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My Cookie is a phoenix: detection,
measurement, and lawfulness of cookie
respawning with browser fingerprinting
Abstract: Stateful and stateless web tracking gathered
much attention in the last decade, however they were
always measured separately. To the best of our knowl-
edge, our study is the first to detect and measure cookie
respawning with browser and machine fingerprinting.
We develop a detection methodology that allows us to
detect cookies dependency on browser and machine fea-
tures. Our results show that 1, 150 out of the top 30, 000
Alexa websites deploy this tracking mechanism. We find
out that this technique can be used to track users across
websites even when third-party cookies are deprecated.
Together with a legal scholar, we conclude that cookie
respawning with browser fingerprinting lacks legal inter-
pretation under the GDPR and the ePrivacy directive,
but its use in practice may breach them, thus subjecting
it to fines up to 20 million e.
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1 Introduction
In the last decades, the usage of the web has consider-
ably increased, along with the web browsers sophistica-
tion. In parallel, numerous companies built their busi-
ness models on tracking web users. Therefore, browsers
evolution does not only provide a better user experi-
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ence, but also allows the emergence of new tracking
techniques exploited by companies to collect users’ data.

In the literature, two main categories of tracking
techniques have been studied: stateful and stateless.
Stateful tracking is a standard technique that relies on
browser storage such as cookies [2, 8, 25, 55]. Trackers
store a unique identifier in the cookie and later use it
to recognize a user and track their activity across, pos-
sibly, different websites. The simplest way to protect
from such tracking is to delete the unique identifier by,
e.g., cleaning the cookie storage. However, trackers can
recreate deleted cookies using a technique called cookie
respawning to track users. For instance, a tracker can
use multiple browser storages that store identifiers, in
addition to the cookie storage, such as the HTML5 lo-
calStorage [8]. Consequently, even if the user cleans the
cookie storage, the tracker can still recreate cookies us-
ing other storages [2, 8, 55, 63].

Stateless tracking allows for tracking users with-
out storing identifiers in their browser storage. Using
browser fingerprinting [3, 14, 24, 33, 36, 50], trackers
can identify a user through a combination of the user’s
browser and machine features, such as the user agent
or IP address. Whereas it is hard to prevent it, browser
fingerprinting is not stable over time. Vastel et al. [70]
showed that fingerprints change frequently: out of 1,905
studied browser instances, 50% changed their finger-
prints in less than 5 days, and 80% in less than 10 days.
This instability is caused either by automatic triggers
such as software updates or by changes in the user’s
context such as travelling to a different timezone.

In summary, stateful tracking is a stable way to
track users until they clean cookies and other browser
storages. Stateless tracking is not stable over time, but
does not require any storage and can not be easily
stopped by the user. So given that each technique is not
perfect, how can a tracker take advantage of the best
of the two worlds? The tracker can first use a browser
fingerprint to create an identifier and store it in the
browser’s cookie. In this way, even if a user cleans this
cookie, the identifier can be recreated with a browser
fingerprint. Moreover, even if the fingerprint changes
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over time, the identifier stored in the cookie can help
to match the new fingerprint with the old fingerprint of
the same user. We refer to this tracking technique as
cookie respawning with browser fingerprinting.

Several studies measured the prevalence of state-
ful [2, 25, 55] or stateless [3, 14, 24, 50] tracking tech-
niques separately. However, to the best of our knowl-
edge, we are the first to study how trackers profit from
combining both stateful and stateless techniques.

The aim of this paper is to propose a robust method-
ology to detect and measure the prevalence of cookie
respawning with browser fingerprinting, followed by a
technical and legal analysis of the privacy implications
of this tracking technique. In this paper, we make the
following contributions.
1) We designed a robust method to identify
which features are used to respawn a cookie. Our
contribution lies in the design of a method to automat-
ically identify the set of fingerprinting features used to
generate a cookie, hence, to conclude which user infor-
mation is collected. We additionally perform a permu-
tation test (N=10,000, p<0.05) to provide certainty on
the dependency between the features and the cookies.
2) We conduct the first study of cookie respawn-
ing with browser fingerprinting. We show that
the stateful and stateless tracking techniques that were
studied separately are, in fact, actively used together
by trackers. We found that 1, 150 (3.83%) of the Alexa
top 30, 000 websites use cookie respawning with browser
fingerprinting.
3) We show that cookie respawning with browser
fingerprinting is highly deployed in popular web-
sites. Cookie respawning with browser fingerprinting is
also happening on websites from different categories in-
cluding highly sensitive ones such as adult websites.
4) We show that cookie respawning with browser
fingerprinting lacks legal interpretation and its
use, in practice, violates the GDPR and the ePri-
vacy directive. We are the first to assess the legal con-
sequences of this practice together with a legal expert
co-author. Despite the intrusiveness of this practice, it
has been overlooked in the EU Data Protection Law and
it is not researched in legal scholarship, nor audited by
supervisory authorities.

In this paper, we use the term tracker to refer to any
company trying to track user’s behavior. This tracking
behavior can range from analytics to cross site track-
ing, with very different privacy consequences for the
end-users. Whereas this paper does not focus of cross-
site tracking, the cookie respawning with browser finger-
printing technique can be used for any kind of track-

ing activities, but more importantly, it has the poten-
tial to evade user protection techniques against cross-
site tracking such as the yet to be deployed third party
cookie deprecation [58] (see Section 5.5).

2 Background

2.1 Scope of cookies: host and owner

In this paper, we make a distinction between the no-
tion of cookie host and cookie owner. When a cookie is
stored in the browser, it is identified by a tuple (host,
key, value). If the cookie is set via an HTTP(S) response
header, then the host of the cookie represents a domain
that sets the cookie. However, when the cookie is set
programmatically via a JavaScript script included in the
website, the script gets executed in the context, or “ori-
gin" where it is included. Due to the Same Origin Policy
(SOP) [57], the host of a cookie set by the script is the
origin of the execution context of the script, and not the
domain that contains the script. Given a cookie stored
in the browser with its (host, key, value), when a browser
sends a request to a domain, it attaches a cookie to the
request if the cookie host matches the domain or the
subdomain of the request [44].

A cookie owner is responsible for setting the cookie.
It is either a domain that sets a cookie via HTTP(S) re-
sponse header (and in this case, matches with the cookie
host), or the domain that hosts a script that sets the
cookie programmatically (generally speaking, here the
owner is different from host). For example, site.com
includes a third party script from tracker.com. After
loading, the script sets a cookie in the context of the
visited website site.com. In this case, the cookie owner
is tracker.com, but the cookie host is site.com.

2.2 Web tracking technologies

Cookie-based tracking. Websites are composed of
first party content and numerous third-party content,
such as advertisements, web analytic scripts, social wid-
gets, or images. Following the standard naming [40], for
a given website we distinguish two kinds of domains:
first-party domain that is the domain of the website,
and third-party domains that are domains of the third-
party content served on the website.

Using HTTP(S) request (or response), any content
of the webpage can set (or receive) cookies. Addition-
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ally, cookies can be set programmatically via a script.
Every cookie is stored in the browser with a domain re-
ferred to as host, and path, so that every new HTTP(S)
request sent to the same domain and path gets a cookie
associated thereto attached to the request. First-party
cookies set by first-party domains are capable to track
users within the same website. Third party cookies set
by third-party domains allow third parties to track users
cross-websites [55].

Browser fingerprinting. Browser fingerprinting
is a stateless tracking technique that provides the abil-
ity to identify and track users without using their
browser storage [3, 5, 14, 22], unlike cookie-based track-
ing. When a user visits a web page that includes a
fingerprinting script, this script will return to a fin-
gerprinter server a list of features composed of user’s
browser and machine characteristics, such as user agent
or time zone. The trackers use these collected features
to build a unique identifier.

Cookie respawning. Cookie respawning is the
process of automatically recreating a cookie deleted by
the user (usually by cleaning the cookie storage). Several
techniques can be used to respawn a cookie. While re-
lated works focused on exploiting another browser stor-
age (e.g., the HTML5 local storage) that duplicates the
information contained in the cookie [3, 8, 63], in this
work, we focus on the usage of a browser fingerprint to
recreate a cookie. Section 4 describes how a tracker can
exploit a browser fingerprint to respawn a cookie.

3 Related work
Cookie based tracking is a classical tracking technique
which has been widely studied [3, 8, 22, 24, 40, 50, 51,
54, 55, 63], and is now commonly blocked by modern
browsers [34, 49] and add-ons [19, 31]. In this paper,
we explore a more sophisticated technique combining
cookie based tracking with fingerprinting.

In 2010, the Panopticlick study showed that finger-
prints can be potentially used for web tracking [22]. Fol-
lowing this study, several fingerprinting tracking tech-
niques were discovered, and showed that user’s browser
and machine features can be deployed to track their ac-
tivity [3, 5, 14, 62].

The term respawning was first introduced in 2009 by
Soltani et al. [63]. They showed that trackers are abus-
ing the usage of the Flash cookies in order to respawn
or recreate the removed HTTP cookies. This work at-
tracted general audience attention [45, 46] and trig-

gered lawsuits [38, 39]. Following Soltani et al. work,
other studies started analyzing the usage of other stor-
ages for respawning such as ETags and localStorage [8].
Sorensen studied the usage of browser cache in cookie
respawning [65]. Acar et al. automated the detection of
cookie respawning and found that IndexedDB (a client-
side storage) can be used to respawn cookies as well [3].
Roesner et al. showed that cookies can be respawned
from local and Flash storages [55].

Laperdrix et al. [36] surveyed recent advancement
in measurement and detection of browser fingerprint-
ing. The survey mentions [36, §5.1] that browser finger-
print together with IP address can be used to regenerate
deleted cookies, however no previous work studied this
phenomena.

Unlike previous works that studied the usage of
browser storages to respawn cookies, or measured fin-
gerprinting independently, our study analyzes the usage
of fingerprinting to respawn cookies.

4 Methodology
When a user visits a web page with some content lo-
cated on a tracker’s server, the user’s browser sends an
HTTP(s) request to the server to fetch this content.
This request contains several HTTP headers, such as
user agent, and an IP address that tracker’s server re-
ceives passively. We refer to such information as passive
features. To collect additional information, the tracker
can include in the visited web page a script that gets ex-
ecuted on the user’s browser. The script retrieves multi-
ple browser and machine information, such as the time
zone, and sends them to a server of the remote tracker.
We refer to such information as active features. In the
following, we define a browser fingerprint as the set of
active and passive features accessed by the tracker.

We say that a tracker respawns a cookie when it
recreates the exact same cookie after the user revisits
the website in a clean browser.

4.1 How to benefit from a combination of
cookies and fingerprinting?

To benefit from both techniques, the tracker can first use
a browser fingerprint to create an identifier and store
it in the browser’s cookie. In this way, even if a user
cleans this cookie, the identifier can be recreated with
a browser fingerprint. Moreover, even if the fingerprint
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changes over time, the identifier stored in the cookie can
help to match the new fingerprint with the old finger-
print of the same user. We explain these scenarios and
benefits in details below.

Figure 1(a) shows that the tracker first receives a set
of user’s active and\or passive features (step 1 ). In step
2 , the tracker generates an identifier from the received
features, that it might store on the server’s matching ta-
ble. The tracker then stores the created identifier in the
user’s browser cookie, either via the Set-cookie header
(step 3 ) or programmatically via JavaScript (not shown
in Figure 1(a)). As a result, an identifier is stored in the
browser’s cookie database (step 4 ).

Figures 1(b) shows what happens when the user
does not have a cookie 123 in the browser, however the
fingerprint fp456 remains the same. In this case, the fin-
gerprint fp456 is sent to the server of tracker.com (step
5 ), and it allows the tracker to match the known fin-
gerprint and the cookie previously set for this user (step
6 ). As a result, the tracker is able to set again the same
cookie 123, previously deleted by the user (step 7 ). This
allows the tracker to respawn deleted user cookies with
browser fingerprinting and continue tracking the user
via such cookies (step 8 ).

Figure 1(c) presents the consequences of cookie
respawning with browser fingerprinting. When the
browser fingerprint of the user is updated from fp456 to
fp789, the server of tracker.com receives an old cookie
123 with a new fingerprint fp789 (step 9 ). The cookie
123 helps the server to recognize the user’s browser and
update the corresponding record in the matching table
and substitute a fingerprint fp456 to fp789 associated to
cookie 123 (step 10 ). This allows the tracker to match
different fingerprints of the same user, given that finger-
printing is not stable over time.

As a result, cookie respawning with browser finger-
printing allows trackers to respawn deleted cookies, and
also to link different browser fingerprints of the same
user. This makes the tracking robust to either cookie
deletion or fingerprint change. Only in case the browser
fingerprint changes and the cookie is deleted at the same
time, the tracker will not be able to recognize the user
and hence to continue tracking this user.

In this paper, we propose a robust methodology to
detect the mechanisms presented in Figures 1(a) and
1(b). In this section, we first introduce our methodol-
ogy to crawl Alexa top 30, 000 websites (Section 4.2).
Next, we present our method to detect cookie respawn-
ing with browser fingerprinting (Section 4.3). Then, we
describe the fingerprinting features used in our study

and spoofing techniques (Section 4.4). Finally, we list
the limitations of our methodology (Section 4.5).

4.2 Measurement setup

We performed passive web measurement on March 2021
of the Alexa top 30, 000 websites extracted on March
20201. All measurements are performed using the Open-
WPM platform [52] on the Firefox browser. We used two
machines to perform the crawls in our study. The ver-
sions of OpenWPM and Firefox, the time period of the
crawl, and the characteristics of the two machines used
in this study are presented in Table 7 of the Appendix A.

We used different characteristics with two machines
so that they appear as different users, as done by previ-
ous works [2, 24, 25, 30]. Ideally, we would have used two
distinct machines with different locations to detect user
specific cookies, however, both machine A and machine
B are located in France. Hence, to change the Machine
B geolocation, we spoofed the parameters latitude and
longitude by modifying the value of geo.wifi.uri ad-
vanced preference in the browser and point it to Alaska.

All our crawls are based on the notion of stateless
crawling instances. We define a stateless crawling in-
stance of a website X as follows: (1) we visit the home
page of the website X and keep the page open until all
content is loaded to capture all cookies stored (we set
the timeout for loading the page to 90s), (2) we clear
the profile by removing the Firefox profile directory that
includes all cookies and browser storages. The ratio-
nale behind the stateless crawling instance is to ensure
that we do not keep any state in the browser between
two crawling instances. This guarantees that respawned
cookies do not get restored from other browser storages.

We perform stateless crawling instances of the Alexa
top 30, 000 websites and for each stateless crawling in-
stance, we extracted HTTP and scripts information au-
tomatically collected by OpenWPM (see list of recorded
data in Appendix B).

4.3 Detecting cookie respawning with
browser fingerprinting with sequential
crawling

Figure 2 presents our sequential crawling methodology
that detects which fingerprinting features are used to

1 We made this list of websites publicly available [6].
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(a) Initial cookie creation using browser fingerprint (b) Cookie respawning with browser fingerprinting tacking
mechanism

(c) Usage of cookies to ensure fingerprint stability

Fig. 1. Cookie respawning with browser fingerprinting tracking technique. (a) (step 1) The tracker receives user’s features, (step
2) then stores a fingerprint fp456 associated with the features and generates a corresponding cookie 123. (step 3) Next, the
tracker sets the cookie in the user’s browser. (step 4) As a result an identifier is stored in the browser cookie storage. (b) When
the user cleans the browser and revisit the website, (step 5) the tracker receives the fingerprint fp456, (step 6) extracts the cor-
responding cookie from the matching table, (step 7) and re-sets it in the user’s browser. (step 8) As a result, the cookie 123 is
recreated in the user’s browser. (c) The fingerprint is not stable over time, (step 9) thus the user fingerprint might change. (step
10) The tracker can use the cookie received with the fingerprint to update the latest on the server side.

respawn cookies. Our method consists of two main steps
explained in this section:
– Create the initial set of candidate respawned

cookies: we identify candidate respawned cookies
by collecting all cookies that get respawned in a
clean browsing instance, and we remove cookies that
are not user-specific.

– Identify dependency of each respawned
cookie on each fingerprinting feature: we spoof
each feature independently to detect whether the
value of a respawned cookie has changed when the
feature is spoofed. We perform a permutation test
(N = 10, 000, p < 0.05) to add statistical evi-
dence on the dependency between a feature and the
respawned cookie.

4.3.1 Creation of the initial set of candidate
respawned cookies

To build the initial set of candidate respawned cook-
ies, we perform two stateless crawling instances from
machine A as described in Figure 2 (Initial and Reap-
pearance crawl). Via these two crawls, we ensure that
all browser storages are cleaned and the only way for
cookies to be respawned is with browser fingerprinting.

We define a cookie as the tuple (host, key, value)
where host is the domain that can access the cookie.
To create the set of candidate respawned cookies, we
only collect cookies that appear in both the Initial and
Reappearance crawl when visiting the same website in
the two crawls. Note that due to our sequential crawl-
ing (we visit websites in a sequence), we only consider
candidate respawned cookies within the same website.

Previous research [2, 24, 25, 30] considered that
cookies are non specific to the users and hence unlikely
to be used for tracking when their values are identi-
cal for several users. Therefore, using distinct machines
to remove non user-specific cookies became a common
method in this research area. We follow this methodol-
ogy and remove cookies that are not user-specific from
our set of candidate respawned cookies. To do so, we
performed an additional User specific crawl from a dif-
ferent machine B that appears to trackers as a different
user. Practically, we perform the Initial crawl and User
specific crawl in parallel, and the Reappearance crawl
right after the Initial crawl completes (Figure 2). It is
important that machines A and B have different finger-
printing features (see Table 7 of the Appendix) to avoid
wrong categorization of cookies that depend on these
features as non user-specific.
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We hence remove the following cookies from the
set of candidate respawned cookies and keep only user-
specific cookies:
1) a cookie (host, key, value) if it appears on both the
Initial crawl on machine A and User specific crawl on
machine B with the same host, key, and value.
2) a cookie (host, key, value) if a cookie with the same
host and key is not present in a User specific crawl. We
adopt a conservative strategy to remove such cookies
because we do not have a proof that such cookies are
user-specific.

We remove cookies that are not user-specific or do
not re-appear to ensure that only user-specific cookies
are further analysed.

4.3.2 Identifying dependency of each respawned
cookie on each fingerprinting feature

The set of candidate respawned cookies contains cookies
that are both user-specific and respawn when crawled
a second time after we used a new browser instance
with a cleaned browser storage. Therefore, cookies in
this set are very likely to be respawned with the use of
browser fingerprinting. To detect whether fingerprint-
ing features are used to respawn the collected cookies,
we performed the following steps. We first identified 8
fingerprinting features from previous research (see more
details on the choice of features and methods to spoof
them in Section 4.4). Then, for each website u where
we have at least one candidate respawned cookie, we
perform 99 crawls: 11 spoofing crawls per studied fin-
gerprinting feature f, and 11 crawls with all features
set to their initial values (as in Initial crawl) that we
refer to as Control crawls. In each of the total 88 spoof-
ing crawls, we first spoof the feature f and perform a
stateless Spoofing crawl of the website u. For each user-
specific respawned cookie from the candidate set, we
perform the following algorithm.
– For each of the 88 crawls, we label the cookie as

respawned if the cookie’s host and key are identical
but value are different from the Initial crawl. As a
result we get 11 observations for each feature.

– For every feature, we perform a permutation test
with the 11 observations from the Control crawls
using 10,000 permutations. The statistical test as-
sess the difference of the probability to have the
cookie respawned between the Spoofing crawls and
the Control crawls.

– We consider that the cookie is feature dependent if
the p-value for the test statistic is lower than 0.05.

4.3.3 Summary of the crawling methodology

We consider a cookie to be user specific if it appears
in the initial crawl, reappears with the same value in
the reappearance crawl performed from a clean browser
instance, but does not reappear in the user-specific crawl
that is performed from a different machine (see Table 7)
than the two other crawls. These user specific cookies
represent our set of candidate respawned cookies.

Then, we performed additional crawls to test the
dependency of a cookie to a specific feature f . Ideally,
a cookie respawned due to a feature f must reappear
with the same value for each crawl when the feature
f is not modified, and must not reappear when f is
spoofed. However, due to the dynamic nature of the
Web, the cookie might change independently of a fea-
ture, because the content of the page changed. In prac-
tice, we observed candidate respawn cookies that reap-
pear for some but not all crawls in which a feature f is
not modified. To show whether this reappearance is due
to chance or due to a real dependency to the feature f ,
we performed a permutation test to show the statistical
significance of the dependency to a feature f .

4.4 Selection of fingerprinting features
and spoofing techniques

To achieve a high uniqueness of an identifier built
from a browser fingerprint, trackers use a combina-
tion of both passive and active browser and machine
features. Though browser features are useful for fin-
gerprinting, using them alone might be problematic
for trackers because of the usage of multiple browsers
among users [14, 60, 69]. To improve the accuracy of
the fingerprint, trackers also use machine related fea-
tures such as the IP address, or the OS version [5, 11].

Table 1 presents a full list of studied browser and
machine features that we selected based on the most
common features in prior works on browser fingerprint-
ing [2, 5, 11, 14, 18, 24, 32, 37, 48].

We used two methods to spoof fingerprinting fea-
tures: Firefox preferences and add-ons. We validated
that each feature is properly spoofed on our own test-
ing website with a fingerprinting script and also by using
whoer website [72] that verifies the information sent by
the user’s browser and machine to the web.
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Fig. 2. Sequential crawling of 30, 000 top Alexa websites to identify cookie respawning with browser fingerprinting. For each web-
site, we perform an Initial crawl from machine A and, a User specific crawl from machine B to detect machine unrelated cook-
ies. After Initial crawl finishes, we start a Reappearance crawl from machine A to detect reappearance of cookies. Using Initial
crawl, User specific crawl, and Reappearance crawl we detect user-specific cookies that reappear in Reappearance crawl, but not
in User specific crawl. For such cookies, we randomly chose one configuration Ci: either spoof one feature at a time or to set all
features to initial value. We perform 99 stateless crawls (11 Spoofing crawls per feature and 11 Control crawls where the studied
features are unspoofed). Finally, we perform a permutation test for each feature (N=10,000), and we consider that the cookie is
feature dependent if the resulting p-value < 0.05. All these steps are discussed in Section 4.3.

Feature name Feature type

Browser
features

Accept language [5, 37] Active/Passive
Geolocation [5] Active
User agent [5, 11, 32, 37] Active/Passive
Do not track [32, 37] Active/Passive

Machine
features

WebGL [5, 14, 32, 37, 48] Active
Canvas [2, 14, 18, 24, 32, 37, 48] Active
IP address [5, 11, 18, 24] Passive
Time zone [11, 32, 37] Active

Table 1. Studied fingerprinting features.

4.4.1 Spoofing using Firefox preferences

Firefox allows to change its settings in the browser
preferences of about:config page. With this method, we
spoofed the following features.

User agent. The User-Agent HTTP header al-
lows the servers to identify the operating system and
the browser used by the client. The Initial crawl
runs in Firefox under Linux (see Table 7 in the
Appendix for details). To spoof the user agent, we
changed the general.useragent.override preference
in the browser to Internet Explorer under Windows:
Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;
AS; rv:11.0) like Gecko. We checked the spoofing ef-
ficiency on our testing website with a fingerprinting
script. The script returns the user agent value using the
navigator.userAgent API. We tested the user agent
value returned with the HTTP header using the whoer
website [72]. We found that the user agent value was
spoofed both in JavaScript calls and HTTP headers.

Geolocation. The geolocation is used to identify
the user’s physical location. The Initial crawl has as

location Cote d’Azur, France. We spoofed the geoloca-
tion parameters latitude and longitude by modifying the
value of geo.wifi.uri preference in the browser and
point it to the Time Square, US ("lat": 40.7590, "lng":
-73.9845). We validated the spoofing efficiency using a
script call to navigator.geolocation API.

WebGL. The WebGL API is used to give infor-
mation on the device GPU. In our study, we focus on
the WebGL renderer attribute that precises the name
of the model of the GPU. We spoofed the WebGL ren-
derer using the webgl.render-string-override pref-
erence in the browser. We changed the value of We-
bGL renderer to GeForce GTX 650 Ti/PCIe/SSE2.
To retrieve information about the graphic driver and
read the WebGL renderer value, we used the WE-
BGL_debug_renderer_info add-on. We validated the
WebGL spoofing efficiency by using the add-on in our
customized website.

Do Not Track. The Do Not Track (DNT) header
indicates user’s tracking preference. Users can express
that they don’t want to get tracked by setting the DNT
to True. In the Initial crawl, the DNT was set to null.
We enabled the DNT header, and we set it to True
using the privacy.donottrackheader.enabled prefer-
ence. We validated that the DNT returned value in the
HTTP header is set to True using the whoer website.

4.4.2 Spoofing using browser add-ons

The browser preferences do not provide a spoofing
mechanism for all fingerprinting features. We used
browser add-ons to spoof such features.
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Canvas. The HTML canvas element is used to
draw graphics on a web page. The difference in font
rendering, smoothing, as well as other features cause
devices to draw images and texts differently. A finger-
print can exploit this difference to distinguish users. We
spoofed the canvas by adding a noise that hides the real
canvas fingerprint. To do so, we used the Firefox add-on
Canvas Defender [13]. To test the add-on efficiency, we
inject a canvas fingerprinting script on our own website.
The script first draws on the user’s browser. Next, the
script calls the Canvas API ToDataURL method to get
the canvas in dataURL format and returns its hashed
value. This hashed value can then be used as a fin-
gerprint. To evaluate the add-on efficiency against the
canvas fingerprinting, we revisited the customized web-
site and compared the rendered canvas fingerprint. We
found that the returned canvas hashed values were dif-
ferent upon every visit.

IP address. We run the Initial crawl with an IP
address pointing to France. We spoofed the IP address
using the VPN add-on Browsec VPN [71]. We used a
static IP address pointing to the Netherlands. Conse-
quently, the spoofed IP address remains constant dur-
ing the runs of spoofed crawls. We checked that the IP
address changed using the whoer website.

Time zone. We launched the Initial crawl with
Paris UTC/GMT +1 timezone. We spoofed the time-
zone to America/Adak (UTC-10) using the Chameleon
add-on [16].

Accept-language. The Accept-language header
specifies which languages the user prefer. We used En-
glish as Accept-language in Initial crawl. We spoofed
the Accept-language header using the Chameleon add-
on [16] to Arabic. We checked that it was properly
spoofed using the whoer website.

4.5 Limitations

Spoofing features and implementing the spoofing solu-
tion with the OpenWPM crawler requires substantial
engineering effort. Therefore, we limit our study to 8
browser features that are commonly used by previous
works and that can be spoofed either directly using
browser settings, or using the add-on (Canvas Defender,
Browsec VPN, and Chameleon) that we successfully run
with OpenWPM. Consequently, cookies respawned us-
ing other features are excluded from this study. The
number of excluded cookies is 2,976 (see Section 5.1.1).
This is a limitation that does not impact the main goal
of our study, as we do not intend to be exhaustive in the

identification of respawned cookies, but we aim to un-
derstand and describe the mechanisms behind respawn-
ing, and propose a robust methodology to detect fea-
tures that are used by trackers to respawn cookies.

Given that we spoof one feature at a time, we may
introduce inconsistency between different features. For
example, when we spoof the geolocation API, we do not
modify the time zone or the IP address. This method
doesn’t invalidate our results because we detect depen-
dency on each feature separately. Nevertheless, we may
miss trackers that modify their behaviour when some
features are spoofed.

Non user-specific cookies are not intrusive for the
user’s privacy because they are identical among different
users. We are aware that the cookies we classify as non
user-specific might have been respawned due to features
we do not consider.

The usage of a stateless crawler in this study may
impact websites’ behavior. Zeber et al. [75] showed
that stateless crawlers might experience a higher rate
of third-party activity compared to real users keeping
browser state. This is not surprising as cleaning the
browser storages during stateless crawl forces again the
creation of third party cookies each time we visit a site.
The goal of our work is to study cookies respawning that
happens when users are cleaning their browser storage.
Therefore, stateless crawlers are best suited to simulate
users that are consistently cleaning their browsers.

In this work we use add-ons to spoof features. Such
add-ons could be used themselves to fingerprint users.
We only use add-ons during the Spoofing crawls. There-
fore, all the candidate respawn cookies are collected
without any interference with add-ons. The goal of
the Spoofing crawl is both to show that a cookie is
respawned due to a fingerprinting feature and to identify
a feature used for the fingerprinting. The fact that an
add-on is used to fingerprint the user does not change
our conclusion that the cookie is respawn due to fin-
gerprinting. However, we might incorrectly identify the
feature responsible for the respawning if the tracker use
the add-on itself to fingerprint the user. Indeed, this fea-
ture could be the studied feature, a feature built on the
presence of the add-on, or a combination of features.
However, this will not impact our conclusions that a
cookie is respawn due to fingerprinting.
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Crawls Initial Re-
appearance

User
specific

Feature de-
pendent

# cookies 428,196 88,470 5,144 1,425
# websites 30,000 18,117 4,093 1,150

Table 2. Cookie respawning with browser fingerprinting is com-
mon. We detected 1,425 respawned cookies that appear on 1,150
websites. We define the Initial, Reappearance, User specific
crawls and Feature dependent cookies in Section 4.3.

5 Results
In this section, we present findings on prevalence of
cookie respawning with browser fingerprinting, iden-
tify responsible parties, and analyze on which type of
websites respawning occurs more often. Our results are
based on Alexa top 30, 000 websites where we extracted
a total of 428, 196 cookies. We study the respawning of
both first and third party cookies.

5.1 Overview of cookie respawning with
browser fingerprinting behaviour

In this section, we present a general overview of the
results of our study. First, we present the prevalence
of cookie respawning with browser fingerprinting in the
studied 30, 000 websites, then we manually analyse a
random subset of the respawned cookies.

5.1.1 How common is cookie respawning with
browser fingerprinting?

Table 2 presents an overview of the prevalence of cookie
respawning with browser fingerprinting. We extracted
428, 196 cookies from the visited 30, 000 websites. Using
the Reappearance crawl, we extracted a set of cookies
that did reappear in the crawl. As a result, we obtained
a set of 88, 470 (20.66%) reappearing cookies that appear
on 18, 117 (60.39%) websites.

Next, we filtered out cookies that are not user-
specific – they appear with the same (host, key, value)
on Initial crawl and User specific crawl – and cookies
that only appear on Initial but not in User specific crawl
(Section 4.3.1). We found that out of 88, 470 reappearing
cookies, 5, 144 (5.81%) are user specific. The set of user
specific cookies is observed on 4, 093 (22.59%) websites.

After filtering out non reappearing cookies and
keeping only user specific cookies, we identified cook-

ies whose value depend on at least one of the stud-
ied features following our methodology detailed in Sec-
tions 4.3.2. As a result, we extracted 1, 425 respawned
cookies that appear on 1, 150 (3.83%) websites. Out of
the remaining 3, 719 cookies, 743 were excluded from the
statistical test because they did not appear on the 99
spoofing and control crawls.

The remaining 2, 976 cookies that are user specific
and not detected as feature dependent can be respawned
via other features. Indeed, we remind that in this work
we consider 8 fingerprinting feature (see Section 4.3.2),
so any other feature could be behind the recreation of
the 2, 976 cookies. However, the exploration of reasons
behind the recreation of these 2, 976 cookies is out of
scope of our study.
Summary. We found 1, 425 cookies respawned using
at least one of the studied features. These cookies were
respawned in 1, 150 websites that represent 3.83% of the
visited websites.

5.1.2 Can manual analysis infer the purpose of
respawned cookies?

To evaluate the purpose of the respawned cookies, we
manually analyzed a 10% random subset of the 1, 425
respawned cookies (142 cookies). We searched for the
purpose description of the cookies, then, we manually
analyzed the cookies values and keys to explore the in-
formation stored in these cookies.

Websites, as part of their accountability and trans-
parency obligations, need to declare the purposes of
cookies that they use in their websites. In practice, web-
sites describe the purposes of cookies in the correspond-
ing privacy policies (or in cookie policies) [30]. There-
fore, to capture the 142 respawned cookie purposes, we
searched for cookie policies as follows. If the cookie is set
by the visited website, we directly visit the website, and
search for the cookie policy. Otherwise, if the cookie is
set by a third party domain, we perform a google search
for the concatenation of the cookie key, the third party
domain name, and the string "cookie policy". We then
search for a cookie policy in the 5 first google search
results pages.

We found 24 (17%) cookie purpose descriptions in
cookie policies, out of which 12 (8.45%) cookie purposes
infer the collection of user related information. The re-
maining cookie purposes do not provide any description
on the usage of the cookie. We were not able to analyze
a remaining 15 website policies because they were writ-
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ten in a language we do not speak. Overall, none of the
cookie purposes mentioned the respawning behavior.

To gain insight on the respawned cookies, we ana-
lyzed the content of the 142 cookies manually. First, we
searched for the 8 studied feature values, we found that
18 cookies included browser and machine features in
their value in clear text. We noticed that the remaining
124 respawned cookie values are presented as a sequence
of numbers and letters, and that 79% of these cookies
have a length ≥ 5. These values refer most likely to the
identifier associated to the user, or encrypted/encoded
browser and machine features.

The content of a cookie might be inferred from its
key. Analyzing the 142 respawned cookie keys, we found
that 15 cookies have a key that contains one of the fol-
lowing words associated to a studied feature: GEO, IP,
browser, location, UA.
Summary. Out of the 142 cookie policies we ac-
cessed, less than 9% refer to the collection of user related
information and none of them describe the respawn-
ing behavior we observed. Direct observation of cookie
keys and values does not bring much more information.
Therefore, to understand novel cookie usages, we can-
not rely on cookie policies or simple cookie inspection.
Sophisticated measurement methodologies must be de-
veloped instead to discover new usages. Our work is the
first step of this effort.

5.2 Which features are used to respawn
cookies?

Our goal is to show a statistical significance of a cookie
being dependant on a feature. We do not intend to ex-
haustively explore all features that are actually used by
trackers to respawn cookies. Therefore, when we show
that a feature is used to respawn a cookie, it does not
mean that this feature is used alone (most likely, fea-
tures are used in large combination), but that we exhib-
ited a cookie respawning behavior with a fingerprinting
technique.

For each of the 1, 425 respawned cookies, we de-
tected features on which the cookie value depends (see
all studied fingerprinting features in Table 1).

Table 3 presents the number of times each feature is
used to respawn a cookie. IP address is the most com-
monly used feature to respawn cookies and is used in
respawning of 672 (47.15%) cookies. The second most
popular feature to respawn cookies is User-Agent (UA)
– it is observed with 486 (34.10%) cookies. Note that
features that can be easily collected passively, like IP

Passive Active/Passive Active
Features IP UA Lang DNT CV GEO GL TZ
Occurrence 672 486 278 277 231 249 292 310

Table 3. IP address is the most commonly used feature to
respawn cookies. Occurrence: number of times a feature has
been used to respawn a cookie (either independently or in
combination with other features). CV: Canvas, IP: IP ad-
dress, UA: User agent, GEO: Geolocation, GL: WebGL, TZ:
Time zone, Lang: Accept language, DNT: Do Not Track.

Fig. 3. Top 20 set of features used to respawn cookies. IP ad-
dresses alone are used to respawn over 25% of the cookies.
CV: Canvas, IP: IP address, UA: User agent, GEO: Geolo-
cation, GL: WebGL, TZ: Time zone, Lang: Accept language,
DNT: Do Not Track.

address and UA, are more frequently used than features
that can only be accessed actively, such as Canvas.

Given that a cookie can be respawned with several
features, we consider that a cookie C is respawned with
a set of features F if the value of C depends on every
feature in F (such detection was done independently for
each feature as described in Section 4.3.2).

We found that cookies are usually respawned with
a set of different fingerprinting features. In our dataset,
cookies are respawned with 184 distinct sets of feature
combinations. Figure 3 shows the sets of features most
often used for cookie respawning. We see that the IP
address alone is the most commonly used feature to
respawn cookies, and moreover no other set of features
is more popular than the IP address alone.

The IP address is used alone to respawn 366
(25.68%) cookies. Mishra et al. [47] studied the stabil-
ity and uniqueness of the IP address over a duration of
111 days on a dataset of 2,230 users. They showed that
87% of participants retain at least one IP address for
more than a month. Hence, IP addresses are both sta-
ble and unique, therefore, they can be used to uniquely
identify and track user’s activity. Interestingly, the top-
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2 sets of features, {IP}, and {UA}, contain only passive
features that are easier to collect. Active features are
rarely used: timezone, the most popular active feature
for respawning, is used alone for 46 (3.23%) cookies.

We designed a robust methodology to find a cor-
relation between respawned cookies and fingerprinting
features. However, it can be argued that by analyzing
the network traffic we can reach the same conclusion.
To evaluate this hypothesis, we performed a network
traffic analysis on 10% of the websites where cookies are
respawned (115 websites). We analyzed both the request
URLs, and the POST payloads sent to the tracker on the
website. We searched for the presence of the studied fin-
gerprinting feature values in the requests in clear text,
hashed with SHA1, or encoded using B64. We found
for only 7 (6%) websites that at least one of the stud-
ied features value is sent to the tracker. It is clearly a
challenge to directly observe such values in the network
traffic. Features can be sent in an encoded or encrypted
way to the server either alone or in combinations. In ad-
dition, the way features are sent can be easily changed
by the trackers, but identified with high difficulty by an
observer. The methodology we developed in this paper
overcome these issues.
Summary. We show that trackers use multiple combi-
nations of features to respawn cookies and that the IP
address, which is overlooked in a number of fingerprint-
ing studies [2, 14, 32, 37, 48], is the most used feature
to respawn cookies.

5.3 Discovering respawned cookies owners

Due to the the Same Origin Policy (SOP) [57], the do-
main that is responsible for setting a cookie can be dif-
ferent from the domain that receives it (see Section 2.1).
Therefore, we differentiate two stakeholders: owner –
the domain that is initially responsible for setting the
cookie, and host – the domain that has access to the
cookie and to whom the cookie is sent by the browser
via HTTP(S) headers. In the following, we define both
owner and host as 2nd-level TLD domains (such as
tracker.com).

It is important to detect the cookie owner – for in-
stance, in order to block its domain via filter lists [19–21]
and prevent cookie-based tracking. Indeed, the notion of
cookie owner is often overlooked when the reasoning is
only based on the cookie host [12]. When one cookie
owner sets a cookie in the context of several websites
(the owner’s script can be embedded directly on a vis-
ited website or in a third-party iframe), the host of this

owner’s cookie is the context where the cookie is set
because of the SOP [57]. To identify cookie owners, we
distinguish two cases, as described below.

Cookie set by HTTP(S) header. If the cookie is
set by the HTTP(S) Set-Cookie response header, then
the owner of the cookie is the same as its host because
it corresponds to the 2nd-level TLD of the server that
sets the cookie.

Cookie set by a script. Document.cookie prop-
erty is the standard way for a JavaScript script to set a
cookie [35] programmatically. To check whether a cookie
is set via JavaScript and to extract its owner (the do-
main who serves the script) when crawling a website,
we (1) extract the set of scripts S that set a cookie
on the website using document.cookie, (2) for every
script in S, we extract the set of cookies C set by this
script, and (3) extract the set of respawned cookies iden-
tified in Section 5.1.1 that are never set by HTTP(S).
Then, we check whether there is an overlap between the
(key,value) set of these respawned cookies and the set
C. If it is the case, we conclude that the cookies in the
overlap are set via JavaScript, and their owner is the
2nd-level TLD domain that served the script.

For each of the 1, 425 respawned cookies, we iden-
tified its owner depending on how the cookie was set.
Figure 4 shows domains appearing as host only (left
blue part), as owner only (yellow part), or both (mid-
dle overlap). In total, 1, 425 respawned cookies are la-
beled with 765 distinct hosts, however they were set
by 574 distinct owners. Figure 4 also depicts that 75
domains appear as owners and never as cookies hosts.
These domains serve JavaScript scripts that set cook-
ies, but never serve cookies directly via an HTTP(S)
response header. Hence, when only considering cookies
hosts, these domains are not detected. We evaluated the
efficiency of Disconnect [19] filter list in detecting these
75 domains. We found that Disconnect miss 53 (70.66%)
owners domains. We also found that 266 domains that
appear as cookie hosts are never identified as cookie
owners. Cookies associated with these domains were set
in the context of the hosts domain because of the SOP,
but these domains were never actually responsible of
setting these cookies.

Figure 5 presents the top 10 domains responsible for
cookie respawning that are either cookie hosts, cookie
owners, or both. Two domains, rubiconproject.com
and casalemedia.com, represent the largest fraction
of websites. All cookies served by these two domains
are served via HTTP(S). Three out of the top 10
domains are exclusively cookie owners: adobetm.com,
bizible.com, and maricopa.gov. These domains are
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Fig. 4. Emergence of new domains when considering cookie
owners. The 1, 425 respawned cookies have 765 distinct hosts
and 574 distinct owners. The notion of cookie owner allows
to identify 75 cookie owner domains that never appear as a
cookie host. We also found 266 cookie host domains that are
never used to set the cookie.

Fig. 5. The top 10 respawned cookies owners. The bar is
green when the domain is both host and owner, and yellow
when the domain only appears as owner. For each domain, we
show when cookies are set via an HTTP(S) header and when
they are set via JavaScript. When considering cookie owners,
new domains are identified such as adobedtm.com.

only setting respawned cookies via JavaScript and never
directly through HTTP(S). Out of the 1, 425 respawned
cookies, 514 (36.07%) are set via JavaScript.
Summary. Previous studies that only looked at the
cookie host can miss the trackers responsible for setting
the cookies. In our study, 75 domains could be missed
if we only considered cookie hosts. We found that Dis-
connect [19] miss 70.66% of these domains. Considering
cookie owners improves the understanding of the track-
ing ecosystem.

5.4 Where does respawning occur?

In Section 5.3, we studied the domains that are respon-
sible of setting and respawning cookies. In this section,
we analyse on which types of websites respawning oc-
curs. In the following, we refer to these websites as web-
sites including respawning. We analyse Alexa ranking

Alexa rank in-
terval

Websites including
respawning

# of owners

0 — 1k 49 (4.9%) 49
1k — 10k 360 (4%) 213
10k+ 741 (3.70%) 382

Table 4. Popular websites are more likely to include cookie
respawning. Number of owners: presents the total number of
distinct respawned cookies owners in the ranking interval.

distribution and impact of websites category on cookie
respawning, present websites including respawning that
process special categories of data, and present the ge-
olocation of owners of respawned cookies and websites.

Popularity of websites including respawning.
We detected 1, 150 websites where at least one cookie is
respawned. Table 4 presents the number of websites in-
cluding respawning for each Alexa rank interval. We ob-
serve that cookie respawning with browser fingerprint-
ing is heavily used on popular websites: out of the top
1k visited websites, 4.9% are including respawning. This
percentage decreases to 3.70% in less popular websites.

Categorization of websites including
respawning. We used the McAfee service [42] to cat-
egorize the visited websites. The McAfee uses various
technologies and artificial intelligence techniques, such
as link crawlers, and customer logs to categorise web-
sites. It is used by related works [68]. A description
of the reported McAfee categories can be found in the
McAfee reference guide [43].

We successfully categorized Alexa 29,900 visited
websites. We found that the visited websites belong
to 669 categories and the 1, 150 websites including
respawning belong to 143 different categories.

Figure 7 of Appendix gives an overview of the 10
most prominent categories within the Alexa visited web-
sites. We found that all top 10 categories contain web-
sites that include respawning. Business is the top web-
sites category, 8.62% of the visited websites are catego-
rized as business.

Most of websites including respawning are catego-
rized as General News. Out of the 29, 900 visited web-
sites, 6.73% are categorized as General News, and 5.95%
of these General News websites contain at least one
respawned cookie. General News is known for using
more third parties than other categories [64], which can
be the reason behind the high deployment of respawning
in this category of websites.

Websites processing special categories of
data. The GDPR [66, Recital 51] stipulates that per-
sonal data which are particularly sensitive by their na-
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ture, merit specific protection, as their processing could
create significant risks to the fundamental rights of
users. Such data include personal data revealing sen-
sitive information such as data concerning a natural
person’s sex life or sexual orientation [66, Article 9].
Processing such categories of data is forbidden, unless
allowed by the user’s explicit consent [66, Article 9(2)].

We studied tracking via the third-party respawned
cookies on websites processing sensitive data. As a re-
sult, we detected 21 cookies respawned in Adult web-
sites that are set by 19 different owners. The top
domain respawning cookies on sensitive websites is
adtng.com (no corresponding official website was found
for adtng.com). It respawned cookies on 3 different adult
websites, and therefore, can track and link user’s activ-
ity within adult websites in a persistent way, without
explicit consent to legitimize such operation, rendering
such respawning practise unlawful.

Geolocation of websites including respawn-
ing and respawned cookies owners. Independently
of the country of registration of a website, if a website
monitors the behavior of users while they are in the
EU, the GDPR applies to such monitoring [66, Arti-
cle 3(2)(b)]. Notice that any form of web tracking will
be deemed as "monitoring", including cookie respawn-
ing with browser fingerprinting. Since our experiments
simulate users located in France (EU), both EU and
non-EU organizations must comply with the GDPR.

We extracted the country of registration of the own-
ers of respawned cookies and the websites including
them using the whois library [73]. We successfully iden-
tified the country of registration of 362 (63.07%) out
of 574 total distinct owners, and 670 (58.26%) out of
1,150 websites including respawning. Out of these 670
websites, 52 (7.76%) are in the EU. We found that the
owners and websites are distributed across the globe,
ranging respectively over 29 and 47 different countries.

Figure 8 of Appendix presents the registration coun-
tries of respawned cookies owners and websites where
they are set. We observe that top countries of both
respawned cookies and websites including respawning
are not in the EU: 356 (24.98%) of the respawned cook-
ies are both originated and included by domains from
the US. We also observed that respawned cookies on
Chinese websites are only set by Chinese owners, and
interestingly, websites registered in Panama are active
in respawning as well (22 (3.28%) of the studied 670
websites including respawning are from Panama).
Summary. Cookie respawning with browser finger-
printing is commonly used: 5.95% of General News web-
sites contain at least one respawned cookie. We found

that cookies are respawned in sensitive adult websites as
well, which leads to serious privacy implications. Cookie
respawning with browser fingerprinting is distributed
across the globe, however, only 7.76% of the websites
that include respawning are in the EU. Nevertheless,
both EU and non-EU websites must comply with the
GDPR as it is applicable independently of the country
of registration of the website.

5.5 Tracking consequences of respawning

This paper does not specifically focus on cross-site
tracking. Indeed, our methodology based on state-
less tracking is designed to study cookie respawning
with browser fingerprinting, not cross-site tracking that
would require a stateful crawl, which is beyond the scope
of this paper. However, in this section, we describe that
cookie respawning with browser fingerprinting is already
used today for cross site tracking, including cross-site
tracking using first party cookies only.

5.5.1 Respawned cookies purposes

In this section, we evaluate the purpose of the respawned
cookies. Given that only a small percentage of cook-
ies includes a description of their purposes [30], we use
the Cookiepedia open database [17] that has been used
in prior work [68]. It is the largest database of pre-
categorized cookies with over 11 million cookies used
across 300,000 websites. It uses the classification sys-
tem developed by "The UK International Chamber of
Commerce" (ICC) and relies on four common purposes
of cookies: i) Strictly Necessary (which includes authen-
tication and user-security); ii) Performance (also known
as analytics, statistics, or measurement cookies); iii)
Functionality (includes customization and multimedia
content); and iv) Targeting (known as advertising).

We found that out of the 1, 425 respawned cookies,
134 (9%) were not found in the cookipedia database,
955 (67%) were categorized as Unknown, and 336 (24%)
were successfully categorized. Out of the 336 cookies,
24% are categorized as targeting cookies (Table 5). We
remind that all respawned cookies are user specific thus
allow to identify users (Section 4). Therefore, theses
cookies could be used for tracking even if it is not their
declared or initial purpose.

In the following, we will refer to potential tracking
as the technical ability to track user’s activity using the
respawned cookie. However, as described in this section,
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Purpose # of
cookies

Purpose # of
cookies

Targeting/Advertising 80 Strictly Necessary 99
Functionality 24 Performance 133

Table 5. Cookipedia classification

Fig. 6. Persistent third-party tracking based on respawned
cookies. Top 10 cross-site trackers using respawned cookies.

companies might use such cookies for a different pur-
pose.

5.5.2 Persistent cross-site tracking with respawned
cookies

Basic tracking via third-party cookies [29, 55] is the
most known tracking technique that allows third par-
ties to track users across websites, hence to recreate
their browsing history. When a third party cookie that
enables cross-site tracking is respawned, such tracking
becomes persistent. That is, in contrast to regular third-
party tracking, the user can not prevent it by delet-
ing cookies. Hence, respawned cookies enable persistent
potential tracking that allows trackers to create larger
users’ profiles by linking users activity before and after
they clean their browser. Since the host is the domain
to whom browser automatically sends the cookies, we
focus on the cookie host and not on cookie owner.

Third party cookies allow trackers to track users
cross-websites [55]. In this section, we only analyse
third-party respawned cookies that can be used to track
users across websites. Note that all extracted respawned
cookies are user-specific (Section 4.3.1) and therefore
can be considered as unique identifiers. Out of 1, 425
respawned cookies, 528 (37.05%) are third-party cook-
ies. In total, we identified 144 unique hosts that have
access to these cookies.

Figure 6 presents the top 10 cross-site trackers
that have access to respawned cookies. We found that
rubiconproject.com is the top domain: it has access to
at least one respawned cookie on 200 (17.39%) of the
visited websites. Rubiconproject.com defines itself as a
publicly traded company, as it is automating the buying
and selling of advertising [56].

5.5.3 Cookie respawning with browser fingerprinting
beyond deprecation of third-party cookies

Web browsers are moving towards the deprecation of
third party cookies which are the core of cross-site track-
ing [58]. Can this deprecation prevent cross-site track-
ing? In the following, we show how cookie respawning
with browser fingerprinting can overcome browsers pre-
ventions.

Via persistent tracking with respawned cookies,
domains can track users across websites without
third-party cookies. Consider the following scenario:
example.com and news.com include a fingerprinting
script from tracker.com. When the user visits these
websites, the script from tracker.com accesses the
user’s browser and machine features, and sets a corre-
sponding first-party cookie. As a result, two first-party
cookies are set in the user’s browser and labeled with
two different hosts: example.com and news.com, but the
values of these two cookies are identical, because they
are created from the user’s browser and machine fea-
tures. By respawning these two cookies on both web-
sites, the owner tracker.com shows to be able to track
the user in a persistent way across sites with a first-party
cookie only.

We analyzed the usage of the same (owner, key,
value) first-party respawned cookie across different web-
sites. The 1, 425 cookies correspond to 1,244 respawned
(owner, key, value) instances, out of which 40 (3.21%)
are respawned on multiple websites in a first party con-
text with the same value (see Table 9 in Appendix).
wpbeaverbuilder.com [74] is the top owner setting iden-
tical first party respawned cookies across websites. It
respawned the same cookie on 15 distinct websites. It
defines itself as a WordPress page builder. Its policy
declare to collect user’s information, but it does not
specify the type of this information. We found that
google-analytics.com respawned the same cookie on
7 websites owned by WordPress. We suspect that the
respawning on these websites is a result of WordPress
configuration of the google-analytics service.
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Summary. Cookie respawning with browser finger-
printing enable potential tracking across websites even
when third party cookies are deprecated. We found 40
first party cookies that can serve for cross-site tracking.

6 Is respawning legal?
In this section, with a legal expert co-author of the
paper, we evaluate the legal compliance of 1, 425
respawned cookies and the reasons why this practice
is unlawful, regardless of the purposes for which cook-
ies are respawned, as it infringes core GDPR principles.
Our legal analysis is based on the General Data Protec-
tion Regulation (GDPR) [66] and the ePrivacy Directive
(ePD) [26], as well as in its recitals. The GDPR applies
to the processing of personal data [28] and requires
that companies need to choose a legal basis to lawfully
process personal data (Article 6(1)(a)). The ePD pro-
vides supplementary rules to the GDPR in particular in
the electronic communication sector, such as websites.
We have additionally consulted the guidelines of both
the European Data Protection Board (an EU advisory
board on data protection, representing the regulators of
each EU member state) [1] and the European Data Pro-
tection Supervisor (EDPS, the EU’s independent data
protection institution) [23]. While these guidelines are
not enforceable, they are part of the EU framework for
data protection which we apply in this work to discern
whether respawning is compliant.

To assess the legal consequences of respawning, the
legal expert analysed legal sources to interpret cookie
deletion. To our surprise, we found that there is no ex-
plicit legal interpretation of cookie deletion. Only the
EDPS [23, Section 4.3.4] noted that "if cookies requiring
consent have disappeared, this is most probably because
the user deleted them and wanted to withdraw consent".
As a result, cookie respawning also does not have a clear
legal interpretation and merits attention for its plausible
legal consequences. These consequences can arguably be
derived, not only from the consent perspective, but also
from the core principles of data protection, as discussed
in the following sections (fairness, transparency and law-
fulness principles). Thus, owners of respawned cookies
and website owners that embed those may be jointly re-
sponsible for their usage (Article 26 [66]) and may then
be subject to fines of up to 20 million EUR (or 4% of
the total worldwide annual turnover of the preceding
financial year, Article 83(5)[66]).

6.1 Fairness principle

This principle requires personal data to be processed
fairly (Article 5(1)(a)). It requires that i) legitimate ex-
pectations of users are respected at the time and con-
text of data collection, and ii) there are no “surprising
effects” or potential negative consequences occurring in
the processing of user’s data.
Findings: We consider that all 1, 425 respawned cook-
ies plausibly violate the fairness principle, as respawning
seems to be inconsistent with the user’s expectations re-
garding respawned cookies after its deletion from their
browser, and also considering the cookie’s duration.
Suggestions for policymakers: It is hard to opera-
tionalize the high-level fairness principle into concrete
requirements for website owners and map it into legiti-
mate expectations of users. Policy makers need to pro-
vide more concrete guidelines on the operationalization
of this principle in the Web.

6.2 Transparency principle

Personal data processing must be handled in a trans-
parent manner in relation to the user (Article 5(1)(a)).
This principle presents certain obligations for websites:
i) inform about the scope and consequences [67] and
the risks in relation to the processing of personal data
(Recital 39); ii) inform about the purposes, legal basis,
etc. before processing starts (as listed in Art. 13); iii)
provide the above information in a concise, transpar-
ent, intelligible and easily accessible form (Art. 12).
Findings: We analyzed the privacy policies of the
10 top popular respawned cookie owners: rubiconpro-
ject.com [56], casalemedia.com [15], pubmatic.com [53],
adobedtm.com [4] smartadserver.com [61], biz-
ible.com [10], betweendigital.com [9], maricopa.gov [41],
wpbeaverbuilder.com [74], and contextweb.com (Fig-
ure 5). Some policies [4, 10, 15, 56, 61] refer to the
use of browser’s features without referencing the con-
sequences or risks thereof. Also, none of the policies
refer to cookie respawning. As such, these seem to be
in breach of the transparency principle.
Suggestions for policymakers: In practice, the de-
scription of data (purposes, legal basis, types of personal
data collected, features used and its consequences) is of-
ten mixed within the text, which makes harder to ex-
tract concrete information therefrom [30]. Policy-makers
need to converge on harmonized requirements and stan-
dard format for privacy policies.
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Session Persistent
First-
party

Targeting/ Advertising Targeting/ Advertising

Third-
party

Targeting/ Advertising Targeting/ Advertising
Performance Performance
Strictly necessary Strictly necessary

Functionality

Table 6. Purposes of Cookiepedia [17] that require consent
according to their context and duration.

6.3 Lawfulness principle

The ePD requires websites to obtain user consent to law-
fully process personal data using cookies. When a cookie
recreates itself without consent, every data processed
henceforth could be considered unlawful due to lack
of legal basis for personal data processing [27]. Hence,
cookie respawning incurs in violation with the lawful-
ness principle (Articles 5(1)(a) and 6(1) of the GDPR,
and 5(3) of the ePD). The EDPS [23] already advised
against the use of cookie respawning if the processing re-
lies on users’ consent. It mentions that "cookie respawn-
ing would circumvent the user’s will. In this case (...)
institutions must collect again user’s consent".

To evaluate compliance with the lawfulness princi-
ple, we need first to evaluate whether cookies are ex-
empted or subject to consent. Pursuant to it, it is de-
terminant to identify the purpose of each cookie, since
"it is the purpose that must be used to determine whether
or not a cookie can be exempted from consent" [7].

Two other characteristics contribute to determine
whether cookies are exempted or subject to consent [7]:
duration (session and persistent cookies) and context
(first and third-party cookies). Building on the analy-
sis of Santos et al. [59, Table 5] on the purposes that
are subject to consent, we studied the Cookiepedia pur-
poses, and then derived those that are subject to con-
sent according to their duration and context. Table 6
summarizes the Cookiepedia purposes requiring consent
depending on their duration and context.
Findings: In our study we crawled websites and even
if a website provided a consent banner, we did not give
consent thereto. We evaluated whether respawned cook-
ies are subject to or exempted from consent (as de-
scribed in Table 6). As a result of our evaluation, we
found that out of 336 respawned cookies categorized
by Cookiepedia, 130 (38.69%) are subject to consent.
Hence, these 130 cookies are in breach of the lawfulness
principle.
Suggestions for policymakers: Companies can em-
bed respawning and still claim respawned cookies are

exempted of consent. We analysed that both the du-
ration and context of cookies contribute to determine
whether cookies are exempted or subject to consent.
However, from a technical point of view, these criteria
can be bypassed by domains that embed respawning. As
per duration, session cookies can get recreated even after
their elimination by the user. Functionality cookies are
exempted of consent when used as session cookies and
are subject to consent when used in a persistent way [7].
When respawned, such cookies can be used for a longer
duration than previously envisaged. We found that out
of 1, 425 respawned cookies, 446 (31.30%) are session
cookies. Regarding context, performance cookies are ex-
empted of consent when used in a first party context and
are subject to consent when used as third party cookies.
However, in practice, a cookie set in the first party con-
text can be considered as a third party cookie in a con-
text of a different website. We found that 4 respawned
cookies (host,key,value) appear as first- and third-party
in different websites. These cookies are respectively set
by pornhub.com, mheducation.com, hujiang.com and
fandom.com. Given that a cookie context and duration
can be altered, these should not be used as a criteria to
evaluate the need of consent.

7 Conclusion
This work presents a large scale study of cookie
respawning with browser fingerprinting, a tracking tech-
nique that is devoid of a clear legal interpretation in the
EU legal framework. We employed a novel methodol-
ogy to reveal the prevalence of cookie respawning with
browser fingerprinting in the wild. The detection of such
behavior and the identification of responsible domains
can prove to be hard to achieve, which impacts both
the ability to block such behavior, and its legal assess-
ment. We believe this work can serve as a foundation for
improvement of future regulation and protection mech-
anisms.
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A Machines characteristics

Table 7 presents the characteristics of machine A and
machine B used in our study.

Characteristics Machine A Machine B
Date of the crawl March 2021 March 2021
OS Fedora 25 Fedora 31
Firefox version 68.0 45.0.1
Location France France
IP address 193.51.X.X 138.96.Y.Y
OpenWPM ver-
sion

v0.9.0 v0.7.0

Language English
(en_US)

German
(de_DE)

Time zone CET AKST
Geolocation France Alaska
Do not track Null True

Table 7. Crawls Characteristics. All crawls were performed
from machine A except User specific crawl that was done from
machine B.

B Collected data

We extract the following from the information automat-
ically collected by OpenWPM:
1. For each HTTP request: the requested URL, the

HTTP header.

JavaScript calls API
HTML5 Canvas HTMLCanvasElement, Can-

vasRenderingContext2D
HTML5 WebRTC RTCPeerConntection
HTML5 Audio AudioContext
Plugin access Navigator.plugins
MIMEType access Navigator.mimeTypes
Navigator properties window.navigator
Window properties Window.screen, Win-

dow.Storage, win-
dow.localStorage, win-
dow.sessionStorage, and
window.name

Table 8. Recorded JavaScript calls.

Fig. 7. General news is the top category including cookie
respawning with browser fingerprinting. We consider that
a website U includes respawning if it contains at least one
respawned cookie. The bar is gray when we do not detect
respawning in the website, and is blue when we do.

2. For each HTTP response: the response URL, the
HTTP status code, the HTTP header.

3. All JavaScript method calls described in Table 8.
4. All cookies set both by JavaScript and via HTTP

Responses. On these collected cookies, we perform
the following filtering as shown in Figure 2: first, we
select cookies recreated after cleaning the cookies
database; second, we filter out cookies that are not
user-specific; finally, we filter out cookies that are
not respawn with studied features (Section 4.3).

C Additional results

Table 9 presents the top first-party cookies respawned
across websites. This practice is studied in Section 5.5.3.

https://www.us-cert.gov/ publications/securing-your-web-browser
https://www.us-cert.gov/ publications/securing-your-web-browser
https://addons.mozilla.org/en-US/firefox/addon/browsec/
https://addons.mozilla.org/en-US/firefox/addon/browsec/
https://whoer.net 
https://pypi.org/project/whois/
https://www.wpbeaverbuilder.com/privacy-policy/
https://www.wpbeaverbuilder.com/privacy-policy/
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Fig. 8. Cookie respawning with browser fingerprinting is geolo-
caly distributed. Corresponding countries of owners (left) and
websites including respawning (right) of respawned cookies.
We present the top 10 (owner,website) geolocation. "EU" label
represents the 27 member states of the EU.

Owner Occurrence
wpbeaverbuilder.com 15
clarip.com 13
maricopa.gov 9
google-analytics.com 7

Table 9. Top first-party cookies respawned across websites. Every
line in the table represents a cookie, hence the same owner can
appear on multiple lines. Occurrence: presents the number of
websites where the instance (owner,key,value) was respawned.
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