
Proceedings on Privacy Enhancing Technologies ; 2022 (2):517–556

Pankaj Dayama, Arpita Patra, Protik Paul*, Nitin Singh, and Dhinakaran Vinayagamurthy

How to prove any NP statement jointly?
Efficient Distributed-prover Zero-Knowledge
Protocols
Abstract: Traditional zero-knowledge protocols have
been studied and optimized for the setting where a sin-
gle prover holds the complete witness and tries to con-
vince a verifier about a predicate on the witness, with-
out revealing any additional information to the veri-
fier. In this work, we study the notion of distributed-
prover zero knowledge (DPZK) for arbitrary predicates
where the witness is shared among multiple mutually
distrusting provers and they want to convince a veri-
fier that their shares together satisfy the predicate. We
make the following contributions to the notion of dis-
tributed proof generation: (i) we propose a new MPC-
style security definition to capture the adversarial set-
tings possible for different collusion models between the
provers and the verifier, (ii) we discuss new efficiency
parameters for distributed proof generation such as the
number of rounds of interaction and the amount of
communication among the provers, and (iii) we pro-
pose a compiler that realizes distributed proof gener-
ation from the zero-knowledge protocols in the Interac-
tive Oracle Proofs (IOP) paradigm. Our compiler can
be used to obtain DPZK from arbitrary IOP protocols,
but the concrete efficiency overheads are substantial in
general. To this end, we contribute (iv) a new zero-
knowledge IOP Graphene which can be compiled into
an efficient DPZK protocol. The (D + 1)-DPZK proto-
col D-Graphene, with D provers and one verifier, admits
O(N1/c) proof size with a communication complexity of
O(D2 ·(N1−2/c+Ns)), where N is the number of gates in
the arithmetic circuit representing the predicate and Ns
is the number of wires that depends on inputs from two
or more parties. Significantly, only the distributed proof
generation in D-Graphene requires interaction among
the provers. D-Graphene compares favourably with the
DPZK protocols obtained from the state-of-art zero-
knowledge protocols, even those not modelled as IOPs.

Keywords: Zero-Knowledge Proofs, Secure Multi-Party
Computation, Distributed-Prover Zero-Knowledge

DOI 10.2478/popets-2022-0055

Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

1 Introduction
A zero-knowledge protocol tries to convince a verifier
about the truth of a statement without revealing any
additional information. These include proving the cor-
rectness of transactions in cryptocurrencies such as [40]
or validating sensitive web browser data reported dur-
ing telemetry [18, 25]. Still in the dream of a decentral-
ized world, there are multiple co-opetitive entities, i.e.,
collaborating but mutually distrusting entities interact-
ing with each other to obtain insights and maximize
their goals. We envisage applications of zero-knowledge
proofs to enable these mutually distrusting entities to
prove a claim on their joint data. In this setting, the tra-
ditional zero-knowledge protocols are restrictive since
they require a single prover to have the entire witness
needed to generate the proof.

In this work, we study the general setting of dis-
tributed prover zero-knowledge protocols (DPZK) where
multiple co-opetitive entities, each possessing its own
secret data, want to prove to a verifier that their secret
data together satisfy a predicate of common interest.
This is to be done without revealing any information
about their sensitive data to each other or to the veri-
fier.

Formally, we have multiple provers P1, . . . ,PD re-
spectively possessing witnesses w1, . . . ,wD. For a pred-
icate C the provers wish to prove to a verifier that
C(w1, · · · ,wD) = 1. A natural solution for distributed

Pankaj Dayama: IBM Research, E-mail: pankaj-
dayama@in.ibm.com, IBM
Arpita Patra: Indian Institute of Science Bangalore, E-mail:
arpita@iisc.ac.in
*Corresponding Author: Protik Paul: Indian Institute of
Science Bangalore, E-mail: protikpaul@iisc.ac.in
Nitin Singh: IBM Research, E-mail: nitisin1@in.ibm.com
Dhinakaran Vinayagamurthy: IBM Research, E-mail: dv-
inaya1@in.ibm.com

Distributed-prover Zero-Knowledge Protocols 518

proof generation is to start with the prover algorithm
of a single prover protocol and run this algorithm be-
tween multiple provers using multi-party computation
(MPC). This generic construction was discussed by Ped-
ersen [39]. However, the generic construction is unlikely
to be efficient in practice. Known constructions of ef-
ficient zero-knowledge proofs involve expensive compu-
tation (e.g. FFT) over complex mathematical structures
such as fields, groups and elliptic curves, which are ex-
pensive when expressed as an arithmetic circuit. Run-
ning multiparty computation over such circuits with
several parties will be prohibitive. To get around the
inefficiency of a generic construction, some prior works
have proposed efficient distributed proof generation for
restricted class of computations. These include simple
predicates involved in threshold signatures [38], some
sigma protocols [31], combined range proofs [13]. Dis-
tributed proof generation for more general computa-
tion has been considered in [41], but under weaker trust
model involving a trusted setup and majority of the par-
ties being honest [41]. The goal of this paper is to en-
able DPZK for general computation without requiring
trusted setup or honest majority. We summarize our
contributions below.

Our Contributions
– We provide a formal definition of distributed prover

zero-knowledge (DPZK) in the real-ideal world
paradigm. Furthermore, we identify and motivate
relevant efficiency parameters to measure the effi-
ciency of a DPZK protocol.

– We present a compiler that takes any IOP-based
zero-knowledge protocol and converts it to an
“MPC-friendly” zero-knowledge protocol which can
then be used to obtain a DPZK protocol.

– We illustrate the application of our compiler for two
single-oracle IOPs, which is the preferred setting for
our compiler. We obtain the protocol D-Ligero by
using our compiler with the Ligero protocol from
[1]. Building upon the techniques used in Ligero,
we construct a new single-oracle IOP which we call
Graphene. The protocol Graphene admits smaller
proof sizes than Ligero while ensuring efficient ver-
ification. Moreover we show that Graphene can also
be efficiently compiled to yeild a DPZK protocol,
which we call D-Graphene. The zero knowledge pro-
tocols are described as interactive protocols secure
against honest verifiers. Using standard transforms
such as [7, 26], they can be used to obtain succint
non-interactive arguments of knowledge (SNARGs),

which are secure against malicious verifiers in the
Random Oracle model.

Before providing a detailed overview of our work, we dis-
cuss potential real-world applications where distributed
proof generation can be useful.

2 Potential Application:
Multi-Wallet Anonymous
Payments

One application scenario that we highlight is in the con-
text of decentralized anonymous payment networks sim-
ilar to Zcash [40]. In this example, we consider a vari-
ant of Zcash network suitably modified to work with
MPC-friendly zkSNARKs discussed in this paper. The
users on the network create and consume coins via fol-
lowing transactions: (i) Mint transaction which allows
users to introduce coins to the system (after equiva-
lent funds are deposited to a backing pool), (ii) Spend
transaction which allows a user to consume his unspent
coins and create new coins for other users and (iii) Re-
deem transaction which allowed a user to redeem his
unspent coins in exchange for equivalent funds in tra-
ditional banking systems. Our application is concerned
with the Spend transaction. In general an n-ary spend
transaction consumes n input coins and outputs n coins
with matching cumulative value. The output coins may
be assigned to different users. To ensure unlinkability of
input and output coins, coins are created and spent us-
ing separate identifiers, known as coin commitment (cm)
and serial number (sn) respectively. Roughly, cm and sn
for a coin are linked via a trapdoor τ : cm = f1(τ) and
sn = f2(τ) for one-way functions f1 and f2. Knowing
one of them, it is infeasible to infer the other. As part
of a spend transaction, the user supplies serial numbers
sn1, . . . , snn for the n coins being consumed along with
the commitments for the output coins. Additionally, the
user supplies a zero knowledge proof π showing that
each serial number corresponds to a valid and unspent
coin and that the cumulative value of the coins is equal
to the cumulative value of the output coins. By verify-
ing the above zero knowledge proof, the participants on
the network can ensure the validity of the transaction.

The above setup does not allow different users to
pool in their coins as inputs to a spend transaction, for
example, to jointly pay off another entity. The limita-
tion stems from having to generate a zero knowledge

Distributed-prover Zero-Knowledge Protocols 519

proof, for which the user requires knowledge of all the
private information associated with a coin. One way to
work around the limitation is for users to transfer their
respective coins (via spend transactions) to one desig-
nated user, who then initiates a spend transaction con-
suming all the received coins on their behalf. However,
the operation is no longer atomic and the designated
user may not go ahead with his transaction.

Using distributed proof generation, the set of pool-
ing users supply the share of the witness corresponding
to the coins they own, and use a distributed proof gener-
ation protocol proposed in this paper to output a proof
that proves the validity of all the coins to the larger net-
work. This results in an atomic payment between upto
n senders and recipients.

Similarly, for auctions with joint bidding that use
cryptocurrencies, a set of users can leverage DPZK to
produce a proof that they together own coins amounting
to the submitted bid.

3 Overview of Our Work
In the single-prover setting, the efficiency of a zero-
knowledge protocol is usually measured in terms of:
– prover complexity, denoted by tP , which represents

the time complexity of the prover algorithm,
– proof/argument size, denoted by czk that refers to

the amount of communication from the prover to
the verifier,

– verifier complexity, denoted by tV , which represents
the time complexity of the verifier algorithm, and

– round complexity, denoted as rzk, which represents
rounds of interaction between the prover and the
verifier.

However, these parameters do not capture the core bot-
tleneck in the setting of multiple provers. As a first
step in our work, we identify additional parameters with
significant impact in a distributed proof generation. A
lower value of each parameter enhances the practicality
of the distributed protocol.
Proof-generation communication (cpr): This parameter
quantifies the amount of communication between the
provers during the distributed proof generation. This
is meant to capture additional MPC communication
that provers would incur while computing the messages
to the verifier. Using secret-sharing based MPC proto-
cols, [4, 19, 28], this depends on the number of multi-
plications between inputs from different parties (cross-

multiplications) that need to be performed to compute
the messages to the verifier.
Proof generation rounds (rpr): This indicates the num-
ber of MPC executions between the provers during the
distributed proof generation. This is orthogonal to rzk
and may not have any correlation with it. The param-
eter rpr is also of cryptographic interest. If there are
more than one round of prover message generation that
requires MPC, care has to be taken to ensure a secure
composition of the individual MPCs to prove the com-
plete protocol is secure.
Shared circuit complexity: We will now elaborate a bit
more on the number of cross-multiplications in the cir-
cuit that needs to be evaluated distributedly for proof
generation since that is of practical relevance and influ-
ences prover communication (cpr) and proof generation
rounds (rpr). In applications where the initial witness is
canonically partitioned among the provers, that is the
witness w = w1|| . . . ||wD, the term shared circuit de-
notes a sub-circuit consisting of wires, whose values are
functions of inputs from more than one prover.

Consider the circuit for verifying the validity of
the Spend transaction in Section 2. Let rt denote the
Merkle root over the list of coins on the ledger. Thus,
to show that a coin commitment cm corresponds to a
valid coin, one provides an authentication path p from
cm to rt. Hence, the witness wi involves the coin com-
mitment cmi, the trapdoor τi for the coin and authen-
tication path pi from cmi to the root rt. This part of
the witness is completely known to the owner of the
ith coin. Thus the witness w authenticating the coins
against the serial numbers is canonically partitioned
into w1, . . . ,wn and requires no interaction to compute.
On the other hand, secure computation is required to
compute shares of witness wires checking the equality
u1 + . . . + un == v1 + . . . + vn where ui is the value
of the ith output coin and vi denotes the value of the
ith input coin. Clearly, this “shared circuit” constitutes
only a fraction of the entire witness. It would be desir-
able, though not obvious if the secure computation for
computing the proof also depends on the size of shared
circuit instead of the that of the entire circuit. Since ver-
ifying merkle authentication paths using standard hash
functions (like SHA2) incur upwards of 100K gates, the
practicality of distributed proof generation in this case
will be greatly improved if its parameters (like cpr and
rpr) are linear in the size of the shared circuit Ns and
not the total circuit size N .

In summary, the efficiency of a DPZK in the public-
verifiable and non-interactive setting (which is our con-

Distributed-prover Zero-Knowledge Protocols 520

cern) will be measured via cpr, rpr, in addition to the
parameters for the single prover protocol.

3.1 On the Formal Definition of DPZK

Just like the efficiency considerations, the security def-
inition for a DPZK protocol needs to account for addi-
tional interaction. In particular, the security definition
needs to capture the fact that interaction among the
provers to generate the proof does not leak knowledge
about their respective witnesses to other provers. We
come up with an MPC-style definition based on real-
world ideal world paradigm [14, 17, 27, 35] that takes
the above issues into account. In the ideal-world, the
provers deliver their respective part of the witnesses,
and the functionality (that is parametrized with a lan-
guage) combines them and check the assertion of a state-
ment. In the real protocol, the provers participate in in-
stances of MPC for ‘proof-generating functions’ to gen-
erate messages for the verifier. To keep the proof-size in-
dependent of the number of provers, one of the provers
enacts in a special role called aggregator that prepares
the message for the verifier, taking into account commu-
nication from all its fellow provers and communicates
the same to the verifier on behalf of all the provers. We
say our protocol is secure if whatever an adversary (cor-
rupting various subsets of provers and verifier) can do
in real execution can be done in the ideal execution.

We formalize the security of a DPZK protocol and
state the precise trust assumptions under which we real-
ize it in Section 4. Here we foreshadow the important as-
pects: (i) Witness Confidentiality, i.e, a DPZK protocol
ensures that other provers do not learn private inputs of
a prover during distributed proof generation involving
semi-honest provers, (ii) Zero Knowledge, i.e, an honest
verifier learns nothing beyond the truth of the statement
in a DPZK protocol involving semi-honest provers and
(iii) Soundness With Witness Extraction, i.e, an honest
verifier rejects a false statement even if the provers act
maliciously. In practice, the restriction of honest verifier
is overcome by using standard transformations to obtain
non-interactive argument from the interactive proof. Re-
alizing a DPZK protocol for a malicious set of provers
in an interesting future work.

3.2 Compiler for IOP-based Proof Systems

Several recent constructions of efficient SNARKs [6, 7]
are modeled in terms of Interactive Oracle Proofs

(IOPs). In this work, we present a compiler that com-
piles an existing IOP, into an IOP that admits efficient
proof generation by a distributed set of provers. This re-
quires navigating several technical challenges: (i) IOPs
use the abstraction of oracles, wherein the verifier does
not receive the messages from the prover entirely, and
only query a small number of positions and (ii) trans-
forming IOPs to Non-interactive Proof of Knowledge
(SNARKs) requires the use of collision-resistant hash
functions to realize the oracles. The major challenge
that we address is providing the abstraction of oracle
by a distributed set of provers (with shares of the mes-
sage), which is indistinguishable from the one provided
by a single prover (with the complete message).

We use a common aggregator A to interact with the
verifier on behalf of all the provers. Naively, to provide
oracle access to a message, A itself needs to have access
to the complete message. But this violates our privacy
constraints: IOPs ensure privacy only when a “small”
portion of the message is accessible. We resolve this con-
flict by using linear sharing and homomorphic commit-
ments. In all rounds, provers maintain a linear sharing
of the IOP message. They share commitments of their
shares with A, which then has access to the commit-
ment of complete IOP message. To the external verifier,
A presents the commitment as the message and provides
query access to it. While answering queries on the “com-
mitted oracle”, A additionally opens the commitments
that are queried. We present the above construction as
two steps: the first step involves transforming an exist-
ing IOP into an IOP with “homomorphic” oracles. In
the second step, a (D + 1)-DPZK protocol is obtained
where D provers run the prover algorithm of the homo-
morphic IOP protocol (D + 1 indicates that the proto-
col involves D provers and one verifier). These provers
jointly compute the proof where the provers start with a
linear sharing of the witness. We elaborate more below
and defer the details to the later section (Section 5).

Let 〈P,V〉 be an r round IOP-based proof system. P
sends fi = (mi, πi) as the ith round message and V has
oracle access to fi wheremi is given to V in the clear and
V makes bounded number of queries to πi. In the com-
piled protocol, say 〈P ′,V ′〉, P ′ sends f ′i = (mi, π

′
i) at the

ith round where π′i is the commitment of πi. In this step
a homomorphic commitment is used. If V ′ queries some
location to the oracle, oracle sends the committed value,
and P ′ provides the corresponding opening. V ′ checks if
the opening of π′i on the queried locations are correct. If
all the openings are correct then V ′ runs the verification
algorithm of V. Completeness and zero-knowledge of the
newly obtained protocol follow directly from the under-

Distributed-prover Zero-Knowledge Protocols 521

lying protocol, and soundness depends on the soundness
property of the base protocol and the binding property
of the commitment scheme.

To obtain the DPZK from the compiled protocol,
we start with D copies of P ′. Each of these provers com-
putes a linear sharing of (mi, πi). If the mi and πi are
linear functions of the secret, then no interaction among
the provers is required. That is, they locally compute
these shares. If not, they perform secure evaluations of
these values and obtain linear shares. All the provers
locally obtain sharing of (mi, π

′
i) from linear sharing of

(mi, πi). A obtains shares of (mi, π
′
i), combines them,

and sets them as the oracle. The verification algorithm
is the same as in the single prover protocol.

This compiler preserves the proof size and the num-
ber of the rounds. However, the compiled protocol has
an overhead of proof generation and verification time.
This overhead depends on the oracle size, the number
of oracles and the number of rounds.

3.3 Instantiations of Distributed Prover
Zero-Knowledge

We instantiate a few distributed proof generation pro-
tocols. As discussed earlier, a protocol obtained from
the above compiler is more likely to perform better in
a distributed proof generation if the base protocol has
less number of rounds and oracles. Thus we start with
the compiled version of Ligero [1] since it has a constant
number of rounds and only one oracle. Further, we pro-
vide a protocol Graphene by optimizing this newly ob-
tained protocol from Ligero.

Additionally, we discuss the cost of the distributed
protocol obtained from Aurora [6]. This gives a perspec-
tive of the efficiency of a compiled protocol where the
base protocol is a multi-oracle IOP. We study the dis-
tributed proof generation for non-IOP protocols such as
Bulletproofs [13] and Spartan [42]. Bulletproofs achieve
the distributed proof generation naturally without re-
quiring any additional primitives excluding secure mul-
tiplication (which is inherent in all the instantiations).
In the distributed variant of Bulletproofs, provers se-
curely evaluate multiplication of 2 vectors. The size of
these vectors is O(Ns), where Ns is the size of the shared
circuit. Furthermore, each prover sends O(N) field ele-
ments towards the aggregator. In the distributed version
of Spartan, O(N2) multiplications are required among
the provers. However, this construction does not ensure
privacy among the provers. This shows the non-triviality
of the distributed proof generation.

3.4 Graphene: an MPC-friendly
Zero-Knowledge Protocol

To construct Graphene, we adjoin an additional dimen-
sion in the Ligero protocol and modify the encoding,
the linear check, and the quadratic check accordingly.
With this optimization, we break the

√
N (N is the

size of the circuit) barrier of Ligero, following a similar
idea of the concurrent work of Ligero++ [8] where suc-
cinct inner product argument is used. Ligero++ uses
inner product argument from Virgo [46] whereas, we
use Bulletproofs’ [13] inner product argument. Further-
more, for the soundness of Graphene, we provide novel
results in coding theory. By adjoining an additional di-
mension, our protocol gets better flexibility to trade-off
between proof size and verification time. Furthermore,
we organize the witness so that if the shared circuit is
small, then the communication among the provers is re-
quired for N1−2/c multiplications. In contrast, Ligero’s
compiled protocol would require N1/2 multiplications.
Also in distributed version of Ligero and Graphene, each
prover sends O(

√
N) and O(N1−2/c) field elements to-

wards the aggregator respectively. Note that the 3-D en-
coding, obtained by adjoining an additional dimension,
helps in reducing the proof size while keeping the veri-
fication time low. Also, if the size of the shared circuit
is small, this additional dimension aids in reducing the
communication among the provers as well. The details
of Graphene are given in Appendix B.

3.5 Related Work

As mentioned earlier in the introduction, Pedersen [39]
defines the notion of distributed proof generation and
proposes a generic construction using MPC. Over the
years, works have discussed distributed proof generation
for a restricted class of predicates: Desmedt et al. [21]
proposing proofs for graph isomorphism, various works
[20, 33, 38] for proposing threshold signatures, Keller et
al. [31] for a class of sigma protocols. More recently [13]
presented a distributed variant of range proofs which al-
lows several provers to compute a common proof show-
ing their private inputs lie within an interval. However
their protocol does not satisfy our stronger privacy re-
quirements as the size of the proof depends on the num-
ber of provers.

Trinocchio [41] proposes a distributed proof genera-
tion method for Pinocchio [37] but only for honest ma-
jority setting. Moreover, it assumes a trusted setup. The
work DIZK [44] provides a distributed implementation

Distributed-prover Zero-Knowledge Protocols 522

of proof generation to reduce proving time. There is no
notion of privacy among the provers in this setting.

In this work, we study how to achieve distributed
proof generation from other existing works such as
Ligero [1], Aurora [6], Bulletproofs [13], Spartan [42] and
the corresponding challenges. To attain an efficient con-
struction, we start with a Ligero-style protocol and use a
similar approach to [11, 12], where the witness is viewed
as a multi-dimensional matrix. However, we restrict to
3 dimensions since, among these dimensions, only the
smallest one contributes to the proof size, while the re-
maining two aid in better verification time. In our set-
ting, increasing the number of dimensions beyond three
leads to more complicated and costlier proof-generation
and verification protocols without improving any other
parameters. [12] provides linear-time prover with poly-
logarithmic verification, but a significant drawback of
this work is that the soundness error is O(1). Further-
more, [11] obtain linear-time prover by using linear-
time encodable codes. For this, they use a linear code
provided by [23], whose decoding is conjectured in-
tractable. Due to this property, [11] does not satisfy the
proof of knowledge property. Moreover, constructions
with higher dimensions require more rounds and ora-
cles which incur higher overhead in the distributed proof
generation. Ligero++ [8] overcomes Ligero’s O(

√
N)

proof size bottleneck by using Virgo [46] inner product
argument, which uses Aurora style proof system. Thus
the distributed proof generation of Ligero++ is similar
to the distributed variant of Aurora. In our construc-
tion, we use inner product argument from Bulletproofs.
In Table 1, we compare the different metrics of effi-
ciency for all the existing DPZK protocols.

Another recent line of works such as Wolverine [43],
Mac’n’Cheese [2], LPZK [22], QuickSilver [45] focuses
on the scalability of the zero-knowledge proofs. These
works take the “gate-by-gate” paradigm by relying on
Vector Oblivious Linear Evaluations (VOLEs). Wolver-
ine provides a ZK protocol with 4 field elements per
multiplication gate. Mac’n’Cheese further improves it
by providing a protocol with 3 elements per multipli-
cation gate. While QuickSilver and LPZK both achieve
a ZK protocol with 1 element per multiplication gate,
LPZK is computationally heavier. All these works have
linear communication complexity. Additionally, if the
circuit satisfies a certain condition, called “weak notion
of uniformity”, QuickSilver achieves sub-linear commu-
nication. The gate-by-gate paradigm employed in these
works, however, is restricted to interactive protocols.
That is, it does not support non-interactiveness. Fur-
thermore, a common aggregator approach does not work

for these protocols since this would either require the
verifier to communicate with all the provers or the ag-
gregator to learn the whole witness. Overcoming the
problems mentioned above and obtaining distributed
variants of these works is an interesting area to explore,
which we leave as future work.

4 Definition for Distributed Proof
Zero-Knowledge

This discussion will formally define a zero-knowledge
protocol which supports multiple provers and dis-
tributed proof generation. With the eventual goal of pro-
tocols that are non-interactive and publicly-verifiable,
we keep our focus on public-coin (where the verifier only
sends truly random messages) protocols in mind. Our
definition can be extended to private-coin protocols.
Note that, the non-interactiveness concerns the com-
munication between the set of provers and the verifier.
We may still need multiple rounds of communication
just amongst the provers for proof preparation. Con-
sider a language L ∈ NP and the corresponding relation
R such that x ∈ L ⇔ R(x,w) = 1 for some witness w.
Let P1, . . . ,PD be D provers and V be the verifier. A
public- coin DPZK protocol consists of four probabilistic
polynomial time algorithms: (SetUp,Π,A,V) as defined
below.
– SetUp takes as input the security parameter 1λ and

optionally a trapdoor τ and outputs the public pa-
rameters of the system. The trapdoor input as well
as the public parameter can possibly be empty.

– For a R-move DPZK, Π is defined by a sequence
of R D-input and D-output functions/algorithms
{πi}i∈[R], where a move indicates a one-shot com-
munication from the provers to the verifier. The
ith function takes the states of the provers at ith
state i.e. πi(sti1, . . . , stiD). st1

j is set to Pj ’s share of
the witness wj , randomness, the public parameters
and is updated at the end of each move. For every,
πi there is a corresponding aggregator algorithm Ai
that takes the outputs of πi and generates a single
message mi for V for the ith move. Therefore, A
for a R-move DPZK is defined as {Ai}i∈[R]. mi can
possibly be a message in response to a random chal-
lenge that V outputs for ith step. Recall that V only
outputs uniform random challenge in a public-coin
DPZK. Finally, the output of V is either an accept
(1) or a reject (0).

Distributed-prover Zero-Knowledge Protocols 523

Protocols czk rzk tP tV rpr cpr
D-Ligero O(

√
N) O(log(N)) O(N

log(N))E + O(N log(N))M O(
√
N)E + O(N)M 1 O(D ·

√
N + D2 ·max(Ns,

√
N))

D-Ligero++ O(log2 (N)) O(log(N)) O(N log(N))E + O(N log(N))M O(N log(N))E + O(N)M log(N) O((D ·N + D2 ·N) log(N))
D-Aurora O(log2 (N)) O(log(N)) O(N log(N))E + O(N log(N))M O(N log(N))E + O(N)M log(N) O((D ·N + D2 ·N) log(N))

D-Bulletproofs O(log(N)) O(log(N)) O(N)E O(N)E 1 O(D ·N + D2 ·Ns)
D-Graphene O(N1/c) O(log(N)) O(N

log(N))E + O(N log(N))M O(N1−2/c)E + O(N)M 1 O(D ·N1−2/c + D2 ·max(Ns, N1−2/c))

Table 1. Comparison amongst the DPZKs. Here N is the size of the circuit and, c is a positive integer of our choice. D is the number
provers in the DPZK setting. M is to indicate the amount of computation required for a single multiplication on the field elements,
and E is to indicate the amount of computation required for single exponentiation on the group elements, in which Dlog is assumed to
be hard. And Ns denotes the size of the shared circuit.

We note that computing πi, without leaking the states
to each other, may require interaction amongst the
provers. It is important to note that the output of A
alone is sent to the verifier on behalf of all the provers.
In simple terms, A is an aggregator algorithm for the
provers messages and is the key in making the proof-
size delivered to the verifier independent of the number
of provers. The task of accomplishing A can be assigned
to (a) one or a constant-size subset of the provers, (b)
an external entity or even (c) a hardware token. In this
work, we take the route of allowing one of the provers
to execute A.

Intuitively, a DPZK protocol for a language L will
satisfy the following properties: (a) correctness: when
the provers and the verifier are good, the verifier should
accept if and only if the provers hold a valid witness;
(b) soundness: the corrupt provers cannot make the ver-
ifier accept without holding a valid (joint) witness; (c)
zero-knowledge: a corrupt verifier does not learn any
information, except the assertion of the statement; (d)
witness-confidentiality: the witness of the honest provers
remain hidden from a collusion of a corrupt verifier and
a subset of provers. Below, we formally prove security
of such protocols based on real/ideal world paradigm.

4.1 Real-Ideal World Definition for DPZK

We prove the security of our protocols based on the
standard real/ideal world paradigm. Essentially, the se-
curity of a protocol is analyzed by comparing what an
adversary can do in the real execution of the protocol to
what it can do in an ideal execution, that is considered
secure by definition (in the presence of an incorruptible
trusted party). In an ideal execution, each party sends
its input to the trusted party over a secure channel,
the trusted party computes the function based on these
inputs and sends to each party its respective output.
Informally, a protocol is secure if whatever an adver-
sary can do in the real protocol (where no trusted party
exists) can be done in the above described ideal compu-

tation. We refer to [14, 17, 27, 35] for details regarding
the security model. Extending the definition to Univer-
sal Composability (UC)[15] secure model and obtaining
a secure protocol in this model is an interesting question
that we leave as a future work.
The ideal execution: The “ideal" world execution of
DPZK involves parties in P that includes D provers
{P1, . . . ,PD} and a verifier V, an ideal adversary S
who may corrupt various subset of parties in P, and a
functionality FDPZK. The functionality is parametrized
with an NP language L and the corresponding re-
lation/verification function R. Each prover Pξ sends
(x,wξ) to FDPZK, where x is the statement and wξ is the
ξth part of the witness. The verifier V sends x. FDPZK
computes w = w1⊕w2 . . .⊕wD, where ⊕ is the combining
function of the parts of the witness held by the provers
distributedly, and sends R(x,w) to everyone. FDPZK is
described below.

Let the corrupt set be denoted as I. We let
idealFDPZK,S(z),I(~x) denote the random variable con-
sisting of the output pair of the honest parties and S
controlling the corrupt parties in I upon inputs ~x =
(x1, . . . , xD, xV) for the parties and auxiliary input, such
as trapdoor and additional information, z for S.
The real execution: In the real model, the parties
run ΠDPZK protocol. We consider a synchronous net-
work with private point-to-point channels amongst the
provers, and an authenticated broadcast channel. This
means that the computation proceeds in rounds, and in
each round parties can send private messages to other
parties and can broadcast a message to all other parties
and the verifier communicate with a designated prover,
referred as aggregator. We stress that the adversary can-
not read or modify messages sent over the point-to-point
channels, and that the broadcast channel is authenti-
cated, meaning that all parties know who sent the mes-
sage and the adversary cannot tamper with it in any
way. Nevertheless, the adversary is assumed to be rush-
ing, meaning that in every given round it can see the
messages sent by the honest parties before it determines
the messages sent by the corrupted parties.

Distributed-prover Zero-Knowledge Protocols 524

Functionality (The Distributed Prover Zero
Knowledge Functionality FDPZK)

The functionality is parametrized with an NP
relation R of an NP language L.

- Upon receiving input xi = (x,wi) from Pi ∀i ∈
[D] and x from V, do the following: if xi is an
empty string or falls outside the range of the
domain of Pi’s input, reset xi = abort.

- FDPZK sends |xi| for all Pi ∈ [D] and {xi}i∈I
to the simulator S, where for all i ∈ I, Pi is a
corrupt prover.

- If any of the xi is abort, send abort to everyone
in P. Otherwise, compute w = w1⊕w2 . . .⊕wD,
where ⊕ is the combining function of the parts
of the witness held by the provers distributedly
and send R(x,w) to S.

– S sends a command abort or continue to
FDPZK. If FDPZK receives abort it sends abort
to all, otherwise it sends R(x,w) to everyone.

Fig. 1. Ideal Functionality FDPZK

As per ΠDPZK, the parties first produce the out-
put of SetUp. Next, in ith move, the provers run a dis-
tributed protocol to compute πi with respective states
and a single prover, runs Ai on the outputs of π received
from the provers, computes mi and sends the output mi

of the computation to V. mi can possibly be a message
in response to a challenge that V broadcasted. The pro-
tocol ends after R steps.

In summary, the “real” world execution involves
the PPT parties in P, and a real world adversary A
who may corrupt a set of parties in I maliciously. Let
realΠ,A(z),I(~x) denote the random variable consisting
of the output pair of the honest parties and the adver-
sary A controlling the corrupt parties in I in the real
execution, upon inputs ~x (defined in the same way as
the ideal world) for the parties and auxiliary input z for
A.
Security via Indistinguishability of Real and Ideal world:
The definition is given below

Definition 1. Let FDPZK be a (D + 1)-party function-
ality and let ΠDPZK be a (D + 1)-party protocol involv-
ing P for DPZK. We say that ΠDPZK securely realizes
FDPZK if for every PPT probabilistic real-world adver-
sary A, there exists an PPT expected polynomial-time
ideal-world adversary S, such that for every I ⊂ P,

every ~x ∈ ({0, 1}∗)D where |x1| = . . . = |xD|, and ev-
ery z ∈ {0, 1}∗, it holds that:

{
idealFDPZK,S(z),I(~x)

}
≡{

realΠDPZK,A(z),I(~x)
}
.

Note that if the inputs of provers are not of the
same length, then by padding zeros, inputs can be made
of the same length. However, the verifier does not have
any private input, so this requirement is exclusive to the
provers.

When I is {P1, . . . ,PD}, {V}, a proper t-size
subset of {P1, . . . ,PD}, a proper t-size subset of
{P1, . . . ,PD} plus V, the above indistinguishability is re-
ferred as Soundness with Witness Extraction (SoWE),
Zero-Knowledge (ZK), witness-confidentiality (WC),
witness-confidentiality with collusion (WCwC) respec-
tively.

Soundness with Witness Extraction (SoWE)
Let A be the adversary corrupting parties in P =
{P1, . . . ,PD} and ΠDPZK be a secure protocol against
A. Then, by definition 1, there exists a simulator which
emulates the verifier (V) and outputs a view indistin-
guishable from the real-world view. If A interacts with
V which causes V to accept, then the simulator extracts
the input of A such that the output of the functionality
is accept. We refer to this simulator as an “extractor”.
That is, a protocol ΠDPZK is said to have the soundness
with witness extraction property, if corresponding to an
adversary A that corrupts P = {P1, . . . ,PD} and out-
puts an accepting proof for a statement x and relation
R, there exists an extractor E that emulates V and with
overwhelming probability extracts a witness w such that
R(x,w) = 1.
Zero-Knowledge (ZK) Let A be the adversary cor-
rupting the verifier V. A protocol ΠDPZK is said to have
the zero-knowledge property, if there exists a simula-
tor S that outputs a transcript which is indistinguish-
able from a real transcript. Note that a non-colluding
verifier (verifier that does not collude with any of the
provers) learns nothing more than the statement’s as-
sertion, not even the number of provers in the protocol.
Therefore the simulated transcript remains independent
of the number of provers.

Note that if the functionality in Figure 4.1 is mod-
ified such that the witness w is the input of only one
prover and a protocol is secure against a verifier that
learns nothing more than the assertion of the statement
x, has the zero-knowledge property. The simulator for a
corrupt verifier does not use the parameter D to simulate
the view. Our construction satisfies this requirement.

Distributed-prover Zero-Knowledge Protocols 525

Witness-Confidentiality (WC) A protocol ΠDPZK is
said to have witness confidentiality property if an adver-
sary A, corrupting t(< D) out of D provers, learns noth-
ing about the honest provers’ inputs. That is, there ex-
ists a simulator S acting on behalf of the honest provers
and the verifier, which generates a view which is in-
distinguishable from the real-world view of the corrupt
provers.
Witness-Confidentiality with Collusion
(WCwC) A protocol ΠDPZK is said to have witness
confidentiality with collusion property if there exists
a simulator S, corresponding to an adversary A cor-
rupting t provers and the verifier, that plays the role
of the honest provers and generates a view which is in-
distinguishable from the real-world view of the corrupt
parties.

While we give a very strong definition as above, mo-
tivated by several practical aspects, we relax the as-
sumption on adversarial power and will focus on a sub-
set of the above properties for our constructions. We
elaborate below on this.

4.2 Our Setting for DPZK

Our final goal is to produce arguments/proofs that
is non-interactive and publicly-verifiable. We stress
that the non-interactiveness concerns the communica-
tion between the set of provers and the verifier. We
may still need multiple rounds of communication just
amongst the provers for proof preparation. Most of
the applications we foresee work best with these fea-
tures. With these features as end-goal, we will design
public-coin honest-verifier protocols that via generalized
Fiat-Shamir heuristic [7, 26] can be turned into non-
interactive and publicly-verifiable proofs/arguments.
This setting has quite a many interesting bearing for
us. First, in the honest-verifier setting, the verifier is
considered to be only semi-honestly corrupt and so
the ZK property needs to be proven keeping such a
weaker adversary in mind. Second, non-interactiveness
and publicly-verifiability make the two properties WC
and WCwC equivalent, since the verifier has nothing
more to add to the view of the corrupt provers in the
case of collusion (in fact, the view of a corrupt aggrega-
tor itself subsumes the view of a verifier).

Our next relaxation comes in the form of imposing
a semi-honest behaviour on the prover that acts as an
aggregator. We justify the reason as follows. First, our
aggregation function is deterministic. Having a deter-
ministic aggregation procedure reduces the task to just

combining the inputs and has a better promise to be
executed through a hardware token that may not have
randomness sampling capability. The determinism also
in part helps the function to be reproducible by every
prover when the information sent to the aggregator is
sent over a public broadcast channel. This allows an
easy check on the behaviour of the aggregator and a
strong deterrent for the aggregation to be carried out
dishonestly, as reputation may be at stake and applica-
tions typically bind the provers to act rationally (and
hence honestly or semi-honestly) for the common cause
of coming up with an accepting proof.

In summary, we will prove three properties for our
protocols: (a) ZK assuming a semi-honest verifier, (b)
SoWE tolerating malicious provers and (c) WC toler-
ating semi-honest provers and aggregator. Our protocol
can easily be modified to achieve privacy from the ma-
liciously corrupt provers. But we do not have a prov-
ably secure DPZK when the aggregator is maliciously
corrupt. A DPZK which is provably secure when the
provers and the aggregator is maliciously corrupt re-
mains open.

As for the form of witness partition across the
prover’s, we assume that the provers jointly hold an ad-
ditive sharing of the witness w. This is general enough
and well supported by secret sharing protocols.

4.3 Related Notions

Closely related to our notion is the work of [31] which
discusses threshold proofs. This work distributes the
prover’s side of interactive proofs of knowledge over
multiple parties for: (i) improving the security against
theft of the user’s identity, (ii) improving robustness
by ensuring that only a restricted size subset of the
provers may be corrupted. The work of [31] primarily
captures sigma protocols without allowing interaction
among the provers. Our definition captures a broader
class of protocols via allowing interaction amongst the
provers. In other words, threshold proofs are a sub-class
of the protocols we cater to. Also, other than increas-
ing security via a decentralization of the prover (or dis-
tributing prover’s task), our goal is to capture scenar-
ios where multiple provers would like to jointly prove
a statement. Our real-ideal world based definition is
inline with MPC-style definitions and is more power-
ful. [39] also defines distributed proofs. [39] considers
the provers’ witnesses to always be secret shares of a
“global” witness, and hence the provers’ witnesses are
random when the distributed proof generation begins.

Distributed-prover Zero-Knowledge Protocols 526

But, our definition allows for any distribution on the
provers’ witnesses, and this impacts some of our secu-
rity proofs. In other words, any individual share of the
witness used in [39] does not have any stand-alone sig-
nificance. On the other hand, in our security definition,
any individual share of the witness is a private input
of the corresponding shareholder, and it provides pri-
vacy of such individual shares. Another notion, called
multi-prover interactive proofs (MIP), was introduced
by Goldwasser et al. [3]. Here, multiple provers hold
a common witness corresponding to a statement and
provide proofs. MIP is used to reduce the soundness
error. However, the setting in MIP [3, 9] is entirely dif-
ferent from our notion since, in the DPZK setting, no
prover holds a complete witness, and all the provers
jointly provide a proof. A linking paradigm between
zero-knowledge and MPC, called MPC-in-the-head, was
introduced by Ishai et al. [30], where the prover runs
a multiparty protocol in its head and uses the view
of the emulated parties to provide a proof. This pro-
cess requires opening the views/inputs of the parties
performing the MPC. Therefore, this approach cannot
be used to obtain a DPZK protocol since, in this set-
ting, opening a party’s view to the verifier implies com-
promising that party’s privacy. Moreover, the efficiency
of the zero-knowledge construction from MPC-in-the-
head-paradigm depends on the MPC protocol emulated
by the prover, i.e., the protocol decides the number of
parties and corruption scenario (honest majority or dis-
honest majority/semi-honest or malicious). In an arbi-
trary setting, using MPC-in-the-head-paradigm can be
inefficient. One might ask to run MPC to generate the
trusted setup and then use a protocol with a trusted
setup. However, generating a trusted setup via MPC
requires the verifier to participate in the MPC, which
precludes publicly verifiable non-interactive proofs.

5 DPZK Compiler
With recent advancements in zero-knowledge, protocols
in IOP paradigm, such as Ligero [1], Ligero++ [8], Au-
rora [6] to name a few, bring efficiency in proof size,
proof generation time and verification time. Most of
the IOP-based protocols work with only symmetric key
primitives, which leads to better efficiency. Therefore in
search of efficient DPZK, we look into the IOP-based
paradigm. Designing a DPZK directly from an IOP-
based protocol faces the following challenges. (i) Each
prover sets its oracle individually: in this case the verifier

is required to communicate with each prover. It violates
the zero-knowledge requirement of DPZK, specifically,
the verifier learns the number of provers in the protocol.
Furthermore, it increases the proof size and verification
time by a factor of the number of provers. (ii) All the
provers send their messages to one designated prover,
called aggregator who aggregates and sets up the ora-
cle in every round: in this case, the aggregator learns
the private input of an honest prover, which defies the
witness confidentiality property. In our construction, we
use the second approach mentioned above where an ag-
gregator sets up the oracle in every round. To ensure the
witness confidentiality property it is now required that
the aggregator be able to combine the messages from
the provers without learning them in clear. Moreover,
it is also required that a corrupt prover should not be
able to deviate from the messages once the aggregator
sets up the oracle. A homomorphic commitment scheme
offers itself as a primitive which handles the above re-
quirements. Such a scheme can be instantiated using
Pedersen commitment or Pedersen vector commitment.

We encounter another roadblock as follows. In par-
ticular, it need not be the case that oracles in every
round are linear functions of the witness. In cases where
the oracle is a non-linear function, its construction may
involve interactions among the provers. To tackle this,
we use MPC in our construction. Therefore, the IOP
protocols with fewer oracles/rounds are more likely to
provide a better DPZK since the required number of
MPC invocations would be lesser. Below we discuss a
compiler that compiles a single prover ZK protocol to
support distributed proof generation.

5.1 The Compiler

We give a generic construction from an IOP-based proof
system to obtain another proof system that is suitable
for distributed proof generation. The compiled proto-
col use homomorphic oracles. For this, the compiler re-
quires a homomorphic functional commitment scheme
for linear functions. A functional commitment scheme,
FC, over a domain D is a tuple of four probabilistic
polynomial-time algorithms - (SetUp,Com,Open,Verify).
SetUp generates the key ck for the commitment. Com
commits to a message m, Open provides a witness for
a partial or complete opening of the message m, and
Verify on input the commitment value and the witness
outputs 1 if the opening is valid, and 0 otherwise. We
refer the readers to [34] for more details on functional

Distributed-prover Zero-Knowledge Protocols 527

commitments. We now recall the notion of IOP (refer [7]
for more details).

Interactive Oracle Proofs (IOP)
Let 〈P,V〉 be a r-round IOP-based zero-knowledge proof
system. Let stp0 = {x,w}, stv0 = {x}, f0 = ⊥ and
ρp, ρv be the randomness used by P and V respectively.
Then for i = 1 to r, in the ith round: (i) V computes
(ci, stvi) = V f0,f1,...,fi−1(stvi−1, ρv) and sends ci to P. (ii)
P computes (fi, stpi) = P (c1, . . . , ci, stpi−1, ρp). The out-
put of the protocol is b := V f0,f1,...,fr (stvr , ρv), and b

belongs to {0, 1}. 〈P,V〉 has the following properties.
Completeness: For every (x,w) ∈ R, 〈P(x,w),V(x)〉 out-
puts b = 1 with probability 1.
Proof of knowledge: 〈P,V〉 has proof of knowledge prop-
erty if there exists a probabilistic polynomial-time al-
gorithm E (extractor) and a negligible function µ such
that, for every x and P∗, Pr[(x, EP∗(x)) ∈ R] ≥
Pr[〈P∗,V(x)〉 = 1]− µ(|x|).
Zero knowledge: 〈P,V〉 has zero knowledge property if
there exists a probabilistic polynomial-time algorithm S
(simulator) such that for every (x,w) ∈ R, it generates a
transcript τ which is indistinguishable from a transcript
of 〈P(x,w),V(x)〉 to any PPT distinguisher.

Homomorphic IOP
Let 〈P,V〉 be an IOP-based zero-knowledge proof sys-
tem with proof of knowledge property. In general, the
prover in an IOP protocol provides oracle access to
its messages in each round, while the verifier makes
bounded number of queries to these oracles. Without
loss of generality, we will write messages from the prover
as fi = (mi, πi) for the ith round, where mi denotes the
part of message read in entirety by the verifier while πi
is the message to which the verifier has (bounded) query
access.

The compiler takes an IOP-based zero knowledge
protocol 〈P,V〉 and a homomorphic functional com-
mitment scheme Com(·). It outputs a protocol 〈P ′,V ′〉,
where 〈P ′,V ′〉 is obtained in the following way: P ′ and
V ′ run P and V algorithms respectively, in a state pre-
serving manner. That is, P ′ runs P’s first round and
stores the state of P. Upon receiving the challenge
from V ′, P ′ runs the next round of P with the prior
round’s state and updates the state. P ′ follows this for
all rounds. V ′ does the same for V.

At ith round, P ′ sets π′i = Com(ck, πi).
P ′ sends f ′i = (mi, π

′
i). V ′ has oracle access to f ′i

such that it gets mi in clear and queries limited number

of locations of π′i. According to the queried locations,
P ′ provides opening of those locations. That is, if V ′

queries j then P ′ sends Open(ck, π′i[j], aux) to V ′, where
aux denotes auxiliary information.
V ′ sets the challenge c′i = ci. When ci consists of

oracle query j, V ′ receives π′i[j] from the oracle and
Wi,j = Open(ck, π′i[j], aux) from P ′. Further V ′ receives
mi. V ′ checks if Verify(ck, π′i[j],Wi,j , πi[j]) = 1, followed
by the verification algorithm of V.

Compiler from 〈P,V〉 to 〈P ′,V ′〉:

1. P ′ initializes P with the input x and w and V ′ initial-
izes V with the input x. Furthermore, P ′ and V ′ have
common (untrusted) set up for FC (which consists of
group description G and generators g, h for Pedersen
commitment). P ′ sets f ′0 = ⊥, stp0 = {x,w} and V ′ sets
stv0 = {x}. Let ρp and ρv be the randomness of P and
V.

2. Let r = number of rounds of 〈P,V〉. For i = 1 to r, P ′

and V ′ do the following:
(a) V ′ computes (ci, stvi) = V

f ′0,f
′
1,...,f

′
i−1 (stvi−1, ρv)

and sends ci to P ′.
(b) P ′ computes (fi, stpi) = P (c1, . . . , ci, stpi−1, ρp).

Where fi = (mi, πi).
(c) P ′ computes π′i = Com(ck, πi).
(d) P ′ sends f ′i = (mi, π′i).
(e) P ′ sends Wi,j = Open(ck, π′i[j], aux) to V ′, for all

j ∈ J , where J is the set of queried indices.
(f) V ′ checks Verify(ck, π′i[j],Wi,j , πi[j]) = 1.

3. V ′ outputs b = V f
′
0,f
′
1,...,fr (stvr , ρv).

Fig. 2. From IOP to Homomorphic IOP

Lemma 5.1. Let 〈P,V〉 be an IOP-based zero-
knowledge proof system with proof of knowledge prop-
erty. Then the protocol 〈P ′,V ′〉 obtained by using the
above compiler is also an IOP-based zero-knowledge
proof system with proof of knowledge property.

Proof. We prove that 〈P ′,V ′〉 is a secure IOP by
proving completeness, knowledge-soundness and zero-
knowledge.
Completeness of 〈P ′,V ′〉 holds directly from the com-
pleteness of 〈P,V〉. Consider an instance x, where
R(x,w) = 1 for the relation R and P ′ has the witness
w. Now in 〈P,V〉, P sends fi = (mi, πi), where mi is
send to V in clear and V queries some of locations of
πi. Whereas, in 〈P ′,V ′〉, P ′ sends f ′i = (mi, π

′
i). Simi-

Distributed-prover Zero-Knowledge Protocols 528

lar to V, V ′ receives mi. In 〈P,V〉, V receives πi[j] de-
pending on the V’s choice of j. However, in 〈P ′,V ′〉, V ′

receives π′i[j] corresponding to it’s choice, where π′i[j]
is the commitment of πi[j] and gets the corresponding
opening from P ′. V ′ performs Verify to check if the above
opening is correct or not, and for an honest prover, the
opening is always correct. Now, V and V ′ hold the same
data and perform the same verification. If V outputs
b = 1, then V ′ also outputs b = 1. Therefore complete-
ness holds for 〈P ′,V ′〉.
Proof of knowledge of 〈P ′,V ′〉 holds due to the proof
of knowledge property of 〈P,V〉 and the binding prop-
erty of the commitment scheme.

Let P ′∗ be a prover such that 〈P ′∗,V ′(x)〉 = 1. We
claim that there is an PPT extractor E ′ that extracts a
witness w corresponding to the statement x with very
high probability.
E ′ rewinds P ′∗ sufficiently many times to extract πi.
Thereafter we consider following cases on how P ′∗ an-
swers oracle queries for the remainder of the transcript.

Case I: P ′∗ opens π′i[j] to πi[j] for all i, j. Then
consider a prover P∗ sends fi = (mi, πi) where P ′∗

sends f ′i = (mi, π
′
i) and πi = Open(π′i). V ′ in 〈P ′∗,V ′〉

and V in 〈P∗,V〉 performs the same verification. Since
〈P ′∗,V ′(x)〉 = 1, therefore 〈P∗,V(x)〉 = 1. By the proof
of knowledge property of 〈P,V〉, there is an PPT ex-
tractor E that extracts a witness w with very high prob-
ability. E ′ runs the same algorithm and outputs w with
the same probability.
Case II: P ′∗ opens at least one π′i[j] for some i, j to
some value π∗i [j] such that π∗i [j] 6= πi[j]. This breaks
the binding property of the commitment scheme.

Therefore, Pr[(x, E ′P′∗(x)) ∈ R] = Pr[(x, EP∗(x)) ∈
R] − O(|x|)εc, where εc is the probability that any
PPT algorithm can break the binding property of Com.
Pr[〈P ′∗,V ′(x)〉 = 1] = Pr[〈P∗,V(x)〉 = 1]. Due to
the proof of knowledge property of 〈P,V〉, we have
Pr[(x, EP∗(x)) ∈ R] ≥ Pr[〈P∗,V(x)〉 = 1]−µ(|x|). Hence,
Pr[(x, E ′P′∗(x)) ∈ R] ≥ Pr[〈P ′∗,V ′(x)〉 = 1]− O(|x|)εc −
µ(|x|). Set µ′(x) = O(|x|)εc + µ(|x|). Since µ′ is a negli-
gible function, therefore 〈P ′,V ′〉 has the proof of knowl-
edge property.
Zero-knowledge of 〈P ′,V ′〉 holds directly from the
zero-knowledge property of 〈P,V〉.

Since 〈P,V〉 has zero-knowledge property, therefore
∃ a simulator S that generates a transcript that is in-
distinguishable from a real transcript. Using S, we will
construct a new simulator S ′.
S ′ executes S. If τ is the transcript generated by

S. Let πi[j] be the parts of the transcript τ correspond-
ing to the ith round’s oracle response when queried at

the jth location. Then S ′ commits to πi and gets π′i. Fi-
nally the simulated transcript, τ ′, generated by S ′ by re-
placing πi[j] with π′i[j] and adding corresponding open-
ing of π′i[j] is indistinguishable from a real execution of
〈P ′,V ′〉. This ensures the zero-knowledge property.

Distributed Proof Generation
Let 〈P,V〉 be an IOP-based zero-knowledge proof sys-
tem. We define a (D + 1) party protocol 〈Dist(P,D),V〉
with one verifier V and D identical copies of P algorithm,
say P = {P1, . . . ,PD}. In this protocol V receives mes-
sages from one designated party, A, from P and parties
in P can interact among themselves. In 〈Dist(P,D),V〉,
Pξ has input x,wξ for all ξ ∈ D and V has input x. Since
(fi, stpi) = P (c1, . . . , ci, stpi−1, ρp), parties in P jointly
compute P (·) with public inputs c1, . . . , ci and Pξ’s pri-
vate input {stPξi−1, ρPξ}. To obtain a linear sharing of
(fi, stpi), parties in P perform a t-secure MPC, where at
most t(< D) parties can be corrupted. For ξ ∈ [D], each
Pξ obtains (〈fi〉, 〈stpi 〉) where 〈·〉 is a t-out of n sharing.
If P (·) is a linear function then no interaction is required
among the provers. But P (·) need not be a linear func-
tion, in which case communication among the parties in
P is required.

〈Dist(P,D),V〉 from 〈P,V〉:

1. Initiate D+1 party protocol with D copies of P, say P =
{P1, . . . ,PD} and one V. Pξ in P starts the protocol
with inputs (x,wξ) and V’s input is x.

2. Pξ sets stPξ0 = {x,wξ}, A sends f ′0 = ⊥ and V sets
stv0 = {x}.

3. Let r = number of rounds of 〈P,V〉. For i = 1 to r,
parties do the following:
(a) V computes (ci, stvi) = V

f ′0,f
′
1,...,f

′
i−1 (stvi−1, ρv)

and sends ci to all parties in P.
(b) Parties in P jointly perform

(fi, stpi) = P (c1, . . . , ci, {st
Pξ
i−1, ρPξ}ξ∈[D]). Pξ ob-

tains a linear sharing of (fi, stpi), say (〈fi〉, 〈stpi 〉).
(c) Pξ sends 〈fi〉ξ to A, a chosen party from P.
(d) A combines 〈fi〉 to obtain fi. A sends messages fi =

(mi, πi).
4. V outputs b = V f0,f1,...,fr (stvr , ρv).

Fig. 3. From single prover protocol to distributed prover protocol

Distributed-prover Zero-Knowledge Protocols 529

Lemma 5.2. Let 〈P ′,V ′〉 be an homomorphic IOP-
based protocol obtained by using the above mentioned
compiler. If the witness, w, is shared among D provers
P = {P1, . . . ,PD} additively, then 〈Dist(P ′,D),V ′〉 real-
izes FDPZK functionality securely.

Proof. In 〈Dist(P ′,D),V ′〉, P ′ξ obtains 〈fi〉ξ =
(〈mi〉ξ, 〈πi〉ξ). P ′ξ commits to 〈πi〉ξ and obtains 〈π′i〉ξ.
P ′ξ sends 〈f ′i〉ξ = (〈mi〉ξ, 〈π′i〉ξ). Due to the linear-
ity of 〈·〉, the combine operation for A is simple. A
computes mi =

∑
ξ∈[D]〈mi〉 and π′i =

∏
ξ∈[D]〈π

′
i〉

and sends f ′i = (mi, π
′
i). Let J be the set of indices

queried by V ′, where |J | is bounded by the query com-
plexity q of 〈P,V〉. In response to these queries, P ′ξ
sends the corresponding openings. That is, P ′ξ sends
Open(〈π′i〉[j]) = 〈πi〉[j] to A, for all j ∈ J . A sends
πi[j] =

∑
ξ∈[D]〈πi〉[j] to V

′.
Soundness with Witness Extraction: Claim: The
above construction of 〈Dist(P ′,D),V ′〉 has Soundness
with Witness Extraction (SoWE) property if 〈P ′,V ′〉
has proof of knowledge property.

Let P∗ be a set of D provers such that
〈Dist(P ′∗,D),V ′(x)〉 = 1. Let P ′∗ be a prover that sends
f ′i = (mi, π

′
i) where A in 〈Dist(P ′∗,D),V〉 sends the

same f ′i . 〈P ′∗,V ′〉 = 1 since the verification in both
〈Dist(P ′,D),V ′〉 and 〈P ′,V ′〉 is the same. Due to the
proof of knowledge property of 〈P ′,V ′〉, there is an PPT
extractor E ′ that outputs w with high probability. EDP
be the extractor that has oracle access to P∗ and runs
E ′ algorithm which has oracle access to the P ′∗, where
P ′∗ sends the same message as the A in 〈Dist(P ′∗,D),V〉.
If E ′ outputs w with probability p, EDP outputs w with
the same probability p.

Therefore, Pr[(x, EP∗DP (x)) ∈ R] = Pr[(x, E ′P′∗(x)) ∈
R]. Since 〈P ′∗,V ′〉 has proof of knowledge property,
therefore Pr[(x, E ′P′∗(x)) ∈ R] ≥ Pr[〈P ′∗,V ′(x)〉 =
1] − µ′(|x|) and Pr[〈Dist(P ′∗,D),V ′(x)〉 = 1] =
Pr[〈P ′∗,V ′(x)〉 = 1]. Hence, Pr[(x, EP∗DP (x)) ∈ R] ≥
Pr[〈Dist(P ′∗,D),V ′(x)〉 = 1]− µ′(|x|).
Zero-Knowledge: Since in 〈Dist(P ′,D),V ′〉, the veri-
fier’s view does not change, therefore the same simula-
tor works for the distributed prover setting also. Hence
the zero-knowledge property is obvious.
Witness Confidentiality: Let at the ith round,
provers run t-secure MPC, ΠP , to obtain 〈fi〉 and
〈stpi 〉 such that

∑
〈mi〉 = mi and

∑
〈πi〉 = πi, where

fi = (mi, πi).
Corresponding to a corrupted set C of t provers, S

does the following:
– S calls the zero-knowledge simulator, SZK and ob-

tains a transcript τ .

– On behalf of the verifier, S sets the challenge ci
obtained from the transcript τ , and corresponding
response mi and {πi[j]}j∈J , where J be the set of
queried locations. S picks a πi that is consistent
with {πi[j]}j∈J . This is possible due to the bounded
independence property, that is πi remains random
(independent of the witness w) even after revealing
|J | locations of πi.

– If provers run MPC, ΠP to obtain 〈fi〉 and 〈stpi 〉,
and SP be the simulator. Consider {stji−1}j∈C be
the inputs of the corrupted parties to the protocols
ΠP . Then S executes SP with inputs {stji−1}j∈C ,
〈fi〉 and 〈stpi 〉 correspondingly.

– Finally, S sends {〈mi〉j}j /∈C and {〈π′i〉j}j /∈Cto A.

Here note that the view generated by S is indistinguish-
able from a real execution of the protocol. We establish
this by the following argument.

SView1|| . . . ||SViewi||RViewi+1|| . . . ||RViewr
≈ SView1|| . . . ||RViewi||RViewi+1|| . . . ||RViewr

Where SViewi represents the simulated view of the ith
round and analogously RViewi represents the real view
of the ith round. Now using hybrid argument we get
simulated view ≈ real view.

Privacy against A holds due to the hiding prop-
erty of the commitment scheme and the zero-knowledge
property of the underlying protocol. A’s view consists
of (〈mi〉, 〈π′i〉) and Open(〈π′i〉[j]) = 〈πi〉[j] for all j ∈ J ,
where |J | is bounded by the query complexity. The sim-
ulator runs the zero knowledge simulator internally and
obtains mi and πi[j]. It creates additive sharing of mi

and πi[j], that is, 〈mi〉 and 〈πi〉[j]. The simulator picks
〈πi〉 such that the obtained values are consistent. This is
possible since the number of opened values are bounded
by query complexity and that ensures it does not leak
any information about the underlying message. Then
the simulator commits to 〈πi〉 and obtains 〈π′i〉. This
simulated view is indistinguishable from a real world
A’s view.

The compiler preserves the proof size and round com-
plexity of the underlying protocol. The overhead of the
computational complexity depends on the oracle size
and round complexity of the protocol. If 〈P,V〉 has an
oracle of size |πi| in the ith round, then the prover’s com-
plexity in 〈P ′,V ′〉 incurs an additional |πi| group expo-
nentiations in the ith round. Similarly, if the verifier in
〈P,V〉 makes q many queries to the oracle πi, that adds
q group exponentiations in the verifier’s complexity in
〈P ′,V ′〉. In general, 〈Dist(P ′,D),V ′〉 may require O(N)

Distributed-prover Zero-Knowledge Protocols 530

multiplication in each round for most of the protocols.
Note that our construction uses public key cryptogra-
phy heavily. Reducing the usage of it will improve the
efficiency significantly and will lead to a more practical
solution. We believe that obtaining a practical solution
of this problem is an interesting problem and will lead
to further research.

6 DPZK Instantiation
In this section, we present the distributed proof genera-
tion from various protocols. We call the distributed vari-
ant of a protocol “X” as “D-X”. We start with Ligero [1],
where we discuss the efficiency of the distributed prover
variant, D-Ligero. We optimize D-Ligero and provide a
zero-knowledge protocol, named Graphene, that achieves
better proof size, reduced verification time as well as
communication among the provers. We explain the high-
level idea of Graphene in this section and provide the de-
tails in Appendix B. The distributed version of Graphene
is given in Appendix C. We then move on to the state-of-
the-art IOP-based zero-knowledge protocol Aurora [6].
We discuss the efficiency of the compiled version of
Aurora that enables distributed proof generation. This
multi-oracle IOP shows the overhead of the compila-
tion. We also discuss distributed proof generation from
non-IOP protocols such as Bulletproofs [13] and Spar-
tan [42]. We study the efficiency and challenges of the
distributed prover variants of these protocols.

6.1 Protocols with Single Oracle

D-Ligero:
We compile the Ligero protocol, and instantiate the
functional commitment scheme FC by Pedersen vector
commitment scheme. Note that this FC has homomor-
phic property and the Open algorithm outputs the com-
mitted value m as the witness. The Verify algorithm can
be replaced by an inner product argument where m is
the witness.

The proof for an R1CS instance in Ligero consti-
tutes of the check that verifies if the witness w satis-
fies the following condition: x = Aw ∧ y = Bw ∧ z =
Cw∧x ◦ y = z, where is A,B,C matrices are dependent
on the R1CS instance. The above check is segmented
into three checks: (i) Interleaved check, (ii) Linear check,
and (iii) Quadratic check.

In Ligero, P rewrites the vectors w, x, y, z as ma-
trices in a canonical way, that is, the first ` entries
are set as the first row of the matrix, next ` entries
form the second row and so on. This way a matrix is
formed which has, say m rows and ` columns, where
m = ` = O(

√
N). This is referred to as the canonical

matrix form. The prover encodes these matrices using
Reed–Solomon(RS)-encoding to encode each row of the
matrices. In the compiled Ligero protocol, P computes
commitment of each column of these matrices. The com-
mitment scheme takes m length messages. In the orig-
inal Ligero protocol, t (depends on the query complex-
ity) many columns and a linear combination of the rows
are opened to the verifier. This enforces a bound on the
proof size in Ligero. We circumvent this bound by re-
placing the openings with inner product checks.

In the interleaved check, P proves that the rows of
the oracle matrices are codewords. P proves the claim
probabilistically by showing that a random linear com-
bination of the rows is a code word. V uniformly picks
the coefficients for the linear combination. Therefore, if
one or more rows in the matrices are not correct code-
words, then the linear combination is not a codeword
with high probability. Furthermore, V queries the ora-
cle with few indices (the number of queries is bounded
by the security parameter t for zero-knowledge) and re-
ceives the corresponding columns. Upon receiving the
columns, V performs the same linear combination and
checks that it is consistent with the row received from
P. In the linear check, P proves the knowledge of a vec-
tor x such that Ax = b holds for public matrix A and
vector b. This check is reduced to a probabilistic check
rTAx = rT b, where r is a random vector picked by V.
P computes a polynomial p(x) such that the sum of the
evaluations on publicly known points is equal to rT b,
and sends this p(x) to V. V checks if the above condi-
tion holds, and it further checks if p(x) is constructed
correctly from r,A, and w. V validates this by querying
some locations of the oracle. In the quadratic check, P
proves that x ◦ y = z (◦ denotes the Hadamard product
of two vectors), where the corresponding encoded values
are set as oracles. V gives a randomly sampled challenge
vector r to P. P constructs a polynomial p(x) using r
and the encoding polynomials of x, y, z. This polyno-
mial should evaluate to 0 on publicly known points. P
sends the polynomial p(x) to V. Upon receiving p(x),
V checks if the above condition is true or not. Further-
more, it checks whether p(x) is correctly constructed.
For this, it queries some locations of the oracles.

In the compiled protocol, V obtains commitments
corresponding to the queried columns, and instead of

Distributed-prover Zero-Knowledge Protocols 531

sending the openings of those columns, we perform
the inner product argument. Since the opening of the
columns is not sent, we can elongate the size of the
columns without increasing the proof size. The inner
product argument requires communication of O(logN)
elements, where N is the size of the witness vector.
Therefore the newly obtained protocol has proof size
O(`+log(m)), where ` is the size of the row, andm is the
size of the column. However, verifying these inner prod-
ucts requires O(N) exponentiations for a witness vector
of dimension N . Thus increasing the column size unrea-
sonably may result in a better proof size but increases
the verification time, which is undesirable. Furthermore,
for the quadratic check protocol, the polynomial p(x) de-
pends non-linearly on the witness since it requires mul-
tiplication of the polynomials used for encoding x, y.
Therefore, provers in P engage in a secure computation
protocol where they obtain an additive sharing of p(x).
In general, this incurs communication for computing a
circuit of depth 1 with O(N) multiplications. Neverthe-
less, if the size of the shared circuit is sufficiently low
(smaller than the row size in the canonical matrix), then
it is possible to embed the shared circuit in a row. In
this case, MPC is required only for the row that contains
the shared circuit.

Graphene and D-Graphene:
In Graphene, we follow the same approach as in Ligero.
We start with the extended witness w, consider it as
a 3 dimensional matrix of size p × m × s where p 2
dimensional matrices of size m × s, called a slice, are
stacked one after another. In contrast to Ligero, where
each row is encoded separately, we encode each two-
dimensional slice separately. Let ` = s + b, h > 2m,
n > 2` where b is the bounded independence parameter
depending on the query complexity. Let ζ = {ζ1, . . . , ζ`},
η = {η1, . . . , ηn} and α = {α1, . . . , αh} be public set of
points in F. We define G = {(αj , ζk) : j ∈ [m], k ∈ [`]}
and H = {(αj , ηk) : j ∈ [h], k ∈ [n]} to be the interpola-
tion domain and evaluation domain respectively. To en-
code the ith slice, we construct a bivariate polynomial
Qi(x, y) such that Qi(αj , ζk) = w[i, j, k] and degx(Qi) <
m and degy(Qi) < `. The encoded witness U is such that
U[i, j, k] = Qi(αj , ηk) for i ∈ [p], j ∈ [h], k ∈ [n]. Then
each column of each slice is committed using Pedersen
vector commitment. Here we instantiate the homomor-
phic FC with the Pedersen commitment scheme with
message length h. Finally, V is provided oracle access
to the committed matrix. We design interleaved check
protocol over committed values which is performed to-

gether with the linear check and quadratic check. The
details are presented in Appendix B.2. The linear check
is similar to Ligero, where a probabilistic reduction is
performed. V sends a random r followed by both P and
V locally computing R = rTA. Using α,η P, V inter-
polate p polynomials Ri(x, y) such that Ri(αj , ζk) =
R[i, j, k] for i ∈ [p], j ∈ [m], k ∈ [s] and degx(Ri) < m,
degy(Ri) < s for all i. P computes polynomial pj(y) =∑
i∈[p]R

i(αj , y)Qi(αj , y). If the witness is correct then
rTAw = rT b ⇒ 〈R,w〉 = rT b ⇒

∑
j∈[m],k∈[s] pj(ζk) =

rT b. Furthermore, pj(ηk) =
∑
i∈[p]R

i(αj , η)U[i, j, k] due
to the encoding. P constructs a matrix P of size h × n
such that P [j, k] = pj(η) and commits to P . By pro-
viding partial opening using inner product arguments
from Bulletproofs, P proves that the polynomials pj(y)
satisfies the following conditions:
– pj(ηk) =

∑
i∈[p]R

i(αj , η)U[i, j, k] for all j ∈ [h], k ∈
[n]

–
∑
j∈[m],k∈[s] pj(ζk) = rT b

Similar to the linear check, in the quadratic check, P
encodes x, y, z to obtain Ux,Uy,Uz and lets Qix, Qiy, Qiz
be the respective polynomials. P constructs polynomials
Qi such that Qi = Qix ·Qiy−Qiz. Since x◦y = z, we have
Qi(αj , ζk) = 0 for all i ∈ [p], j ∈ [m], k ∈ [s]. To check
this, V sends a random vector r ∈ Fp as a challenge. P
locally computes pj(·) =

∑
i∈[p] riQ

i(αj , ·). Analogous
to the linear check, P forms P matrix and commits to
it, and further proves that P satisfies the following:
– pj(ηk) =

∑
i∈[p] r

i [Ux[i, j, k] · Uy[i, j, k]− Uz[i, j, k]]
for all j ∈ [h], k ∈ [n]

– pj(ζk) = 0 for all j ∈ [m], k ∈ [s]

To obtain D-Graphene, parties in P execute secure
multiplication to get an additive sharing of Ux[i, j, k] ·
Uy[i, j, k].The remaining steps in both linear and
quadratic check do not require any interaction among
the provers. Therefore, the provers interact to evaluate
a circuit with O(N) many multiplications with depth 1.
However, with smaller shared circuit, where the shared
circuit can be embedded into a column of a slice such
that multiplication is required only for that column. The
details of the protocol are given in Appendix B.

6.2 Multiple Oracle IOP

D-Aurora:
In Aurora [6], the size of the oracle is O(N), the proof
size is O(log2N), and number of rounds is O(logN).
Aurora is an IOP-based proof system where almost all

Distributed-prover Zero-Knowledge Protocols 532

the messages from P to V are set as oracles, and V
makes oracle-queries to complete the verification. We
can convert Aurora using our compiler, where we in-
stantiate FC using Pedersen commitment, such that it
supports DPZK. The compiled version retains the or-
acle size, proof size, and the number of rounds. How-
ever, the prover time and the verification time increase
by O(N logN) group exponentiations due to oracle con-
struction and validation costs. The distributed version
needs secure evaluation of circuits with at least depth
one and O(N) multiplication gates in each round.

6.3 Non-IOP Protocols

D-Bulletproofs:
In Bulletproofs [13], the proof of an R1CS instance
is reduced to an inner product argument which is
proved recursively for the succinctness of the proof
size. The prover constructs two vector polynomials
l(X), r(X) of degree 1 using the witness, statement
and challenges from the verifier. It commits to the
quadratic polynomial t(X) = 〈l(X), r(X)〉 where t(X) =∑d
i=0
∑i
j=0〈li, rj〉X

i+j such that li and rj are l(X)’s ith
and r(X)’s jth vector coefficients respectively. The veri-
fier sends a random point x and prover obtains l = l(x),
r = r(x) and t = t(x). Using the inner product argument
the prover proves that 〈l, r〉 = t.

In D-Bulletproofs, provers start with additive shar-
ings of l(X), r(X) and perform secure multiplications
to obtain additive sharing of t(X). This requires O(N)
multiplications. Upon receiving x, each prover locally
obtains a sharing of l, r, t and sends these values to the
aggregator. The aggregator performs the inner product
argument with the verifier to complete the proof.

D-Spartan:
In Spartan [42], an R1CS circuit is represented by 3 ma-
trices A,B,C. A witness w for the true instance satisfies
Az ◦Bz = Cz, where z = (x, 1,w) for public input x. In
Spartan, prover obtains low-degree polynomial exten-
sions of A,B,C, z. Upon receiving the challenges from
the verifier, the prover constructs a polynomial f . Then,
a sum-check is performed to ensure that f satisfies a
consistency condition.

For the distributed proof generation, provers initi-
ate the protocol with an additive sharing of the wit-
ness w and achieve an additive sharing of f by per-
forming O(N2) secure multiplications. In Spartan, zero-
knowledge is achieved by producing proofs of dot prod-

ucts. In the distributed setting, this either requires each
prover to open its witness of the dot product to the ag-
gregator or all the provers produce a distributed proof
for the dot products. The latter case makes it a circular
problem, whereas the former one has a privacy issue.
Even if a similar protocol could overcome the privacy
issue, it would likely still suffer from the high communi-
cation complexity of O(N2) secure multiplication. The
above discussion further emphasizes the non-triviality
of obtaining DPZK from any ZK protocol.

Protocols rpr cpr
D-Ligero 1 O(

√
N)

D-Aurora log(N) O((N log(N))
D-Bulletproofs 1 O(Ns)
D-Graphene 1 O(N1−2/c)

Fig. 4. Comparison amongst the DPZKs. Here N is the size of
the circuit and, c is a positive integer of our choice. ∗ indicates
non-private variant of Spartan.

Here we provide a comparison of DPZK protocols
in the setting where the size of the shared circuit is low
(Ns <

√
N) and the number of provers is small (O(1)).

7 Conclusion
In this work, we presented a formal definition
of distributed-prover zero-knowledge (DPZK) and a
generic compiler that provides a DPZK protocol from
any IOP-based zero-knowledge protocol. We discuss in-
stantiations of this compiler with some recent IOP ZK
protocols, and discuss DPZK versions of some state-of-
the-art non-IOP ZK protocols.

Furthermore, we provided an efficient single-prover
protocol Graphene that achieves DPZK with a minimal
overhead of communication among the provers while re-
taining the proof size and verification time.

In all these protocols, we prove witness confiden-
tiality against semi-honest provers. Extending this to
malicious provers is left as an open problem. Another
interesting future direction is to construct a universal
composable (UC) DPZK.

Acknowledgement
We thank the reviewers for their valuable comments,
which helped improve the paper. Arpita Patra would

Distributed-prover Zero-Knowledge Protocols 533

like to acknowledge financial support from SERB
MATRICS (Theoretical Sciences) Grant 2020, Google
India AI/ML Research Award 2020, DST National Mis-
sion on Interdisciplinary Cyber-Physical Systems (NM-
CPS) 2020 and National Security Council, India.

References
[1] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam.

Ligero: Lightweight sublinear arguments without a trusted
setup. In CCS, pages 2087–2104, 2017.

[2] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl.
Mac’n’cheese: Zero-knowledge proofs for arithmetic cir-
cuits with nested disjunctions. IACR Cryptol. ePrint Arch.,
2020:1410, 2020.

[3] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson.
Multi-prover interactive proofs: How to remove intractability
assumptions. In Providing Sound Foundations for Cryptog-
raphy: On the Work of Shafi Goldwasser and Silvio Micali,
pages 373–410. 2019.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In STOC, pages 1–10,
1988.

[5] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. Cryptology ePrint Archive,
Report 2014/349, 2014.

[6] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner,
M. Virza, and N. P. Ward. Aurora: Transparent succinct
arguments for R1CS. In EUROCRYPT Part I, pages 103–
128, 2019.

[7] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive
oracle proofs. In TCC 2016-B Part II, pages 31–60, 2016.

[8] R. Bhadauria, Z. Fang, C. Hazay, M. Venkitasubramaniam,
T. Xie, and Y. Zhang. Ligero++: A new optimized sublinear
iop. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 2025–
2038, 2020.

[9] A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable
computation using multiple provers. IACR Cryptol. ePrint
Arch., 2014:846, 2014.

[10] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit.
Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In EUROCRYPT Part II, pages
327–357, 2016.

[11] J. Bootle, A. Chiesa, and J. Groth. Linear-time arguments
with sublinear verification from tensor codes. In Theory of
Cryptography Conference, pages 19–46. Springer, 2020.

[12] J. Bootle, A. Chiesa, and S. Liu. Zero-knowledge succinct
arguments with a linear-time prover. 2020.

[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In IEEE SP, pages 315–334, 2018.

[14] R. Canetti. Security and composition of multiparty crypto-
graphic protocols. J. Cryptology, 13(1):143–202, 2000.

[15] R. Canetti. Universally composable security: a new paradigm
for cryptographic protocols. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages
136–145, 2001.

[16] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P.
Ward. Marlin: Preprocessing zksnarks with universal and
updatable SRS. IACR Cryptology ePrint Archive, 2019:1047,
2019.

[17] R. Cohen and Y. Lindell. Fairness versus guaranteed output
delivery in secure multiparty computation. In ASIACRYPT
Part II, pages 466–485, 2014.

[18] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In 14th
{USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17), pages 259–282, 2017.

[19] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryption.
In CRYPTO, pages 643–662, 2012.

[20] Y. Desmedt. Threshold Cryptography, pages 1288–1293.
2011.

[21] Y. Desmedt, G. D. Crescenzo, and M. Burmester. Multi-
plicative non-abelian sharing schemes and their application
to threshold cryptography. In ASIACRYPT, pages 21–32,
1994.

[22] S. Dittmer, Y. Ishai, and R. Ostrovsky. Line-point zero
knowledge and its applications. In 2nd Conference on
Information-Theoretic Cryptography (ITC 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[23] E. Druk and Y. Ishai. Linear-time encodable codes meeting
the gilbert-varshamov bound and their cryptographic appli-
cations. In Proceedings of the 5th conference on Innovations
in theoretical computer science, pages 169–182, 2014.

[24] J. Eberhardt and S. Tai. Zokrates - scalable privacy-
preserving off-chain computations. In IEEE International
Conference on Internet of Things (iThings), pages 1084–
1091, 2018.

[25] S. Englehardt. Privacy-preserving mozilla telemetry with
prio. https://blog.mozilla.org/security/2019/06/06/next-
steps-in-privacy-preserving-telemetry-with-prio/.

[26] A. Fiat and A. Shamir. How to prove yourself: Practi-
cal solutions to identification and signature problems. In
CRYPTO, pages 186–194, 1986.

[27] O. Goldreich. The Foundations of Cryptography - Volume 1:
Basic Techniques. Cambridge University Press, 2001.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or A completeness theorem for protocols with
honest majority. In STOC, pages 218–229, 1987.

[29] J. Groth. On the size of pairing-based non-interactive argu-
ments. In EUROCRYPT, pages 305–326, 2016.

[30] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-
knowledge from secure multiparty computation. In Proceed-
ings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 21–30, 2007.

[31] M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient threshold
zero-knowledge with applications to user-centric protocols.
In ICITS, pages 147–166, 2012.

[32] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster mali-
cious arithmetic secure computation with oblivious transfer.
In ACM CCS, pages 830–842, 2016.

https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/

Distributed-prover Zero-Knowledge Protocols 534

[33] B. King. An efficient implementation of a threshold RSA
signature scheme. In ACISP, pages 382–393, 2005.

[34] B. Libert, S. Ramanna, and M. Yung. Functional commit-
ment schemes: From polynomial commitments to pairing-
based accumulators from simple assumptions. In 43rd Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP 2016), 2016.

[35] Y. Lindell. How to simulate it - A tutorial on the simula-
tion proof technique. In Tutorials on the Foundations of
Cryptography, pages 277–346. 2017.

[36] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error
Correcting Codes. North-Holland Publishing Company, 1978.

[37] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE SP, pages
238–252. IEEE, 2013.

[38] T. P. Pedersen. Distributed provers with applications to
undeniable signatures. In EUROCRYPT, pages 221–242,
1991.

[39] T. P. Pedersen. Distributed provers and verifiable secret
sharing based on the discrete logarithm problem. DAIMI
Report Series, 21(388), 1992. PhD Thesis.

[40] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In IEEE SP, pages 459–474,
2014.

[41] B. Schoenmakers, M. Veeningen, and N. de Vreede. Trinoc-
chio: Privacy-preserving outsourcing by distributed verifiable
computation. In M. Manulis, A.-R. Sadeghi, and S. Schnei-
der, editors, ACNS, pages 346–366, 2016.

[42] S. Setty. Spartan: Efficient and general-purpose zksnarks
without trusted setup. Cryptology ePrint Archive, Report
2019/550, 2019. https://eprint.iacr.org/2019/550.

[43] C. Weng, K. Yang, J. Katz, and X. Wang. Wolverine: fast,
scalable, and communication-efficient zero-knowledge proofs
for boolean and arithmetic circuits. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1074–1091. IEEE,
2021.

[44] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica.
DIZK: A distributed zero knowledge proof system. IACR
Cryptology ePrint Archive, 2018:691, 2018.

[45] K. Yang, P. Sarkar, C. Weng, and X. Wang. Quicksilver:
Efficient and affordable zero-knowledge proofs for circuits
and polynomials over any field. IACR Cryptol. ePrint Arch.,
2021:76, 2021.

[46] J. Zhang and T. Xie. Virgo: Zero knowledge proofs system
without trusted setup. 2019.

A Preliminaries

A.1 Basic Notations

In this section, we describe the notation that will be
followed in rest of the paper. We will often recall the
notation in appropriate places. We use [n] to denote the
set {1, . . . , n}. All the arithmetic circuits and constraint

systems are assumed to be defined over finite field de-
noted by F. For a vector x ∈ Fm, xi and x[i] represent
the ith component of x for i ∈ [m]. For an m × n ma-
trix over F, we use (a) A[i, j] to denote (i, j)th entry,
(b) A[i, ·] to denote the ith row of A. Similarly, for an
p×m× n matrix X, we use (a) X[i, j, k] to denote the
(i, j, k)th entry, (b) X[i, ·, ·] to denote them×nmatrix Y
given by Y [j, k] := X[i, j, k], (c) and analogously X[·, j, ·]
and X[·, ·, k] to denote n× p and p×m matrices respec-
tively. We will refer to sub-matrices X[i, ·, ·] as slices of
X, sub-matrices X[·, j, ·] as slabs of X and sub-matrices
X[·, ·, k] as the planes of X. XT denotes transpose of
a two dimensional matrix X. Inner-product of two vec-
tors X,Y is denoted as 〈X,Y 〉. Inner-product of two
three or two dimensional matrices X and Y , denoted
as 〈X,Y 〉, implies the inner-product of the correspond-
ing one-dimensional vectors obtained from unrolling the
matrices.

Throughout the paper we use several distance met-
rics on vectors and matrices, which we now introduce.
For two vectors x, y of length n, we define ∆(x, y) =
|{i ∈ [n] : xi 6= yi}|. For two m × n matrices A,B
we define ∆1(A,B) = |{j ∈ [n] : A[·, j] 6= B[·, j]}|
and ∆2(A,B) = |{i ∈ [m] : A[i, ·] 6= B[i, ·]}|. For
p × m × n matrices X and Y , we define ∆1(X,Y) =
{k ∈ [n] : X[·, ·, k] 6= Y [·, ·, k]} (no of planes that are
different between the two matrices). Similarly we de-
fine ∆2(X,Y) = |{j ∈ [m] : X[·, j, ·] 6= Y [·, j, ·]}| (no
of slabs that are different between the two matrices).
Let u be a vector and S be a set of vectors. We use
d(u, S) := min{∆(u, v) : v ∈ S} to denote distance be-
tween u and S. Similarly for a matrix (two or three
dimensional) U and a set of matrices M, we define
di(U,M) := min{∆i(U,M) : M ∈M} for i = 1, 2.

We use ←$ to denote drawing from a distribution
uniformly at random.

A.2 Coding Theory primitives

Definition 2 (Linear Codes). Let n, k, d be positive in-
tegers with n ≥ k and F be a finite field. We call L ⊆ Fn

to be an [n, k, d] linear code if L is a k-dimensional
subspace of Fn and d is the minimum value of ∆(x, y)
for distinct x, y ∈ L. Elements of L are conventionally
called codewords.

For an [n, k, d] code L, an n × k matrix G is called a
generator matrix for L iff (i) Gx ∈ L for all x ∈ Fk and
(ii) Gx 6= Gy for x 6= y. Clearly, such a matrix G has
rank k. Similarly an n × (n − k) matrix H such that

https://eprint.iacr.org/2019/550

Distributed-prover Zero-Knowledge Protocols 535

yTH = 0 for all y ∈ L is called a parity check matrix for
L. It is known that the above two matrices exist for any
[n, k, d] linear code L. We will assume that description
of the linear code L includes a generator matrix G and
a parity check matrix H.

Definition 3 (Interleaved Code). For an [n, k, d] linear
code L and a positive integer m, we define a row inter-
leaved code RIC(L,m) to be the set of m×n matrices A
such that each row of A is a codeword in L. Similarly,
we define a column interleaved code CIC(L,m) to be the
set of n×m matrices B such that each column of B is
a codeword in L.

For an [n, k, d] linear code L over F, one can view
RIC(L,m) as an [mn,mk, d] linear code over F or al-
ternatively, as an [n, k, d] code over H, where H ∼= Fm.

Analogous to the row interleaved code, a column
interleaved code CIC(L,m) can be viewed as an [n, k, d]
code over Fm by viewing each row of the codeword B ∈
CIC(L,m) as an element in Fm. Here the distance metric
for RIC(L,m) is given by the matrix distance ∆1, while
the distance metric for CIC(L,m) is given by the matrix
distance ∆2 as defined in Section A.1.

Definition 4 (Product Code). Let Li be an [ni, ki, di]-
linear code for i = 1, 2. We define the product code L1⊗
L2 to be the code consisting of n2 × n1 matrices A such
that each row of A is a codeword in L1 and each column
of A is a codeword in L2.

Note that by definition, the product code L1 ⊗ L2 is
a row interleaved code of L1 and a column interleaved
code of L2, i.e L1 ⊗ L2 = RIC(L1, n2) ∩ CIC(L2, n1). For
A,A′ ∈ L1 ⊗ L2, we define ∆1(A,A′) = |{i ∈ [n1] :
A[·, i] 6= A′[·, i]}| and ∆2(A,A′) = |{i ∈ [n2] : A[i, ·] 6=
A′[i, ·]}|. The distance ∆1 corresponds to distance func-
tion of the code RIC(L, n2), where we view A,A′ as code-
words in RIC(L, n2). Similarly, the distance ∆2 corre-
sponds to the distance function of the code CIC(L, n1).

Definition 5 (Reed-Solomon Code). An [n, k]-
Reed Solomon Code L ⊆ Fn consists of vectors
(p(η1), . . . , p(ηn)) for polynomials p ∈ F[x] of degree
less than k where η1, . . . , ηn are distinct points in F. We
will use RSη[n, k] to denote the Reed Solomon code with
η = (η1, . . . , ηn) and deg(p) < k.

Lemma A.1 ([36]). Suppose a matrix U∗ ∈ Fh×n

satisfies d1(U∗,RIC(RSη[n, `], h)) < e1 ≤ n − ` and
d2(U∗,CIC(RSα[h,m], n)) < e2 ≤ h − m. Then, there

exists U ∈ RSη[n, `] ⊗ RSα[h,m] and sets S1 ⊆ [n],
S2 ⊆ [h] with |S1| > n − e1 and |S2| > h − e2 such
that U∗[i, j] = U [i, j] for (i, j) ∈ S1 × S2.

A.3 Coding Theory Results for Our
Constructions

The following coding theoretic result is the key to test-
ing proximity of a three-dimensional matrix to a well-
formed encoding.

Proposition A.2 (3D Compression). Let L be an
[n, k, d] code over F, and C := RIC(L,m) be a row in-
terleaved code of L. Let Cp denote the set of p ×m × n
matrices U over F such that U [i, ·, ·] ∈ C for all i ∈ [p].
Let U∗ be a p×m× n matrix such that d1(U∗, Cp) > e.
Then for any m× n matrix u0 over F, we have

Pr

[
d1

(
u0 +

p∑
i=1

riU
∗[i, ·, ·], C

)
≤ e

]
≤ d

|F|

for a uniformly sampled (r1, . . . , rp)←$ Fp.

We need several observations to prove the proposition,
which we present next. Throughout this section, let L
be a linear [n, k, d] code over a field H and let F ⊆ H be
a subfield. Let m ≥ 1 be an integer, and let C denote the
row interleaved code RIC(L,m). For a matrix U ∈ Hm×n

and a vector u0 ∈ Hn, let Aff(u0, U) denote the affine
space as:

Aff(u0, U) := {u0 + rTU : r ∈ Fm} (1)

Note that in the above, the scalars in the linear com-
bination come from F.

The following result was proved in [1] for the setting
H = F. For completeness, we present an adaptation of
the proof to the setting where F is a subfield of H.

Lemma A.3. Let L and C be codes as defined, and let
e be a positive integer such that e+2 ≤ |F|. Then for any
u0 ∈ Hn and any U∗ ∈ Hm×n such that d(U∗, C) > e,
there exists v ∈ Aff(u0, U

∗) such that d(v, L) > e.

Proof. For sake of contradiction, assume that d(u, L) ≤
e for all u ∈ Aff(u0, U

∗). Let x be the point in
Aff(u0, U

∗) such that d(x, L) is maximum. By assump-
tion d(x, L) ≤ e. Let v ∈ L be such that ∆(x, v) =
d(x, L). Let E ⊆ [n] be the set of positions where x and
v differ. Since d(U∗, C) > e, there exists row R of U∗

and there is some position j ∈ [n]\E such that Rj 6= 0.
Let α1, . . . , αe+1 be distinct non zero elements in F. Let

Distributed-prover Zero-Knowledge Protocols 536

Ek for k = 1, . . . , e+ 1 denote the set of positions where
x + αkR and v differ. Fix a position i ∈ E. Then there
exists at most one k ∈ [e + 1] such that i 6∈ Ek. By pi-
geon hole principle, there exists k ∈ [e + 1] such that
E ⊆ Ek. We also observe that since αk 6= 0, j ∈ Ek.
Thus d(x + αk, v) > d(x, v), contradicting the choice of
x. This proves the lemma.

Next we prove a result about lines with respect to linear
codes. The result was proved in [1] for the case H = F
and e < d/4. The authors in [1] conjectured the result
for e < d/3. Here we prove the result for e < d/3 when
F can be an arbitrary subfield of H.

Lemma A.4 (Affine Line). Let L be the linear code as
defined. Define an affine line `u,v in Hn as `u,v := {u+
αv : α ∈ F} for u, v ∈ Hn. Then for e < d/3 and any
affine line `u,v:
(i) d(x, L) ≤ e for all x ∈ `u,v, or
(ii) d(x, L) > e for at most d points in `u,v.

Proof. In this proof, let δ(x, y) denote the set of posi-
tions where the vectors x and y differ, and let wt(x)
denote |δ(x,0)|. The above is equivalent to proving that
if there exist d+ 1 distinct points X = {x1, . . . , xd+1} ⊆
`u,v such that d(xi, L) ≤ e for all i ∈ [d + 1], then
d(x, L) ≤ e for all x ∈ `u,v. Assume that there ex-
ists such a set X of d + 1 points. Let `i denote the
point in L closest to xi for i ∈ [d + 1]. Set ηi = xi − li
for all i and let η = {η1, . . . , ηd+1}. By assumption we
have wt(ηi) ≤ e for all i ∈ [d + 1]. Since `u,v is con-
tained in affine span of any two distinct points on it, we
have tuples {(αi, βi)}i∈[d+1]d such that αi + βi = 1 and
xi = αix1+βix2 for i ∈ [d+1]. Note that (α1, β1) = (1, 0)
and (α2, β2) = (0, 1). Observe that αi’s and βi’s must
be distinct for all i ∈ [d+ 1]. We call X as degenerate if
there exist i 6= j satisfying αj = γαi and βj = γβj for
some γ ∈ F\0. We consider two cases:
X is degenerate: Degeneracy implies there exist i 6= j

such that xi = γxj for some γ ∈ F\{0}. In this case
we have 0 = 1

1−γxi −
γ

1−γxj ∈ `u,v. This implies `u,v =
{αxi : α ∈ F} and hence d(x, L) = d(xi, L) ≤ e for all
x ∈ `u,v. Thus the statement of the Lemma holds in this
case.
X is not degenerate: We first prove that `i = αi`1 +βi`2
and ηi = αiη1 + βiη2 for all i ∈ [d+ 1]. We have

`i + ηi = xi = αix1 + βix2 = αi(`1 + η1) + βi(`2 + η2)
= (αi`1 + βi`2) + (αiη1 + βiη2)

Rearranging we have, `i−(αi`1+βi`2) = αiη1+βiη2−ηi.
In the above equation we see that LHS is a vector in

L. Further wt(αiη1 + βiη2 − ηi) ≤ wt(η1) + wt(η2) +
wt(ηi) ≤ 3e < d. Thus the LHS must be equal to 0 and
hence `i = αi`1+βi`2 and ηi = αiη1+βiη2. Observe that
any x∗ ∈ `u,v can be written as x∗ = α∗x1 +β∗x2. Thus
d(x∗, L) = d(α∗x1 + β∗x2, L) ≤ wt(α∗η1 + β∗η2) ≤ |E|
where E denotes the set δ(η1, 0)∪δ(η2, 0). Our final effort
will be to show that |E| ≤ e.
Claim: |E| ≤ e where E = δ(η1, 0)∪δ(η2, 0). We consider
the partition of E into sets E0 = δ(η1, 0)\δ(η2, 0), E1 =
δ(η2, 0)\δ(η1, 0) and E01 = δ(η1, 0)∩δ(η2, 0). Let t = |E|.
Consider a t×(d+1) matrixM = (mij) wheremij = 0 if
jth coordinate (ηji) of ηi is zero, and mij = 1 otherwise.
We will show that each row of M has at most one 0.
Assume that there exists i such that mip = 0 and miq =
0 for p 6= q. We consider three cases:
– If i ∈ E0, the above condition implies αpη

i
1 =

αqη
i
1 = 0, or αp = αq = 0 as ηi1 6= 0 for i ∈ E0.

This contradicts the fact that X is not degenerate.
– The case i ∈ E1 is similar to above.
– If i ∈ E01 we have αpηi1 + βpη

i
2 = αqη

i
1 + βqη

i
2 = 0

which implies αp/βp = αq/βq = −ηi2/ηi1, or αp/αq =
βp/βq which contradicts the fact that X is not de-
generate. Note that all denominators can be argued
to be non-zero for i ∈ E01.

From the above, we conclude that each row has at least
d entries as 1. Counting by columns, we have that each
column has at most e entries as 1 (since wt(ηi) ≤ e

for all i ∈ [d]. Comparing the lower and upper bounds
on the number of 1 entries in the matrix we have td ≤
e(d + 1) which implies t ≤ e + e/d < e + 1. Thus t ≤ e,
as we wanted to show. This completes the proof.

The following result underlies proximity protocols in our
work and in [1]. Intuitively the result states that if a
matrix is far away from the code C, a random linear
combination of its rows is far away from a codeword
in L, and thus the proximity of the matrix to C may
be tested by testing the proximity of a random linear
combination of its rows to L.

Lemma A.5 (Affine Subspace). Let the codes L and C
be as defined and e < d/3 be an integer. Let U ∈ Hm×n

be a matrix such that d(U, C) > e. Then for any u0 ∈ Hn,
Pr
[
d(u0 + rTU,L) ≤ e

]
≤ d/|F| for uniformly sampled

r←$ Fm.

Proof. From Lemma A.3, there exists u ∈ Aff(u0, U)
such that d(u, L) > e. Now we can write Aff(u0, U) as
union of affine lines passing through u. Applying lemma
A.4 to each line, we see that at most d points x on each

Distributed-prover Zero-Knowledge Protocols 537

affine line satisfy d(x, L) ≤ e. Thus, a randomly sampled
point x in Aff(u0, U), equivalently obtained as u0 +rTU

for a randomly sampled vector r ∈ Fm satisfies d(x, L)
with probability at most d/|F|.

We are now in a position to prove Proposition A.2.

Proof of Proposition A.2. Let H denote the field Fm.
Then u0 can be viewed as a point in Hn. Similarly U

can be viewed as p×n matrix over H. We consider C as
[n, k, d] code over H and Cp as the interleaved code of
C over the field H. Then by applying Lemma A.5 with
H = Fm and codes C and Cp in place of codes L and C,
we have the desired bound.

A.4 Vector Commitment Schemes and
Inner-product Arguments

Functional Commitment for linear functions
Let D be a domain and consider linear functions
〈·, ·〉 : Dn × Dn → D defined by 〈x,m〉 =

∑n
i=1 ximi

for x,m ∈ Dn with x = (x1, . . . , xn), m =
(m1, . . . ,mn). A functional commitment scheme FC is
a tuple of four probabilistic polynomial-time algorithms
- (SetUp,Com,Open,Verify).
SetUp(1λ, 1n) : takes in a security parameter λ ∈ N, size
of the message n ∈ poly(λ) and outputs a commitment
key CK.
Com(CK,m) : takes commitment key CK and a n

length message m as input. It outputs a commitment
C for m and auxiliary information denotes aux.
Open(CK,C, aux,x) : takes as input the commitment
key CK, a commitment C (to m), auxiliary information
(possibly containing m) and a vector x ∈ Dn; computes
a witness Wy for y = 〈x,m〉 i.e., Wy is a witness for the
fact that the linear function defined by x when evalu-
ated on m gives y.
Verify(CK,C,Wy,x, y) : takes as input the commitment
key CK, a commitment C, a witness Wy, a vector
x ∈ Dn and y ∈ D; outputs Wy is a witness for C being
a commitment for some m ∈ Dn such that 〈x,m〉 = y

and outputs 0 otherwise.
Correctness: For every CK ← SetUp(1λ, 1n), for

all x,m ∈ Dn, if (C, aux) ← Com(CK,m) and Wy ←
Open(CK,C, aux,x), then Verify(CK,C,Wy,x, y) = 1
with probability 1.

Hiding: For a key CK generated by an honest setup,
for all m1,m2 ∈ Dn with m1 6= m2, the two distri-
butions {CK,Com(CK,m1)} and {CK,Com(CK,m2)}
are indistinguishable.

Function binding: A functional commitment
scheme FC = (SetUp,Com,Open,Verify) for (D, n, 〈·, ·〉)
is said to be computationally binding if any PPT adver-
sary A has negligible advantage in winning the following
game.

1. The challenger generates CK by running
SetUp(1λ, 1n) and gives CK to A.

2. The adversary A outputs a commitment C, a vec-
tor x ∈ Dn, two values y, y′ ∈ D and two witnesses
Wy,Wy′ . We say that A wins the game if the fol-
lowing conditions hold.
– y′ = y;
– Verify(CK,C,Wy,x, y)

= Verify(CK,C,Wy′ ,x, y′) = 1.

Functional commitment is generalization of vector com-
mitments. In our constructions, vector commitment suf-
fices. We initiate FC with Pedersen commitment scheme
or Pedersen vector commitment scheme accordingly.

We define an interactive protocol that allows prov-
ing inner-product relation over committed vectors. For
this we are using Pedersen vector commitment scheme
Com.

We now define the language for inner-product w.r.t.
the above as L ⊆ Fm × C × F given by:

L = {(x, c, z) : ∃ y, r s.t. c = Com(y, r) and 〈x, y〉 = z}

Our language for inner-product is a simpler version of
the one defined in [13], where the first argument is also
hidden in a commitment. The inner product argument
is used to reduce the communication.

We use inner-product argument from Bullet-
proofs [13]. Notably, we use a variant of inner-product
where one of the vector is public and the other one is
private. InnerProduct(pp, x, cm, v; z) is the notation we
will be using through out the paper, where the public
parameter pp consists of group description and genera-
tor, x is a public vector and cm is the commitment of
the private vector z such that 〈x, z〉 = v.

In our work, we are using Pedersen vector commit-
ment scheme, Com with message space Fm, commitment
space G and randomness space F. For a set of gen-
erators g = (g1, . . . , gm, h), the commitment of vector
x ∈ Fm with commitment randomness r ∈ F is given by
Com(x, r) = hr

∏m
i=1(gi)xi . This commitment is homo-

morphic with C = G as the commitment space. This is
a non-interactive perfectly hiding and computationally
binding commitment scheme.

Distributed-prover Zero-Knowledge Protocols 538

Definition 6 (Inner-product Argument [10, 13]). We
call an interactive protocol 〈Pip,Vip〉 consisting of PPT
interactive algorithms Pip and Vip an inner-product ar-
gument for commitment scheme (Gen,Com) if it rec-
ognizes the language L as defined previously. Namely,
〈Pip,Vip〉 satisfies the following:
(i) Completeness: For all A, the following should be

1

Pr

[
(x,w) ∈ R∧

〈Pip(pp, x,w),Vip(pp, x)〉 = 1

∣∣∣∣ pp← Gen(1λ);

(x,w)← A(1λ, pp)

]
(ii) Soundness: For all deterministic polynomial time
P∗ and PPT A, the following should be at most
negl(λ).

Pr

[
x 6∈ L∧

〈P∗(pp, x, s),Vip(pp, u)〉 = 1

∣∣∣∣ σ ← Gen(1λ);

(x, s)← A(1λ, pp)

]

B Graphene Protocol and
Security Proofs

B.1 Primitives for Graphene

This section provides the main primitives that we use
extensively to construct Graphene and its components,
such as LinearCheck and QuadraticCheck. The primitives
are i) Witness Encoding, ii) Codes and matrices, iii)
Commitment of product codewords, iv) Oracle con-
struction, and v) Witness decoding.

Our protocol proves membership in the NP-
complete language specified by rank one constraint sys-
tem (R1CS). An R1CS over a field F is specified by
M × N matrices A,B and C, where the associated
language L(A,B,C) consists of w ∈ FN such that
Aw ◦ Bw = Cw, where ◦ defines element-wise product.
Several recent zero knowledge constructions [6, 16, 29],
and circuit compilers such as [24] naively support the
R1CS formulation. The arithmetic circuit representa-
tion can be expressed as an R1CS by introducing a
constraint for each multiplication gate. We follow the
broad outline of the interactive PCP construction in [1]
which includes: (i) extending the witness, denoted as
extended witness, to the concatenation of values over
all the wires in topological order of an arithmetic cir-
cuit representing the statement, (ii) encoding the ex-
tended witness via suitable error-correcting code, (iii)
checking linear relations on the extended witness, and

(iv) checking quadratic relations on the extended wit-
ness (for the values concerning the wires going into and
coming out from the multiplication gates). Both the lin-
ear and quadratic checks require sub-linear (oracle) ac-
cess to the witness encoding. However, one runs into
challenges in converting the IPCP to a non-interactive
argument when the witness is distributed across several
provers. The naive approach of provers sharing their en-
coded witnesses with an aggregator, which constructs
the oracle breaches privacy among the provers, as these
encodings only support bounded independence, i.e, they
maintain privacy only when a bounded part of the wit-
ness is revealed. We overcome this, and several other
technical challenges in our construction. The core tech-
niques behind our construction are summarized below:
– We use homomorphic commitment over witness en-

coding and provide oracle access to the commit-
ment. This facilitates oracle realization through ag-
gregation.

– We design protocols for checking linear and
quadratic constraints with oracle access to the com-
mitment.

– We come up with new witness encoding scheme, to
facilitate smaller argument size, and reduce com-
munication amongst the provers during distributed
proof generation and verification time.

While our use of homomorphic commitments introduces
expensive cryptographic operations, we keep their usage
strictly sub-linear. In particular, for an argument size of
O(N1/c), the verifier incurs O(N1−2/c) exponentiations.
The prover incurs O(N/ logN) exponentiations essen-
tially while setting up the oracle. We report the con-
crete performance of our new zero-knowledge argument
Graphene in Section:G.

B.1.1 Witness Encoding

We start by describing a randomized encoding of the
prover’s extended witness w ∈ FN (henceforth referred
as witness), where N denotes the number of wires in the
arithmetic circuit representing the NP relation. Let p,m
and s be integers such that N = pms. We canonically
view the witness w as p × m × s matrix with entries
w[i, j, k] for i ∈ [p], j ∈ [m] and k ∈ [s]. The encod-
ing is specified by an independence parameter b, inte-
gers ` := s + b, h > 2m, n > 2`, and sequences ζ,η,α
of distinct points in F with cardinality `, n, h respec-
tively. We write ζ = (ζ1, . . . , ζ`), η = (η1, . . . , ηn) and
α = (α1, . . . , αh). Next we define the interpolation do-

Distributed-prover Zero-Knowledge Protocols 539

main G as G = {(αj , ζk) : j ∈ [m], k ∈ [`]} and eval-
uation domain H as H = {(αj , ηk) : j ∈ [h], k ∈ [n]}.
Finally, we encode w as follows and denote the below
randomized computation as U← Enc(w), where Enc(w)
is the random variable denoting the encodings of w:

(i) First we embed w into a p×m× ` matrix ŵ where
ŵ[i, j, k] = w[i, j, k] for k ≤ s, while the entries
ŵ[i, j, k] for k > s are sampled from F uniformly
at random.

(ii) We construct bivariate polynomials Qi(x, y) with
degx(Q) < m and degy(Q) < ` such that Qi in-
terpolates the slice ŵ[i, ·, ·] on G, i.e, Qi(αj , ζk) =
ŵ[i, j, k].

(iii) Let U denote the p × h × n matrix, where the
slice U[i, ·, ·] consists of evaluations of Qi on H,
i.e, U[i, j, k] = Qi(αj , ηk) for i ∈ [p], j ∈ [h] and
k ∈ [n]. Then U is a randomized encoding of w.

It is easily seen that U[i, ·, ·] ∈ RSη[n, `]⊗RSα[h,m]. We
remark that the above encoding can be computed using
O(N logN) field operations by applying FFT along the
rows and columns of the slices.

The encoding Enc satisfies the following bounded in-
dependence property.

Lemma B.1 (Bounded Independence). Let B ⊆ [n] be
a set of size b. Let U(p, h, b) denote the set of p× h× b
matrices X such that X[i, ·, k] is a codeword in RSα[h,m]
for all i ∈ [p], k ∈ [b]. Then for any p×m× s matrix w,
the random variable UB := {U[·, ·, B] : U←$ Enc(w)} is
distributed uniformly on U(p, h, b).

Proof. It is sufficient to prove that an arbitrary element
from U(p, h, b) is in UB suffices the lemma.

Let U ∈ U(p, h, b). Set U such that U[·, ·, k] = U [·, ·, k]
for all k ∈ B.

For i = 1 to p,
– Construct a bivariate polynomial Qi(x, y) such that

Qi(αj , ζk) = w[i, j, k], ∀j ∈ [m], k ∈ [s], and
Qi(αj , ηk) = U[i, j, k], ∀j ∈ [m], k ∈ B.

– Qi(x, y) is a polynomial such that degx(Qi) < m

and degy(Qi) < `, where ` = s+ b.
– Since, U[i, ·, k] ∈ RSα[h,m], therefore Qi(αj , ηk) =

U[i, j, k], forall j ∈ [h], k ∈ B.
– Set U[i, j, k] = Qi(αj , ηk), forall j ∈ [m], k ∈ [n] \B.

Note that, Dec(U) = w, therefore U[·, ·, B] ∈ UB . This
completes the proof.

B.1.2 Codes and Matrices

For code RSη[n, `], let Λn,` denote the n × ` ma-
trix for the linear transformation that maps a vec-
tor x ∈ F` to the unique codeword y in RSη[n, `]
such that yi = xi for i ∈ [`]. For codes RSα[h,m],
RSη[n, s+ `− 1], RSη[n, 2`− 1], and RSα[h, 2m− 1], let
Λh,m,Λn,s+`−1,Λn,2`−1 and Λh,2m−1 be similar matri-
ces. We denote the corresponding parity-check matrices
as Hn,`,Hh,m,Hn,s+`−1,Hn,2`−1.

We notate the set of three dimensional p × h × n

matrices asMp,h,n and the set of two dimensional h×n
matrices asMh,n. We assume standard distance metrics
on the sets Mp,h,n and Mh,n. Let W1 denote the set
of matrices U in Mp,h,n such that the n-length vector
U [i, j, ·] is a codeword in RSη[n, `] for all i, j. Similarly
let W2 denote the set of matrices U such that the h-
length vector U [i, ·, k] is a codeword in RSα[h,m] for
all i, k. Let W = W1 ∩ W2. W denotes the set of well-
formed encodings and consists of U such that each slice
U [i, ·, ·] ∈ RSη[n, `]⊗ RSα[h,m].

B.1.3 Commitment of Product Codewords

We now discuss the commitment scheme for matrices
in RSη[n, `]⊗RSα[h,m]. Similar scheme works for other
product codes also. A matrix U in the above product
code is completely determined by the sub-matrix U =
{U [j, k] : j ∈ [m], k ∈ [`]} and can be expressed as U =
Λh,mUΛTn,`. A commitment to U is defined as a vector
of commitments c = (c1, . . . , c`) where ck = Com(U [·, k])
is the vector commitment for kth column of U for k ∈
[`]. We use the notation c = (c1, . . . , c`) ← pcCom(U).
Given c, commitment to kth column of U for k > ` can
be computed as ck =

∏
a∈[`](ca)ΛTn,`[a,k], thanks to the

homomorphicity.

B.1.4 Oracle Construction

Unlike prior IOP constructions such as [1, 6], we ad-
ditionally obtain a homomorphic commitment on the
encoded witness Enc(w) and provide oracle access to
the commitment. For all (i, k) ∈ [p] × [n], we com-
pute the commitment cik = Com(Vik) for the vector
Vik = (U[i, 1, k], . . . ,U[i,m, k]) ∈ Fm. Note that we com-
mit to the m-length vector (and not the h-length one)
to save on the number of exponentiations. Finally we
define p× n matrix O as O[i, k] = cik. We write this as
O ← oCom(U). We provide oracle access to O where for

Distributed-prover Zero-Knowledge Protocols 540

a queryQ ⊆ [n], the oracle responds with columnsO[·, k]
for k ∈ Q. Note that ith row of the matrix O commits to
the ith slice of U. This is different from commitment of a
product codeword where only ` columns are committed.

B.1.5 Witness Decoding

We describe a decoding procedure Dec for obtaining a
witness w from an encoding U. Let U ∈ W be a well-
formed encoding. Such an encoding can be decoded slice
by slice, i.e, for each i ∈ [p], we interpolate bivari-
ate polynomial Qi ∈ F[x, y] with degx(Qi) < m and
degy(Qi) < ` such that Qi interpolates U[i, ·, ·] on eval-
uation domain H = {(αj , ηk) : j ∈ [h], k ∈ [n]}. This
can be accomplished using standard algorithms. The de-
coded witness w is then given by w[i, j, k] = Qi(αj , ζk).
We extend the above decoding procedure to recover
from slightly malformed encodings. Let U∗ ∈Mp,h,n be
such that d1(U∗,W1) < e1 < (n−`)/2 and d2(U∗,W2) <
e2 < (h−m)/2. In this case, from the distance property
of the codes RSη[n, `] and RSα[h,m] it follows that there
is at most one U ∈ W such that ∆1(U∗,U) < e1 and
∆2(U∗,U) < e2. Such a U may be efficiently “recovered”
from U∗ using algorithms for Reed-Solomon decoding
(c.f. [36]). We then define Dec(U∗) as Dec(U).

B.2 Graphene

B.2.1 Linear Check

In this section, we will give an overview of the working
of the linear check protocol that is used to construct the
Graphene. In the linear check protocol a prover proves
knowledge of a witness w satisfying a linear constraint of
the form Aw = b for some public A ∈ FM×N and b ∈ FM .
The verifier needs to check that Aw = b holds, this check
can be probabilistically reduced to check rTAw = rT b,
for a randomly chosen r. To do that, the verifier V picks
a random r←$ FM and sends to the prover P as a chal-
lenge. Now P needs to show that 〈rTA,w〉 = rT b. Lets
call R = rTA. Further, this check is reduced to check
inner product arguments. To facilitate such checks, P
encodes and commits to its witness w, using the encod-
ing and commitment described in Section B.1.1, and
Section B.1.3 respectively. P constructs an oracle as de-
scribed in Section B.1.4. As P receives r from V, both
P and V computes R, and view it as a cube of dimen-
sion p × m × s. Then interpolate and obtain bivariate
polynomials Ri(x, y) for i ∈ [p] with degx(Ri) < m

and degy(Ri) < s satisfying Ri(αj , ζk) = R[i, j, k].
Let Qi, i ∈ [p] denote the polynomials used in inter-
polating (and encoding) witness w. Then w[i, j, k] =
Qi(αj , ζk). Therefore the check 〈R,w〉 = rT b reduces to∑
i,j,k R

i(αj , ζk)Qi(αj , ζk) = rT b where i, j and k run
over indices in [p], [m] and [s] respectively. P computes
pj(y) =

∑
i∈[p]R

i(αj , y) · Qi(αj , y), for j ∈ [h]. Here
all these polynomials are of degree less than s + ` − 1.
To reduce the communication instead of sending all
pj(y) polynomials, P constructs an intermediate ma-
trix P of dimension h× n such that P [j, k] = pj(ηk) for
j ∈ [h], k ∈ [n]. Note that P is a product codeword from
RSη[n, s+ `− 1]⊗ RSα[h, 2m− 1] and fully determined
by sub-matrix P consisting of the first 2m− 1 rows and
the first s+ `− 1 columns of P .
Reduction to inner product argument:Now P commits to
the matrix P using commitment for product codeword,
described in Section B.1.3 that is, (c1, . . . , cs+`−1) ←
pcCom(P), and sends (c1, . . . , cs+`−1) to V, which they
use later in the inner product argument. The check
〈R,w〉 = rT b can be viewed as a following inner product
〈∗, Pϕ〉 = rT b, where ∗ and ϕ are public vectors and
so the commitment for Pϕ can be computed given the
commitment of P . Let Φ be a s× (s+ `−1) matrix such
that [pj(ζ1), . . . , pj(ζs)]T = Φ[pj(η1), . . . , pj(ηs+`−1)]T

for j ∈ [h]. We have:[∑
j∈[m]

pj(ζ1), . . . ,
∑
j∈[m]

pj(ζs)
]T = ΦPT [1m||0m−1]T

So the check reduces to
∑
k∈[s],j∈[m] pj(ζk) = rT b re-

duces to

〈[
∑
j∈[m]

pj(ζ1), . . . ,
∑
j∈[m]

pj(ζs)]T , [1s]T 〉 = rT b

⇒ 〈[1m||0m−1]T , P × ΦT × [1s]T 〉 = rT b

Here, ∗ = [1m||0m−1]T and ϕ = ΦT × [1s]T are pub-
lic vectors. Given commitment of P , c1, . . . , cs+`−1,
the commitment to Pϕ can be computed as cm =∏s+`−1
k=1 (ck)ϕk . In the protocol, the prover initially

commits to a random P0 ∈ F2m−1 subject to
〈1m||0m−1, P0〉 = 0, and uses βP0 + Pϕ as witness in
the inner product protocol. Here β←$ F\{0} is ran-
domly chosen by the verifier. This randomization pre-
cludes the need for the inner-product argument to be
zero-knowledge, and as we will later see, helps reduce
interaction among provers in its distributed variant.
Consistency of oracle π and P via U: The verifier ad-
ditionally needs to determine if the committed P and
the oracle π are consistent or not. The verifier proceeds

Distributed-prover Zero-Knowledge Protocols 541

to check the consistency at randomly sampled t posi-
tions given by {(ju, ku) : u ∈ [t]} from [h] × [n] for a
t = O(λ). It queries the oracle for the columns π[·, ku]
and the prover for vectors Xu = U[·, ju, ku] for u ∈ [t].
For u ∈ [t], let 1ju denote the unit vector in Fh with
1 in the position ju. The prover and the verifier run
inner-product arguments to establish the following:

1. 〈1ju , P [·, ku]〉 =
∑
i∈[p]R

i(αju , ηku)Xu[i] for u ∈
[t], with cku (which can be computed from
c1, . . . , cs+`−1, as in Section B.1.3) as the commit-
ment of P [·, ku].

2. 〈1ju ,U[i, ·, ku]〉 = Xu[i] with π[i, ku] as the
commitment for U[i, ·, ku]. A minor technical-
ity arises since the commitment is for Viku =
[U[i, 1, ku], . . . ,U[i,m, ku]] and not for U[i, ·, ku]. Since
U[i, ·, ku] = Λh,mViku , the above inner-product re-
duces to 〈1TjuΛh,m, Viku〉 = Xu[i].

The checks for each u ∈ [t] can be aggregated, leading
to one inner-product check for each u ∈ [t].
Proximity Check for Oracle: This check forces a prover
to commit to an encoding which is “close” to well-
formed encodingW. To check proximity, the verifier ini-
tially sends a vector ρ←$ Fp and asks the prover to send
commitments c̃ = (c̃1, . . . , c̃`) to Ũ =

∑
i∈[p] ρiU[i, ·, ·]

computed as c̃k =
∏
i∈[p](π[i, k])ρi ∀k ∈ [`]. It then

checks:∏̀
a=1

(c̃a)ΛTn,`[a,ku] =
p∏
i=1

(π[i, ku])ρi for u ∈ [t]. (2)

It can be seen that for an honest computation, both
the commitments open to the vector

∑
i∈[p] ρiViu where

Viu = (U[i, 1, ku], . . . ,U[i,m, ku]).

B.2.2 Quadratic Check

Here we will describe the quadratic check protocol,
which aids in validating the honest evaluation of the
circuit’s multiplication gates. P proves the knowledge
of wx, wy and wz in FN satisfying wx ◦ wy = wz. This
protocol is similar to the linear check protocol, described
in Section B.2.1. Here also it has 3 stages, i) Reduction
to inner product argument, ii) Consistency of the oracle
and the intermediate matrix P , and iii) Proximity check.
Here V checks if the polynomials Qi = Qix ·Qiy −Qiz in-
terpolate to 0m×s on the set {(αj , ζk) : j ∈ [m], k ∈ [s]}
for all i ∈ [p]. In three simple steps, we derive a sim-
ple probabilistic check below compressing in all the

three dimensions. First, the above check reduces to
checking that the polynomial F :=

∑
i∈[p] riQ

i inter-
polates 0m×s on the same set for a randomly sam-
pled r ∈ Fp. Second, this further reduces to check-
ing p(·) :=

∑
j∈[m] γjF (αj , ·) interpolates 0s on ζ for

randomly sampled γ = (γ1, . . . , γm) ∈ Fm. Third, this
further reduces to checking 〈τ, p(ζ)〉 = 0 for a random
τ ∈ Fs. Similar to the linear check protocol, P constructs
the intermediate matrix P , which is in the product code
RSη[n, 2`− 1]⊗RSα[h, 2m− 1], and commits to it simi-
larly. Let (c1, . . . , c2`−1)← pcCom(P). Similar to the lin-
ear check, quadratic check reduces to 〈[γ||0m−1]T , z〉 =
0, where z = βP0 + Pϕ and P0 is a random vector such
that P0[j] = 0 for j ∈ [m], and ϕ = Φ × τ . The differ-
ences are: (a) p(·) =

∑
j∈[m] γjFj(αj , ·) is a polynomial

of degree < 2` − 1, (b) Φ is a s × 2` − 1 matrix that
takes p(η) to p(ζ), where p(η) = [p(η1), . . . , p(η2`−1)]
and p(ζ) = [p(ζ1), . . . , p(ζs)]. Commitment c0 of P0 is
sent to the verifier a-priori. Therefore, commitment to
z is cm = cβ0

∏2`−1
k=1 (ck)ϕk .

Consistency of the oracles and P : Similar to linear
check, the verifier checks the consistency at randomly
sampled positions Q = {(ju, ku) : u ∈ [t]} ⊂ [h] ×
[n]. It queries the oracles for the columns πa[·, ku] for
a ∈ {x, y, z} and u ∈ [t]. Then it queries the prover
for vectors Xu = Ux[·, ju, ku], Yu = Uy[·, ju, ku], Zu =
Uz[·, ju, ku] for u ∈ [t]. Let 1ju denote the unit vector
in Fh with 1 in the jthu position. The prover and verifier
run inner-product arguments to establish:

1. 〈1ju , P [·, ku]〉 =
∑
i∈[p] ri[Xu[i] · Yu[i] − Zu[i]] for

u ∈ [t] with cku which can be computed from
c1, . . . , c2`−1, as in Section B.1.3) as the commitment
of P [·, ku].

2. 〈1ju ,Ux[i, ·, ku]〉 = Xu[i], 〈1ju ,Uy[i, ·, ku]〉 = Yu[i]
and 〈1ju ,Uz[i, ·, ku]〉 = Zu[i]. These inner-products
check the consistency of the vectors sent by the
prover with the respective oracles. These can be ver-
ified in a similar manner to that in the linear check
protocol.

Proximity Check for Oracle: We combine the proxim-
ity check for the three encodings Ux,Uy and Uz. The
verifier sends a vector ρ←$ F3p and asks the prover
to commit to the matrix Ũ =

∑p
i=1[ρiUx[i, ·, ·] +

ρp+iUy[i, ·, ·] + ρ2p+iUz[i, ·, ·]] by sending commitments
c̃ = (c̃1, . . . , c̃`), which are computed as c̃k =∏p
i=1(πx[i, k])ρi · (πy[i, k])ρp+i · (πz[i, k])ρ2p+i ∀k ∈ [`].

Distributed-prover Zero-Knowledge Protocols 542

Thereafter, for u ∈ [t], the verifier checks:∏
a∈[`]

c̃
ΛT
n,`

[a,ku]
a =

p∏
i=1

(πx[i, ku])ρi (πy [i, ku])ρp+i (πz [i, ku])ρ2p+i

(3)

B.2.3 Graphene

We use the linear and quadratic check protocols from
Section B.2.1 and Section B.2.2 respectively to describe
an efficient protocol for rank one constraint system
(R1CS). Let A,B and C be M ×N matrices. We prove
existence of w ∈ FN satisfying Aw ◦Bw = Cw by show-
ing existence of wx,wy,wz and w ∈ FN satisfying the
linear relations Aw = wx, Bw = wy and Cw = wz and
a quadratic relation wx ◦ wy = wz. We probabilistically
reduce the three linear relations to the linear relation:

[
γxI |γyI |γzI | − (γxA+ γyB + γzC)

]
wx
wy
wz
w

 = 0 (4)

for γx, γy, γz ←$ F. As before, we view wx,wy,wz and w
as p×m× s matrices. Let w denote the 4p×m× s ma-
trix formed by stacking wx,wy,wz and w along “slices”.
The encoding U ← Enc(w) and commitment to the en-
coding O ← Com(U) are computed as in Sections B.1.1
and B.1.4. Note that O is a 4p × n matrix. Let D be
the M × 4N sized matrix given in Equation 4. For the
R1CS instance (A,B,C), P and V run linear check pro-
tocol B.2.1 forDw = 0 and run quadratic check protocol
for wx ◦ wy = wz.

B.2.4 Linear Check Protocol
Linear Check Soundness
Lemma B.2 (Soundness). For all polynomially
bounded provers P ∗ and all π ∈ Gp×n, A ∈ FN×N , b ∈
FN , there exists an expected polynomial time extractor
E with rewinding access to transcript tr = 〈P ∗(·),Vπ(·)〉
such that E either breaks the commitment binding or
outputs a witness with overwhelming probability when-
ever P ∗ succeeds, i.e,

Pr

[
U = Open(π)∧

Aw = b

∣∣∣∣∣ σ ← Gen(1λ)
U← E tr(x, σ)
w← Dec(U)

]
≥ ε(P ∗)− κlc(λ)

where
ε(P ∗) := Pr

[
〈P ∗(x, σ),Vπ(x, σ)〉 = 1

∣∣σ ← Gen(1λ)
]

denotes the success probability of P ∗, κlc denotes a neg-
ligible function, and x denotes the tuple (A, b,M,N).

LinearCheck(pp, A ∈MM,N , b ∈ FN , [π]; U):
Relation: U = Open(π) ∧Aw = b for w = Dec(U).

1. (i) V → P: ρ←$ Fp. (ii) P computes: Ũ =∑
i∈[p] ρiU[i, ·, ·], commitments c̃1, . . . , c̃` as c̃k =∏
i∈[p](π[i, k])ρi ∀k ∈ [`]. (iii) P → V: c̃ = (c̃1, . . . , c̃`).

2. V → P: r←$ FM .
3. P and V compute: Polynomials Ri, i ∈ [p] interpolating

R = rTA as in Section B.2.1.
4. P (a) computes matrix P from R and U as de-

scribed in Section B.2.1, (b) samples P0 ←$ F2m−1,
ω0 ←$ F and computes c0 ← Com(P0, ω0), (c) computes
(c1, . . . , cs+`−1)← pcCom(P).

5. P → V: c0, c1, . . . , cs+`−1.
6. V → P: Q = {(ju, ku) : u ∈ [t]} for (ju, ku)←$ [h]× [n]

for u ∈ [t].
7. V → π: {ku : u ∈ [t]}.
8. P → V: U[·, ju, ku] for u ∈ [t].
9. π → V: π[·, ku] for u ∈ [t].

10. V → P: δ ←$ Fp, β ←$ F\{0}.
11. P and V run inner product arguments to check:

(a) InnerProduct(pp,1TjuΛh,2m−1, cmku , vu;P [·, ku])

for u ∈ [t] where cmku =
∏s+`−1
a=1 c

ΛT
n,s+`−1[a,ku]

a ,
vu =

∑p

i=1R
i(αju , ηku)U [i, ju, ku] (check consis-

tency of P with π).
(b) InnerProduct(pp, 1m||0m−1, cm, rT b; z) where z =

βP0 + Pϕ and cm = cβ0 ·
∏s+`−1
a=1 c

ϕk
k

(check the
condition rTAw = rT b).

(c) InnerProduct(pp,1TjuΛh,m, Cu, 〈δ,Xu〉;Vu) for u ∈
[t] where Cu =

∏p

i=1(π[i, ku])δi and Vu =∑
i∈[p] δiU[i, ·, ku] (consistency of Xu with π).

12. V checks:
∏`

a=1(c̃a)ΛT
n,`

[a,ku] =
∏p

i=1(π[i, ku])ρi for
u ∈ [t] (check proximity of U to W1).

13. V accepts if all the checks succeed.

Fig. 5. Linear Check Protocol

Proof. Suppose the oracle π commits to U. U can be
“extracted” by the appropriate extractor. Note that
U ∈ (W2)p as a commitment implicitly corresponds to
such a matrix. Let e < (n − `)/3 be a parameter. First
we show that an adversarial prover succeeds with neg-
ligible probability if d(U, (W1)p) > e. Second, we show
that for d(U, (W1)p) ≤ e, the prover succeeds with neg-
ligible probability when Aw 6= b where w = Dec(U).
Consider the case when d(U, (W1)p) > e. Then for
Ũ =

∑
i∈[p] ρiU[i, ·, ·], by Proposition A.2, we have

d(Ũ, C1) > e with probability 1−o(1). Let c̃ = (c̃1, . . . , c̃`)
be the commitments to Ũ sent by the prover (Step 3 in
Figure 5). Define the vector C̃ = (C̃1, . . . , C̃n) where
C̃k =

∏`
a=1(c̃a)ΛTn,`[a,k] for k ∈ [n]. Let Ĉ = (Ĉ1, . . . , Ĉn)

Distributed-prover Zero-Knowledge Protocols 543

where Ĉk =
∏p
i=1(π[i, k])ρi . Now if ∆(C̃, Ĉ) > e, we see

that the prover succeeds in the proximity check equation
(2) with probability at most (1− e/n)t. If ∆(C̃, Ĉ) ≤ e,
while d(Ũ, C1) > e, then it is easy to break the bind-
ing property commitment scheme. Thus an adversarial
prover succeeds with probability at most (1−e/n)t when
d(U, (W1)p) > e.

We now consider the case when d(U, (W1)p) ≤ e.
From Lemma A.1, there exists (unique) U∗ ∈ (W)p such
that ∆1(U,U∗) ≤ e. Let w = Dec(U) = Dec(U∗). We con-
sider the prover’s success probability when Aw 6= b, and
thus with overwhelming probability rTAw 6= rT b. Let
P ∗ denote the correctly computed intermediate matrix
from U∗ and let P̂ denote the correctly computed in-
termediate matrix from U. We note that ∆1(P̂ , P ∗) ≤
e. Let c1, . . . , cs+`−1 be the commitments to the in-
termediate matrix sent by the prover. If these com-
mitments correspond to a matrix P = P ∗, the in-
ner product check InnerProduct(pp, [1m||0m−1], cm, rT b)
fails when using the commitment cm =

∏s+`−1
k=1 cϕkk for

ϕ = Φ×[1s]. This is because 〈1m||0m−1, P ∗[1 : 2m−1, 1 :
s+`−1]×ϕ〉 = rTAw 6= rT b, as discussed in the protocol.
If the commitments correspond to a matrix P 6= P ∗, we
have ∆1(P, P ∗) ≥ n− s− ` by distance property of the
code RSη[n, s+ `− 1]. (We note that a prover implicitly
commits to a matrix in RSη[n, s+`−1]⊗RSα[h, 2m−1]).
Thus there exists a set E of at least n−s−`−e columns,
such that for k ∈ E, P̂ [·, k] = P ∗[·, k] 6= P [·, k]. The
checks 〈1ju ,U[i, ·, ku]〉 = Xu[i] for i ∈ [p] and u ∈ [t]
force the prover to provide vectors Xu = U[·, ju, ku] with
overwhelming probability. Then the consistency check
succeeds for the uniformly sampled query point (ju, ku)
when:

P [ju, ku] =
∑
i∈[p]

Ri(αju , ηku)Xu[i] = P̂ [ju, ku]

For ku ∈ E, the above holds when the distinct code-
words P ∗[·, ku] and P [·, ku] in RSα[h, 2m − 1] agree on
the position ju, which happens with probability at most
2m/h. Thus probability Pr[E] that a corrupt prover with
U such that d(U, (W1)p) ≤ e succeeds is bounded by:

Pr[E] ≤
(
s+`+e
t

)(
n
t

) + n− s− `− e
n

·
(2m
t

)(
h
t

)
=
(
s+ `+ e

n

)t
+
(
n− s− `− e

n

)
·
(

2m
h

)t
The above probability is smaller than a constant ε < 1
for suitable choices of parameters. Hence, the overall
probability of prover’s success is negl(λ) for t = O(λ).

Extraction:
Let Eip be the extractor of the inner product argument
which takes, in expectation, pip(n) amount of time,
where pip(·) is polynomial, to output the private vector
of length or breaking the binding of the commitment
scheme. We will design an extractor E for LinearCheck,
which uses Eip.

If P∗ fails in the proximity check (step 12) then V
outputs reject, and so the extractor E terminates with
abort. If P∗ succeeds in the proximity check (step 12)
then U ∈ W1 and E proceeds in the following way:
E plays the role of the verifier and rewinds the

provers polynomially many times if required.
E runs the protocol till step 8, sends Q and receives

U[·, ju, ku].
E picks random δ ∈ Fp and β ∈ F∗ and proceeds to

run the inner product arguments. E uses Eip and gets:
– P [·, ku] in expected time pip(m), ∀u ∈ [t].
– z = βP0 + Pϕ in expected time pip(m).
– Vu =

∑
i∈[p] δiU[i, ·, ku] in expected time pip(m),

∀u ∈ [t].

Then E rewinds δ, β O(p log(p)) times and gets P0 from
z and from Vu, E gets U[·, ·, ku]. E checks U[·, ju, ku] re-
ceived in step 8, matches with the extracted U[·, ·, ku]’s
ju position or not. If does not, then E gets two opening
of π[·, ku] and outputs abort, otherwise E proceeds in
the following way: E rewinds P∗ and sends uniformly
random Q and keeps repeating until all the Q’s to-
gether cover all the columns. It takes n log(n) rewind-
ings in expectation. Then E extracts the whole U and
checks if all the vectors are consistent or not. If not,
that gives the break for the binding of the commitment
scheme and if consistent, then it decodes U and out-
puts correct witness w. Therefore, expected Run time of
E is O(n log(n)(O(p log(p))(pip(m)) + pip(m) + pip(m))),
which is polynomial in the size of the circuit.

B.2.5 Quadratic Check Protocol

Quadratic Check Soundness
Lemma B.3 (Soundness). For all polynomially
bounded provers P ∗ and all π ∈ G3p×n, there exists
an expected polynomial time extractor E with rewinding
access to the transcript oracle tr = 〈P ∗(·),Vπ(·)〉 such
that either E breaks the commitment binding, or it out-
puts a witness with overwhelming probability whenever
P ∗ succeeds, i.e,

Distributed-prover Zero-Knowledge Protocols 544

QuadraticCheck(pp, [πx], [πy], [πz]; Ux,Uy ,Uz):
Relation: Ua = Open(πa) for a ∈ {x, y, z}, wx ◦ wy = wz
where wa = Dec(Ua) for a ∈ {x, y, z}.

1. V → P: ρ←$ F3p.
2. P computes: (a) Ũ =

∑p

i=1[ρiUx[i, ·, ·]+ρp+iUy [i, ·, ·]+
ρ2p+iUz [i, ·, ·]], (b) commitments c̃1, . . . , c̃` as c̃k =∏p

i=1(πx[i, k])ρi · (πy [i, k])ρp+i · (πz [i, k])ρ2p+i ∀k ∈ [`].
3. P → V: c̃ = (c̃1, . . . , c̃`).
4. V → P: r←$ Fp.
5. P computes: (a) pj(·) =

∑
i∈[p] ri[Q

i
x(αj , ·)Qiy(αj , ·)−

Qiz(αj , ·)] ∀j ∈ [h], (b) matrix P such that P [j, k] =
pj(ηk) as described in Section B.2.2, (c) com-
putes commitments c1, . . . , c2` from P . P also samples
P0 ←$ F2m−1 with P0[j] = 0m for j ∈ [m] and computes
commitment c0 to P0.

6. P → V: c0, c1, . . . , c2`−1.
7. V → P: Q = {(ju, ku) : u ∈ [t]} for Q←$ [h] × [n],

u ∈ [t] and τ ←$ Fs, γ ←$ Fm.
8. V → π: {ku : u ∈ [t]}.
9. P → V: Xu = Ux[·, ju, ku] , Yu = Uy [·, ju, ku] and

Zu = Uz [·, ju, ku] for u ∈ [t].
10. π → V: π[·, ku] for u ∈ [t].
11. V → P: δ ←$ Fp, βx ←$ F, βy ←$ F, βz ←$ F,

β ←$ F\{0}.
12. P computes: Vu =

∑p

i=1 δi
(
βxUx[i, ·, ku] +

βyUy [i, ·, ku] + βzU[i, ·, ku]
)
.

13. P and V compute:
– Wu = βxXu + βyYu + βzZu for u ∈ [t].
– Tu = (Cu)βx · (Du)βy · (Eu)βz , for u ∈ [t] where

Cu =
∏p

i=1(πx[i, ku])δi , Du =
∏p

i=1(πy [i, ku])δi
and Eu =

∏p

i=1(πy [i, ku])δi .
14. P and V run inner-product arguments to check:

(a) InnerProduct(pp,1TjuΛh,2m−1, cmku , vu;P [·, ku])

for u ∈ [t] where cmku =
∏2`−1
a=1 (ca)ΛT

n,2`−1[a,ku],
vu =

∑p

i=1 ri[Xu[i] · Yu[i] − Zu[i]] (check consis-
tency of P with π).

(b) InnerProduct(pp, γ||0m−1, cm, 0; z) where z =
βP0+Pϕ, ϕ = ΦT τ and cm = (c0)β ·

∏2`−1
a=1 (ca)ϕa .

(c) InnerProduct(pp,1TjuΛh,m, Tu, wu;V u]), where V u
stands for first m entries of Vu and wu = 〈δ,Wu〉
(consistency of Xu, Yu, Zu with π).

15. V checks proximity of Ux,Uy and Uz according to Eqn
(3).

16. V accepts if all the checks succeed.

Fig. 6. Quadratic Check Protocol

Pr

 [Ux||Uy||Uz] = Open(π)∧

wz = wx ◦ wy

∣∣∣∣∣∣
σ ← Gen(1λ)

[Ux||Uy||Uz]← E tr(σ)

wa = Dec(Ua), a ∈ {x, y, z}


≥ ε(P∗)− κqd(λ)

for some negligible function κqd. In the above, ε(P ∗)
denotes the success probability of the prover P ∗ as be-
fore.

Proof. Suppose the oracle π commits to Ux,Uy,Uz.
Ux,Uy,Uz can be “extracted” by the appropriate ex-
tractor. Note that Ux||Uy||Uz ∈ (W2)3p, where U =
Ux||Uy||Uz is the juxtaposing along p direction, as a
commitment implicitly corresponds to such a matrix.
Let e < (n − `)/3 be a parameter. First we show that
an adversarial prover succeeds with negligible proba-
bility if d(U, (W1)3p) > e. Second, we show that for
d(U, (W1)3p) ≤ e, the prover succeeds with negligible
probability when wx ◦ wy 6= wz where wa = Dec(Ua) for
a ∈ {x, y, z}. Consider the case when d(U, (W1)3p) > e.
Then for Ũ =

∑
i∈[3p] ρiU[i, ·, ·], by Proposition A.2,

we have d(Ũ, C1) > e with probability 1 − o(1). Let
c̃ = (c̃1, . . . , c̃`) be the commitments to Ũ sent by the
prover (Step 3 in Figure 6). Define the vector C̃ =
(C̃1, . . . , C̃n) where C̃k =

∏`
a=1(c̃a)ΛTn,`[a,k] for k ∈ [n].

Let Ĉ = (Ĉ1, . . . , Ĉn) where Ĉk =
∏3p
i=1(π[i, k])ρi . Now

if ∆(C̃, Ĉ) > e, we see that the prover succeeds in the
proximity check equation (2) with probability at most
(1− e/n)t. If ∆(C̃, Ĉ) ≤ e, while d(Ũ, C1) > e, then it is
easy to break the binding property commitment scheme.
Thus an adversarial prover succeeds with probability at
most (1− e/n)t when d(U, (W1)p) > e.

We now consider the case when d(U, (W1)3p) ≤ e.
From Lemma A.1, there exists (unique) U∗ ∈ (W)3p

such that ∆1(U,U∗) ≤ e. Let wa = Dec(Ua) = Dec(U∗a).
We consider the prover’s success probability when wx ◦
wy = wz, and thus with overwhelming probability∑
i∈[p] ri · (wx[i, ·, ·] · wy[i, ·, ·] − wz[i, ·, ·]) = [0]ms. Let

P ∗ denote the correctly computed intermediate matrix
from U∗ and let P̂ denote the correctly computed inter-
mediate matrix from U. We note that ∆1(P̂ , P ∗) ≤ e.
Let c1, . . . , c2`−1 be the commitments to the intermedi-
ate matrix sent by the prover. If these commitments
correspond to a matrix P = P ∗, the inner product
check InnerProduct(pp, [γ||0m−1], cm, 0) fails when using
the commitment cm =

∏2`−1
k=1 cϕkk for ϕ = Φ × τ .

This is because 〈γ||0m−1, P ∗[1 : 2m − 1, 1 : 2` − 1] ×
ϕ〉 =

∑
j∈[m] γj

∑
k∈[s] τk

∑
i∈[p] ri[wx[i, j, k]·wy[i, j, k]−

wz[i, j, k]] 6= 0, as discussed in the protocol. If the com-
mitments correspond to a matrix P 6= P ∗, we have
∆1(P, P ∗) ≥ n − 2` by distance property of the code
RSη[n, 2` − 1]. (We note that a prover implicitly com-
mits to a matrix in RSη[n, 2` − 1] ⊗ RSα[h, 2m − 1]).
Thus there exists a set E of at least n− 2`− e columns,
such that for k ∈ E, P̂ [·, k] = P ∗[·, k] 6= P [·, k]. The
checks 〈1ju ,Wu〉 =

∑
i∈[p] δi(βxXu + βyYu + βzZu) for

Distributed-prover Zero-Knowledge Protocols 545

i ∈ [p] and u ∈ [t] force the prover to provide vectors
Xu = Ux[·, ju, ku], Yu = Uy[·, ju, ku], Zu = Uz[·, ju, ku]
with overwhelming probability. Then the consistency
check succeeds for the uniformly sampled query point
(ju, ku) when:

P [ju, ku] =
∑
i∈[p]

ri(Xu[i] · Yu[i]− Zu[i]) = P̂ [ju, ku]

For ku ∈ E, the above holds when the distinct code-
words P ∗[·, ku] and P [·, ku] in RSα[h, 2m − 1] agree on
the position ju, which happens with probability at most
2m/h. Thus probability Pr[E] that a corrupt prover with
U such that d(U, (W1)3p) ≤ e succeeds is bounded by:

Pr[E] ≤
(2`+e

t

)(
n
t

) + n− 2`− e
n

·
(2m
t

)(
h
t

)
=
(

2`+ e

n

)t
+
(
n− 2`− e

n

)(
2m
h

)t
The above probability is smaller than a constant ε < 1
for suitable choices of parameters. Hence, the overall
probability of prover’s success is negl(λ) for t = O(λ).
We will set 2n > 5`.

Extraction:
Let Eip be the extractor of the inner product argu-
ment which takes, in expectation, pip(n) amount of
time, where pip(·) is polynomial, to output the pri-
vate vector of length or breaking the binding of the
commitment scheme. We will design an extractor E for
QuadraticCheck, which uses Eip.

If P∗ fails in the proximity check (step 15) then V
outputs reject, and so the extractor E terminates with
abort. If P∗ succeeds in the proximity check (step 15)
then U ∈ W1 and E proceeds in the following way:
E plays the role of the verifier and rewinds the

provers polynomially many times if required.
E runs the protocol till step 7, sends Q, γ, τ and re-

ceives Ux[·, ju, ku],Uy[·, ju, ku],Uz[·, ju, ku]. E picks ran-
dom δ ∈ Fp, βx, βy, βz ∈ F and β ∈ F∗ and proceeds to
run the inner product arguments. E uses Eip and gets:
– P [·, ku] in expected time pip(m), ∀u ∈ [t].
– z = βP0 + Pϕ in expected time pip(m).
– Vu =

∑
i∈[p] δi(βxUx[i, ·, ku] + βyUy[i, ·, ku] +

βzUz[i, ·, ku]) in expected time pip(m), ∀u ∈ [t].

Then E rewinds δ, βx, βy, βz, β O(p log(p)) times and
gets Vu, E gets Ux[·, ·, ku],Uy[·, ·, ku],Uz[·, ·, ku] by solv-
ing a system of equation with 3p unknowns. E checks

Ua[·, ju, ku] received in step 7, matches with the ex-
tracted Ua[·, ·, ku]’s ju position or not, for a ∈ {x, y, z}.
If does not, then E gets two opening of πa[·, ku], for some
a ∈ {x, y, z} and outputs abort, otherwise E proceeds
in the following way: E rewinds P∗ and sends uniformly
random Q and keeps repeating until all the Q’s together
cover all the columns. It takes n log(n) rewindings in
expectation. Then E extracts the whole Ux,Uy,Uz and
checks if all the vectors are consistent or not. If not,
that gives the break for the binding of the commitment
scheme and if consistent, then it decodes Ua and outputs
correct witness wa for a ∈ {x, y, z}.

Therefore, expected Run time of E is
O(n log(n)(O(p log(p))(pip(m)) + pip(m) + pip(m))),
which is polynomial in the size of the circuit.

B.2.6 Graphene Protocol

For a cheating prover either d(U, (W1)4p) > e, or
d(U, (W1)4p) ≤ e for some e. Here we will set e < (n −
`)/3. Then for the first case, that is, if d(U, (W1)4p) > e

then either the hamming distance of the commitment
matrix will be more than e, which leads to fail in the
proximity check with very high probability. Otherwise,
if the hamming distance of the commitment matrix
are not > e, then this leads to opening of a commit-
ment to multiple values, which breaks the binding prop-
erty of the commitment scheme. For the latter case, if
d(U, (W1)4p) ≤ e, then there exists unique codeword U∗
such that ∆1(U,U∗) ≤ e and let w = Dec(U) = Dec(U∗).
Since the prover is cheating, we assume that w is not the
correct witness, i.e., either it fails to satisfy the linear
constraint or the quadratic constraint or both. In such
a case, either of the inner product check fails.

Lemma B.4 (Soundness). For all polynomially
bounded provers P ∗ and all π ∈ G4p×n, there exists
an expected polynomial time extractor E with rewinding
access to the transcript oracle tr = 〈P ∗,Vπ〉 such that
either E breaks the commitment binding, or it outputs
a witness with overwhelming probability whenever P ∗

succeeds, i.e.,

Pr


[Ux||Uy||Uz||U] = Open(π)

∧wz = wx ◦ wy∧

wx = Aw

wy = Bw ∧ wz = Cw

∣∣∣∣∣∣∣∣∣∣∣

σ ← Gen(1λ)

[Ux||Uy||Uz||U]← E tr(σ)

wa = Dec(Ua),

a ∈ {x, y, z}

w = Dec(U)


≥ ε(P∗)− κqd(λ)− κlc(λ)

Distributed-prover Zero-Knowledge Protocols 546

GrapheneR1CS(pp, A,B,C, [π]; wx,wy ,wz ,w):
Relation: Aw ◦Bw = Cw.
Oracle Setup: Compute O as described above. Set π :=
O.

1. V → P: γx, γy , γz ←$ F, rlc ←$ FM , rqd ←$ Fp,
ρ←$ F4p.

2. P → V: P computes Ũ =
∑

i∈[4p] ρiU[i, ·, ·] and sends
commitments c̃1, . . . , c̃` to Ũ.

3. P ↔ V compute: R = rTlcW forW = [γxI ||γyI ||γzI ||−
(γxA+γyB+γzC)], polynomials Ri,i ∈ [4p] interpolat-
ing the slices of R viewed as a 4p×m× n matrix.

4. P computes:
– Polynomials Qix, Qiy , Qiz , Qi for i ∈ [p], where poly-

nomials Qia, i ∈ [p] correspond to wa for a ∈
{x, y, z} and polynomials Qi,i ∈ [p] correspond to
w.

– h × n matrices Plc and Pqd as “P” matrices for
the linear check and quadratic check respectively.
Note that pj polynomial for Plc is given by pj(·) =∑p

i=1(Ri(αj , ·)·Qix(αj , ·)+Rp+i(αj , ·)·Qiy(αj , ·)+
R2p+i(αj , ·) · Qiz(αj , ·) + R3p+i(αj , ·) · Qi(αj , ·)).
The pj polynomials for the matrix Pqd are given by
pj(·) =

∑p

i=1 rqd[i](Qix(αj , ·)Qiy(αj , ·)−Qiz(αj , ·)).
– Blinding vectors Ulc, Uqd ∈ F2m−1 for linear and

quadratic check protocols respectively, and com-
mitments c0, d0 to vectors Ulc and Uqd.

5. P → V: Commitments c0, c1, . . . , cs+`−1 for the matrix
Plc and commitments d0, d1, . . . , d2`−1 for matrix Pqd.

6. V → P: Q = {(ju, ku) : u ∈ [t]}.
7. V → π: {ku : u ∈ [t]}.
8. P → V: Su = U[·, ju, ku] for u ∈ [t].
9. π → V: π[·, ku], u ∈ [t].

10. P and V run the linear and quadratic check protocols
in parallel, parsing the vectors Su into Xu, Yu, Zu,Wu

as needed.
11. Check proximity as:

∏`

a=1(c̃a)ΛT
n,`

[a,ku] =∏4p
i=1(π[i, ku])ρi for u ∈ [t].

12. V accepts if all the subprotocols accept.

Fig. 7. GrapheneR1CS Protocol

Where κlc(λ) and κqd(λ) are the negligible soundness
error of LinearCheck and QuadraticCheck respectively.
And ε(P ∗) is the success probability of the prover.

To prove of Lemma B.4, we can construct an extractor
E using the extractors Elc and Eqd of LinearCheck and
QuadraticCheck described in B.2 and B.3 respectively.
E plays the role of the verifier and Elc, Eqd use the queries
generated by E .

B.3 Zero-knowledge

Lemma B.5 (Zero-knowledge). There exists a simula-
tor S that outputs a perfectly indistinguishable extended
view of the verifier in honest execution of the protocol
GrapheneR1CS for t ≤ b.

Now we will discuss the zero knowledge property of
GrapheneR1CS, which has the similar idea of linear check
and quadratic check. The verifier’s extended view for the
Graphene protocol consists of:
– Verifier Randomness: V’s messages consist of:
{γx, γy, γz, rlc, rqd, ρ,Q = {(ju, ku)}u∈[t],

δlc, δqd, βlc, βx, βy, βz, βqd, τqd, γqd}.
– Commitments: P sends the following commitments

to V:
{c̃u}u∈[`], {cu}u∈{0,1,...,s+`−1}, {du}u∈{0,1,...,2`−1}
and oracle responses: π[·, ku], πx[·, ku], πy[·, ku],
πz[·, ku] for all u ∈ [t]

– Vectors: P sends the following vectors to V: zlc =
βlcUlc + P lcϕlc, zqd = βqdUqd + P qdϕqd
U[·, ·, ku], Ux[·, ·, ku], Uy[·, ·, ku], Uz[·, ·, ku] for all
u ∈ [t].

– Commitment Randomness:
– wulc , wuqd , wlc, and wqd for P lc[·, ku], P qd[·, ku],

zlc, and zqd respectively.
– O[·, ku], Ox[·, ku], Oy[·, ku], and Oz[·, ku] for

U[·, ·, ku], Ux[·, ·, ku], Uy[·, ·, ku], and Uz[·, ·, ku]
respectively.

Proof. Simulator: S picks
{γx, γy, γz, rlc, rqd, ρ,Q = {(ju, ku)}u∈[t], δlc, δqd, βlc,

βx, βy, βz, βqd, τqd, γqd} uniformly at random from
their respective domains. Then it picks U[·, ·, ku] and
Ua[·, ·, ku] for a ∈ {x, y, z}, i ∈ [p], u ∈ [t] uniformly
such that U[i, ·, ku] ∈ RSα[h, 2m − 1], Ua[i, ·, ku] ∈
RSα[h, 2m − 1] ∀i ∈ [p], a ∈ {x, y, z}. S picks uni-
form zlc, zqd from F2m−1 such that

∑
j∈[m] zlc[j] = rTlcb

and 〈γqd||0m−1, zqd〉 = 0. S picks uniform Ulc and
Uqd from F2m−1 such that 〈1m||0m−1, Ulc〉 = 0 and
Uqd[j] = 0 ∀j ∈ [m]. S picks wlc, w0lc , wqd, w0qd and
computes the following commitments:

c0 ← Com(Ulc, w0lc), d0 ← Com(Uqd, w0qd)

cmlc ← Com(zlc, wlc), cmqd ← Com(zqd, wqd)

Distributed-prover Zero-Knowledge Protocols 547

S picks O,Ox, Oy, Oz uniformly at random. S computes
for all u ∈ [t]:

Ũ[·, ku] =
∑
i∈[p]

ρiU[i, ·, ku] + ρp+iUx[i, ·, ku]+

ρ2p+iUy[i, ·, ku] + ρ3p+iUz[i, ·, ku]

Õ[ku] =
∑
i∈[p]

ρiO[i, ku] + ρp+iOx[i, ku] + ρ2p+iOy[i, ku]

+ρ3p+iOz[i, ku]
c̃ku ← Com(Ũ′[·, ku], Õ[ku])

π[i, ku]← Com(U′[i, ·, ku], O[ku])
πa[i, ku]← Com(U′a[i, ·, ku], O[ku]) ∀a ∈ {x, y, z}

S picks wulc , wuqd uniformly at random for all u ∈ [t]
and computes cku ← Com(P lc[·, ku], wulc) and dku ←
Com(P qd[·, ku], wuqd). S picks c̃1, . . . , c̃` such that c̃ku =∏
a∈[`](c̃a)ΛTn,`[a,ku] ∀u ∈ [t], it can be done efficiently

since the number of unknowns is more than the number
of constraints, and the coefficient matrix has full row
rank. S picks π[·, k] such that c̃k =

∏
i∈[p](π[i, k])ρi ·

(πx[i, k])ρp+i · (πy[i, k])ρ2p+i · (πz[i, k])ρ3p+i for all k /∈
{ku : u ∈ [t]}. Finally S picks c1, c2, . . . , cs+`−1 and
d1, d2, . . . , d2`−1 subject to the following constraints:

cku =
∏

a∈[s+`−1]

(ca)ΛTn,s+`−1[a,ku] ∀u ∈ [t]

cmlc = cβlc0 ·
∏

a∈[s+`−1]

(ca)ϕlca ,

dku =
∏

a∈[2`−1]

(da)ΛTn,2`−1[a,ku] ∀u ∈ [t]

cmqd = d
βqd
0 ·

∏
a∈[2`−1]

(ca)ϕqda

S can efficiently pick such c1, . . . , cs+`−1 and
d1, . . . , d2`−1.

The output of S is perfectly indistinguishable from
the extended view of an honest execution of the proto-
col.

C D-Graphene and Security
Proofs

C.1 D-Graphene: Distributed Prover
Variant

We now describe the distributed protocol to produce
a Graphene proof for a statement, when the witness is
shared between D provers P1, . . . ,PD. For ξ ∈ [D], let

〈w〉ξ denote the prover Pξ’s share of the witness w. We
assume that the sharing is additive, i.e,

∑
ξ∈[D]〈w〉ξ = w.

Recall from Section 4, that there is an algorithm A
which aggregates the messages received from provers
P1, . . . ,PD and constructs the message to be sent to V.
We assume one of the provers executes A. We specify the
algorithm A implicitly by describing the construction of
message to V from the provers’ messages for each round.
We first discuss a protocol secure against semi-honest
provers and then briefly discuss how to ensure the pri-
vacy of the honest provers when the corrupt provers are
malicious (barring the one who runs A).

C.2 Distributed Oracle Setup

In the distributed setting, each prover Pξ encodes her
share 〈w〉ξ as 〈U〉ξ = Enc(〈w〉ξ) and computes the com-
mitment 〈O〉ξ = oCom(〈U〉ξ). The provers then share
〈O〉ξ with the aggregator A which sets the oracle π as
π := Combine(〈O〉ξ), where Combine simply multiplies
the corresponding commitments. The homomorphism
and the fact that the witnesses are additively shared
ensure that π contains commitment to the witness.

C.3 Distributed Linear Check

The messages sent by the prover to the verifier in the
linear check protocol include:
– Commitments c̃ = (c̃1, . . . , c̃`) to the matrix Ũ =∑

i∈[p] ρiU[i, ·, ·] for verifier’s challenge ρ←$ Fp.
– Commitments c0, . . . , cs+`−1 where c0 is a commit-

ment to random vector P0 ∈ F2m−1 satisfying
〈1m||0m−1, P0〉 = 0 and c1, . . . , cs+`−1 are commit-
ments to the matrix P of order h× n.

– The vectors Xu = U[·, ju, ku] for u ∈ [t], for verifier’s
query Q = {(ju, ku) : u ∈ [t]}.

Given the verifier’s challenges, we see that each of
the messages is a linear function of the encoding
(which itself is a linear function of the witness). Hence,
the provers compute the respective messages on their
shares, which can be trivially combined by A. In ad-
dition to above messages, we also want A to receive
witnesses to the inner-product protocols namely, the
vectors P [·, ku], Wu =

∑
i∈[p] δiU[i, ·, ku] for u ∈ [t],

z = βP0 + Pϕ and the randomness used to commit the
vectors. Each of these can again be obtained by combin-
ing the respective shares. Note that the share 〈z〉ξ leaks
rTA〈w〉ξ = 〈1m||0m−1, 〈z〉ξ〉, which is non-trivial knowl-

Distributed-prover Zero-Knowledge Protocols 548

edge about an individual witness share. Thus provers
use a random share 〈02m−1〉ξ to randomize their share
of z, and send 〈z〉ξ = β〈P0〉ξ+〈P 〉ξϕ+〈02m−1〉ξ. We pro-
vide the complete distributed linear protocol in Figure
8.

C.4 Distributed Quadratic Check

Here the distributed variant requires an additional in-
teraction among the provers. Recall that in response to
V’s challenge r ∈ Fp, the provers need to compute P as:

P [j, k] =
∑
i∈[p]

ri
(
Qix(αj , ηk).Qiy(αj , ηk)−Qiz(αj , ηk)

)
=
∑
i∈[p]

ri(Ux[i, j, k].Uy[i, j, k]− Uz[i, j, k])

where Ux, Uy and Uz are the encodings of the wit-
ness vectors wx, wy and wz respectively. Since the
matrix P above is completely determined by it’s first
2m − 1 rows and first 2` − 1 columns, the provers
need to obtain the shares 〈Ux[i, j, k].Uy[i, j, k]〉ξ for i ∈
[p], j ∈ [2m − 1], k ∈ [2` − 1]. From the shares of
witness 〈wx〉ξ, 〈wy〉ξ and 〈wz〉ξ the provers can locally
compute shares 〈Ux〉ξ, 〈Uy〉ξ, 〈Uz〉ξ of Ux,Uy and Uz.
Now, the provers call FMult on inputs 〈Ux〉ξ, 〈Uy〉ξ and
obtain 〈Ux[i, j, k].Uy[i, j, k]〉ξ, where FMult is the func-
tionality that takes linear sharings two vectors as in-
put and outputs a linear sharing of the component-
wise multiplication of these vectors. We can instanti-
ate FMult with any state-of-the-art dishonest majority
protocol for arithmetic circuits. This requires evalua-
tion of p.(2m − 1).(2` − 1) ≈ 4N multiplication gates,
and depth 1, to obtain the shares 〈Ux[i, j, k].Uy[i, j, k]〉ξ

for i ∈ [p], j ∈ [2m − 1], k ∈ [2` − 1]. Thereafter, each
prover obtains a share of matrix P , and the remaining
protocol proceeds similar to the the distributed linear
check protocol. The complete protocol for distributed
quadratic check appears in Figure 9, additionally, we
discuss how to optimize the MPC overhead when the
size of the shared circuit (see Appendix E) is small.

C.5 Security Proofs

As discussed in the definition of DPZK given in Sec-
tion 4,depending on the corruption scenario there are 4
possible cases:
– All the provers are corrupt and do not have a valid

witness. Together they try to cheat so that the ver-
ifier accepts the proof. If a DPZK protocol with-

stands this corruption model, then we state that it
has the Soundness with Witness Extraction (SoWE)
property.

– The verifier is corrupt and tries to learn about
the provers’ secrets. A protocol secure under this
corruption scenario has the Zero-Knowledge (ZK)
property.

– Among all the provers, t are corrupt and try to learn
about the honest provers’ secrets. A DPZK protocol
is said to have Witness Confidentiality (WC) prop-
erty if it is secure against this corruption scenario.

– A corrupt verifier colludes with t corrupt provers
and tries to learn honest provers’ secrets. A DPZK
protocol is said to haveWitness Confidentiality with
Collusion (WCwC) property if it is secure against
this corruption scenario.

Soundness with Witness Extraction: A DPZK pro-
tocol has SoWE property if there exists an (expected)
polynomial-time extractor E that interacts with the
prover on behalf of the verifier. If the verifier accepts
the proof, E outputs a valid witness corresponding to
the statement, with a very high probability.

Lemma C.1. For the protocol D-Graphene given in
Figure 10, there exists an (expected) polynomial-time ex-
tractor E. If V accepts the proof given by a set of provers,
then E can output a witness with overwhelming proba-
bility.

Proof. From Lemma B.4, we know that Graphene has
proof of knowledge property. Therefore by Lemma 5.2,
we know that D-Graphene has the soundness with
witness extraction property. This proves the above
lemma.

Zero Knowledge: If a verifier in a DPZK protocol
learns nothing more that the assertion of the statement,
then it has the zero-knowledge property. In other words,
there exists a simulator SDP that generates a transcript
τ without having a witness, such that τ is indistinguish-
able from a real execution of the protocol. Note that τ
consists of the verifier’s challenges and the provers’ mes-
sages.

Lemma C.2. There exists a simulator SDP that out-
puts a perfectly indistinguishable extended view of
the verifier in an honest execution of the protocol
D-Graphene for t ≤ b.

Proof. From the Lemma B.5, we know that Graphene
has the zero-knowledge property. Coupled with

Distributed-prover Zero-Knowledge Protocols 549

Lemma 5.2, this ensures the zero-knowledge property of
D-Graphene. Thus there exists a polynomial-time simu-
lator that generates a transcript which is indistinguish-
able from the real transcript.

Witness Confidentiality and Witness Confiden-
tiality with Collusion: Our work is mainly concerned
with building a public coin proof system, specifically
NIZK so that anyone can verify the proof, and any
prover can play a verifier’s role yet learn nothing. There-
fore witness confidentiality and witness confidentiality
with collusion are the same in this setting.

Though the proof of the witness confidentiality
property is similar to the witness confidentiality proof of
Lemma 5.2, we provide detailed proof for our protocol
here.

We will separate the provers into two classes:
honest(H) and corrupt(C). Note that |H|+ |C| = D and
|C| < t, for some t < D. In linear check, since there is
no interaction among the provers other than the aggre-
gator, it suffices to generate the view of the aggregator.
For the quadratic check, we need that the multiplica-
tions among the provers are executed securely.

Lemma C.3. For the Distributed Linear Check proto-
col (Figure 8), there exists a polynomial-time simulator
S corresponding to a subset of t provers out of D (t < D)
controlled by a semi-honest PPT adversary A such that
S generates a view of A which is indistinguishable from
a real view of A.

Proof. Let C be the set of all corrupt provers and H be
the set of all honest provers.

Case 1: Let the output of the protocol be “reject”.S
picks all the components of the view of corrupt parties
uniformly at random from the appropriate domains such
that it is indistinguishable from an honest execution.

Case 2: Let the output of the protocol be “accept”.
Then input for S consists of 〈U〉ξ ∀ξ ∈ C and shares
of 02m−1. Without loss of generality, we can assume
that there are 2 parties, C and H. Also, assume that
the adversary controls the aggregator. The view of A
consists of:
verifier’s randomness: {ρ, r,Q, δ, β}, where Q =
{(ju, ku) : u ∈ [t]}
commitments: 〈O〉H , 〈c̃1〉H , . . . , 〈c̃`〉H , 〈c0〉H , 〈c1〉H , . . . ,
〈cs+`−1〉H , 〈d0〉H

vectors: 〈U〉H [·, ju, ku], 〈P 〉H [·, ku], 〈z〉H and 〈Vu〉H

S does the following:

– S picks uniformly at random the challenges on be-
half of the verifier from the respective domains i.e.
{ρ, r,Q = {(ju, ku) : u ∈ [t]}, δ, β}.

– Then S picks U[·, ·, ku] such that U[i, ·, ku] ∈
RSα[h, 2m − 1] and computes 〈U〉H [·, ·, ku] =
U[·, ·, ku]− 〈U〉C [·, ·, ku].

– S computes 〈O〉H [·, ku] which is commitment of
〈U〉H [·, ·, ku]

– S computes 〈Ũ〉H [·, ku] =
∑
i∈[p] ρi〈U〉H [i, ·, ku] and

〈c̃ku〉H which is commitment of 〈Ũ〉H [·, ku], for all
u ∈ [t].

– S picks 〈c̃1〉H , . . . , 〈c̃`〉H such that
〈c̃ku〉H =

∏
a∈[`](〈c̃a〉

H)ΛTn,`[a,ku] ∀u ∈ [t]. S can do
this efficiently since ΛTn,` is a full rank matrix.

– S picks 〈O〉H [·, k] such that
〈c̃k〉H =

∏
i∈[p](〈O〉

H [i, k])ρi ∀k /∈ {ku : u ∈ [t]}.
– S sends 〈O〉H , 〈c̃1〉H , . . . , 〈c̃`〉H to the aggregator.
– S computes
〈P 〉H [j, ku] =

∑
i∈[p]R

i(αj , ηku) · 〈U〉H [i, j, ku] ∀u ∈
[t] and 〈cku〉H which is commitment of 〈P 〉H [·, ku].

– S picks 〈c0〉H , 〈d0〉H uniformly at random and picks
〈c1〉H , . . . , 〈cs+`−1〉H subject to the following con-
straints:
〈cku〉H =

∏
a∈[s+`−1](〈ca〉

H)ΛTn,s+`−1[a,ku] ∀u ∈ [t]
〈cm〉H = (〈c0〉H)β

∏
a∈[s+`−1](〈ca〉

H)ϕa

S can efficiently perform this since ΛTn,s+`−1 is a full
rank matrix.

– S sends 〈c0〉H , 〈c1〉H , . . . , 〈cs+`−1〉H , 〈d0〉H to the
aggregator.

– According to the challenge Q, S sends
〈U〉H [·, ju, ku], 〈P 〉H [·, ku] to the aggregator.

– S computes 〈z〉H in the following way: S computes∑
j∈[m]〈z〉

C [j] =
∑
j∈[m](β〈P0〉C+〈P 〉Cϕ+〈0〉C)[j].

S knows 〈0〉C and from 〈U〉C and r, S can obtain
〈P 〉C completely. Only unknown term is 〈P0〉C , but
note that

∑
j∈[m]〈P0〉C [j] = 0, hence S can compute∑

j∈[m]〈z〉
C [j] = L (say). S picks 〈z〉H uniformly

from F2m−1 satisfying
∑
j∈[m]〈z〉

H [j] = rT b− L.
– Corresponding to the challenge δ, S computes
〈Vu〉H =

∑
i∈[p] δi · 〈U〉H [i, ·, ku].

– Finally, S sends 〈z〉H , 〈Vu〉H to the aggregator.

The transcript generated by S is perfectly indistinguish-
able from an honest execution of the protocol. Hence the
linear check described in Figure 8 has witness confiden-
tiality property.

The distributed quadratic check protocol described in
Figure 9 has witness confidentiality property if the mul-
tiplication of the secrets held by the provers is performed

Distributed-prover Zero-Knowledge Protocols 550

securely. Suppose ΠMult be a protocol that securely real-
izes FMult functionality, which can withstand t corrupt
parties. Distributed quadratic check has witness confi-
dentiality property against t corrupt provers. The fol-
lowing lemma ensures the claim.

Lemma C.4. Let ΠMult be a D-party t-secure protocol
where the inputs of the ξth party are 〈a〉ξ, 〈b〉ξ and the
protocol outputs 〈(

∑
ξ∈[D]〈a〉

ξ) · (
∑
ξ∈[D]〈b〉

ξ)〉ξ to Pξ,
where a,b are vectors of length 2m−1. Then correspond-
ing to a subset of t provers corrupted semi-honestly by a
PPT adversary A, there exists a polynomial-time simu-
lator S that takes private values of the provers controlled
by A as input and outputs a view which is indistinguish-
able from the view of A in the Distributed Quadratic
Check protocol (Figure 9).

Proof. Since ΠMult is a secure protocol, there exists a
simulator SM which can generate a view that is indis-
tinguishable from an honest execution of the protocol. S
takes inputs of the corrupt parties and output of the pro-
tocol to simulate the view. Similar to the Lemma C.3,
we consider C as the set of corrupt parties and H as the
set of honest parties. We follow the same notations.

The view of A in the distributed quadratic check
consists of :
Verifier’s Randomness: ρ, r,Q, τ, γ, β, δ, βx, βy, βz
Commitments: 〈Oa〉H ∀a ∈ {x, y, z}, 〈c̃1〉H , . . . , 〈c̃`〉H ,
〈c0〉H , . . . , 〈c2`−1〉H

Vectors:〈Ua〉H [·, ·, ku] ∀a ∈ {x, y, z}, 〈P 〉H [·, ku], 〈z〉H ,
〈Vu〉H .
S does the following:

– S picks ρ, r,Q, τ, γ, β, δ, βx, βy, βz uniformly at ran-
dom from their respective domains.

– S picks Ua[·, ·, ku] ∈ RSα[h, 2m − 1] for all a ∈
{x, y, z} and computes 〈Ua〉H [·, ·, ku] = Ua[·, ·, ku]−
〈Ua〉C [·, ·, ku] ∀a ∈ {x, y, z}, u ∈ [t].

– S computes 〈Oa〉H [·, ku] which is commitment of
〈Ua〉H [·, ·, ku] ∀u ∈ [t], a ∈ {x, y, z}.

– S computes 〈Ũ〉H [·, ku] =
∑
i∈[p] ρi〈Ux〉H [i, ·, ku] +

ρp+i〈Uy〉H [i, ·, ku] + ρ2p+i〈Uz〉H [i, ·, ku] and 〈 ˜cku〉H ,
which is commitment of 〈Ũ〉H [·, ku], for all u ∈ [t].

– S picks 〈c̃1〉H , . . . , 〈c̃`〉H such that 〈c̃ku〉H =∏
a∈[`](〈c̃a〉

H)ΛTn,`[a,ku] ∀u ∈ [t]. S can pick such c̃

efficiently due to the fact that ΛTn,` is a full rank
matrix.

– S picks 〈Oa〉H [·, k] such that
〈c̃k〉H =

∏
i∈[p](〈Ox〉

H [i, k])ρi · (〈Oy〉H [i, k])ρp+i ·
(〈Oz〉H [i, k])ρ2p+i ∀k /∈ {ku : u ∈ [t]}.

– S sends 〈Oa〉H for all a ∈ {x, y, z} and
〈c̃1〉H , . . . , 〈c̃`〉H to the aggregator.

– S picks z from F2m−1 such that z[j] = 0 ∀j ∈ [m].
Then S splits z into 〈z〉H and 〈z〉C such that 〈z〉H+
〈z〉C = z.

– S computes 〈Ux · Uy〉C [·, ·, ku] from 〈Ux〉C , 〈Uy〉C
and 〈Ux〉H [·, ·, ku], 〈Uy〉H [·, ·, ku] and picks
〈Ux · Uy〉C [i, ·, k] ∈ RSα[h, 2m − 1] uniformly for
k /∈ {ku : u ∈ [t]} and compute such that
{(
∑
i∈[p] ri〈Ux · Uy〉C [i, ·, ·])ϕ}[j] = z[j] − 〈z〉H [j] +

{(
∑
i∈[p] ri〈Uz〉C [i, ·, ·])ϕ}[j] ∀j ∈ [m]. It is easy to

see that picking such 〈Ux · Uy〉C [·, ·, k] can be done
efficiently.

– S calls SM on input 〈Ux〉C , 〈Uy〉C and 〈Ux · Uy〉C
and gets a valid transcript of the interaction among
the provers.

– S computes 〈P 〉H [·, ku] from 〈Ux〉C , 〈Uy〉C and
〈Ux〉H [·, ·, ku], 〈Uy〉H [·, ·, ku] for all u ∈ [t] and
〈cku〉H , commitments of 〈P 〉H [·, ku].

– S picks 〈c0〉H , 〈d0〉H uniformly and picks
〈c1〉H , . . . , 〈c2`−1〉H such that:
〈cku〉H =

∏
a∈[2`−1](〈ca〉

H)ΛTn,2`−1[a,ku] ∀u ∈ [t]
cm = (〈c0〉H)β

∏
a∈[2`−1](〈ca〉

H)ϕa .
– S sends 〈c0〉H , 〈c1〉H , . . . , 〈c2`−1〉H , 〈d0〉H to the ag-

gregator.
– S sends 〈Ua〉H [·, ju, ku] for all a ∈ {x, y, z} and
〈P 〉H [·, ku], as responses.

– S finally sends 〈z〉H and 〈Vu〉H corresponding to the
challenges δ and βx, βy, βz.

The view generated by S is indistinguishable from a
transcript of an honest execution.

Since D-Graphene is the combination of linear check
and quadratic check, simulator for the complete pro-
tocol follows the same strategies as the simulators de-
scribed in Lemma C.3 and C.4. Hence, the D-Graphene
(Figure 10) has the witness confidentiality property.

Lemma C.5. Let ΠMult be a secure protocol described
in Lemma C.4 which is used in D-Graphene (step 5),
then ∃ polynomial-time simulator S such that S can
generate a view of the adversary A which is indistin-
guishable from the view of A in a real execution of the
protocol.

Proof. S starts with picking the verifier’s randomness
and does the same as the simulators for the linear check
(Lemma C.3) and the quadratic check (Lemma C.4).
Therefore the transcript generated by S is indistinguish-
able from the adversary’s view.

Distributed-prover Zero-Knowledge Protocols 551

D DPZK from Existing Protocols

D.1 DPZK of Bulletproof for R1CS

In [10], [13], authors present a proof for a Hadamard-
product relation. Suppose C is a circuit of size N . In
their formulation, aL, aR and aO denote the vectors
corresponding to the left wire, right wire and output
wire respectively. Then, aL ◦aR = aO holds and satisfy
the following linear constraints:

〈wL,q,aL〉+ 〈wR,q,aR〉+ 〈wO,q,aO〉 = cq ∀q ∈ [Q]

with wL,q,wR,q,wO,q ∈ ZNp and cq ∈ Zp. Consider
WA = [wA,1, . . . ,wA,Q]T , for A ∈ {L,R,O} and c =
[c1, . . . , cq]T

In [13], these above checks are reduced to a single in-
ner product argument. P commits to the input vectors
aL,aR, output vector aO and sends the commitment
values AI and AO to V. P picks sL and sR uniformly at
random and computes the commitment S and sends to
V. V gives random challenges y, z from Z∗p to the prover.
Then P computes vector polynomials l(X) and r(X) us-
ing aL,aR,aO, sL, sR, y, z and other public vectors, and
computes a polynomial t(X) = 〈l(X), r(X)〉. The con-
struction of l(X) and r(X) is such that the co-efficient
of X2 in t(X) is independent of aL,aR,aO, sL, sR,
which can be computed by V, if aL,aR,aO satisfy the
Hadamard-product relation and linear constraints. To
prove this, P commits to all the co-efficients of t(X)
other than the co-efficient ofX2, and verifier gives a ran-
dom point x to evaluate l = l(x) and r = r(x). Which
reduces to an inner product check whose witness is l
and r, where l and r are vectors of length N .

We give a DPZK version of Bulletproofs, where
Pξ starts the protocol with 〈aL〉ξ, 〈aR〉ξ, 〈aO〉ξ ∀ξ ∈
[D] such that

∑
ξ∈[D]〈aA〉

ξ = aA ∀A ∈ {L,R,O}.
A is an aggregator. Pξ computes the commitment
〈AI〉ξ, 〈AO〉ξ, 〈S〉ξ and sends these values to A. A com-
bines and sends AI , AO and S to V. The verifier broad-
casts the random challenge y, z←$ Z∗p. Then each prover
computes 〈l〉ξ(X) and 〈r〉ξ(X). All the provers interact
securely to compute shares of t(x) = 〈l(X), r(X)〉, where
l(X) =

∑
ξ∈[D]〈l〉

ξ(X) and r(X) =
∑
ξ∈[D]〈r〉

ξ(X), i.e.,
output for Pξ is 〈t〉ξ(X) such that

∑
ξ∈[D]〈t〉

ξ(X) =
t(X). Pξ commits to all the coefficients of 〈t〉ξ(X) other
than the coefficient of X2. Sends these committed val-
ues to A. A combines and sends them to V. V sends a
random x. Pξ evaluates 〈l〉ξ(x) = 〈l〉ξ and 〈r〉ξ(x) = 〈r〉ξ

and sends these values to A. A computes l =
∑
ξ∈[D]〈l〉

ξ

and r =
∑
ξ∈[D]〈r〉

ξ. Finally, A and V run the inner

product protocol, same as the single prover protocol,
where the witness is l and r. Since, l and r are vectors
of length N , MPC is required for N multiplications or
in other words, a MPC for a depth 1 circuit of size N .

D.2 DPZK of Spartan for R1CS

We will describe the distributed version of the interac-
tive proof given in Spartan [42]. We do not have a proof
of privacy of the distributed version of the protocol.

Let C be an R1CS circuit of size N . For every R1CS
circuit ∃ matrices A, B, C and public input io which
defines the circuit. If the instance is true, then ∃ a wit-
ness w ∈ FN such that Az◦Bz = Cz where z = (io, 1,w)
is the extended witness of C.

Now, the prover wants to convince the verifier that
the prover knows z such that Az ◦ Bz = Cz holds. To
that the prover defines a polynomial

F̃io(x) =

 ∑
y∈{0,1}s

Ã(x, y)Z̃(y)

 ∑
y∈{0,1}s

B̃(x, y)Z̃(y)


−

 ∑
y∈{0,1}s

C̃(x, y)Z̃(y)


Where Ã(x, y) = A(x, y) ∀x, y. A(·, ·) is defined as a
function such that A(x, y) is the (x, y)th entry of the
matrix A. Similarly, B(·, ·) and C(·, ·). And Ã, B̃, C̃

are the low-degree polynomial extensions of A,B,C re-
spectively, defined in Spartan[42]. And Z̃(y) = Z(y) ∀x.
Z(·) is defined as a function such that Z(y) is the
yth entry of the vector z, and Z̃ is the low-degree
polynomial extensions of Z, defined in Spartan[42]. If
Az ◦ Bz = Cz holds then F̃io(x) = 0 ∀x ∈ {0, 1}s.
That means the verifier needs to check for all x ∈
{0, 1}s, F̃io(x) = 0. To get rid of such check a new
polynomial Qio(t) =

∑
x∈{0,1}s F̃io(x) · eq(t, x) where

eq(t, x) =
∏
i∈[s][ti · xi + (1 − ti)(1 − xi)]. Note that if

F̃io(x) = 0 ∀x ∈ {0, 1}s then Qio is a zero polynomial
i.e. Qio(τ) = 0 for any random τ .

Define Gio,τ (x) = F̃io(x) · eq(τ, x). Then∑
x∈{0,1}s Gio,τ (x) = Qio(τ). Therefore, it is enough

to check that
∑
x∈{0,1}s Gio,τ (x) = 0. This check is done

using the sum-check protocol described in Spartan [42].
In the DPZK version of Spartan [42] each prover

holds a share of the witness w, say Pξ has 〈w〉ξ. In other
words, Z is distributedly shared among the provers. In
the above protocol described in Spartan [42] only Gio,τ
generation is required interaction among the provers.
Remaining all the messages can be generated by each

Distributed-prover Zero-Knowledge Protocols 552

prover locally, and an aggregator can combine the mes-
sages to obtain the corresponding message. Note that,
Gio,τ (x) computation requires O(N2) multiplications
which are shared across the provers.

E Shared Circuit Complexity

E.1 Reducing MPC Overhead for Small
Shared Circuits

Let C be a circuit with N wires (we assume a unique
incoming wire for each input gate), let w = (w1, . . . , wN)
denote the vector of wire values in a satisfying assign-
ment according to some ordering on the wires. We con-
sider the case, when each input wire is “assigned” to a
unique prover. Let M be the number of multiplication
gates in C, and let A, B, C beM×N matrices such that
wx = Aw, wy = Bw and wz = Cw are vectors of left,
right and out values of multiplication gates. For i ∈ [m],
we say that multiplication gate i is isolated if wx[i],wy[i]
and wz[i] depend on inputs of only one prover. We call
the remaining multiplication gates as shared. Let Ns be
the number of shared gates. Without loss of generality,
we can assume that the gates 1, . . . , Ns are shared (rows
of A, B, C can be permuted suitably). Now an additive
sharing of the extended witness may be obtained by
(i) each prover locally computing the wires for isolated
gates from their inputs, while setting the shares of other
parties for these wires to be 0 and (ii) running a secret
sharing MPC on the subcircuit containing shared gates.
Let ps = dNs/mse. Then the multiplication MPC Mult
in distributed quadratic check can be restricted to ob-
taining shares 〈Ux[i, j, k].Uy[i, j, k]〉ξ for i ∈ [ps], as each
prover can canonically the shares of other slices of Ux
and Uy. For slices, which depend on the provers inputs,
the prover computes randomized encoding of the slice,
for other slices (where its share is 0) it computes a de-
terministic encoding by setting the buffer columns to 0.
Note that, a similar approach can be used to restrict the
MPC only to the shared columns if the shared circuit
is sufficiently small. This gives an MPC of depth 1 on
circuit of size O(max(Ns,m)). Towards improving the
efficiency in the distributed setting, usage of secure mul-
tiplication can be reduced. Suppose for a gate g among
all the provers, P1, . . . ,PD, only P1 and P2 has input to
g. Thus the shares of the remaining provers correspond-
ing to the gate g is 0. Hence running an MPC between

P1 and P2 maybe sufficient. Then resharing the out-
come among all the provers is required. However, this
approach requires end-to-end formal analysis. Moreover,
this is circuit specific and maybe hard to implement.

F Parameters

F.1 Performance Parameters for Ligero
and Bulletproofs

Ligero: Let m, s be such that N = ms. Let t be a pa-
rameter, and let ` = s + t, n = O(`) and e ≤ (n − `)/4
Then the performance parameters for Ligero are then
given by: czk = n+6`+4s+4mt+5t−5, tP = O(N)CF+
4m(CFFT(s) + CFFT(n)), tV = O(N) + 4mCFFT(s), κlg =
(1− e/n)t + 5((2`+ e)/n)t.
Bulletproofs: czk = 2 log(N) + 13, tP = 9NCEXP +
2CMXP(2N) + 3CMXP(N), tV = NCEXP + CMXP(2N),
κbp = N/|F|.

For computing prover communication in dis-
tributed setting we use the expressions: cpr =
MPC(D,max(Ns, 4m`), 1) + D × [(4pn + 5` + s +
2)BG + (4pt + 4m + h)BF], for D-Graphene and cpr =
MPC(D, Ns, 1)+D× [8BG+NBF] for Bulletproofs. Here
MPC(D, Ns, 1) denotes communication in an D party
MPC with circuit size Ns and depth as 1.

G Performance Evaluation
In Section B.2.3, we present protocol for an R1CS in-
stance. Here we summarize several performance param-
eters attained by our protocol for R1CS. Let N = pms,
` = s+ t and h be as in the previous sections. Let CF de-
note the time taken for a field operation, CFFT(x) denote
the time to compute FFT of a x length vector, CMXP(x)
denote the time taken for a multi-exponentiation of
length x, and CEXP denote the time required for an ex-
ponentiation. Let BF and BG denote the number of bits
required to represent an element of F and G respectively.
Our protocol Graphene achieves following efficiency pa-
rameters:
– Number of rounds: rzk = O(logN).
– Argument size: czk = 4ptBF +(4pt + 8t logm + 4` +

s+ 8t+ 4)BG.
– Prover complexity: tP = 4p((m + n)CFFT(m) +

mCFFT(l) +nCFFT(h) + 4p`CMXP(m) +(n −
`)CMXP(min(`,m)) +(s + 3`)CMXP(2m) +(48tm +
32m)CEXP

Distributed-prover Zero-Knowledge Protocols 553

DistLinearCheck(pp, A ∈MM,N , b ∈ FM , [π]; 〈U〉ξ, 〈02m−1〉ξ):
Relation: U = Open(π) ∧Aw = b for 〈w〉ξ = Dec(〈U〉ξ) for all ξ ∈ [D] and

∑
ξ∈[D]〈w〉

ξ = w.

1. V → Pξ: ρ←$ Fp.
2. Pξ computes: 〈Ũ〉ξ =

∑
i∈[p] ρi〈U〉

ξ[i, ·, ·], commitments 〈c̃1〉ξ, . . . , 〈c̃`〉ξ as 〈c̃〉ξ
k

=
∏
i∈[p](〈O[i, k]〉ξ)ρi ∀k ∈ [`].

3. Pξ → A: 〈c̃〉ξ = (〈c̃1〉ξ, . . . , 〈c̃`〉ξ).
4. A→ V: c̃ = Combine(〈c̃〉ξ.
5. V → Pξ: r←$ FM .
6. Pξ and V compute: Polynomials Ri, i ∈ [p] interpolating R = rTA as in Section B.2.1.
7. Pξ computes: Matrix 〈P 〉ξ from R and 〈U〉ξ as described in Section B.2.1. Samples 〈P0〉ξ ←$ F2m−1, 〈ω0〉ξ ←$ F

and 〈c0〉ξ ← Com(〈P0〉ξ, 〈ω0〉ξ), and 〈d0〉ξ ← Com(〈02m−1〉ξ, 〈o〉ξ) where 〈o〉ξ ←$ F. Computes commitments
〈c1〉ξ, . . . , 〈cs+`−1〉ξ from 〈P 〉ξ.

8. Pξ → A: 〈c0〉ξ, 〈c1〉ξ, . . . , 〈cs+`−1〉ξ, 〈d0〉ξ.
9. A→ V: ck = Combine(〈ck〉ξ)∀k ∈ [s+ `− 1] and sends c0, c1, . . . , cs+`−1.

10. V → Pξ: Q = {(ju, ku) : u ∈ [t]} for Q←$ [h]× [n] for u ∈ [t].
11. V → π: {ku : u ∈ [t]}.
12. Pξ → A: 〈Xu〉ξ = 〈U〉ξ[·, ju, ku], 〈Pu〉ξ = 〈P 〉ξ[·, ku] for u ∈ [t].
13. A→ V: Xu =

∑
ξ∈[D]〈Xu〉

ξ, Pu =
∑

ξ∈[D]〈Pu〉
ξ and sends Xu for u ∈ [t].

14. π → V: π[·, ku] for u ∈ [t].
15. V → Pξ: δ ←$ Fp, β ←$ F\{0}.
16. Pξ → A: 〈z〉ξ = β〈P0〉ξ + 〈P 〉ξϕ+ 〈02m−1〉ξ, 〈Vu〉ξ =

∑
i∈[p] δi〈U〉

ξ[i, ·, ku] and sends 〈z〉ξ, 〈Vu〉ξ.
17. A computes z =

∑
ξ∈[D]〈z〉

ξ, Vu =
∑

ξ∈[D]〈Vu〉
ξ.

18. A and V run inner product arguments to check:
(a) InnerProduct(pp,1TjuΛh,2m−1, cmu, vu;P [·, ku]) for u ∈ [t] where cmu =

∏s+`−1
a=1 (ca)Λn,s+`−1[a,ku], vu =∑p

i=1R
i(αju , ηku)Xu[i] (check consistency of P with π).

(b) InnerProduct(pp, 1m||0m−1, cm, rT b; z) where z = βP0 + Pϕ and cm = (c0)β ·
∏s+`−1
a=1 (ca)ϕa (check the condition

rTAw = rT b).
(c) InnerProduct(pp,1TjuΛh,m, Cu, wu;Vu) for u ∈ [t] where Cu =

∏p

i=1(π[i, ku])δi and wu =
∑

i∈[p] δiXu[i](consistency
of Xu with π).

19. V checks:
∏`

a=1(c̃a)ΛT
n,`

[a,ku] =
∏p

i=1(π[i, ku])ρi for u ∈ [t] (check proximity of U to W1).

Fig. 8. Distributed Linear Check Protocol

– Verifier complexity: tV = O(N)CF + 4pmCFFT(s)
+(2t+ 2)CMXP(2m) +2tCMXP(m) + tCMXP(4p+ `)

– Soundness error κgr = (1 − e/n)t +2
(
2m/h + (1 −

2m/h)(2`+ e)/n
)t.

In Appendix F.1, we give similar expressions for Ligero
and Bulletproofs protocols.
For c ≥ 2, setting p = s = O(N1/c),m = O(N1−2/c), t =
O(λ), n = O(`) and h = O(m), we get κgr = negl(λ) with
argument size O(N1/c), verifier’s complexity as O(N)
field operations and O(N1−2/c) exponentiations.
In Figure 2, we compare Graphene with Ligero [1] and
Bulletproofs [13] in single prover setting based on the
expressions in Appendix F.1. The concrete estimates
were obtained by timing the FFT operations, exponen-
tiations and multiexponentiations for different sizes, in
a single threaded setting using libff library. Parameters

for Graphene were optimized to yield best proving time,
while those for Ligero were optimized to yield best proof
size. From the table in Figure 2, we see that our proto-
col offers much more practical argument sizes compared
to Ligero, while still attaining low verifier complexity.

Performance Evaluation of D-Graphene.
D-Grapheneachieves the following efficiency, where the
notations are the same as above and MPC(x, y, z, w)
denotes the cost of running a secure evaluation among
z parties with w corruption for x many multiplication
gates with depth y.
– Number of rounds: rzk = O(logN).
– Argument size: czk = 4ptBF +(4pt + 8t logm + 4` +

s+ 8t+ 4)BG.
– Provers’ complexity: tP = D(4p((m + n)CFFT(m) +

mCFFT(l) + nCFFT(h) + 4p`CMXP(m) + (n −

Distributed-prover Zero-Knowledge Protocols 554

DistQuadraticCheck(pp, [πx], [πy], [πz]; 〈Ux〉ξ, 〈Uy〉ξ, 〈Uz〉ξ 〈02m〉ξ):
Relation: [Ux||Uy ||Uz] = Open(π)∧wx◦wy = wz for 〈wa〉ξ = Dec(〈Ua〉ξ) for all ξ ∈ [D] and

∑
ξ∈[D]〈wa〉

ξ = wa ∀a ∈ {x, y, z}.

1. V → Pξ: ρ←$ F3p.
2. Pξ computes: 〈Ũ〉ξ =

∑p

i=1[ρi〈Ux〉ξ[i, ·, ·] + ρp+i〈Uy〉ξ[i, ·, ·] + ρ2p+i〈Uz〉ξ[i, ·, ·]], commitments 〈c̃1〉ξ, . . . , 〈c̃`〉ξ as 〈c̃〉ξ
k

=∏p

i=1(〈Ox〉ξ[i, k])ρi · (〈Oy〉ξ[i, k])ρp+i · (〈Oz〉ξ[i, k])ρ2p+i ∀k ∈ [`].
3. Pξ → A: 〈c̃〉ξ = (〈c̃1〉ξ, . . . , 〈c̃`〉ξ).
4. A→ V: c̃ = Combine(〈c̃〉ξ).
5. V → Pξ: r←$ Fp.
6. Provers invoke FMult: 〈Ux.Uy〉ξ ← Mult(〈Ux〉ξ, 〈Uy〉ξ) to obtain shares of the hadamard product of the encodings.
7. Pξ computes: Matrix 〈P 〉ξ from r and 〈Ux.Uy〉ξ, 〈Uz〉ξ as described in Section B.2.2. Samples 〈P0〉ξ ←$ F2m−1 such

that P0[j] = 0∀j ∈ [m], 〈ω0〉ξ ←$ F and 〈c0〉ξ ← Com(〈P0〉ξ, 〈ω0〉ξ), and 〈d0〉ξ ← Com(〈02m−1〉ξ, 〈o〉ξ) where 〈o〉ξ ←$ F.
Computes commitments 〈c1〉ξ, . . . , 〈c2`−1〉ξ from 〈P 〉ξ.

8. Pξ → A: 〈c0〉ξ, 〈c1〉ξ, . . . , 〈c2`−1〉ξ, 〈d0〉ξ.
9. A→ V: ck = Combine(〈ck〉ξ) ∀k ∈ [2`− 1] and sends c0, c1, . . . , c2`−1.

10. V → Pξ: Q = {(ju, ku) : u ∈ [t]} for Q←$ [h]× [n] for u ∈ [t]. And τ ←$ Fs, γ ←$ Fm, β ←$ F∗.
11. V → π: {ku : u ∈ [t]}.
12. Pξ → A: 〈Xu〉ξ = 〈Ux〉ξ[·, ju, ku], 〈Yu〉ξ = 〈Uy〉ξ[·, ju, ku], 〈Zu〉ξ = 〈Uz〉ξ[·, ju, ku], 〈Pu〉ξ = 〈P 〉ξ[·, ku] for u ∈ [t].
13. A→ V: Au =

∑
ξ∈[D]〈Au〉

ξ where A ∈ {X,Y, Z, P} and sends Xu, Yu, Zu for u ∈ [t].
14. π → V: π[·, ku] for u ∈ [t].
15. V → Pξ: δ ←$ Fp, βx ←$ F, βy ←$ F, βz ←$ F, β ←$ F\{0}.
16. Pξ computes:〈Vu〉ξ =

∑p

i=1 δi
(
βx〈Ux〉ξ[i, ·, ku] +βy〈Uy〉ξ[i, ·, ku] +βz〈U〉ξ[i, ·, ku]

)
and 〈z〉ξ = β ·P0 + 〈P 〉ξϕ+ 〈02m−1〉ξ.

17. Pξ → A: sends 〈z〉ξ, 〈Vu〉ξ.
18. A computes z =

∑
ξ∈[D]〈z〉

ξ and Vu =
∑

ξ∈[D]〈Vu〉
ξ.

19. A and V: Both compute Wu = βxXu + βyYu + βzZu for u ∈ [t]. Tu = (Cu)βx · (Du)βy · (Eu)βz , for u ∈ [t] where
Cu =

∏p

i=1(πx[i, ku])δi , Du =
∏p

i=1(πy [i, ku])δi and Eu =
∏p

i=1(πy [i, ku])δi .
20. A and V run inner product arguments to check:

(a) InnerProduct(pp,1TjuΛh,2m−1, cmku , vu;P [·, ku]) for u ∈ [t] where cmku = cβ0
∏2`−1
a=1 (ca)ΛT

n,2`−1[a,ku], vu =∑p

i=1 ri[Xu[i] · Yu[i]− Zu[i]] (check consistency of P with π).
(b) InnerProduct(pp, γ||0m−1, cm, 0; z) where z = β · P0 + P × ϕ and ϕ = ΦT τ and cm =

∏2`−1
a=1 (ca)ϕa .

(c) InnerProduct(pp,1TjuΛh,m, Tu, wu;V u), where V u stands for first m entries of Vu and wu = 〈δ,Wu〉 (consistency of
Xu, Yu, Zu with π).

21. V checks proximity of Ux,Uy and Uz according to the Equation (3).

Fig. 9. Distributed Quadratic Check Protocol

`)CMXP(min(`,m)) + (s + 3`)CMXP(2m) + (48tm +
32m)CEXP) + 8MPC(N, 1,D,D− 1)

– Verifier complexity: tV = O(N)CF + 4pmCFFT(s)
+(2t+ 2)CMXP(2m) +2tCMXP(m) + tCMXP(4p+ `)

– Soundness error κgr = (1 − e/n)t +2
(
2m/h + (1 −

2m/h)(2`+ e)/n
)t.

We now illustrate D-Graphene’s performance for a con-
crete example. We assume two provers P1 and P2 who
wish to produce a proof of holding private coins c1
and c2 with serial numbers sn1 and sn2 on the Zcash
blockchain, which are unspent and have combined value
above some threshold v. The verification circuit consists
of following major components:

Ensure the coins c1 and c2 are in the Merkle tree of
coins. Each coin authentication takes around 1.8 × 106

gates (see [5, Section 5.2.2]).
Check that sn1 and sn2 are correctly computed from

c1 and c2. This take around 54, 000 gates.
Check that v1 + v2 > v and v1 + v2 < 264, where

v1 and v2 are values of the coins. This takes around 66
constraints.

For the above circuit, we consider N ≈ 4.0 × 106.
For different values of parameters of our protocol, we set
Ns = max(66, 4m`). For Bulletproofs, we take Ns = 66.
Optimizing for total prover communication, our proto-
col achieves a total communication of 83.64 MB, with
a proof size of 4.2 MB. Prover and verification time for
our protocol is 9100 sec and 30 sec respectively. The

Distributed-prover Zero-Knowledge Protocols 555

N Arg. Size(czk) MB Verifier Time(tV) sec Prover Time(tP) sec
G L B G L B G L B

219 0.728 3.5 0.001 45.4 55.2 89.1 802 137 662
220 0.759 4.9 0.001 49.8 205.57 178.2 1514 291 1324
221 0.884 6.95 0.001 55.97 212.17 356.5 2877 582 2648
222 1.28 9.8 0.001 108.306 805.3 713 5558 1258 5297
223 1.31 13.8 0.001 137.072 833.66 1426 10757 2516 10595

Table 2. Comparison of Graphene(G), Ligero(L) and Bulletproofs(B) in single prover setting for 80 bits of security

distributed variant of Bulletproofs yields total prover
communication of 168 MB, with proof size of 0.001
MB, proving and verification time of 5297 sec and 713
sec respectively. We used state-of-the-art dishonest ma-
jority semi-honest protocol (Oblivious Transfer based)
MASCOT [32] for the MPC communication among
the provers. All the experiments were done on 8-core
Ubuntu Linux 18.04 Machine with 2 GHz processor and
32GB memory. We used libff and libqfft libraries for fi-
nite field and elliptic curve implementation, and also for
the FFT and multi-exp algorithms. The elliptic curve
used was 181-bit Edwards curve.

Distributed-prover Zero-Knowledge Protocols 556

DP − GrapheneR1CS(pp, A,B,C, [π]; wx,wy ,wz ,w):
Relation: Aw ◦Bw = Cw.
Oracle Setup: Compute O as described above. Set π := O.

1. V → Pξ: γx, γy , γz ←$ F, rlc ←$ FM , rqd ←$ Fp, ρ←$ F4p.
2. Pξ → A: Pξ computes 〈Ũ〉ξ =

∑
i∈[4p] ρi〈U〉

ξ[i, ·, ·] and sends commitments 〈c̃1〉ξ, . . . , 〈c̃`〉ξ to 〈Ũ〉ξ.
3. A→ V: A computes c̃k =

∏
ξ∈[D]〈c̃k〉

ξ and sends c̃1, . . . , c̃`.
4. Pξ ↔ V compute: R = rTlcW for W = [γxI ||γyI ||γzI || − (γxA + γyB + γzC)], polynomials Ri,i ∈ [4p] interpolating the

slices of R viewed as a 4p×m× n matrix.
5. Pξ computes:

– Polynomials 〈Qix〉ξ, 〈Qiy〉ξ, 〈Qiz〉ξ, 〈Qi〉ξ for i ∈ [p], where polynomials 〈Qia〉ξ, i ∈ [p] correspond to 〈wa〉ξ for a ∈
{x, y, z} and polynomials 〈Qi〉ξ,i ∈ [p] correspond to 〈w〉ξ.

– Provers invoke FMult on inputs 〈Qix〉ξ, 〈Qiy〉ξ and Pξ gets 〈Qixy〉ξ, share of the polynomial Qixy .
– h × n matrices 〈Plc〉ξ and 〈Pqd〉ξ as “P” matrices for the linear check and quadratic check respectively. Note

that 〈pj〉ξ polynomial for 〈Plc〉ξ is given by 〈pj〉ξ(·) =
∑p

i=1(Ri(αj , ·) · 〈Qix〉ξ(αj , ·) + Rp+i(αj , ·)〈Qiy〉ξ(αj , ·) +
R2p+i(αj , ·)〈Qiz〉ξ(αj , ·) + R3p+i(αj , ·)〈Qi〉ξ(αj , ·)). The 〈pj〉ξ polynomials for the matrix 〈Pqd〉ξ are given by
〈pj〉ξ(·) =

∑p

i=1 rqd[i](〈Qixy〉ξ(αj , ·)− 〈Qiz〉ξ(αj , ·)).
– Blinding vectors 〈Ulc〉ξ, 〈Uqd〉ξ ∈ F2m−1 for linear and quadratic check protocols respectively, and commitments

〈c0〉ξ, 〈d0〉ξ to vectors 〈Ulc〉ξ and 〈Uqd〉ξ.
6. Pξ → A: Commitments 〈c0〉ξ, 〈c1〉ξ, . . . , 〈cs+`−1〉ξ for the matrix 〈Plc〉ξ and commitments 〈d0〉ξ, 〈d1〉ξ, . . . , 〈d2`−1〉ξ for

matrix 〈Pqd〉ξ.
7. A → V: A computes ck =

∏
ξ∈[D]〈ck〉

ξ ∀k ∈ {0, . . . , s + ` − 1} and dk =
∏
ξ∈[D]〈dk〉

ξ ∀k ∈ {0, . . . , 2` − 1} and sends
c0, c1, . . . , cs+`−1, d0, d1, . . . , d2`−1.

8. V → Pξ: Q = {(ju, ku) : u ∈ [t]}.
9. V → π: {ku : u ∈ [t]}.

10. Pξ → A: 〈Su〉ξ = 〈U〉ξ[·, ju, ku], 〈Plcu〉ξ = 〈Plc〉ξ[·, ku], 〈Pqdu〉ξ = 〈Pqd〉ξ[·, ku] for u ∈ [t].
11. A computes Su =

∑
ξ∈[D]〈Su〉

ξ, Plcu =
∑

ξ∈[D]〈Plcu〉
ξ and Pqdu =

∑
ξ∈[D]〈Pqdu〉

ξ for u ∈ [t].
12. A→ V: Su for u ∈ [t].
13. π → V: π[·, ku], u ∈ [t].
14. V → Pξ: δlc ←$ F4p, δqd ←$ Fp, βlc, βqd ←$ F∗, βx, βy , βz ←$ F.
15. Pξ → A: 〈V lcu〉ξ = 〈δlc, 〈U [·, ju, ku]〉ξ〉,
〈V qdu〉ξ = 〈δqd, (βxUx[·, ju, ku] + βyUy [·, ju, ku] + βzUz [·, ju, ku])〉.

16. A computes V lcu =
∑

ξ∈[D] V lcu and V qdu =
∑

ξ∈[D] V qdu.
17. A and V run the linear and quadratic check protocols in parallel, parsing the vectors Vu into Xu, Yu, Zu,Wu as needed.

And compute Au = βxXu + βyYu + βzZu for u ∈ [t] and corresponding commitment.
18. Check proximity as:

∏`

a=1(c̃a)ΛT
n,`

[a,ku] =
∏4p
i=1(π[i, ku])ρi for u ∈ [t].

19. V accepts if all the subprotocols accept.

Fig. 10. Distributed GrapheneR1CS Protocol

	How to prove any NP statement jointly? Efficient Distributed-prover Zero-Knowledge Protocols
	1 Introduction
	2 Potential Application: Multi-Wallet Anonymous Payments
	3 Overview of Our Work
	3.1 On the Formal Definition of DPZK
	3.2 Compiler for IOP-based Proof Systems
	3.3 Instantiations of Distributed Prover Zero-Knowledge
	3.4 Graphene: an MPC-friendly Zero-Knowledge Protocol
	3.5 Related Work

	4 Definition for Distributed Proof Zero-Knowledge
	4.1 Real-Ideal World Definition for DPZK
	4.2 Our Setting for DPZK
	4.3 Related Notions

	5 DPZK Compiler
	5.1 The Compiler

	6 DPZK Instantiation
	6.1 Protocols with Single Oracle
	6.2 Multiple Oracle IOP
	6.3 Non-IOP Protocols

	7 Conclusion
	A Preliminaries
	A.1 Basic Notations
	A.2 Coding Theory primitives
	A.3 Coding Theory Results for Our Constructions
	A.4 Vector Commitment Schemes and Inner-product Arguments

	B Graphene Protocol and Security Proofs
	B.1 Primitives for Graphene
	B.1.1 Witness Encoding
	B.1.2 Codes and Matrices
	B.1.3 Commitment of Product Codewords
	B.1.4 Oracle Construction
	B.1.5 Witness Decoding

	B.2 Graphene
	B.2.1 Linear Check
	B.2.2 Quadratic Check
	B.2.3 Graphene
	B.2.4 Linear Check Protocol
	B.2.5 Quadratic Check Protocol
	B.2.6 Graphene Protocol

	B.3 Zero-knowledge

	C D-Graphene and Security Proofs
	C.1 D-Graphene: Distributed Prover Variant
	C.2 Distributed Oracle Setup
	C.3 Distributed Linear Check
	C.4 Distributed Quadratic Check
	C.5 Security Proofs

	D DPZK from Existing Protocols
	D.1 DPZK of Bulletproof for R1CS
	D.2 DPZK of Spartan for R1CS

	E Shared Circuit Complexity
	E.1 Reducing MPC Overhead for Small Shared Circuits

	F Parameters
	F.1 Performance Parameters for Ligero and Bulletproofs

	G Performance Evaluation

