
Proceedings on Privacy Enhancing Technologies ; 2022 (2):447–516

Valerie Fetzer, Marcel Keller, Sven Maier, Markus Raiber, Andy Rupp*, and Rebecca Schwerdt

PUBA: Privacy-Preserving User-Data
Bookkeeping and Analytics
Abstract: In this paper we propose Privacy-preserving
User-data Bookkeeping & Analytics (PUBA), a build-
ing block destined to enable the implementation of busi-
ness models (e.g., targeted advertising) and regulations
(e.g., fraud detection) requiring user-data analysis in
a privacy-preserving way. In PUBA, users keep an un-
linkable but authenticated cryptographic logbook con-
taining their historic data on their device. This logbook
can only be updated by the operator while its con-
tent is not revealed. Users can take part in a privacy-
preserving analytics computation, where it is ensured
that their logbook is up-to-date and authentic while
the potentially secret analytics function is verified to
be privacy-friendly. Taking constrained devices into ac-
count, users may also outsource analytic computations
(to a potentially malicious proxy not colluding with the
operator). We model our novel building block in the Uni-
versal Composability framework and provide a practical
protocol instantiation. To demonstrate the flexibility of
PUBA, we sketch instantiations of privacy-preserving
fraud detection and targeted advertising, although it
could be used in many more scenarios, e.g. data ana-
lytics for multi-modal transportation systems. We im-
plemented our bookkeeping protocols and an exemplary
outsourced analytics computation based on logistic re-
gression using the MP-SPDZ MPC framework. Perfor-
mance evaluations using a smartphone as user device
and more powerful hardware for operator and proxy
suggest that PUBA for smaller logbooks can indeed be
practical.

Keywords: MPC, Bookkeeping, Building-Block, Analyt-
ics, UC

DOI 10.2478/popets-2022-0054
Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

*Corresponding Author: Andy Rupp: University of Lux-
embourg and KASTEL SRL, E-mail: andy.rupp@uni.lu
Valerie Fetzer, Sven Maier, Markus Raiber, Rebecca
Schwerdt: Karlsruhe Institute of Technology, KASTEL, E-
mail: {firstname.surname}@kit.edu
Marcel Keller: CSIRO’s Data61, E-mail: mar-
cel.keller@data61.csiro.au

1 Introduction
Privacy-enhancing cryptographic protocols could be
highly beneficial to citizens and our society in a mul-
titude of user-centric scenarios including mobile pay-
ments, loyalty systems, toll collection, web search,
participatory sensing, disease prediction, multi-modal
transportation systems and pay-as-you-drive insurance.
Also, operators of such systems should be encouraged
to deploy strong privacy-enhancing technologies in view
of EU’s GDPR and the severe fines in case of violation.

However, despite their advantages, proposed cryp-
tographic protocols to protect privacy in such scenar-
ios are rarely in real-world use today. The reasons
for that are manifold; aside from costs for develop-
ment and deployment this is caused by a gap between
what these protocols offer and what is required when
targeting real-world applications: While academic pro-
posals typically strive for “perfect” anonymity and a
simple functionality, they neglect scenario-specific real-
world requirements stemming from business models,
laws, regulations, or user needs. Those requirements
often conflict with the desire for perfect anonymity.
For instance, fraud detection and anti-money launder-
ing as mandated for digital payments or targeted ad-
vertising as performed in loyalty systems are all based
on a customer’s transaction history. Neglecting require-
ments of this kind when building privacy-preserving sys-
tems, e.g., an anonymous mobile payment or loyalty sys-
tem, prevents a practical deployment. In this paper, we
make an important step towards resolving this issue by
proposing a flexible framework that enables the privacy-
and authenticity-preserving bookkeeping and analytics
of user history data. Our building block is secure in the
Universal Composability framework and can thus be
securely incorporated into privacy-preserving systems,
e.g., anonymous mobile payments, in order to satisfy
certain requirements that rely on the analysis of behav-
ioral data of participating users, e.g., fraud detection.

For concreteness, let us consider two examples in
more detail: Loyalty systems and mobile payments. In
loyalty programs such as Optimum [43] in Canada or
Nectar [3] in the UK, customers collect loyalty points
for purchases in participating shops which they can re-

PUBA 448

deem at a later point to pay for purchases, get vouchers,
etc. Academic proposals like Black-Box Accumulators
(BBAs) [36] exist, which realize this point collection and
redemption functionality in a privacy-preserving way
while protecting the operator from forgeries and double-
redemption. However, BBA does not take the business
model of loyalty system providers into account which
typically consist in earning money by enabling advertis-
ing partners to place targeted ads and coupons. To this
end the operator is keeping track of the users’ purchase
histories. Ad selection is typically done using a machine
learning based classifier which maps purchase histories
to product categories customers might find interesting.
Advertisers promoting their products send ads for cer-
tain product categories to the operator along with the
price they are willing to pay every time their ad is deliv-
ered by email or displayed on the loyalty program App.

NFC-based mobile payments are an increasingly
popular method to conduct payments for goods or ser-
vices at points-of-sale. This payment mode has been
boosted with the recent roll-out of Google Pay and Ap-
ple Pay. While systems deployed in practice essentially
realize a virtual credit or debit card—thus payments are
linkable—privacy-preserving systems could, in theory,
be built from anonymous e-cash, e.g., see [4]. However,
those constructions do not take current regulations for
mobile payments into account, e.g., fraud detection as
required by the 2nd European Payment Services Direc-
tive (PSD2) [45]. Fraudulent transactions can occur due
to lost or stolen payment devices or compromised pay-
ment credentials stored on the device. Fraud detection
consists in continuously monitoring a customer’s trans-
action history for anomalies or typical fraud patterns.
This can be done using a set of rules or sophisticated ma-
chine learning algorithms. Based on these background
checks it is then decided in realtime whether a newly
initiated transaction should be granted or denied.

To realize the two above scenarios—as well as many
others—in a privacy-preserving way, a new building-
block is needed which ensures privacy-friendly book-
keeping as well as analytics of user history data: A
user’s actions generate data (e.g., transaction value,
date/time, location, type of shop, etc.) observable by
an operator. A logbook (solely) kept on the user’s de-
vice should be updated with the observed data such that
its content cannot be manipulated by the user while its
current content cannot be learned by the operator. The
former is particularly important for requirements like
fraud or money laundering detection. More precisely,
we need to ensure the authenticity, integrity, freshness,
confidentiality, and unlinkability of the logbook. At the

same time, the building block needs to allow for an-
alytical computations, where users are incentivized or
forced to take part in privacy-preserving analytics of
their latest logbook. These computations must not leak
the input(s), but the operator may only obtain some
privacy-friendly statistics, classification, etc. as output.
The user might also receive some output, e.g., targeted
ads in case of a loyalty system. Also, in some cases, a
slight update of the logbook with results from the ana-
lytics computation might be required, e.g., a risk level
resulting from the background fraud detection checks.
Depending on the scenario, the actual analytics func-
tion might need to be kept confidential, e.g., when it
is considered intellectual property like the classifier for
targeted advertising. In this case, it needs to be ensured
that the operator cannot misuse this opportunity to se-
lectively deploy privacy-violating functions.

We distinguish two types of analytics computa-
tions: outsourced heavyweight analytics and direct
lightweight analytics. As the privacy-preserving evalu-
ation of machine-learning classifiers (e.g., to determine
a user’s individual fraud risk level) might be compu-
tationally and communicationally very demanding, in
particular when mobile user devices are involved, there
needs to be a possibility to securely outsource this com-
putation to a proxy server who acts on behalf of the
user(s). Ideally, even a malicious proxy should not learn
anything about user and operator inputs as well as the
output provided to the user. In some scenarios, out-
sourced analytics should not block further interactions
with the system, i.e., users should be able to continue
updating their logbooks while analytics is running. For
instance, in loyalty systems customers should be able
to continue shopping and keep track of purchased items
while the outsourced ad selection process (for a previ-
ous version of the logbook) is still in progress. Direct
lightweight privacy-preserving analytics is jointly per-
formed between the user’s device and the operator. This
type of analytics might be done prior to an update of the
logbook to determine further actions, e.g., whether the
payment transaction just initiated should be accepted
in view of the customer’s personal risk level.

1.1 Our Contribution

In this paper, we focus on properly formalizing and
instantiating the functionality and security and pri-
vacy properties of a bookkeeping and analytics mech-
anism as sketched in the previous section. Although it
is evident that numerous practical application scenarios

PUBA 449

would benefit from privacy-preserving bookkeeping and
analytics, to the best of our knowledge, this is the first
work formally studying such a multi-purpose building
block.

Our contribution consists in a formal UC-based
modeling, protocols for managing the logbook along
with security proofs, implementations and benchmarks
of crucial protocols, as well as exemplary instantiations
of fraud detection and targeted advertising in our frame-
work. This work is one of very few which combines a
complex, yet practical crypto system with a thorough
UC security analysis. Some details are give below.

Security Model. Based on a high-level system archi-
tecture (cf. Section 2) including a set of intuitive but
informal security properties (cf. Section 2.5), we de-
signed a flexible ideal functionality (cf. Section 3) in
the UC framework [16, 17]. Due to the page limit we
only introduce parts of the functionality here, the full
functionality can be found in Appendix D. Providing a
modeling and a security analysis in the UC framework
is essential as we expect PUBA to be used as a build-
ing block for larger privacy-preserving systems. A main
challenge consisted in finding an appropriate trade-off
between flexibility (to cover a broad set of applications)
and complexity. Our functionality covers users, an oper-
ator, a trusted signing authority (verifying the privacy-
friendliness of analytical functions), and proxies who in-
teract in preparational tasks like User Registration and
Sign Function Parameter as well as operational tasks
such as Bookkeeping (which also covers Direct Analyt-
ics), Outsource, Outsourced Analytics, and Update. The
correct computation of an application-specific function
∆ contained in both Bookkeeping and Outsourced An-
alytics is managed by a subfunctionality FPPA which
provides independence of the used method of computa-
tion. The subfunctionality can, e.g., be instantiated with
any secret-sharing based general MPC framework (for
example based on the SPDZ [23] family) that treats ∆ as
a black-box, which allows for flexible instantiations and
lets PUBA easily profit from performance advances in
MPC. It is, however, also possible to provide non-black-
box instantiations of FPPA which exploit the structure
of ∆, e.g., by letting the user prove in Zero-Knowledge
that it was computed correctly. This allows for more
efficient computations, which is especially desirable for
the Direct Analytics included in the Bookkeeping task.

Provably Secure Protocols. We designed crypto-
graphic protocols for the tasks mentioned above in Ap-
pendix E and provide a full security proof for our con-
struction in Appendix G. Our main challenge was to

carefully combine different primitives and techniques
into protocols that are both secure in the UC framework
and efficient at the same time. To this end, we follow a
commit-sign-rerandomize-proof approach to achieve the
desired security properties for our logbook. We build on
Groth-Sahai [34] non-interactive zero-knowledge proofs,
which are fairly practical and secure under standard as-
sumptions (e.g., SXDH over bilinear groups). Further-
more, we use structure-preserving signatures [1] and ho-
momorphic multi-commitments [2] for which statements
(e.g., the knowledge of a signature on a commitment)
can be efficiently proven using Groth-Sahai.

Implementation and Benchmarks. We implemented
our protocols for User Registration, Bookkeeping, Out-
source and Update as well as an exemplary Outsourced
Analytics computation based on logistic regression us-
ing the MP-SPDZ MPC framework [40]. For the user
side we used a Nexus 5X and a Galaxy S8 smartphone,
whereas the operator and proxy computations were im-
plemented on more powerful server hardware. Our mea-
surements show that even fairly complex Bookkeeping
involving permuting, setting, and adding values to en-
tries can be done within about 2 seconds for a logbook
containing 100 entries and assuming an NFC data rate
of 424 kbit/s. Outsourcing the logbook for an analyt-
ics computation takes around 660 ms assuming a mo-
bile data rate of 10 Mbit/s. Retrieving the results of the
Outsourced Analytics and (potentially) updating the
logbook can be done in 2 seconds assuming the same
data rate. The privacy-preserving analytical computa-
tion itself takes around 380 ms for colocated servers of
operator and proxy. These estimates show that privacy-
preserving bookkeeping and analytics could indeed be
practical.

Application: Fraud Detection. We sketch how a sim-
ple two-tier fraud detection could be realized with
PUBA. Tier 1 enforces the user in the scope of an Out-
sourced Analytics computation to perform a more com-
plex machine learning based fraud detection with the
operator if a certain number of payment transactions
has been reached. This results in some risk level which is
stored in the logbook. Tier 2 is a Direct Analytics com-
putation performed when a new payment transaction
is initiated. It consists of checking simple rules taking
the risk level into account to decide whether the trans-
action is accepted or declined. Assuming the hardware
and data rates from above and a logbook storing the
last 20 transaction records, where each record consists
of 5 values, we estimate Tier 1 detection using logis-
tic regression to take around 3 seconds (including Out-

PUBA 450

sourcing and Update), where Tier 2 detection including
Bookkeeping can be done in less than 2 seconds.

1.2 Related Work

To the best of our knowledge, this work is the first for-
mally defining a multi-purpose privacy-preserving book-
keeping and analytics building block.

Yet, regarding bookkeeping, we partly use similar
mechanisms as Black-Box Accumulators (BBA+) in-
troduced in [36, 38]. BBA+ provides a framework for
privacy-preserving point collection and redemption and
does not consider data analytics. Moreover, its security
is defined using a game-based approach, which leads to
weaker security guarantees.

In [10] updatable anonymous credentials are intro-
duced, which allow to dynamically modify the attributes
of a credential by an update function after its creation.
However, updatable credentials as defined in [10] do not
satisfy our requirements. The input to the update func-
tion is solely provided by and only known to the user.
Moreover, freshness of credentials and their use for an-
alytical computations is not considered. Like [36, 38],
they do not consider security in the UC model.

Kolesnikov et al. [42] present schemes that pro-
vide input authentication in the following sense: in their
model, malicious clients want to perform secure multi-
party computations with a semi-honest server and the
scheme ensures that clients use the same input in mul-
tiple different computations. This can be considered as
a weak form of bookkeeping with weaker requirements.
While [42] ensures that users cannot use arbitrary in-
puts for the computations, they can be linked through-
out interactions. Furthermore, in contrast to [42], our
framework also works with malicious servers and pro-
vides additional security guarantees for honest users not
directly inherited by the MPC.

Privacy-preserving analytics and data mining (with-
out bookkeeping and input authentication) has been
well-studied before. The proposed approaches from the
literature either construct dedicated protocols exploit-
ing the structure of existing methods (such as neural
networks or logistic regression) commonly used for Ma-
chine Learning [7, 20], or propose techniques for solving
a given analytical problem efficiently [24, 46, 51, 52].

Let us briefly consider the related work regarding
the applications of PUBA more thoroughly studied in
this paper: targeted advertising in loyalty system and
fraud detection in mobile payments. To the best of our
knowledge, privacy-preserving targeted advertising for

loyalty programs has not been thoroughly analyzed be-
fore. The majority of work on privacy-preserving tar-
geted advertising deals with an Internet scenario where
an advertisement network (such as Google) wants to
display targeted advertisements on Websites based on
the User’s prior Web activities. Besides a few excep-
tions, e.g., [8], security and privacy properties of pro-
posed systems are not formally proven. Concerning ad
selection, there are currently two prevalent approaches:
client-based and proxy-based selection. In client-based
ad selection, e.g., [8, 33, 47], typically a browser plugin
keeps track of the user’s online behavior and interests
and classifies the user in order to determine the most
relevant ad. This implies that the ad network’s selec-
tion algorithm has to be public and the correctness of
inputs and computation is not ensured. In proxy-based
selection, e.g. [35], a Trusted Third Party (TTP) with
secure channels to the user hides user data from the ad
network. This implies a dependency on the TTP and
the assumption that users send correct data.

To the best of our knowledge, barely any work has
been devoted to privacy-preserving fraud detection for
payments yet. The most interesting work [19] is perform-
ing an exploratory study on the performance of fully
homomorphic encryption based classification of finance-
related transaction data which is run by a fraud detec-
tion service provider. Authenticity and freshness of the
data is assumed.

2 High Level Description
In this section, we provide a high-level introduction
to the parties and tasks involved in the analytics-
framework for PUBA. Note that we provide a further
discussion in Appendix A.

2.1 Parties and Roles

PUBA considers four different types of parties:

Users U . PUBA allows for arbitrarily many users to
participate in the system. Each user collects data inside
a personal logbook λ which they can provide for privacy-
preserving computations. The main part of this data is
called User History (UH) UH. This part is authenti-
cated and cannot be changed by the user at will, but is
only updated through private bookkeeping tasks with
the operator. The private data is represented by a vec-
tor of slots, each slot contains a Zp-element. Users may

PUBA 451

be corrupted and maliciously collude with other cor-
rupted parties. We assume that users participate using
relatively weak hardware. For many real-world applica-
tions the user side of PUBA will probably be realized
as a smartphone application.

The Operator O. For any given instance of PUBA
there is exactly one operator. This party is the central
entity managing the system. The operator has an inter-
est in evaluating analytical functions on the data col-
lected by users. In certain scenarios, the precise details
of these functions, however, may be subject to trade
secrets and should not be leaked to any other party.
We thus assume that the operator can hide all sensi-
tive information inside Function Parameters (FPs) fp
while the publicly known function ∆ itself only provides
the general structure. In real applications, FPs corre-
spond to transition matrices of neural networks [39] or
weights and features for linear regression. Being the op-
erator’s input to analytics computations they achieve
the same level of privacy as the users’ private data. Re-
lying on FPs is without loss of generality [49] regarding
the class of computable functions. The operator may be
corrupted and maliciously collude with other corrupted
parties apart from proxies (which does not affect user
privacy).

The Trusted Signing Authority T . Allowing arbi-
trary private FPs precludes any meaningful level of pri-
vacy for the users. To prevent malicious operators from
using FPs which trivially undermine the users’ privacy,
we assume the existence of a Trusted Signing Authority
(TSA): Before using FPs for computations, the operator
has to let them be certified by the TSA to not violate
privacy requirements. We elaborate on the difficulties
of this task in Appendix A.1. PUBA enforces that only
FPs certified by the TSA can be used during computa-
tions on the users’ data. The TSA is an external entity
and has to be trusted by users as well as the operator.
We picture the TSA as a privacy-defending donation-
funded NGO (like the Electronic Frontier Foundation)
or the Federal Data Protection Officer.

Proxies P. PUBA allows arbitrarily many proxies to
participate. Proxies are used for computing analytical
functions and to coordinate computations that require
data from multiple users. We assume proxies to provide
the computational power and bandwidth of a regular
server. Proxies may be corrupted and collude with cor-
rupted users. As long as proxies do not collude with the
operator, PUBA guarantees all user data to be hidden
from proxy and operator. Any user may potentially set

U O TSign Function ParameterUser Registration

Function Parameters Verify

Certificate

Registration Data Verify

Empty Logbook

Fig. 1. Overview of the preparatory tasks.

up their own proxy, yet it is also possible that NGOs
provide donation-funded proxy servers.

2.2 Preparatory Tasks

Before users can participate in the system they have to
register with the operator. Similarly, the operator has
to have FPs signed by the TSA before they can use
them. Both tasks have to be conducted only once (per
user/FP respectively) before computations with them
are possible. An overview of these tasks is provided in
Fig. 1.

Sign Function Parameter. Any function computed
with PUBA is split in two parts: A generic and publicly
known function representation ∆ (e.g., a neural network
with padded neurons) and a corresponding set of FPs
which determine the specifics (e.g., the transition ma-
trices). These FPs constitute sensitive data held by the
operator. Before the operator can use any FPs for com-
putations, the TSA has to verify that the resulting func-
tion does not violate the required privacy standards. To
that end, the TSA verifies the FPs according (but not
limited) to the following criteria: 1) Is the output suffi-
ciently general to not leak confidential user information?
We assume a public catalog of requirements FPs have
to fulfill. This also provides feedback for the users on
the expected level of privacy. 2) Does this function use
the slots of the UH according to their specification? We
generally assume that the specification of the UH—the
semantic interpretation of the individual slots—to be
public knowledge. 3) Are there any additional leaks
when combining these FPs with any of the previously
certified FPs? We model the verification function such
that the TSA can input all previously accepted FPs as
auxiliary input. The actual Sign Function Parameter
(SFP) task is depicted in Fig. 1: The operator inputs
FPs which are then checked by the TSA against the
privacy guidelines. If the FPs comply with the guide-
lines, the TSA provides the operator with some form
of certificate. Our protocol uses signatures on the FPs.
This certificate is a required input to any computation
task that uses these FPs.

PUBA 452

U OBookkeeping

Logbook
New Data

Signed Function Parameters
New Data

Computation resultUpdated Logbook

Fig. 2. Overview of the Bookkeeping task.

User Registration. Users store their private User
History inside a personal logbook λ. Providing the user
with an “empty” logbook which contains an authenti-
cated initial UH is the purpose of the User Registration
(UReg) task. The task is depicted in Fig. 1 and con-
sists of three phases. In the first phase the user identi-
fies themselves. This triggers the second phase in which
the operator verifies that the user is not registered al-
ready—we require that each user can only have at most
one logbook. Lastly both parties jointly compute the ini-
tial logbook containing an authenticated UH. For most
scenarios, the UH is supposed to start out empty. For
scenarios where the initial UH should contain some spe-
cific data, this task allows its computation based on ap-
propriate FPs. The logbook λ is a requirement for par-
ticipation in any of the other tasks. The UReg task is
the only task identifying the user and only performed
once.

2.3 Bookkeeping

A central focus of PUBA is privacy-preserving book-
keeping, which lets the operator and a user manipu-
late data with certain guarantees for both parties. An
overview of this task can be found in Fig. 2.

Bookkeeping. The Bookkeeping (BK) task manip-
ulates a single user’s data. While the main purpose of
this task is to provide an efficient targeted manipulation
of the UH in an authenticated yet privacy-preserving
way (such as adding or reseting individual values), the
task optionally performs lightweight direct analytics of
the user data according to an application-specific func-
tion ∆ and the certified FPs. This enables manipula-
tions of the UH based on its current values, which may
be required for scenarios such as fraud detection where
the decision (to be recorded) whether a transaction is
granted or not depends on a risk level stored in UH. The
main part—authenticated manipulation of the UH—is
done without leaking the authenticated and private data
stored in the UH to the operator. The UH is updated
using Update Information UI = (α, s,a). These con-

U P O

Outsource

Outsourced Analytics

Update

Logb
ook

Logbook Share

Logbook Share Logbook SharesLogbook Shares

Output
Masked Update

Masked Update

Masked
Upda

te

Masked Update

OutputUpdated Logbook

Fig. 3. Overview of tasks for outsourcing computations.

tain three consecutive operations defined by three maps
which are output by ∆ during the computation. The
first map α defines a permutation of the contents inside
the UH. The second map s determines which values of
the UH are set to new values directly, we call this di-
rect update in the following. The final map a is defined
by a vector of additive updates which will be applied
to the values of UH, we call this vector additive incre-
ment. While the additive increment is hidden from the
operator, the permutation and direct update are learned
by both parties and hence subject to privacy considera-
tions during auditing with the TSA to ensure that they
leak no personal information on the user. Of course, if
permutations and direct updates are not needed, the
user can skip them in favor of a more efficient updates
using only the additive increment. The chosen three-
operation update mechanism is a tradeoff between what
is usually required for (basic) bookkeeping applications
and what can be efficiently implemented (using zero-
knowledge proofs and homomorphic commitments).

The UH remains authenticated because 1. the oper-
ator knows that the input was authenticated, and 2. the
correctness properties ensure that the data was manip-
ulated correctly.

2.4 Outsourcing Analytical Computations

We assume users to have relatively weak hardware in-
capable of securely computing analytical functions like
neural networks efficiently. To still enable these costly
computations we involve an additional party—the
proxy—which provides the computational power and
bandwidth required to perform such computations. As
long as the proxy does not collude with the operator
it learns no secrets or even analytical results from par-
ticipation. A corrupted proxy also poses no risk for the
operator’s privacy. Involving a proxy enables synchro-

PUBA 453

nization of analytical tasks which require private data
from several users. The basic workflow for outsourcing
analytical tasks is shown in Fig. 3; note that the three
different tasks involved in this cannot be scheduled ar-
bitrarily but have to be conducted top to bottom. The
general workflow first lets the user distribute the logbook
containing their current UH to a proxy of its choice and
the operator using the Outsource task. These shares are
then used by proxy and operator for computing the an-
alytical function using the Outsourced Analytics task.
This can potentially cause updates on the UH which
follow the same three basic operations (permutation,
direct update, additive increment) that were also used
for the Bookkeeping task. Again, we want to hide the
additive vector applied to the User History and thus use
a similar mechanism as during the BK task, only that
the values relevant for the user are temporarily stored
by the proxy and hence masked with One-Time Pads.
The update can later be applied by the user by means
of the Update task which also re-enables the Outsource
task for that user.

Outsource. To prepare the computation of an ana-
lytical task the Outsource (OS) task is conducted be-
tween user, proxy and operator as shown in Fig. 3: The
user inserts their current logbook which contains the
latest authenticated User History. A snapshot of this
is shared between the operator and proxy for use in
the computation while the user receives a new logbook
which is identical to the old one except that it is now
marked as having been outsourced.

Outsourced Analytics. Using the shares obtained
from the OS tasks, proxy and operator can now conduct
the actual computation. This is depicted in Fig. 3 as
well. The function is computed on the private user data
using any secret-sharing based MPC framework. The
operator learns the desired analytical result directly. In-
formation relevant for the user is masked and output to
the proxy; the users fetch the data and reconstruct it at
their convenience but the proxy does not learn the data.
Computation again follows the function ∆ and requires
validated FPs from the operator.

Update. As mentioned before, the results of Out-
sourced Analytics can be used to update the user data.
To apply these to the latest UH, PUBA provides the
Update task (see Fig. 3). This also re-enables the Out-
source task for their logbook. The analytical result
destined for the user is forwarded to them. Both the
operator and proxy input the share they obtained from
the Outsourced Analytics task. These shares contain
the updates for the UH, the computation results rele-

vant for the user and additional information to detect
tampering of the shares. The user inputs the latest
UH and obtains a new authenticated UH which was up-
dated using the same mechanism as used in the BK task.

The triplet from Fig. 3 is non-blocking regarding
further Bookkeeping tasks: A user can outsource the
latest User History in an Outsource task, running an-
alytics in the “background”, and then update the UH
using the Bookkeeping task arbitrarily often before par-
ticipating in the Update task. As mentioned, this is, e.g.,
desired in scenarios like targeted advertising. We stress,
however, that the triplet is blocking with respect to fur-
ther analytical tasks (amongst others, to hamper denial
of service attacks on proxies and operator): After exe-
cuting the Outsource task the user has to successfully
perform the Update task before it can call Outsource
again. This implies that the User History input to the
Update task has potentially been changed via successive
Bookkeeping tasks and significantly differs from the UH
used during Outsource. Special care has to be taken
during function design to ensure that the update is still
meaningful even after any number of Bookkeeping tasks
manipulating the UH in the meantime. This can, e.g.,
be done by defining a separate portion of the UH which
can only be modified by Update.

2.5 Security Guarantees

This section discusses the security requirements in an
informal fashion based on which we designed an ideal
functionality in the UC framework (cf. Section 2.6).

The operator expects authenticated inputs and cor-
rect analytical results, thereby hiding potential trade
secrets. In particular, we desire the following security
requirements for the operator:

Owner Binding. Users can only use their own User
History. Even corrupted users cannot efficiently steal an
honest user’s UH.

History Freshness.No user can use an outdated User
History for any of the Bookkeeping, Outsource or Up-
date task: The same UH can never be used twice without
the operator noticing.

History Unforgeability. The User History can only
be changed through task executions. It is computation-
ally infeasible for a user to create a User History with
arbitrary values that will be accepted by the operator.
This hampers Model Extraction Attacks [48] in which
the user uses targeted inputs to steal the FPs.

PUBA 454

Uniqueness. Each user can have at most a single
logbook. It is not efficiently possible for a user to own
two valid logbooks at the same time.

Function Privacy. The Function Parameters input
by the operator remain private: only the TSA is allowed
to learn them. Other parties only learn the output of
the function computed with these FPs.

Any user interacting with PUBA expects privacy of
the collected data throughout different interactions:

Unlinkability. The leakage is limited to information
that enables identifying the user during the User Reg-
istration task as well as coupling a consecutive tuple
of Outsource, Outsourced Analytics and Update to the
same anonymous user. Other than that, leakage is lim-
ited so as to not leak any information that enables the
operator to link task executions to the same user. We
discuss the amount of information leaked in each task
in Appendix B.

Input Privacy. The user does not reveal anything
about the UH that cannot be derived from the result of
the computation.

Function Parameter Binding. Computations can
only be performed on FPs which were previously cer-
tified by the TSA. It is not efficiently possible for the
operator to use uncertified FPs.

2.6 The Ideal Functionality F (∆)
P UBA

We introduce the UC functionality F (∆)
PUBA for PUBA

in Appendix D. For space restrictions we only provide
a brief intuition of the functionality in Fig. 4. It is de-
signed such that it fulfills the requirements from Sec-
tion 2.5. For an introduction to the UC framework, see
Appendix C.1.

Our functionality internally manages all the User
Histories. This ensures that the only way to change a UH
is by interaction through the individual tasks. Inside the
functionality the data is linked to the user via their pid
which by UC conventions cannot be changed. If a user
queries the functionality it fetches the latest UH that
belongs to that user and uses it for the desired task. This
models Owner Binding, History Freshness and History
Unforgeability directly into the functionality.

We use the same idea to ensure the Function Pa-
rameter Binding property: The state of the functional-
ity contains a list fFP that contains all the FPs that
were verified by the TSA to be used for a given task.

Functionality F (∆)
PUBA (excerpt)

F (∆)
PUBA facilitates Privacy-preserving User-data Bookkeeping

& Analytics. The function to be computed is specified by
the global parameter ∆. It is running with an operator O, a
signer T , a polynomial number of proxies P, and polynomial
a number of users U .
. .

1. State:
The functionality stores:
A mapping fFP(task, n) which maps a tuple task ∈
{UReg, {BK(k), OA(k)}Kk=1} and n ∈ N to Function Pa-
rameters fp that can be used for the resp. task.
And for each registered user, the functionality stores:
– The pid pid.
– The latest User History UH.
– A flag that is set iff that user is participating in an

ongoing Outsourced Analytics task.
– A (possibly empty) tuple of information for an ongo-

ing Outsourced Analytics task:
pidP : the pid of the specified proxy.
k: specifies the function to be computed by ∆.
ssid: the Subsession Identifier of the Outsource call.
UH: the snapshot of the User History when Out-
source was queried.
inU : the additional input used by the user.

– A (possibly empty) tuple containing the results of an
Outsourced Analytics task that were not yet fetched
during the Update task:
ssid: the Subsession Identifier of the Outsource call.
UI: the update consisting of a permutation α, a di-
rect update s and an increment a for the latest UH.
outU : the additional output relevant for the user.

2. Sign Function Parameter:
(a) On input (SFP, inT) by pidT , and (SFP, fp, task, inO),

abort if ∆(SFP, fp, task, inO, inT) = 0 or if there is
some ` for which fFP(task, `) = fp.
Otherwise, let ` be min` : fFP(task, `) = ⊥ be the first
free slot of fFP. Set fFP(task, `) := fp and leak (task, `)
to the adversary. Then output (ok) to O and T .

3. Bookkeeping:
(a) On input (BK(k), fp, inO) by pidO, abort if there is

no ` ∈ N for which fp = fFP(BK(k), `).
Otherwise, leak ` to the adversary.

(b) On input (BK(k), inU) by pidU , once the first opera-
tor message has already been handled, load the User
History associated with pidU and abort if UH = ⊥.
Compute ∆(BK , fp, k,UH, inU , inO) to obtain out-
puts (UI, outU , outO). Interpret UI as (α, s,a).
Set UH′ := α(UH), then for each entry s[i], if
s[i] = ⊥ then set UH′′[i] := UH′[i], and otherwise
set UH′′[i] := s[i]. Finally, set UHnew := UH′′+ a and
update the stored for pidU as UHnew.
Output (α, s,a, outU) to U and (α, s, outO) to O.

...

Fig. 4. An excerpt of the ideal functionality F(∆)
PUBA.

PUBA 455

For any task where FPs are required the functionality
aborts if the input is not in the list fFP, and the list can
only be expanded using the Sign Function Parameter
task.

The functionality is parameterized by the function-
specific ∆ which specifies the computations for a given
scenario. Its first parameter always specifies the task;
UReg is for User Registration, SFP stands for Sign
Function Parameter, BK for Bookkeeping, and OA for
Outsourced Analytics. As there might be several (K ∈
N) possible functions for BK and OA we specify by
k ≤ K the function that is to be computed. The re-
maining parameters only depend on the first parameter
that specifies the task.

We assume that a list of privacy-requirements that
FPs have to fulfill for any task in order to be accepted
is also contained in ∆. Those are checked in the SFP
task by the functionality to ensure that any protocol
realizing this functionality allows only FPs that fulfill
the given requirements.

Modeling Input Privacy and Function Privacy is
done by defining the functionality such that it does not
leak any information that allows the adversary to recon-
struct any of the inputs.

Not leaking the user’s identity is a more challenging
task. In UC the functionality generally reports to the ad-
versary (and hence to the simulator in the ideal world)
whenever an input has been received; the leak contains
the task description and the pid of the calling party. To
ensure Unlinkability our functionality does not leak the
pid of the user to the adversary1 (cf. Appendix B) but
only that input from any user has been received. It is
then up to the simulator to report messages correctly
without getting the pid directly.

3 Instantiation
This section sketches our instantiation πPUBA of
PUBA, see Appendix E for the full version.

3.1 Cryptographic Building Blocks

We make use of the following building blocks. For formal
definitions see Appendix C.

1 The one exception here is User Registration which we consider
to be the only identifying task for the user.

An IND-CPA secure symmetric encryption scheme.
Parties exchange keys to set up a secure channel before
starting a task. The resulting shared secret key is used
as symmetric key by both parties to encrypt any mes-
sage that belongs to this task. The parties encrypt those
messages using an IND-CPA secure symmetric encryp-
tion scheme. AES [22] can be used for that purpose.

A structure-preserving EUF-CMA-secure signature
scheme. To ensure the integrity of the logbook, we use
an EUF-CMA-secure signature scheme which is com-
patible (structure-preserving) with our zero-knowledge
proofs. A possible instantiation is [1].

An additively homomorphic, structure-preserving
commitment scheme. Each user stores data inside their
User History alongside additional information (see Sec-
tion 3.2) to which it needs to commit. We require the
scheme to be homomorphic, unconditionally hiding and
computationally binding. These requirements are satis-
fied by [2].

A Non-Interactive Zero-Knowledge Proof of Knowl-
edge scheme. This scheme is used by the user to prove
that certain operations have been performed correctly.
It needs to be extractable and zero-knowledge. Groth-
Sahai proofs [34] satisfy our requirements.

A Robust Secret Scharing scheme. We use a robust
secret sharing scheme, which lets a party create shares
of a secret in such a way that (1) the recipients can ver-
ify the integrity of the received shares, and (2) tamper-
ing with the shares can be detected during reconstruc-
tion. Unlike verifiable secret sharing which only protects
against a malicious dealer, robust secret sharing also
protects against recipients trying to manipulate their
shares in order to change the reconstructed output.

A pairing group. We make use of an asymmetric
pairing group gp = (G1,G2,GT, e, p, g1, g2). The groups
G1, G2 and GT of prime order p are cyclic groups with
generators g1 and g2. Identification of a user relies on
the hardness of the Co-CDH problem [12], which asks
to compute gx2 given g1, g2, g

x
1 . The Co-DH assumption

is implied by the SXDH assumption [34] we use to in-
stantiate Groth-Sahai proofs.

3.2 The User Logbook

We denote by λ the logbook containing the data stored
by a user:

λ =
(UH

comUH
unvUH

,
ser

comser
unvser

,
lin

comlin
unvlin

,
id

comid
unvid

, σ
)

(1)

PUBA 456

The logbook contains all the data required to maintain
the User History and to anonymously interact with the
operator.

The User History UH. The key component of the
logbook is the User History. It is a vector of Zp elements
that represents the authenticated data collected by the
user.

The Serial Number ser. The serial number is a sin-
gle Zp element that uniquely determines a revision of a
logbook. It is unique with overwhelming probability in
that throughout the lifetime of PUBA there are no two
logbooks (neither belonging to different users nor to the
same user) that share the same serial number.

The Linking Number lin. We require linkability in-
side the triplet for outsourcing computations: consecu-
tive tasks of Outsource, Outsourced Analytics and Up-
date have to be linked to the same user as otherwise
the data outsourced during the Outsource task cannot
be used during Outsourced Analytics and the changes
of the resulting update cannot be applied to the cor-
rect User History during the Update task. We thus use
an additional Zp element that links these executions for
all three parties involved in outsourcing computations,
which the user stores inside the logbook. If no data has
been outsourced since the latest update then the linking
number is 0.

The Identity id. The user has a fixed private iden-
tity which is represented as a secret Zp element. It is
randomly chosen during User Registration and is never
directly revealed to anybody. To prove ownership of the
logbook, knowledge of id has to be proven.

The Commitment Information com, unv and Signa-
ture σ. To ensure authenticity the operator generally
signs all values inside the logbook. However, the signa-
ture is not on the values directly—as this would con-
flict with the users privacy requirement—but on com-
mitments thereof. This is why the user not only stores
the values inside the logbook but also the commitments
that were used by the operator to compute the signa-
ture. As those are part of the witness to generate zero-
knowledge proofs, the user also stores the corresponding
unveil information.

The final value in the logbook is a signature by the
operator that ensures integrity of the commitments on
the UH, the serial number, the linking number and the
identity.

3.3 General Principles

For every task involving the user, our protocol begins
and ends with the same two mechanisms: The authen-
ticated input mechanism ensures the user enters a fresh
and authenticated logbook into the interaction while the
updating mechanism provides the user with a new valid
logbook when the task is finished.

Authenticated Input Mechanism. At the start of each
task the user owns a valid logbook λ containing the
data shown in Eq. (1). To prove validity of the logbook
to the operator the user first rerandomizes all commit-
ments com∗ to commitments c̃om∗ by homomorphically
adding a commitment to 0. In the second step the user
computes a Zero-Knowledge proof Π showing that they
know (1) commitments com∗ on the same values as the
c̃om∗ and (2) a signature σ that authenticates the orig-
inal commitments under the verification key of the op-
erator. The rerandomized commitments c̃om∗ and proof
Π are sent to the operator for validation. The above
process is only conducted for values the operator is not
supposed to learn, usually (UH, lin, id). In case the
user wants to fetch updates from an outsourced ana-
lytical computation or wants to start one and needs to
show the logbook contains lin = 0, the hidden values are
(UH, id) only. The serial number ser is always revealed
at the start of a task and checked by the operator (using
a database lookup) to make sure the user does not try
to use an outdated logbook for a new task.

Updating Mechanism. At the end of each task the
user and operator jointly compute a new valid logbook
λnew to be used in the next task. To do so, the op-
erator needs to reliably learn commitments (comnewUH ,
comnewser , comnewlin , comnewid) to all new values (UHnew,
linnew, sernew, idnew) and sign them for the user without
learning the values themselves. We explain how commit-
ments to each of the values are obtained by the operator.

The new UH is calculated in two steps: Permuta-
tions and value setting by the user and additive incre-
ments by the operator. If there are updates which are
not compatible with the homomorphic property of the
underlying commitment scheme—i.e., permutations and
or data fields which should be set to entirely new val-
ues—the user performs those updates on their old UH,
providing the operator with a new commitment value
com′UH to the updated version and a zero-knowledge
proof that they have done so correctly. For updates com-
patible with the commitment scheme—i.e., additive in-
crements—the operator directly learns a commitment
coma of the additive increment which they can add to

PUBA 457

com′UH to obtain comnewUH . In case there are only additive
updates, the first step is skipped and the user directly
adds coma to the commitment c̃omUH they learned at
the start of the task.

A new serial number sernew is coin-tossed similar
to [11] by the operator and user. The modified protocol
works in two rounds: (1) The user picks a random share
sernew(U) and sends a commitment com(U) of that value
to the operator. (2) The operator picks a random share
sernew(O) , computes a commitment com(O) to that value,
calculates the commitment comnewser := com(U)+com(O) to
the complete value sernew = sernew(U) + sernew(O) (without
knowing sernew(U)) and sends their serial number share
alongside the commitment and unveil information to the
user.

The linking number lin of the logbook stays the
same for most interactions. Whenever the linking num-
ber is changed (in Outsource and Update) the operator
knows the new value linnew, so computing a new com-
mitment comnewlin to sign for the user is no problem. If
linnew = lin, the operator can use the rerandomized
commitment comnewlin := c̃omlin they learned at the start
of the task.

The ID id of course stays the same for one user
throughout all tasks and hence the operator can use the
rerandomized commitment comnewid := c̃omid as well.

The operator signs all these commitments (comnewUH ,
comnewser , comnewlin , comnewid) to create a signature σnew for
the new logbook and sends it to the user. Finally, the
user verifies the validity of the new logbook λnew.

3.4 Individual Tasks

Let us explain how the central tasks of Bookkeeping,
Outsource, Outsourced Analytics and Update are real-
ized by πPUBA.

Bookkeeping. The Bookkeeping task is almost com-
pletely covered by the authenticated input and updating
mechanisms explained above. Between the two mecha-
nisms, the user verifies that the operator uses correctly
signed Function Parameters (c.p. Section 2.2) for the
task and both of them jointly compute the update in-
formation and additional outputs according to ∆. We
give more information on this MPC computation in Sec-
tion 3.5.

Outsourcing Analytical Computations. An overview
of how πPUBA realizes outsourcing analytical computa-
tions can be found in Fig. 5.

U P O

Outsource

Authenticated Input Mechanism
share(UH, inU , otp), Πshare

share(UH, inU , otp)
Verify Shares

Draw linnew

Updating Mechanism

P O
Outsourced Analytics

FPPA

comfp, σfp

share(UH, inU , otp),

fp, inO

share(UH, inU , otp),

comfp

otp(outU),

Update Information, outO

otp(outU),

otp(Update Information)

U P O

Update
Authenticated Input Mechanism

otp(outU , Update Information)

otp(outU)

Updating Mechanism

Fig. 5. Simplified depiction of πPUBA for outsourcing computa-
tions.

For the Outsource task the user reveals the log-
book’s linking number lin to be zero when proving the
validity of their input logbook. Additionally, the user
provides additive robust secret shares of their UH UH
and their auxiliary input inU to the Outsourced Ana-
lytics, and of several one-time pads for the proxy and
operator, respectively. The one-time pads will be used
to let the user collect their update information and com-
putation outputs in a privacy-preserving manner. The
secret shares are also proven to be computed correctly.
Proxy and operator check the values using the robust
secret sharing scheme and, using the values obtained
from the proxy in this process, the operator checks the
zero-knowledge proof to ensure that the shares were
created correctly. Proxy and operator then coin toss
a new linking number linnew to be used for this Out-
source/Outsourced Analytics/Update triple. Again, as
the last step the operator provides the user with the nec-
essary information to obtain a new valid logbook, which
only contains a new serial and linking number but the
same UH as before.

As Outsourced Analytics does not include the user,
the general principles from Section 3.3 do not apply to
this task. Instead, the proxy verifies that the operator
uses correctly signed FPs fp for the computation. To do
so the operator sends a commitment comfp as well as
a signature σfp on the commitment to the proxy who
checks that the signature verifies under the key of the
TSA. Afterwards both jointly compute ∆ via FPPA.
Note that—apart from the update information the oper-
ator is supposed to learn—the update information and

PUBA 458

outputs for the respective users are one-time padded to
retain privacy from both proxy and operator.

In the Update task the user again proves their input
logbook to be valid, revealing the linking number lin so
the proxy and operator can hand out the correct up-
date information and user output from Outsourced An-
alytics. The user unmasks the one-time padded informa-
tion from the proxy and operator, respectively, checking
them for consistency. The remainder of the task again
consists of the user and operator conducting the log-
book updating mechanism. The linking number linnew

is set to zero again in this process so the user will be
able to outsource a new analytical task.

3.5 Wrapping the Computation of ∆

We constructed our protocol in a modular way. While
our contribution lies in the construction of a privacy-
preserving bookkeeping mechanism built around any ex-
isting MPC framework, we move the correct usage of
the MPC framework itself into an own subfunctionality
FPPA. We only provide a description of the subfunc-
tionality that is sufficient to understand the main body
of the paper.

The key reason why we cannot use a general MPC
framework directly is because we require extra steps to
ensure that both parties input the same data that was
previously verified by our protocol. However, those extra
steps can be achieved by using any protocol for secret-
sharing-based MPC and expanding the computed func-
tion accordingly. Moreover, we stress that for a given
instantiation of ∆, more efficient instantiations of FPPA
making non-black-box use of ∆ (for example by letting
the user prove in zero-knowledge that the function was
computed correctly) are also possible.

We use the underlying computation mechanism to
extend the following tasks:

User Registration. Here, user and operator use the
actual MPC framework for computing the initial UH
based on the (unauthenticated) inputs of both parties.
Essentially, the added code verifies before the computa-
tion that the operator used the same FPs for the MPC
that were also verified earlier. After the actual output
of ∆ has been computed we require additional steps to
compute the initial commitment on the UH; from FPPA,
the operator only learns the commitment on the UH and
not the actual values.

Bookkeeping. Before starting the actual computa-
tion of ∆ we again have to verify that the FPs match

the ones that were verified before. This is the same trick
used during UReg. We use a similar trick to ensure that
the user uses the same UH that was verified before. Fur-
thermore, the additive increment of the update should
not be learned by the operator, thus, a commitment on
this vector is output. The operator then only learns the
commitment and the user learns the plain value and
unveil information.

Outsourced Analytics. Again, the FPs have to be
verified. Our protocol for outsourcing the latest UH is
sketched in Fig. 5: During the Outsource task it lets the
user create robust secret shares of their User History
for the proxy and the operator and prove that those are
indeed shares which sum up to an authenticated User
History. The proxy and operator then only insert their
respective shares and the wrapper ensures that 1. the
shares are reconstructed correctly, and 2. computation
only continues if no tampering is detected. More details
can be found in Appendix E.

The function is designed to output the required
maps for our three-stage update mechanism: the permu-
tation α, the direct update s, and the additive increment
a. Since the operator is again not supposed to learn a,
the wrapper adds code that computes an honest com-
mitment and corresponding unveil information. As the
user cannot fetch their relevant output directly those
are routed through the proxy. To ensure that the proxy
does not learn any of the values in the process, we let the
user not only create robust shares of the UH but also
of five One-Time Pads (OTPs). The first three OTPs
hide α, s, and a, respectively. The fourth one hides the
decommitment information on a, and the final one is
used to mask the function outputs relevant for the user.
The additional code hence has to reconstruct and apply
these masks to the function output and output all these
masked values to the proxy.

3.6 Achieving Security Guarantees

In this section we argue informally why our proto-
col πPUBA satisfies the security guarantees from Sec-
tion 2.5 under the assumption that the underlying build-
ing blocks from Section 3.1 fulfill their respective prop-
erties.

Achieving Owner Binding. Generating a logbook on
behalf of another user is infeasible, as this would require
showing ownership of its public key which violates the
co-CDH assumption. Also, the adversary cannot suc-
cessfully steal another user’s logbook as users never in-

PUBA 459

teract with each other, and communication uses con-
fidential channels. Pretending the adversary’s logbook
belongs to a different user is also prevented: Given the
(perfect) extractability of the NIZKPoK this would re-
sult in a different witness, which in turn means that
(1) the adversary used different unveil information for
the commitment, breaking the binding property, or (2)
forged a signature on a new commitment, breaking EU-
F-CMA security.

Achieving History Freshness. History freshness fol-
lows from the online-check of serial numbers. A user
trying to re-use an old UH has only three options:
(1) Lie during the ZK proof that the rerandomization
of comser was correctly performed, thus breaking the
soundness-property, or (2) open their coin toss commit-
ment com(U) during the creation of the new serial num-
ber to a different value, which would break the binding
property, or (3) compute a new signature σ on a changed
commitment com′ser that verifies under the operator’s
verification key, which would break the unforgeability
of the signature scheme.

Achieving History Unforgeability. The logbook en-
tries are only used as witnesses for ZK proofs, but each
of them comes with a commitment signed by the op-
erator. Thus history unforgeability intuitively holds for
the following reasons: (1) The soundness property of
the ZK scheme ensures that proofs containing forged
entries will be rejected with overwhelming probability.
(2) The binding property of the commitment scheme
and the unforgeability of the signature scheme further
disable attacks where the commitments on the entries
are opened to different values or where the signature on
a manipulated entry is forged.

Achieving Uniqueness. During the task for User
Registration the operator fetches the public key of the
user from FReg, which models a Public-Key Infrastruc-
ture (PKI) in UC but with the difference that each user
can only register one key. If the public key the user tries
to use during User Registration has already been used
the operator aborts. Thus uniqueness follows from the
security properties of the PKI.

Function Privacy. Function Privacy during the ac-
tual computation follows from the security properties
of the MPC framework. In the surrounding protocol the
FPs are only ever sent as commitments; the hiding prop-
erty of the commitment scheme hence ensures that this
leaks no information about the actual FPs.

Achieving Unlinkability. We use the Zero-
Knowledge property of the NIZKPoK scheme and the

hiding and rerandomization property of the commit-
ment scheme: Any data that could be used to link a
user to a previous interaction is only used as witness
for ZK proofs and the operator only sees commitments
thereof. As the commitments are rerandomizable they
do not leak information regarding their previous use.

Achieving Input Privacy. Computation of the func-
tion ∆ inherits input privacy from the security of the
functionality FPPA. In the surrounding protocol users
only use UH in three settings: (1) Inside commitments,
where the hiding property ensures that this leaks no
information. (2) As part of the witness in ZKs proofs,
where input privacy follows from the Zero-Knowledge
property. (3) For secret sharing during the Outsource
task, which is information-theoretically secure as long
as the two recipients—the operator and the proxy—do
not collude.

Function Parameter Binding. For using FPs which
were not verified by the TSA a malicious operator would
have to: (1) forge a signature σfp in the name of the TSA,
which would break the unforgeability of the signature
scheme, or (2) open a valid commitment comfp to new
(invalid) FPs fp′ by breaking the binding property of
the commitment scheme.

3.7 Formal Security Statement

As already mentioned in Section 2.6 we prove security
of our protocol in the Universal Composability frame-
work by showing indistinguishability against an ideal
functionality F (∆)

PUBA. In this section we elaborate on
the achieved security level.

Set-Up Assumptions. We formally conduct our in-
vestigation in the asynchronous UC framework with
anonymous abort against static corruption of an ar-
bitrary subset of parties that does not include both
the proxy and the operator at the same time. Follow-
ing strong impossibility results [18] regarding construc-
tions in the UC-framework, most instantiations require
set-up assumptions: Building blocks with a pre-defined
behavior that are generally used in a black-box way.
This means that those too can be interpreted as func-
tionalities which are controlled entirely by the simu-
lator—providing an advantage over real-world adver-
saries. The set up assumptions can be instantiated by
any protocol realizing this functionality or even by using
trusted hardware.

We require the following set-up assumptions:

PUBA 460

FCRS : Common Reference String (CRS) A CRS
is a string visible to all parties, sampled from a pub-
licly known distribution.

Fauth : Authenticated Channels Classical commu-
nication in the UC framework is unauthenticated;
all communication goes through the adversary, who
can read and arbitrarily change the messages. In
contrast, authenticated channels enforce integrity
of the communication between parties: While mes-
sages sent through this channel are still visible to
the adversary they can neither be altered by a third
party nor be sent in the name of a different party.
To ensure user privacy we stress that only the op-
erator, the proxy and the TSA send authenticated
messages; users send messages over unauthenticated
(hence anonymous) channels.

FKE : Key Exchange (KE) The functionality for se-
cure KE allows two parties to negotiate a shared se-
cret key over an open channel. The resulting key is
known only to those two parties and can be used to
set up confidential channels by using the shared key
for symmetric encryption.

FBB : Bulletin Board (BB) The BB is a common
abstraction to model a Public-Key Infrastructure
(PKI). Parties can register their own public keys
and fetch keys from other parties. Unlike real PKIs,
BBs allow users to register a key exactly once and
stored keys do not expire.

Security Theorem. We provide our ideal functional-
ity F (∆)

PUBA in Appendix D and a proof of the following
theorem in Appendix G:

Theorem 3.1. Let Z be any PPT-environment that
corrupts a subset of parties that does not contain the
operator and the proxy at the same time and that does
not contain the TSA, and let the building blocks be in-
stantiated as described in Section 3.1. Then it holds that:

πPUBA
(FCRS,Fauth,FKE,FBB,FPPA) ≥UC F

(∆)
PUBA

This means that the protocol πPUBA is at least as se-
cure as F (∆)

PUBA. While F (∆)
PUBA had to be deferred to

the Appendix due to the page limit, we stress here that
it fulfills all the requirements stated in Section 2.5. The
UC proof implies that they maintain their validity re-
gardless of which environment they are executed in.

4 Application: Fraud Detection
In the European Central Bank’s latest report on card
fraud [27] published in 2018, the total value of fraudu-
lent transactions at points-of-sale in 2016 amounted to
about 342 Million Euro. This number sounds high, yet it
only amounts to 0.008% of the overall card transaction
value. This small ratio is achieved mainly thanks to the
use of “strong authentication” methods like Chip&Pin
as well as fraud detection mechanisms as required by
the 2nd European Payment Services Directive (PSD2).

We define a privacy-preserving mobile payment sys-
tem including fraud detection capabilities. The operator
in this system is the bank that offers the mobile pay-
ments service to its customers. These are the users in
our system who interact using a smartphone App. Fraud
detection consists in monitoring a customer’s transac-
tions for anomalies or typical fraud patterns. This can
be done based on simple rules or sophisticated machine
learning algorithms. Due to the real-time requirements,
the combination of fraud detection with privacy for mo-
bile payments is particularly challenging. To this end,
we consider the following two-tier mechanism: We force
the user to perform a more complex machine learning
based fraud detection with the operator if some thresh-
old of payment transactions has been reached, resulting
in some risk level, and a simple but faster rule-based
fraud detection during each payment at a point-of-sale.
The latter takes the risk level into account and decides
whether the current transaction is accepted or declined.

We assume that a transaction record consists of the
following data: a bit indicating whether the transaction
has been accepted or declined, a timestamp, the geo-
graphic location the transaction took place, the type of
shop (e.g., grocery store, jewelry store, etc.), and the
transaction value. The User History stores the latest
T transactions along with the account’s balance and
risk level and some values that support the fraud de-
tection mechanisms: a limit on the maximum value a
single transaction can have and a value that indicates
when the next tier-2-fraud detection mechanism should
be executed. In the following we sketch the individual
tasks of the system.

Registration. The user registers with the system and
gets a new account with an empty balance.

Top-Up. The user can top-up the balance of his ac-
count, which is internally realized with a Bookkeeping
task. Note that only an addition is needed to update
the UH here.

PUBA 461

Payment (with simple fraud detection). Before a
payment is conducted, it is first checked whether the
payment is allowed or the threshold of payment trans-
actions has been reached and a risk calculation has to
be performed first. Then, a light-weight fraud detection
mechanism is executed (based on the risk level). De-
pending on the result the payment is either accepted or
denied. Internally the Bookkeeping task is used.

Risk Calculation (with complex fraud detection). Af-
ter a certain number of payment transaction have been
executed, a more complex fraud detection algorithm has
to be executed. We assume this complex fraud detection
mechanism to be based on machine learning (e.g., logis-
tic regression, as suggested by [15, 37]). Since this is
a computationally expensive operation, this task is re-
alized with the Outsourced Analytics task. The fraud
detection mechanism takes all transactions in the User
History as well as the current risk level into account and
computes a new risk level.

A more detailed description of this applica-
tion—including specifics of how the function ∆ is in-
stantiated—can be found in Appendix F.1. We estimate
the application’s performance in Section 5.4.

5 Implementation
We evaluated the practicality of PUBA by measuring
execution times of a practical implementation. Since
network communication depends on various external
factors, we omitted communication times and only mea-
sured local computation.

5.1 Bookkeeping

Evaluation of the user side is done on a Nexus 5X smart-
phone released 2015 featuring a Snapdragon 808 with
2×1.8 GHz + 4×1.4 GHz running Android 8.1.0 (Phone
1) and a Galaxy S8 smartphone released 2017 featuring
an Exynos 8895 with 4×2.3 GHz + 4×1.7 GHz running
Android 9 (Phone 2). We executed the code for operator
and proxies on much more powerful servers, equipped
with an AMD Ryzen 9 3900X with 12×3.8 GHz. In all
cases our implementation makes use of 6 threads to
speed up cryptographic operations.

We implemented our protocol in C++17, employ-
ing the open-source library RELIC toolkit v0.5.0 [5] for
group operations. The required building blocks were in-
stantiated as suggested in Section 3.1: for signatures we

Table 1. Running times for operator/proxy in ms.
∑

denotes
the total operator running time, ZK the portion of that spent
verifying the zero-knowledge proof and P denotes the running
time of the proxy during Outsource. Proxy running time during
Update is <1 ms for all User History sizes.

|UH|
Reg. Bookkeeping Outsource Update∑

ZK
∑

ZK
∑

ZK P
∑

ZK

10 6 3 22 16 20 10 4 20 12
100 6 3 57 51 30 10 15 54 44
200 6 3 96 90 42 10 26 93 80
400 6 3 176 170 60 10 44 172 152
600 7 3 254 248 79 10 65 251 225
800 7 3 332 327 97 10 84 331 299

1000 7 3 411 405 117 10 105 408 370

Table 2. Data exchanged in relation to User History size in kB.

|UH|: 10 100 200 400 600 800 1000

Registration 1.6 1.6 1.6 1.6 1.6 1.6 1.6
Bookkeeping 5.8 11.8 18.4 31.6 44.8 58.0 71.2
(only add) 4.1 4.1 4.1 4.1 4.1 4.1 4.1
Outsource 8.9 34.1 62.0 118.0 174.0 229.9 285.9

Update 7.0 22.6 40.0 74.8 109.6 144.4 170.2

use the scheme from [1], for commitments we imple-
mented [2], and for the NIZKPoK scheme we use the
method from [25, 34]. Our building blocks are instanti-
ated over the pairing-friendly Barreto–Naehrig Curves
Fp254BNb and Fp254n2BNb [6, 9].

We averaged over 50 executions of each protocol
task for User History sizes of 10, 100, 200, 400, 600,
800 and 1000 in order to get representative results. For
Bookkeeping we implemented both the three-stage up-
date comprising a permutation of User History, setting
values, and adding values, as well as a simplified version
where no permutation and direct update are done. The
concrete choice of permutation has no impact on perfor-
mance, whereas performance improves slightly the more
entries are set. Thus to provide a good lower bound,
we performed a cyclic shift and then set a single entry.
Table 1 shows the results using a server for operator
and proxy and Table 3 using a smartphone for the user
side. When only performing addition during Bookkeep-
ing (and no permutation/setting of entries) it needs to
communicate ≈4 kB regardless of the number of entries
in the User History, and takes between ≈310 ms and
≈440 ms on Phone 1 and ≈460 ms on Phone 2, while
taking 14 ms for the operator.

Overall, even for UH sizes where computation time
on a smartphone exeeds 10 s, less than 300 kB of data
need to be communicated. Thus, even when using mo-

PUBA 462

Table 3. Running time on user devices in ms.
∑

denotes the total user running time, O denotes the online running time, ZK denotes
the portion of that spent creating the zero-knowledge proofs, Val the time spent validating the new User History (not included in the
online time) and PC precomputation time (also not included in the online time).

|UH|

P
ho

ne Registration Bookkeeping Outsource Update∑
O ZK Val

∑
O ZK Val

∑
PC O ZK Val

∑
O ZK Val

10 1 154 97 78 57 616 556 494 60 551 189 298 193 64 528 461 400 67
2 181 99 73 81 969 881 788 87 749 244 409 272 87 809 719 622 90

100 1 155 100 78 56 1559 1501 1432 58 1247 818 369 181 63 1541 1439 1319 107
2 176 96 71 80 2200 2116 2033 84 1750 1180 477 240 89 2102 2008 1842 92

200 1 223 116 86 84 2725 2616 2542 87 2088 1540 499 204 92 2868 2723 2484 124
2 175 96 70 79 3465 3382 3300 82 2959 2242 625 235 86 3353 3265 3011 90

400 1 241 122 91 118 5649 5530 5441 119 4309 3373 804 221 128 5633 5502 5015 130
2 178 96 71 82 6302 6217 6136 85 5603 4508 986 249 88 6422 6331 5902 93

600 1 240 120 88 120 9226 9103 9003 121 7073 5773 1182 252 126 9210 9079 8406 129
2 178 96 70 84 9695 9612 9519 84 8228 6801 1336 265 88 9978 9885 9269 92

800 1 242 121 90 122 11 899 11 775 11 672 125 9386 7763 1460 253 129 12 100 11 966 11 104 131
2 186 99 74 87 13 130 13 046 12 950 85 10 778 9020 1656 265 90 13 402 13 311 12 462 93

1000 1 245 121 90 123 14 667 14 539 14 443 129 11 440 9594 1708 256 131 14 940 14 807 13 763 130
2 189 100 74 92 16 383 16 290 16 213 91 13 447 11 377 1987 269 91 16 642 16 538 15 471 94

bile data, communication times will mostly depend on
network latency and in general be relatively short.

5.2 Analytics Computation

We implemented logistic regression inference using MP-
SPDZ [40], which allows for benchmarking across a
range of security models and protocols. As the clear-
text modulus of the used curve is not compatible with
the implementation of homomorphic encryption in MP-
SPDZ, we restrict ourselves to protocols based on obliv-
ious transfer with malicious security. For this we use
MASCOT [41]. As MP-SPDZ already implements logis-
tic regression, we only had to choose the number of fea-
tures and whether to approximate the sigmoid function
for faster computation. For the former, we ran inference
for 10, 20, 50, 100, and 1000 features, and for the latter
benchmarked both the established sigmoid function and
the three-piece approximation [44]. The latter has been
found to deliver good results while being much simpler
to compute in the context of secure computation. This
is because the restrictions to three linear pieces only re-
quires two comparisons and oblivious selections instead
of exponentiation and logarithm. To define the compu-
tation domain, we used the order of the 254-bit prime
field Weierstrass curve. This allows for a smooth inte-
gration with our zero-knowledge proof.

Table 4 shows our end-to-end timings when run-
ning on AWS c5.9xlarge and m4.large instances. The
LAN times refers to the colocated setting. We simulate

a WAN setting by adding a 100 ms roundtrip delay and
a bandwidth restriction of 10 Mbit/s. We only use one
thread and about 300 MB RAM for malicious security.

At the time of writing, the spot price in US East was
USD 0.10 and 1.53 for m4.large and c5.9xlarge, respec-
tively. This results in a cost per computation ranging
from USD 1.6× 10−5 to USD 0.0032.

5.3 Discussion

Our results show that, even on weak hardware compared
to modern smartphones, for moderately sized User His-
tory our protocol runs fast enough for a smooth user ex-
perience: A Bookkeeping—which will be executed most
frequently—runs in less than 3 s even including typi-
cal network latency for User Histories with 100 entries.
When Bookkeeping can be performed without the need
of permuting or setting User History entries, it runs in
well under 1 s and can even support much larger User
History sizes. Outsource needs to transmit more data
but is also used less frequently, and a large part of
the necessary computation is independent of the cur-
rent User History state (i.e. creating commitments to
shares of one-time pads and the random shares for one
of the two parties) and can thus be done in the back-
ground in advance. This allows Outsource to have very
short online running time even for large User History
sizes. Update on the other hand takes about the same
time as Bookkeeping. Thus, the main limiting factor for
the size of the UH is the time needed for Bookkeeping.

PUBA 463

Table 4. Time and communication for logistic regression with two parties. “Strong” refers to c5.9xlarge instances, otherwise we use
m4.large.

No. features Precise sigmoid Approximate sigmoid
Strong LAN (s) LAN (s) WAN (s) MB Strong LAN (s) LAN (s) WAN (s) MB

10 3.60 5.06 94.86 591.74 0.32 0.59 11.61 69.71
20 3.62 5.07 95.12 593.29 0.33 0.60 11.93 71.26
50 3.65 5.11 95.84 597.94 0.35 0.64 12.58 75.91
100 3.68 5.19 96.90 605.68 0.38 0.71 13.53 83.66

1000 4.28 6.47 116.10 745.10 0.97 1.87 32.82 223.07

This can be partially mitigated if the need of permut-
ing/setting values arises only sparingly or if only parts
of the UH are affected. Then the whole UH can be split
into multiple parts where permuting/setting is done on
some parts and a simple additive update is performed on
the other parts. Our evaluation also shows that Phone
2 was consistently slower than Phone 1 even though the
stronger processor would suggest otherwise. We are not
certain about the cause of this. Possible explanations are
the introduction of new battery saving mechanisms in
Android 9, or the fact that Phone 1 has the stock google
version of Android whereas Phone 2 has vendor-specific
modifications.

5.4 Performance of Fraud Detection

We evaluated our fraud detection application from Sec-
tion 4 with a User History containing 100 elements, cor-
responding to a scenario where the last T = 19 trans-
actions are taken into account for analysis (5 entries
per transaction plus previous risk level, number of re-
maining transactions, transaction limit and balance).
We consider these numbers to be realistic and discuss
them in Appendix A.3.

Since registration only needs to initialize the de-
fault risk level, number of remaining transactions and
transaction limit, this is independent of the UH size and
takes the same time and data volume as the registra-
tion task shown in Table 3 (i.e., 160 ms for Phone 1 and
190 ms for Phone 2 combined user plus operator com-
putation time excluding communication time and 1.6 kB
data). Similarly, the top-up task does not require any
special computation and thus the results for bookkeep-
ing with only addition holds for this task (i.e., 330 ms-
450 ms for Phone 1 and ≈490 ms for Phone 2 combined
user plus operator computation time excluding commu-
nication time and 4.1 kB data).

Fraud detection happens in two stages: A more
complex machine learning based risk assessment is per-

formed regularly, which results in a risk score, a limit
for individual payments and a limit for the number of
transactions before it has to be executed again. Dur-
ing each payment, simpler rules based on the result of
the risk assessment are checked. In our implementation
we verified the following two rules: 1. the transaction
value is less or equal than the maximum allowed trans-
action amount 2. the number of payment transactions
the user can perform before the complex fraud detection
mechanism has to be run has not exceeded its limit. Ad-
ditionally it is verified, that the current balance is suf-
ficient for the transaction. To do so, we use bulletproof
rangeproofs [13] to let the user prove that it evaluated
the simple rules correctly. These additional proofs take
≈200 ms on Phone 1 and ≈185 ms on Phone 2, and 17 ms
for the operator, independent of the UH size. Thus, for
100 entries (corresponding to the last T = 19 transac-
tions), this task takes a total of 1.85 s/2.5 s (for Phone
1/2 resp.) on the user side and 80 ms on the opera-
tor side (excluding the communication time to transmit
22 kB of data) for 100 entries. Thus, when storing 19
previous transactions, a transaction can be performed
in under 3 s even when taking the communication time
into account. Increasing the number of previous trans-
actions increases the computation time on average by
≈1.5 s/≈1.6 s for Phone 1/2 resp. and 40 ms for the op-
erator per 20 additional transactions.

For the outsourced risk calculation we used logistic
regression on 100 features using approximate sigmoid
calculation and active security for the complex fraud de-
tection mechanism. Our results suggest that the whole
outsourced risk calculation process can be completed
in well under 5 s: ≈0.7 s for outsourcing, ≈0.4 s for the
logistic regression and ≈1.3 s for the update, plus com-
munication time between the user and operator/proxy.

PUBA 464

Acknowledgements
This work was supported by funding from the topic En-
gineering Secure Systems of the Helmholtz Association
(HGF) and by KASTEL Security Research Labs.

References
[1] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Op-

timal structure-preserving signatures in asymmetric bilinear
groups. In P. Rogaway, editor, CRYPTO 2011, volume 6841
of LNCS, pages 649–666. Springer, Heidelberg, Aug. 2011.
10.1007/978-3-642-22792-9_37.

[2] M. Abe, M. Kohlweiss, M. Ohkubo, and M. Tibouchi. Fully
structure-preserving signatures and shrinking commitments.
In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 35–65. Springer, Hei-
delberg, Apr. 2015. 10.1007/978-3-662-46803-6_2.

[3] Aimia Coalition Loyalty UK Ltd. The Nectar loyalty pro-
gram. Online Resource, 2020. https://www.nectar.com/.

[4] E. Androulaki and S. M. Bellovin. An anonymous credit
card system. In S. Fischer-Hübner, C. Lambrinoudakis, and
G. Pernul, editors, TrustBus 2009, volume 5695 of LNCS,
pages 42–51. Springer, Heidelberg, Sept. 2009.

[5] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient
LIbrary for Cryptography. https://github.com/relic-toolkit/
relic, 2020.

[6] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and
J. C. López-Hernández. Faster explicit formulas for comput-
ing pairings over ordinary curves. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 48–68.
Springer, Heidelberg, May 2011. 10.1007/978-3-642-20465-
4_5.

[7] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin. Privacy-
preserving search of similar patients in genomic data. Cryp-
tology ePrint Archive, Report 2017/144, 2017. https:
//eprint.iacr.org/2017/144.

[8] M. Backes, A. Kate, M. Maffei, and K. Pecina. ObliviAd:
Provably secure and practical online behavioral advertis-
ing. In 2012 IEEE Symposium on Security and Privacy,
pages 257–271. IEEE Computer Society Press, May 2012.
10.1109/SP.2012.25.

[9] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic
curves of prime order. In B. Preneel and S. Tavares, editors,
SAC 2005, volume 3897 of LNCS, pages 319–331. Springer,
Heidelberg, Aug. 2006. 10.1007/11693383_22.

[10] J. Blömer, J. Bobolz, D. Diemert, and F. Eidens. Updat-
able anonymous credentials and applications to incentive
systems. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
editors, ACM CCS 2019, pages 1671–1685. ACM Press,
Nov. 2019. 10.1145/3319535.3354223.

[11] M. Blum. Coin flipping by telephone. In A. Gersho, editor,
CRYPTO’81, volume ECE Report 82-04, pages 11–15. U.C.
Santa Barbara, Dept. of Elec. and Computer Eng., 1981.

[12] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
the Weil pairing. Journal of Cryptology, 17(4):297–319,

Sept. 2004. 10.1007/s00145-004-0314-9.
[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and

G. Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May
2018. 10.1109/SP.2018.00020.

[14] J. Camenisch and M. Stadler. Efficient group signa-
ture schemes for large groups (extended abstract). In
B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 410–424. Springer, Heidelberg, Aug. 1997.
10.1007/BFb0052252.

[15] K. Campus. Credit card fraud detection using machine
learning models and collating machine learning models. In-
ternational Journal of Pure and Applied Mathematics, 118
(20):825–838, 2018.

[16] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. Cryptology ePrint
Archive, Report 2000/067, 2000. https://eprint.iacr.org/
2000/067.

[17] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, Oct. 2001.
10.1109/SFCS.2001.959888.

[18] R. Canetti and M. Fischlin. Universally composable com-
mitments. In J. Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 19–40. Springer, Heidelberg, Aug. 2001.
10.1007/3-540-44647-8_2.

[19] R. Canillas, R. Talbi, S. Bouchenak, O. Hasan, L. Brunie,
and L. Sarrat. Exploratory study of privacy preserving fraud
detection. In 19th International Middleware Conference
2018, pages 25–31. ACM, 2018. 10.1145/3284028.3284032.
URL https://doi.org/10.1145/3284028.3284032.

[20] G. S. Cetin, H. Chen, K. Laine, K. Lauter, P. Rindal, and
Y. Xia. Private queries on encrypted genomic data. Cryp-
tology ePrint Archive, Report 2017/207, 2017. https:
//eprint.iacr.org/2017/207.

[21] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted back-
door attacks on deep learning systems using data poisoning,
2017.

[22] J. Daemen and V. Rijmen. AES and the wide trail de-
sign strategy (invited talk). In L. R. Knudsen, editor, EU-
ROCRYPT 2002, volume 2332 of LNCS, pages 108–109.
Springer, Heidelberg, Apr. / May 2002. 10.1007/3-540-
46035-7_7.

[23] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryption.
In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Heidelberg,
Aug. 2012. 10.1007/978-3-642-32009-5_38.

[24] T. M. Dugan and X. Zou. A survey of secure multiparty
computation protocols for privacy preserving genetic tests.
In Proceedings of the First IEEE International Conference on
Connected Health: Applications, Systems and Engineering
Technologies, CHASE 2016, Washington, DC, USA, June
27-29, 2016, pages 173–182. IEEE Computer Society, 2016.
10.1109/CHASE.2016.71. URL https://doi.org/10.1109/
CHASE.2016.71.

[25] A. Escala and J. Groth. Fine-tuning Groth-Sahai proofs.
In H. Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 630–649. Springer, Heidelberg, Mar. 2014.

https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-662-46803-6_2
https://www.nectar.com/
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/978-3-642-20465-4_5
https://eprint.iacr.org/2017/144
https://eprint.iacr.org/2017/144
https://doi.org/10.1109/SP.2012.25
https://doi.org/10.1007/11693383_22
https://doi.org/10.1145/3319535.3354223
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/BFb0052252
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1145/3284028.3284032
https://doi.org/10.1145/3284028.3284032
https://eprint.iacr.org/2017/207
https://eprint.iacr.org/2017/207
https://doi.org/10.1007/3-540-46035-7_7
https://doi.org/10.1007/3-540-46035-7_7
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1109/CHASE.2016.71

PUBA 465

10.1007/978-3-642-54631-0_36.
[26] European Central Bank (ECB). Average number of cash

and card transactions per person per day in the euro area in
2016, by country. Website, 11 2017. https://www.statista.
com/statistics/893459/average-number-of-transactions-per-
person-per-day-by-method/, last visited 2021-11-18.

[27] European Central Bank (ECB). Fifth report on card fraud,
september 2018. Website, 9 2018. https://www.ecb.europa.
eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html,
last visited 2020-04-27.

[28] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu,
S. Nepal, and H. Kim. Backdoor attacks and countermea-
sures on deep learning: A comprehensive review, 2020.

[29] O. Goldreich. The Foundations of Cryptography - Volume 1:
Basic Techniques. Cambridge University Press, 2001. ISBN
0-521-79172-3. 10.1017/CBO9780511546891. URL http:
//www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html.

[30] O. Goldreich. The Foundations of Cryptography - Volume 2:
Basic Applications. Cambridge University Press, 2004. ISBN
0-521-83084-2. 10.1017/CBO9780511721656. URL http:
//www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html.

[31] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or A completeness theorem for protocols with
honest majority. In A. Aho, editor, 19th ACM STOC, pages
218–229. ACM Press, May 1987. 10.1145/28395.28420.

[32] S. Goldwasser and S. Micali. Probabilistic encryption and
how to play mental poker keeping secret all partial informa-
tion. In 14th ACM STOC, pages 365–377. ACM Press, May
1982. 10.1145/800070.802212.

[33] M. Green, W. Ladd, and I. Miers. A protocol for pri-
vately reporting ad impressions at scale. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
editors, ACM CCS 2016, pages 1591–1601. ACM Press, Oct.
2016. 10.1145/2976749.2978407.

[34] J. Groth and A. Sahai. Efficient non-interactive proof
systems for bilinear groups. In N. P. Smart, editor, EU-
ROCRYPT 2008, volume 4965 of LNCS, pages 415–432.
Springer, Heidelberg, Apr. 2008. 10.1007/978-3-540-78967-
3_24.

[35] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy
in online advertising. In D. G. Andersen and S. Ratnasamy,
editors, Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011. USENIX As-
sociation, 2011. URL https://www.usenix.org/conference/
nsdi11/privad-practical-privacy-online-advertising.

[36] G. Hartung, M. Hoffmann, M. Nagel, and A. Rupp.
BBA+: Improving the security and applicability of privacy-
preserving point collection. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS
2017, pages 1925–1942. ACM Press, Oct. / Nov. 2017.
10.1145/3133956.3134071.

[37] F. Itoo, Meenakshi, and S. Singh. Comparison and anal-
ysis of logistic regression, naïve bayes and knn machine
learning algorithms for credit card fraud detection. In-
ternational Journal of Information Technology, pages 1–
9, 2020. 10.1007/s41870-020-00430-yj. URL https:
//doi.org/10.1007/s41870-020-00430-y.

[38] T. Jager and A. Rupp. Black-box accumulation: Collecting
incentives in a privacy-preserving way. PoPETs, 2016(3):

62–82, July 2016.
[39] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.

GAZELLE: A low latency framework for secure neural net-
work inference. In W. Enck and A. P. Felt, editors, USENIX
Security 2018, pages 1651–1669. USENIX Association, Aug.
2018.

[40] M. Keller. MP-SPDZ: A versatile framework for multi-party
computation. In J. Ligatti, X. Ou, J. Katz, and G. Vigna,
editors, ACM CCS 20, pages 1575–1590. ACM Press, Nov.
2020. 10.1145/3372297.3417872.

[41] M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster mali-
cious arithmetic secure computation with oblivious transfer.
In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. My-
ers, and S. Halevi, editors, ACM CCS 2016, pages 830–842.
ACM Press, Oct. 2016. 10.1145/2976749.2978357.

[42] V. Kolesnikov, R. Kumaresan, and A. Shikfa. Efficient verifi-
cation of input consistency in server-assisted secure function
evaluation. In J. Pieprzyk, A.-R. Sadeghi, and M. Manulis,
editors, CANS 12, volume 7712 of LNCS, pages 201–217.
Springer, Heidelberg, Dec. 2012. 10.1007/978-3-642-35404-
5_16.

[43] Loblaw Companies. PC Optimum loyalty program. Online
Resource, 2020. https://www.pcoptimum.ca.

[44] P. Mohassel and P. Rindal. ABY3: A mixed protocol
framework for machine learning. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, ACM CCS 2018, pages
35–52. ACM Press, Oct. 2018. 10.1145/3243734.3243760.

[45] E. Parliament and Council. PSD2: 2nd payment services
directive (2015/2366), 2015. URL http://data.europa.eu/
eli/dir/2015/2366/2015-12-23. https://eur-lex.europa.eu.

[46] A. W. Senior, S. Pankanti, A. Hampapur, L. M. Brown,
Y. Tian, A. Ekin, J. H. Connell, C. Shu, and M. Lu. En-
abling video privacy through computer vision. IEEE Se-
cur. Priv., 3(3):50–57, 2005. 10.1109/MSP.2005.65. URL
https://doi.org/10.1109/MSP.2005.65.

[47] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted adver-
tising. In NDSS 2010. The Internet Society, Feb. / Mar.
2010.

[48] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Risten-
part. Stealing machine learning models via prediction APIs.
In T. Holz and S. Savage, editors, USENIX Security 2016,
pages 601–618. USENIX Association, Aug. 2016.

[49] L. G. Valiant. Universal circuits (preliminary report).
In A. K. Chandra, D. Wotschke, E. P. Friedman, and
M. A. Harrison, editors, Proceedings of the 8th An-
nual ACM Symposium on Theory of Computing, pages
196–203, Hershey, Pennsylvania, USA, May 1976. ACM.
10.1145/800113.803649.

[50] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,
and B. Y. Zhao. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE Sym-
posium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019, pages 707–723. IEEE, 2019.
10.1109/SP.2019.00031. URL https://doi.org/10.1109/SP.
2019.00031.

[51] T. Winkler and B. Rinner. A systematic approach to-
wards user-centric privacy and security for smart camera
networks. In M. Wolf, G. L. Foresti, and H. Bischof, ed-
itors, 2010 Fourth ACM/IEEE International Conference

https://doi.org/10.1007/978-3-642-54631-0_36
https://www.statista.com/statistics/893459/average-number-of-transactions-per-person-per-day-by-method/
https://www.statista.com/statistics/893459/average-number-of-transactions-per-person-per-day-by-method/
https://www.statista.com/statistics/893459/average-number-of-transactions-per-person-per-day-by-method/
https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html
https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html
https://doi.org/10.1017/CBO9780511721656
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/2976749.2978407
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://www.usenix.org/conference/nsdi11/privad-practical-privacy-online-advertising
https://www.usenix.org/conference/nsdi11/privad-practical-privacy-online-advertising
https://doi.org/10.1145/3133956.3134071
https://doi.org/10.1007/s41870-020-00430-yj
https://doi.org/10.1007/s41870-020-00430-y
https://doi.org/10.1007/s41870-020-00430-y
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-642-35404-5_16
https://doi.org/10.1007/978-3-642-35404-5_16
https://www.pcoptimum.ca
https://doi.org/10.1145/3243734.3243760
http://data.europa.eu/eli/dir/2015/2366/2015-12-23
http://data.europa.eu/eli/dir/2015/2366/2015-12-23
https://eur-lex.europa.eu/eli/dir/2015/2366/oj
https://doi.org/10.1109/MSP.2005.65
https://doi.org/10.1109/MSP.2005.65
https://doi.org/10.1145/800113.803649
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1109/SP.2019.00031

PUBA 466

on Distributed Smart Cameras, Atlanta, GA, USA - Au-
gust 31 - September 4, 2010, pages 133–141. ACM, 2010.
10.1145/1865987.1866009. URL https://doi.org/10.1145/
1865987.1866009.

[52] H. Yu, J. Lim, K. Kim, and S.-B. Lee. Pinto: Enabling
video privacy for commodity IoT cameras. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM
CCS 2018, pages 1089–1101. ACM Press, Oct. 2018.
10.1145/3243734.3243830.

A Discussion: On the Limitations
of Our Scheme

A.1 Verification by the TSA

A common problem of functions constructed using deep
machine learning (such as neural networks) is a lack of
transparency regarding their behavior. Our framework
suffers from the same problem which even persists if
we ignore function privacy for the operator; a user who
has to compute a neural network on private data does
not automatically know what the network computes and
how the output is to be interpreted. A function that
maps, say, purchases of a user to some abstract class of
advertisements relevant for that user is hard to distin-
guish from one that maps purchases to an encoding that
reflects the individual purchases on a fine-grained level.

In PUBA the problem is even harder as we addi-
tionally require function privacy for the operator; only
a Trusted Signing Authority is there to ensure that the
operator only uses valid Function Parameters which pro-
vide a sufficient level of privacy for the user. The TSA
has the same problems mentioned above: While it is
straightforward to check whether a given machine learn-
ing model indeed classifies as specified for randomly cho-
sen inputs, a sufficiently complex model can be used to
hide backdoors [21] in the form of special inputs pro-
vided by the operator which would break unlinkability
and input privacy for any user. As it is highly unlikely
that the TSA finds this backdoor by using random test-
ing, the model behaves normally for all inputs chosen
by the TSA with high probability and could even get
certified. While we generally assume that the output of
the function is a discrete set of much smaller size than
the input space—as is the case for both applications
we propose—we do not restrict PUBA to this behavior;
using arbitrary output for the operator requires special
attention during the versification step.

While it is possible to implant a backdoor into the
model given a sufficiently large output space and a suf-
ficiently complex model we stress that there are several
different ways to detect—and even to remove, although
at the cost of overall accuracy—a backdoor. A survey on
the scenario itself alongside mechanisms to detect and
remove a backdoor is given in [28].

The generality of PUBA lets the operator create a
model with a backdoor and submit it for the Sign Func-
tion Parameter task, yet increasing progress in the field
of backdoor detection [28, 50] given only the final model
makes it unlikely that these Function Parameters will
get a certificate. We hence require the TSA to perform
a number of such tests in order for verification mech-
anism to be sufficiently daunting for an operator that
tries to use backdoors.

A.2 The Case of Aborts

Aborts are a common problem in MPC: If a party looses
connection during a computation or refuses to answer
entirely then the computation can not be finished. This
is also modeled into most security frameworks. For ex-
ample, in the asynchronous UC model we model our
protocol in the entire communication is managed by
the adversary; parties can ask the adversary to trans-
fer a given message to an other party but the adversary
is free to change any part of the message. Using au-
thenticated channels removes the adversaries capability
ot change the message and secure channels additionally
take the adversaries ability to read the message. Yet
even with these precautions the adversary is still able
to drop messages at will.

For normal computations an abort only means that
the parties do not get any output. But for PUBA this
means that the user is at worst left with no valid logbook
if the abort happened after the old logbook has been
invalidated at the start of a task but before the new one
has been created and sent to the user. An additional case
to consider is if the abort happens during an Outsourced
Analytics task. This leaves the user incapable of ever
outsourcing data again as the linking number will never
be reset.

Yet we stress that dealing with aborts is straightfor-
ward and could easily be incorporated into the protocol,
albeit at the cost of a longer functionality and proto-
col description and a much more complicated security
proof. But for completeness reasons we sketch here how
the protocol can be secured against aborts.

https://doi.org/10.1145/1865987.1866009
https://doi.org/10.1145/1865987.1866009
https://doi.org/10.1145/1865987.1866009
https://doi.org/10.1145/3243734.3243830

PUBA 467

In total there are four tasks where the user is di-
rectly involved and where aborting in between means
that there is no logbook that the user can use and one
task where an abort implies that the user cannot out-
source anymore. The four tasks where the user is di-
rectly involved in, namely User Registration, Bookkeep-
ing, Outsource and Update, we have to ensure that the
mechanism can not be abused to let a malicious user
obtain two different logbooks. Thus we require that the
same messages that were sent before the abort will be
sent in the next interaction again to ensure that the re-
constructed logbook will end up with the same serial
number. So essentially the reconstruction only finishes
the protocol using the state both parties had during the
abort.

The situation only becomes complicated if an abort
occurs during an Outsourced Analytics task. Without a
reconstruction mechanism the user would be unable to
outsource ever again, as resetting the linking number lin
to 0 is only possible in the Update task which requires
a completed Outsourced Analytics task. Yet again we
stress that a slight modification suffices to deal with
this case:

If an abort occurs during an Outsourced Analytics
task then this abort only matters if no output has been
provided to the operator as parties generally get notified
of the abort.2 Hence the operator is aware that the com-
putation involving data from a given linking number lin
has failed. The reconstruction task basically consists of
the update task but with all three manipulation vec-
tors corresponding to ⊥. That is, the permutation α is
the identity, the direct update s is ⊥ everywhere, and
the additive increment is a = 0. This resets the linking
number lin stored inside the users logbook to 0 and thus
enables future Outsource tasks for that user.

Note that this reconstruction mechanism can be
used to restore a broken logbook; yet until the recon-
struction has been performed the user is essentially
locked from any further interactions, with the excep-
tion of aborts during Outsourced Analytics where the
user can still perform Bookkeeping tasks.

2 If the abort is happening in the real world, then we can assume
standard techniques such as timeouts can be used to determine
that the message will likely never arrive.

A.3 On the Expressiveness of Our
Application Benchmark

We are no domain experts for fraud detection in mobile
payments, and real-world parameters and implementa-
tion details for use cases like fraud detection are not eas-
ily obtainable. The simplified instantiations we bench-
mark in Section 5.4 should therefore be viewed as ed-
ucated guess how real-world systems could be parame-
terized. Some explanation for our parameter choices: On
average, we have 0.3-0.8 credit card transactions per day
per person in Europe [26]. So 20 transactions per log-
book (UH-size of 100) would cover about a month, while
200 transactions per logbook (UH-size of 1000) would
cover at least 8 months. Older transactions are also
implicitly taken into account by making the new risk
level depend on the old risk level (and the new trans-
actions). Moreover, Logistic Regression seems to be a
reasonable method for credit card fraud detection (e.g.,
see [15, 37]), therefore we used that for our analysis.
The simple fraud detection mechanism we implemented
is most likely simpler that mechanisms used in practice.
One could of course extend the simple fraud detection
we implemented with additional rules. Some ideas on
how the simple fraud detection mechanism could be ex-
tended are:

1. Look at the location and time difference between
transactions and deny them if it is not physically
possible to travel the distance in that amount of
time.

2. If the transaction amount is a lot higher than the
average transaction amount, the number of remain-
ing transactions until the next calculation gets de-
creased by more than one.

3. Implement daily limits: a limit on the number of
transactions that are allowed per day or a limit on
the total transaction value that is allowed per day
or both.

It would be nice to study how good our system models
fraud detection systems used in practice, but that would
be a research line of its own.

B Leakage of the Tasks
We claim in Section 2.5 that we ensure unlinkability:
the operator can identify the user in the task for User
Registration and link the triplet of consecutive execu-

PUBA 468

Table 5. Leakage of each task involving a user.

User Registration Bookkeeping Outsource Outsourced Analytics Update

– Output outO of ∆. –Output (α, s, outO) of
∆.

– Nothing. – Output ((αz , sz)z , outO)
of the computation.

– Outputs (α, s) of the func-
tion ∆.

– pid of the user. – Index of the used FP. – Index of the used values
from Outsource.

– Subsession Identifier of the
Outsource task.

– Index of the used FP. – Index of the used FP.

tions of Outsource, Outsourced Analytics and Update
to some anonymous user, but other than that any two
tasks could have been performed by any two users inside
the set of successfully registered users. We stress that
in real applications the communication structure could
still be used to link the same user to different tasks; yet
other than that, the individual task executions leak no
information to connect any two tasks to the same user
outside the computation results. The leakage is listed in
Table 5.

In User Registration, the user is de-anonymized.
This is required to ensure that no user registers twice.
In addition, the operator learns the output outO of the
function ∆ alongside the used Function Parameters; this
output is privacy preserving due to the requirements of
the Sign Function Parameter task.

In Bookkeeping, all that a corrupted operator learns
are the used Function Parameters and the parts of the
output of ∆ we consider to be relevant for the operator,
namely everything except for the additive increment.
Again, ensuring unlinkability comes down to the Sign
Function Parameter task.

In Outsource, the operator learns no identifying in-
formation from the behavior of the task itself but learns
(through the tasks name) for which function an Out-
sourced Analytics task has been scheduled.

In Outsourced Analytics, the task execution already
leaks the function specifier k through the inputs. As
the number of parties required for each function is pub-
lic knowledge and since it is known in which order the
calls are executed, the operator knows which Outsource
calls are relevant and used for this task. Thus linking
the used data to their corresponding Outsource call is
trivially possible. Additionally, the operator once more
obtains parts of the output from ∆ which we require to
be privacy-preserving.

In Update, the operator learns the Subsession Iden-
tifier of the Outsource call that caused the analytical
computation. As this Outsource execution is already

linked to an Outsourced Analytics execution, the oper-
ator can link the entire triplet to the same user. Other
than that, the operator learns no new information as
the outputs for that user were already learned during
the Outsourced Analytics task execution.

C Preliminaries

C.1 The Universal Composability
Framework

The Universal Composability (UC) framework [16, 17]
models security through indistinguishability between
worlds. It is a special case of simulation-based secu-
rity [31, 32], the key idea of it can be sumarized as
follows: Secure Multi-Party Computation (MPC) is rel-
atively easy if we have a single entity that is trusted
by all the participants and with whom the parties can
communicate over secure and authenticated channels.
The behavior of this party is referred to as the Ideal
Functionality (IF) which defines how the inputs are used
for computations, which outputs exist and which party
obtains which output. The IF can be only accessed in
a black-box way: each party sends its inputs to the
trusted entity and obtains its output, without learning
any other information in the process. This also makes
the level of privacy apparent as anything that an ad-
versary can learn is modelled explicitly by having the
trusted party send this information to the adversary.
The IF is easy to understand in general and enables
easier analysis of the security guarantees.

As it is unrealistic to assume that such a trusted
party exists in the real world we refer to the world in
which the computations are performed by the trusted
party as the ideal world.

The actual protocol is then executed in the real
world where (mutually distrustful) parties interact with
each other according to the protocol description. If the

PUBA 469

real world can be shown to be indistinguishable to an in-
teraction of all parties with the Ideal Functionality then
the protocol inherits all the security guarantees of the
IF. This requires a simulator that reports all protocol
messages from the honest parties, as honest parties in
the ideal world only forward their input to the function-
ality and do not send protocol messages. The simulator
reports the messages without knowing the actual input
and only learns the leaks provided by the IF. By prov-
ing that the view provided by the simulator in the ideal
world is indistinguishable from the view of a protocol
execution in the real world we get the guarantee that
any attack on the protocol can also be launched against
the IF. In particular, this means that no attacks on the
real world exist that leak information which cannot be
extracted in the ideal world.

While the standalone-setting requires the simula-
tor to provide the entire transcript as a whole—which
means that it can be arbitrarily rewritten as long as
the result still looks like a valid protocol execution—the
Universal Composability framework extends this sce-
nario by requiring the simulator to provide the protocol
messages in time and await the environments response.
This models the idea that other protocols are running
in parallel and hence ensures that security guarantees
remain valid in arbitrary environments instead of re-
quiring the protocol to be blocking as in the standalone
case.

Each session in the UC-framework has a unique Ses-
sion Identifier (sid). We additionally assume that each
new task is assigned with a unique (inside this session)
Subsession Identifier (ssid).

UC provides no restrictions on the scheduling of pro-
tocols which results in a rather strong security guaran-
tee. However, this comes at the cost of feasibility. In
fact, it was shown in [18] that not even weak (MPC-
incomplete) building blocks such as commitments can
be proven secure in this framework without set-up as-
sumptions. This is why most constructions in the UC
framework rely on set-up assumptions such as the Com-
mon Reference String (CRS) which is assumed to be a
hybrid functionality that is set up by a trusted party.
These can in reality either be instantiated by proto-
cols based on computational hardness assumptions or
by hardware assumptions.

C.2 Symmetric Encryption Schemes

Indistinguishability under Chosen Plaintext Attacks. Se-
curity for symmetric encryption schemes follows the
indistinguishability-pardigm. The Indistinguishability
under Chosen Plaintext Attacks (IND-CPA) security of
symmetric schemes is defined as follows [30]:

Definition C.1. A symmetric encryption scheme
ENC = (Gen,Enc,Dec) is IND-CPA-secure if for every
PPT-adversary A and every x, y ∈ {0, 1}poly(κ) such
that |x| = |y|, and where κ is the security parameter,
the following equation is negligible in κ:

| Pr
[
A(ENC.Enck(x)) = 1

∣∣ k← ENC.Gen(1κ)
]

− Pr
[
A(ENC.Enck(y)) = 1

∣∣ k← ENC.Gen(1κ)
]
|

C.3 Commitment Schemes

We provide descriptions for bit-commitment schemes
which can be expanded cannonically to string-
commitments.

Unconditionally Hiding Commitment Schemes. A
commitment scheme is unconditionally hiding if the
commitment message contains absolutely no information
on the committed bit. More formally [29]:

Definition C.2. A bit commitment scheme COM =
(Gen,Com,Unv) is unconditionally hiding if the following
condition holds:

{gp← COM.Gen : COM.Comgp(0)} ≈s
{gp← COM.Gen : COM.Comgp(1)}

Computationally Binding Commitment Schemes. The
binding property implies that a commitment on some
bit b can not be efficiently opened to a commitment on
1− b. More formally [29]:

Definition C.3. A bit commitment scheme COM =
(Gen,Com,Unv) is computationally binding if for every
PPT-adversary A = (A1,A2) and security parameter κ
it holds that the following equation is negligible in κ:

Pr


COM.Unv(comb, unvb, b)∧
COM.Unv(comb, unv

b
, b)

∣∣∣∣∣∣∣∣∣∣∣

b
r← {0, 1},

gp← COM.Gen,
(comb, unvb, s)←
A1(κ, b),

unv
b
← A2(κ, s)


Additively Homomorphic Commitment Schemes. A bit
commitment scheme is additively homomorphic if com-

PUBA 470

mitments expose a desired form of malleability such that
arithmetic operations on the commitment yield a de-
sired effect on the underlying values.

Definition C.4. A bit commitment scheme COM =
(Gen,Com,Unv,CAdd,DAdd) is additively homomorphic
if the following equation is overwhelming in the secu-
rity parameter κ:

Pr



COM.Unv(comb⊕b′ ,

unvb⊕b′ , b⊕ b′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(b, b′) r← {0, 1},
gp← Gen,
(comb, unvb)←

COM.Comgp(b),
(comb′ , unvb′)←

COM.Comgp(b′),
comb⊕b′ ←

COM.CAdd(comb, comb′),
unvb⊕b′ ←

COM.DAdd(unvb, unvb′)


Structure Preserving Commitment Schemes. If a com-
mitment scheme is defined over some pairing group then
an important property for enabling ZK proofs is that it
preserves the structure. This means [2]

Definition C.5. A commitment scheme COM =
(Gen,Com,Unv) is called structure-preserving with re-
spect to a bilinear group generator g if the following
conditions are all satisfied.
1) Common parameter gp consists of a group descrip-

tion gp generated by g and constants aij ∈ Zp.
2) Commitment and unveil messages consist of group

elements in G1 and G2.
3) Opening algorithm Unv consists only of evaluating

membership in G1 and G2 and relations described
by pairing product equations.

C.4 Signature Schemes

Signature schemes aim to provide authenticity of mes-
sages. Existential Unforgeability under Chosen Message

Attacks. We follow the outline for describing Existential
Unforgeability under Chosen Message Attacks (EUF-
CMA) security set by [30]:

Definition C.6. A signature scheme SIG =
(Gen,Sgn,Vfy) is EUF-CMA secure if for every PPT-
adversary A with access to a signing oracle OSIG it holds
that the following equation is negligible in the security
parameter κ:

Pr
[

SIG.Vfy(σ∗, vk,m∗)
∣∣∣∣ (sk, vk)← SIG.Gen(1κ),

(σ∗,m∗)← AOSIGsk (vk, 1κ)

]

where σ∗ was never returned from OSIGsk.

Structure Preserving Signature Schemes. The defini-
tion of structure preserving signature schemes is similar
to that for commitments. We again use the definition
from [2]:

Definition C.7. A digital signature scheme SIG =
(Gen,Sgn,Vfy) is called structure-preserving with re-
spect to a bilinear group generator g if the following
conditions are all satisfied.
1) Common parameter gk consists of a group descrip-

tion gp generated by g and constants aij ∈ Zp.
2) Verification key vk consists of group elements in G1

and G2 other than gp.
3) Messages and signatures consist of group elements

in G1 and G2.
4) Verification algorithm Vfy consists only of evalu-

ating membership in G1 and G2 and relations de-
scribed by pairing product equations.

C.5 Zero-Knowledge Schemes

Let R be a witness relation for some NP-language L =
{stmt|∃wit : (stmt,wit) ∈ R}. A Zero-Knowledge Proof
of Knowledge (ZKPoK) contains of two parties, a Prover
P and a Verifier V . The prover tries to convince the
verifier that for a given statement stmt it holds that
stmt ∈ L without leaking any other information. If this
requires only a single message sent from P to V we call
the scheme Non-Interactive Zero-Knowledge.

For efficiency reasons we work with group-based con-
structions, which generally follow the following defini-
tion:

Definition C.8. A Zero-Knowledge scheme POK =
(GenPoK,SetupPoK,Prove,Vfy) is group-based if each
verifiable relation contains triplets (gp, stmt,wit) for a
group parameter gp. Further, the algorithms behave as
follows:
GenPoK takes as input a security parameter 1κ and out-
put public parameters gp.
SetupPoK takes as input gp and outputs a (public)
Common Reference String crs.
Prove takes as input the Common Reference
String crs, the group parameters gp, a state-
ment stmt and a witness wit with (gp, stmt,
wit) ∈ R, and outputs a proof Π.

PUBA 471

Vfy takes as input the Common Reference String crs,
the group parameter gp, a statement stmt, and a proof
Π, and outputs 0.

The following definitions are implicitly with respect to
group-based NIZKs.

Perfect Completemness. A ZK scheme is perfectly
complete if a proof regarding a true relation will always
be accepted. More formally [34]

Definition C.9. A Zero-Knowledge scheme POK =
(GenPoK,SetupPoK,Prove,Vfy) is perfectly complete if
for all adversary A we have

Pr

 (gk, x,wit) ∈ R =⇒
POK.Vfy(gk, crs, x,Π)

∣∣∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
crs ← POK.SetupPoK(gk, sk),
(x,wit)← A(gk, crs),
Π← POK.Prove(gk, crs, x,wit)

 = 1

Perfect Soundness. Perfect soundness is completeness in
the other direction; it formally states that it should be
impossible to convince a verifier of a false statement [34].

Definition C.10. A Zero-Knowledge scheme POK =
(GenPoK,SetupPoK,Prove,Vfy) is perfectly sound if for
all adversaries A we have

Pr

 x /∈ L =⇒
POK.Vfy(gk, crs, x,Π)

∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
crs ← POK.SetupPoK(gk, sk),
(x,Π)← A(gk, crs)

 = 0

CRS Indistinguishability. CRS Indistinguishability intu-
itively means that there is some different way to com-
pute the CRS such that (1) the new CRS can not be
distinguished from one that was honestly created, and
(2) the new CRS can be constructed with a backdoor.
More formally:

Definition C.11. A Zero-Knowledge scheme
POK = (GenPoK,SetupEPoK,SetupSPoK,Prove,Vfy,
ExtractWit,SimProof) provides computationally indis-
tinguishable Common Reference Strings if for every
PPT-adversary A it holds that the following equation
is negligible in the security parameter κ:

| Pr

 A(crs) = 1

∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
(crs, tdext)←

POK.SetupEPoK(gk, sk)


− Pr

 A(crs) = 1

∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
(crs, tdsim)←

POK.SetupSPoK(gk, sk)

 |
Perfect F-Extractability. This property implies a (lim-
ited) way of extracting information from the witness.

While it is not possible to extract the witness directly,
its exponentiation can be extracted efficiently.

Definition C.12. A Zero-Knowledge scheme POK =
(GenPoK,SetupPoK,Prove,Vfy,ExtractWit) is perfectly
Fgp-extractable if POK follows CRS indistinguishability
(Definition C.11) and for all adversaries A we have:

Pr


b = 1 =⇒ ∃wit
Fgp(wit) = wit′

∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← GenPoK(1κ),
(crs, tdext)← SetupPoK(gp),
(stmt,Π)← A(crs, tdext),
wit′ ← ExtractWit(crs,

tdext, stmt,Π),
b← Vfy(crs, stmt,Π)


= 1

Dual-Mode. Dual-Mode Zero-Knowledge generally de-
pends on the Common Reference String crs. Such
schemes provide two different distributions on how the
CRS is created which follow CRS indistinguishability
(Definition C.11).

We furthermore require Fgp-extractability in the
mode that uses SetupEPoK to set up the CRS [34].

The second mode that uses SetupSPoK is supposed
to provide zero-knowledge:

Definition C.13. A Zero-Knowledge scheme
POK = (GenPoK,SetupEPoK,SetupSPoK,Prove,Vfy,
ExtractWit,SimProof) provides Statistical Simulatabil-
ity if for every adversary A it holds that the followinng
equation is overwhelming in the security parameter κ:

Pr

 POK.Vfy(crs, x,Π)

∣∣∣∣∣∣∣∣∣∣∣

(gk, sk)← POK.GenPoK(1κ),
(crs, tdsim)←

POK.SetupSPoK(gk, sk),
(x,wit)← A(gk, crs),
Π← POK.SetupSPoK(x, crs, tdsim)


We now have all the tools required to define a dual-mode
Zero-Knowledge scheme.

Definition C.14. A Zero-Knowledge scheme
POK = (GenPoK,SetupEPoK,SetupSPoK,Prove,Vfy,
ExtractWit,SimProof) is called Dual-Mode Zero-
Knowledge scheme if all of the following conditions
are fulfilled:
1) POK has CRS indistinguishability.
2) POK when set up with (crs, tdext) ←

POK.SetupEPoK(·) has perfect completeness.
3) POK when set up with (crs, tdsim) ←

POK.SetupSPoK(·) has perfect completeness.
4) POK when set up with (crs, tdext) ←

POK.SetupEPoK(·) has perfect soundness.
5) POK when set up with (crs, tdext) ←

POK.SetupEPoK(·) has Fgp-extractability.

PUBA 472

6) POK when set up with (crs, tdsim) ←
POK.SetupSPoK(·) has statistical Zero-Knowledge.

D The Ideal Functionality

Functionality F (∆)
PUBA

This functionality facilitates user-centric Privacy-Preserving Analyt-
ics. The function to be computed is specified by the global parameter
∆.
. .

State:
The Ideal Functionality stores:

– Set PUser of registered users.
– fUH : pidU 7→ UH
– fOA : PUser → {true, false}
– fOI : {pidP}×{1, . . . ,K} where (pidP , k) maps to a list fOI(pidP , k)

of entries (ssid, pidU ,UH, inU).
– fFP : {UReg∪ {BK((K))} ∪ {OA(K)}}×N→ {fp}∗, where different

tasks are mapped to a list of Function Parameters fp.
– Partial mapping fUP on PUser. pidU 7→ (ssid, α, s,a, outU).

Tasks:

– F (∆)
PUBA-Init (Fig. 7)

– F (∆)
PUBA-Sign Function Parameter (Fig. 8)

– F (∆)
PUBA-User Registration (Fig. 9)

– F (∆)
PUBA-Bookkeeping (Fig. 10)

– F (∆)
PUBA-Outsource (Fig. 11)

– F (∆)
PUBA-Outsourced Analytics (Fig. 12)

– F (∆)
PUBA-Update (Fig. 13)

Fig. 6. The basic functionality F(∆)
PUBA for user-centric Privacy-

Preserving Analytics. The remaining tasks are described in Figs. 7
to 13.

In this section, we provide the full description of our
Ideal Functionality F (∆)

PUBA. We use the standard UC
model [17], and assume that the simulator S is activated
by F (∆)

PUBA, whenever any party provides any input.
Our functionality F (∆)

PUBA is defined such that all
inputs have the form (Task name,List of secret inputs).
The task name uniquely determines the task to be exe-
cuted.

The notifications S obtains after F (∆)
PUBA obtained

input from any party depends on the respective party
providing the input: On inputs from T , O, or P, F (∆)

PUBA

activates S with input (Task name, pid), where pid is the
Party Identifier of T , O or P, respectively.

For users, however, we ensure unlinkability in all
tasks except for User Registration (for which we assume

an out-of-band verification of the user’s identity). Dur-
ing User Registration, the functionality explicitly leaks
pidU of the calling U . For all other tasks, we model un-
linkability by having the functionality only revealing the
role of a user after a call, and not the pid; that is, the
simulator only gets notified with (Task name,User) af-
ter a user sent input.

That way, with the exception of User Registration,
the pid of any user is never revealed to anyone outside
of F (∆)

PUBA. As such, the user can interact anonymously.
For our subtasks, we generally assume that addi-

tionally to what we explicitly write as in- and outputs,
parties append the Subsession Identifier (ssid) of the
current task.

The stateful functionality. Our Ideal Functional-
ity is stateful, meaning that after interaction with any
party, it updates its state. The state contains of sev-
eral lists, which we present in Fig. 6. First of all,
F (∆)
PUBA stores lists PUser of registered users. This list

contains the pids of all users which registered using
F (∆)
PUBA-User Registration, and which hence have a valid

UH. The UH itself is stored inside the functionality with
fUH, which ensures that the only way to change it is by
using the provided tasks.

For Outsourced Analytics (OA) we only allow each
user to only outsource one computation at a time. To
that end, the Ideal Functionality remembers in fOA if
a given user—identified via pidU—has an outsourcing-
triplet in progress or not. Furthermore, the data the user
outsourced is stored in fOI. The result of the outsourced
computations are stored in fUP, until they are fetched
by a user using F (∆)

PUBA-Update from Fig. 13.
Finally, the functionality stores all certified Func-

tion Parameters for a given task task in fFP. The only
way to update this list is after positive response from
the Trusted Signing Authority T , which ensures that
the operator can only perform computations of func-
tions which were verified before.

F (∆)
PUBA-Init :

Input O: (init).
Input T : (init)

1. Respond to the other tasks.

Output O: (ok).
Output T : (ok).

Fig. 7. Task F(∆)
PUBA-Init for initializing the functionality.

PUBA 473

F (∆)
PUBA-Sign Function Parameter :

Input O: (SFP, fp, task, inO).
Input T : (SFP, inT).

1. Checka that ∆(SFP, fp, task, inO, inT) = 1.
2. Checka that fp have not been registered before for task task.
3. Let ` be min` : fFP(task, `) = ⊥.
4. Set fFP[task, `] = fp.
5. Leak (task, `) to the adversary.

Output O: (ok).
Output T : (ok).

Fig. 8. Task F(∆)
PUBA-Sign Function Parameter for signing Func-

tion Parameters.

F (∆)
PUBA-User Registration :

Input O: (UReg, fp, inO).

1. Leta ` be the index for which fFP(UReg, `) = fp.
2. Leak ` to the adversary.

Input U : (UReg, inU).

1. Checka pidU 6∈ PUser
2. Append pidU to PUser.
3. (UH, outU , outO)← ∆(UReg, fp, inU , inO).
4. Append (pidU 7→ UH) to fUH.
5. Append (pidU 7→ false) to fOA.

Output U : (UH, outU).
Output O: (outO).

a If this fails, output ⊥ and abort.

Fig. 9. Task F(∆)
PUBA-User Registration for registering a user.

The Init-task. The initializing task from Fig. 7 has
to be called before anything else. The task only con-
tains the operator and the TSA and essentially starts
the whole process. Before calling init, all calls are ig-
nored, after that, the functionality responds to calls of
the forms given in Figs. 8 to 13.

Sign Function Parameters. With the task shown in
Fig. 8, the operator can input Function Parameters fp
to be used for a given task task. We assume that the
application-specific function ∆ contains some mecha-
nism to verify that a given input fp is suitable for this
task. If the function verifies fp for usage in task, then
F (∆)
PUBA adds these fp to fFP(task), which enables its

future use. The functionality leaks the new amount of
FPs it has for the task task to the adversary; we require
this information for our simulation.

User Registration. With the User Registration task
from Fig. 9, a user can register for participation. This

{F (∆)
PUBA-Bookkeeping

(k)}Kk=1 :

Input O: (BK(k), fp, inO).

1. Leta ` be min` : fFP(BK(k), `) = fp.
2. Leak ` to the adversary.

Input U : (BK(k), inU).

1. Seta UH := fUH(pidU).
2. (α, s,a, outU , outO)← ∆(BK , fp, k,UH, inU , inO).
3. UH′ ← α(UH).

4. UH′′ := (uh′′0 , . . . , uh′′m−1) with uh′′i :=

{
s[i] for s[i] 6= ⊥
UH′[i] for s[i] = ⊥

.

5. fUH(pidU) := UH′′ + a.
6. Set fUH(pidU) := UHnew.

Output U : (α, s,a, outU).
Output O: (outO, α, s)

Fig. 10. Task F(∆)
PUBA-Bookkeeping(k) for direct computation

between user and operator of the task defined by k ∈ {1, . . . ,K}.

task has to be executed before any further interaction
with the user. This is ensured in the ideal world by giv-
ing the user their User History (UH) and storing it in
fUH. For any future interaction, the users current UH
is always fetched from fUH. This does not only ensure
that a user cannot manipulate data on its own, it also
enforces that any user wanting to perform a computa-
tion has undergone the registration process.

Specifics of the function that computes the initial
UH are input as fp, a unique identifier—which does not
leak any of the values in fp—is leaked to the adversary.

Bookkeeping. The update of the latest User His-
tory (possibly based on the data so far collected) by a
validly registered user is shown in Fig. 10. The function-
ality fetches the current UH from fUH, which ensures
that the latest UH is used. The operator inputs FPs fp,
which define the function to be computed; the identifier
of which is leaked to the adversary. We generally as-
sume that computations only leak the basic structure,
such as a neural network or logistic regression, to the
user and hide the trade secrets in fp. To ensure that
only valid fp are used the functionality only continues
if fp ∈ fFP(BK(k)), and aborts if the operator wants to
use uncertified input.

The computation of function k is defined in
the application-specific function ∆. It yields a result
(α, s,a, outU , outO). (α, s,a) is the part of the result that
is used for the later update of the User History. outU and
outO are respective analytical outputs for the user and
the operator. For our security proof we further require
that the outputs of corrupted users are leaked to the ad-

PUBA 474

versary. Yet we stress that this is not in conflict with our
confidentiality guarantees as we do not enforce privacy
for corrupted users.

Afterwards, the User History gets updated through
“permute”, “set” and “add” operations. The variable α
contains a permutation, which is applied to the User
History to create a temporary User History as

UH′ ← α(UH).

This permutation changes the slots of some (or all) en-
tries, while not changing the contents itself. For ex-
ample, UH := (9, 8, 7) and α :=

(
0 1 2
2 1 0

)
3 would yield

UH′ := (7, 8, 9). After the permutation, a set operation
is executed. The set vector s has length m and contains
either Zp elements or ⊥. A new temporary User History
is then created via

UH′′ := (uh′′0 , . . . , uh′′m−1)

with uh′′i :=

{
s[i] for s[i] 6= ⊥
UH′[i] for s[i] = ⊥

.

To continue our small example, UH′ := (7, 8, 9) and
s := (1, 3,⊥) would yield UH′′ := (1, 3, 9). Last, an add
operation is performed by simply adding the vector a
(which has also length m) to UH′′ to create the final
new User History:

UHnew ← UH′′ + a.

Finishing the example, UH′′ := (1, 3, 9) and a := (4, 0, 0)
would yield UHnew := (5, 3, 9). This 3-step-process of
updating the User History enables flexible updates, yet
defines some rules for the update process so that later
in the protocol (see Appendix E) the user can efficiently
prove that he correctly updated the User History.

Outsource. The outsource-task is described in
Fig. 11. It is a three-party task, consisting of the user U
providing the data, the operator O providing the frame-
work, and a proxy P providing computational power.

Outsourced tasks are intended to compute functions
that either require more than one user, or are too com-
plex to be efficiently computed on the users device.

In it, the functionality verifies that the user has no
previous outsourced computation in progress, and re-
members that one was started now. It stores the cur-
rent UH alongside the remaining information for later
use, and marks it with the pid of the proxy that should

3 Note that since our User History slots are numbered from 0
to m − 1, we also define the permutation that way.

{F (∆)
PUBA-Outsource(k)}Kk=1 :

Input U : (OS(k), inU).
Input P: (OS(k)).
Input O: (OS(k)).

1. Load current Subsession Identifier ssid.
2. If U and O are corrupted, append (ssid,⊥,⊥,⊥) to fOI(pidP , k)

and skip all following steps.
3. Checka fOA(pidU) ?= false.
4. Set fOA(pidU) := true.
5. Seta UH := fUH(pidU).
6. Append (ssid, pidU ,UH, inU) to fOI(pidP , k).

Output U : (ok).
Output P: (ok).
Output O: (ok).

Fig. 11. Task F(∆)
PUBA-Outsource(k) for outsourcing user data

required for outsourced computation of the task defined by k ∈
{1, . . . ,K}.

be used for the computation. To allow linkability with
the next Outsourced Analytics and Update tasks, the
functionality also stores the ssid of this task.

Outsourced Analytics. The actual analyical compu-
tation between operator and proxy is shown in Fig. 12.
In any real protocol this task should only be possible
if there was a previous call to Outsource. The func-
tionality ensures this by fetching the values from its
state, namely by taking the inputs of the users from
fOI(pidP , ·).

Similar to a normal computation the proxy only
learns a very basic structure, whereas the trade secrets
involved in creating the function are hidden as input fp
from O and only used if they were previously certified
by T and hence stored in fFP.

Despite the computation of k according to the
application-specific function ∆ and a subsequent stor-
ing of the results in fUP for later use in F (∆)

PUBA-Update
the functionality contains leaks in case of corruptions.
For one, it is not efficiently possible for a simula-
tor to extract the whole auxiliary input inU during
F (∆)
PUBA-Outsource so the functionality asks for new in-

puts for all corrupted users. Furthermore, we stress that
a corrupted operator can create arbitrary users which
means that for real protocols, it might be the case that
some users who called F (∆)

PUBA-Outsource never regis-
tered. For those, we also input the data a bit later.

Update. While the premise of our framework is to
(1) ensure that any update to the UH is applied by the
user, and (2) reward users who gave their data for com-
putation tasks, whereas relevant information was out-

PUBA 475

{F (∆)
PUBA-Outsourced Analytics(k)}Kk=1 :

Input O: (OA(k), fp, inO).

1. Leta ` be min` : fFP(OA(k), `) = fp.
2. Leak ` to the adversary.

Input P: (OA(k)).

1. Loada and remove the first Zk entries
{(

ssidz , pidz ,UHz , inz
)}Zk

z=1
from fOI(pidP , k).

2. If P is corrupted, ask for updated inputs
{

inz | 1 ≤ z ≤ Zk , pidz ∈
Pcorr

}
.

3. If O is corrupted, ask for updated information (UHz , inz) for each
z ∈ {1, . . . ,Zk} with pidz 6∈ PUser.

4. ({(αz , sz ,az , outz)}Zk
z=1, outO)← ∆(OA, fp, k, {(UHz , inz)}Zz=1, inO).

5. Leak {(z, αz , sz ,az , outz) | 1 ≤ z ≤ Zk , pidz ∈ Pcorr} to the adver-
sary.

6. If O is corrupted, leak {(z, αz , sz ,az , outz) | 1 ≤ z ≤ Zk , pidz 6∈
PUser} to the adversary.

7. For every z from 1 to Zk with pidz ∈ PUser set fUP(pidz) :=
(ssidz , αz , sz ,az , outz).

Output P: (ok).
Output O: ({αz , sz}Zk

z=1outO).

Fig. 12. Task F(∆)
PUBA-Outsourced Analytics(k) for outsourced

computation between the operator and the proxy of the task de-
fined by k ∈ {1, . . . ,K}.

F (∆)
PUBA-Update :

Input U : (Upd).
Input P: (Upd).
Input O: (Upd).

1. If U and O are corrupted, set (UH, outU) = (⊥,⊥) and skip all
following steps.

2. Seta UH := fUH(pidU).
3. Seta (ssid, α, s,a, outU) := fUP(pidU).
4. If O is corrupted, leak ssid to the adversary.
5. If U is honest and P is corrupted, leak ssid to the adversary.
6. Remove pidU 7→ (ssid, α, s,a, outU) from fUP.
7. UH′ ← α(UH).

8. UH′′ := (uh′′0 , . . . , uh′′m−1) with uh′′i :=

{
s[i] for s[i] 6= ⊥
UH′[i] for s[i] = ⊥

.

9. Set fUH(pidU) := UH′′ + a.
10. Set fOA(pidU) := false.

Output U : (α, s,a, outU).
Output P: (ok).
Output O: (α, s).

Fig. 13. Task F(∆)
PUBA-Update for letting the user update its

User History and obtain the incentive based on the results of the
outsourced computation.

put during F (∆)
PUBA-Outsourced Analytics, the final task

of our functionality lets the user fetch the results from
F (∆)
PUBA-Outsourced Analytics and obtain the incentive.

Fig. 13 shows this step. Ignoring the leakage for now,
the functionality fetches the latest UH (to model the
fact that after Outsource, the user can perform further
Bookkeeping tasks) and applies the three-stage update
that was defined by the output from OA onto it. Fur-
thermore, it marks the user as being allowed to out-
source a computation again.

E Realization of the Functionality

E.1 Prerequisites

Our protocol requires certain pre- and post-processing
steps, before the actual MPC-protocol can be executed.
We model those additional steps, namely how the in-
and outputs are handled, by an additional subfunction-
ality FPPA.

The stateless subfunctionality from Fig. 14 is re-

Functionality FPPA

This functionality performs the computation specified by ∆ in a
way that provides input consistency. It is parameterized by the to-
be-computed function ∆, a homomorphic commitment scheme COM
which is unconditionally hiding and computationally binding and uses
the subprotocol πShare with the same commitment scheme COM, and
a EUF-CMA-secure signature scheme SIG′. The following tasks are
provided by FPPA:

– User Registration (Fig. 15):
Handles the initial values of the user history during user registra-
tion.

– Bookkeeping (Fig. 16):
Define different possible Bookkeepings between U and O.

– Outsourced Analytics (Fig. 17):
Define different possible Outsourced Analytics between P and O.

Fig. 14. The functionality FPPA we use to perform the computa-
tions.

quired for executing the protocol for User Registration,
Bookkeeping, and Outsourced Analytics.

User Registration. During User Registration shown
in Fig. 15, FPPA handles the function-specific part of
defining how the initial User History UH looks like;
there, FPPA essentially is a wrapper for the actual func-
tion ∆, which additionally checks integrity of the used
Function Parameters before using ∆ and computes the
commitment aftter its termination.

PUBA 476

Input U : (UReg, comfp, inU)
Input O: (UReg, fp, unvfp, inO)

1. Checka COM′.Unv(comfp, unvfp, fp) = 1.
2. Compute (UH, outU , outO)← ∆(UReg, fp, inU , inO).
3. (comUH, unvUH)← COM.Com (UH)

Output U : UH, unvUH, outU .
Output O: comUH, outO.

Fig. 15. The subfunctionality-task of FPPA for performing user
registration.

Bookkeeping. The case for the Bookkeeping is shown
in Fig. 16. FPPA verifies that both sides used the cor-

Input U : (BK(k),UH, unvUH, comfp, inU)
Input O: (BK(k), comUH, fp, unvfp, inO)

1. Checka COM.Unv(comUH, unvUH,UH) ?= 1.
2. Checka COM′.Unv(comfp, unvfp, fp) = 1.
3. Compute (α, s,a, outU , outO)← ∆(BK , fp, k,UH, inU , inO).
4. (coma, unva)← COM.Com(a).

Output U : α, s,a, coma, unva, outU .
Output O: α, s, coma, outO.

a If this fails, output ⊥ and abort.

Fig. 16. The subfunctionality-task of FPPA for performing direct
computations.

rect values as input; verification of the user inputs lets
the user input the User History UH and unveil informa-
tion unvUH, which opens a commitment comUH input by
O. Likewise, the operator inputs Function Parameters
fp and unveil information unvfp, which open the com-
mitment comfp input by the user. The check whether
the given pairs of commitment and unveil messages for
the given clear values are performed via MPC, hence
the respective inputs of one party remain hidden from
the respective other party. FPPA only continues with
computing the actual function ∆ on the given inputs,
if the commitments successfully opened to the specified
values.

Outsourced Analytics. The behavior of FPPA for an-
alytical tasks is shown in Fig. 17. The operator input
is verified in the same way as for Bookkeeping. After
successful verification FPPA internally reconstructs the
shares for each user, computes the function, and masks
the outputs. Since MPC leaks no intermediate results,
this means that FPPA only outputs cryptographically
protected private outputs outU for each participating
user. FPPA also provides P with additional information

Input P: (OA(k), comfp, {(sh(P)
UHz

, sh(P)
inz

, sh(P)
oOUTz , sh(P)

oUNVz , sh(P)
oα ,

sh(P)
os , sh(P)

oa)}Zk
z=1).

Input O: (OA(k), fp, unvfp, {(sh(O)
UHz

, sh(O)
inz

, sh(O)
oOUTz , sh(O)

oUNVz ,

sh(O)
oα , sh(O)

os , sh(O)
oa)}Zk

z=1, inO).

1. Checka COM′.Unv(comfp, unvfp, fp) = 1.
2. For every z from 1 to Zk :

– Combinea UHz ← πShare-Combine(sh(P)
UHz

, sh(O)
UHz

).
– Combinea inUz ← πShare-Combine(sh(P)

inUz
, sh(O)

inUz
).

– Combinea oOUTz ← πShare-Combine(sh(P)
oOUTz , sh(O)

oOUTz).
– Combinea oUNVz ← πShare-Combine(sh(P)

oUNVz , sh(O)
oUNVz).

– Combinea oαz ← πShare-Combine(sh(P)
oαz , sh(O)

oαz).
– Combinea osz ← πShare-Combine(sh(P)

osz , sh(O)
osz).

– Combinea oaz ← πShare-Combine(sh(P)
oaz , sh(O)

oaz).
3. Compute ({(αz , sz ,az , outUz)}Zk

z=1, outO)←
∆(OA, fp, k, {(UHz , inUz)}Zz=1, inO).

4. For every z from 1 to Zk :
– (comaz , unvaz)← COM.Com(az)
– cunvaz

:− unvaz + oUNVz .
– coutUz

:− outUz + oOUTz .
– cαz :− αz + oαz .
– csz :− sz + osz .
– caz :− az + oaz .

Output P: {(cαz , csz , caz , cunvaz , coutUz)}Zk
z=1.

Output O: {(α, s, comaz , coutUz)}Zk
z=1, outO.

Fig. 17. The subfunctionality-task of FPPA for performing Out-
sourced Analytics.

for the user to verify the integrity of the update. The
update itself consists of three parts, namely a permu-
tation α, a list of updates that are applied directly s,
and an additional increment a. We stress that while α
and s are public values, the addition vector a is only to
be known by the user. Hence it is not output to either
of the proxy or operator directly. To increase the Users
privacy guarantees, while still allowing guarantees for
O that UH has been updated correctly, FPPA computes
a commitment coma with corresponding unveil informa-
tion unva on the addition vector a, and outputs coma
to O. The remaining values, that is, a and unva, are
masked with oa and oUNV, respectively, and output to
P. This hides all information from P, as only the User
knows the One-Time Pads.

A Robust Secret Sharing-protocol. Both our subfunc-
tionality and our protocol make use of a sharing proto-
col and its corresponding combine protocol. Those are
required so that the user can share information with P
and O in such a way, that no party —neither P nor O
—can change the shares unnoticed. The protocols are
shown in Fig. 18.

Essentially, this comes down to additive secret shar-
ing, where the dealer does not only send the additive
share of a value to each party, but also adds a commit-

PUBA 477

Protocol πShare

This protocol facilitates Robust Secret Sharing. It is parameterized by
an unconditionally hiding and computationally binding homomorphic
commitment scheme COM, for which inverse elements in the image
group of COM are efficiently computable.
. .
πShare-Share:

Input: Value x.

– Sample uniformly random x(0).
– x(1) := x − x(0).
–
(

com(0)
x , unv(0)

x

)
← COM.Com

(
x(0)).

–
(

com(1)
x , unv(1)

x

)
← COM.Com

(
x(1)).

– sh(0)
x :=

(
x(0), com(1)

x , unv(0)
x

)
.

– sh(1)
x :=

(
x(1), com(0)

x , unv(1)
x

)
.

Output: Shares
(

sh(0)
x , sh(1)

x

)
.

. .
πShare-Combine:

Input: Shares
(

sh(0)
x , sh(1)

x

)
.

– Parsea
(

x(0), com(1)
x , unv(0)

x

)
:= sh(0)

x .

– Parsea
(

x(1), com(0)
x , unv(1)

x

)
:= sh(1)

x .

– Checka COM.Unv
(

com(0)
x , unv(0)

x , x(0)
)

?= 1.

– Checka COM.Unv
(

com(1)
x , unv(1)

x , x(1)
)

?= 1.
– x := x(0) + x(1).

Output: Value x.

a If this fails, output ⊥ and abort.

Fig. 18. Protocol for Robust Secret Sharing (RSS).

ment on the respective other parties share. Additionally,
each party obtains unveil information on its own com-
mitment.

The combine protocol then lets each party send
their own value and their unveil information; the other
party only accepts, if the unveil information matches
the commitment it received during the sharing-phase.

Additionally, since this task is used after each user
interaction during any task, we have a verification pro-
tocol πVerify, with which a user can check that its log-
book λ has been created correctly.

The protocol basically verifies that all the commit-
ments are on the correct values and that the signature
is correct.

E.2 Our Protocol

With those building blocks we can now pro-
vide our full protocol. The protocol runs in the

Protocol πVerify

This protocol facilitates sharing and verification of logbooks. It is pa-
rameterized by an unconditionally hiding and computationally binding
homomorphic commitment scheme COM, for which inverse elements
in the image group of COM are efficiently computable, and an EUF-
CMA-secure, structure-preserving signature scheme SIG.
. .
Input: Message VfyL, lb λ := (UH, comUH, unvUH, ser , comser ,

unvser , lin, comlin , unvlin , id, comid , unvid , σ).

– Checka COM.Unv(comUH, unvUH,UH) ?= 1
– Checka COM.Unv(com(O)

ser , unv(O)
ser , ser(O)) ?= 1

– Checka COM.Unv(comlin , unvlin , lin) ?= 1
– Checka COM.Unv(comid , unvid , id) ?= 1
– Checka SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) ?= 1

Output: λ
. .
Input: Message ShareL, lb λ := (UH, comUH, unvUH, ser , comser ,

unvser , lin, comlin , unvlin , id, comid , unvid , σ).

– oOUT ∼ IN
– oUNV

r← Zp
– oα

r← Zm
p

– os
r← Zm

p

– oa
r← Zm

p

– (sh(P)
UH, sh(O)

UH)← πShare-Share(UH)
– (sh(P)

inU
, sh(O)

inU
)← πShare-Share(inU)

– (sh(P)
oOUT , sh(O)

oOUT)← πShare-Share(oOUT)
– (sh(P)

oUNV , sh(O)
oUNV)← πShare-Share(oUNV)

– (sh(P)
oα , sh(O)

oα)← πShare-Share(oα)
– (sh(P)

os , sh(O)
os)← πShare-Share(os)

– (sh(P)
oa , sh(O)

oa)← πShare-Share(oa)

Output: (oOUT, oUNV, oα, os, oa, {sh(x)
UH, sh(x)

inU
, sh(x)

oOUT , sh(x)
oUNV , sh(x)

oα ,

sh(x)
os , sh(x)

oa }x∈{P,O})
. .
Input: Message VfyS, inputs comUH, unvUH,UH, cominU , unvinU , inU ,

comoOUT , unvoOUT , oOUT, comoUNV , unvoUNV , oUNV, comoα , unvoα , α, comos ,

unvos , s, comoa , unvoa ,a

– Checka Unv(comUH, unvUH,UH) = 1
– Checka Unv(cominU , unvinU , inU) = 1
– Checka Unv(comoOUT , unvoOUT , oOUT) = 1
– Checka Unv(comoUNV , unvoUNV , oUNV) = 1
– Checka Unv(comoα , unvoα , oα) = 1
– Checka Unv(comos , unvos , os) = 1
– Checka Unv(comoa , unvoa , oa) = 1

Output: ok

a If this fails, output ⊥ and abort.

Fig. 19. Protocol for User logbook verification.

PUBA 478

Protocol πPUBA

This protocol facilitates user-centric Privacy-Preserving Analytics.
. .

π-Shared State:

Each user U stores:

– User logbook λ
– User public key pkU
– One-Time Pads oα, os, oa, oOUT and oUNV

– Verification key vkO of the operator
– Verification key vkT of the Trusted Signing Authority

Each proxy P stores:

– Verification key vkO of the operator
– Verification key vkT of the Trusted Signing Authority
– Mapping f (P)

OI on {1, . . . ,K} that maps k to a list f (P)
OI (k) of entries

(lin, sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oα , sh(P)

os , sh(P)
oa)

– Partial mapping f (P)
UP on {lin} : lin 7→ (cα, cs, ca, coutU)

The operator O stores:

– Signature key pair (vkO, skO)
– List LSER of observed serial numbers
– Mapping f (O)

OI on {pidP} × {1, . . . ,K} that maps (pidP , k) to a list
f

(O)
OI (pidP , k) of entries (lin, sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oα , sh(O)
os , sh(O)

oa)
– Partial mapping f (O)

UP on {lin} : lin 7→ (α, s, coma, coutU)
– Mapping fFP on fp that maps Function Parameters fp to a list
fFP(fp) of tuples (comfp, unvfp, σfp).

The Trusted Signing Authority T stores:

– Signature key pair (vkT , skT)

Tasks:

– π-Init (Fig. 21)
– π-Sign Function Parameter (Fig. 22)
– π-User Registration (Fig. 24)
– π-Bookkeeping (Fig. 27)
– π-Outsource (Fig. 31)
– π-Outsourced Analytics (Fig. 34)
– π-Update (Fig. 36)

Fig. 20. Shared state of the protocol πPUBA.

{FPPA,FBB,FKE,FCRS}-hybrid model. Those are
used for the following purpose:

FPPA has been explained earlier in this chapter.
FBB is used during User Registration to ensure that no

user creates more than one account and to verify
that the user really is who it claims to be.

FKE is used to set up private channels which are not
subject to eavesdropping. We implicitly assume that
prior to each protocol execution each pair of partic-
ipating parties calls an instance of FKE to create
a secure session key which encrypts each message
exchanged.

FCRS is required for our pairing-based instantiations of
the Zero-Knowledge protocol.

The full protocol is parameterized by:

– an Ideal Functionality FPPA that handles problem-
specific tasks of the computation, which works on in-
puts defined by IN .

– an Ideal Functionality FBB that provides a bulletin
board functionality.

– an Ideal Functionality FKE that provides a secure key
exchange functionality. We implicitly assume that all
parties call this to obtain a pair-wise shared secret key
k which both of them use throughout the subsession.

– a IND-CPA-secure symmetric encryption scheme
ENC = (Setup,
Gen,Enc,Dec) which parties implicitly use for all mes-
sages using their shared key k.

– a common reference string crs.
– group parameters gp.
– an unconditionally hiding and computationally bind-
ing homomorphic commitment scheme COM for
which inverse elements in the image group of COM
are efficiently computable. This is instantiated as the
same scheme used in πShare.

– an unconditionally hiding and computationally bind-
ing commitment scheme COM′.

– an EUF-CMA-secure, structure-preserving signature
scheme SIG. Again, this scheme is the same as the one
used for πShare.

– a trapdoor dual-mode zero-knowledge proof-of-
knowledge scheme POK based on crs where an hon-
estly chosen crs yields overwhelming completeness
and negligible soundness property whereas one mode
offers F -extractability and the other mode offers sim-
ulatability.

– An EUF-CMA-secure signature scheme SIG′.

PUBA 479

The protocol from Fig. 20 makes heavy use of the
languages defined in Figs. 26, 29, 33 and 38. The intu-
ition behind each task is as follows:

Init. Before any other task can be executed the op-

π-Init:
Input O: (init)
Input T : (init)

O: Generate signature key pair:
– (vkO, skO)← SIG.Gen(gp).
– Calla FBB instance sidFBB with input (Register, pidO, vkO).

T : Generate signature key pair:
– (vkT , skT)← SIG′.Gen(gp).
– Calla FBB instance sidFBB with input (Register, pidT , vkT).

Output O: (ok)
Output T : (ok)

Fig. 21. The protocol π-Init for the Init-task (Fig. 7).

erator and the TSA have to run the Init task. While
we modeled it as a two-party task the two parties never
interact with one another and only create their signing
keys and register them at FBB.

Sign Function Parameter. Our framework is de-

π-Sign Function Parameter :
Input O: Message SFP, FPs fp, task task, aux. input inO
Input T : Message SFP, aux. input inT .

O: (comfp, unvfp)← COM′.Com(fp).
O9T : (fp, comfp, unvfp, task, inO)
T : Checka that ∆(SFP, fp, task, inOperator, inT) = 1.
T : Checka that COM′.Unv(comfp, unvfp, fp) = 1.
T : σfp ← SIG′.Sgn(skT , (task, comfp)).

O8T : (σfp)
O: fFP(fp) := (comfp, unvfp, σfp).

Output T : Message ok
Output O: Message ok

Fig. 22. The protocol π-Sign Function Parameter for the Sign
Function Parameter-task (Fig. 8).

U O

fp, comfp, unvfp, task, inO
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 23. Message overview for π-Sign Function Parameter .

signed such that it hides the function details from the
user. While we believe this to be extremely important
on one hand as the operator potentially spent a lot of
time and money in the creation of the model, we stress
that fully hiding the function and the result from the
user allows for a trivial attack on the users anonymity
if the operator inputs a non-privacy-preserving function
such as the identity.

As a compromise we suggest a third party which
certifies that operator input meets certain privacy cri-
teria: the Trusted Signing Authority (TSA) T . The key
idea is that the function to-be-computed only has a very
generic design—say in the form of general logistic re-
gression or a neural network—but the function specifics
are stored in Function Parameters (FPs) fp. In order
to circumvent the attack sketched above and ensure
that the operator only ever uses valid inputs the tasks
User Registration, Bookkeeping and Outsourced Ana-
lytics require signed FPs. To that end, the task Sign
Function Parameter lets the operator input some FPs
fp which are to be used for computation of some task
task ∈ {UReg, BK(k), OA(k)} alongside a commitment
comfp and corresponding unveil information unvfp. The
TSA verifies them using the application-dependent ∆
to ensure that they match the required privacy stan-
dards. We assume those privacy standards to be public
knowledge.

If a given set of FPs verifies the operator obtains a
signature σfp on (task, comfp) and uses comfp as future
certificate for fp: Before using the FPs fp the O sends
comfp and σfp to the respective other party (the user or
the proxy, respectively who then input comfp into FPPA.
The operator O inputs fp and unvfp. Before starting the
computation defined by ∆ the commitment is verified.
The binding property of COM′ ensures that the operator
can only use FPs which were signed by T .

User Registration. The protocol for User Registra-
tion is shown in Figs. 24 and 25. We want to ensure
that each user has at most a single logbook. To ensure
that no user can create multiple accounts we make use
of the Bulletin Board functionality FBB. This lets the
user register a key exactly once. The user has to publish
a fresh public key to the bulletin board which is taken
from a pairing group e (·, ·). The user can only register if
it knows the corresponding secret key and hence proves
knowledge of it using the ZK proof from Fig. 26. This
proves knowledge of both unvid and id such that the
pairing equation is fulfilled and such that the commit-
ment comid unveils to pkU . The operator O then only
accepts if this proof is valid and if the public key has

PUBA 480

π-User Registration :
Input U : Message UReg, aux. input inU
Input O: Message UReg, Function Parameters fp, aux. input inO

U : Fetch verification keys:
– Calla FBB instance sidFBB with input

(Retrieve, pidO) and store output vkO.
– Calla FBB instance sidFBB with input

(Retrieve, pidT) and store output vkT .
Draw User secret key:
– Draw random User ID id r← Zp.
– Compute User public key pkU := id · g1.
– Call FBB instance sidFBB with input

(Register, pidU , pkU).
– (comid , unvid)← COM.Com(id)

Calculate proof of user secret key knowledge:
– stmt := (pkU , comid)
– wit := (unvid , id ′ := id · g2)
– Π← Prove(stmt,wit,LR), using LR from Fig. 26.

Draw share of new serial number:
– (sernew)(U) r← Zp
– (com(U)

sernew , unv(U)
sernew)← COM.Com((sernew)(U))

U9O: (Π, comid , com(U)
sernew)

O: Fetch FP information:
– Seta (comfp, unvfp, σfp) := fFP(fp).

O: Fetch user public key:
– Call FBB instance sidFBB with input

(Retrieve, pidU) and receive output pkU .
Checka that no user with public key pkU has registered yet.
Check proof:
– stmt := (pkU , comid)
– Checka Vfy(Π, stmt,LR) = 1

U←O: (comfp, σfp)
U : Checka that SIG′.Vfy((UReg, comfp), σfp, vkT) = 1.

U=O: Compute initial user history:
U→FPPA: (UReg, comfp, inU)
O→FPPA: (UReg, fp, unvfp, inO)
U←FPPA: (UH, unvUH, outU)
O←FPPA: (comUH, outO)

O: Draw share of new serial number:
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)← COM.Com((sernew)(O))

Compute commitments and signature for initial User History:
– comsernew := com(O)

sernew ⊕ com(U)
sernew

– (comlin , unvlin)← COM.Com(0)
– σ ← SIG.Sgn(skO, comUH‖comsernew‖comlin‖comid)

U8O: (comUH, (sernew)(O), com(O)
sernew , unv(O)

sernew , comlin , unvlin , σ)
U : Seta and store λnew := πVerify(VfyL, (UH, comUH, unvUH,

((sernew)(U) + (sernew)(O)), (com(U)
sernew ⊕ com(O)

sernew),
(unv(U)

sernew⊕unv(O)
sernew), 0, comlin , unvlin , id, comid , unvid , σ))

Output U : Initial user history UH, aux. output outU
Output O: Aux. output outO

a If this fails, output ⊥ and abort.

Fig. 24. The protocol π-User Registration for User Registration
(Fig. 9).

U FPPA O

Π, comid , com(U)
sernew−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

comfp, σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

UReg, comfp, inU
−−−−−−−−−−−−−−−→

UReg, fp, unvfp, inO
←−−−−−−−−−−−−−−−

UH, unvUH, outU
←−−−−−−−−−−−−−−−

comUH, outO
−−−−−−−−−−−−−−−→

comUH, unvUH, (sernew)(O), com(O)
sernew ,←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

unv(O)
sernew , comlin , unvlin , σ

Fig. 25. Message overview for π-User Registration.

LR[(unvid , id ′) : e (pkU , g2) = e
(
g1, id ′

)
∧

COM.Unv (comid , unvid , pkU) = 1]

Fig. 26. Language LR from π-User Registration following the
notation of [14].

not been used before. If this succeeds the two parties
engage in the creation of the initial logbook.

The initial contents of the User History are com-
puted via the MPC-framework from FPPA according to
∆ which can depend on additional secret FPs which
are input by the operator. These are verified before the
computation such that only FPs which were signed by
the TSA T can be used for the computation.

After obtaining the initial User History this way
the two parties create the initial logbook together. The
principle is fairly similar in this task to all the following
tasks: To ensure history freshness the user has to carry
a serial number ser in its logbook which is invalidated
during the next interaction with the operator. However,
the serial number would allow tracking of the same user
through different tasks—which we want to avoid. Hence,
we decided to take inspiration from the Blum coin flip-
ping protocol [11] over Zp where only the user learns the
outcome of the coin toss and the operator only learns
that the outcome is randomly distributed over Zp. This
is to ensure that no party picks a malicious serial num-
ber such as one that contains tracking information. Us-
ing the homomorphism of the commitment scheme COM
the operator thus can create a commitment on the ac-
tual serial number based only on the commitment of the
users share and its own commitment.

PUBA 481

Using this information alongside the previously cre-
ated commitments comlin on the linking number (which
is initially 0 as is only set if outsourcing-triplets have
been started) and comUH and comid which were obtained
by the user the operator creates a signature.

This signature is only over commitments. Our in-
stantiation of the signature scheme preserves the struc-
ture of the message ensures that this can later be used to
prove in ZK that a signature on a commitment of a given
value is known. Furthermore, since the commitment it-
self could theoretically be used for linking when seeing
it again the operator only sees rerandomized versions
of this commitment in future interactions alongside a
ZK proof that this rerandomization is really on a com-
mitment for which a signature made by the operator is
known.

Note that all the communication happening here
is identifying on both sides—even for the user. The id
is uniquely identifiable along different tasks and hence
hidden by the user from this point onwards. It is only
used in the witness of Zero-Knowledge proofs in future
interactions.

Bookkeeping. The protocol for directly updating the
User History is given in Figs. 27 and 28. Essentially
it is a wrapper around FPPA: Before accessing the hy-
brid functionality the user proves to the operator that
the latest input is used and the operator proves to the
user that it will input valid Function Parameters that
were signed by the TSA T . The language LVal

B for prov-
ing the former can be found in Fig. 29: The user proves
correct rerandomization of the User History and that it
knows serial, id and linking number for which it knows
a signature from O. For the latter—namely letting the
operator prove that the FPs used for the computation
are validly signed—we use an interactive protocol: O
sends the commitment and the signature on the current
task and the commitment to the user. Note that we do
not hide from the user which FPs will be used—meaning
that the user learns whether the same FPs have been
used in previous computations—but only what those
FPs are. Hence we do not require any form of reran-
domization. The operator sends comfp alongside the sig-
nature σfp directly to the user. The user then verifies
the signature using the verification key vkT of T and
only continues if this signature is valid. In that case the
user inputs the commitment to FPPA.

The operator inputs the corresponding opening in-
formation unvfp and the clear values of fp. The definition
of FPPA ensures that computation only happens if unvfp
(which is an input by the operator) successfully opens

{π-Bookkeeping(k)}Kk=1 :
Input U : Message BK(k), aux. input inU
Input O: Message BK(k), FPs fp, aux. input inO
U : Calculate lb-validity proof and draw share of new serial:

– (c̃omUH, ũnvUH)← COM.Rrnd(comUH, unvUH)
– (c̃omlin , ũnvlin)← COM.Rrnd(comlin , unvlin)
– (c̃omid , ũnvid)← COM.Rrnd(comid , unvid)
– stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
– witVal := (comUH, unvUH, ũnvUH, comser , unvser ,

comlin , unvlin , ũnvlin , pkU , comid , unvid , ũnvid , σ)
– ΠVal ← POK.Prove(stmtVal ,witVal ,LVal

B), using LVal
B

from Fig. 29.
Draw share of new serial number:
– (sernew)(U) r← Zp
– (com(U)

sernew , unv(U)
sernew)← COM.Com((sernew)(U))

U→O: (c̃omUH, ser , c̃omlin , c̃omid ,ΠVal , com(U)
sernew)

O: Check proof and serial number and fetch FP information:
– stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
– Checka POK.Vfy(ΠVal , stmtVal ,LVal

B) = 1
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Seta (comfp, unvfp, σfp) := fFP(fp).

U←O: (comfp, σfp)
U : Checka that SIG′.Vfy((BK(k), comfp), σfp, vkT) = 1.

Communicate with FPPA:
U→FPPA: (BK(k),UH, ũnvUH, comfp, inU)
O→FPPA: (BK(k), c̃omUH, fp, unvfp, inO)
U←FPPA: (α, s,a, coma, unva, outU)
O←FPPA: (α, s, coma, outO)

U : Calculate new User History and prove correctness:
– if α 6= ⊥ ∨ s 6= ⊥ then

∗ Apply permutation: UH′ ← α(UH).
∗ For i from 0 to |UH|−1, if s[i] 6= ⊥, then set UH′′[i] :=

s[i], else copy UH′′[i] := UH′[i].
∗ Apply addition: UHnew ← UH′′ + a.
∗ (com′UH, unv′UH)← COM.Com(UH′).
∗ (com′′UH, unv′′UH)← COM.Com(UH′′).
∗ (comnewUH , unvnewUH)← (com′′UH, unv′′UH)⊕ (coma, unva).
∗ Parse (uh0, . . . , uhm−1) =: UH, (uh′0, . . . , uh′m−1) =:
UH′, and (uh′′0 , . . . , uh′′m−1) =: UH′′.

∗ stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
∗ witTr := (ũnvUH, unv′UH, unv′′UH, uh0, . . . , uhm−1,

uh′0, . . . , uh′m−1, uh′′0 , . . . , uh′′m−1)
∗ ΠTr ← POK.Prove(stmtTr ,witTr ,LTr

B), using LTr
B

from Fig. 30.
U →O : (com′UH, com′′UH,ΠTr)

– else (comnewUH , unvnewUH)← (com′′UH, unv′′UH)⊕ (coma, unva).
O: Draw share of new serial number:

– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)← COM.Com((sernew)(O))

Verify proof, compute signature for the new UH.
– if α 6= ⊥ ∨ s 6= ⊥ then

∗ stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
∗ Checka POK.Vfy(ΠTr , stmtTr ,LTr

B) = 1.
∗ comnewUH := com′′UH ⊕ coma.

– else comnewUH := c̃omUH ⊕ coma.
– comnewser := com(O)

sernew ⊕ com(U)
sernew

– σnew ← SIG.Sgn(skO, comnewUH ‖comnewser ‖c̃omlin‖c̃omid)
U←O: (comnewUH , (sernew)(O), com(O)

sernew , unv(O)
sernew , σnew)

U : Seta and store λnew := πVerify(VfyL, (UHnew, comnewUH , unvnewUH ,
((sernew)(U) ⊕ (sernew)(O)), (com(U)

sernew ⊕ com(O)
sernew),

(unv(U)
sernew ⊕ unv(O)

sernew), lin, c̃omlin , ũnvlin , id, c̃omid ,

ũnvid , σ
new)).

Output U : User History UHnew, aux. output outU .
Output O: Aux. output outO, permutation α, set vector s.

Fig. 27. The protocol π-Bookkeeping for the Bookkeeping-task
(Fig. 10).

PUBA 482

U FPPA O

c̃omUH, ser , c̃omlin , c̃omid ,ΠVal , com(U)
sernew−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

comfp, σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

BK(k),UH,
−−−−−−−−−−−−−−−→

ũnvUH, comfp, inU

BK(k), c̃omUH,
←−−−−−−−−−−−−−−−

fp, unvfp, inO

α, s,a, coma, unva, outU
←−−−−−−−−−−−−−−−

α, s, coma, outO
−−−−−−−−−−−−−−−→

com′
UH, com′′

UH, comnewUH,ΠTr
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

comnewUH, (sernew)(O), com(O)
sernew , unv(O)

sernew , σ
new

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 28. Message overview for π-Bookkeeping(k). The highlighted
message is not always sent.

LVal
B [(comUH, unvUH, ũnvUH, comser , unvser , comlin ,

unvlin , ũnvlin , pkU , comid , unvid , ũnvid , σ) :
COM.Unv((comUH 	 c̃omUH), (unvUH 	 ũnvUH),0) = 1∧
COM.Unv(comser , unvser , ser) = 1∧
COM.Unv((comlin 	 c̃omlin), (unvlin 	 ũnvlin), 0) = 1∧
COM.Unv(comid , unvid , pkU) = 1∧
COM.Unv(c̃omid , ũnvid , pkU) = 1∧
SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) = 1]

Fig. 29. Language LVal
B from π-Bookkeeping following the nota-

tion of [14].

comfp (which is input by the user) to fp (which again is
input by the operator). Assuming both unforgeability of
signatures and binding of the commitment scheme this
ensures that no malicious operator can input uncerti-
fied Function Parameters; it either would have to forge
a signature on a new commitment without knowing the
signing key of T or use an existing signature but find
some opening information and clear text values which
open the (previously signed) comfp to a different value.

After computation via FPPA the user updates its
UH. We consider this tasks use-case to be primarily for
bookkeeping and for updating the User History which is
why we allow more complex transformations here than
in Outsourced Analytics. The user obtains the triple (α,
s,a) from FPPA, the vectors α and s are also learned by
the operator. This triple contains a permutation α that
arbitrarily permutes contents of the User History and
can be the identity if no permutation is required, a set

LTr
B [(ũnvUH, unv′UH, unv′′UH, uh0, . . . , uhm−1, uh′0, . . . , uh′m−1,

uh′′0 , . . . , uh′′m−1) :
COM.Unv(c̃omUH, ũnvUH, (uh0, . . . , uhm−1)) = 1∧
COM.Unv(com′UH, unv′UH, (uh′0, . . . , uh′m−1)) = 1∧
COM.Unv(com′′UH, unv′′UH, (uh′′0 , . . . , uh′′m−1)) = 1∧
For i from 0 to m − 1 :

uh′i = uhα(i)

uh′′i :=

{
s[i] for s[i] 6= ⊥
uh′i for s[i] = ⊥

]

Fig. 30. Language LTr
B used in π-Bookkeeping and π-Update

following the notation of [14].

vector s which defines which slots of the User History
are set to new values directly and which can contain
elements indicating that the old values should be used,
and a private add vector a which defines the additive in-
crement for each value of the User History which can be
the neutral element if this entry should not be changed.
The first two maps are applied to the elements in the
User History directly by the user: First the contents are
permuted according to α and then those slots for which
an entry in s exists are updated to their corresponding
new values. The user then proves to the operator that it
updated its history correctly. For that purpose the lan-
guage LTr

B from Fig. 29 is used. Note that the operator
never learns the actual contents of the new User His-
tory. Instead, the operator only learns a commitment on
it and the permutation α and the directly updated val-
ues s. The proof alongside the commitments on the new
User History are sent to the operator. We stress that
this step is optional in our protocol and can be skipped
if the output of the function only contained trivial a
permutation α and set vector s (that is, one that does
not manipulate the User History). In this case both par-
ties directly engage in the computation of the new User
History instead of the user proving and the operator
verifying that the updates were applied correctly.

The operator homomorphically computes the com-
mitment of the final User History using the commitment
on the permuted and updated UH from the user and
the commitment on the addition vector a obtained from
FPPA. The same technique is used to update the serial
number homomorphically. This commitment is incorpo-
rated into the signature computed by the operator. The
operator then sends the information required by the user
to create the new logbook to the user. The user updates
its logbook as in the User Registration task.

PUBA 483

Outsource. The goal of the Outsource task is to dis-
tribute the data of the user between the operator and a
proxy in such a way that (1) both parties know after-
wards that the values were shared correctly, and (2) as-
suming P and O do not work together no information on
the user data is leaked. Those two guarantees are met by
the Robust Secret Sharing (RSS) protocol from Fig. 18
which creates shares of a given user-input such that each
party obtains its own additive share and a commitment
of the other parties share. Additionally, each party gets
its own unveil information for later verification.

The user uses the RSS-protocol πShare-Share to cre-
ate robust shares of the User History UH which are later
used for the computation, the auxiliary input inU , and
five One-Time Pads oα, os, oa, oOUT and oUNV. Those are
also used as input for the Outsourced Analytics as they
mask the following outputs: The first three pads (oα, os
and oa) mask the three outputs relevant for updating
the User History (namely the permutation α, the set
vector s and the addition vector a) later from the proxy
such that given the output of FPPA to P only the user
can reconstruct them. The fourth pad (oOUT) masks the
auxiliary output outU .

During Outsourced Analytics the operator only
learns a commitment coma of the addition vector a.
For an update that works analogous to the Bookkeep-
ing task the user requires the decommitment informa-
tion unva. Since there are commitment schemes in which
access to the unveil information only suffices to recon-
struct the input of the commitment,4 FPPA masks the
unveil information with the final OTP, oUNV.

As in every interaction that requires double-
spending detection the user computes a Zero-
Knowledge-proof that the User History is valid. The lan-
guage LO from Fig. 33 used for this task additionally en-
sures that the secret shares have been created correctly:
The first line of the proof ensures that the commitment
on the User History for which the user knows the sig-
nature from the operator can be homomorphically split
into the two values one of which is sent to the operator
directly and one of which is sent to the proxy who then
sends the commitment to the operator. Both are then
used in the statement of LO. The hiding property of the

4 Technically, the security definition of any commitment scheme
makes no restriction on the amount of information regarding x
stored in unvx. So given any commitment scheme COM where
given unvx only, it is hard to determine x, we can create a com-
mitment scheme COM′ which is equivalent to COM only that
COM.Unv sends a tuple (unvx, x). The new protocol would be
as secure as the actual commitment protocol.

{π-Outsource(k)}Kk=1 :
Input U : Message OS(k), aux. input for the computation inU .
Input P and O: Message OS(k)
U : Create robust secret shares:

– (oOUT, oUNV, oα, os, oa, {sh(x)
UH, sh(x)

inU
, sh(x)

oOUT , sh(x)
oUNV , sh(x)

oα ,

sh(x)
os , sh(x)

oa }x∈{P,O})← πVerify(ShareL, λ)
Calculate proof and draw serial number share:
– (c̃omid , ũnvid)← COM.Rrnd(comid , unvid)
– stmt := (sh(O)

UH, com(O)
UH, ser , c̃omid , vkO)

– wit := (comUH, unvUH, unv(P)
UH, comser , unvser , comlin ,

unvlin , pkU , comid , unvid , ũnvid , σ)
– Π← POK.Prove(stmt,wit,LO), using LO from Fig. 33.
– (sernew)(U) r← Zp.
– (com(U)

sernew , unv(U)
sernew)← COM.Com((sernew)(U))

U→O: (sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV , sh(O)

oα , sh(O)
os , sh(O)

oa , ser , c̃omid ,

Π, com(U)
sernew)

U→P: (sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)
O: Checka serial number ser 6∈ LSER and add ser to LSER.

Prepare linking number: (linnew)(O) r← Zp
(com(O)

linnew , unv(O)
linnew)← Com((linnew)(O))

O9P: (com(O)
linnew , com(P)

UH, com(P)
inU

, com(P)
oOUT , com(P)

oUNV , com(P)
oα , com(P)

os , com(P)
oa)

P: Checka πVerify(VfyS, com(P)
UH, unv(P)

UH,UH
(P), com(P)

inU
, unvPinU

, inPU ,
com(P)

oOUT , unvPoOUT
, oOUT

P , com(P)
oUNV , unvPoUNV

, oUNV
P , com(P)

oα , unv(P)
oα ,

oα(P), com(P)
os , unv(P)

os , os(P), com(P)
oa , unv(P)

oa , oa(P)) = 1
Draw (linnew)(P) r← Zp

P9O: ((linnew)(P), com(O)
UH, com(O)

inU
, com(O)

oOUT , com(O)
oUNV , com(O)

oα , com(O)
os ,

com(O)
oa)

O: Check proof and sharings
– stmt := (sh(O)

UH, com(O)
UH, ser , c̃omid , vkO)

– Checka POK.Vfy(Π, stmt,LO) = 1
– Checka πVerify(VfyS, com(O)

UH, unv(O)
UH,UH

(O), com(O)
inU

, unvOinU
,

inOU , com(O)
oOUT , unvOoOUT

, oOUT
O, com(O)

oUNV , unvOoUNV
, oUNV

O, com(O)
oα ,

unv(O)
oα , oα(O), com(O)

os , unv(O)
os , os(O), com(O)

oa , unv(O)
oa ,

oa(O)) = 1
Store outsource information and draw share of new serial:
– linnew := (linnew)(O) + (linnew)(P)

– Add (linnew, sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV , sh(O)

oα , sh(O)
os , sh(O)

oa)
to f (O)

OI (pidP , k)
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)← COM.Com((sernew)(O))

Compute commitments and signature for updated UH:
– comnewUH := com(P)

UH ⊕ com(O)
UH

– comnewser := com(U)
sernew ⊕ com(O)

sernew

– (comnewlin , unvnewlin)← COM.Com(linnew)
– σnew ← SIG.Sgn(skO, comnewUH ‖comnewser ‖comnewlin ‖c̃omid)

U←O: ((sernew)(O), com(O)
sernew , unv(O)

sernew , comnewlin , unvnewlin , σnew)
P8O: ((linnew)(O), unv(O)

linnew)
P: Store outsource information:

– Checka Unv(com(O)
linnew , unv(O)

linnew , (linnew)(O)) = 1
– linnew :− (linnew)(O) + (linnew)(P)

– Add (linnew, sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)
to f (P)

OI (k)
U←P: (linnew)
U : Seta and store λnew := πVerify(VfyL, (UH, (com(P)

UH ⊕ com(O)
UH),

(unv(P)
UH ⊕ unv(O)

UH), ((sernew)(U) + (sernew)(O)),
(com(U)

sernew ⊕ com(O)
sernew), (unv(U)

sernew ⊕ unv(O)
sernew),

linnew, comnewlin , unvnewlin , id, c̃omid , ũnvid , σ
new)).

Output U , P and O: Confirmation ok.

Fig. 31. The protocol π-Outsource for the Outsource-task
(Fig. 11).

PUBA 484

U P O

sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV , sh(O)

oα , sh(O)
os , sh(O)

oa , ser , c̃omid ,Π, com(U)
sernew−−→

sh(P)
UH, sh(,)

inU−−−−−−−−−−−−−−−−−−−−−−−−−−→
sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
s , sh(P)

a P

comlinnew (O), com(P)
UH, comP

inU
,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−
comP

oOUT , comP
oUNV , comP

oα , comP
os , comP

oa

(linnew)(P), com(O)
UH, comO

inU
,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
comO

oOUT , comO
oUNV , com(O)

oα , com(O)
os , com(O)

oa

((linnew))(O), unv(O)
linnew

←−−−−−−−−−−−−−−−−−−−−−−−−

(sernew)(O), com(O)
sernew , unv(O)

sernew , comnewlin , unvnewlin , σ
new

←−−

linnew

←−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 32. Message overview for π-Outsource.

LO[(comUH, unvUH, unv(P)
UH, comser , unvser , comlin , unvlin ,

pkU , comid , unvid , ũnvid , σ) :

COM.Unv(comUH 	 (com(O)
UH ⊕ com(P)

UH),

unvUH 	 (unv(O)
UH ⊕ unv(P)

UH),0) = 1∧
COM.Unv(comser , unvser , ser) = 1∧
COM.Unv(comlin , unvlin , 0) = 1∧
COM.Unv(comid , unvid , pkU) = 1∧
COM.Unv(c̃omid , ũnvid , pkU) = 1∧
SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) = 1]

Fig. 33. Language LO from π-Outsource following the notation
of [14].

commitment scheme ensures that the operator does not
learn the share of the proxy while the fact that the proxy
sent the commitment to the operator ensures that this
really is the commitment that the user sent; otherwise
the user could send some commitment to the operator
claiming that it is the proxy-server’s share and send a
different commitment to the proxy such that the recon-
structed User History contains different values than the
ones stored in the user’s logbook.

Since the user had to unveil the latest serial number
of its logbook in order to convince the operator that in-
deed the latest User History was used the protocol also
includes the creation of a new logbook. Note that this
logbook then has a non-zero linking number which at
the same time prohibits the user from starting a sec-
ond outsourcing-triplet before finishing the first one and
stores information that can be used later by the user to
fetch the results during the Update task. Other than
that the logbook generation is the same as the one used
during the Bookkeeping task.

Outsourced Analytics. The protocol for perform-

{π-Outsourced Analytics(k)}Kk=1 :
Input P: Message OA(k).
Input O: Message OA(k), FPs fp, aux. input inO.

P: Load outsource information:
– Loada and remove the first Zk entries {(lin, sh(P)

UH,

sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os , sh(P)
oa)z}Zk

z=1 from
f

(P)
OI (k).

O: Load outsource information:
– Loada and remove the first Zk entries {(lin, sh(O)

UH,

sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa)z}Zk

z=1 from
f

(O)
OI (pidP , k).

O: Fetch FP information:
– Seta (comfp, unvfp, σfp) := fFP(fp).

O→P: (comfp, σfp)
P: Checka that SIG′.Vfy((OA(k), comfp), σfp, vkT) = 1.

P=O: Compute function:

P→FPPA: (OA(k), comfp, {(sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os ,

sh(P)
oa)z}Zk

z=1)
O→FPPA: (OA(k), fp, unvfp, {(sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
oa)z}Zk

z=1, inO)
P←FPPA: {(cαz , csz , caz , cunvaz , coutUz)}Zk

z=1
O←FPPA: {(α, s, comaz , coutUz)}Zk

z=1, outO

O: Store update information:
For all z ∈ (1, . . . ,Zk) : set f (O)

UP (linz) := (α, s, coma, coutU)z .
P: Store update information:

For all z ∈ (1, . . . ,Zk) : set f
(P)
UP (linz) :=

(cα, cs, ca, cunva , coutU)z
Output P: Confirmation ok.
Output O: Aux. output outO.

Fig. 34. The protocol π-Outsourced Analytics for the Outsourced
Analytics-task (Fig. 12).

P FPPA O

comfp, σfp
←−−

OA(k), comfp, {(sh(P)
UH, sh(P)

inU
, sh(P)

oOUT ,
−−−−−−−−−−−−−−−−−−−−−−−−→
sh(P)

oUNV , sh(P)
oα , sh(P)

os sh(P)
oa }z}Zk

z=1

OA(k), fp, unvfp, {(sh(O)
UH, sh(O)

inU
, sh(O)

oOUT ,
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa }z}Zk

z=1, inO,

{(cαz , csz , caz , cunvaz , coutUz
)}Zk

z=1←−−−−−−−−−−−−−−−−−−−−−−−−
{(α, s, comaz , coutUz

)}Zk
z=1, outO

−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 35. Message overview for π-Outsourced Analytics(k).

ing analytical tasks lets both parties fetch the values
stored earlier and input them into FPPA. Again, func-
tion specifics are input by the operator as fp and the
input is verified beforehand using the same basic tech-
nique as in the task for Bookkeeping—but this time
against the proxy.

After receiving output from FPPA both parties store
the results for later use.

PUBA 485

Update. The Update protocol contains two steps
which do not necessarily have to be executed at once.
In the first step the user only requests the data P has
stored by sending the linking number. In the second
step the user requests the data from O and additionally
computes a new logbook and proves that the data in
there has been applied correctly. This proof employs
the language from Fig. 38 which is reminiscent of the
proof used during π-Bookkeeping, but also proves that
the linking number is correct. Additionally, in case of a
non-trivial permutation or direct update the user uses
the language LTr

B in order to prove that the permutation
was applied correctly.

π-Update :
Input U : Upd
Input P: Upd
Input O: Upd
U→P: (lin)
P: Seta and remove (cα, cs, ca, cunva , coutU) := f

(P)
UP (lin)

U←P: (cα, cs, ca, cunva , coutU)
U : Prove lb validity and correct updates and draw share of serial:

– (c̃omUH, ũnvUH)← COM.Rrnd(comUH, unvUH)
– Set α := cα − oα, s := cs − os and a := ca − oa.
– Set unva :− cunva − oUNV and outU := coutU − oOUT

– (c̃omid , ũnvid)← COM.Rrnd(comid , unvid)
– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– wit := (comUH, unvUH, ũnvUH, comser , unvser , comlin , unvlin ,

pkU , comid , unvid , ũnvid , σ)
– Π← POK.Prove(stmt,wit,LU), using LU from Fig. 38.
– (sernew)(U) r← Zp
– (com(U)

sernew , unv(U)
sernew)← COM.Com((sernew)(U))

– if α 6= ⊥ ∧ s 6= ⊥ then
∗ Apply permutation: UH′ ← α(ŨH).
∗ For i from 0 to |UH| − 1, if s[i] 6= ⊥, then set value
UH′′[i] := s[i], else copy UH′′[i] := UH′[i].

∗ Apply addition: UHnew ← UH′′ + a.
∗ (com′UH, unv′UH)← COM.Com(UH′).
∗ (com′′UH, unv′′UH)← COM.Com(UH′′).
∗ stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
∗ witTr := (ũnvUH, unv′UH, unv′′UH, uh0, . . . , uhm−1,

uh′0, . . . , uh′m−1, uh′′0 , . . . , uh′′m−1)
∗ ΠTr ← POK.Prove(stmtTr ,witTr ,LTr

B), using LTr
B

from Fig. 30.
U →O : (c̃omUH, com′UH, com′′UH, c̃omid , ser , lin,Π,ΠTr ,

com(U)
sernew)

– else
∗ Apply addition: UHnew ← UH+ a.
U →O: (c̃omUH, c̃omid , ser , lin,Π, com(U)

sernew)
O: Load UI and check proof and serial:

– Seta (α, s, coma, (coutU)′) := f
(O)
UP (lin)

– Remove lin 7→ (α, s, coma, (coutU)′) from f
(O)
UP

– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– Checka POK.Vfy(Π, stmt,LU) ?= 1
– if α 6= ⊥ ∨ s 6= ⊥ then

∗ stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
∗ Checka POK.Vfy(ΠTr , stmtTr ,LTr

B) ?= 1
∗ comnewUH := com′′UH ⊕ coma

– else
∗ comnewUH := c̃omUH ⊕ coma

– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}

Prepare the new UH:
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)← COM.Com((sernew)(O))

– comnewser := com(O)
sernew ⊕ com(U)

sernew

– (comnewlin , unvnewlin)← COM.Com(0)
– σnew ← SIG.Sgn(skO, comnewUH ‖comnewser ‖comnewlin ‖c̃omid)

U←O: (coma, comnewUH , (sernew)(O), com(O)
sernew , unv(O)

sernew , comnewlin , unvnewlin ,

σnew, coutU)
U : Checka Unv(coma, unva,a) ?= 1 anda coutU

′ ?= coutU Seta and
store λnew := πVerify(VfyL, (UHnew, comnewUH ,

(ũnvUH ⊕ unva), ((sernew)(U) + (sernew)(O)),
(com(U)

sernew ⊕ com(O)
sernew), (unv(U)

sernew ⊕ unv(O)
sernew), 0,

comnewlin , unvnewlin , id, c̃omid , ũnvid , σ
new))

Output U : Permutation α, set vector s, add vector a, aux. outU .
Output P: Confirmation ok.
Output O: Permutation α, set vector s.

Fig. 36. The protocol π-Update for the Update-task (Fig. 13).

PUBA 486

U P O

lin
−−−−−−−−−−−−−→

cα, cs, ca, cunva , coutU←−−−−−−−−−−−−−

c̃omUH, c̃omid , ser , lin,Π, com(U)
sernew or

−−→
c̃omUH, com′

UH, com′′
UH, c̃omid , ser , lin,Π,ΠTr , com(U)

sernew

coma, comnewUH, (sernew)(O), com(O)
sernew , unv(O)

sernew ,←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
comnewlin , unvnewlin , σ

new, coutU

Fig. 37. Message overview for π-Update.

LU[(comUH, unvUH, ũnvUH, comser , unvser , comlin , unvlin , pkU , comid ,

unvid , ũnvid , σ) :
COM.Unv((comUH 	 c̃omUH), (unvUH 	 ũnvUH),0) = 1∧
COM.Unv(comser , unvser , ser) = 1∧
COM.Unv(comlin , unvlin , lin) = 1∧
COM.Unv(comid , unvid , pkU) = 1∧
COM.Unv(c̃omid , ũnvid , pkU) = 1∧
SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) = 1]

Fig. 38. Language LU from π-Update following the notation of
[14].

F Applications
Here we sketch two privacy-preserving applications for
PUBA, namely fraud detection for mobile payments and
a targeted advertising network.

F.1 Fraud Detection for Mobile Payments

The scenario was already introduced in Section 4, there-
fore we only recap it shortly here. We construct a mobile
payment service that supports anonymous payments
and is equipped with strong fraud detection mecha-
nisms. We consider a two-tier fraud detection mecha-
nism: At each transaction at a point-of -sale a light-
weight rule-based fraud detection mechanism is exe-
cuted and a more complex machine learning-based fraud
detection mechanism is executed with the operator after
some threshold of payments has been reached.

Each time the user conducts a payment at a point-
of-sale, a new transaction is created and stored in the
UH. We assume that a transaction record t consists of

the following data encoded as vector of Zp elements:

t := (acc, ts, loc, type, tval),

where acc is one iff the transaction has been accepted, ts
is a timestamp, loc indicates the geographic location the
transaction took place, type describes the type of shop
(e.g., grocery store, jewelry store, etc.), and tval is the
transaction value. We stress that this is only an exam-
ple, adding other attributes is pretty straightforward.

The UH contains the latest T transaction records,
the user’s balance bal and some important additional in-
formation to support the fraud detection mechanisms.
These additional information include the account’s cur-
rent risk level rsk, a maximum value max a single trans-
action can have, and a limit rem on the number of pay-
ment transactions a user can perform before the com-
plex fraud detection mechanism has to be run. Note that
the latter two values depend on the current risk level.

Thus, the UH has the following form:

UH := (t1
1 , . . . , t1

5 , . . . , tT1 , . . . , tT5 , rsk, rem,max, bal)

The first 5T slots store the last T transactions (each
transaction ti requires 5 slots), t1 is the most recent
transaction. The UH has a total length of 5T+4 entries.

We now describe the individual tasks a user can
perform. The details of the function ∆mpayment can be
found in Fig. 39.

Registration. During registration the user obtains a
UH with an empty balance and no stored transactions
using the User Registration task, which calls the func-
tion ∆mpayment with input message UReg. Both parties
input the initial values for the risk level, the remaining
number of transactions and the maximum transaction
value, i.e., (rsk, rem,max). The values rem and max can
either be fixed constants or depend on the risk level.
Alongside empty transactions, those are written into the
new UH.

Top-Up. Our mobile payments service is prepaid-
based; it is important that a user can top-up its balance.
We propose a general method where user and bank agree
on the amount that should be topped up and leave the
actual transfer of money to the implementation method,
such as anonymously depositing money at an ATM or
making a transfer from the normal bank account (which
would be identifying). The user invokes a Bookkeeping
task where both parties input the amount to be de-
posited, which is added to the user’s balance. In our ex-
ample, a top-up transaction is not recorded in the user’s
transaction history (although this might be reasonable).

PUBA 487

∆mpayment
. .
Registration:
(UReg, fp := ⊥, inU := (rsk, rem,max), inO := (rsk, rem,max))
If inU 6= inO, abort.
Set UH := (⊥, . . . ,⊥, rsk, rem,max, 0).
Return (UH, outU := ok, outO := ok).
. .
Top-Up:
(BK , fp := ⊥, k := 1,UH, inU := val, inO := val)
If inU 6= inO, abort.
a := (0, . . . , 0, val).
Return (α :=

(0 ... m−1
0 ... m−1

)
, s := (⊥, . . . ,⊥),a, outU := ok, outO := ok).

. .
Payment:
(BK , fp := ⊥, k := 2,UH, inU := (ts, loc, type, tval), inO := (ts, loc, type,
tval))
If inU 6= inO, abort.
Parse (t1

1 , . . . , t1
5 , . . . , tT1 , . . . , tT5 , rsk, rem,max, bal) := UH.

If bal < tval,
then return

(
α :=

(0 ... m−1
0 ... m−1

)
, s := (⊥, . . . ,⊥),a := (0, . . . , 0),

outU := ⊥, outO := ⊥
)
.

acc := ffdsimple(UH, (ts, loc, type, tval)).
(tnew1 , . . . , tnew5) := (acc, ts, loc, type, tval).
If acc = 1,

then baldiff := tval,
else baldiff := 0.

α :=
(0 ... 4 5 ... 9 ... 5T−5 ... 5T−1 5T ... 5T+3

5T−5 ... 5T−1 0 ... 4 ... 5T−10 ... 5T−6 5T ... 5T+3
)
.

s := (tnew1 , . . . , tnew5 ,⊥, . . . ,⊥).
a := (0, . . . , 0, 0,−1, 0,−baldiff).
Return

(
α, s,a, outU := acc, outO := acc

)
.

. .
Risk Calculation:
(OA, fp, k := 3, (UH, inU := ⊥), inO := ⊥)
Parse (t1

1 , . . . , t1
5 , . . . , tT1 , . . . , tT5 , rsk, rem,max, bal) := UH.

(rsknew, remnew,maxnew) := ffdcomp(fp,UH).
s := (⊥, . . . ,⊥, rsknew,⊥,maxnew,⊥).
a := (0, . . . , 0, 0,−rem + remnew, 0, 0).
Return ((α :=

(0 ... m−1
0 ... m−1

)
, s,a, outU := ok), outO := ok).

Fig. 39. Instantiation of ∆ for privacy-preserving mobile pay-
ments with fraud detection.

Payment (with simple fraud detection). To issue a
payment, a user communicates with a point-of-sale that
has a communication channel with the bank and for-
wards all messages between the user and the bank. The
payment is done via the Bookkeeping task where both
parties input all transaction details excluding the ac-
ceptance bit, i.e., timestamp, location, type of shop and
transaction value. The function aborts if the transac-
tion value exceeds the account’s balance. Otherwise, the
simple rule-based fraud detection mechanism ffdsimple is
executed to decide whether the transaction is accepted
or not based on the last T transactions, the risk level
rsk, the remaining number of transactions rem, the max-
imum transaction value max, and the details of the cur-
rent transaction. In our example implementation in Sec-
tion 5.4 we verify that the following conditions are all
satisfied: 1. tval ≤ max (the transaction value does not

exceed the allowed amount) 2. rem > 0 (the number
of payment transactions the user can perform before
the complex fraud detection mechanism has to be run
has not exceeded its limit). Of course, additional checks
could be included: The transaction could be denied if
the risk level is medium but there are more than three
transactions within a 10 minute period, or if two consec-
utive transactions differ in their location so much that
no user could have possibly traveled that far in such a
short time period.

This simple mechanism already provides some fraud
protection, but is lightweight enough to be computed by
the user’s resource-constrained device. As those can be
public, the user can evaluate the rule-based fraud de-
tection by itself and provide the point-of-sale with a ZK
proof that it evaluated the mechanism correctly based
on its logbook. This can significantly speed up the pay-
ment process compared to an MPC-based computation,
assuming the rules are simple and efficiently compatible
with the ZK proof system.

Only if the transaction is accepted it is physically
executed and the user’s balance gets updated accord-
ingly. More specifically, the three output maps of ∆ look
as follows: The permutation shifts all past transactions
to the right to make room for the new transaction, which
is written into the UH with the direct update. This is
done because the UH only stores the last T transactions
to hide the total number of transactions. The additive
increment then subtracts one from the number of re-
maining transactions rem and subtracts the transaction
value tval from the balance bal iff the transaction was
accepted. The risk level and the maximum transaction
value stay the same.

More precisely, the new transaction is assembled
as (tnew1 , . . . , tnew5) = (acc, ts, loc, type, tval) and the new
UH then looks as follows after applying the three
maps: UHnew := (tnew1 , . . . , tnew5 , t1

1 , . . . , t1
5 , . . . , t

T−1
1 ,

. . . , tT−1
5 , rsk, rem − 1,max, balnew).

Risk Calculation (with complex fraud detection).
Each time the user executes a payment transaction,
the counter for the number of remaining transactions
decreases by one. When this counter reaches zero, it
forces the user to participate in this task, where the
risk level gets updated and a more sophisticated fraud
detection algorithm is executed. By choosing a suitable
value for the initial value of that counter, we can ensure
that users regularly participate in the complex fraud
detection mechanism. As we assume this complex fraud
detection mechanism to be based on machine learning,
this might result in considerable computational effort.

PUBA 488

Therefore, the Outsourced Analytics (OA) task is used.
The operator inputs its FPs fp into OA. Note that, as
usually, these FPs were verified by the TSA to pose
no privacy-risk for the user and yet are not learned by
the user. The fraud detection mechanism then computes
the user’s new risk level rsk along with a new maximum
number of transactions rem, and maximum transaction
value max. These new values are then stored in the UH.
More specifically, only the direct update and additive in-
crement are needed. The direct update sets the new val-
ues for the risk level and the new maximum transaction
value at the corresponding slots and overwrites the old
values in the process. Since the outsourcing triple is non-
blocking regarding Bookkeeping operations, we have to
take into account that the value of the remaining num-
ber of transaction may have changed since Outsource
was called. Therefore, the additive increment adds the
difference between the old remaining number of trans-
actions (from the point when Outsource was called) and
the new value to the corresponding slot.

F.2 Targeted Advertising System

We now briefly sketch a targeted mobile advertising
system which can optionally be used as an extension
for loyalty systems. For their cooperation, users are re-
warded with vouchers targeted at their purchase behav-
ior. The central idea is that the user’s purchases are
stored in the UH. From time to time, users submit their
purchase history to the operator, who analyzes it to-
gether with the histories of several other users. The user
is rewarded with a voucher targeted at the user’s prob-
able interests and is displayed alongside a suitable ad in
the smartphone app.

We now assume that the operator acts as a conglom-
eration of supermarket chains and further participating
shops. In the following, we describe how to use PUBA
in this scenario.

Registration. Upon registration with the User Regis-
tration task, the user obtains an empty UH. Each slot in
the UH represents a product category, e.g., “vegetables”,
“candy”, or “fast food”. The UH tracks the amount of
money spent in each category.

Checkout. When purchasing goods at a participat-
ing store, the user updates the purchase history using
the Bookkeeping task. The amount of money spent in
each category is calculated and added to the correspond-
ing slots in the UH.

Analytics. The Outsourced Analytics task lets the
user provide data for analytical purposes. We assume
the operator has an analytical function (for example for
marketing analyses) which takes some FPs and multi-
ple UHs as input and assigns to each UH a class that
describes the most likely interests of the corresponding
user. The user is rewarded with a voucher that matches
this class and that can be redeemed at a participating
shop. Additionally, the user gets a matching advertise-
ment. For example, if the analysis reveals that the user
likes chocolate, the user obtains advertisements for a
new kind of chocolate and a voucher for a 10% discount
on chocolate. The UHs of the participating users remain
unchanged.

If the targeted advertising system is interconnected
with a loyalty system, the user could also earn loyalty
points instead of vouchers.

G Security
In this section, we prove the security of our system.
That is, we show that the protocol πPUBA is at least as
secure, as our Ideal Functionality F (∆)

PUBA, without rely-
ing on a trusted party to execute F (∆)

PUBA on all parties
inputs. To that end, we provide a simulator that sim-
ulates the protocol messages of honest parties without
knowing the parties secret input, and prove that those
simulated messages cannot be differentiated by any ef-
ficient environment Z.

For technical reasons, we have to restrict our ad-
versary to corrupting only either the proxy P, or the
operator O. We split our simulator up in two parts. Ap-
pendix G.1 contains the simulator for all corruption sce-
narios related to the security of an honest user U , even
in the presence of other malicious users. Appendix G.2
contains the simulator for all corruption scenarios re-
garding the security of an honest operatorO. Combined,
those two simulators cover all corruption scenarios, in
which either P or O are honest.

G.1 User Security

In this section, we investigate the security of our system
in scenarios that relate to the security of an honest user
U . To that end, we prove the following theorem:

Theorem G.1 (User Security). If instantiated with a
trapdoor-commitment scheme COM and a dual-mode

PUBA 489

zero-knowledge protocol POK, it holds that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F

(∆)
PUBA

against all PPT-adversaries A that have statically cor-
rupted the operator O and a subset of users U .

We use the UC-framework [17] and provide a simulator
S for this case. The simulator provides a view for any
PPT-environment Z (that is restricted to not corrupt-
ing any proxies) that is consistent with a real protocol
execution.

The simulator is given as follows:

Simulator SUSec for a corrupted operator

π-Shared State:

– Trapdoor tdsim for simulating proofs.
– Verification key vkO of the operator
– Mapping fOI on {pidP} × {1, . . . ,K} that maps

(pidP ,
k) to a list fOI(pidP , k) of entries
(lin, sh(P)

UH, sh(P)
inU

,

sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os , sh(P)
oa) for all proxies

P
– Partial mapping fUP on {lin} : lin 7→

(comaz , unvaz ,

az , α, s, oα, os, oa, oUNV, coutz)
– Partial mapping fLN on {ssid}: ssid 7→ lin
– Mapping fFP that maps a given task task to a set

of tuples {fp, comfp, σfp} of Function Parameters
and corresponding signatures.

π-Setup:

1. Run a modified version of crs ← π-Setup(1κ):
– crspok ← SetupPoK is replaced by (crspok,

tdsim)← SetupSPoK for simulating proofs.

π-Init:

1. Upon receiving instructions from Z to send
(Register, pidO, vkO) from O to FBB:
– Checka that no key has previously been

stored for pidO.
– Store vkO.

↪→ Call Ideal Functionality F (∆)
PUBA with input

(operatorInit) in the name of O.

2. Upon receiving output (ok) from F (∆)
PUBA to O:

↪→ Report message (ok) from FBB to O.
3. Upon receiving (init, pidT) from F (∆)

PUBA:
– Generate signature key pair:

(vkT , skT)← SIG′.Gen(gp)
– Respond to future calls of the form

(Retrieve, pidT) to FBB with skT .

π-Sign Function Parameter :

1. Upon receiving instructions from Z to send (fp,
comfp, unvfp, task, inO) from O to T :
– Checka that COM′.Unv(comfp, unvfp, fp) = 1.

↪→ Call Ideal Functionality F (∆)
PUBA in the name

of O with input (SFP, fp, task, inO).
2. Upon receiving output ok from F (∆)

PUBA to O:
– Compute signature SIG′.Sgn(skT , (task,

comfp)).
– Add (fp, comfp, σfp) to fFP(task).

↪→ Report message (σfp) from T to O.

π-User Registration:
. .
U honest, O corrupted:

1. Upon receiving (UReg, pidU) from F (∆)
PUBA:

– id r← Zp, pkU := id · g1
– (comid , unvid)← COM.Com(0)
– stmt := (pkU , comid)
– Π← SimProof(stmt,LR)
– (com(U)

sernew , unv(U)
sernew)← COM.Com(0)

↪→ Report message (Π, comid , com(U)
sernew) from U

to O.
2. Upon receiving (Retrieve, pidU) from O to
FBB:
↪→ Report message (Retrieve, pidU , pkU) from
FBB to O.

3. Upon receiving instructions from Z to send
(comfp, σfp) from O to U :
– Checka that there exists an entry

(·, comfp, σfp) in fFP(UReg).
4. Upon receiving (UReg, fp, unvfp, inO) from O to
FPPA:

– Checka that (comfp, σfp) ∈ fFP(UReg).
– Checka that COM.Unv(comfp, unvfp, fp) = 1.

PUBA 490

↪→ Call Ideal Functionality F (∆)
PUBA with input

(UReg, fp, inO) in the name of O.

5. Upon receiving leak ` from F (∆)
PUBA and output

(outO) from F (∆)
PUBA:

– (comUH, unvUH)← Com(0)
↪→ Report output (comUH, outO) from FPPA to
O.

6. Upon receiving instructions from Z to send
(comUH, ser(O), com(O)

ser , unv(O)
ser , comlin , unvlin ,

comid , unvid , σ)
from O to U :
– comser := com(O)

ser ⊕ com(U)
ser

– unvser := unv(O)
ser ⊕ unv(U)

ser
– λnew :=

(
0, comUH, unvUH, ser(O), comser ,

unvser , 0, comlin , unvlin , 0, comid , unvid , σ
)

– Calla πVerify(λnew)
↪→ Allow F (∆)

PUBA to deliver output to U .

. .
U and O corrupted: Nothing to do.

{
π-Bookkeeping(k)

}K

k=1
:

. .
U honest, O corrupted:

1. Upon receiving (BK(k),User) from F (∆)
PUBA:

– ser r← Zp
– (com(U)

sernew , unv(U)
sernew)← COM.Com(0)

– (c̃omUH, ũnvUH)← COM.Com(0)
– (c̃omlin , ũnvlin)← COM.Com(0)
– (c̃omid , ũnvid)← COM.Com(0)
– stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
– ΠVal ← POK.SimProof(tdsim, stmtVal ,LVal

B)
↪→ Report message (c̃omUH, ser , c̃omlin , c̃omid ,

ΠVal , com(U)
sernew) from U to O.

2. Upon receiving instructions from Z to send
(comfp, σfp) from O to U :
– Checka that (comfp, σfp) ∈ fFP(UReg).

3. Upon receiving (BK(k), c̃omUH
′
, fp, unvfp, inO)

from O to FPPA:
– Checka c̃omUH

′ = c̃omUH
– Checka COM.Unv(comfp, unvfp, fp) = 1.

↪→ Call Ideal Functionality F (∆)
PUBA with input

(BK(k),
fp, inO) in the name of O.

4. Upon receiving leak ` from F (∆)
PUBA and output

(outO, α, s) to O from F (∆)
PUBA:

– (coma, unva)← COM.Com(0)

– if α 6= ⊥ ∨ s 6= ⊥ then
– (com′UH, unv′UH)← COM.Com(0)
– (com′′UH, unv′′UH)← COM.Com(0)
– stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
– ΠTr ← POK.SimProof(tdsim, stmtTr ,LTr

B)
– unvnewUH := unv′′UH ⊕ unva

– else
– unvnewUH := ũnvUH ⊕ unva

↪→ Report output (α, s, coma, outO) from FPPA
to O.

5. if α 6= ⊥ ∨ s 6= ⊥ then
↪→ Report message (com′UH, com′′UH,ΠTr) from U
to O.

6. Upon receiving instructions from Z to send
(comnewUH , (sernew)(O), com(O)

sernew , unv(O)
sernew , σnew)

from O to U :
– sernew := (sernew)(O) + (sernew)(U)

– comnewser := com(O)
sernew ⊕ com(U)

sernew

– unvnewser := unv(O)
sernew ⊕ unv(U)

sernew

– λnew := (0, comnewUH , unvnewUH , (sernew)(O),

comnewser , unvnewser , 0, c̃omlin , ũnvlin , 0, c̃omid ,

ũnvid , σ
new)

– Calla πVerify(λnew)
↪→ Allow F (∆)

PUBA to deliver output to U .

. .
U and O corrupted: Nothing to do but relay mes-
sages.

{
π-Outsource(k)

}K

k=1
:

. .
U and P honest, O corrupted:

1. Upon receiving (OS(k),User) from F (∆)
PUBA and

(OS(k), pidP) from F (∆)
PUBA:

– ser r← Zp
– (c̃omid , ũnvid)← COM.Com(0)
– (sh(P)

UH, sh(O)
UH)← πShare-Share(0)

– (sh(P)
inU

, sh(O)
inU

)← πShare-Share(0)
– (sh(P)

oOUT , sh(O)
oOUT)← πShare-Share(0)

– (sh(P)
oUNV , sh(O)

oUNV)← πShare-Share(0)
– (sh(P)

oα , sh(O)
oα)← πShare-Share(0)

– (sh(P)
os , sh(O)

os)← πShare-Share(0)
– (sh(P)

oa , sh(O)
oa)← πShare-Share(0)

– Parse (UH(P), com(O)
UH, unv(P)

UH) := sh(P)
UH

– stmt := (sh(O)
UH, com(O)

UH, ser , c̃omid , vkO)
– Π← POK.SimProof(tdsim, stmt,LO)
– (com(U)

sernew , unv(U)
sernew)← COM.Com(0)

PUBA 491

↪→ Report message (sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV ,

sh(O)
oα , sh(O)

os , sh(O)
oa , com(O)

UH, ser , c̃omid ,Π,
com(U)

sernew) from U to O.
2. Upon receiving instructions from Z to send

(com(O)
linnew , com(P)

UH, com(P)
inU

, com(P)
oOUT , com(P)

oUNV , com(P)
oα ,

com(P)
os , com(P)

oa) from O to P:
– Checka that all commitments are the ones

sent earlier.
– (linnew)(P) r← Zp

Parse:
–
(
UH(P), com(O)

UH, unv(P)
UH

)
:= sh(P)

UH

–
(

inPU , com(O)
inU

, unvPinU

)
:= sh(P)

inU

–
(

oOUT
P , com(O)

oOUT , unvPoOUT

)
:= sh(P)

oOUT

–
(

oUNV
P , com(O)

oUNV , unvPoUNV

)
:= sh(P)

oUNV

–
(

oαP , com(O)
oα , unvPoα

)
:= sh(P)

oα

–
(

osP , com(O)
os , unvPos

)
:= sh(P)

os

–
(

oaP , com(O)
oa , unvPoa

)
:= sh(P)

oa

↪→ Report message ((linnew)(P), com(O)
UH, com(O)

inU
,

com(O)
oOUT , com(O)

oUNV , com(O)
α , com(O)

s , com(O)
a)

from P to O.
3. Upon receiving instructions from Z to send

(linnew)(O), unv(O)
linnew) from O to P:

– Checka COM.Unv(com(O)
linnew , unv(O)

linnew ,

(linnew)(O)) ?= 1
– linnew := (linnew)(P) + (linnew)(O)

– Append (linnew, sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV ,

sh(P)
oα , sh(P)

os , sh(P)
oa) to fOI(pidP , k)

– Load current Subsession Identifier ssid and
append ssid 7→ linnew to fLN

4. Upon receiving instructions from Z to send
((sernew)(O), com(O)

sernew , unv(O)
sernew , comnewlin ,

unvnewlin , σnew)
from O to U :
– Parse (UH(O), com(P)

UH, unv(O)
UH) := sh(O)

UH
– comnewUH := com(P)

UH ⊕ com(O)
UH

– unvnewUH := unv(P)
UH ⊕ unv(O)

UH
– comnewser := com(U)

sernew ⊕ com(O)
sernew

– unvnewser := unv(U)
sernew ⊕ unv(O)

sernew

– λnew :− (0, comnewUH , unvnewUH , (sernew)(O),

comnewser , unvnewser , linnew, comnewlin , unvnewlin ,0,
c̃omid , ũnvid , σ

new)
– Calla πVerify(λnew)

↪→ Call Ideal Functionality F (∆)
PUBA with input

(OS(k)) in the name of O.
5. Allow F (∆)

PUBA to deliver output to all parties.

. .
P honest, U and O corrupted:

1. Upon receiving (OS(k), pidP) from F (∆)
PUBA

and instructions from Z to send
(sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV ,

sh(P)
oα , sh(P)

os , sh(P)
oa) from U to P and

(com(O)
linnew , com(P)

UH,

com(P)
inU

, com(P)
oOUT , com(P)

oUNV , com(P)
oα , com(P)

os , com(P)
oa)

from O to P:
Parse:
–
(
UH(P), com(O)

UH, unv(P)
UH

)
:= sh(P)

UH

–
(

inPU , com(O)
inU

, unvPinU

)
:= sh(P)

inU

–
(

oOUT
P , com(O)

oOUT , unvPoOUT

)
:= sh(P)

oOUT

–
(

oUNV
P , com(O)

oUNV , unvPoUNV

)
:= sh(P)

oUNV

–
(

oαP , com(O)
oα , unvPoα

)
:= sh(P)

oα

–
(

osP , com(O)
os , unvPos

)
:= sh(P)

os

–
(

oaP , com(O)
oa , unvPoa

)
:= sh(P)

oa

Check shares
– Checka Unv(com(P)

UH, unv(P)
UH,UH

(P)) ?= 1
– Checka Unv(com(P)

inU
, unvPinU

, inPU) ?= 1
– Checka Unv(com(P)

oOUT , unvPoOUT
, oOUT

P) ?= 1
– Checka Unv(com(P)

oUNV , unvPoUNV
, oUNV

P) ?= 1
– Checka Unv(com(P)

oα , unvPoα , oα
P) ?= 1

– Checka Unv(com(P)
os , unvPos , osP) ?= 1

– Checka Unv(com(P)
oa , unvPoa , oaP) ?= 1

Perform coin toss with O
– (linnew)(P) r← Zp

↪→ Report message ((linnew)(P), com(O)
UH, com(O)

inU
,

com(O)
oOUT , com(O)

oUNV , com(O)
oα , com(O)

os , com(O)
oa) from

P to O.
2. Upon receiving instructions from Z to send

((linnew)(O), unv(O)
linnew) from O to P:

– Checka COM.Unv(com(O)
linnew , unv(O)

linnew ,

(linnew)(O)) ?= 1
– linnew := (linnew)(P) + (linnew)(O)

– Append (linnew, sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV ,

sh(P)
oα sh(P)

os , sh(P)
oa) to fOI(pidP , k)

– Load current Subsession Identifier ssid and
append ssid 7→ linnew to fLN.

↪→ Report message (linnew) from P to U .
↪→ Call Ideal Functionality F (∆)

PUBA with input
(OS(k),⊥) in the name of U .

↪→ Call Ideal Functionality F (∆)
PUBA with input

(OS(k)) in the name of O.

PUBA 492

3. Allow F (∆)
PUBA to deliver output to all parties.

{
π-Outsourced Analytics(k)

}K

k=1
:

. .
P honest, O corrupted:

1. Upon receiving instructions from Z to send
(comfp, σfp) from O to U :
– Checkb that (comfp, σfp) ∈ fFP(OA(k)).

2. Upon receiving (OA(k), pidP) from F (∆)
PUBA and

(OA(k), {(sh(O)
UH, sh(O)

in , sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
oa)z}Zk

z=1, fp, unvfp, inO) from O to FPPA:
– Checka that COM.Unv(comfp, unvfp, fp) = 1.
– Loada and remove the first Zk entries
{(lin, sh(P)

UH,

sh(P)
in , sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)z}Zk
z=1

from fOI(pidP , k)
– For every z from 1 to Z , combinea:

– UHz := πShare-Combine(sh(P)
UHz

, sh(O)
UHz

)
– inz := πShare-Combine(sh(P)

inz
, sh(O)

inz
)

– oOUTz := πShare-Combine(sh(P)
oOUTz , sh(O)

oOUTz)
– oUNVz := πShare-Combine(sh(P)

oUNVz , sh(O)
oUNVz)

– oαz := πShare-Combine(sh(P)
oαz , sh(O)

oαz)
– osz := πShare-Combine(sh(P)

osz , sh(O)
osz)

– oaz := πShare-Combine(sh(P)
oaz , sh(O)

oaz)
↪→ Call Ideal Functionality F (∆)

PUBA with input
(OA(k), fp, inO) in the name of O and receive

leak `.
3. Upon being asked by F (∆)

PUBA for updated inputs
for (z1, . . . ,

zn):
↪→ Provide inputs {(UHzi , inzi) | 1 ≤ i ≤ n} to
Ideal Functionality F (∆)

PUBA.
4. Upon receiving {(zi, αz , sz ,az , outzi) | 1 ≤ i ≤ n}

as leak from F (∆)
PUBA:

– For every zi with 1 ≤ i ≤ n:
– (comazi

, unvaz) r← Com(az)
– coutz := outzi + oOUTz

– For all other z ≤ Zk :
– (comazi

, unvaz) r← Com(0)
– r

r← IN
– coutz := r + oOUTz
– az = ⊥

↪→ Allow F (∆)
PUBA to continue.

5. Upon receiving output ({αz , sz}Zk
z=1, outO) from

F (∆)
PUBA to O:
– For each z ∈ 1 . . .Z :

– fUP(linz) := (comaz , unvaz ,az , αz , sz , oαz ,

osz , oaz , oUNV, coutz)
↪→ Report output ({(αz , sz , comaz , coutz) | 1 ≤
z ≤ Zk}, outO) from FPPA to O.

π-Update:
. .
U and P honest, O corrupted:

1. Upon receiving (Upd,User) from F (∆)
PUBA and

(Upd, pidP) from F (∆)
PUBA:

↪→ Call Ideal Functionality F (∆)
PUBA with input

(Upd)
in the name of O.

2. Upon receiving leak ssid from F (∆)
PUBA:

– Load lin :− fLN(ssid)
– Loada and remove (com′a, unv′a,a′, α′, s′, oα,

os, oa, oUNV, coutU
′) := fUP(lin)

– (c̃omUH, ũnvUH)← COM.Com(0)
– (c̃omid , ũnvid)← COM.Com(0)
– ser r← Zp
– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– Π← POK.SimProof(tdsim, stmt,LU)
– (com(U)

sernew , unv(U)
sernew)← COM.Com(0)

3. if α 6= ⊥ ∧ s 6= ⊥ then
– (com′UH, unv′UH)← COM.Com(0)
– (com′′UH, unv′′UH)← COM.Com(0)
– unvnewUH := ũnv′′UH ⊕ unva
– stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
– ΠTr ← POK.SimProof(tdsim, stmtTr ,LTr

B)
↪→ Report message (c̃omUH, com′UH, com′′UH,

c̃omid , ser , lin,Π,ΠTr , com(U)
ser) from U to

O.
4. else

– unvnewUH := ũnvUH ⊕ unva
↪→ Report message (c̃omUH, c̃omid , ser , lin,Π,
com(U)

ser) from U to O.
5. fi

↪→ Allow F (∆)
PUBA to continue.

6. Upon receiving instructions from Z to send
(coma, comnewUH , (sernew)(O), com(O)

sernew , unv(O)
sernew ,

comnewlin , unvnewlin , σnew, coutU) from O to U :
– Checka coma

?= com′a
– Checka coutU

?= coutU
′

– comnewser := com(O)
sernew ⊕ com(U)

sernew

– unvnewser := unv(O)
sernew ⊕ unv(U)

sernew

PUBA 493

– λnew := (0, comnewUH , unvnewUH , (sernew)(O),

comnewser , unvnewser , 0, comnewlin , unvnewlin ,0, c̃omid ,

ũnvid , σ
new)

– Calla πVerify(λnew)
↪→ Allow F (∆)

PUBA to deliver output to all parties.

. .
P honest, U and O corrupted:

1. Upon receiving (Upd, pidP) from F (∆)
PUBA and in-

structions from Z to send lin from U to P:
– Loada and remove (coma, unva,a, α, s, oα, os,

oa, oUNV, coutU) := fUP(lin)
– cα :− α+ oα
– cs := s + os
– ca := a + oa
– cunva :− unva + oUNV

– coutU :− outU + oOUT

↪→ Report message (cα, cs, ca, cunva , coutU) from
P to U .
↪→ Call Ideal Functionality F (∆)

PUBA with input
(Upd) in

the name of O and a (random) corrupted U .
2. Receive output (ok) from F (∆)

PUBA to U and O

a If this fails, output ⊥ and abort.
b failAbortSimUSec

We now introduce a series of hybrid games Hi and
corresponding simulators Si for protocols πPUBAi. For-
mally, given security parameter κ, each hybrid has the
following form:

Hi := EXECπPUBAi,FBB,FPPA,Si,Z(1κ)

We then show for each pair of consecutive hybrids
Hi and Hi+1, that, given our underlying assumptions,
no distinguisher can distinguish the two games better
than by guessing.

For our proof, we consider the following hybrid
games Hi:

H1 The hybrid H1 is equivalent to the real experiment.
That is,

H1 := EXECπPUBA,FBB,FPPA,S1,Z(1κ)

This means that all parties execute the real proto-
col.

H2 All calls to hybrid functionalities, namely to FPPA,
FKE and FBB, are replaced by calls to S2, who
simulates their behavior.

H3 Introduces a map fUP to be used by the simula-
tor S3, which is similar to what an honest proxy
would store for the updates of the User History
after an Outsourced Analytics. During simula-
tion of FPPA for OA(k), i.e. after O sent a mes-
sage (OA(k), fp, unvfp, [{(sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV ,

sh(O)
oα , sh(O)

os , sh(O)
oa)z}Zk

z=1], inO) to FPPA, and P has
sent a message [(OA(k), comfp, {(sh(P)

UH, sh(P)
inU

, sh(P)
oOUT ,

sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)z}Zk
z=1)] to FPPA, S3 com-

putes ∆ honestly (with fresh coins, if necessary),
based on the two inputs. S3 uses πShare-Combine on
the inputs to reconstruct UHz , inz , oOUTz oUNVz , oαz ,
osz and oaz for each user z ∈ [Z]. If reconstruction
on any of the shares fails, S3 aborts. With this, S3
computes (comaz , unvaz) ← Com(az) and coutz :=
outz + oOUTz . S3 then adds a new entry (linz 7→
(comaz , unvaz ,az , αz , sz , oαz , osz , oaz , oUNVz , coutz))
to fUP.

H4 During setup, instead of honestly sampling a crs, S4
computes (crspok, tdsim)← SetupSPoK and publishes
crs := crspok as Common Reference String. Also,
the simulator stores the verification key vkO of the
operator O, which is obtained by simulating FBB
during the initialization. The simulator stores tdsim,
the remainder stays as it is.

H5 Replaces all zero-knowledge proofs of honest parties
by simulated proofs (using tdsim) created by the sim-
ulator. Note that the simulated proofs can be cre-
ated independently from (thus without knowing) the
actual witness.

H6 During simulation of the Bookkeeping task, instead
of computing the addition vector a alongside its
commitment and decommitment information hon-
estly according to the function ∆ the simulator uses
a = 0 alongside commitment- and decommitment-
information (coma, unva)← COM.Com(0). Note that
the values for a and unva are not needed for simu-
lation since H5 so the only remaining value visible
to the environment is coma.

H7 All commitments that honest players create in the
real protocol (i.e. those on lin, ser , UH and id) are
now created by the simulator as com0, i.e. commit-
ments to the zero-vector of appropriate size. Also,
whenever the user U is supposed to send a serial
number, S7 samples a new value ser r← Zp and sends
this instead of a real serial number.

H8 All proxies P are replaced by an equiva-
lent machine P ′, which behave similar as P,
with the exception that during the Outsource-

PUBA 494

task, P ′ sends to the simulator the shares
(lin, sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os , sh(P)
oa).

H9 Introduces a map fOI to be used by the sim-
ulator S9, which is similar to what an honest
proxy would store for the outsource information.
It maps pidP × [K] to a list fOI(pidP , k) of entries
(lin, sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os ,

sh(P)
oa).

The map is only updated during Outsource-tasks.
After S9 received the leak (lin, sh(P)

UH, sh(P)
inU

, sh(P)
oOUT ,

sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa) from P ′, S9 adds an entry
(pidP , k) 7→ (lin, sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα ,

sh(P)
os , sh(P)

oa) to fOI.
H10 Introduces a map fLN for the simulator, which con-

tains a mapping from the current Subsession Iden-
tifier ssid to the linking number lin. The map is
only updated during Outsource-tasks. After receiv-
ing the leak (lin, sh(P)

UH, sh(P)
inU

,

sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os , sh(P)
oa) from the proxy P ′,

the simulator loads the current Subsession Identifier
ssid and adds an entry (ssid → lin) to fLN.

H11 All calls from honest parties of the form
πShare-Share(x) for an arbitrary x ∈ Znp dur-
ing the protocol execution are replaced by calls
πShare-Share(0) from the simulator, where 0 = 0n is
the all-zero vector of appropriate size. Furthermore,
the simulator takes the role of the proxy P during
the computation of the linking number during Out-
source.
Thus the proxy no longer leaks (lin, sh(P)

UH, sh(P)
inU

,

sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os , sh(P)
oa) to S11.

During simulation of Outsource-tasks, link-
ing numbers were created by the simula-
tor and the operator. The simulator S11
still stores (lin, sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα ,

sh(P)
os , sh(P)

oa) in fOI(pidP , k).
The linking number lin is known to S11 due to its
participation in the Blum-type coin toss. The shares
are known regardless of the user’s corruption. If the
user is honest, the shares are created by S11 in the
first place and can be stored directly. If the user
is corrupted, the environment sends the shares to
the proxy in the name of the user. This message is
visible to the simulator.

H12 All honest user U are replaced by machines U ′ that
run a similar code as U with the one exception that
during Update-tasks, the actions are restricted to
sending the linking number lin to the simulator S12.
The remaining part of the honest user’s protocol for
the Update task is played by the simulator.

In the honest user case, S12 fetches
(comaz , unvaz ,az , αz , sz ,

oαz , osz , oaz , oUNVz , coutz) from fUP(lin) and follows
the honest protocol of U from H11.

H13 Introduces incorruptible entity F (∆)
PUBA that follows

the specification from Fig. 6 into the experiment,
which is only accessible by honest users and the sim-
ulator through subroutine input/output tapes.

H14 Replaces the Trusted Signing Authority (TSA) T
with a dummy party that immediately forwards its
input to the ideal functionality F (∆)

PUBA and leaks
inO to S14. All interactions of T are simulated by
S14 by following the original protocol.

H15 Introduces a map fFP to be used by the
simulator S15, which maps a task task ∈
{UReg, BK(K), OA(K)} to a set of tuples
(fp, comfp, σfp) of FP and corresponding commit-
ment and signature. During simulation of the task
Sign Function Parameter, in case an input fp can
be used for task task, the simulator computes the
signature σfp on (task, comfp) and stores (comfp, σfp)
in fFP(task).
The user U is replaced by a new user U ′, which
skips verification of the signature on (UReg, comfp)
and instead asks the simulator if the certificate is
valid. Instead of manually verifying the signature,
S15 verifies that (comfp, σfp) ∈ fFP(task).

H16 During simulation of FBB for the Init-Task, if the
simulator receives a message (Register, pidO, vkO)
from O to FBB, he follows the simulation procedure
of FBB correctly and, if it succeeded, calls F (∆)

PUBA

with input (init) in the name of O.
H17 Replaces all honest user U∗ by dummy parties that

immediately forward their input to the ideal func-
tionality F (∆)

PUBA with the additional property, that
they still leak the linking number lin during the
Update-task (see H12) and still call FPPA with hon-
est inputs when demanded by the protocol; the re-
maining protocol parts are executed just as specified
in the protocol by the simulator S17.
S17 also controls input to F (∆)

PUBA for corrupted
users during simulation of Outsource- and Update-
tasks. During the Outsource-task, S17 calls F (∆)

PUBA

in the name of U with empty input after the suc-
cessful exchange of the linking number lin. In the
Update-task, S17 calls F (∆)

PUBA in the name of U
with input (Upd) after receiving the first message.

H18 Replaces the proxies P with dummy parties that for-
ward their input to the ideal functionality F (∆)

PUBA.
The remaining messages that the proxies sent will

PUBA 495

be simulated by the simulator by honestly following
the protocol of P from H17.

H19 The simulator now enforces that for every task,
F (∆)
PUBA is called by the O with the correct inputs.

This causes F (∆)
PUBA to have input from all parties,

which means that it behaves according to its defi-
nition and provides leaks and output to S19, which
the simulator can use. Thus, S19 can stop simulating
FPPA by executing ∆ and the appropriate simula-
tor and instead uses the inputs received from O to
FPPA in order to call F (∆)

PUBA in the name of O. The
leaks obtained by F (∆)

PUBA are then used as output
of FPPA.
When executing πShare-Combine with an honest
user and executing the Outsourced Analytics-task
with arbitrary user corruption, the simulation of
FPPA also includes a consistency check for the
operator’s input: If reconstruction with share via
πShare-Combine fails, the simulator aborts. The op-
erator shares are obtained via input to FPPA, the
proxy shares are fetched from fOI(pidP , k).
When F (∆)

PUBA asks S19 for updated inputs
(UHz , inz) for corrupted users Uz during the Out-
sourced Analytics-task, S19 uses πShare-Combine
to reconstruct those values using the shares that
U created during Outsource. The proxy-shares,
(sh(P)
UH, sh(P)

in), are taken from fOI(pidP , k). The
operator-shares sh(O)

UH and sh(O)
in are extracted from

the simulation of FPPA.
The inputs of the operator O to both the Outsource-
and the Update-task do not contain any secrets, so
S19 calls F (∆)

PUBA in the name of O after seeing the
first message of an Outsource-task and immediately
after the start of the simulation of the Update-task.

H20 Instead of relying on the leaked input inT and the
received data from the operator to compute whether
or not the Function Parameters fp should be ac-
cepted during the Sign Function Parameter task,
S20 accepts the Function Parameters if the func-
tionality returs ok to the operator after both parties
sent their inputs. The Trusted Signing Authority is
replaced with a genuine dummy party which does
not leak inT to the simulator anymore.

H21 Instead of relying on the leak of lin send by the semi-
dummy user U during simulation of the Update-
task for honest users, S21 now uses the leaks on
the ssid provided by F (∆)

PUBA to infer the correct
linking number. The honest users are replaced by
dummy users, i.e. they only forward their input ob-
tained by Z to F (∆)

PUBA. The remaining interactions

with the operator are simulated using the simula-
tor’s knowledge. Therefore, the simulator uses its
mapping from ssid to lin to get the correct linking
number lin during the Update-task.

We now show, by a series of lemmata, that no envi-
ronment Z can distinguish the real execution (H1) from
the simulated version in the ideal world (H21) by proving
indistinguishability of each pair of consecutive games.

Lemma G.2 (Indistinguishability of H1 and H2). Let
Z be a PPT-environment. Let Z distinguish H1 and H2
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. We are using the UC composition theorems,
here. Letting S2 emulate FPPA, FKE and FBB is possi-
ble, as all of them are UC-functionalities. As such, they
can be replaced by a protocol, for which a simulator
SFPPA , SFKE and SFBB , respectively, exists that pro-
vides an indistinguishable view against any environment
ZFPPA and ZFBB . SFPPA is a probabilistic polynomial
time (PPT) algorithm that can be executed internally
by S2. This neither breaks the requirement of S2 being
PPT —as every party executing the protocol can only
perform polynomially many calls to FPPA, for each of
which S2 requires polynomial-time to successfully sim-
ulate —nor does it reduce the distinguishing advantage
of Z.

Assume for the sake of contradiction that there is
an environment Z that can differentiate an honest ex-
ecution of FPPA in H1 from a simulated execution of
FPPA by the simulator S2 in H2. We can easily use this
environment to build one that can differentiate between
an execution of FPPA in the real world and an ideal
execution, where SFPPA provides the view for ZFPPA .
This works by encapsulating parties: Our new distin-
guishing environment ZFPPA contains the environment
Z that successfully distinguished H1 and H2, a set of
users {U}, a proxy P and an operator O, all of which
acting according to the protocol specified in H1. ZFPPA

essentially forwards everything that Z says to the re-
spective parties. After Z decides on the game, ZFPPA

adapts its choice: If Z outputs H1, ZFPPA outputs real
to indicate that this is in the real world. If Z outputs
H2, ZFPPA outputs ideal to indicate that this is an
execution in the ideal world.

It is easy to see that the success probability of
ZFPPA in deciding whether is in the ideal or real world
is equivalent to that of Z in deciding whether it is play-
ing H1 or H2. Hence, if Z has a non-negligible advantage

PUBA 496

over guessing, we found an environment that breaks the
UC-security assumption of FPPA.

Note that the same line of argumentation also works
for FKE and FBB, which are also assumed to be UC-
secure.

Lemma G.3 (Indistinguishability of H2 and H3). Let
Z be a PPT-environment. Let Z distinguish H2 and H3
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The behavior of the two simulators is exactly
identical, only that S3 has more information; namely
the map f

(O)
UP . Since none of the messages depend on

fUP, indistinguishability trivially follows.
Since there is an abort-criteria for the simulator, we

also have show that the abort by S3 in H3 only occurs
iff P aborts in H2. Assume that P and O in H2 have
respective shares sh(P)

· and sh(O)
· . W.l.o.g., assume that

the share that caused the abort of FPPA in H2 be that
of the user history UH, as the cases for inU , oOUT, oUNV,
oα, os and oa are analogous. In H2, the two shares are
handed over to the subfunctionality FPPA. There, they
are merged with πShare-Combine, which aborts if the
verification of the shares fails.

The simulator S3 in H3 does exactly the same steps;
it aborts, iff verification in πShare-Combine fails. Hence,
the abort criteria are identical, the same code is exe-
cuted by two different machines. So no environment Z
can distinguish the two games.

Lemma G.4 (Indistinguishability of H3 and H4). Let
Z be a PPT-environment. Let Z distinguish H3 and H4
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability trivially follows from the
trapdoor-nature of COM and POK. If any environment
Z could distinguish the execution of the protocol when
using crs created by crs ← SetupPoK from crs created
by (crs, tdsim) ← SetupSPoK with probability 1

2 + ε, we
can build a PPT-environment Z ′ that breaks the indis-
tinguishability of the dual-mode property of POK, by
having Z ′ execute the code of all parties in its head.
This leads to the same success probability of 1

2 +ε, thus
causing ε ∈ negl(κ) by requirement of the chosen POK-
scheme.

Lemma G.5 (Indistinguishability of H4 and H5). Let
Z be a PPT-environment. Let Z distinguish H4 and H5
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Any PPT-environment Z that could distinguish
those two games would trivially be able to successfully
break the dual-mode property of POK, which is not pos-
sible by assumption.

Lemma G.6 (Indistinguishability of H5 and H6). Let
Z be a PPT-environment. Let Z distinguish H5 and H6
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. As already stated in the game description the
only used value that is visible to the PPT environment
is the commitment coma. The values a and unva are
only used as part of the witness in the Zero-Knowledge
proof in the original protocol and are not used since H5.
Hence, the environment can only see the commitment
coma.

For the PPT-environment Z distinguishing H5 from
H6 comes down to breaking the hiding-property of the
commitment scheme COM which is not possible (for the
PPT-environment) by requirement.

Lemma G.7 (Indistinguishability of H6 and H7). Let
Z be a PPT-environment. Let Z distinguish H6 and H7
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. First, note that since H5 the Zero-Knowledge
proofs Π are simulated using tdsim instead of prov-
ing actual properties of the commitments. Hence, the
commitments can be exchanged by zero-commitments
COM.Com(0). Other than that, the commitments are
only ever used for homomorphic addition, to which the
environment Z only sees committed values. Any PPT-
environment Z that could distinguish the two games H6
and H7 would be able to successfully break the hiding
property of the commitment scheme COM, which by as-
sumption is only possible with negligible advantage.

Lemma G.8 (Indistinguishability of H7 and H8). Let
Z be a PPT-environment. Let Z distinguish H7 and H8
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The proxy sends the same messages in both
games. None of the messages that S8 sends depend in
any way on the leak provided by P ′. The leak is hidden
from the environment. Hence, the distributions for both
games are trivially equivalent.

Lemma G.9 (Indistinguishability of H8 and H9). Let
Z be a PPT-environment. Let Z distinguish H8 and H9
with probability 1/2 + ε. It holds that ε ∈ negl(κ).

PUBA 497

Proof. In both games, the same messages are sent. The
simulator also behaves equivalently, as none of the mes-
sages that S9 sends depend on the information stored in
fOI. Hence, no (PPT) environment Z can differentiate
the two games.

Lemma G.10 (Indistinguishability of H9 and H10).
Let Z be a PPT-environment. Let Z distinguish H9 and
H10 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Again, the only difference is that the simulator
obtains and stores additional information. As no mes-
sages depend on the additional information, the envi-
ronment Z is unable to differentiate the two games.

Lemma G.11 (Indistinguishability of H10 and H11).
Let Z be a PPT-environment. Let Z distinguish H10 and
H11 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Through πShare-Share, the user creates One-
Time Pad encrypted inputs for P and O; the dummy-
adversary D (hence also Z) only ever sees the share
of the corrupted operator, not that of the proxy. Z
only has a partial view, which information-theoretically
hides the value that is to be shared due to properties of
the One-Time Pad. The share itself is not used directly
in any further arithmetic computations—only as input
to the subfunctionality FPPA during the Outsourced
Analytics-task. There, the simulator does not work with
the shares, but with the actual values to simulate FPPA
by computing ∆.
Hence, differentiation between shares of x and shares of
0 is not possible for any PPT-environment Z without
breaking the security of One-Time Pad encryption.

The computation of the linking number happens via
Blum coin toss, where no secrets are involved, meaning
that S11 can easily simulate this part by following the
protocol honestly. This change is hence only cosmeti-
cal; the same code is executed on a different machine.
Hence, since the simulator performs the honest com-
putation and does exactly the same as P ′ would, the
distributions for both games regarding computation of
lin are equivalent.

Since the shares are created by the simulator, S11
does not have to rely on leaks by P ′, but can store them
directly, having the same information afterwards.

Lemma G.12 (Indistinguishability of H11 and H12).
Let Z be a PPT-environment. Let Z distinguish H11 and
H12 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. First, note that honest user leaking information
does not change anything in the distribution of sent mes-
sages, which makes it impossible for the environment Z
to distinguish. Hence, for indistinguishability, we only
have to show that, given the correct linking number lin,
the simulator for the honest-user case has all the infor-
mation necessary to report the same messages that U
would have sent in H11.

During the Update-tasks with honest user U in
game H11, the following tasks are now performed by
S12:

– Depending on α and s (both of which are stored in
the clear in fUP which is maintained by the simula-
tor since H3) the simulator either has to:
– Send (c̃omUH, com′UH, com′′UH, c̃omid , ser , lin,Π,

ΠTr , com(U)
sernew) as U to O:

All the commitments (c̃omUH, com′UH, com′′UH,
c̃omid and com(U)

sernew) are commitments to a zero-
vector (due to H7) and both proofs Π and ΠTr
are simulated using tdsim (due to H5). The old
serial number ser is independent of the proof
and drawn uniformly random by the simulator
(since H7). The new serial number com(U)

sernew is a
zero-commitment (since H7). Finally, note that
the linking number lin is leaked by the semi-
dummy user. Or, for trivial permutation and
direct update vectors:

– Send (c̃omUH, c̃omid , ser , lin,Π, com(U)
sernew) as U

to O:
As this message is a subset of the other message
its simulatability automatically follows.

– Verifying outputs:
As the simulator received the message from O and
has the proxy’s shares stored in fUP, S12 can follow
the honest protocol and abort whenever an honest
user would. Hence, we have to show that S12 aborts
in H12 iff U aborts in H11.
Since in both H11 and H12, the proxy P is assumed
to be honest, he sends the correct values to the user.
Those values are exactly the same as the ones that
S12 has stored in fUP. Hence, the simulator already
has the user’s view on those values. Additionally, the
simulator sees messages exchanged between parties;
so he also has access to coutU . Since the simulator
essentially follows the honest protocol from here on,
the abort-criteria remain equivalent.

PUBA 498

Lemma G.13 (Indistinguishability of H12 and H13).
Let Z be a PPT-environment. Let Z distinguish H12 and
H13 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Since there is no direct link between Z and
F (∆)
PUBA, corrupted parties do not get to access F (∆)

PUBA.
Honest parties only act according to the protocol
from H12, which does not contain any interaction with
F (∆)
PUBA. Hence, there is no way for Z to distinguish the

two games, as every action any honest party takes in H12
is equivalent to their actions in H13 and the corrupted
parties act entirely independent of F (∆)

PUBA.

Lemma G.14 (Indistinguishability of H13 and H14).
Let Z be a PPT-environment. Let Z distinguish H13 and
H14 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability easily follows from the fact
that the TSA T leaks its input to the simulator who
performs the same code; hence, the simulator can ex-
ecute the protocol of T perfectly. Concretely, during
the Init-task, the only input to T is init, with the key
generation algorithm SIG′.Gen is public knowledge, and
for the Sign Function Parameter-task, the only inputs
are (SFP, inT), and the protocol can be simulated when
knowing skT (which S14 does from simulation of the
Init-task).

Thus, the distribution visible by Z is identical and
the game hop is purely cosmetical. Our claim follows.

Lemma G.15 (Indistinguishability of H14 and H15).
Let Z be a PPT-environment. Let Z distinguish H14 and
H15 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability follows from the EUF-CMA
security of SIG′: Let Z be an environment that distin-
guishes between H14 and H15 with probability 1/2 + ε

with non-negligible advantage ε. From Z, we construct
an adversary A on the EUF-CMA property of SIG′. Let
C be the EUF-CMA challenger. C provides a signature
oracle to A. A flips a random coin and simulates ei-
ther H14 or H15. To that end, A creates all secrets hon-
estly, except for skT and vkT . On every executiton of
the Sign Function Parameter-task, whenever A is sup-
posed to sign (task, comfp) for O using skT , A forwards
(task, comfp) to the signature-oracle and uses the result
as signature.

Now note that we assume that Z successfully dis-
tinguishes the two games H14 and H15 notably better
than by guessing. Since the only difference is in the

way signatures are handled, any distinguishing attack
would require Z to input some distinguishing commit-
ment comfp on Function Parameters fp into the game,
which cause a different simulation.

First, note that if the signature on comfp is accepted
in H15, it is also accepted in H14, as (comfp, σfp) ∈ fFP(k)
implies that the Sign Function Parameter task has been
called with input (fp, comfp) successfully and yielded sig-
nature σfp. However, the other way is not as clear; the
only differing behavior that can be caused (and used
by Z to detect the change) is by preparing some tu-
ple (comfp, σfp) that is rejected in H15 but accepted in
H14. Clearly, the latter implies that the signature σfp
on (task, comfp) is valid. The former, however, implies
that Z never called the Sign Function Parameter-task
on fp for function k in the name of O. This means
that (1) A never called the challenge oracle on input
(task, comfp), and (2) The signature provided by Z on
(task, comfp) verifies. Taking both together makes this a
valid forgery, with which A can break the EUF-CMA
property of SIG′.

Lemma G.16 (Indistinguishability of H15 and H16).
Let Z be a PPT-environment. Let Z distinguish H15 and
H16 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The change induced in this game only activates
the functionality F (∆)

PUBA. Since, at this point, it is not
accessed by any honest party and neither the environ-
ment, nor the dummy adversary can access F (∆)

PUBA, in-
distinguishability between the two games trivially fol-
lows.

Lemma G.17 (Indistinguishability of H16 and H17).
Let Z be a PPT-environment. Let Z distinguish H16 and
H17 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. First, note that the environment Z is unable to
differentiate between the case where the honest user (i.e.
the ones that are not controlled by Z) forwards his input
to F (∆)

PUBA and the one where he does not, as there is no
direct line of communication between F (∆)

PUBA and either
the corrupted parties, or the environment. Hence, this
change is impossible to detect for any environment Z.

We claim indistinguishability of the remaining
changes based on the fact that the simulator S17 sends
exactly the same messages that an honest user would
in H16. Using the leaks, the simulator in H17 can create
every message that the user would have sent in H16, as
we will show now:

PUBA 499

User Registration. Here, the user has no secret in-
put; the simulator can safely draw a random key
similar to the real user and respond to calls to FBB
with pkU . The verification step is only based on the
messages, which the simulator sees; this means, that
S17 can abort in H17 whenever U aborts in H16.

Bookkeeping. The first message that S17
has to send here in the name of U is
(c̃omUH, ser , c̃omlin , c̃omid ,ΠVal , com(U)

sernew).
Since H7, the commitments are commitments on the
all-zero vector and hence independent of the users
secret inputs and can be simulated by S17. Since H5,
S17 simulates the zero-knowledge proof ΠVal , which
is possible without knowing the witness. The old
serial number, ser , is independent of both comUH
and ΠVal , and can be drawn uniformly random.
In case any non-trivial permutation α or set vector s
is returned from the simulation of FPPA and hence
the computation of the application-specific function
∆, S17 has to report a second message in which it
proves correct update of the User History. This re-
sults in the message (com′UH, com′′UH,ΠTr). The com-
mitments are once again all-zero commitments due
to H7. The proof ΠTr is simulated due to H5 but
requires knowledge of the full statement. This state-
ment contains c̃omUH, com′UH, com′′UH (which were
chosen as commitments on the all-zero vector due
to H7), and α and s (which are also required in or-
der to decide if the second message has to be re-
ported at all; note that both α and s are known by
O and hence can not be forged or set arbitrarily).
The latter is obtained by simulation of FPPA and
hence consistent with the operators view. Hence S17
can reconstruct the statement of the second proof
according to LTr

B which proves that the output of
FPPA has been transferred to the UH accordingly.
Again, we stress that this message is only reported
for non-trivial values of α and s.
Finally, the simulator has to perform the verification
step, as S17 always used zero-vectors for shares and
can hence verify the values received from O. This is
done by executing the honest protocol, namely by
calling πVerify with an honestly created logbook λ.

Outsource. During an Outsource-task, the shares have
been created since H11 by the simulator anyways.
Since H5 and H7 the simulator also creates the com-
mitments and the zero-knowledge proof. The serial
is again drawn at random since H7 as it is inde-
pendent of comser (= com0). Hence, the first mes-
sage, (sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa ,

com(O)
UH, ser , c̃omid ,Π, com(U)

sernew) is indistinguishable
from the one in H16.
Verification, again, is only dependent on what the
simulator knows already and hence can be simulated
by executing the honest protocol.

Update. The Update-task has been simulated already
since H12.

For security against a corrupted user U our defini-
tion of F (∆)

PUBA requires S17 to call F (∆)
PUBA in the name

of U only during the Outsource-task and not during any
of the other tasks:

– In User Registration, all that would change is
that F (∆)

PUBA adds U to the list of known users, which
is never checked against corrupted users. Interaction
with FBB might still take place, though, but that
one is simulated since H2.

– In the Bookkeeping-task the environment essen-
tially talks to itself. Updates to UH can be done
by Z without access to F (∆)

PUBA as the operator can
sign any User History UH and thus create a valid
new logbook λ. Simulation of FPPA occurs outside
of the actual protocol since S17 plays SFPPA since
H2.

– For Outsource F (∆)
PUBA stores the corrupted user’s

information in a list, alongside that of honest
users, and which are used later for the Outsourced
Analytics-task. There, it does not make a difference
if the corrupted user’s UH is input to F (∆)

PUBA di-
rectly, or if it is equivocated during simulation of
the subsequent Outsourced Analytics task.

– During Outsourced Analytics the simula-
tor receives input from O to FPPA which
contains the shares the corrupted user U
prepared for the operator: (OA(k), {(sh(O)

UH,

sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa)z}Zk

z=1, fp,
unvfp, inO). The respective shares of the proxy were
already stored in fOI(pidP , k) during simulation of
the Outsource-task. Hence all shares can be recon-
structed by S17 using the protocol πShare-Combine.
This value is equivalent to the input corrupted users
that would have input to F (∆)

PUBA. So S17 can pro-
vide F (∆)

PUBA with the correct tuples (UH, in) for
corrupted users.
Correctness trivially follows as the simulator in H17
has, at this point, exactly the same values that are
divided to P and O in H16. Hence, any attempt by
Z to manipulate data that would have worked in
H16 also works in H17 and vice versa, making it im-
possible for any PPT-environment Z to distinguish.

PUBA 500

– During the Update-task corrupted users only ob-
tain masked values from the proxy. This step does
not have any consequences for further interaction as
F (∆)
PUBA only loads and returns data that is not ac-

cessed at any further point throughout the lifetime
of the system. Hence, it suffices to call F (∆)

PUBA in
the name of any corrupted user to have it deliver
output to the Proxy.

Lemma G.18 (Indistinguishability of H17 and H18).
Let Z be a PPT-environment. Let Z distinguish H17 and
H18 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Intuitively, the proxy does not have any secret
inputs. It only obtains information via secret shares of
the user. At this point, the simulator S18 already sim-
ulates all the messages sent by the user and hence can
act as the honest proxy would by following the protocol
from H17.

In more detail, the situation for an honest user is as
follows:

Outsource. Since the proxy is now played by the sim-
ulator who also sends all messages on behalf of the
user, all messages from user to proxy and vice versa
can be ignored. This automatically resolves most
of the Outsource-task; the only interaction between
the proxy and the operator that has to be simulated
is during a Blum coin toss to create lin, which does
not depend on any secret inputs at all. This can
honestly be executed by S18.
Managing fOI is also trivially possible, as all the val-
ues stored there come from the user, who is played
by the simulator at this point, anyway. Correctness
of the values follows from the fact that S18 only
stores information there in H18 when the honest
proxy P in H17 would.

Outsourced Analytics. In H17, the proxy loads the
first Zk entries of fOI before calling FPPA. We al-
ready argued for the Outsource-task that the in-
formation S18 stores in fOI in H18 is equivalent to
what P stores during H17; hence, S18 can simulate
by following the honest protocol.
Storing the information in f (P)

UP after the simulation
of FPPA is not required anymore, as it only contains
information that the simulator can infer from fUP.

Update. The protocol for the Update-task basically
consists of two mostly disjoint parts: the interaction

between the user and the proxy and the interaction
between the user and the operator.
The latter is independent of anything the proxy
does. The former is independent of anything the en-
vironment Z (or the dummy-adversary D) do and
does not have to be simulated, as Z does not have
the ability to read messages exchanged between
honest parties.

If the user is corrupted, this changes the behavior
for the Outsource- and Update-tasks as follows:

Outsource. Here, everything works by following the
protocol of P honestly. The simulator receives the
shares, which are send from U to P. Those can be
stored in fOI(pidP , k).
Since the simulator now also performs the Blum coin
toss, S18 knows lin and can send it to the user di-
rectly.

Update. The only interaction that has to
be simulated is the part where P, af-
ter receiving lin from U , sends (cα, cs,

ca, cunva , coutU) to U . During simulation of the task
for Outsourced Analytics both values were created
honestly and stored in fUP(lin). Since lin is ob-
tained from U , the proxy in H17 will send exactly
the same message as the simulator in H18.

This shows that the two games are indistinguishable for
all PPT-environments Z.

Lemma G.19 (Indistinguishability of H18 and H19).
Let Z be a PPT-environment. Let Z distinguish H18 and
H19 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability of the first change, namely
that computations of ∆ are replaced by leaks from
F (∆)
PUBA, follows from the following facts:

1. In both hybrid games, the result of the computa-
tion is based on the output of ∆. The simulator
performs this computation in H18; there, it acts hon-
estly according to the simulator description, hence
S19 would not cheat. The functionality F (∆)

PUBA is,
by UC-conventions, modeled as an incorruptible en-
tity and hence performs the same honest computa-
tion. Hence, both parties compute ∆ honestly.

2. Both parties, F (∆)
PUBA in H19 and the simulator in

H18, use exactly the same input. Until the point
where the interaction takes place, the simulators in
both H18 and H19 behave equivalently, leading to

PUBA 501

an identical view for Z. From there on, the simula-
tor in H18 performs the computation ∆(·) directly
and obtains the outputs. In H19, S19 forwards the
same input to F (∆)

PUBA (which is possible because
both have the same interface). The functionality
then uses this input in order to compute ∆. The
outputs are leaked to S19 via functionality output,
who now has exactly the same values as in H18 and
can continue equivalently.

Hence, the parts involving interaction with FPPA re-
main equivalent, as essentially the output data that S19
obtains in H19 via leakage has been created similarly to
the output that the simulator computed in H18.

We now have to show that the abort-criteria re-
main equivalent. In H19, S19 aborts if the input of O
to FPPA differs from the shares that U sent to O during
the Outsource-task. In H18, the user aborts via FPPA,
as shares that were changed by the operator would be
recognized as forgery due to πVerify with overwhelming
probability.

Next, we have to prove indistinguishability of the
equivocation step for corrupted users. To that end, we
claim that the updated input shares that S19 inputs
to F (∆)

PUBA are the same that were shared during the
Outsource-task and that would have been used by the
proxy and operator in a real execution. The proxy-
shares were treated similar to a real execution, as the
simulator stored the message that was received during
the Outsource-task in fOI. The operator shares were
taken from Os input to FPPA and are hence also visi-
ble to the simulator. Hence, the same values that would
have been taken as input for ∆ in H18 are also taken by
F (∆)
PUBA in H19. As mentioned above, F (∆)

PUBA computes
∆ just as was done in previous games, so no environment
can distinguish.

Lemma G.20 (Indistinguishability of H19 and H20).
Let Z be a PPT-environment. Let Z distinguish H19 and
H20 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Again this gamehop is only cosmetical as the
same code still is executed on the same inputs,
but from a different machine. In H19 the simula-
tor obtains inT from the (semi-)dummy TSA and
(fp, comfp, unvfp, task, inO) from the corrupted operator
and then performs some consistency checks regarding
the FPs before evaluating ∆. In H20 the simulator only
obtains (fp, comfp, unvfp, task, inO) from the corrupted
operator and then performs the same consistency checks
regarding the FPs before inputting (fp, task, inO) to

F (∆)
PUBA. The input from the TSA—inT—was already

forwarded by the honest dummy party to F (∆)
PUBA so

the inputs are the same.
Indistinguishability thus follows directly.

Lemma G.21 (Indistinguishability of H20 and H21).
Let Z be a PPT-environment. Let Z distinguish H20 and
H21 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The situation only changes during Update-tasks
with an honest user, where the simulator S21 in the
honest-user setting does not receive the leak lin from
U , but instead the Subsession Identifier ssid of the re-
spective Outsource-instance from F (∆)

PUBA. Since the
simulator updated the list fLN correctly during the
simulation of the Outsource-task, S21 can obtain the
same linking number lin in H21 that U has sent in H20.

Given that F (∆)
PUBA is, by definition, incorruptible, it

will always send the correct Subsession Identifier ssid to
the simulator S21. During the Outsource-task, the link-
ing number lin was honestly created by the simulator
S21 in an interaction with O. This number is used by
all parties as linking number and is stored in fLN just as
honest parties would store it. During the Update-task,
an honest user would look up his linking number, which
can be simulated by following the program of U and
fetching it from fLN.

Hence, there is no way that the linking number an
honest user would store during an Outsource- and later
reveal during an Update-task in H20 would differ from
the linking number that the simulator stores (and later
reveals) during the simulation of H21.

The final game, H21, corresponds to our ideal world.
Since we have shown that no efficient environment Z
can differentiate this from the real execution in H1, our
corollary follows:

Corollary G.22 (User Security). For all environ-
ments Z who statically corrupted the operator, it follows
that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F

(∆)
PUBA

We have shown in Lemma G.2 to Lemma G.21, that
under static corruption of the operator, the simulator
SUSec acting in the ideal world can provide a view for
Z that is indistinguishable from a real execution of the
protocol:

viewZ,A,πPUBA ≈c viewZ,SUSec,F(∆)
PUBA

PUBA 502

G.2 System Security

This section contains an investigation of the remaining
corruption scenarios, namely the ones that are relevant
to maintain privacy of an honest operator. That is, we
consider scenarios where the any subset of users and
proxies can be corrupted and present a simulator, which
provides a view in the ideal world that cannot be dis-
tinguished from a real-world execution.

Simulator SSysSec for corrupted users and
proxies

π-Shared State:

– Trapdoor tdext for extracting proofs.
– Signature key pair (vkO, skO)
– Signature key pair (vkT , skT)
– List LSER of observed serial numbers.
– Partial mapping fID on G1: pkU 7→ pidU that

maps user public keys pkU to the pid of the cor-
responding user

– Mapping f
(P)
OI on {1, . . . ,K} that

maps k to a list f
(P)
OI (k) of entries

(lin, sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα ,

sh(P)
os , sh(P)

oa) for every honest proxy P
– Mapping f (O)

OI on {pidP}×{1, . . . ,K} that maps
(pidP , k) to a list f

(O)
OI (pidP , k) of entries

(lin, sh(O)
UH,

sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa)

– One partial mapping f
(P)
UP on {lin} with lin 7→

(cα,
cs, ca, cunva , coutU) for every honest proxy P

– Partial mapping f
(O)
UP on {lin}. lin 7→

(α, s, coma, coutU)
– Partial mapping fLN on {ssid} : ssid 7→ lin
– Mapping fFP on ({UReg∪BK(K)∪OA(K)}×L)

that maps a task task and a FP-index ` to a
tuple (comfp, unvfp, σfp) of a commitment and a
signature.

π-Setup:

1. Run a modified version of crs ← π-Setup(1κ)
– crspok ← SetupPoK is replaced by

(crspok, tdext) ← SetupEPoK for extracting
proofs.

π-Init:

1. Upon receiving (init, pidO) from F (∆)
PUBA:

– Create and store a signature-key pair
(skO, vkO)← SIG.Gen(1κ)

– From now on, reply to FBB calls of the form
(Retrieve, pidO) with vkO

↪→ Allow F (∆)
PUBA to continue.

2. Upon receiving (init, pidT) from F (∆)
PUBA:

– Create and store a signature-key pair
(skT , vkT)← SIG′.Gen(1κ)

– From now on, reply to FBB calls of the form
(Retrieve, pidT) with vkT

↪→ Allow F (∆)
PUBA to continue.

π-Sign Function Parameter :
. .
O honest, T honest:

1. Upon receiving leak (task, `) from F (∆)
PUBA:

– Compute (com0, unv0)← COM′.Com(0).
– Compute σfp ← SIG.Sgn((task, com0), skT).
– Store fFP(task, `) := (com0, unvfp, σfp).

π-User Registration:
. .
U and O honest:

1. Draw random user public key pkU
r← G1

2. From now on, reply to FBB calls of the form
(Retrieve, pidU) with pkU

3. Report encrypted messages.

. .
U corrupted, O honest:

1. Upon receiving instructions from Z to send
(Retrieve, pidO) from U to FBB:
↪→ Report output (vkO) from FBB to U .

2. Upon receiving instructions from Z to send
(Register, pidU , pkU) from U to FBB:
– If a previous call (Register, pidU , pk′U) to
FBB for some pk′U has been previously
recorded, abort in the name of O.

3. Upon receiving leak ` from F (∆)
PUBA:

– Seta (com0, unv0, σfp) := fFP(UReg, `).
4. Upon receiving instructions from Z to send

(Π, comid , com(U)
sernew) from U to O:

PUBA 503

– If fID(pkU) 6= ⊥ abort, else set fID(pkU) =
pidU

– stmt := (pkU , comid)
– Checka POK.Vfy(Π, stmt,LR) ?= 1

↪→ Report message (com0, σfp) from O to U .
5. Upon receiving instructions from Z to send

(UReg, comfp, inU) from U to FPPA:
– Checka COM.Unv(comfp, unv0,0) = 1.

↪→ Call F (∆)
PUBA with input (UReg, inU) in the

name of U .
6. Upon receiving output (UH, outU) from F (∆)

PUBA:
– (comUH, unvUH)← COM.Com(UH)
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)←

COM.Com((sernew)(O))
– comsernew := com(O)

sernew ⊕ com(U)
sernew

– (comlin , unvlin)← COM.Com(0)
– σ ← SIG.Sgn(skO, comUH‖comsernew‖comlin‖

comid)
↪→ Report output (UH, unvUH, outU) from
FPPA to U .
↪→ Report message (comUH, (sernew)(O),

com(O)
sernew , unv(O)

sernew , comlin , unvlin , comid ,

unvid , σ) from O to U .
↪→ Allow F (∆)

PUBA to continue.

{
π-Bookkeeping(k)

}K

k=1
:

. .
U and O honest: Report encrypted messages.
. .
U corrupted, O honest:

1. Upon receiving leak (`) from F (∆)
PUBA

and instructions from Z to send
(c̃omUH, ser , c̃omlin , c̃omid ,ΠVal , com(U)

sernew) from
U to O:
– stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
– Checka POK.Vfy(ΠVal , stmtVal ,LVal

B) ?= 1
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Seta (com0, unv0, σfp) := fFP(BK(k), `).

↪→ Report message (com0, σfp) from O to U .

2. Upon receiving (BK(k),UH, ũnvUH, comfp, inU)
from U to FPPA:
– Checka COM.Unv(comfp, unv0,0) = 1.
– Checka COM.Unv(c̃omUH, ũnvUH,UH) ?= 1

– Extract pkU using POK.ExtractWit(tdext,

ΠVal , stmtVal ,LVal
B)

– Loada pidU ′ := fID(pkU)
– Choose U ′ as the user corresponding to

pidU ′

↪→ Call Ideal Functionality F (∆)
PUBA with input

(BK(k), inU) in the name of U ′

3. Upon receiving output (α, s,a, outU) from
F (∆)
PUBA to U :

– Compute (coma, unva)← COM.Com(a)
↪→ Report message (α, s,a, coma, unva, outU)
from FPPA to U

4. if α 6= ⊥ ∨ s 6= ⊥ then
– Upon receiving instructions from Z to send

(com′UH,
com′′UH,ΠTr) from U to O:
– stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
– Checka POK.Vfy(ΠTr , stmtTr ,LTr

B) ?= 1
fi

5. Compute new User History.
– comnewUH := com′′UH ⊕ coma
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)←

COM.Com((sernew)(O))
– comnewser := com(O)

sernew ⊕ com(U)
sernew

– σnew ← SIG.Sgn(skO, comnewUH ‖comnewser ‖c̃omlin‖
c̃omid)

↪→ Report message (comnewUH , (sernew)(O),

com(O)
sernew , unv(O)

sernew , σnew) from O to U
↪→ Allow F (∆)

PUBA to deliver output to O

{
π-Outsource(k)

}K

k=1
:

. .
U , P and O honest:

1. Upon receiving (OS(k),User) from F (∆)
PUBA,

(OS(k), pidP) from F (∆)
PUBA and (OS(k),

pidO) from F (∆)
PUBA:

– Append an empty entry (⊥, . . . ,⊥) to
f

(P)
OI (k)

– Append an empty entry (⊥, . . . ,⊥) to
f

(O)
OI (pidP , k)

↪→ Allow F (∆)
PUBA to continue.

. .
U corrupted, P and O honest:

PUBA 504

1. Upon receiving (OS(k), pidO) from
F (∆)
PUBA and (OS(k), pidP) from F (∆)

PUBA

and instructions from Z to send
(sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV , sh(O)

oα , sh(O)
os , sh(O)

oa ,

ser , c̃omid ,Π, com(U)
sernew) from U to O and

(sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)
from U to P:
– stmt := (sh(O)

UH, com(O)
UH, ser , c̃omid , vkO)

– Checka POK.Vfy(Π, stmt,LO) ?= 1
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Setb UH := πShare-Combine(sh(O)

UH, sh(P)
UH)

– Setb inU := πShare-Combine(sh(O)
inU

, sh(P)
inU

)
– Setb oOUT := πShare-Combine(sh(O)

oOUT , sh(P)
oOUT)

– Setb oUNV := πShare-Combine(sh(O)
oUNV , sh(P)

oUNV)
– Setb oα := πShare-Combine(sh(O)

oα , sh(P)
oα)

– Setb os := πShare-Combine(sh(O)
os , sh(P)

os)
– Setb oa := πShare-Combine(sh(O)

oa , sh(P)
oa)

– linnew r← Zp
– Append (linnew, sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV ,

sh(P)
oα , sh(P)

os , sh(P)
oa) to f (P)

OI (k)
– Append (linnew, sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV ,

sh(O)
oα , sh(O)

os , sh(O)
oa) to f (O)

OI (pidP , k)
– Extract pkU using POK.ExtractWit(tdext,Π,

stmt,LVal
B)

– Loada pidU ′ := fID(pkU)
– Load current Subsession Identifier ssid and

append ssid 7→ linnew to fLN
↪→ Call Ideal Functionality F (∆)

PUBA with input
(OS(k), inU) in the name of U ′.

2. Upon receiving output (ok) from F (∆)
PUBA to U ′:

– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)←

COM.Com((sernew)(O))
– comnewUH := com(P)

UH ⊕ com(O)
UH

– comnewser := com(U)
sernew ⊕ com(O)

sernew

– (comnewlin , unvnewlin)← COM.Com(linnew)
– σnew ← SIG.Sgn(skO,

comnewUH ‖comnewser ‖comnewlin ‖c̃omid)
↪→ Report message ((sernew)(O), com(O)

sernew ,

unv(O)
sernew , comnewlin , unvnewlin , σnew) from O to U .

↪→ Report message (linnew) from P to U .
↪→ Allow F (∆)

PUBA to deliver outputs to P and
O.

. .
U honest, P corrupted, O honest:

1. Upon receiving (OS(k),User) from F (∆)
PUBA and

(OS(k),
pidO) from F (∆)

PUBA:
– (sh(P)

UH, sh(O)
UH)← πShare-Share(0)

– (sh(P)
inU

, sh(O)
inU

)← πShare-Share(0)
– (sh(P)

oOUT , sh(O)
oOUT)← πShare-Share(0)

– (sh(P)
oUNV , sh(O)

oUNV)← πShare-Share(0)
– (sh(P)

oα , sh(O)
oα)← πShare-Share(0)

– (sh(P)
os , sh(O)

os)← πShare-Share(0)
– (sh(P)

oa , sh(O)
oa)← πShare-Share(0)

↪→ Report message (sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV ,

sh(P)
oα , sh(P)

os , sh(P)
oa) from U to P and

encrypted message from U to O.
↪→ Call Ideal Functionality F (∆)

PUBA with input
(OS(k)) in the name of P.

2. Upon receiving output (ok) from F (∆)
PUBA to P:

– (linnew)O r← Zp
– (com(O)

linnew , unv(O)
linnew)← COM.Com((linnew)O)

– Parse:
–
(
UH(O), com(P)

UH, unv(O)
UH

)
:= sh(O)

UH

–
(

inOU , com(P)
inU

, unvOinU

)
:= sh(O)

inU

–
(

oOUT
O, com(P)

oOUT , unvOoOUT

)
:= sh(O)

oOUT

–
(

oUNV
O, com(P)

oUNV , unvOoUNV

)
:= sh(O)

oUNV

–
(

oαO, com(P)
oα , unvOoα

)
:= sh(O)

oα

–
(

osO, com(P)
os , unvOos

)
:= sh(O)

os

–
(

oaO, com(P)
oa , unvOoa

)
:= sh(O)

oa

↪→ Report message (com(O)
linnew , com(P)

UH, com(P)
inU

,

com(P)
oOUT , com(P)

oUNV , com(P)
oα , com(P)

os , com(P)
oa) from

O to P.
3. Upon receiving instructions from Z to send

((linnew)(P), com(O)
UH, com(O)

inU
, com(O)

oOUT , com(O)
oUNV ,

com(O)
oα , com(O)

os , com(O)
oa) from P to O:

– Checka Unv(com(O)
UH, unv(O)

UH,UH
(O)) ?= 1

– Checka Unv(com(O)
inU

, unvOinU
, inOU) ?= 1

– Checka Unv(com(O)
oOUT , unvOoOUT

, oOUT
O) ?= 1

– Checka Unv(com(O)
oUNV , unvOoUNV

, oUNV
O) ?= 1

– Checka Unv(com(O)
oα , unvOoα , oα

O) ?= 1
– Checka Unv(com(O)

os , unvOos , osO) ?= 1
– Checka Unv(com(O)

oa , unvOoa , oaO) ?= 1
↪→ Report message ((linnew)O, unv(O)

linnew) from
O to P.

4. Upon receiving instructions from Z to send
(linnew) from P to U :
– Checka linnew ?= (linnew)(O) + (linnew)(P)

PUBA 505

– Load current Subsession Identifier ssid and
append
ssid 7→ linnew to fLN

– Append (linnew, sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV ,

sh(O)
oα , sh(O)

os , sh(O)
oa) to f (O)

OI (pidP , k)
↪→ Allow F (∆)

PUBA to deliver outputs to U and O.

. .
U and P corrupted, O honest:

1. Upon receiving (OS(k), pidO) from
F (∆)
PUBA and instructions from Z to send

(sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV , sh(O)

oα ,

sh(O)
os , sh(O)

oa , ser , c̃omid ,Π, com(U)
sernew) from U to

O:
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Parse

(
UH(O), com(P)

UH, unv(O)
UH

)
:= sh(O)

UH

– Parse
(

inOU , com(P)
inU

, unvOinU

)
:= sh(O)

inU

– Parse
(

oOUT
O, com(P)

oOUT , unvOoOUT

)
:= sh(O)

oOUT

– Parse
(

oUNV
O, com(P)

oUNV , unvOoUNV

)
:= sh(O)

oUNV

– Parse
(

oαO, com(P)
oα , unvOoα

)
:= sh(O)

oα

– Parse
(

osO, com(P)
os , unvOos

)
:= sh(O)

os

– Parse
(

oaO, com(P)
oa , unvOoa

)
:= sh(O)

oa

– (linnew)O r← Zp
– (com(O)

linnew , unv(O)
linnew)← COM.Com((linnew)O)

↪→ Report message (com(O)
linnew , com(P)

UH, com(P)
inU

,

com(P)
oOUT , com(P)

oUNV , comoα , comos , comoa) from O to
P

2. Upon receiving instructions from Z to send
((linnew)(P), com(O)

UH, com(O)
inU

, com(O)
oOUT , com(O)

oUNV ,

com(O)
oα , com(O)

os , com(O)
oa) from P to O:

– stmt := (sh(O)
UH, com(O)

UH, ser , c̃omid , vkO)
– Checka POK.Vfy(Π, stmt,LO) ?= 1
– Checka Unv(com(O)

UH, unv(O)
UH,UH

(O)) ?= 1
– Checka Unv(com(O)

inU
, unvOinU

, inOU) ?= 1
– Checka Unv(com(O)

oOUT , unvOoOUT
, oOUT

O) ?= 1
– Checka Unv(com(O)

oUNV , unvOoUNV
, oUNV

O) ?= 1
– Checka Unv(com(O)

oα , unvOoα , oα
O) ?= 1

– Checka Unv(com(O)
os , unvOos , osO) ?= 1

– Checka Unv(com(O)
oa , unvOoa , oaO) ?= 1

– Extract pkU using POK.ExtractWit(tdext,Π,
stmt,LO)

– Loada pidU ′ := fID(pkU)

↪→ Call Ideal Functionality F (∆)
PUBA with input

(OS(k),⊥) in the name of U ′

↪→ Call Ideal Functionality F (∆)
PUBA with input

(OS(k)) in the name of P
3. Upon receiving output (ok) from F (∆)

PUBA to U ′

and output (ok) from F (∆)
PUBA to P:

Compute commitments and signature:
– Set lin := (linnew)O + (linnew)(P)

– Append (linnew, sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV ,

sh(O)
oα , sh(O)

os , sh(O)
oa) to f (O)

OI (pidP , k)
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)←

COM.Com((sernew)(O))
– comnewUH := com(P)

UH ⊕ com(O)
UH

– comnewser := com(U)
sernew ⊕ com(O)

sernew

– (comnewlin , unvnewlin)← COM.Com(linnew)
– σnew ← SIG.Sgn(skO,

comnewUH ‖comnewser ‖comnewlin ‖c̃omid)
↪→ Report message ((linnew)(O), unv(O)

linnew) from
O to P and message ((sernew)(O), com(O)

sernew ,

unv(O)
sernew , comnewlin , unvnewlin , σnew) from O to U .

↪→ Allow F (∆)
PUBA to deliver outputs to O.

{
π-Outsourced Analytics(k)

}K

k=1
:

. .
P and O honest:

1. Upon receiving (OA(k), pidP) from F (∆)
PUBA and

(OA(k), pidO) from F (∆)
PUBA:

– Loada and remove the first Zk entries
{(lin, sh(P)

UH,

sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os , sh(P)
oa)z}Zk

z=1

from f
(P)
OI (k)

– Loada and remove the first Zk entries
{(lin, sh(O)

UH,

sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa)z}Zk

z=1

from f
(O)
OI (pidP , k)

– For every z ∈ {1, . . . ,Zk} with linz 6= ⊥,
combinea:
– UHz := πShare-Combine(sh(P)

UHz
, sh(O)
UHz

)
– inUz := πShare-Combine(sh(P)

inUz
, sh(O)

inUz
)

– oOUTz := πShare-Combine(sh(P)
oOUTz , sh(O)

oOUTz)
– oUNVz := πShare-Combine(sh(P)

oUNVz , sh(O)
oUNVz)

– oαz := πShare-Combine(sh(P)
oαz , sh(O)

oαz)
– osz := πShare-Combine(sh(P)

osz , sh(O)
osz)

– oaz := πShare-Combine(sh(P)
oaz , sh(O)

oaz)

PUBA 506

↪→ Allow F (∆)
PUBA to continue.

2. Upon receiving leak (z, αz , sz ,az , outUz) from
F (∆)
PUBA, do for each z for which a leak (z, ·, ·, ·, ·)

exists:
– (comaz , unvaz) r← Com(az)
– cαz := αz + oαz
– csz := sz + osz
– caz := az + oaz
– cunvaz

:= unvaz + oUNV

– coutUz
:= outUz + oOUTz

– f
(P)
UP (linz) := (cα, cs, ca, cunva , coutU)z

– f
(O)
UP (linz) := (αz , sz , comaz , coutU)z

↪→ Allow F (∆)
PUBA to deliver outputs to all par-

ties.

. .
P corrupted, O honest:

1. Upon receiving (OA(k), pidO) from F (∆)
PUBA and

leak ` from F (∆)
PUBA:

– (com0, unv0, σfp)← fFP(OA(k), `)
↪→ Report message (com0, σfp) from O to P.

2. Upon receiving instructions from Z to send
(OA(k), comfp, {(sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα ,

sh(P)
os , sh(P)

oa)z}Zk
z=1) from P to FPPA:

– Checka COM.Unv(comfp, unv0,0) = 1.
– Loada and remove the first Zk entries
{(lin, sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
oa)z}Zk

z=1 from f
(O)
OI (pidP , k)

– For every z from 1 to Zk , combinea:
– UHz ← πShare-Combine(sh(P)

UHz
, sh(O)
UHz

)
– inUz ← πShare-Combine(sh(P)

inz
, sh(O)

inz
)

– oOUTz ← πShare-Combine(sh(P)
oOUTz , sh(O)

oOUTz)
– oUNVz ← πShare-Combine(sh(P)

oUNVz , sh(O)
oUNVz)

– oαz ← πShare-Combine(sh(P)
oαz , sh(O)

oαz)
– osz ← πShare-Combine(sh(P)

osz , sh(O)
osz)

– oaz ← πShare-Combine(sh(P)
oaz , sh(O)

oaz)
↪→ Call Ideal Functionality F (∆)

PUBA with input
(OA(k)) in the name of P.

3. Upon being asked by F (∆)
PUBA for up-

dated inputs for a set idcorrupted :=
{{1, . . . ,Zk},Uz corrupted}:
– Send inputs {inUz |z ∈ idcorrupted} to
F (∆)
PUBA

↪→ Allow F (∆)
PUBA to continue.

4. Upon receiving leak {(z, αz , sz ,az , outUz)|z ∈
id corrupted} from F (∆)

PUBA and output (ok) from
F (∆)
PUBA to P :

– For each z in 1, . . . ,Zk :
– If an entry {(z), ·, ·, ·, ·} exists in the

leaked set:
∗ cαz := αz + oαz
∗ csz := sz + osz
∗ caz := az + oaz
∗ (comaz , unvaz)← Com(az)
∗ cunvaz

:= unvaz + oUNVz
∗ coutUz

:= outUz + oOUTz

∗ f
(P)
UP (linz) := (cαz , csz , caz , cunvaz ,

coutUz)
∗ f

(O)
UP (linz) := (α, s, comaz , coutUz)

– Else:
∗ Draw random cαz , csz , caz , coutUz

and cunvaz

∗ f
(P)
UP (linz) := (cαz , csz , caz , cunvaz ,

coutUz)
↪→ Report message {(cαz , csz , caz , cunvaz ,

coutUz)}Zk
z=1 from FPPA to P.

↪→ Allow F (∆)
PUBA to deliver outputs to O.

π-Update:
. .
U , P and O honest: Report encrypted messages.
. .
U corrupted, P and O honest:

1. Upon receiving (Upd, pidP) from F (∆)
PUBA and in-

structions from Z to send (lin) from U to P:
– If f (P)

UP (lin) 6= ⊥:
– Load and remove

(cα, cs, ca, cunva , coutU) := f
(P)
UP (lin)

↪→ Report message (cα, cs, ca, cunva , coutU)
from P to U .

– otherwise continue without reporting a mes-
sage

2. Upon receiving (Upd, pidO) from F (∆)
PUBA:

– Loada and remove (α, s, coma, coutU) :=
f

(O)
UP (lin)

3. if α 6= ⊥ ∨ s 6= ⊥ then
Upon receiving instructions from Z to send
(c̃omUH, com′UH, com′′UH, c̃omid , ser , lin,Π,ΠTr ,

com(U)
sernew) from U to O:

Check proof:
– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
– Checka POK.Vfy(Π, stmt,LU) ?= 1
– Checka POK.Vfy(ΠTr , stmtTr ,LTr

B) ?= 1

PUBA 507

– comnewUH := com′′UH ⊕ coma
4. else

Upon receiving instructions from Z to send
(c̃omUH,
c̃omid , ser , lin,Π, com(U)

sernew) from U to O:
Check proof:
– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– Checka POK.Vfy(Π, stmt,LU) ?= 1
– comnewUH := c̃omUH ⊕ coma

5. fi
Check serial number:
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Extract pkU using POK.ExtractWit(tdext,Π,

stmt,LU)
– Loada pidU ′ := fID(pkU)

↪→ Call Ideal Functionality F (∆)
PUBA with input

(Upd) in
the name of U ′.

6. Upon receiving output (α, s,a, outU) from
F (∆)
PUBA to U ′:

Draw share of new serial number:
– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)←

COM.Com((sernew)(O))
Compute commitments and signature for up-
dated user history:
– comnewser := com(O)

sernew ⊕ com(U)
sernew

– (comnewlin , unvnewlin)← COM.Com(0)
– σnew ← SIG.Sgn(skO,

comnewUH ‖comnewser ‖comnewlin ‖c̃omid)
↪→ Report message (coma, comnewUH , (sernew)(O),

com(O)
sernew , unv(O)

sernew , comnewlin , unvnewlin , σnew,

coutU) from O to U .
↪→ Allow F (∆)

PUBA to deliver outputs.

. .
U honest, P corrupted, O honest:

1. Upon receiving (Upd, pidO) and (Upd,User)
from F (∆)

PUBA:
↪→ Call Ideal Functionality F (∆)

PUBA with input
(Upd) in the name of P.

2. Upon receiving leak ssid from F (∆)
PUBA:

– Loada lin := fLN(ssid)
↪→ Report message (lin) from U to P.

3. Upon receiving instructions from Z to send
(cα, cs, ca,

cunva , coutU) from P to U :

– Checka (cα, cs, ca, cunva , coutU) ?= f
(P)
UP (lin)

and remove the entry.
↪→ Allow F (∆)

PUBA to continue.

. .
U and P corrupted, O honest:

1. Upon receiving (Upd, pidO) from F (∆)
PUBA:

– Loada and remove (α, s, coma, coutU) :=
f

(O)
UP (lin).

2. if α 6= ⊥ ∨ s 6= ⊥ then
Upon receiving instructions from Z to send
(c̃omUH, com′UH, com′′UH, c̃omid , ser , lin,Π,ΠTr ,

com(U)
sernew) from U to O:

Check proof:
– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– stmtTr := (c̃omUH, com′UH, com′′UH, α, s)
– Checka POK.Vfy(Π, stmt,LU) ?= 1
– Checka POK.Vfy(ΠTr , stmtTr ,LTr

B) ?= 1
– comnewUH := com′′UH ⊕ coma

3. else
Upon receiving instructions from Z to send
(c̃omUH,
c̃omid , ser , lin,Π, com(U)

sernew) from U to O:
Check proof:

– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– Checka POK.Vfy(Π, stmt,LU) ?= 1
– comnewUH := c̃omUH ⊕ coma

4. fi
Check serial number:
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Extract pkU using POK.ExtractWit(tdext,Π,

stmt,LU)
– Loada pidU ′ := fID(pkU)

↪→ Call Ideal Functionality F (∆)
PUBA with input

(Upd) in the name of U ′.
↪→ Call Ideal Functionality F (∆)

PUBA with input
(Upd) in the name of P.

5. Upon receiving output (ok) from F (∆)
PUBA to P

and output (α, s,a, outU) from F (∆)
PUBA to U ′:

– (sernew)(O) r← Zp
– (com(O)

sernew , unv(O)
sernew)←

COM.Com((sernew)(O))
– comnewser := com(O)

sernew ⊕ com(U)
sernew

– (comnewlin , unvnewlin)← COM.Com(0)
– σnew ← SIG.Sgn(skO,

comnewUH ‖comnewser ‖comnewlin ‖c̃omid)

PUBA 508

↪→ Report message (coma, comnewUH , (sernew)(O),

com(O)
sernew , unv(O)

sernew , comnewlin , unvnewlin , σnew,

coutU) from O to U .
↪→ Allow F (∆)

PUBA to deliver output to O.

a If this fails, output ⊥ and abort.
b If this fails, use a default value 0.

For our proof, we consider the following hybrid
games Hi:

H1 The hybrid H1 is equivalent to the real experiment.
That is,

H1 := EXECπPUBA,FBB,FPPA,S1,Z(1κ)

This means that all parties execute the real proto-
col.

H2 All calls to hybrid functionalities, namely to FPPA,
FKE and FBB, are replaced by calls to S2, who
simulates their behavior using the respective code
of the simulators SFPPA and SFBB .

H3 The simulator now maintains the list LSER, in which
he stores the serials that were opened by a user.
That is, whenever a user proves that the used log-
book λ is “fresh” and hasn’t been used before by
sending a serial number ser together with a proof
Π during any of the tasks for Bookkeeping, Out-
sourced Analytics or Update, S3 verifies the proof
and aborts, if either the proof fails to verify or if
serial is already contained in LSER. If no abort hap-
pened, S3 adds ser to the list LSER. The code of the
operator O is changed in such a way, that the checks
that the simulator does now are not performed again
by the operator.

H4 Introduces a map f
(O)
UP and for each proxy a map

f
(P)
UP to be used by the simulator S4: f (O)

UP is similar
to what an honest operator would store for the up-
dates after the Outsourced Analytics-task, f (P)

UP is
the equivalent for the respective proxy. During simu-
lation of FPPA for Outsourced Analytics-tasks, i.e.
after O sent a message (OA(k), fp, unvfp, {(sh(O)

UH,

sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa)z}Zk

z=1, inO)
and P input (OA(k), comfp, {(sh(P)

UH, sh(P)
inU

, sh(P)
oOUT ,

sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)z}Zk
z=1) to FPPA, Simula-

tor S4 computes ∆ honestly (with fresh coins, if
necessary), based on the two inputs. S4 uses the
protocol πShare-Combine on both received shares
to reconstruct UHz , oαz , osz , oaz , oOUTz and oUNVz
for each user z ∈ [Z]. If reconstruction on any of
the shares fails, S4 aborts. With this, S4 computes

cαz := αz + oαz , csz := sz + osz , caz := az + oaz ,
(comaz , unvaz) ← COM.Com(az), cunvaz

:− unvaz +
oUNV and coutz := outz + oOUTz . S4 then adds a new
entry (linz 7→ (cα, cs, ca, cunva,coutU

)) to f (P)
UP and a

new entry (linz 7→ (α, s, coma, coutU)) to f (O)
UP .

S4 also uses f (P)
UP to verify that a corrupted P sent

the correct values during the Update-task to an hon-
est U , which replaces Us check with the One-Time
Pads.

H5 During setup, the reference string crs is created by
(crspok, tdext)← SetupEPoK. Also, the operator now
leaks the signature key pair (vkO, skO) to S5 during
the Init-task;; the simulator then stores (vkO, skO).
The simulator stores tdext, the remainder stays as it
is.

H6 Introduces a new map fID for the simulator that
uniquely maps user’s public keys pkU to the pid pidU
the respective user had during user registration.
During simulation of FBB, after Z gave instructions
to send a message (Register, pidU , pkU) from a cor-
rupted user U to FBB and simulation succeeded (i.e.
did not abort), S6 adds a new entry (pkU 7→ pidU)
to fID.
During simulation of the task for User Registra-
tion, after Z gave instructions to send a message
(Π, comid , com(U)

sernew) from a corrupted U to O, S6
takes pk′U from Π (since it is contained in the state-
ment of LR) and aborts if either fID(pk′U) 6= pidU or
if a user with public key pk′U is already registered.

H7 Whenever Z instructs S7 to send a message con-
taining a zero-knowledge proof Π in the name of
a corrupted user U during the tasks for Bookkeep-
ing, Outsourced Analytics and Update, S7 uses the
trapdoor tdext to extract the complete witness wit
from Π. It then uses the extracted public key pkU
to get the pid pidU := fID(pkU) of the user whom
the User History belongs to and aborts if pidU = ⊥.

H8 Introduces an incorruptible entity F (∆)
PUBA that fol-

lows the specification from Fig. 6 into the exper-
iment, which is only accessible by honest parties
and the simulator through subroutine input/output
tapes.

H9 Replaces the Trusted Signing Authority T with a
dummy party that immediately forwards its input
to the ideal functionality F (∆)

PUBA. All interactions
of T are simulated by S9 by following the original
protocol.

H10 Introduces a map fFP that maps a given task task ∈
{UReg∪BK(K)∪OA(K)} and a given identifier ` ∈
[L] to a tuple (fp, comfp, unvfp, σfp).

PUBA 509

Replaces the operator O with a new operator O′

that acts like the original one, but has a few minor
changes. After having confirmation that fp can be
used for a task task during Sign Function Parame-
ter, O′ sends (fp, task) to S10, who computes comfp
as commitment on the actual Function Parameters
and σfp as corresponding signatures honestly and
stores it in fFP(fp, comfp, σfp). Furthermore, the new
operator sends the fp to S10 during UReg, BK and
OA tasks and uses the (comfp, σfp) obtained from
S10, which the simulator obtains by looking if an
entry (fp, ·, ·) exists within fFP.
Also, during simulation of FPPA, S10 uses the de-
commitment information stored in fFP(task, `) to
verify the commitment comfp the user or proxy in-
put into FPPA.

H11 Replaces the operator O by a dummy party, which,
when receiving input by Z, forwards the input im-
mediately to F (∆)

PUBA. During the tasks for User Reg-
istration, Bookkeeping and Outsourced Analytics,
the new operator O also leaks the input inO and fp
to S11. All messages that were sent by O in H10 are
now created by S11 in H11 and send in the name of
O.

H12 Replaces the map fFP introduced in H10 with one
that has the same input space (task, `), but whose
output space only contains (comfp, unvfp, σfp), and
not the actual Function Parameters.
Instead of relying on the leaked fp for a mapping,
S12 uses the leak ` obtained from F (∆)

PUBA to ob-
tain a consistent (comfp, σfp) tuple. Furthermore, in-
stead of creating these tuples honestly, S12 uses the
leaked (task, `) obtained during the Sign Function
Parameter task to sample a new (com0, unv0) ←
COM.Com(0) on the all-zero vector 0 instead of
comfp on fp, and uses the signing key skT to sign
com0 and the given task task. The resulting tuple
(com0, σfp) is then stored in fFP(task, `) and used
whenever F (∆)

PUBA leaks ` during UReg, BK or OA.
H13 Replaces all honest users U by dummy parties,

which, when receiving input by Z, forward the input
immediately to F (∆)

PUBA. During the tasks for User
Registration, Bookkeeping and Outsourced Analyt-
ics, the new user machines U also leak the input inU
to S13. All messages that were sent by honest user
U in H12 are now created by S13 in H13 and send in
the name of U .
Note that all leaks by F (∆)

PUBA are ignored by S13.
H14 Replaces all proxies P with dummy parties, which,

when receiving input by Z, forward the input di-

rectly to F (∆)
PUBA. All messages that were sent by

honest proxies P in H13 are now created by S14 in
H14 and send in the name of P.
Note that all leaks by F (∆)

PUBA are ignored by S14.
H15 S15 now calls F (∆)

PUBA in the name of the corrupted
parties with the correct input. This causes F (∆)

PUBA

to fully perform as defined by its specification, as
all inputs are provided. Hence, instead of comput-
ing the function ∆ on the inputs in order to simu-
late FPPA, S15 now relies on the leaks provided by
F (∆)
PUBA.

This game also introduces a map fLN, that maps
leaked ssid values to linking numbers lin.
S15 obtains the input of the corrupted parties as
follows:
User Registration, U corrupted, O honest.

After simulating FPPA, S15 has obtained inU
from the corrupted U . Hence, S15 calls F (∆)

PUBA

in the name of the U belonging to pidU with
input (UReg, inU). Since F (∆)

PUBA now has full
input, S15 uses the output (α, s,a, outU) from
F (∆)
PUBA to U in order to simulate FPPA.

Bookkeeping, U corrupted, O honest. After
Z gave instructions to send (BK(k),UH,
ũnvUH, comfp, inU) to FPPA in the name of U ,
S15 uses the extracted pidU (see H7) to obtain
the user UpidU

who registered for the used pub-
lic key. After verifying that the commitments
are valid, that is, COM.Unv(c̃omUH, ũnvUH,
UH) = 1 and COM.Unv(comfp, unv0,0) = 1 (see
hybrid H12), S15 calls F (∆)

PUBA in the name of
UpidU

with input (BK(k), inU) where inU has
been learned from simulation of FPPA.
Also, since F (∆)

PUBA now has complete input,
S15 obtains leaks. Hence, instead of com-
puting ∆ in his head, S15 uses the out-
put (α, s,a, outU) from F (∆)

PUBA to U in or-
der generate the output of FPPA to U by
first computing valid commitment information
(coma, unva) ← COM.Com(a) and then report-
ing message (α, s,a, coma, unva, outU).

Outsource, U corrupted, O and P honest.
S15 obtains the input of the user by using
πShare-Combine on the shares U sent to both
O and P: after Z sent instructions to send
(sh(O)
UH, sh(O)

inU
, sh(O)

oOUT , sh(O)
oUNV , sh(O)

oα , sh(O)
os , sh(O)

oa ,

ser , c̃omid ,Π, com(U)
sernew) from U to O and to send

(sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa)
from U to P, S15 uses the shares from both O
and P to reconstruct inU := πShare-Combine(

PUBA 510

sh(P)
inU

, sh(O)
inU

); if this fails, S15 sets inU := ⊥.
S15 calls F (∆)

PUBA in the name of UpidU
, where

pidU corresponds to the user whose identity was
extracted from Π, using input (OS(k), inU).

Outsource, U honest, O honest, P corrupted.
P is designed to neither learn secrets, nor to
have secrets itself. Simulator S15 calls F (∆)

PUBA

in the name of P with input (OS(k)). Also, S15
sets fID(ssid) := linnew after negotiating the
linking number.

Outsource, U and P corrupted, O honest.
S15 calls F (∆)

PUBA for both the proxy P (who
has no secret input whatsoever) and the user
UpidU

(who was identified using the pkU in Π),
but using inU := ⊥.

Outsourced Analytics, P corrupted, O hon-
est. Since H11, S15 maintains the list
f

(O)
UP in the same way an honest opera-
tor would. As S15 follows the operators
code (due to H11) it stores all the tuples
(linnew, sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
oa) during the Outsource task; given the

additional inputs from simulation of FPPA S15
now has a complete view of the used shares.
After receiving instructions from Z to send
a message (OA(k), comfp, {sh(P)

UH, sh(P)
inU

, sh(P)
oOUT ,

sh(P)
oUNV , sh(P)

α , sh(P)
s , sh(P)

a }Zz=1) from P to FPPA,
S15 restores each input using the information
stored in f

(O)
UP and aborts if the reconstruc-

tion via πShare-Combine fails. When asked by
F (∆)
PUBA for inputs for an index set I ⊂ [Zk] of

corrupted users {Uz}z∈I , S15 enters the inputs
inU from the respective indices.
Reconstruction of the output now only hap-
pens for parties z ∈ I in the corrupted
party set; information related to honest parties
(cαz , csz , caz , cunvaz , coutUz) is drawn at random
and put to f (P)

UP .
Update, any corrupted party. The inputs to

the Update-task contain no secrets; so S15
can call F (∆)

PUBA in the name of any corrupted
party with input (Upd). For corrupted users, S15
awaits the proof Π to extract the correct user.
For corrupted Proxies, S15 awaits their first
message. Also, if only the proxy is corrupted,
S15 awaits the leaked Subsession Identifier ssid
from F (∆)

PUBA to obtain lin := fLN(ssid) and to
report the first message from U to P.

H16 Introduces a map f
(O)
OI and for each proxy a map

f
(P)
OI to be used by the simulator S16: f (O)

OI is simi-

lar to what an honest operator would store for the
Outsourced Information after the Outsource-task,
f

(P)
OI is the equivalent for the respective proxy.
The map is used during the tasks for Outsource and
Outsourced Analytics:
Outsource, U , P and O honest. S16 adds a vec-

tor of empty entries (⊥, . . . ,⊥) to both f (P)
OI (k)

and f (O)
OI (k).

Outsource, U corrupted, P and O honest.
linnew is now randomly sampled by S16, which
replaces the coin-toss of O and P.
After receiving instructions from Z to send a
message (sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
oa , ser , c̃omid ,Π, com(U)

sernew) from a cor-
rupted U to O, S16 adds a new entry
(linnew, sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
oa) to f (O)

OI .
After receiving instructions from Z to send a
message (sh(P)

UH, sh(P)
inU

, sh(P)
oOUT , sh(P)

oUNV , sh(P)
oα , sh(P)

os ,

sh(P)
oa) from a corrupted U to P,

S16 adds a new entry (linnew,

sh(P)
UH, sh(P)

inU
, sh(P)

oOUT , sh(P)
oUNV , sh(P)

oα , sh(P)
os , sh(P)

oa) to
f

(P)
OI .

Outsource, U and O honest, P corrupted.
When the honest U is supposed to create shares
of UH, inU , oOUT, oUNV, oα, os and oa, S16 creates
shares of the zero-vector using πShare-Share(0)
and uses those in the same way the user uses
the actual shares in the protocol. After having
the linking number linnew created honestly, S16
stores the values in f (O)

OI and ignores f (P)
OI .

Outsource, U and P corrupted, O honest.
S16 follows the protocol of O regard-
ing fOI, that is, after Z sent instruc-
tions to send a message (sh(O)

UH, sh(O)
inU

,

sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os , sh(O)
oa , ser , c̃omid ,Π,

com(U)
sernew) from U to O and after S16

took the role of O in honestly com-
puting the linking number, it adds
(linnew, sh(O)

UH, sh(O)
inU

, sh(O)
oOUT , sh(O)

oUNV , sh(O)
oα , sh(O)

os ,

sh(O)
a) to f (O)

OI .
H17 All remaining honest parties are replaced by dummy

parties, which, upon receiving input by Z, only for-
ward their input into F (∆)

PUBA.
H18 All messages between honest parties are simulated

by having S18 report messages of zero-vectors of
correct size. Consequently, all operations that do
not result in messages are removed.

PUBA 511

H19 During the User Registration-task with an honest
user, instead of honestly creating a user id id, in-
terpreting it as secret key and computing a pub-
lic key from it, S19 uniformly samples a public key
pkU

r← G1 directly.
H20 If P is corrupted and U and O are honest,

S20 changes its behavior during simulation of the
Outsource-task. Instead of calling πVerify on the
whole logbook, S20 only verifies that the linking
number linnew received by P confirms with the two
shares (linnew)(O) + (linnew)(P).

We now prove lemmata claiming indistinguishabil-
ity of each consecutive pair of games against every PPT-
environment Z. Thus, with H1 being the real world and
H20 corresponding to the ideal world with a simulator
acting as described above, we have proven the protocol
πPUBA to be as secure as the functionality F (∆)

PUBA.

Lemma G.23 (Indistinguishability of H1 and H2).
Let Z be a PPT-environment. Let Z distinguish H1
and H2 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. FPPA, FKE and FBB are considered to be hy-
brid functionalities, which can be instantiated by a real,
UC-secure protocol. UC-security of the instantiations
implies, that FBB, FKE and FPPA all have a simula-
tor, which runs in polynomial time and which can pro-
vide the view of a real protocol execution to any PPT-
environment Z, but is only using the ideal functional-
ities, for any given corruption scenario. Hence, S2 can
execute this code without runtime restrictions, when-
ever an interaction between any party and either FBB,
FKE or FPPA is requested by Z.

Indistinguishability now easily follows from the se-
curity of FBB, FKE and FPPA. Their UC-security im-
plies, that the resp. protocol (which is used in H1) can
not be distinguished from the simulated view (which is
used in H2). If Z could differentiate H1 and H2 with
non-negligible advantage over guessing, we can build a
distinguisher Z ′ for the real and ideal view of the resp.
hybrid functionalities as follows:

– Z ′ internally simulates all users U , all proxies P,
the operator O and the environment Z that can
distinguish H1 and H2 with probability 1

2 + ε by
executing their code in its head.

– Z ′ uses the distinguishing algorithm to let Z output
a single bit: 0 for H1 and 1 for H2.

– Z ′ outputs this bit, where 0 means that it is in the
real world and 1 means it is in the ideal world.

Note that the environment Z ′ also has a distinguishing
advantage of 1

2 +ε. UC-security of FBB, FKE and FPPA
thus require ε ∈ negl(κ), which concludes the proof.

Lemma G.24 (Indistinguishability of H2 and H3).
Let Z be a PPT-environment. Let Z distinguish H2
and H3 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. The simulator mimics the behavior of an honest
operator. Since none of the code regarding LSER is in
any way dependent on the secret input Z gives to U
or O, this can be done without any loss of generality.
In particular, assume that any party (that is, either O
or S3) aborts due to a duplicate serial number in any
game. In either case, this would mean that there was a
previous interaction of either the task for Bookkeeping,
Outsource, or Update, where U opened a value of comser
to the same ser that is now seen by the respective party.
Since the different parties execute the same code, their
abort-criteria is equivalent. The same is true for the
verification of the proof Π.

Lemma G.25 (Indistinguishability of H3 and H4).
Let Z be a PPT-environment. Let Z distinguish H3
and H4 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Indistinguishability here holds for the same rea-
son that it held in Theorem G.24. The contents of f (P)

UP
and f (O)

UP only depend on messages which S4 can access
via simulation of FPPA, and not (directly) on secret in-
put, which is hidden from it. Hence, we only have a new
encapsulation, where (PPT-)code that depends only on
previous messages was executed by O or P in H3 is now
executed by S4 in H4.

The equivalence of their contents easily follows from
the same argument. The contents themselves depend
on the message that U sent to the resp. parties, the
order depends on the (adversarialy chosen) scheduling
mechanism, which, given any environment Z that tries
to distinguish the two games, is equivalent.

The final change contains the check in the corrup-
tion scenario where P is corrupted, but U andO are hon-
est. Here, in H3, U aborts if either Unv(coma, unva,a) 6=
1, or if coutU differs from the value the honest receiver
sent.

PUBA 512

Equivalence for the latter is straightfor-
ward. If U aborts due to the former condition
(Unv(coma, unva,a) 6= 1), then this means that some
value was tampered with. coma was received by O,
who, in this scenario, is honest, hence it is correct.
The One-Time Pads oa, oUNV used to mask a and unva
were created by the user U during the Outsource task
and hence are also correct. Thus, the only values that
could be tampered with are ca and cunva , which S4 has
seen during the Outsource task and hence, for which a
consistency check suffices.

Lemma G.26 (Indistinguishability of H4 and H5).
Let Z be a PPT-environment. Let Z distinguish H4
and H5 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Indistinguishability here follows from the trap-
door nature of POK. If any environment Z could dis-
tinguish the execution of the protocol when using
crs created by crs ← SetupPoK from crs created by
(crs, tdext) ← SetupEPoK with probability 1

2 + ε, we
can build a PPT-environment Z ′ that breaks the indis-
tinguishability of the dual-mode property of POK, by
having Z ′ execute the code of all parties in its head.
This leads to the same success probability of 1

2 +ε, thus
causing ε ∈ negl(κ) by requirement of the chosen POK-
scheme.

Lemma G.27 (Indistinguishability of H5 and H6).
Let Z be a PPT-environment. Let Z distinguish H5
and H6 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. The only difference between H5 and H6 is, that
S6 stores additional information in H6 that was acces-
sible even in H5. Additionally, this game introduces a
new abort-criteria.

For indistinguishability of H5 and H6, we thus have
to show that those two criteria are, in fact, equivalent. In
H5, O fetches the key pkU belonging to pidU from FBB,
thus effectively asking (since H2) S6 for the key that
pidU registered there. Thus, instead of S6 simulating
FBB and giving O the key pkU so O can verify that
pkU is the one that was used in Π, S6 now does the
exact same thing, only that, due to the simulation of
FBB, no further interaction is required to obtain pkU .
Hence, aborts in H5 due to a duplicate or mismatching
pkU occur if and only if aborts in H6 happen due to a
duplicate or mismatching pkU . Thus, both distributions
from H5 and H6 are equivalent.

Lemma G.28 (Indistinguishability of H6 and H7).
Let Z be a PPT-environment. Let Z distinguish H6
and H7 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Extraction is possible due to the different crs in-
troduced in H5 and the fact that each witness only has
elements from the target group, so F -extractability of
POK suffices to obtain pkU . The public key pkU is con-
tained in every language used throughout the system.
The user found by looking up pidU := fID(pkU) is the
correct user.

Assume for the sake of contradiction that S7 aborts
in H7 because pidU = ⊥, but S6 would successfully ter-
minate in H6. The following behavior by U could have
caused this:

U proved a faulty statement. The correctness pro-
perty of POK would cause this to be detected in H6
by O with overwhelming probability, thus causing
an abort.

U changed the commitment comid in the state-
ment. Then the proof of equivalence between comid
and the rerandomized c̃omid would have to be
forged, thus breaking the statement of Π. This
would also cause an abort in H7, due to the cor-
rectness of POK.

U opened comid to to a different pk′U . In this case,
the binding-property of the commitment scheme
COM would be violated. Since we assumed COM to
be unconditionally binding, this cannot occur.

U created its own signature. In case the user U cre-
ated a signature σ on a new logbook λ′ containing
a public key pk′U 6= pkU without knowing the opera-
tor’s secret key skO, U would break the unforgeabil-
ity of SIG. By requirement on SIG, this is possible
only with probability negligible in κ.

The reverse is also true; if O discards the proof Π
in H6, then he does so too in H7, as this part has not
been changed.

Lemma G.29 (Indistinguishability of H7 and H8).
Let Z be a PPT-environment. Let Z distinguish H7
and H8 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Indistinguishability of those two games trivially
follows; the new machine is only accessible by honest
parties, who follow the protocol. Their protocol descrip-
tion in H8 does not include any access to F (∆)

PUBA. The

PUBA 513

simulator doesn’t access F (∆)
PUBA either, so the two dis-

tributions of H7 and H8 are statistically close and hence,
the best any PPT-environment Z can do is guessing.

Lemma G.30 (Indistinguishability of H8 and H9).
Let Z be a PPT-environment. Let Z distinguish H8
and H9 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Indistinguishability of the two games directly fol-
lows from the facts that (1) both tasks for Init and Sign
Function Parameter that contain the TSA T are exe-
cuted with an honest operator O, and (2) none of the
two aforementioned tasks contain any secret inputs of
T . Hence, the role of T can be played by S9, who cre-
ates the same message distribution. This implies indis-
tinguishability based on the fact that in the view of Z,
the two games are equivalent.

Lemma G.31 (Indistinguishability of H9 and H10).
Let Z be a PPT-environment. Let Z distinguish H9
and H10 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. The rewriting is purely cosmetical, as essentially
the same code is executed on different machines. In H9,
the commitment comfp is computed by O, the signature
σfp is computed by T , and the resp. values are fetched
by O prior to a computation with FPPA. In H10, all
these steps are done by the simulator. Since T is honest
and its key has thus been created by S10 and the rele-
vant information for comfp and σfp are leaked by O, the
honest code can be executed directly.

Finally, the last change induced is the replaced
check with the decommitment information. Since this
is essentially a rewriting, this change is purely cosmeti-
cal and hence undetectable.

Lemma G.32 (Indistinguishability of H10 and H11).
Let Z be a PPT-environment. Let Z distinguish H10
and H11 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. O is a PPT-machine, which executes code based
on the secret input from Z. Knowing this input from
the leak, S11 can execute the code of the honest O by
following the protocol. This trivially leads to statistical
indistinguishability.

Lemma G.33 (Indistinguishability of H11 and H12).
Let Z be a PPT-environment. Let Z distinguish H11

and H12 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. The major change induced in this game hop has
the simulator reporting valid zero-commitments instead
of valid commitments on Function Parameters fp. Let
Z be an environment that distinguishes the two games
from H11 and H12. We construct an adversary A that
breaks the hiding property of COM′, which we model
similar to IND-CPA for encryption schemes. We adapt
the LR-view, stating that the challenger C on the hid-
ing game provides us with an oracle that accepts two
different inputs, but outputs a valid commitment on a
fixed one of them.

The adversary A can thus create the transcript from
H11, but whenever a commitment comfp on the FPs fp
is required, A sends the two messages (0, fp) to C and
obtains a commitment on one of them.

Note that if the commitment always uses the former
entry, A perfectly simulates H12, and if the commitment
always uses the latter entry, A perfectly simulates H11.

It thus follows that the success probability of Z in
detecting this game hop is limited by the probability of
A to break the hiding game, which is negligible.

Lemma G.34 (Indistinguishability of H12 and H13).
Let Z be a PPT-environment. Let Z distinguish H12
and H13 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. The case here is similar to that from
Lemma G.32. S13 can execute the code of any honest
user U , since honest user reveal their identity to S13; by
leaking the secret input, S13 can follow the protocol of
U from H12. Indistinguishability follows.

Lemma G.35 (Indistinguishability of H13 and H14).
Let Z be a PPT-environment. Let Z distinguish H13
and H14 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. The proxy itself has no secrets, so no leaks are
required here. Hence, all messages of P depend only on
messages it has seen before. Since S14 can see those mes-
sages as well and P is a PPT-machine, S14 can execute
the code of honest proxies, thus causing a statistically
indistinguishable distribution from H13.

Lemma G.36 (Indistinguishability of H14 and H15).
Let Z be a PPT-environment. Let Z distinguish H14

PUBA 514

and H15 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Indistinguishability of H14 and H15 follows from
the fact that in both cases the messages depend on ex-
actly the same values. Essentially, the same code is exe-
cuted, only by different machines; the game hop is only
a cosmetical one.

In more detail, the situation looks as follows:

User Registration, U corrupted, O honest. Here,
the definition of F (∆)

PUBA and S15, who calls
F (∆)
PUBA-User Registration with the correct inputs

inU , implies correct behavior. The input inU is cor-
rect due to the extractability and the pid is correct
as a wrong pid would require the user to break the
Co-CDH assumption by computing the id id of the
public key pkU stored in FBB.

Bookkeeping, U corrupted, O honest. In H14, the
user holds its own logbook λ with the correspond-
ing User History UH. In H15, F (∆)

PUBA executes the
same function ∆ on the inputs to F (∆)

PUBA, that the
simulator computed in H14. In H15, the correct –
and latest – input is used by definition of the ideal
functionality. The transfer values (α, s,a) are output
to U and hence visible to S15 and the commitment
and decommitment on a can be computed directly
by S15. If this value would have been the same in
H14 then indistinguishability for any exectution of
the Bookkeeping-task trivially follows; the best any
PPT -environment Z could do here is to guess.
So assume that there is some set of inputs, for which
Z can differentiate between H14 and H15 notably
better than guessing based on the Bookkeeping task.
Since the computation performed by the simulator
in H14 is exactly the same as the one F (∆)

PUBA does
in H15 and Z can not lie about inU (as it is input
into FPPA), the only way Z could try to win here is
by providing different input UH. There are different
ways Z could achieve that:
– Z provides a wrong proof regarding σ. Then, we

could build an environment that either forges a
signature σ and uses an honest witness, or fakes
a proof ΠVal and uses a false witness. The for-
mer would contradict our EUF-CMA require-
ment for SIG, the latter would contradict the
soundness-property required for POK.

– Z provides the correct information of a different
corrupted user U ′. We assumed SIG to be EUF-
CMA-secure, thus assuring unforgeability of the
signature σ on λ. Hence, S15 would extract the

id pkU of U ′. By a lookup from fID, S15 would
get the pid of U ′ and provide input to F (∆)

PUBA

in the name of U ′. Thus, F (∆)
PUBA uses the same

UH, that would have been used by the simulator
in H14.

Hence, assuming that F (∆)
PUBA internally updates

UH correctly (which we will show for the other tasks
as well), this change can not be used to increase the
chance of Z to differentiate.

Outsource, U corrupted, O and P honest. Here,
too, indistinguishability trivially follows from the
correctness of inputs; we merely copied the re-
construction of shares for this scenario from Out-
sourced Analytics to Outsource. Those are input
directly into F (∆)

PUBA, where they are used later. The
shares sh(P)

inU
and sh(O)

inU
are either correct, in which

case F (∆)
PUBA will use them accordingly during Out-

sourced Analytics. Or they are not, in which case
S15 sets inU := ⊥; the reconstruction H14 would fail
during the Outsource-task, which also happens in
H15. With the two parties performing Outsourced
Analytics being honest, no further problems arise
during the subsequent execution. The extraction of
pkU further removes the ability of Z to cheat by
letting S15 send input to F (∆)

PUBA in the name of
the wrong U .

Outsource, U and O honest, P corrupted. In this
case, it is not possible to cheat without being de-
tected. By knowing the input Z would have given to
P, S15 can mimic the behavior of an honest dummy
proxy and forward it into F (∆)

PUBA.
Outsource, U and P corrupted, O honest. The

correct user U can be determined via extraction of
Π, so no Z cannot use two different users for the two
games here. However, in this task, S15 information-
theoretically can not determine the correct input
inU , as it only sees one part sh(P)

inU
of the additive

sharing—the second part, sh(O)
inU

, is sent between
two corrupted parties and hence not visible for S15.
However, in the subsequent Outsourced Analytics
execution, S15 learns the shares that U sent to P
via simulation of FPPA. There, S15 can reconstruct
inU . Note that there is no difference between S15
learning the input during the Outsource task and
inserting it into F (∆)

PUBA right away and S15 learn-
ing it during the Outsourced Analytics task, since
F (∆)
PUBA allows S15 to update the input inU for all

corrupted users before starting the computation
during Outsourced Analytics. Thus, the same input
inU is used in both games.

PUBA 515

Outsourced Analytics, P corrupted, O honest.
Here, S15 still uses the same shares for the oper-
ator in both games and receives (and verifies) all
proxy-shares input into FPPA in both games, there
is no direct change here. The only new thing is
the equivocation of inU for corrupted users. This
change was already discussed above; the remaining
protocol remains equivalent, since S15 only does in
H15 what honest parties would do in H14.

Update, U corrupted, P and O honest. The val-
ues that determine the messages are still equiva-
lent in both games. The values for f (P)

UP and f
(O)
UP

were honestly kept by S15, so both just follow the
same protocol. As nothing is done with the output
of F (∆)

PUBA, distinguishing here is not possible.
Update, U and O honest, P corrupted. The link-

ing number that was sent as leak by U to the simu-
lator in H14 trivially equals fLN(ssid) that was kept
by S15 in H15. During the Outsource task, assum-
ing lin is sampled from a sufficiently large space,
then the probability that the mapping lin → ssid is
unique becomes overwhelming. During the Update
task, this does not change. If this wouldn’t be the
case, Z would have to create a duplicate lin, which,
with Blum coin toss, is possible only with negligible
probability. Even then, S15 in H15 would use the
correct linking number lin. Note further that Z has
no way on how to lie about ssid.

Update, U and P corrupted, O honest. Here, the
simulator only has to ensure that the interaction
between O and U is canonical. Again, nothing here
depends on the output of F (∆)

PUBA, it is only called to
keep the functionality in a consistent space. Hence,
the changes induced here provide no advantage to
Z in distinguishing the two games.

Lemma G.37 (Indistinguishability of H15 and H16).
Let Z be a PPT-environment. Let Z distinguish H15
and H16 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. We claim indistinguishability based on the fact
that the two distributions from H15 and H16 are indis-
tinguishable.

First, notice that the binary outcome of a Blum
coin toss and a uniformly random bit cannot be differ-
entiated better that by guessing, so this change doesn’t
provide any distinguishing advantage.

To support our claim also regarding the new map
fUP, let’s consider all possible corruption cases:

P honest, O honest. In case U is also honest, the
functionality F (∆)

PUBA directly obtains input from
the respective parties during the Outsource task,
which causes F (∆)

PUBA to load the correct UH and to
use the input inU provided by U . Hence, the simu-
lator has to only remember that honest parties pro-
vided input, not what these inputs were. Thus, in-
serting the special symbol ⊥ to keep the list size
consistent suffices, since those values are never used
again.
In case U is corrupted, Z has to send shares sh(P)

(·)

and sh(O)
(·) in the name of U to P and O, respectively.

Neither of them are corrupted, so S16 can see both
messages. Since neither O nor P have secret inputs,
S16 can follow the honest protocols, thus producing
the same distribution.

P corrupted, O honest. If the user U is honest, then
S16 has to send messages containing valid shares
of Us input, without actually knowing the input.
Thus, S16 distributes zero-shares; the environment
Z can see only the part sent to P, not the one sent
to O. Obviously, no environment Z can distinguish
its part of the zero-sharing obtained in H16 from a
valid sharing of the respective user input from H15
better than by randomly guessing. Hence, those dis-
tributions look equivalent. The simulator follows the
protocol of O regarding fOI honestly, which causes
no difference in the distributions.
Against a corrupted user U , S16 directly follows the
protocol of O, thus causing the same distribution.

Since all possible cases cause indistinguishable distribu-
tions, our claim follows.

Lemma G.38 (Indistinguishability of H16 and H17).
Let Z be a PPT-environment. Let Z distinguish H16
and H17 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Again, indistinguishability follows from the fact
that the messages sent are still the same. All the leaks
sent by honest parties to the simulator in H16 are ig-
nored, the messages are independent of any leaks still
sent by the semi-dummy parties: the only change be-
tween H16 and H17 is with respect to inO and inU . Both
are input to F (∆)

PUBA directly by the respective dummy
party and used there accordingly. Hence, the change in-

PUBA 516

duced by H17 doesn’t change the view of Z at all, which
makes indistinguishability trivial.

Lemma G.39 (Indistinguishability of H17 and H18).
Let Z be a PPT-environment. Let Z distinguish H17
and H18 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. We generally assume that parties obtain pairwise
shared keys at the beginning of each task from FKE.
This yields a key k, which they use for symmetric en-
cryption with the IND-CPA-secure symmetric encryp-
tion scheme ENC. Assume for the sake of contradiction
that there is a PPT environment Z, which can distin-
guish between H17 and H18 with advantage 1

2 + ε for
ε /∈ negl(κ). We show that this implies an adversary A
on the IND-CPA experiment of ENC:

We adapt the LR-view, that provides the reduction
algorithm with an algorithm that on inputm0,m1 either
always outputs ENC.Enc(sk,m0), or ENC.Enc(sk,m1).
Z distinguishes H17 and H18, and A can simulate

the views correctly, by providing always the oracle out-
put on input (m0,0), where m0 is the honest transcript;
If the adversary outputs H18, A sends 0 to C. If the
adversary outputs H17, A outputs 1 to C.

Note that A has the same success probability as Z,
that is, 1

2 + ε. Hence, by our assumption, it follows that
ε ∈ negl(κ), which concludes our proof.

Lemma G.40 (Indistinguishability of H18 and H19).
Let Z be a PPT-environment. Let Z distinguish H18
and H19 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. By assumption on the group gp, a public key is
uniformly distributed in G1. Any environment Z distin-
guishing H18 and H19 based on pkU would violate this
assumption. The simulator now lacks knowledge of the
corresponding user id id. However, note that id is never
used in H18, so S19 can create a similar distribution in
H19 independently of id.

Lemma G.41 (Indistinguishability of H19 and H20).
Let Z be a PPT-environment. Let Z distinguish H19
and H20 with probability 1/2 + ε. Then it holds that
ε ∈ negl(κ).

Proof. Indistinguishability easily follows from the fact
that in H19, the only corrupted party is P and the only
value depending on the proxy is lin. Hence, πVerify only
aborts, iff P sent a wrong linking number lin. This is

still the case in H20, thus making indistinguishability
trivial.

Thus, we can now finally prove our final security state-
ment:

Corollary G.42 (System Security). For all environ-
ments Z who statically corrupted a subset U ′ ⊆ U and
the proxy P, it follows that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F

(∆)
PUBA

We have shown in Lemma G.23 to Lemma G.41, that
for an honest operator, the simulator SSysSec acting in
the ideal world can provide a view for Z that is indis-
tinguishable from a real execution of the protocol:

viewZ,A,πPUBA ≈c viewZ,SSysSec,F(∆)
PUBA

Thus, by combining Corollaries G.22 and G.42, our
main claim follows:

Corollary G.43 (Security). Assuming that SIG is
an EUF-CMA-secure structure preserving signature
scheme, SIG′ is an EUF-CMA-secure signature scheme,
POK is a trapdoor dual-mode NIZKPoK scheme, gp =
(G1,G2,GT, e, p, g1, g2) is a pairing-group where the Co-
CDH assumption is hard, COM and COM′ are uncon-
ditionally hiding (and computationally binding) homo-
morphic commitment scheme, where images of COM can
efficiently be inverted, then for all environments Z who
do not corrupt the operator O and the proxy P at the
same time, it holds that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F

(∆)
PUBA

We thus have proven our protocol πPUBA to be at least
as secure as the ideal functionality F (∆)

PUBA.

	PUBA: Privacy-Preserving User-Data Bookkeeping and Analytics
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 High Level Description
	2.1 Parties and Roles
	2.2 Preparatory Tasks
	2.3 Bookkeeping
	2.4 Outsourcing Analytical Computations
	2.5 Security Guarantees
	2.6 The Ideal Functionality IdealFunctionalityFunctionPUBA

	3 Instantiation
	3.1 Cryptographic Building Blocks
	3.2 The User Logbook
	3.3 General Principles
	3.4 Individual Tasks
	3.5 Wrapping the Computation of Function
	3.6 Achieving Security Guarantees
	3.7 Formal Security Statement

	4 Application: Fraud Detection
	5 Implementation
	5.1 Bookkeeping
	5.2 Analytics Computation
	5.3 Discussion
	5.4 Performance of Fraud Detection

	References
	A Discussion: On the Limitations of Our Scheme
	A.1 Verification by the TSA
	A.2 The Case of Aborts
	A.3 On the Expressiveness of Our Application Benchmark

	B Leakage of the Tasks
	C Preliminaries
	C.1 The UC Framework
	C.2 Symmetric Encryption Schemes
	C.3 Commitment Schemes
	C.4 Signature Schemes
	C.5 ZK Schemes

	D The Ideal Functionality
	E Realization of the Functionality
	E.1 Prerequisites
	E.2 Our Protocol

	F Applications
	F.1 Fraud Detection for Mobile Payments
	F.2 Targeted Advertising System

	G Security
	G.1 User Security
	G.2 System Security

