
Proceedings on Privacy Enhancing Technologies ; 2022 (3):336–353

Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson, Kevin Yeo, and Emily Stark

SoK: SCT Auditing in Certificate Transparency
Abstract: The Web public key infrastructure is essen-
tial to providing secure communication on the Inter-
net today, and certificate authorities play a crucial role
in this ecosystem by issuing certificates. These author-
ities may misissue certificates or suffer misuse attacks,
however, which has given rise to the Certificate Trans-
parency (CT) project. The goal of CT is to store all
issued certificates in public logs, which can then be
checked for the presence of potentially misissued cer-
tificates. Thus, the requirement that a given certificate
is indeed in one (or several) of these logs lies at the core
of CT. In its current deployment, however, most indi-
vidual clients do not check that the certificates they see
are in logs, as requesting a proof of inclusion directly
reveals the certificate and thus creates the clear poten-
tial for a violation of that client’s privacy. In this paper,
we explore the techniques that have been proposed for
privacy-preserving auditing of certificate inclusion, fo-
cusing on their effectiveness, efficiency, and suitability
in a near-term deployment. In doing so, we also explore
the parallels with related problems involving browser
clients. Guided by a set of constraints that we develop,
we ultimately observe several key limitations in many
proposals, ranging from their privacy provisions to the
fact that they focus on the interaction between a client
and a log but leave open the question of how a client
could privately report any certificates that are missing.

Keywords: Certificate Transparency, SCT auditing

DOI 10.56553/popets-2022-0075
Received 2021-11-30; revised 2022-03-15; accepted 2022-03-16.

1 Introduction
The basis for all secure communication on the Internet
today is the ability of a domain operator to associate
with their domain name a private key that they pos-
sess. This is achieved using digital certificates, which are
issued by certificate authorities (CAs) and which web-

Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien,
Chris Thompson, Kevin Yeo, Emily Stark: Google
LLC, {meiklejohn, jdeblasio, asymmetric, cthomp, kwlyeo,
estark}@google.com

sites can present to clients, who can check that they are
valid by ensuring they are signed by, or have a signature
chain rooted in, a trusted CA. If a CA is compromised,
it can be used to issue false certificates that in turn
would allow an attacker to eavesdrop on the communi-
cation between clients and a website. Furthermore, CAs
may simply fail to fully verify a domain owner’s identity
and misissue a certificate. Both of these scenarios have
happened [67], which illustrates the need for additional
mechanisms to avoid trusting CAs unconditionally.

It was out of this need that Certificate Transparency
(CT) was created, with the goal of increasing the visibil-
ity of certificates that are issued and thus reducing the
time required to detect misissued certificates or other
forms of CA misbehavior. Briefly, this goal is achieved
in CT by requiring all issued certificates to be placed
in one or more public logs. Upon receiving a certificate,
a log operator checks its structural validity and—as-
suming it is valid—responds with a signed certificate
timestamp (SCT), which acts as a promise to include
the certificate in the log within some bounded delay.
These SCTs are then presented alongside the certificate
to the client, who checks that the SCTs are valid and
that there are enough SCTs according to the policy set
by their browser vendor. Separately, designated auditors
and monitors are responsible for checking, respectively,
that logs are append-only and globally consistent and
that the actual content of the logs does not contain any
inconsistencies or misissued certificates.

In order for CT to achieve its goal, it is crucial that
clients check not only the validity of the SCTs they see,
but also that the promises implicit in these SCTs have
been fulfilled; i.e., that these certificates are in the log.
In this way, assuming auditors are doing their job and
everyone has access to the same log contents, clients
can be sure that the certificates they see will eventually
be examined by a monitor. If clients do not check that
certificates are in the log, then even if they were misis-
sued they may never be detected by a monitor. Having
a client check this directly with a log operator is a clear
privacy violation, however, as over time it amounts to
having the client present the log operator with their
browsing history. Thus, in the current deployment of
CT, most clients do not perform this crucial check.

Related work. In 2013, Clark and van Oorschot sys-
tematically explored the space of known security issues

SoK: SCT Auditing in CT 337

with HTTPS and evaluated proposals for improving the
certificate infrastructure in terms of their security and
privacy, deployability, and usability [21]. In 2020, Chuat
et al. explored the landscape of solutions to the prob-
lems of delegation and revocation in the web public-
key infrastructure [18]. Our paper is complementary to
these works: rather than perform a broad exploration
of secure communication on the Web and an evaluation
of long-term replacements or improvements, we seek to
identify a pragmatic solution to a specific problem, SCT
auditing, that exists within the current HTTPS ecosys-
tem. This could be used to further secure the ecosystem
as it exists today.

Our contributions. Our contributions in this work are
as follows:

– We survey the landscape of proposed solutions for the
problem of privacy-preserving SCT auditing from the
academic literature and the community of CT practi-
tioners. We unify proposed solutions within a common
framework of a querying and reporting phase.

– We compare SCT auditing to other privacy-sensitive
problems in web browsers. We observe that while SCT
auditing is a unique problem, some insights and ap-
proaches from other problems are applicable.

– We systematically evaluate proposed solutions on sev-
eral dimensions: privacy, security, costs, and deploya-
bility.

– From our systematic evaluation, along with experi-
mental data against real-world CT logs and insights
from the deployment of CT and other related systems,
we conclude that existing proposals suffer from cru-
cial limitations. We extract a set of constraints that
future SCT auditing solutions should adhere to, with
the hope of guiding the community towards a complete
solution.

2 SCT Auditing
Our description of Certificate Transparency (CT) and
its components follows RFC 6962 [41]. We refer at var-
ious points to specific aspects of another RFC, 6962-
bis [42], which describes “version 2.0 of the Certificate
Transparency protocol.” To the best of our knowledge,
RFC 6962 is an accurate description of CT as it ex-
ists today and there have been no announced plans to
migrate CT to RFC 6962-bis.

2.1 How Certificate Transparency works

At a high level, CT works as follows: a website operator
requests a certificate from a CA, which should serve
to bind together a domain name and a public key. CT
requires that every such certificate must appear in at
least one globally visible log. These logs are append-only,
which means that once a certificate has been added it
cannot be removed. CT thus exposes every certificate
that has ever been issued.

The only restriction that logs place on the contents
they store is that all certificate chains must lead back
to one of a set of trusted root CAs, published by the
log. For almost all CAs, this means that the current
advice is to effectively broadcast a (pre)certificate to all
log operators of whom they are aware. While certificates
are typically submitted to logs by the CA at the time
they are issued, any other party can also do so at any
time after the certificate has been issued.

In order for a certificate to be valid, it should have
at least one signed certificate timestamp (SCT) embed-
ded into it, which proves that the certificate has been
submitted to a log and promises that it will be included
in the log within some maximum merge delay (MMD).
Having the CA wait only to receive this promise has sev-
eral advantages over having them wait until the certifi-
cate is actually included, such as allowing CAs to issue
certificates without relying on logs to perform a com-
putationally intensive and potentially time-consuming
process; this freedom for logs to update less frequently
can also have a positive impact on privacy. We discuss
this in more detail in Sections 6.1 and 6.3.

These SCTs can be delivered to clients in three
ways: (1) by embedding them in the certificate directly
using its extensions (which requires the CA to have sub-
mitted a precertificate before issuance); (2) using a spe-
cial TLS extension; and (3) using OCSP (Online Cer-
tificate Status Protocol) stapling, which allows the CA
to provide (and potentially obtain) the SCT after the
certificate has been issued. Importantly, these three op-
tions and the fact that certificates can be submitted to
logs at any time means there is no canonical set of SCTs
associated with a given certificate.

Once a certificate has been included in the log, any
party can request an inclusion proof from the log, which
proves the certificate’s inclusion with respect to a times-
tamped commitment to the log’s contents known as a
signed tree head (STH). Anyone can furthermore request
a consistency proof between two STHs, which proves
that the log operates in an append-only manner. A party
in possession of some known STH may need to obtain

SoK: SCT Auditing in CT 338

Operator Log name Log size Log shard
2021 2022 2023

Cloudflare Nimbus – 408.9 382.2 6.7

DigiCert Nessie – 99.1 134.1 22.1
Yeti – 305.3 66.5 22.2

Google

Argon – 1356.2 671.4 25.5
Xenon – 1464.4 833.8 26.3
Icarus 762.4 – – –
Pilot 1077.3 – – –
Rocketeer 1113.9 – – –
Skydiver 309.2 – – –

Let’s Encrypt Oak – 365.3 242.9 20.6

Sectigo Sabre 199.9 – – –
Mammoth 606.9 – – –

TrustAsia Log – 0.7 1.0 0.06

Table 1. All usable CT logs and their respective sizes, in terms
of millions of entries, as of February 23, 2022. For the temporally
sharded logs, we present the sizes of the 2021, 2022, and 2023
shards.

and verify both types of proofs in order to fully verify
the inclusion of an entry in the log: first an inclusion
proof with respect to a given STH, and then a consis-
tency proof between this STH and their known one. The
only way this second step would not be required is if the
log operator happened to use the party’s known STH in
their inclusion proof (e.g., it had not yet issued a new
STH for the log).

2.2 The CT ecosystem

The issuance process described above almost always
takes place between the CA and the log, but there are
other important participants in the CT ecosystem. All
CT-enforcing user agents (i.e., browser vendors) have
their own policy in terms of how many SCTs they re-
quire a certificate to have. For example, Apple (Safari)
requires SCTs from at least two distinct log operators
and Google (Chrome) requires one SCT from a Google-
operated log and one from a non-Google log.

Table 1 contains a list of all currently usable CT
logs and their operators.1 As we can see, there are cur-
rently billions of certificates stored in these logs, and
there are millions added every day [7]. To control the
growth of any one log, new CT logs are required to
be temporally sharded [1], with each log shard con-
taining all certificates that expire within a given time

1 This list is taken from https://www.gstatic.com/ct/log_list/
v3/log_list.json.

range (typically one calendar year). Nevertheless, the
sheer number of certificates across all logs makes it dif-
ficult for an individual domain owner to check for new
(and possibly unauthorized) certificates being issued to
their domain. In order to simplify this task, monitors
act as mirrors and provide search and notification ser-
vices [8, 44]. Some of the current prominent examples
of monitors are crt.sh (https://crt.sh) and Cert Spot-
ter (https://sslmate.com/certspotter/). While monitors
thus help detect misbehavior on the part of CAs, audi-
tors are responsible for detecting misbehavior on the
part of logs. This role can be played by any entity with
the ability to report or act on misbehavior; e.g., to ini-
tiate the process of removing a log from the ecosys-
tem [26, 32, 52, 53, 60, 61]. Notably, individual browser
instances are not in a position to act as auditors, at
least not without the help of another entity such as the
browser vendor.

In order to make sure that logs follow up on the
promise implicit in an SCT, it is necessary to check
that the certificate represented by this SCT is in fact
included in the log, and act accordingly if not. We refer
to this process as SCT auditing. Individual browser in-
stances, however, are the only participants who reliably
see SCTs “in the wild”, by visiting websites and receiv-
ing certificates, and having them perform SCT auditing
is a clear privacy problem: an SCT uniquely identifies
a certificate and thus a domain (or set of domains if
wildcards or alternative names are used), so reveals the
website visited by the browser. Having an individual
browser instance reveal SCTs to another party, whether
it is the log or an auditor, thus reveals to that party
some of the browsing history of that user. The prob-
lem of how to audit SCTs without compromising user
privacy has been open since the introduction of CT.

2.3 Threat model

As described above, there are three core actors in an
SCT auditing ecosystem: (1) users, whose browsers see
SCTs as they visit websites; (2) logs, which store certifi-
cates and serve inclusion proofs for them; and (3) audi-
tors, who are responsible for acting on evidence of log
misbehavior. Ultimately, this means the goal of SCT au-
diting is for an honest auditor to learn about any SCTs
whose implicit promises have been violated.

We assume that users, auditors, and logs can all be
malicious; i.e., can attempt to deviate from the protocol
in arbitrary ways. Importantly though, we assume that
malicious parties cannot cause honest parties to deviate

https://www.gstatic.com/ct/log_list/v3/log_list.json
https://www.gstatic.com/ct/log_list/v3/log_list.json
https://crt.sh
https://sslmate.com/certspotter/

SoK: SCT Auditing in CT 339

from the protocol; e.g., if the auditor is a browser ven-
dor they cannot inject malicious code into the browser
to affect the behavior of an honest user. We also as-
sume that all log operators use secure cryptographic
standards, means they cannot form valid inclusion or
consistency proofs unless, respectively, an entry really
is in the log or the log really is append-only.

We break the problem of SCT auditing into two
phases: querying and reporting. We model each phase
as an interaction between a client and a server. In the
querying phase, the server is the log operator, and the
client’s goal is to learn whether or not a specific entry is
included in the log. In the reporting phase, the server is
an auditor, and the goal is for them to learn about any
entries that were not included in the log.

In both phases, the client is intentionally left
generic, allowing it to represent individual browser in-
stances but potentially other participants (e.g., auditors
or web servers) as well. In terms of privacy, the infor-
mation in a query or report—meaning the certificate
or SCT it contains— is not sensitive; i.e., it does not
inherently leak anything about individual clients. In ei-
ther phase, the goal of an adversary is thus to either
link together two queries (i.e., to learn that they came
from the same user) or to link an individual user to a
specific certificate; i.e., to learn that they queried on or
reported a specific certificate.

3 Related Problems
We consider three problems that are related to the prob-
lem of SCT auditing, in terms of providing protection
to users as they browse the Internet.

3.1 Safe Browsing

In order to protect users from phishing, their browsers
can periodically check whether or not the sites they
visit are on a blocklist maintained by Google. The Safe
Browsing API [9] supports two types of interactions:
basic lookups and updates. A basic lookup reveals the
queried URL in the clear, and is analogous to a CT
log’s API for fetching inclusion proofs. The Update call
allows clients to perform a local lookup before deciding
whether or not to interact with a Safe Browsing end-
point directly. Briefly, clients can store the hash prefixes
of URLs on the Safe Browsing list in a compressed data
structure similar to a Bloom filter. When a client visits

a URL, they hash it and check if its hash prefix is in the
filter or not. If not, then the URL is definitely not on
the Safe Browsing blocklist (or at least the version of it
reflected by the client’s filter). If it is, then they call the
API on the hash prefix to get back a list of (full) hashes
of all URLs on the blocklist that have that prefix. If the
hash of the URL is on that list then it is on the blocklist
(and thus considered unsafe), and otherwise it is not.

Currently, many browser vendors integrate with
Safe Browsing, meaning their users are by default opted
in to use the Update API and update their local filter
every 30 minutes (they also have the ability to opt out).
Users of Chrome may additionally opt in to “enhanced”
Safe Browsing [56], which means their browsers query
the lookup API in real time.

The problem that Safe Browsing is solving is in some
sense the inverse of the problem in SCT auditing: in
Safe Browsing users are looking for a match in a rel-
atively small list of URLs (the blocklist), whereas in
CT users are looking for a missing entry in a large list
(the contents of a CT log). As we explore further in
Section 4.4.2.1, this means the approach used in Safe
Browsing cannot be used directly in CT.

3.2 Checking for certification revocation

When verifying a certificate, it is important to ensure
that it has not been revoked. One way to check for re-
vocation is using the Online Certificate Status Protocol
(OCSP). This allows CAs to tell clients the status of a
certificate via an endpoint that clients query directly.
Using OCSP directly thus presents a privacy issue, as
clients reveal the certificates they see to the CA.

There are two basic alternatives to OCSP that exist
today. Using OCSP Stapling, the certificate holder (i.e.,
the web server) queries the CA rather than the client,
and then “staples” the signed response from the CA to
the certificate when it serves it. Since the web server
can perform these queries periodically and cache the
response until some expiration date, this improves not
only privacy but also performance. In the other alter-
native, clients can query endpoints maintained by CAs
to download certificate revocation lists (CRLs). Clients
can then check certificates against locally cached ver-
sions of these CRLs, but this imposes a high storage
overhead and requires clients to keep their lists up-to-
date. To address these limitations, CRLite [34, 40] stores
revocation data in a compressed data structure similar
to a Bloom filter, while CRLSets [2] are revocation lists

SoK: SCT Auditing in CT 340

of size at most 250kB that are curated by Google and
pushed regularly to Chrome browsers.

As compared with SCT auditing, certificate revoca-
tion checks are designed to be performed in-band during
the setup of a connection, whereas CT is designed to
have asynchronous auditing. Furthermore, it is possible
to have a canonical list of all revoked certificates but
not possible to enumerate all SCTs/certificates that are
not included in a CT log.

3.3 Checking for compromised credentials

Users who are concerned that their credentials may have
been compromised can query and check whether or not
these credentials are on a list of breached credentials,
as provided by a service such as Google’s Password
Checkup [66] or Have I Been Pwned? (HIBP) [4]. While
this is not directly related to browsing, many browsers
have integrated some form of checking; e.g., the Firefox
Monitor [3] uses HIBP, while Safari and Chrome use
their own custom lists.

Perhaps surprisingly, this problem is the one that
most closely resembles SCT auditing, as it also involves
asynchronous querying in a large database. Neverthe-
less, there are also important differences, such as users
needing to act in the case of matching rather than miss-
ing data (as with Safe Browsing). We discuss existing
protocols for checking for compromised credentials (C3)
and how they can be adapted for use in CT in more de-
tail in Section 4.3.2.3.

4 Components of SCT Auditing

4.1 Literature review

Our goal is to identify proposed solutions for either
phase of SCT auditing. Given that CT is a deployed
project as well as an area of academic research, we
identified solutions based on a manual review of three
different sources: (1) academic literature published in
computer security and networking conferences (ACM
CCS, USENIX Security, IEEE S&P, NDSS, NSDI, and
CNS), (2) experimental deployments in industry, and
(3) posts on Certificate Transparency mailing lists [6]
and standards documentation. The final list of propos-
als was compiled and categorized jointly by a set of
three researchers, and was validated by a broader set
of researchers and colleagues. In addition to looking at

proposals for CT, we also looked at discussions of and
proposed solutions for the three related problems intro-
duced in the previous section.

4.2 Evaluation criteria

We consider seven main aspects that characterize a pro-
posal for either phase of SCT auditing. A summary of all
proposals against these evaluation criteria is in Table 2.

Integrity: We require that all proposals achieve in-
tegrity. In the querying phase, this means that the
client accepts only entries that are included in the
log. In the reporting phase, it means that the auditor
acts only on SCTs that have been violated.

Privacy: We consider whether or not a proposal pre-
serves privacy. Following Section 2.3, this means that
it is difficult for the server to link a specific user
(as represented by their browser instance) to a spe-
cific entry. We use # to indicate that no privacy is
achieved; G# to indicate that k-anonymity is achieved,
meaning the server knows either that one of k clients
was interested in a specific entry or that a specific
client was interested in one of k entries; and to
indicate that unlinkability is provably achieved.

Client costs: We consider three costs that clients
might incur: bandwidth, storage, and computation.
We use # to indicate that there is no overhead; G# to
indicate that there is some overhead but the client
could still likely be run on a modern mobile device;
and to indicate that there is enough overhead that
it likely could not.

Certificate issuance latency: We consider any la-
tency the protocol adds to the process of certificate
issuance. We use ‘none’ to indicate that there is no
added latency, and otherwise describe what is needed
before a certificate can be issued.

Server costs: We consider the costs for the server (i.e.,
the log or auditor) to run the protocol. We again use
to indicate that there is no required overheaad, G# to
indicate minimal overhead, and to indicate that the
server would have additional requirements at least at
the same scale as it does during normal operation
(i.e., its requirements would at least be doubled).

Trust assumptions: We consider the assumptions
needed for the protocol to satisfy both privacy and
integrity, in terms of which participants have to trust
which other participants to be sure that the correct
information is communicated in a privacy-preserving

SoK: SCT Auditing in CT 341

way. We use ‘none’ if there are no trust assumptions,
and otherwise describe them.

Near-term deployability: We consider how possible
it would be to deploy the protocol within the next 2-3
years. This factors in both costs and trust assump-
tions, in terms of whether or not there are natural
participants in the CT ecosystem who can play these
roles. We use # to indicate that there are major ob-
stacles, G# to indicate significant but not insurmount-
able obstacles, and to indicate that near-term de-
ployability is a reasonable expectation.

4.3 Proposals for querying

We first describe protocols for the querying phase, in
which the goal is for a client to find out from a log
operator whether or not a specific entry is included in
the log without the log being able to link that specific
entry to a specific client.

4.3.1 Network-level anonymization

We first discuss proposals in which the client provides
the queried certificate/SCT in the clear, but their iden-
tity may be hidden from the log at the network layer.

4.3.1.1 Query directly
The simplest proposal for querying a log is to have the
client do so directly; i.e., to request an inclusion proof
from the log for a given certificate. This can be deployed
easily, and similarly requires little overhead for an indi-
vidual client so is performant. Following Section 2.3, the
fact that the client receives an inclusion proof directly
from the log means the protocol achieves integrity.

The protocol does not achieve any privacy for the
client, as it reveals its certificates directly to the log.
There are two possibilities: first, a client represents an
individual browser, and the log thus learns the website
visited by that browser. This achieves no privacy at all.
Second, a client represents an auditor to whom a collec-
tion of individual browsers have reported one or multi-
ple certificates; e.g., a browser vendor with whom some
users have opted to share a portion of their browsing his-
tory. In this case, individual users achieve k-anonymity,
where k is the total number of users of that auditor,
but as they reveal their certificates directly to the audi-
tor they must trust it to not share them externally. We
discuss this second case in more detail in Section 5.3.

4.3.1.2 Proxy/mixnet
Rather than have each client contact the log directly,
clients could route their queries through a single proxy
server or a series of proxies; i.e., a mixnet, as mentioned
by Eskandarian et al. [27] and as used implicitly in the
CTor protocol for Tor clients due to Dahlberg et al. [23].

This protocol is performant and could be deployed
in the near term; e.g., browsers could act as a proxy for
CT queries just as some of them currently act as a proxy
for Safe Browsing queries [10, 16]. As in the previous
proposal, it achieves integrity as the client receives an
inclusion proof from the log. It protects the privacy of
the client as long as there is sufficient traffic, as clients
achieve k-anonymity with respect to the set of clients
using the proxy at a given point in time. This assumes,
however, that the proxy servers are not colluding with
the log, which is a problem for companies like Google
that both offer a browser and run CT logs. Using more
proxies makes it less likely that they are all colluding,
but adds latency to the querying protocol.

4.3.1.3 DNS
Using a proxy improves privacy by avoiding direct com-
munication between the client and the log. Instead of
adding an external proxy server, we could identify a
party who already knows of the client’s interest in a
given certificate, and then route the query through
them. One such party is a DNS resolver. In 2015, Google
proposed a DNS-based protocol for fetching inclusion
proofs [43, 63]. Briefly, the protocol involves the client
requesting records for domain names that encode infor-
mation about leaf hashes. These special DNS records
then provide inclusion proofs for these leaf hashes.

This protocol is performant and could be deployed
in the near term; furthermore, the fact that the client re-
ceives back inclusion proofs means it satisfies integrity.
In theory, the protocol also preserves the privacy of
clients, who already reveal the domain names they are
interested in to their local DNS resolvers; furthermore,
the logs see the request in the clear but it comes from
their configured DNS resolver, which should reveal noth-
ing about the client. In practice, however, there are
known privacy risks associated with this approach [49].
For example, SCT auditing is done asynchronously, so
a client might send the SCT query hours after they ac-
tually visit the site. This might cause their query to
be routed through a different DNS resolver, and thus
reveal information. Even with the same resolver, DNS
resolvers may do a form of prefetching; i.e., resolving
domain names linked to on the site that the client is cur-

SoK: SCT Auditing in CT 342

Client costs

Proposal Privacy Bandwidth Storage Computation Certificate
issuance
latency

Server costs Trust assumptions Near-term
deployabil-

ity

Query directly (browser) # G# # G# none # log

Query directly (auditor) G# G# # G# none # auditor (depending
on reporting phase)

Proxy/mixnet G# G# # G# none # no collusion be-
tween proxy/mixnet
and log

DNS G# G# # G# none # no collusion be-
tween DNS re-
solvers and log

Fuzzy ranges G# G# – # G# – wait for se-
quencing

G# none G#

PIR † G# # G# wait for se-
quencing

 no collusion be-
tween replicated
logs

#

C3-PSM (log) G#† G# – # G# – none none G#

C3-PSM (third party) G# G# – # G# – none # third party (for in-
tegrity)

G#

Local mirroring none G# none

Fast embedding G#† G# # G# wait for inclu-
sion

none G#

Slow embedding G#† G# # G# wait for MMD # none G#

OCSP stapling G#† G# # G# none # none #

Report directly # G# # G# – G# auditor

Proxy/mixnet G# G# # G# – G# no collusion be-
tween proxy/mixnet
and auditor

Web server G# # # – G# no persistent MitM
attack; website will
report

#

C3-PSM G#∗ G# – # G# – – none

ZKP of non-inclusion # – G# none G#

Table 2. Proposals for querying the log and, below the dashed line, for reporting to an auditor. Privacy is measured in terms of the
difficulty of linking a specific client to a specific entry. The † superscript indicates that the protocol achieves this level of privacy only
with respect to a covert adversary [13] rather than one that is fully malicious, and the ∗ superscript indicates that it achieves this level
of privacy only with respect to an honest-but-curious adversary. The G# – range indicates that there is a tunable parameter that can
increase or decrease the overhead (but, as we discuss in the respective sections for these proposals, this overhead is proportional to
their privacy guarantees).

SoK: SCT Auditing in CT 343

rently visiting. They thus know only the domain names
that they have resolved for the client, so requesting an
inclusion proof provides the additional information that
the client is not only resolving but actually visiting a
site. As such, Google no longer seems to be focusing on
this protocol as a solution for SCT auditing [62].

4.3.2 Privacy-preserving queries

Rather than focus on anonymity, the next three pro-
posals allow the client’s identity to be known to the log
but use cryptographic techniques to hide the specific
certificate in which they are interested.

4.3.2.1 Fuzzy ranges
Instead of having a client query for a single leaf hash
or index, they could ask to see inclusion proofs for all
entries in a range that they know contains their specific
certificate of interest. This type of request is implicit
in the work of Eskandarian et al. [27]. To obtain this
range, one could imagine having a client query for either
all certificates within the range of a given timestamp, or
for all entries between two indices in the underlying data
structure. The former approach can be problematic for
privacy, as a client does not know how many certificates
were logged in a given time period, so may end up with a
smaller anonymity set than desired. More importantly,
this feature is not supported by the current CT API [41].

The only currently available option for this type of
query is thus the latter option: having clients query for
all entries between two indices. This has the upside for
privacy that it fixes the size of the client’s anonymity
set, but the downside that in order to identify the right
range the certificate would need to contain its index, or
sequence number. This adds latency into the certificate
issuance process, which is a limitation we discuss fur-
ther in Section 6.1. More generally, there is an inverse
relationship between performance and privacy: a client’s
communication and computation costs are O(k log(N)),
so increasing the size of the anonymity set means in-
creasing these costs and thus degrading performance.
Furthermore, to avoid revealing the exact index i of the
certificate, a client would need to add some random off-
set; i.e., they would query for the range [i+r− k

2 , i+r+ k
2)

for some random value − k
2 < r ≤ k

2 . In the (likely) case
where the client queried multiple logs on the same cer-
tificate, however, if those logs were colluding then they
would be able to perform an intersection attack [58] to

identify the certificate shared by both ranges, or at least
to significantly reduce the set of candidate certificates.

4.3.2.2 Private information retrieval (PIR)
Private information retrieval (PIR) aims to achieve a
notion of client privacy in which an adversarial server
learns no information about the queries made by clients.
PIR solutions do not typically achieve any notion of
privacy for the server, but this is not needed for CT
as the contents of all logs are designed to be globally
visible. In CT, the value returned to the client is an
inclusion proof for their specific entry of interest.

Lueks and Goldberg were the first to propose us-
ing PIR for CT [48], and a more performant solu-
tion was later proposed by Kales, Omolola, and Ra-
macher [35]. Recently, Kogan and Corrigan-Gibbs pro-
posed a PIR solution, Checklist, for the related problem
of Safe Browsing [36]. The first two solutions are “tradi-
tional” PIR protocols, while Checklist is an example of
offline/online PIR [22]. To avoid the high performance
overhead of single-server PIR, all three solutions oper-
ate in the two-server PIR model; i.e., they require two
non-colluding servers to run identical copies of the log.

All three protocols provably achieve privacy for the
client in retrieving a record from the database. For the
CT-specific solutions, this record consists of a certificate
and an inclusion proof, which means the protocol sat-
isfies integrity as long as the PIR database is the only
one maintained by the log. Providing an inclusion proof,
however, opens the protocol up to the following attack
by a fully malicious log [14]. Because an inclusion proof
is formed with respect to a specific STH, in addition to a
specific entry in the database, a malicious log could use
a unique STH for each inclusion proof; this would create
a one-to-one mapping between STHs and certificates. A
client wanting to verify inclusion of a certificate would
need to not only verify the inclusion proof returned by
the log but also verify a consistency proof between the
STH used for the inclusion proof and one that they al-
ready know and trust. If they query the log directly for
this consistency proof, they reveal the STH and thus
reveal the certificate it represents. We defer further dis-
cussion of this issue until Section 6.3, but briefly men-
tion here that without an additional privacy-preserving
method for retrieving consistency proofs this means pri-
vacy can be achieved only with respect to a covert ad-
versary rather than one that is fully malicious [13].

In terms of performance, Lueks and Goldberg evalu-
ate their protocol on a 3GB database, which they argue
can store inclusion proofs for a log of 4 million cer-

SoK: SCT Auditing in CT 344

tificates. Kales et al. evaluate their protocol for logs
containing 228 (268M) certificates, which as we see in
Section 6 is in line with the size of many CT logs to-
day. They find that the server’s computation on a query
takes roughly 1 second, the work for the client takes un-
der a millisecond, and the protocol requires 6kB in com-
munication costs. They also evaluate the work of Lueks
and Goldberg and find that it requires 3.5 seconds for
the server to respond to a query and 625kB in com-
munication costs. Kogan and Corrigan-Gibbs evaluate
Checklist on a database of size 3 million (in line with
the smaller number of records used in Safe Browsing)
and find that the offline phase takes 11s on both the
client and the server, requiring roughly 10MB in com-
munication costs. In contrast, the online phase takes at
most 1ms for both the server and the client and requires
roughly 1kB in communication costs. None of these costs
are prohibitive given that SCT auditing is designed to
be performed asynchronously, although of course fur-
ther investigation would be needed to fully assess their
practicality.

In terms of deployability, both CT-specific solutions
require a certificate to contain its index in the log. As
discussed in Section 4.3.2.1, this adds latency to the cer-
tificate issuance process, which is a limitation we discuss
in Section 6.1. For all three solutions, there are signifi-
cant deployment challenges associated with keeping two
servers fully synchronized. Kales et al. suggest that the
second log could be hosted on a cloud platform run by
a competitor of the first log operator, but this would
incur a significant financial cost.

4.3.2.3 Private set membership (PSM)
Private set membership (PSM) allows a client to learn
whether or not an entry is in a list held by a server,
with the client learning nothing about the list beyond
(non)membership of the queried entry and the server
learning nothing about the client’s entry. (This differ-
entiates PSM from PIR, which does not try to provide
server privacy.) This is a specific case of private set in-
tersection (PSI) where the size of the client’s set is one.

We are not aware of any research using PSM for
SCT auditing, but previous research has explored its us-
age in the related context of checking for compromised
credentials (C3) [4, 46, 57, 66]. In these “C3-PSM” pro-
tocols, a user sends a prefix of the hash of their username
(which is less privacy-sensitive than their password) and
the server store lists of either credentials or password
hashes in buckets according to their hash prefix. When
a user queries on a prefix, the server can thus send back

the relevant bucket and the user can check locally if
their particular entry is in the bucket or not.

If we adapt this approach to CT, then each log
would need to sort its certificates into buckets, according
to a prefix of the certificate’s hash. If the client simply
ran the PSM protocol with the log, however, the overall
protocol would not satisfy integrity, as a malicious log
might store certificates in the buckets that are not ac-
tually in the log. To prove that it wasn’t doing this and
satisfy integrity, the log would also need to store associ-
ated inclusion proofs (with respect to a given STH) for
each certificate in a bucket as well. This augmented pro-
tocol would thus impose a significant overhead on the
log in the form of both storing all the buckets (which,
with the associated inclusion proofs, use N log(N) space
where N is the number of certificates in the log), and
periodically recomputing an inclusion proof for every
certificate and updating the buckets accordingly.

In C3 protocols, however, the client is assumed to be
interacting with a party (such as their browser vendor)
that they trust to maintain a complete list of password
hashes. A more realistic solution here would thus be to
adopt the same threat model as for C3: a client would
trust their browser vendor or some other third party
to maintain a complete list of certificates, and would
engage in the PSM protocol with them instead of the
log. The fact that the client trusts this third party for
integrity removes the need for inclusion proofs and thus
means the client can receive a simple yes/no response
(as in a traditional PSM protocol).

The protocol between the client and the log achieves
k-anonymity, where k is the size of the bucket, only
if the log is covert rather than malicious; this is due
to the same potential for a fully malicious log to use
unique STHs for inclusion proofs that we discussed for
PIR. Similarly, the protocol between the client and a
semi-trusted third party also achieves k-anonymity. In
either case, performance is inversely proportional to pri-
vacy: revealing larger prefixes results in smaller buckets,
which means lower bandwidth overhead but a smaller
anonymity set. While the protocol achieves k-anonymity
for a single query, it is unclear how privacy would de-
grade over repeated querying on potentially related cer-
tificates, such as certificates for domains that fit into a
common category [15, 55]. This may be an interesting
and fruitful area for future research.

SoK: SCT Auditing in CT 345

4.3.3 Avoiding client querying

Any solution that requires communication between the
client and log imposes some performance overhead. In
theory, avoiding having any querying protocol at all
would have a positive impact on bandwidth (as the
client and log do not need to communicate) and on pri-
vacy, as the client cannot reveal any information about
the certificate if it does not perform any queries about it.
In practice, these “non-interactive” protocols are limited
in the privacy they can achieve due to the same limita-
tion discussed in Sections 4.3.2.2 and 4.3.2.3: inclusion
proofs are tied not only to specific entry but also to
a specific STH, which a malicious log may exploit. We
discuss this limitation further in Section 6.3.

4.3.3.1 Local mirroring
If clients mirrored every log, then they could check for
inclusion locally and would never need to issue any
queries. To some extent, this solution resembles main-
taining a certificate revocation list (CRL).

While this solution achieves integrity and perfect
privacy, it clearly imposes a significant storage require-
ment on the client, as there are billions of certificates
stored across all CT logs; even CRLs, which are much
smaller, are considered impractical for this reason. The
bandwidth overhead would be even higher, as they
would need to periodically update the list of entries they
maintain for each log. Nevertheless, mirrors do exist to-
day (for individual logs) so such a solution would be
relatively easy to deploy in the short term.

4.3.3.2 Embedding, fast and slow
RFC 6962-bis briefly suggests that inclusion proofs can
be embedded in a certificate via a custom extension [42,
Section 7.1.2]. This leaves open several questions, how-
ever, one of which is who should be responsible for em-
bedding the inclusion proof. The natural answer would
seem to be certificate authorities (CAs), given the inclu-
sion proofs by the logs, as otherwise this would require
a mandatory change in web servers.

The next question is when CAs should obtain these
inclusion proofs. If they do so as soon as the certificate
gets included in the log (fast embedding), this adds la-
tency to the process of issuing a certificate, as CAs have
to wait until it is included in the log. The effect on pri-
vacy is also negative, due to the fact that the STH used
in the inclusion proof is likely to represent a small num-
ber of certificates even in the case that the log is honest;

in the case that the log is malicious, it can guarantee
that the STH is unique to this certificate. Thus, even
in the honest case this means that the protocol achieves
k-anonymity for a relatively small value of k.

If instead CAs wait for some period to obtain the
inclusion proof (slow embedding), such as the maximum
merge delay (MMD), the latency involved in issuing a
certificate increases significantly. In terms of privacy,
this achieves k-anonymity for a larger k. We discuss in
Section 6.3 the respective values of k that could be ex-
pected for these solutions, and discuss in Section 6.1 the
challenges that they present for deployability.

4.3.3.3 OCSP stapling
RFC 6962-bis also briefly mentions serving inclusion
proofs using OCSP stapling [42, Section 7.1.1], as de-
scribed in Section 3.2. Here, the web server periodically
requests not only the certificate status from a CA but
also inclusion proofs for its certificates, and serves this
signed information to the client alongside the certificate
and its embedded SCTs. To achieve integrity, this addi-
tional information needs to be required and signed by
the CA for all certificates, or adversarial web servers can
simply choose to not provide anything.

This approach seemingly avoids the privacy issues
raised by embedding an inclusion proof directly into
the certificate: the only way to link a client to their
requested certificate is for the CA to maintain a map-
ping from certificates to the STHs used for their inclu-
sion proofs, and a colluding log to maintain a mapping
from IP addresses to the STHs queried for consistency
proofs; the combination of these two maps links a client
directly to a certificate. While this level of collusion may
seem far-fetched, as we saw in Table 1 most logs are al-
ready run by CAs. If CAs and logs are colluding, this
solution achieves k-anonymity, where k is the number of
certificates that the CA gives out for a given STH. As
discussed previously, this means that if we model CAs
and logs as fully malicious we cannot guarantee any pri-
vacy, so must instead treat them as covert adversaries
only.

The protocol is efficient for all parties. In terms
of deployability, the main change required is at the
CA rather than individual web servers, but it does as-
sume that web servers are set up to use OCSP stapling.
We discuss the limitation of relying on changes in web
servers further in Section 6.4; briefly, Liu et al. found in
2015 that at most 5% of certificates were served by hosts
that supported OCSP stapling [47], and Scheitle et al.
found in 2018 that 0.01% of their observed connections

SoK: SCT Auditing in CT 346

had SCTs served via OCSP stapling. Furthermore, in
order for this proposal to achieve integrity, web servers
must provide this information. This means certificates
must suppport OCSP “Must-Staple”; i.e., a version of
OCSP stapling in which responses are not considered
valid if they do not contain the requested information.
Chung et al. found in 2018 that only 0.02% of certifi-
cates supported this [19].

4.4 Proposals for reporting

We now describe protocols for the reporting phase, in
which the goal is for an auditor to learn about entries
that were not included in the log without being able to
link a specific reported entry to a specific client.

4.4.1 Network-level anonymization

As in the querying phase, these proposals make no effort
to hide the client’s certificate, but instead may hide their
identity from the auditor at the network layer.

4.4.1.1 Report directly
As in the querying phase, the simplest approach for re-
porting is to just have clients send certificates to the
auditor directly. These can be certificates for which the
client has already performed the querying phase and
found to not be in the log, or they can be all or some
subset of their certificates, in which case the auditor
can then perform the querying phase itself (in this lat-
ter case, the client must trust the auditor for integrity).
Nordberg et al. mention the possibility of having in-
dividual browsers send SCTs directly to trusted audi-
tors [51, Section 8.3].

This solution requires very little overhead for an in-
dividual client, but clearly requires them to trust the
auditor fully as it does not achieve any privacy. We
discuss in Section 5.3 how such trusted auditors may
already exist for certain clients.

4.4.1.2 Proxy/mixnet
As in the querying phase, a natural attempt to im-
prove privacy would be to have clients route their traffic
through a single proxy or a series of proxies, rather than
contact the auditor directly. Again, clients could either
send only certificates for which they have already per-
formed the querying phase and found to not be in the

log, or all or some subset of their certificates. As with
the previous solution, clients who do the latter must
trust the auditor to perform the querying itself. This
latter approach is used by Dahlberg et al. in their CTor
protocol for Tor clients [23].

This solution has largely the same properties as the
one in the querying phase: it is performant and could be
deployed in the near term by browsers that already act
as a proxy for the related problem of interacting with
Safe Browsing endpoints. It also protects the privacy
of the client as long as there is sufficient traffic and
as long as the proxy servers are not colluding with the
auditor. Unlike in the querying phase, however, there
may not be a high volume of traffic going to the auditor.
In particular, the first scenario has clients send only
certificates that they have already determined are not
in the log. We expect logs to violate the promise implicit
in their SCTs with very low frequency, given the serious
consequences if they are caught doing this, so in this
scenario clients might need to periodically send cover
traffic, as they do in other mixnet solutions [17].

4.4.1.3 Web servers
Nordberg et al. [51, Section 8.1] proposed having a
browser report the SCTs that are relevant to a web-
site it is currently visiting. It is then the responsibility
of the web server to send these SCTs to an auditor.

This method of reporting has the advantage that it
is hard to disrupt without also disrupting web brows-
ing, and it preserves privacy as the web server already
knows the browser is visiting the site. It assumes, how-
ever, that an attacker cannot run a persistent man-in-
the-middle attack, as they say that “clients will send
the same SCTs and chains to a server multiple times
with the assumption that any man-in-the-middle attack
eventually will cease, and an honest server will even-
tually receive collected malicious SCTs and certificate
chains.” Even without such an attack, integrity also re-
lies on the web server honestly reporting their SCTs to
an auditor, as a malicious web server could just decide
not to report and there would be no way to detect that
they hadn’t. More generally, it would require a change
in a significant fraction of web servers in order to cap-
ture certificate misissuance at a broad scale. We discuss
this limitation further in Section 6.4.

SoK: SCT Auditing in CT 347

4.4.2 Privacy-preserving reporting

As with the analogous querying proposals, the next set
of solutions allows the client’s identity to be known to
the auditor but uses cryptographic techniques to hide
the specific certificate being reported (or, for the first
proposal, to hide it in all but exceptional cases).

4.4.2.1 Private set membership (PSM)
Google recently proposed a privacy-focused solution for
having browsers report certificates to auditors [24]. This
protocol imagines that an auditor (in their case Google)
acts as a mirror for all CT logs and thus maintains a
comprehensive list of all certificates; in the maintenance
of this list the auditor plays a role analogous to a Safe
Browsing endpoint maintaining a blocklist. Before in-
teracting with the auditor, clients first use a sampling
strategy to decide on a subset of certificates that they
might report. This step eliminates interaction with the
auditor in a manner similar to the Bloom filter used
in Safe Browsing; as mentioned in Section 3.1, using a
Bloom filter is not practical here due to the significantly
larger size of the list and the fact that clients are looking
for a missing rather than a matching entry. The client
and the auditor then engage in a PSM protocol for each
of the certificates in this sample, analogous to the pro-
tocol used to check for compromised credentials (C3).
If at the end of the protocol the client is convinced that
its certificate is in the list held by the auditor, they do
not continue further. If not, the client reports the cer-
tificate to the auditor in the clear; i.e., sends it to the
auditor directly. The protocol thus consists of a PSM
“querying” phase (but with the auditor rather than a
log operator) followed by a direct reporting phase.

In terms of privacy, the PSM phase of this inter-
action achieves k-anonymity, where k is the size of a
bucket. If the certificate is not on the auditor’s list
the client reveals it directly to them, however, which
means the overall protocol achieves no privacy. The pro-
posal suggests that this case is unlikely to happen in
practice “as Google maintains a comprehensive copy of
all valid SCTs” and that in these rare cases it is thus
“appropriate to break anonymity.” This assumes that
the auditor honestly maintains a comprehensive list of
SCTs/certificates, which means the protocol achieves
k-anonymity only if the auditor is honest-but-curious.
Finally, as in Section 4.3.2.3, the protocol achieves k-
anonymity for a single query but it is unclear how pri-
vacy would degrade over repeated querying, and in par-
ticular if the sampling strategy used in this proposal

would resolve the privacy issues present in Safe Brows-
ing [30, 36]. Furthermore, performance is inversely pro-
portional to privacy, as achieving k-anonymity for larger
values of k requires sending larger buckets.

While an honest-but-curious adversary may make
sense anyway when modelling the role of a browser ven-
dor, the proposal does contain additional mitigations.
For example, it suggests that clients “maintain a strict
limit of 3 total SCT reports” sent to the auditor, which
means that even a malicious auditor could only ever see
three certificates per client.

4.4.2.2 Proof of non-inclusion
Rather than provide a non-included certificate directly
to an auditor, a client could instead provide a zero-
knowledge proof of its non-inclusion, as proposed by
Eskandarian et al. [27]. In other words, the client can
prove knowledge of an SCT such that the timestamp
falls (strictly) between those of two adjacent log entries.

This protocol achieves provable zero knowledge,
which means it is private, and does not require any trust
assumptions. It does not fully satisfy integrity, however,
as the auditor learns only about the existence of a non-
included entry. If multiple clients provide such a report
for the same log, the auditor does not know if these re-
ports represent the same certificate or repeated misbe-
havior and is not in a position to follow up directly with
the log and find out. The auditor thus has no action-
able evidence that it can use to further investigate the
potential misbehavior, which is a limitation we discuss
further in Section 6.5. In terms of performance, produc-
ing a proof requires over five seconds on the client side
(on a laptop) and the proof itself is over 333kB. As Es-
kandarian et al. argue, however, the reporting protocol
is likely to be run infrequently.

5 Full Proposals
In this section, we describe full proposals for SCT au-
diting; i.e., proposals that combine a querying and a
reporting protocol. As compared with the many indi-
vidual components described in the previous section,
there are relatively few of these. As we discuss further
in Section 6.5, this is perhaps due to the fact that most
existing research has focused on the querying phase and
not the reporting phase. We also see how a proposal
in one phase can have weaker privacy as a full proto-

SoK: SCT Auditing in CT 348

col due to mismatched trust assumptions and privacy
guarantees in the other phase.

5.1 Proofs of non-inclusion

Eskandarian et al. proposed a protocol [27] that com-
bines fuzzy ranges (Section 4.3.2.1) with proofs of non-
inclusion (Section 4.4.2.2). Briefly, this means the client
(a browser) queries the log for a range that should in-
clude the certificate they are interested in and then
checks if their certificate is indeed in this range. If not,
they provide a zero-knowledge proof of its non-inclusion
to some publicly accessible auditor.

The protocol as a whole (provably) preserves a
client’s privacy with respect to the auditor but achieves
only k-anonymity with respect to the log. Furthermore,
a client’s queries to different logs likely reveal patterns
that shrink the anonymity set over time. In terms of
performance, there is a significant bandwidth overhead
for logs (who would be contacted by every individual
browser), and reporting a zero-knowledge proof imposes
significant costs in terms of both computation and band-
width on the client but is expected to happen infre-
quently (only in the case of non-inclusion). Finally, in
terms of functionality the protocol is not actionable in
that the auditor knows only that a log has misbehaved
but not where or how many times. We discuss this final
limitation in more detail in Section 6.5.

5.2 SCT Feedback

SCT Feedback [51, Section 8.1] combines direct query-
ing, between an auditor and a log, with the report-
ing mechanism described in Section 4.4.1.3. Briefly, this
means the client (a browser) reports the SCTs that are
relevant to a website it is currently visiting. The web
server then collects these SCTs and passes them on to
some publicly accessible auditor, who in turns queries
the log for their inclusion.

The protocol as a whole preserves the privacy of the
client, who reveals their SCTs only to a website they are
already visiting. As discussed above, however, the pro-
tocol has the significant downside that it relies on web-
sites to report certificates to an auditor. This means that
clients may not be protected against malicious websites,
and more generally that a significant fraction of web
servers would be required to run the protocol in order
to have a reasonable chance of identifying misbehavior.
We discuss this limitation further in Section 6.4.

5.3 Opt-in SCT auditing

One active proposal by Google allows clients to opt in
to SCT auditing [64]; in fact, this has been deployed
in Chrome as of March 2021 [54]. This combines di-
rect querying (Section 4.3.1.1), between the auditor and
the log, with direct reporting (Section 4.4.1.1), from the
client to the auditor. The auditor in this case is Google.

While direct reporting raises obvious privacy con-
cerns, the clients who report SCTs already share their
browsing history with Google by performing extended
reporting as part of Safe Browsing. Furthermore, the
proposal states that “Third-party logs don’t receive any
information about Chrome users’ browsing history be-
cause we query Google-operated mirrors of CT data in-
stead of querying the logs directly.” Thus, as the auditor
sits within the same trust boundary as the log, no in-
formation about the client’s data is revealed to anyone
except the auditor.

6 Discussion
In this section, we discuss the limitations of existing
solutions, in terms of the assumptions they make and
the requirements they impose. The particular issues we
highlight are: (1) certificate issuance latency, (2) client
constraints, (3) privacy, (4) significant changes to the
Web infrastructure, and (5) reporting misbehavior to an
auditor. We use these limitations to define a set of con-
straints for, and thus a clear definition of, the problem
of performing SCT auditing in the existing Certificate
Transparency ecosystem.

6.1 Issuance latency

Logs may take up to 24 hours to include a certificate
in a log, given the current MMD for Certificate Trans-
parency, and as reported by Gustafsson et al. [31] it can
take logs up to 12 hours to publish a new STH (which
signals the inclusion of a new batch of certificates).

Web hosting providers currently promise signifi-
cantly faster issuance rates, ranging from minutes to
several hours [5, 12, 20]. Furthermore, issuing a cer-
tificate quickly is important to these businesses, with
“slow certificate deployment [leaving] customers with an
unsatisfactory experience” [38]. Shortening the MMD
would address this tension, but would place a signifi-
cantly higher burden on log operators and—as we dis-
cuss below—could be harmful to privacy. This higher

SoK: SCT Auditing in CT 349

burden would raise the barrier to entry for running a log,
which would ensure that only large institutions would
be able to act as log operators (as is already largely the
case today).

It is thus infeasible for certificate authorities to wait
for log inclusion before issuing a certificate, which means
inclusion proofs cannot be embedded into certifi-
cates, as is required in the fast and slow embedding pro-
posals (Section 4.3.3.2). Furthermore, the current most
widely deployed log implementation, Trillian [11], has
no distinction between sequencing an entry and includ-
ing it. This also means that at least today, sequence
numbers cannot be embedded into certificates,
as is required in the fuzzy ranges (Section 4.3.2.1) and
PIR (Section 4.3.2.2) querying proposals.

6.2 Client constraints

Clients are run on commodity laptops and, in an in-
creasing majority of cases,2 on mobile devices. These
are computing environments that are limited in terms of
the bandwidth, storage, and computational power avail-
able to them. Collectively, today’s active time-sharded
CT logs contain 5.8 billion certificates. Even if a client
stored only this many hashes (which ignores storing all
internal log hashes or the actual underlying data), this
would amount to 185.6GB of data, which means that
clients cannot act as mirrors, as is required in the
local mirroring querying proposal (Section 4.3.3.1).

6.3 Privacy

Many querying proposals focus on privacy-preserving
ways to retrieve inclusion proofs, which are inherently
tied to the certificates for which they prove inclusion. As
discussed first in Section 4.3.2.2, however, an inclusion
proof is also tied to the STH with respect to which it
proves inclusion, and for a client to fully convince them-
selves that an entry really is in the log they need to both
(1) verify the inclusion proof for that entry with respect
to its associated STH and (2) verify a consistency proof
between that STH and one it currently holds and be-
lieves to be valid. If an STH were used to form only one
or a small number of inclusion proofs, querying a log
for a consistency proof with respect to this STH would

2 https://gs.statcounter.com/platform-market-share/desktop-
mobile-tablet

2021-11-25

2021-11-26

2021-11-27

2021-11-28

2021-11-29

2021-11-30

2021-12-01

Time

100

101

102

103

104

105

Di
ffe

re
nc

e
in

 tr
ee

 si
ze

Cloudflare-Nimbus2021
DigiCert-Nessie2021
DigiCert-Yeti2021
Google-Argon2021
Google-Xenon2021
LE-Oak2021
Cloudflare-Nimbus2022
DigiCert-Nessie2022
Google-Argon2022
Google-Xenon2022
LE-Oak2022
Cloudflare-Nimbus2023
DigiCert-Nessie2023
DigiCert-Yeti2023
Google-Argon2023
Google-Xenon2023
LE-Oak2023

Fig. 1. The difference in tree sizes for time-sharded CT logs, av-
eraged hourly over a week (November 24–December 1, 2021) and
at log scale.

reveal significant information about the certificate. As
discussed earlier, it is possible for a malicious log to en-
sure that each inclusion proof is formed with respect to
a unique STH, thus enabling this attack.

In the proposals that rely on network-level
anonymization, this attack is not effective as clients can
use the same anonymous communication tools to re-
trieve consistency proofs as they do to retrieve inclusion
proofs. It is not clear, however, how to modify the PIR
(Section 4.3.2.2), PSM with the log (Section 4.3.2.3),
embedding (Section 4.3.3.2), and OCSP stapling (Sec-
tion 4.3.3.3) querying proposals. For these proposals, we
must thus assume weaker covert adversaries [13], who
may deviate from the protocol but “do not wish to be
‘caught’ doing so.” Given that monitors and auditors
can both catch this form of log misbehavior, we believe
this is a reasonable way to model adversaries in CT.

Even honest-but-curious logs may still unintention-
ally use a single STH to form only a small set of inclusion
proofs. To understand the extent to which this might be
a problem today, we sought to identify how many cer-
tificates are represented by a given STH. In particular,
we performed two experiments as follows.

1. We queried each time-sharded log every 30 seconds
for a week, starting on November 24, 2021, and in-
cluded results for all logs for which we observed at
least 95% availability. This meant excluding only
the TrustAsia logs.

2. We queried each time-sharded log, this time once
every second for a minute, for a total of four minutes
spread between November 22nd and 25th, 2021.

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

SoK: SCT Auditing in CT 350

Log shard
Log name 2021 2022 2023

Cloudflare Nimbus 1 1 1
DigiCert Nessie 1 1 1
DigiCert Yeti 1 1 1
Google Argon 22.8 60 3
Google Xenon 25.5 60 3
Let’s Encrypt Oak 4 43 2

Table 3. The number of unique STHs seen per minute for each
log shard, averaged across four runs of one query per second. The
runs were conducted between November 22nd and 25th, 2021.

The first experiment is designed to evaluate the
case in which a log server issues an inclusion proof
with respect to the latest STH at the time a certificate
is included, as in the fast embedding approach (Sec-
tion 4.3.3.2). This achieves k-anonymity, where k is the
difference in tree size between that STH and the previ-
ous one. As suggested by the results in Figure 1, there
are many logs for which each STH represents a fairly
small number of entries: the 2022 log shards saw differ-
ences in tree sizes in the hundreds or thousands, but for
the 2023 log shards the average difference was 23.6 and
the median was 1.75. (Across all logs and shards, the
average difference was 8093 but the median was 385.)
For the 2023 log shards, even forming inclusion proofs
once per day would thus provide an anonymity set of
only 100-200 certificates. Thus, inclusion proofs can-
not be embedded into certificates, as is suggested
in both the fast and slow embedding querying proposals
(Section 4.3.3.2).

The second experiment is designed to evaluate the
case in which a CA queries a log server for an inclusion
proof at a given point in time, and again it returns an
inclusion proof formed with respect to the latest STH.
As suggested by Table 3, some logs form new STHs sig-
nificantly faster than once per minute, and potentially
even faster than once per second. As expected given
that we performed this experiment in November 2021
(in which the vast majority of issued certificates would
be expiring in 2022), this was especially true for the 2022
log shards. If we take the Let’s Encrypt Oak 2022 log
shard as an example, in which Figure 1 shows a differ-
ence in tree size of hundreds between STHs sampled at
a 30-second interval, this suggests that the anonymity
set for an STH retrieved at any given second would be
at most tens of certificates.

Finally, if individual browser instances queried the
log directly to retrieve inclusion proofs then even
honest-but-curious logs would be able to learn the cer-

tificates seen by those clients. Thus, browsers cannot
directly query logs, as is suggested by the first option
in the direct querying proposal (Section 4.3.1.1).

6.4 Significant Web changes

Previous research has already shown that web servers
are typically slow to adopt new protocols, such as
HTTPS [28, 50, 59], OCSP stapling [19], newer versions
of TLS [33, 37], and HSTS and HPKP [39]. Further-
more, web servers are slow to patch even significant and
highly publicized security vulnerabilities, with a long
tail never performing any patching at all [25, 45, 65].

More specifically to CT, Gasser et al. explored adop-
tion of the gossiping endpoints proposed by SCT Feed-
back and found that at most 0.015% of domains had
made them available [29]. Even if this number were
higher, even in a longer timescale it is not feasible to
imagine every single web server adopting a new proto-
col, so security cannot rely on mandatory changes
implemented in web servers, as is required in the
OCSP stapling querying proposal (Section 4.3.3.3) and
the SCT Feedback reporting proposal (Section 4.4.1.3).

6.5 Reporting

The decisions that have thus far been made to remove
logs from the CT ecosystem [52, 53, 60] have required
significant discussion [26, 32, 61], including a “post-
mortem” from the log operators identifying the condi-
tions that led to their (unintended) misbehavior and
considering how those conditions could be prevented in
the future. As such, auditors require actionable and
concrete evidence of a log’s misbehavior, as op-
posed to just learning about its existence as in the ZKP
of non-inclusion proposal (Section 4.4.2.2).

More generally, as we saw in Section 4, much of the
research addressing the problem of SCT auditing has
focused on the querying phase, with significantly fewer
proposals for the reporting phase. While existing query-
ing proposals could perhaps be extended using existing
reporting proposals, we already saw in Section 5 that
the security of the full proposal is only as secure as the
weaker of the two phases. Furthermore, if we look at
the viable proposals remaining in Table 2 we can see
there are few natural pairings. The proposal for report-
ing directly requires full trust in the auditor, and the
C3-PSM proposal achieves privacy only with respect to

SoK: SCT Auditing in CT 351

an honest-but-curious auditor (and in that case achieves
k-anonymity rather than full privacy).

This leaves proxying as the only option, which pairs
naturally with the same proposal in the querying phase.
Indeed, the fact that Brave and Apple already proxy
queries to Safe Browsing endpoints suggests that this
could be a viable solution in the near term for these
browsers, in terms of acting as a proxy for both querying
logs and reporting to auditors. Chrome users, however,
comprise 65% of all browser users.3 Given that Google
acts as a CT log operator and is proposing to act as
an auditor, it would thus need another entity to act as
a proxy, which is a significant undertaking. Moreover,
if other browser vendors chose to act as auditors too
(which would of course be preferable to having Google
be the only auditor), they would also require third-party
proxying solutions.

6.6 Summary of constraints

To summarize the constraints we have identified above,
the main limitation of many of the solutions we pre-
sented is that they address only the querying phase
and have no solution for reporting. In particular, for
almost all discussed solutions for the querying phase, it
is an individual browser instance that learns whether
or not a certificate is in the log, but there are both
privacy and feasibility questions in terms of how indi-
vidual browsers could then report log misbehavior to
the broader CT ecosystem in a way that is actionable.
Furthermore, as discussed in Section 6.5, most existing
solutions for querying are not compatible in terms of
their threat model with the existing solutions for re-
porting. Thus, the main guideline for future proposals
is to consider both the querying and reporting phases
and ensure that privacy is preserved across both types
of interactions.

In terms of privacy, our main observation in Sec-
tion 6.3 is that even for honest logs it is often possible
for an STH itself to contain significant information in
terms of the number of log entries it represents. It is
thus important for querying proposals to consider not
only how clients can preserve their privacy in obtaining
inclusion proofs, but also how they can do so in ob-
taining consistency proofs. An alternative is to impose
a rate limit on the number of STHs that can be pro-
duced within a given period of time, as is suggested in

3 https://gs.statcounter.com/browser-market-share

RFC 6962-bis [42, Section 4.10]. This requires substan-
tial changes to log operation, however, which hinders
near-term deployability. Furthermore, while limiting the
number of available STHs would improve privacy with
respect to honest-but-curious logs, malicious logs could
still use specific STHs in the inclusion proofs for specific
certificates to perform fingerprinting.

7 Conclusions
In this paper, we have systematically explored the tech-
niques that have been proposed thus far for the prob-
lem of performing SCT auditing—which is central to
the security guarantees that Certificate Transparency
brings to the HTTPS ecosystem— in a way that pre-
serves the privacy of individual users. In doing so, we
have identified proposals from both academia and indus-
try, many of which exist in quite different forms; e.g.,
posts on mailing lists, academic papers, and readmes in
GitHub repositories. Despite these differences, we have
brought these proposals together and explored them un-
der a unified evaluation framework that considers their
privacy, integrity, performance overheads, trust assump-
tions, and near-term deployability.

In doing so, we have identified several key limita-
tions shared by multiple proposals, in terms of (1) the
increased latency they cause for certificate issuance; (2)
the excessive performance overheads they impose on
clients; (3) the limited privacy they achieve due to their
ability to privately retrieve inclusion proofs but not con-
sistency proofs; (4) their need for change in a significant
majority of web servers in order to achieve integrity;
and (5) their lack of a proposed reporting component.
In highlighting these limitations, our goal is to create a
set of constraints that we hope serves as a useful guide
to researchers interested in this problem. To further this
goal, we have also highlighted both the similarities and
differences with other problems associated with sensi-
tive browsing-related information, most of which have
been explored and evaluated more thoroughly than SCT
auditing has to date.

Acknowledgements
This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

https://gs.statcounter.com/browser-market-share

SoK: SCT Auditing in CT 352

References
[1] Certificate Transparency Log Policy. https://chromium.

github.io/ct-policy/log_policy.html.
[2] Crlsets. https://dev.chromium.org/Home/chromium-

security/crlsets.
[3] Firefox Monitor. https://support.mozilla.org/en-US/kb/

firefox-monitor.
[4] Have I Been Pwned. https://haveibeenpwned.com.
[5] How long will it take to issue my certificate? https:

//www.godaddy.com/help/how-long-will-it-take-to-issue-
my-certificate-858.

[6] Mailing Lists. https://sites.google.com/site/
certificatetransparency/mailing-lists.

[7] Merkle Town. https://ct.cloudflare.com/.
[8] Monitors: Certificate transparency. https://certificate.

transparency.dev/monitors/.
[9] Safe Browsing APIs (v4). https://developers.google.com/

safe-browsing/v4.
[10] Services We Proxy Through Brave Servers. https://github.

com/brave/brave-browser/wiki/Deviations-from-Chromium-
(features-we-disable-or-remove)#services-we-proxy-through-
brave-servers.

[11] Trillian: General Transparency. http://github.com/google/
trillian.

[12] Troubleshooting SSL certificates. https://cloud.google.com/
load-balancing/docs/ssl-certificates/troubleshooting.

[13] Y. Aumann and Y. Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Pro-
ceedings of the Theory of Cryptography Conference (TCC),
pages 137–156, 2007.

[14] A. Ayer. How will Certificate Transparency Logs be Audited
in Practice?, Jan. 2018. https://www.agwa.name/blog/
post/how_will_certificate_transparency_logs_be_audited_
in_practice.

[15] S. Bird, I. Segall, and M. Lopatka. Why we still can’t
browse in peace: on the uniqueness and reidentifiability of
web browsing histories. In Proceedings of the 16th Sympo-
sium on Usable Privacy and Security (SOUPS), 2020.

[16] T. Broach. Apple redirects Google Safe Browsing traffic
through its own proxy servers to prevent disclosing users’ IP
addresses to Google in iOS 14.5, Feb. 2021. https://the8-
bit.com/apple-proxies-google-safe-browsing-privacy/.

[17] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching
from a distance: website fingerprinting attacks and defenses.
In Proceedings of ACM CCS, 2012.

[18] L. Chuat, A. Abdou, R. Sasse, C. Sprenger, D. Basin, and
A. Perrig. Sok: Delegation and revocation, the missing links
in the Web’s chain of trust. In Proceedings of the IEEE
European Symposium on Security and Privacy (EuroS&P),
2020.

[19] T. Chung, J. Lok, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. E. Mislove, J. P. Rula, N. Sul-
livan, and C. Wilson. Is the web ready for OCSP Must-
Staple? In Proceedings of the Internet Measurement Confer-
ence (IMC), pages 105–118, 2018.

[20] T. Cignetti. Easier certificate validation using DNS with
AWS certificate manager, Nov. 2017. https://aws.amazon.
com/blogs/security/easier-certificate-validation-using-dns-

with-aws-certificate-manager/.
[21] J. Clark and P. C. van Oorschot. Sok: SSL and HTTPS:

Revisiting past challenges and evaluating certificate trust
model enhancements. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2013.

[22] H. Corrigan-Gibbs and D. Kogan. Private information re-
trieval with sublinear online time. In Proceedings of Euro-
crypt 2020, 2020.

[23] R. Dahlberg, T. Pulls, T. Ritter, and P. Syverson. Privacy-
preserving & incrementally-deployable support for Certificate
Transparency in Tor. Proceedings on Privacy Enhancing
Technologies, 2021(2):194–213, 2021.

[24] J. DeBlasio. Opt-out SCT Auditing in Chrome. https:
//docs.google.com/document/d/16G-Q7iN3kB46GSW5b-
sfH5MO3nKSYyEb77YsM7TMZGE.

[25] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, and
J. A. Halderman. The matter of Heartbleed. In Proceedings
of the Internet Measurement Conference (IMC), 2014.

[26] G. Edgecombe. Wosign log failure to incorporate entry
within the MMD. Certificate Transparency Policy mailing
list, Dec. 2017. https://groups.google.com/a/chromium.
org/g/ct-policy/c/-eV4Xe8toVk/m/pC5gSjJKCwAJ.

[27] S. Eskandarian, E. Messeri, J. Bonneau, and D. Boneh. Cer-
tificate Transparency with privacy. Proceedings on Privacy
Enhancing Technologies, 2017(4):232–247, 2017.

[28] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and
P. Tabriz. Measuring HTTPS adoption on the web. In
Proceedings of the 26th USENIX Security Symposium, 2017.

[29] O. Gasser, B. Hof, M. Helm, M. Korczynski, R. Holz, and
G. Carle. In log we trust: Revealing poor security practices
with Certificate Transparency logs and internet measure-
ments. In Proceedings of the International Conference on
Passive and Active Measurement (PAM), 2018.

[30] T. Gerbet, A. Kumar, and C. Lauradoux. A Privacy Anal-
ysis of Google and Yandex Safe Browsing. INRIA Re-
search Report RR-8686, 2015. https://hal.inria.fr/hal-
01120186v4/document.

[31] J. Gustafsson, G. Overier, M. Arlitt, and N. Carlsson. A
first look at the CT landscape: Certificate Transparency
logs in practice. In Proceedings of the Passive and Active
Measurement Conference (PAM), 2017.

[32] P. Hadfield. Google Aviator incident under investiga-
tion. Certificate Transparency Policy mailing list, Oct.
2016. https://groups.google.com/a/chromium.org/g/ct-
policy/c/ZZf3iryLgCo/m/mi-4ViMiCAAJ.

[33] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost,
N. Vallina-Rodriguez, and O. Hohlfeld. Tracking the deploy-
ment of TLS 1.3 on the Web. ACM SIGCOMM Computer
Communication Review, July 2020.

[34] J. Jones. Introducing CRLite: All of the Web PKI’s revo-
cations, compressed, Jan. 2020. https://blog.mozilla.org/
security/2020/01/09/crlite-part-1-all-web-pki-revocations-
compressed/.

[35] D. Kales, O. Omolola, and S. Ramacher. Revisiting user
privacy for Certificate Transparency. In Proceedings of the
4th IEEE European Symposium on Security and Privacy
(EuroS&P), 2019.

[36] D. Kogan and H. Corrigan-Gibbs. Private blocklist lookups
with Checklist. In USENIX Security Symposium, 2021.

https://chromium.github.io/ct-policy/log_policy.html
https://chromium.github.io/ct-policy/log_policy.html
https://dev.chromium.org/Home/chromium-security/crlsets
https://dev.chromium.org/Home/chromium-security/crlsets
https://support.mozilla.org/en-US/kb/firefox-monitor
https://support.mozilla.org/en-US/kb/firefox-monitor
https://haveibeenpwned.com
https://www.godaddy.com/help/how-long-will-it-take-to-issue-my-certificate-858
https://www.godaddy.com/help/how-long-will-it-take-to-issue-my-certificate-858
https://www.godaddy.com/help/how-long-will-it-take-to-issue-my-certificate-858
https://sites.google.com/site/certificatetransparency/mailing-lists
https://sites.google.com/site/certificatetransparency/mailing-lists
https://ct.cloudflare.com/
https://certificate.transparency.dev/monitors/
https://certificate.transparency.dev/monitors/
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://github.com/brave/brave-browser/wiki/Deviations-from-Chromium-(features-we-disable-or-remove)#services-we-proxy-through-brave-servers
https://github.com/brave/brave-browser/wiki/Deviations-from-Chromium-(features-we-disable-or-remove)#services-we-proxy-through-brave-servers
https://github.com/brave/brave-browser/wiki/Deviations-from-Chromium-(features-we-disable-or-remove)#services-we-proxy-through-brave-servers
https://github.com/brave/brave-browser/wiki/Deviations-from-Chromium-(features-we-disable-or-remove)#services-we-proxy-through-brave-servers
http://github.com/google/trillian
http://github.com/google/trillian
https://cloud.google.com/load-balancing/docs/ssl-certificates/troubleshooting
https://cloud.google.com/load-balancing/docs/ssl-certificates/troubleshooting
https://www.agwa.name/blog/post/how_will_certificate_transparency_logs_be_audited_in_practice
https://www.agwa.name/blog/post/how_will_certificate_transparency_logs_be_audited_in_practice
https://www.agwa.name/blog/post/how_will_certificate_transparency_logs_be_audited_in_practice
https://the8-bit.com/apple-proxies-google-safe-browsing-privacy/
https://the8-bit.com/apple-proxies-google-safe-browsing-privacy/
https://aws.amazon.com/blogs/security/easier-certificate-validation-using-dns-with-aws-certificate-manager/
https://aws.amazon.com/blogs/security/easier-certificate-validation-using-dns-with-aws-certificate-manager/
https://aws.amazon.com/blogs/security/easier-certificate-validation-using-dns-with-aws-certificate-manager/
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE
https://groups.google.com/a/chromium.org/g/ct-policy/c/-eV4Xe8toVk/m/pC5gSjJKCwAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/-eV4Xe8toVk/m/pC5gSjJKCwAJ
https://hal.inria.fr/hal-01120186v4/document
https://hal.inria.fr/hal-01120186v4/document
https://groups.google.com/a/chromium.org/g/ct-policy/c/ZZf3iryLgCo/m/mi-4ViMiCAAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/ZZf3iryLgCo/m/mi-4ViMiCAAJ
https://blog.mozilla.org/security/2020/01/09/crlite-part-1-all-web-pki-revocations-compressed/
https://blog.mozilla.org/security/2020/01/09/crlite-part-1-all-web-pki-revocations-compressed/
https://blog.mozilla.org/security/2020/01/09/crlite-part-1-all-web-pki-revocations-compressed/

SoK: SCT Auditing in CT 353

[37] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson,
N. Vallina-Rodriguez, and J. Caballero. Coming of age: A
longitudinal study of TLS deployment. In Proceedings of the
Internet Measurement Conference (IMC), 2018.

[38] D. Kozlov. Announcing Cloudflare for SaaS for everyone,
Apr. 2021. https://blog.cloudflare.com/cloudflare-for-saas/.

[39] M. Kranch and J. Bonneau. Upgrading HTTPS in mid-
air: An empirical study of strict transport security and key
pinning. In Proceedings of NDSS 2015, 2015.

[40] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
and C. Wilson. Crlite: A scalable system for pushing all
TLS revocations to all browsers. In Proceedings of the IEEE
Symposium on Security and Privacy, 2017.

[41] B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency, 2013. https://tools.ietf.org/html/rfc6962.

[42] B. Laurie, A. Langley, E. Kasper, E. Messeri, and
R. Stradling. Certificate Transparency version 2.0, 2019.
https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-34.

[43] B. Laurie, P. Phaneuf, and A. Eijdenberg. Certificate Trans-
parency over DNS. https://github.com/google/certificate-
transparency-rfcs/blob/master/dns/draft-ct-over-dns.md.

[44] B. Li, J. Lin, F. Li, Q. Wang, Q. Li, J. Jing, and C. Wang.
Certificate Transparency in the wild: Exploring the reliability
of monitors. In Proceedings of ACM CCS, 2019.

[45] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. Mc-
Coy, S. Savage, and V. Paxson. You’ve got vulnerability:
exploring effective vulnerability nodifications. In Proceedings
of the 25th USENIX Security Symposium, 2016.

[46] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ris-
tenpart. Protocols for checking compromised credentials. In
Proceedings of ACM CCS, 2019.

[47] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin,
B. Maggs, A. Mislove, A. Schulman, and C. Wilson. An
end-to-end measurement of certificate revocation in the
Web’s PKI. In Proceedings of the Internet Measurement
Conference (IMC), 2015.

[48] W. Lueks and I. Goldberg. Sublinear scaling for multi-client
private information retrieval. In Proceedings of the 19th
Conference on Financial Cryptography and Data Security
(FC), 2015.

[49] E. Messeri. Privacy implications of Cer-
tificate Transparency’s DNS-based protocol,
2017. https://docs.google.com/document/d/
1DY2OsrSJDzlRHY68EX1OwQ3sBIbvMrapQxvANrOE8zM.

[50] A. Mirian, C. Thompson, S. Savage, G. M. Voelker, and
A. P. Felt. HTTPS adoption in the longtail, 2018. https:
//research.google/pubs/pub49037/.

[51] L. Nordberg, D. Gillmor, and T. Ritter. Gossiping in CT,
2018. https://tools.ietf.org/html/draft-ietf-trans-gossip-05.

[52] D. O’Brien. Upcoming CT Log Removal: StartCom.
Certificate Transparency Policy mailing list, Jan. 2018.
https://groups.google.com/a/chromium.org/g/ct-policy/
c/W1Ty2gO0JNA/m/ZbQxlgRZAQAJ.

[53] D. O’Brien. Upcoming CT Log Removal: WoSign.
Certificate Transparency Policy mailing list, Jan. 2018.
https://groups.google.com/a/chromium.org/g/ct-policy/
c/UcCqlxuz_1c/m/Mf_939xYAQAJ.

[54] D. O’Brien. Chrome CT 2021 Plans, Feb. 2021. https:
//groups.google.com/a/chromium.org/g/ct-policy/c/
4puGir9pNFA/m/1caF3ilrBQAJ.

[55] L. Olejnik, C. Castelluccia, and A. Janc. Why Johnny can’t
browse in peace: on the uniqueness of web browsing his-
tory patterns. In 5th Workshop on Hot Topics in Privacy
Enhancing Technologies (HotPETS), 2012.

[56] N. Parker, V. Khaneja, E. Mill, and K. C. Nair. Enhanced
Safe Browsing Protection now available in Chrome, May
2020. https://security.googleblog.com/2020/05/enhanced-
safe-browsing-protection-now.html.

[57] A. P. Security. Password Monitoring, Feb. 2021. https:
//support.apple.com/en-gb/guide/security/sec78e79fc3b/1/
web/1.

[58] A. Serjantov and G. Danezis. Towards an information the-
oretic metric for anonymity. In International Workshop on
Privacy Enhancing Technologies, pages 41–53, 2002.

[59] S. Singanamalla, E. H. B. Jang, R. Anderson, T. Kohno,
and K. Heimerl. Accept the risk and continue: measuring the
long tail of government HTTPS adoption. In Proceedings of
the Internet Measurement Conference (IMC), 2020.

[60] R. Sleevi. Upcoming CT Log Shutdown: Aviator. Certificate
Transparency Policy mailing list, Nov. 2016. https://groups.
google.com/a/chromium.org/g/ct-policy/c/u87C79AY-
E8/m/k-4sbTguCgAJ.

[61] R. Sleevi. StartCom Log misbehaving: Failure to incorporate
SCTs. Certificate Transparency Policy mailing list, Dec.
2017. https://groups.google.com/a/chromium.org/g/ct-
policy/c/92HIh2vG6GA/m/hBEHxcpoCgAJ.

[62] R. Sleevi. Unwind the CT DNS-based proof inclusion experi-
ment, May 2019. https://bugs.chromium.org/p/chromium/
issues/detail?id=506227#c59.

[63] R. Sleevi and E. Messeri. Certificate Trans-
parency in Chrome: Monitoring CT logs consistency,
2015. https://docs.google.com/document/d/
1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit.

[64] E. Stark and C. Thompson. Opt-in SCT auditing, 2020.
https://docs.google.com/document/d/1G1Jy8LJgSqJ-
B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A.

[65] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and
M. Backes. Hey, you have a problem: on the feasibility of
large-scale web vulnerability notification. In Proceedings of
the 25th USENIX Security Symposium, 2016.

[66] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G.
Kelley, L. Invernizzi, B. Benko, T. Pietraszek, S. Patel,
D. Boneh, and E. Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In USENIX
Security Symposium, 2019.

[67] J. Wolff. How a 2011 hack you’ve never heard of changed
the Internet’s infrastructure, Dec. 2016. https://slate.
com/technology/2016/12/how-the-2011-hack-of-diginotar-
changed-the-internets-infrastructure.html.

https://blog.cloudflare.com/cloudflare-for-saas/
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-34
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://docs.google.com/document/d/1DY2OsrSJDzlRHY68EX1OwQ3sBIbvMrapQxvANrOE8zM
https://docs.google.com/document/d/1DY2OsrSJDzlRHY68EX1OwQ3sBIbvMrapQxvANrOE8zM
https://research.google/pubs/pub49037/
https://research.google/pubs/pub49037/
https://tools.ietf.org/html/draft-ietf-trans-gossip-05
https://groups.google.com/a/chromium.org/g/ct-policy/c/W1Ty2gO0JNA/m/ZbQxlgRZAQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/W1Ty2gO0JNA/m/ZbQxlgRZAQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/UcCqlxuz_1c/m/Mf_939xYAQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/UcCqlxuz_1c/m/Mf_939xYAQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/4puGir9pNFA/m/1caF3ilrBQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/4puGir9pNFA/m/1caF3ilrBQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/4puGir9pNFA/m/1caF3ilrBQAJ
https://security.googleblog.com/2020/05/enhanced-safe-browsing-protection-now.html
https://security.googleblog.com/2020/05/enhanced-safe-browsing-protection-now.html
https://support.apple.com/en-gb/guide/security/sec78e79fc3b/1/web/1
https://support.apple.com/en-gb/guide/security/sec78e79fc3b/1/web/1
https://support.apple.com/en-gb/guide/security/sec78e79fc3b/1/web/1
https://groups.google.com/a/chromium.org/g/ct-policy/c/u87C79AY-E8/m/k-4sbTguCgAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/u87C79AY-E8/m/k-4sbTguCgAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/u87C79AY-E8/m/k-4sbTguCgAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/92HIh2vG6GA/m/hBEHxcpoCgAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/92HIh2vG6GA/m/hBEHxcpoCgAJ
https://bugs.chromium.org/p/chromium/issues/detail?id=506227#c59
https://bugs.chromium.org/p/chromium/issues/detail?id=506227#c59
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html

	SoK: SCT Auditing in Certificate Transparency
	1 Introduction
	2 SCT Auditing
	2.1 How Certificate Transparency works
	2.2 The CT ecosystem
	2.3 Threat model

	3 Related Problems
	3.1 Safe Browsing
	3.2 Checking for certification revocation
	3.3 Checking for compromised credentials

	4 Components of SCT Auditing
	4.1 Literature review
	4.2 Evaluation criteria
	4.3 Proposals for querying
	4.3.1 Network-level anonymization
	4.3.2 Privacy-preserving queries
	4.3.3 Avoiding client querying

	4.4 Proposals for reporting
	4.4.1 Network-level anonymization
	4.4.2 Privacy-preserving reporting

	5 Full Proposals
	5.1 Proofs of non-inclusion
	5.2 SCT Feedback
	5.3 Opt-in SCT auditing

	6 Discussion
	6.1 Issuance latency
	6.2 Client constraints
	6.3 Privacy
	6.4 Significant Web changes
	6.5 Reporting
	6.6 Summary of constraints

	7 Conclusions

