
false positive rate for most websites visited over Tor.

5.2 Website Fingerprinting Defenses

To defend against WF attacks, WF defenses alter traf-
fic to reduce the amount of information leaked about
the associated web page. Defenses typically do this by
adding ‘dummy’ packets and inserting delays into the
traffic. For clarity, we categorize previously published
defenses into four broad categories, which we call ‘im-
itation,’ ‘regulation,’ ‘alteration,’ and ‘traffic splitting.’
A summary of published defenses organized by category
is given in table 5.

Imitation defenses attempt to make packet se-
quences appear similar or identical to sequences of pack-
ets associated with other potential destinations, pre-
venting an attacker from distinguishing between them.
While these defenses are often effective with moder-
ate bandwidth overhead, they require information about
other packet sequences to imitate. As a result, they re-
quire the implementation of additional infrastructure or
the storage of data about a user’s previously visited
web pages, which is potentially difficult. Still, several
instances of this defense type have been presented, start-
ing with Traffic Morphing by Wright et al. [47]. This de-
fense used convex optimization techniques to add pack-
ets and alter packet lengths to match other packet se-
quences, which had been previously stored by the client.
However, Traffic Morphing is ineffective on Tor, which
pads each ‘cell’ to a constant size. Later, Panchenko et
al. [35] presented a method to ‘camouflage’ a trace by
loading another ‘decoy’ simultaneously with the original
one. While this approach appeared relatively effective at
first, it has since been defeated by WF attacks.

Another defense, Supersequence, [44] calculates
‘anonymity sets,’ which are groups of similar packet
sequences that are created to minimize the overhead
needed to pad them such that an attacker cannot dis-
tinguish between them. Then, the shortest common su-
persequence is calculated to carry out the padding ef-
ficiently. The Glove defense [31] uses a similar strategy
of clustering web pages using k-medoids and dynamic
time warping for distance matrix calculation. Then, it
creates ‘super-traces’ to cover the packet sequences in
their respective clusters. While these defenses are the-
oretically effective, they require knowledge of the full
trace being defended and information about packet se-
quences associated with other web pages.

The most recent imitation defense, Walkie-Talkie,
[46], provides a high degree of security with moder-
ate latency and bandwidth penalties. Its approach is
to operate Tor Browser in half-duplex mode, meaning
that the browser is either loading a page or making re-



A Straightforward Website Fingerprinting Defense 358

Category Defense Data Overhead Latency Overhead Additional Requirements Defeated

Imitation

Traffic Morphing
[47]

Moderate None Preliminary Trace Collec-
tion

Yes

Decoy pages[35] High None Loads another web page si-
multaneously

Yes

Supersequence [44] Moderate None Knowledge of other traces No
Glove [31] High High Knowledge of other traces No
Walkie-Talkie [46] Moderate Moderate Knowledge of burst infor-

mation, half-duplex
Yes

Regulation

BuFLO [20] Very High Very High None No
CS-BuFLO [15] Very High Very High None No
Tamaraw [16] Very High Very High None No
WTF-PAD [29] Moderate None None Yes

Alteration HTTPOS [30] Low None Browser modifications Yes
FRONT [21] Moderate None None Partially

Traffic
Splitting

Multihoming [23] None None multipath-compatible
bridge

No

TrafficSliver-App
[18]

None Low Uses local proxy No

TrafficSliver-Net
[18]

None Low Tor modifications No

Other Glue [21] Moderate None User behavior assumptions,
trace database

No

Table 5. Summary of WF Defenses

quests, but does not interleave these states. While visit-
ing a web page, the defense uses ‘burst molding’ to alter
the packet bursts to match a packet sequence from an-
other web page. Walkie-Talkie also partially side-steps
concerns about knowledge and storage of other packet
sequences by storing only burst-level features. Walkie-
Talkie is effective against all defenses except for Tik-
Tok [38], which uses timing information to distinguish
defended packet sequences.

Regulation defenses attempt to make WF attacks
difficult or impossible by regulating the packet send-
ing. The original regulation defense, BuFLO [20], was
primarily created to demonstrate that such a WF de-
fense was possible, albeit inefficient. BuFLO operates
by sending packets at fixed intervals for a set length
of time. If no packet is available at the set time, then
a dummy one is sent instead. Later, CS-BuFLO [15]
was presented as an improved version of BuFLO that
adapts its transmission rate to reduce overhead and con-
gestion. Another BuFLO variant, Tamaraw [16] reduced
overhead while functioning as a “theoretically provable”
BuFLO. While these defenses are resistant to WF at-
tacks and require no additional infrastructure or infor-
mation about other packet sequences, their latency and
bandwidth penalties are too high for practical use.

Still, WTF-PAD [29] manages to efficiently regular-
ize some aspects of the packet sequence by using an ap-
proach based on adaptive padding [40], which was devel-
oped to prevent end-to-end traffic analysis. It does this
by filling long gaps in packet sequences whenever the
gap between packets is larger than the time length sam-
pled from a distribution of typical inter-arrival times. By
reducing the amount of information leaked by each trace
while imposing only a moderate bandwidth penalty,
WTF-PAD is a strong practical defense; accordingly,
WTF-PAD is re-evaluated for comparison in this paper.

Alteration defenses aim to change packet sequence
features to confuse attackers and make it likely that
defended sequences are misclassified. One early exam-
ple tested in Tor was HTTP pipelining, which con-
sists of multiple HTTP requests sent with a single TCP
connection [4]. The HTTPOS defense [30], designed to
prevent information leaks from encrypted flows, uses
HTTP pipelining along with a variety of other browser
changes, such as dummy requests, altered TCP window
sizes, multiple TCP connections, and HTTP Range re-
quests. Tor also tested a browser that requested em-
bedded objects randomly. Still, these application-level
defenses were defeated by Cai et al. [17].



A Straightforward Website Fingerprinting Defense 359

Another alteration defense is the recently-published
FRONT [21], which focuses on adding dummy packets
to the front of packet sequences, where most of the in-
formation about the associated web page is leaked. It
also heavily emphasizes randomized padding by ran-
domly choosing both the distribution and the volume
of added packets. As a result, the packet sequences as-
sociated with any given web page often look completely
different from one another in terms of both total packet
volume and location of packet bursts, making it difficult
for the WF attacker to accurately categorize packet se-
quences. FRONT requires no additional latency, a mod-
erate bandwidth penalty, and no data collection or in-
frastructure. Still, it manages to be one of the most
effective of the practical defenses, making it a primary
target of comparison in this paper.

Traffic Splitting defenses defend against WF at-
tacks by splitting traffic between multiple guard nodes
so that any individual sub-trace reveals little informa-
tion about the target web page. The TrafficSliver [18]
and Multihoming [23] defenses both use traffic split-
ting, though their implementations are fairly differ-
ent. In Multihoming, clients connect through two dif-
ferent access points (e.g. home WiFi and public WiFi)
and then merge traffic at a multipath-compatible Tor
bridge. However, TrafficSliver presents two unique ap-
proaches known as TrafficSliver-App and TrafficSliver-
Net. TrafficSliver-Net alters the Tor network to split
TCP traffic over multiple entry nodes and merges traf-
fic at the middle node, while TrafficSliver-App creates
multiple Tor circuits and proxies HTTP requests over
the circuits.

Both TrafficSliver and Multihoming can be imple-
mented with minimal bandwidth and appear to be effec-
tive WF defenses. However, they do not guard against
all attacker types: TrafficSliver only prevents WF at-
tacks that take place at the guard node, and Multi-
homing does not protect against local attackers who
can see outgoing traffic. As a result, more investigation
into these limitations is needed to further develop traffic
splitting attacks.

6 Conclusion and Future Work
In this paper, we presented a novel and lightweight
WF defense, RegulaTor, along with the insights that
allow for it to operate effectively without large band-
width or latency penalties. By shaping the download
packet sequences to contain large packet surges that

quickly decay, the packet sequences become difficult to
distinguish. Then, because the upload packet sequences
closely mimic the download packet sequences, Regula-
Tor can send upload packets as a function of the down-
load packet timing without incurring high latency or
bandwidth overhead. Thus, the download packet se-
quence is regularized, and the upload packet sequence
leaks no further information about the associated web
page.

Then, we re-evaluated comparable lightweight WF
defenses against state-of-the-art WF attacks to demon-
strate that RegulaTor provides substantially improved
defense with similar or lessened overhead in both the
open-world and closed-world settings. To be specific,
it reduces accuracy in the closed-world setting to just
25.4%, compared to 66.0% for FRONT-2500, the best
published deployable defense. Furthermore, it achieves
this performance with only 79.7% bandwidth overhead
and 6.6% latency overhead, while FRONT-2500 requires
119% bandwidth overhead. Most importantly, however,
it prevents state-of-the-art WF attacks from detecting
visits to monitored web pages with useful accuracy,
demonstrated by the precision-tuned Tik-Tok attack re-
ceiving an F1-score of only .135 (compared to .625 for
FRONT-2500). Thus, RegulaTor represents a step for-
ward in terms of deployable WF defenses.

While RegulaTor prevents an attacker from link-
ing a defended packet sequence with an associated web
page, we did not test it in terms of preventing an attack
from identifying a web site based on a series of page
loads. This task may be easier for an attacker able to
use information about multiple web pages on the same
website as well as information about how users typically
interact with these websites. Thus, defending against
this type of WF attack is left for future work. Other po-
tentially interesting settings for further analysis include
testing RegulaTor with only packet sequences collected
using the fastest or slowest circuits, varying the size of
the unmonitored or unmonitored sets in the open-world
attack, and varying the size of the data set in the closed-
world setting.

Acknowledgments
We’d like to thank the PETS reviewers for their helpful
feedback and Sirinam et al. for providing their data sets.
This work was funded by a 3M fellowship and NSF grant
1815757.



A Straightforward Website Fingerprinting Defense 360

References
[1] Tor Project. Circuit padding developer documentation.

https://github.com/torproject/tor/blob/master/doc/
HACKING/CircuitPaddingDevelopment.md. Accessed: 2020-
11-17.

[2] M. Perry. A critique of website traffic fingerprinting at-
tacks. https://blog.torproject.org/critique-website-traffic-
fingerprinting-attacks. Accessed: 2020-11-17.

[3] T. Wang. Defenses notes. http://home.cse.ust.hk/~taow/
wf/defenses/. Accessed: 2020-9-21.

[4] M. Perry. Experimental defense for website traffic finger-
printing. https://blog.torproject.org/experimental-defense-
website-traffic-fingerprinting. Accessed: 2020-11-17.

[5] Hyperopt: Distributed hyperparameter optimization. https:
//github.com/hyperopt/hyperopt. Accessed: 2021-5-21.

[6] Y. Angel. obfs4 - the obfourscator. https://github.com/
Yawning/obfs4. Accessed: 2021-5-21.

[7] HTTP Archive. Report: State of the web. https://
httparchive.org/reports/state-of-the-web#bytesTotal. Ac-
cessed: 2021-9-21.

[8] Tor Project. Tor browser crawler. https://github.com/
webfp/tor-browser-crawler. Accessed: 2020-11-17.

[9] Tor Project. Tor metrics. https://metrics.torproject.org/
userstats-relay-country.html. Accessed: 2019-01-20.

[10] Tor Project. Tor: Pluggable transports. https://2019.www.
torproject.org/docs/pluggable-transports.html.en. Accessed:
2021-5-21.

[11] Tor Project. Torspec: Padding negotiation. https://gitweb.
torproject.org/torspec.git/tree/proposals/254-padding-
negotiation.txt. Accessed: 2021-9-21.

[12] M. Juarez. Wfpadtools. https://github.com/mjuarezm/
wfpadtools. Accessed: 2021-5-21.

[13] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algo-
rithms for hyper-parameter optimization. In Advances in
Neural Information Processing Systems, volume 24, 2011.

[14] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A
Data-Efficient Website Fingerprinting Attack Based on Deep
Learning. Proceedings on Privacy Enhancing Technologies,
2019(4):292–310, 2019.

[15] X. Cai, R. Nithyanand, and R. Johnson. Cs-buflo: A conges-
tion sensitive website fingerprinting defense. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society,
pages 121–130, 2014.

[16] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Gold-
berg. A systematic approach to developing and evaluating
website fingerprinting defenses. In Proceedings of the ACM
Conference on Computer and Communications Security,
pages 227–238. Association for Computing Machinery, nov
2014.

[17] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from
a distance: Website fingerprinting attacks and defenses. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, page 605–616, New
York, NY, USA, 2012.

[18] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S.
Reuter, J. Filter, T. Engel, K. Wehrle, and A. Panchenko.
Trafficsliver: Fighting website fingerprinting attacks with
traffic splitting. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security,
CCS ’20, page 1971–1985, New York, NY, USA, 2020.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In 13th USENIX Security
Symposium (USENIX Security 04), San Diego, CA, August
2004. USENIX Association.

[20] K.P. Dyer, S.E. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail. In 2012 IEEE symposium on security
and privacy, pages 332–346. IEEE, 2012.

[21] J. Gong and T. Wang. Zero-delay lightweight defenses
against website fingerprinting. In 29th USENIX Security
Symposium (USENIX Security 20), pages 717–734. USENIX
Association, August 2020.

[22] J. Hayes and G. Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security
Symposium (USENIX Security 16), pages 1187–1203, 2016.

[23] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and
P. Thiran. Protecting against website fingerprinting with
multihoming. Proceedings on Privacy Enhancing Technolo-
gies, 2020:89 – 110, 2020.

[24] D. Herrmann, R. Wendolsky, and H. Federrath. Website
fingerprinting: Attacking popular privacy enhancing tech-
nologies with the multinomial naïve-bayes classifier. In
Proceedings of the 2009 ACM Workshop on Cloud Com-
puting Security, CCSW ’09, page 31–42, New York, NY,
USA, 2009. Association for Computing Machinery.

[25] A. Hintz. Fingerprinting websites using traffic analysis. In
Proceedings of the 2nd International Conference on Privacy
Enhancing Technologies, PET’02, page 171–178, Berlin,
Heidelberg, 2002. Springer-Verlag.

[26] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated Ma-
chine Learning - Methods, Systems, Challenges. 01 2019.

[27] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz.
Inside job: Applying traffic analysis to measure tor from
within. In NDSS, 2018.

[28] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A
critical evaluation of website fingerprinting attacks. Proceed-
ings of the ACM Conference on Computer and Communica-
tions Security, pages 263–274, 2014.

[29] M. Juárez, M. Imani, M. Perry, C. Díaz, and M. Wright.
WTF-PAD: Toward an efficient website fingerprinting de-
fense for Tor. ESORICS 2016, abs/1512.00524, 2015.

[30] X. Luo, P. Zhou, E.W.W. Chan, W. Lee, R. KC Chang, R.
Perdisci, et al. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In NDSS, vol-
ume 11, 2011.

[31] R. Nithyanand, X. Cai, and R. Johnson. Glove: A bespoke
website fingerprinting defense. In Proceedings of the ACM
Conference on Computer and Communications Security,
pages 131–134. Association for Computing Machinery, nov
2014.

[32] S.E. Oh, N. Mathews, M.S. Rahman, M. Wright, and N.
Hopper. Gandalf: Gan for data-limited fingerprinting. Pro-
ceedings on Privacy Enhancing Technologies, 2021(2):305–
322, 2021.

[33] S.E. Oh, S. Sunkam, and N. Hopper. p1-FP: Extraction,
Classification, and Prediction of Website Fingerprints with
Deep Learning. Proceedings on Privacy Enhancing Tech-
nologies, 2019(3):191–209, 2019.

https://github.com/torproject/tor/blob/master/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/master/doc/HACKING/CircuitPaddingDevelopment.md
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks
http://home.cse.ust.hk/~taow/wf/defenses/
http://home.cse.ust.hk/~taow/wf/defenses/
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/Yawning/obfs4
https://github.com/Yawning/obfs4
https://httparchive.org/reports/state-of-the-web#bytesTotal
https://httparchive.org/reports/state-of-the-web#bytesTotal
https://github.com/webfp/tor-browser-crawler
https://github.com/webfp/tor-browser-crawler
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://github.com/mjuarezm/wfpadtools
https://github.com/mjuarezm/wfpadtools


A Straightforward Website Fingerprinting Defense 361

[34] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zin-
nen, M. Henze, and K. Wehrle. Website fingerprinting at
internet scale. In NDSS, 2016.

[35] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Web-
site fingerprinting in onion routing based anonymization
networks. In Proceedings of the 10th Annual ACM Work-
shop on Privacy in the Electronic Society, WPES ’11, page
103–114, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[36] T. Pulls. Towards effective and efficient padding machines
for tor. arXiv preprint arXiv:2011.13471, 2020.

[37] T. Pulls and R. Dahlberg. Website fingerprinting with web-
site oracles. Proceedings on Privacy Enhancing Technolo-
gies, 2020:235–255, 01 2020.

[38] M.S. Rahman, P. Sirinam, N. Mathews, K.G. Gangadhara,
and M. Wright. Tik-tok: The utility of packet timing in
website fingerprinting attacks. Proceedings on Privacy En-
hancing Technologies, 2020(3), 2020.

[39] V. Rimmer, D. Preuveneers, M. Juarez, T.V. Goethem, and
W. Joosen. Automated Website Fingerprinting through Deep
Learning. In NDSS, 2018.

[40] V. Shmatikov and M.H. Wang. Timing analysis in low-
latency mix networks: Attacks and defenses. In European
Symposium on Research in Computer Security, pages 18–33.
Springer, 2006.

[41] P. Sirinam. Website fingerprinting using deep learning.
Thesis. Rochester Institute of Technology, 2019.

[42] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep fin-
gerprinting: Undermining website fingerprinting defenses
with deep learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’18, page 1928–1943, New York, NY, USA,
2018.

[43] P. Sirinam, N. Mathews, M.S. Rahman, and M. Wright.
Triplet fingerprinting: More practical and portable website
fingerprinting with n-shot learning. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’19, page 1131–1148, New York, NY,
USA, 2019.

[44] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg. Effective Attacks and Provable Defenses for Website
Fingerprinting. 23rd USENIX Security Symposium (USENIX
Security 14), pages 143–157, 2014.

[45] T. Wang and I. Goldberg. Improved website fingerprinting
on Tor. Proceedings of the ACM Conference on Computer
and Communications Security, pages 201–212, 2013.

[46] T. Wang and I. Goldberg. Walkie-talkie: An efficient de-
fense against passive website fingerprinting attacks. In
Proceedings of the 26th USENIX Conference on Security
Symposium, SEC’17, page 1375–1390, USA, 2017. USENIX
Association.

[47] C.V. Wright, S.E. Coull, and F. Monrose. Traffic Morphing:
An Efficient Defense Against Statistical Traffic Analysis.
Technical report, 2009.

Appendix

6.1 Parameter Tuning Details

To find high-performing parameter combinations that
achieve specific overhead-performance trade-offs, we use
hyperparameter optimization methods. While hyperpa-
rameter optimization methods have generally been used
for model optimization in machine learning [26], we find
that they are fitting for RegulaTor parameter tuning,
where parameters are continuous, have set ranges of
valid values, and have complex interactions with one an-
other in terms of determining model performance. Fur-
thermore, hyperparameter optimization methods use
loss functions to provide feedback about parameter com-
binations; this allows for RegulaTor to be tuned using
a weighted combination of bandwidth overhead, latency
overhead, and attack accuracy (which should all be min-
imized).

There are several classes of approaches to hyper-
parameter optimization, including grid search, random
search, Bayesian optimization, and gradient-based opti-
mization [26]. However, only black-box approaches can
be used with RegulaTor, and grid search and random
search are likely too time-consuming, as many of the
valid combinations of the 6 parameters would have to
be tested. On the other hand, Bayesian optimization
works by creating a model describing the function be-
ing optimized. As more trials are run, the model then
provides an increasingly accurate view of which ‘regions’
of the parameter space are the most promising [13, 26],
allowing for more efficient exploration. Of the Bayesian
approaches, TPE appears well-established and is sup-
ported by the Python library Hyperopt, so we use it to
determine the parameters for RegulaTor.

To determine the performance of a given parame-
ter combinations, we use the following loss function for
RegulaTor-Heavy:

loss = 10l + b + 3a

Here, l and b are the latency and bandwidth over-
head ratio while a is the accuracy of the leading WF at-
tack, which is Tik-Tok. The loss function for RegulaTor-
Light was similar, but more heavily emphasized defense
overhead relative to accuracy:

loss = 7l + b + 2a

After the parameter space was sufficiently explored
by the TPE method, the parameter combinations asso-
ciated with the lowest loss were chosen as RegulaTor-
Heavy and RegulaTor-Light.


	RegulaTor: A Straightforward Website Fingerprinting Defense
	1 Introduction
	2 Preliminaries
	2.1 Website Fingerprinting Background
	2.2 Metrics
	2.3 Defense Overhead
	2.4 Data Sets

	3 RegulaTor
	3.1 RegulaTor Justification
	3.2 RegulaTor Design
	3.3 Parameter Tuning

	4 Defense Evaluation
	4.1 Closed-World
	4.2 Open-world
	4.2.1 Open-World Setup
	4.2.2 Open-World Results

	4.3 Alternate Data Sets
	4.4 Real-world Performance
	4.5 Overhead
	4.5.1 Overhead-performance Trade-offs
	4.5.2 Real-world Latency Overhead

	4.6 Practicality

	5 Related Work
	5.1 Website Fingerprinting Attacks
	5.2 Website Fingerprinting Defenses

	6 Conclusion and Future Work
	6.1 Parameter Tuning Details



