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Mixnet optimization methods
Abstract: We propose a method to optimally select mix
network parameters for a given deployment context and
adversarial model. Our method considers both worst-
case and average-case anonymity and selects configura-
tions that meet worst-case constraints while maximizing
average anonymity. We apply our methods to mixnet
size optimization to determine the number and width
of mixnet layers, and provide results for various deploy-
ment and adversarial scenarios. For cases where the de-
ployment context suddenly changes (drop in user traffic)
we evaluate countermeasures based on mix-generated
dummy traffic and show that inexpensive link dummies
can significantly boost protection in some of these cases.
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1 Introduction
A mix network, or mixnet, is an overlay network of mix
nodes that routes messages anonymously from senders
to receivers [6, 7, 14, 20, 30, 36, 39, 44]. Messages are en-
crypted by senders multiple times using, e.g., the Sphinx
packet format [15], and then routed through a sequence
of mix nodes. Each of the mix nodes decrypts, pads and
re-randomizes messages to make its output messages
cryptographically unlinkable to its input messages. Mix
nodes also retain messages for a randomized amount of
time to alter their flow and make node inputs and out-
puts probabilistically unlinkable with respect to message
order and timing.

Even though the concept of mixnets [6] predates
onion routing [25, 27, 28] by more than a decade, and
early mixnet deployments [9, 39] were operative be-
fore Tor,1 their uptake has remained far behind for
years, mainly due to their higher computational require-
ments, added latency, and lack of industrial-quality im-
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plementations. In recent years however, given a renewed
interest in anonymity systems that resist global net-
work adversaries, novel mixnet-based anonymity net-
work designs have been proposed [30, 34, 44] and cur-
rently Nym2 is developing a mixnet-based anonymity
network [20], already deployed as a testnet prototype
that counts thousands of nodes.3

Traffic analysis is a collection of statistical methods
to make inferences from available metadata, in partic-
ular: a data transmission’s source, destination, size and
timing [13]. The traffic analysis of mixnets yields prob-
abilistic information that describes the likelihood of in-
put messages corresponding to outputs [11, 19, 31, 44,
46, 47, 50–52]. This likelihood is greatly affected by the
mixnet parameters, with some configurations provid-
ing significantly better protection from traffic analysis
than others. Notably, this includes the network topol-
ogy parameters, which describe the network size, how
nodes are connected, and how multi-hop routes are se-
lected [3, 49]. A suboptimal design can provide very
poor privacy – or even no protection at all: while the
anonymity trilemma [18] is informative of the theoret-
ical upper bound on the anonymity that an abstract
system can offer given conditions of traffic volume and
end-to-end latency, the practical lower bound for those
very same traffic and latency conditions is actually zero
anonymity if the network is inadequately parametrized,
e.g., if it is grossly oversized.

Given an expected volume of user traffic, constraints
on end-to-end latency, and a threat model of concern,
we currently lack methods to optimally select mixnet
parameters, e.g., to decide how many nodes the mixnet
should have and how they should be arranged to max-
imize protection from traffic analysis. The observation
that a limited network size is desirable so that traffic
density per mix node is sufficient for the mixing to be
effective has been made in prior work [10, 50]. We are
however the first to propose a methodology to systemat-
ically select mixnet parameter values given deployment
and adversarial constraints, which results in configura-
tions that respect worst-case anonymity bounds while
maximizing average anonymity.

2 https://nymtech.net
3 https://github.com/nymtech/
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Our methods apply to a class of mixnets broadly
defined by continuous-time mixes [31] arranged in a lay-
ered network topology [20, 44], considering adversaries
that observe all network connections in addition to con-
trolling a subset of mixes. We specify and justify our
system model in Section 2, where we also describe the
considered adversarial capabilities.

We consider two anonymity metrics: (i) worst-case
anonymity (expressed as the probability of selecting
a fully compromised route), and average anonymity
(given by the entropy of the probability distribution
that relates a target input to the mixnet outputs [24,
48]). In Section 3 we provide analytical methods to com-
pute worst-case anonymity and empirical methods to
compute average anonymity. Given these two metrics,
we propose a mixnet parametrization methodology in
Section 4 that maximizes average anonymity while re-
specting worst-case anonymity constraints.

We discuss our experimental setup in Section 5. We
first show that variability in network propagation de-
lays and multi-core message processing can help pre-
vent message tracing in practice when the per-mix
added latency is very small (these effects become negli-
gible as per-mix added latency grows larger). We then
show that uniform node selection per layer offers better
anonymity than biased capacity-based selection, which
allows modest-budget adversaries to arbitrarily increase
the fraction of fully compromised routes.

Section 6 presents our optimization results. We first
apply our methods to optimizing the number of mixnet
layers and show results for various end-to-end latency
constraints, considering different adversarial capabilities
and worst-case anonymity thresholds. We then apply
the method to the mixnet width, again considering var-
ious adversarial models. We finally consider scenarios
where a network optimized for a certain level of user
traffic suffers a large and sudden drop in traffic volume.
We study two countermeasures based on mix-generated
dummy traffic. We find that link-based dummies are a
cheap yet effective strategy to support anonymity lev-
els in scenarios with moderate mixnet compromise. We
expand on all these results in the Appendix, where we
consider scenarios with higher levels of adversarial com-
promise. Finally, we review prior work on mixnet opti-
mization in Section 7 and offer our conclusions in Sec-
tion 8. We present complementary content in the appen-
dices: Appendix A provides a table with the summary
of notation; in Appendix B we provide an analysis anal-
ogous to the one introduced in Section 3 for networks
with imbalanced layers; and finally in Appendix C we

provide empirical results for networks with high rates of
corruption.

2 System and threat model

2.1 System model

There are two basic types of entities in a mixnet: end
users who anonymously send and receive messages, and
mix nodes that act as intermediaries, routing messages
between senders and receivers. We model the user pop-
ulation as sending messages with a rate that follows a
Poisson process, considering high and low traffic load
scenarios. We consider source-routed decryption mixnets
of continuous-time mixes, with fully connected layered
network topologies, and three strategies for dummy traf-
fic. The rest of this section explains and justifies these
choices.

2.1.1 Source routing

We consider decryption mixnets that are source routed,
i.e., where the sender of a message selects the route
through the network until it reaches the receiver.
Preparing a message for sending requires encrypting it
with public key material of the mix nodes selected by
the sender as intermediaries in the route. The encryp-
tion is done in reverse order: starting with the recipient,
adding a layer of encryption for each predecessor in the
route, ending with the first mix node that receives the
message directly from the sender. Upon receiving a mes-
sage, mix nodes use their private keys to strip a layer
of encryption and discover the next hop in the route.
After a randomized delay, the message is forwarded to
the next hop, which is either another intermediary mix
node or the end receiver. Sphinx [15] is the best known
cryptographic packet format for source-routed mixnet
messages [20, 44, 45].

An alternative to decryption mixnets is re-
encryption mixnets, which are typically cascades where
batches of encrypted messages are re-randomized and
provably shuffled multiple times before being threshold-
decrypted [4, 29, 32, 37]. Such mixnets are specially tai-
lored to voting applications as use cases that have lim-
ited and predictable traffic volume, very high latency
tolerance, and strict public verifiability requirements.
The anonymity provided by such re-encryption cascades
is essentially proportional to the size of the batch where
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a message is mixed, considering the number of voting
choices and distribution of votes (e.g., if all voters vote
for the same candidate, then there is no voting privacy
for anyone as everyone’s voting choice is revealed by
the tally). Given their limited range of application and
straightforward anonymity tradeoffs (simply dependent
on batch size), we consider re-encryption mixnets as out
of scope in this paper, which focuses on the optimiza-
tion of decryption mixnets for scalable, general-purpose
message-based communications [20].

2.1.2 Topology

The topology of a mixnet defines how mix nodes are
inter-connected and which routes (sequences of mixes)
messages can follow. The earliest mixnet proposals con-
sidered mix cascades, where a batch of messages goes
through a fixed sequence of mixes [6, 42]. Cascades have
however two main drawbacks: scalability and fault tol-
erance. A single server has a performance limit, and
thus parallel cascades must be created in order to serve
more users. As parallel cascades are disjoint, they do
not combine all users in one large anonymity set, fail-
ing to take advantage of user growth to offer better
anonymity [10, 21]. This makes cascades rather unin-
teresting for anonymity optimization. Furthermore, the
failure of a single node invalidates the whole cascade,
making cascades very vulnerable to server failures com-
pared to other topologies [3, 26].

The other traditional anonymity network topology
is free routes [9, 25, 35], where nodes form a fully
connected graph and any random walk in the path (up
to a maximum path length) is a valid message route.
The evaluation of anonymity in free route networks re-
quires complex and inefficient analysis methods, even for
simple threshold-mix based mixnet designs [51]. More-
over, free route networks have been shown to offer worse
anonymity than layered (or stratified) topologies when
compared in the same conditions [21, 50].

In layered topologies mixes are arranged in a num-
ber of layers where each mix, at any given time, is
assigned to exactly one layer. The layers are intercon-
nected such that each mix in layer i receives messages
from mixes in layer i−1 and sends messages to mixes in
layer i+ 1, as shown in Figure 1. Mixes in the first layer
receive messages from senders, while those in the last
layer send messages to end recipients. The path length
of message routes is fixed and determined by the num-
ber of layers. Valid message routes traverse a mix of
each layer in the correct order. Layers can be fully con-

Fig. 1. Layered mixnet with N = 15, L = 5, W = 3.

nected, meaning that all nodes of a layer are connected
to all predecessors in the previous layer and all succes-
sors in the next layer, or restricted, i.e. subject to con-
straints where nodes connect to a subset of predecessors
and successors rather than all of them. Prior work has
found no significant difference between the anonymity
provided by fully connected and restricted layers [21].

In this paper we focus on layered networks with fully
connected layers of the same size. We assume the topol-
ogy is periodically reshuffled to allow for churn and ad-
just to changes in network scale. We also assume the
assignment is neither predictable nor biasable by an ad-
versary, who cannot influence the placement of mali-
cious nodes in the layers. This can be achieved for ex-
ample by relying on a public random beacon and a ver-
ifiable random function as proposed in [20]. We say a
layered network has balanced layers if all L layers have
the same number of nodes or width W , with the total
number of nodes being N = LW . We choose networks
with balanced layers as our baseline for their better load
balancing properties. For completeness, we include re-
sults for imbalanced layers, where some layers may have
more nodes than others, in Appendix B.

2.1.3 Mixing

In our model we consider continuous-time mixes with
exponential delay [31] as they are known to offer excel-
lent anonymity properties [12] and also allow fine-tuning
the added latency per mix node to offer predictable end-
to-end latency [20, 44]. This is in contrast to threshold
and pool mixes [6, 36] where latency varies with the traf-
fic volume per mix (the more traffic, the less latency),
making them impractical for use cases that require la-
tency to be within certain bounds [22]. The per-mix
delays are sampled by the message sender and encoded
in the Sphinx headers. Upon receiving and decrypting a
message, a mix extracts the delay from the header, keeps
the message in its internal memory for that amount of
time, and then forwards it to its next destination.
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Fig. 2. Types of Dummy Traffic

2.1.4 Dummy traffic

Dummy or cover traffic are automatically generated
messages introduced for privacy purposes. Dummy mes-
sages contain no data payload and are discarded by their
final recipient. If the dummy messages follow multi-hop
paths, they are considered indistinguishable from actual
messages at intermediate hops as well as towards the un-
derlying network, i.e., only the source and destination
of a dummy message know that it is a dummy message.
Intuitively dummy traffic enables unobservability prop-
erties [41], meaning that it is not possible to tell whether
a user is idle or actively communicating. In addition, by
virtue of increasing the mixnet traffic dummies also con-
tribute to higher anonymity for actual messages.

In this paper we consider three types of cover traffic,
illustrated in Figure 2. First, user-generated dummies
destined to themselves (loops, as in Loopix [44]) or to
others. We note that for all network purposes this traffic
is equivalent to real user traffic. Second, link-based dum-
mies, this type of dummy traffic is generated by mixes
and it is dropped at the next hop. Third, partial-route
dummies are also generated by the mixes in all but the
last layer, and dropped at the last mixnet layer. This
dummy traffic causes a linear increase of traffic load
transiting the network after each layer. Other dummy
strategies are possible, e.g., dummies can be generated
by mixes and dropped by end users [38]. We however
consider this impractical as it requires mixes to main-
tain a list of end user keys and addresses.

2.1.5 User traffic

We consider a user population U that, as a whole, gener-
ates messages following a Poisson process with parame-
ter λU messages per second, i.e., messages arrive to the
mixnet at intervals that follow an exponential distribu-

tion of mean 1
λU

seconds. We note that only messages
generated by honest users (not controlled by the ad-
versary) are relevant to anonymity, and thus U and λU
exclude malicious users. Furthermore, users may gen-
erate end-to-end dummy traffic destined to themselves
or to other users. Since this end-to-end traffic follows
the same mixnet routes as real traffic and it is fully
indistinguishable, we consider that λU accounts for all
honest-user-generated traffic, whether real or dummy.
Internet traffic varies per day and per hour of the day
and large variations in the amount of user traffic arriv-
ing to a mixnet are possible. We consider two scenar-
ios: (i) High volume user traffic (λU = 5000 messages
per second) and (ii) Low Volume user traffic (λU = 100
messages per second). We note that λU is an external
deployment constraint (not a parameter chosen by the
mixnet designer), and our methodology can be applied
to any concrete value of λU .

2.2 Threat model

We consider global passive network adversaries
that have a global view on the network, meaning that
they can observe all network links and take into ac-
count all messages sent between any two participants
(end users or mixes) with their timing information. We
assume messages have the same size, and thus only tim-
ing information is exploitable to correlate a node’s in-
puts to outputs. If the adversary in addition controls
a set of malicious users, any messages generated by
those users are excluded from λU .

In addition, the adversary controls a subset of mix
nodes. Mix nodes controlled by the adversary provide
no anonymity to the messages they route, as the adver-
sary knows the mapping between the inputs and outputs
of malicious nodes. This is contrast to honest mixes,
for which the adversary can only obtain probabilistic
information linking their inputs and outputs based on
message arrival and departure observations [12, 31]. We
consider two adversaries of interest: the constant frac-
tion adversary and the constant budget adversary.

The constant fraction adversary controls a sub-
set of B mix nodes that is a constant fraction b of the
total number of nodes N , i.e., B = bN , while A = N−B
denotes the number of honest nodes. When considering
this adversary, the number B of malicious mixes grows
proportionally to network size N . The constant bud-
get adversary on the other hand controls a constant
number B of malicious mix nodes that does not change
when the network grows, with adversarial nodes there-
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fore becoming a smaller fraction of the total network
as it scales up. This adversary is of interest for systems
such as the Nym network [20], where competition among
mix nodes for finite resources (representing node repu-
tation) may impose a practical cap on the number of
new nodes the adversary is able to introduce when the
network grows.

3 Anonymity metrics
We evaluate anonymity in mixnets using two metrics:
(i) fraction of fully compromised routes [1, 5], and
(ii) entropy [24, 48]. The metrics express different as-
pects of anonymity, with the first focusing on worst-case
scenarios and the second on average-case scenarios. Ta-
ble 1 in Appendix A provides a summary of the notation
used for the various relevant parameters.

3.1 Fraction of fully compromised routes

The fraction αF of fully compromised routes focuses
on worst-case scenarios, i.e. messages for which all
anonymity is lost as the adversary can determine with
certainty the <sender, time, receiver> of the message.
This happens when the message passes through a fully
compromised route, meaning that at every mixnet layer,
the node in the message’s route is adversarial. Note that
the inverse 1

αF
expresses the average number of mes-

sages that need to be sent to choose one fully compro-
mised route.

We analytically compute the expected fraction αF
of fully compromised message routes in a mixnet with L
layers of width W and N = LW mix nodes, of which A
nodes are honest and B nodes are adversarial (A+B =
N). We consider networks of equal-capacity mix nodes
where the topology is periodically reshuffled, so that
the adversary cannot choose where malicious nodes are
placed (in which layer). Let F denote the event of a
fully compromised route. We compute αF as a weighted
average of the fraction of compromised routes over all
possible valid topologies Tv:

αF =
∑
Tv

Pr(F|Tv) Pr(Tv) (1)

A valid topology Tv = (A,B) is defined by the num-
ber of honest and malicious nodes present in each layer,

A = {a1, a2, .., aL} and B = {b1, b2, .., bL} such that it
meets the following constraints:

∀i 0 ≤ ai ≤ A, 0 ≤ bi ≤ B (2)

L∑
i=1

ai = A,

L∑
i=1

bi = B (3)

∀i ai + bi = W (4)

N = A+B = LW (5)

Pr(Tv) expresses the likelihood of occurrence of a
certain valid topology Tv, and given Tv, Pr(F|Tv) ex-
presses the probability of choosing a fully compromised
route in that topology. In layered networks this means
choosing a malicious mix node at every layer. The choice
of nodes in a message’s route is made uniformly at ran-
dom and independently per layer, and thus Pr(F|Tv)
corresponds to the product of the fraction of compro-
mised nodes in each layer:

Pr(F|Tv) =
L∏
i=1

bi
ai + bi

(6)

Note that the adversary does not compromise any
full route if he fails to populate one of the mixnet layers,
i.e. if bi = 0 for any layer i. At the other end of the
spectrum, the optimal topology Topt for the adversary
(with highest fraction of compromised routes) is when
adversarial nodes are equally distributed across layers,
i.e. when bi = B

L , i = 1..L. In this adversarial best case,
the fraction of fully compromised routes is:

Pr(F|Topt) =
L∏
i=1

B
L

W
= (B

N
)L (7)

To compute the likelihood Pr(Tv) of a valid topol-
ogy Tv = (A,B), we note that in networks with balanced
layers A and B are not independent. The mapping of
honest nodes A = {a1, a2, .., aL} is deterministic with
respect to B as ai = W − bi, and thus Pr(B) fully deter-
mines the likelihood of a topology Pr(Tv) (the inverse is
equivalent: fixing A fully determines B as bi = W − ai).

Pr(B) is modeled by a hypergeometric distribution
that initially has a population of size N , with B ob-
jects of interest, andW draws without replacement. The
number b1 of malicious nodes selected for the the first
layer is given by:

Pr(b1) =
(
B
b1

)(
N−B
W−b1

)(
N
W

) (8)
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The number bj of malicious nodes in the subsequent
layers j = 2 . . . L − 1 is given by a hypergeometric dis-
tribution with updated parameters to account for the
(honest and malicious) nodes already assigned to the
previous layers:

Nj = N −W (j − 1) (9)

Bj = B −
j−1∑
k=1

bk (10)

Pr(bj |b1, ..bj−1) =

(Bj

bj

)(Nj−Bj

W−bj

)(
Nj

W

) (11)

The last layer is deterministically composed by the
leftover nodes:

bL = B −
L−1∑
k=1

bk (12)

Thus, the probability of a valid topology Tv = (A,B)
with an assignment of nodes to layers B = {b1, b2, .., bL}
and A = {a1, a2, .., aL} with ai = W − bi ∀i is given by:

Pr(Tv) = Pr(B) =
L−1∏
j=1

(Bj

bj

)(Nj−Bj

W−bj

)(
Nj

W

) (13)

Putting everything together, we obtain:

αF =
∑
B

( bi
W

)L
L−1∏
j=1

(Bj

bj

)(Nj−Bj

W−bj

)(
Nj

W

) (14)

Figure 3 shows αF in networks of a hundred nodes
organized in two to five layers, considering 10% to 30%
adversarial nodes. We depict with stars the value given
by Pr(F|Topt) = (BN )L and find that it is a close ap-
proximation of αF due to the small variance of the dis-
tribution (by the law of big numbers, the variance of
αF becomes smaller as the network size grows). Given
that B

N < 1, increasing the number L of layers expo-
nentially decreases the fraction of compromised routes,
e.g., in a network where the adversary controls 10% of
the nodes, 1% of messages are compromised with 2 lay-
ers, one in a thousand messages with 3 layers, one in
ten thousand with 4 layers, and so on. Combined with
the message sending rate of users, αF determines the
de-anonymisation of messages over time. For example,
if αF = 0.001 and λu = 5 messages per second for a user
u, it will take on average 1

αF ·λu
= 200 seconds for one

of u’s messages to be routed via a fully compromised
route.

Fig. 3. Fraction αF for different values of L and B in a network
of a hundred nodes.

3.2 Entropy

Instead of a worst-case metric, entropy provides an av-
erage measure of the number of candidate messages that
the adversary confuses with a target message [24, 48].
Entropy metrics capture network scaling as their max-
imum possible value grows with the number of users.
An entropy of, e.g., 10 bits, indicates that a message
is as anonymous as if it was perfectly indistinguishable
among about a thousand (210 = 1024) other messages,
while 11 bits correspond to perfect indistinguishability
among 211 = 2048 messages. Note that the scale is loga-
rithmic, and that an increase of one bit of entropy dou-
bles the size of the equivalent perfect indistinguishability
set, while a drop of one bit halves it.

Compared to worst-case metrics that only account
for rates of fully compromised routes, entropy metrics
account for anonymity in all possible scenarios, weighted
by their likelihood of occurrence. For example, from
a worst-case perspective it does not matter whether
the adversary can guess the sender of an anonymous
message with probability 1% or 99.9%; it only matters
whether the adversary can fully determine the sender
(100% certainty), or not. Entropy metrics are not as
blunt as this binary determination and instead consider
that messages can be more or less anonymous depend-
ing on the uncertainty of the adversary about the real
sender. Thus, with entropy metrics a message for which
the adversary is almost certain of the sender is consid-
ered very similarly to a message for which the adver-
sary is completely certain of the sender – in contrast to
worst case metrics where the ‘almost’ case is considered
adversarial failure and the ‘completely’ case adversar-
ial success. Furthermore, entropy metrics account for
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the probabilistic information obtained by network ad-
versaries in addition to corrupt adversarial nodes, while
the worst-case metric is only dependent on adversarial
nodes and disregards probabilistic inferences made by
network adversaries (because nothing short of full route
compromise is relevant to the worst case).

Computing entropy metrics requires obtaining the
probability distribution that links a target input mes-
sage to all possible output messages, or conversely one
target output to all possible inputs. Given the complex-
ity of mixnets, obtaining the relevant distributions can-
not be done in a closed analytical form. In line with prior
work [21, 22, 44, 50], we resort to using a discrete-event
mixnet simulator [2] that given an experimental setup
generates message traces, defines a subset of the traces
as adversarial observations, and computes anonymity
given those observations.

We consider a user population that generates mes-
sages following a Poisson process with rate λU messages
per second sent to the mixnet. Messages are routed
through the mixnet until they reach their destination,
and in the process they leave traces that are used for
anonymity evaluation. The simulation environment al-
lows the adversary to choose a target message mt and
compute the probability 0 ≤ PrL[mi = mt] ≤ 1 linking
that target input to all possible outputs mi after the
last mixnet layer L, as illustrated in Figure 4.

Fig. 4. Probability distribution PrL[mi = mt] for a target input
mt and all output messages mi.

For each target input mt, we are interested in the
probability that each output message mi may corre-
spond to that target. We do so by associating a prob-
ability Prl[mi = mt] to each message at layer l. Mes-
sage probabilities are computed iteratively per layer and
updated each time a message enters and leaves a non-
adversarial mix, as described in Algorithm 1. Messages
that go through an adversarial mix do not alter their
associated probability, i.e., Prl[mi = mt] = Prl−1[mi =
mt] if the mix at layer l is adversarial.

Algorithm 1: Per-mix entropy update for
mix at layer l = 1 . . . L

Result: Updated Prl[mi = mt].
Initialize:
PrMix[mt] = 0;
Pr0[mi = mt] = 1 if mi = mt;
Pr0[mi = mt] = 0 if mi 6= mt;
while Simulation running do

if event(receive(mi)) then
PrMix[mt]+ = Prl−1[mi = mt];
pool+ = 1;

end
if event(send(mi)) then

Prl[mi = mt] = PrMix[mt]
pool ;

PrMix[mt]− = Prl[mi = mt] ;
pool− = 1;
Forward Message (mi)

end
end

Before entering the first layer, Pr0[mi = mt] is one
for the target input mt and zero for the rest of the input
messages sent by users. PrMix[mt] denotes the probabil-
ity that the target is one of the messages in the current
internal memory (pool) of the mix and its initial value
(before receiving messages that may be the target) is
zero. The pool variable simply denotes the number of
messages that are currently inside a mix, waiting to be
forwarded.

When a message mi is received by a mix in layer
l, its associated probability Prl−1[mi = mt] is added to
PrMix[mt] to account for the increased probability of
mt being now in that mix. When a message mi leaves
the mix, its updated Prl[mi = mt] is a fraction of
PrMix[mt], which is evenly divided by the number of
messages currently in the mix’s internal pool. This is
because in continuous-time mixes with exponential de-
lays all of the messages inside a mix are equally likely
to be sent next, and thus the probability that a message
in the pool is the target, is uniformly distributed across
all messages in the mix at any given time [12]. The out-
puts of a mix in layer l have an associated updated
probability Prl[mi = mt] that is the input probability
of mi for the receiving mix in the next layer l + 1. If
the message is being delivered to its final recipient, the
probability PrL[mi = mt] is the value needed for the en-
tropy calculation. The anonymity of the target message
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is computed considering the probabilities associated to
the mixnet outputs mi sent to final recipients, as:

H = −
∑
i

PrL[mi = mt] ∗ log2(PrL[mi = mt]) (15)

We generate message traces using the open source
MiXiM discrete event simulator [2] (run on an Intel(R)
Core(TM) i9-9920X with 3.50GHz CPU and 132 GB
RAM) and compute entropy for hundreds of targets mt.
We treat each target as an anonymity sample and then
show average values or full distributions (as boxplots).
The number of targets depends on the scenario: for pure
network adversaries (b = 0) we choose 200 targets, while
for adversaries that corrupt a fraction of the mixnet
(b > 0) we increase to 1000 targets. This is because sce-
narios with corrupted nodes have outliers for messages
going through corrupt nodes that need to be properly
sampled.

4 Methodology
Our proposed method for optimizing mixnet design pa-
rameters consists of three main steps. First, we set the
variables that define the considered adversary (selection
of b corrupted fraction or B corrupted nodes) and the
deployment scenario (average end-to-end latency De2e
and traffic volume λU ). These variables represent exter-
nal constraints that the system design needs to optimize
for. Second, we set a threshold β (0 < β < 1) that de-
fines the maximum tolerable fraction of compromised
routes. Note that 1

β represents the average number of
messages that need to be sent to have one fully compro-
mised route: if we set the worst case threshold at ‘one
in a thousand’ messages then β = 0.001, while lowering
the tolerance to ‘one in a million’ messages corresponds
to β = 10−6. Given the range of values for a mixnet
design parameter we want to optimize, we compute αF
for each of the values. We then discard parameter values
that result in αF > β, while keeping those that result in
αF ≤ β as candidates for the next step. The third and
final step computes entropy-based anonymity, in order
to find the value that maximizes average anonymity in
addition to satisfying worst-case anonymity constraints.

5 Experimental setup

5.1 Baseline parameters

As part of the first step of the methodology previously
outlined, we select baseline values for the adversary and
deployment models as follows:
– As baseline, we consider scenarios where adversaries

control 10% of the nodes, i.e., where b = 0.1. In spe-
cific experiments, we also consider scenarios where
adversaries do not control any nodes (b = 0), scenar-
ios with larger fraction of corrupted nodes (b = 0.2
and b = 0.3), and scenarios with a constant number
of corrupted nodes (B = 9, B = 15 and B = 30).

– In terms of end-to-end latency, we consider as base-
line that De2e = 1 second. In specific experiments
however we also consider end-to-end latencies of 2,
5, 0.5, and 0.25 seconds.

– In terms of traffic load, the baseline scenario con-
siders λU = 5000 messages per second. When evalu-
ating dummy traffic we also study scenarios where
the traffic suddenly drops to just λU = 100 messages
per second.

In terms of parameter choices, we argue that De2e = 1
second is a tolerable end-to-end average latency for, e.g.,
broadcasting transactions to be included in a blockchain
or for email applications. In terms of volume, Mas-
tercard processes 5000 transactions per second,4 which
gives a sense of the volume that could be expected in a
broadly used payment application if transactions would
be routed via a mixnet. Besides these baseline param-
eters we test other values for comparison (e.g., lower
traffic volumes of just 100 m/s, and latencies between
0.25s and 5s). We note that our main contribution is a
method that can be used for any latency and volume
constraints of interest in concrete deployments, rather
than specific results for a specific configuration.

5.2 Per-mix exponential delay

In multi-hop overlay routing, the end-to-end latency is
the aggregation of the latencies incurred at the interme-
diate hops in the route, each corresponding to a layer
in the mixnet. In turn, the latency at each hop is com-
posed of three elements: the network propagation time

4 https://applevisaservices.com/blog/faq-how-many-visa-
transactions-per-second.html
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τ , the packet processing time δ, and the time that the
packet dwells in the mix for anonymity purposes, which
is sampled from an exponential distribution with mean
µ seconds. Given a mixnet with L layers, the message
passes by L mix nodes and L+ 1 links, and needs to be
processed by L mixes in addition to the final recipient.
The average end-to-end latency can be expressed as:

De2e = µL+ (τ + δ)(L+ 1) (16)

In Section 6.1 we adjust the per-mix latency µ when
comparing mixnets with different number of layers L, to
fairly compare configurations that provide the same av-
erage end-to-end latency De2e. For this we consider av-
erage network propagation and packet processing times
τ + δ = 50ms, and set µ as:

µ = De2e − (τ + δ)(L+ 1)
L

(17)

In the next two sections we study the impact of
variable propagation and packet processing times on
anonymity calculations.

5.3 Network propagation delay

In practice, the time τ taken by messages to travel
through the internet in each hop may be highly variable.
Nodes in an overlay network may be located all around
the world, and network propagation times are propor-
tional to geographical distance (ultimately bounded by
the speed of light and in practice by a fraction of that
speed). For example, distances of 500 Km can be cov-
ered in just 10ms while intercontinental distances may
take over 100ms [33]. Thus, the propagation latency of
a route is dependent on the relative geolocations of the
nodes in the route. Furthermore, varying transmission
medium characteristics, asymmetric and dynamic rout-
ing, congestion, and other effects introduce further vari-
ance in network propagation latency. Building a model
of network propagation latency into a simulator that ac-
curately predicts specific real-world deployment scenar-
ios is a challenging task. Thus, we study the anonymity
impact of propagation latency variability by comparing
three scenarios with the same average τ : (i) constant
propagation latency of τ = 50ms for all links; (ii) vari-
able latency per link sampled from a uniform distribu-
tion U [10, 90] ms; and (iii) a different propagation delay
per mix that is randomly assigned but kept constant
for all the received messages throughout the simulation.
These three simplified network propagation models pro-

vide a sense of the impact of inter-mix propagation vari-
ability on anonymity.

Our results are shown in Figure 5 for mixnets with
different per-mix average latency µ and number of layers
L (and thus various De2e latencies). When µ is larger
than the propagation latency τ (Fig. 5a) the average
anonymity measured in simulations is the same regard-
less of whether network propagation times are consid-
ered fixed or variable. On the other hand, if µ is orders
of magnitude smaller than τ (Fig. 5b), the variation of
τ has an anonymity impact that makes message tracing
harder for an adversary, and this impact is exacerbated
with the number of layers in the mixnet. The main ef-
fect leading to this anonymity increase when considering
variable propagation times whether changing per mes-
sage or just per mix, is that more output messages are
possible matches for a target input, since the window of
likely output matches starts earlier (the message could
have been lucky to travel via links with low propaga-
tion delay) and ends later (the message could have been
unlucky and travel via links with a lot of delay).

Based on these results, we conclude that considering
constant propagation delays is a conservative assump-
tion that seems to provide a lower bound on anonymity.
Considering variable τ risks overestimating anonymity if
the modelled variance is larger than the actual variance
present in a concrete real-world mixnet deployment.

5.4 Non-uniform mix capacities

So far we have assumed ‘uniform routing’, i.e., that rout-
ing choices per layer are uniform in the number of nodes
W in the layer, spreading the traffic load equally over
all mix nodes in the network. In this section we con-
sider networks with ‘biased (capacity-based) routing’,
i.e., that allow for different node capacities and that
select nodes for a route proportionally to the share of
capacity that each node contributes to its mixnet layer.
Capacity-based routing has two advantages: first, it is
more inclusive, as even participants with limited re-
sources can contribute to the network; and second, it
better utilizes available resources, as some mix nodes
are able to process more packets than others, and their
extra capacity is wasted with uniform routing.

We compare anonymity for both types of routing
(uniform and biased) in a small mixnet of N = 30 nodes
organized as a WxL = 10x3 network, considering the
baseline parameters provided in Section 5.1: λU = 5000
messages per second, De2e = 1 second, and b = 0.1 frac-
tion of corrupted nodes, i.e., B = 3 adversarial nodes.
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(a) Fixed vs variable propagation delay when µ = 100ms (b) Fixed vs variable propagation delay when µ = 0.1ms

Fig. 5. Anonymity with fixed vs variable propagation delays τ

Regardless of the type of routing, from a worst-case
anonymity perspective the adversary compromises zero
routes whenever no adversarial nodes are present in a
layer. In this example αF = 0 whenever the network
topology is different from the optimal adversarial topol-
ogy Topt = (A,B) that corresponds to A = {9, 9, 9} and
B = {1, 1, 1}. We thus focus our comparison on topolo-
gies Topt.

Next, we observe that adversaries can be expected
to introduce high-capacity nodes in order to maxi-
mize route captures (αF ). Introducing many nodes in
a staking-based system such as the Nym network can
be very costly, as the adversary may need to spend mil-
lions of dollars to acquire enough stake to control a high
percentage of nodes, or otherwise build enough reputa-
tion to persuade other stakeholders to delegate millions
to support adversarial nodes [20]. In contrast, the addi-
tional cost of computing and bandwidth resources that
provide significantly larger-than-average node capacity
is in the range of thousands of dollars, orders of mag-
nitude less and within the budget of a broader set of
adversaries.

We consider that the adversary introduces nodes
with 6x more capacity than the average honest node.
Thus, in each layer of W = 10 nodes the adversarial
node has 40% of the layer’s capacity and is thus chosen
for 40% of the routes. This is in contrast to the uniform
routing scenario where each node, including the adver-
sary’s, routes 10% of the messages. Using Eq. (7), we
can see that in this example biased routing allows the
adversary to fully compromise αF = 6.4% of routes, in
contrast to αF = 0.1% of routes in the case of uniform
routing; i.e., a 6-fold increase in adversarial bandwidth

and computing resources yields a 64-fold increase in the
rate of worst-case compromise.

As final step we examine the effect of uniform vs bi-
ased routing on average anonymity, and show the results
in Figure 6. The red bloxplots show the entropy distri-
bution when considering a network adversary that does
not control any mixnet nodes. In this case both uniform
and biased routing provide the same level of average
anonymity. The blue boxplots show results when the
mixnet contains three adversarial nodes, which route
10% of messages per layer in the uniform case and 40%
in the biased case. In this case we can see that compared
to uniform routing, biased routing enables the adver-
sary to not only compromise many more routes (worst-
case anonymity) but also diminish average anonymity
for the remaining messages. Based on these results we
conclude that uniform routing is the best choice from
an anonymity perspective and consider uniform rout-
ing policies in our remaining experiments. We note that
volunteer-based networks like Tor [28] benefit from flex-
ibility as that allows everyone to contribute even if they
have limited capacity – and thus enforcing uniform rout-
ing in such networks comes with the cost of excluding
prospective node operators with capacity limitations.
In commercial networks like Nym [20] however, nodes
are rewarded for operating the network, and it is thus
possible to set a minimum capacity requirements and
penalize with lower rewards the nodes that fail to per-
form.
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Fig. 6. Anonymity with uniform vs biased routing considering no
adversarial nodes (red) and 10% of adversarial nodes (blue)

6 Optimization results

6.1 Optimizing the number of layers L

We first apply the methodology outlined in Section 4
to address the question: given a deployment scenario
and adversary model, what is the optimal number L

of mixnet layers? We consider a mixnet that routes
λU = 5000 messages per second and that has a width of
W = 10 mixes per layer, meaning that each mix routes
on average 500 messages per second.5 We consider that
the average end-to-end latency De2e is fixed per opti-
mization experiment and evaluate anonymity for a range
of possible De2e values, from 0.25 to 5 seconds. We first
consider a global network adversary that can observe all
links but does not control any mix nodes, i.e., B = b = 0.
Next, we consider an adversary that, in addition to glob-
ally observing the network, also controls b = 10% of
nodes in the mixnet.

6.1.1 Global network adversary

In the case of adversaries that do not control any nodes
in the mixnet (B = 0), the fraction of fully compromised
routes αF is zero for any number of mixnet layers L ≥ 1.
Worst-case anonymity constraints are therefore satisfied
for all possible values of β.

5 The currently available Nym implementation is benchmarked
at 3125 Sphinx packet decryptions per second per processing
core. An average node load of 500 messages per second enables
mix nodes to tolerate traffic peaks of up to 6x the average load.

Next we turn to examining average anonymity. Fig-
ure 7a shows the mean entropy as a function of the
number of layers L for different values of De2e. As we
can see in the results, when B = 0 the optimal num-
ber of layers is L = 2 for all values of the end-to-end
latency De2e. As expected, anonymity values are higher
for higher De2e [18]. Note that for L = 1, messages are
partitioned in W subsets with disjoint anonymity sets
(similarly to how they would be in parallel cascades),
and thus the anonymity of L = 1 is naturally inferior
to L = 2, which aggregates all messages in one large
anonymity set. This effect would be further exacerbated
with higher W , as W increases the partitioning.

Thus, assuming that all mix nodes are honest, a
second mixnet layer achieves the best possible mixing
for any end-to-end latency. Adding more layers implies
wasting more time in propagation between layers, and
leaving less latency budget for delaying messages inside
the nodes (and thus mixing them in bigger pools). En-
tropy drops to zero and messages are fully distinguish-
able when all the latency is wasted on propagation and
mixes simply forward messages without adding any ran-
dom latency to reorder them. Considering a propagation
latency per link of 50ms, this happens at L = 4 for
De2e = 0.25s, L = 9 for De2e = 0.5s, and L = 19 for
De2e = 1s. When entropy drops to zero this means that
the adversary can identify which output message cor-
responds to a target input and the system provides no
anonymity – though recall that, as shown in Section 5.3,
variations of propagation time may make message trac-
ing more uncertain in practical scenarios.

6.1.2 Fraction of corrupted nodes

We now examine scenarios where, in addition to ob-
serving all links, the adversary corrupts a fraction b

of the nodes. We evaluate b = 0.1 in this section and
present additional results for b = 0.2 and b = 0.3 in
Appendix C.1.

First, from a worst-case perspective the fraction of
fully compromised messages in a mixnet with L layers
can be approximated as αF = bL (Eq. (7)). Consider-
ing b = 0.1, a worst-case threshold β = 0.001 (one in a
thousand messages is compromised by adversaries con-
trolling 10% of the mixnet) implies that the minimum
number of mixnet layers is L = 3. Setting a requirement
of β = 10−6 (just one in a million messages is compro-
mised) raises the minimum number of layers to L = 6.

We then evaluate average anonymity for various
end-to-end latencies De2e and layers L. Figure 7b shows
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(a) Global network adversary, b = 0, B = 0 (b) Corruption level b = 0.1, B = bLW

Fig. 7. Mean Entropy wrt number of layers L for various De2e, considering λU = 5000 and mixnet width W = 10.

the results, where we can observe that from an average
anonymity perspective, the optimal number of layers L
is dependent on the end-to-end latency De2e. For the
more relaxed latency constraints De2e ≥ 1s (yellow, blue
and red lines), the optimal L is now L = 3; while sce-
narios with stricter latency constraints De2e < 1s (green
and black lines) have their maximum at L = 2.

For De2e ≥ 1s, the new optimum at L = 3 instead
of L = 2 (as in the scenario without corrupted nodes)
is consistent with the worst-case effect of node corrup-
tion, which brings anonymity to zero for a fraction of
samples, and is mitigated by increasing L. Adding lay-
ers not only exponentially reduces the number of cases
where anonymity is zero due to full route compromise,
but also the number of outlier cases where anonymity is
very low due to messages passing through a single hon-
est mix. Beyond a certain point however, adding layers
is more detrimental than beneficial, since the fraction
of fully compromised routes is already too negligible for
any further reduction to make a difference in the aver-
age, while the smaller mixing time (due to adding layers)
takes a toll on anonymity.

When the latency De2e is more constrained, the op-
timal L still maxes out at a lower L = 2. This is explain-
able because for De2e = 0.25s, L = 3 implies that 80%
of the available end-to-end latency budget is wasted on
propagation across four links, leaving less than 17ms for
mixing at each of the three nodes in the route. The fact
that little mixing takes place per node facilitates mes-
sage tracking for network adversaries and makes this
configuration offer worse average anonymity than L = 2,
where only 60% of latency budget is spent on propaga-
tion leaving 50ms for mixing at each of the two nodes.

For our optimization we consider β = 0.001 for ad-
versaries that control a fraction b = 0.1 of the mixnet,
and thus we discard mixnet configurations with L < 3.
We select L = 3 and consider this number of mixnet lay-
ers in the remaining experiments. We note that L = 3 is
commonly used in deployed anonymity networks [20, 25]
as well as default experimental setting in prior liter-
ature [21, 44]. We are however the first to show that
L = 3 is the choice that optimizes anonymity for lay-
ered mixnets in conditions of moderate rate of compro-
mise (b = 10% and β = 0.001) for end-to-end latency
tolerances of up to five seconds.

Lowering the worst-case threshold to β = 10−6

while considering b = 0.1 sets the minimum number
of layers at L = 6. In networks with end-to-end la-
tency De2e of half a second or more this sets the op-
timal number of layers at L = 6 (since this offers better
average anonymity than networks with L > 6). For net-
works with De2e = 0.25s there is no solution that can
meet both the latency (De2e = 0.25s) and anonymity
(β = 10−6) requirements. We also note that in practical
terms, adding layers to a mixnet comes with significant
costs, as it requires additional resources per message
(servers, computation and bandwidth) as well as incur-
ring in increased rates of message loss (since it is enough
for one node in the route to fail for the message to be
lost).

6.2 Optimizing the network width W

Once we have fixed the number of layers L, we pro-
ceed to the next question: how does the width W of the
mixnet impact anonymity? We consider a mean end-to-
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end latency De2e = 1 second, mixnets with L = 3 lay-
ers, and a worst-case compromise threshold β = 0.001.
As before, we consider λU = 5000 messages per second
and a minimum width Wmin = 10 nodes, each rout-
ing 500 messages per second on average. We consider
three threat models: network adversaries that do not
control any nodes (b = B = 0), adversaries that control
a fraction b = 0.1 of nodes regardless of network size,
and adversaries that control a fixed number of nodes
B = {9, 15, 30} regardless of network size.

Fig. 8. Mean entropy as a function of the mixnet width W for
various b and B (L = 3, λU = 5000, De2e = 1s)

6.2.1 Constant fraction of corrupted nodes

We first consider adversaries that control a constant
fraction b of the total nodes. This means that as the
network grows in width W , the number of adversarial
nodes B increases proportionally to W , as B = bLW .

In terms of worst-case anonymity, note that the frac-
tion αF of fully compromised routes remains constant
as W grows, because the probability of selecting fully
corrupted routes is given by αF = bL and thus remains
constant. For b = 0.1 and L = 3 this corresponds to
αF = 0.001, which matches the worst-case threshold β.
For b = 0, all L ≥ 1 meet any possible value for the β
threshold.

Figure 8 shows average anonymity for various sce-
narios, with the blue and black solid lines represent-
ing the cases where b = 0 and b = 0.1, respectively.
As we can see in the figure, anonymity slowly but
steadily decreases as the network widthW increases. For
b = 0.1, anonymity decreases by one bit when the width

is W = 100 compared to the minimum Wmin = 10,
meaning that anonymity sets are halved due to the 10-
fold width increase. This (modest) decrease happens be-
cause higher width means thinner traffic per mix, and
thus lower level of mixing at each node. This result in-
dicates that when considering a constant fraction ad-
versary, the optimal network width is the minimum W

that is sufficient to route the required traffic volume.

6.2.2 Constant number of corrupted nodes

Next we consider adversaries that can corrupt a fixed
number B of nodes. In this case, the fraction b = B

LW

of adversarial nodes diminishes when the network grows
in width W . Therefore, from a worst-case perspective,
increasing W can be a strategy to meet constraints on
worst-case rates. For example, considering β = 0.001
and B = 15, a mixnet of L = 3 with the minimum width
Wmin = 10 fails to meet worst-case constraints, as αF =
( 15

30 )3 = 0.125 is orders of magnitude larger than the
threshold β. The width W that satisfies β constraints is
given by W = B

L L
√
β
. Applying this analysis to B = 9,

B = 15 and B = 30 malicious nodes, results in minimum
widths of W = 10, W = 50 and W = 100, respectively.

We then evaluate average anonymity in the same
scenarios as a function of mixnet width. The results
are shown with dashed lines in Figure 8 for 3 cor-
rupted nodes per layer (B = 9), 5 corrupted nodes
per layer (B = 15) and 10 corrupted nodes per layer
(B = 30). Note that B = 30 at width W = 10 is a
corner case where the entire network is controlled by
the adversary, and thus all messages are fully traceable
and average anonymity is zero. Compared to the pre-
vious adversary defined by b = 0.1, anonymity levels
are lower for small W because relative corruption lev-
els are higher. Overall, in scenarios with constant levels
of node corruption we see that increasing W is initially
beneficial for anonymity, as the diminishing share b of
corrupted nodes dominates an anonymity improvement.
After some point however, further increasing W begins
to lower anonymity, as the dominant factor becomes the
overall thinning of traffic (exploitable by a network ad-
versary) rather than the fraction of compromised routes
(which has already reached negligible levels). Based on
these results we choose W = 50 for our remaining ex-
periments.
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6.3 Mix-based dummy strategies to
compensate for low traffic volume

We finally turn our attention to the question of what
happens when a network that has been optimized for an
average traffic volume suddenly sees input traffic drop
by more than an order of magnitude. A steep drop in
traffic rate λU , particularly in networks with a large
width W , can significantly reduce average anonymity
levels due to thin traffic effects (note that αF is inde-
pendent of overall traffic volume, and thus worst-case
anonymity is unaffected by traffic load fluctuations).
Mixnet parameter adjustments that can counter the
drop in user traffic include increasing the end-to-end
latency De2e and reducing the network width W . In-
creasing latency however may not be possible without
seriously undermining the usability of the system. As for
network resizing, typically information on active mixnet
nodes is updated every hour or few hours [20, 25], and
thus structural changes to the network width may not
be possible to effect immediately, or fast enough to fol-
low fluctuations in the traffic volume coming from users.

Designs such as Loopix [44] and Vuvuzela [30] rely
on client-based dummy traffic to ensure that traffic vol-
umes are sustained and provide an adequate level of
anonymity. Client-based dummies are a very effective
solution to users going idle while staying online. If end
users go offline however, all their traffic ceases, and it
becomes unreasonable to expect that they will continue
to generate dummy traffic.

Upon detection of low traffic volumes, mix nodes
may intervene by generating an increased volume of
dummy traffic to support anonymity levels. We note
that various prior works propose mix-based dummies
with more or less sophisticated strategies for genera-
tion and routing [16, 30, 44]. Here we consider two very
simple strategies introduced in Section 2.1.4: link-based
dummies and partial-route dummies.

Link-based dummies are generated by a mix and
discarded by the successor. Assuming that mixes in ad-
jacent layers communicate via a link-encrypted connec-
tion (e.g., TLS), link-based dummies need not be ac-
tual Sphinx packets that require expensive public key
operations, but simply random data blocks the size of a
Sphinx message that can be detected and discarded by
the receiving mix node with just symmetric key opera-
tions. Link-based dummies are thus very cheap to im-
plement for mixes, which makes them a low-cost coun-
termeasure to use on-demand in case of decreased user
traffic. On the downside, link-based dummies only pro-
tect towards network adversaries. If any of the two nodes

sharing a link is compromised, the adversary can triv-
ially filter out all the link-based dummy messages, ren-
dering the protection ineffective for that link.

Partial-route dummies are generated by mixes
in all but the last layer, routed through the mixnet and
discarded by mixes in the last layer. In a network of
L = 3 layers, compared to link-based dummies, partial-
route dummies increase protection against adversarial
nodes in the middle layer, who can no longer distin-
guish user messages from dummy messages generated
and discarded by honest mixes. Note that this sort of
indistinguishability towards middle-layer nodes requires
that dummies are encoded as Sphinx packets, which
significantly increases the cost of the dummy strategy
compared to link-based dummies, as the processing of
a Sphinx message requires senders, receivers and inter-
mediaries to perform expensive public key operations.

Fig. 9. Average anonymity in low-traffic conditions (λU = 100
m/s) with link-based and partial-route dummy strategies towards
network adversaries corrupting b = 0 and b = 0.1 of a mixnet
with L = 3, W = 50, and De2e = 1s.

Contrary to link-based dummies, partial-route dum-
mies are not evenly distributed across layers but instead
increase linearly with the layers, because the dummies
generated by each layer of mixes are added to the dum-
mies from earlier layers being forwarded, until they are
all discarded by the last layer. In order to enable a fair
comparison between both dummy strategies we com-
pare scenarios that have the same overall dummy rate.
Considering L = 3, a network where each mix gener-
ates λM = 1 partial-route dummy message per second
is equivalent in terms of dummy traffic volume to a net-
work where each mix generates λM = 1.5 link-dummies
per second. In the former case, one third of the dummies
is sent from the first to the second layer and two thirds
are sent from the second to the third layer, where they
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are discarded. In the latter case, half the dummies are
sent from the first to the second layer and the other half
from the second to the third. No dummies are generated
by the last layer in either case. We compare scenarios
considering the same network-wide level of dummy traf-
fic.

Our evaluation of both dummy strategies is shown
in Figure 9 for various dummy rates, considering both
network adversaries (b = 0) and adversaries that cor-
rupt 10% of the mixnet (b = 0.1). Appendix C.3 in-
cludes additional results for adversaries with higher cor-
ruption rates (b = 0.2 and b = 0.3). The x axis in the
figure corresponds to the overall dummy traffic in the
network. Thus, x = 1.5x102 corresponds to λM = 1
partial-route dummy generated by each mix per second.
Given that W = 50, this implies that there are 50 dum-
mies per second between the first and second layers, and
100 dummies per second between the second and third
layers, for a total of 150. This is compared to a rate of
λM = 1.5 link-based dummies per second, with 75 dum-
mies per second in each of the layers adding to the same
150 total. At x = 1.5x104 mixes generate λM = 100
partial-route dummies or λM = 150 link-based dummies
per second. Considering λU = 100 messages per sec-
ond, dummy traffic makes up 43% of inter-mix traffic
for x = 1.5x102, 88% for x = 1.5x103, and 98.6% for
x = 1.5x104.

As we can see in the figure, in the absence of dummy
traffic (λM = 0) anonymity in this network configura-
tion (N = 3x50) is very low due to the low levels of
user traffic. Even where there is no corruption (b = 0),
average anonymity is below 3 bits of entropy, mean-
ing that effective anonymity set sizes are just a hand-
ful of messages. Anonymity levels significantly improve
once mixes generate dummy traffic, with diminishing
returns as the dummy rate increases and anonymity
levels approach their upper bound. The best improve-
ment is in the case of b = 0, where anonymity goes up
by 5 bits, meaning that the anonymity set size multi-
plies 32-fold thanks to the dummy traffic. Compared to
a mixnet that has the same three layers and minimal
width (W = 1), we find that the average anonymity is
the same for W = 1 (with no dummies) and for W = 50
with λM = 1.5x104, meaning that a high rate of mix-
generated dummy traffic succeeds in fully making up for
the loss of anonymity caused by traffic thinning.

Link-based and partial-route dummies provide the
same protection when there is no adversarial corruption
(b = 0). This is to be expected since partial-route dum-
mies offer extra protection towards intermediate cor-
rupted nodes, but the same protection as link dum-

mies against external network adversaries. The fact that
dummies are distributed across layers 33% − 66% for
partial-route dummies and 50% − 50% for link-based
dummies seems to make no difference to the effective-
ness of the dummy strategy. Once a fraction of nodes is
compromised (b = 0.1), the gains obtained from dummy
traffic are mitigated. A the lower levels of λM dummy
traffic still significantly improves anonymity compared
to not generating any dummies at all, and both link-
based and partial-route strategies provide similar pro-
tection. As the dummy rate λM increases, partial-route
dummies provide slightly better anonymity than link-
based dummies. This effect becomes more pronounced
with higher corruption rates, as shown in Appendix C.3.

Given the huge difference in cost of the two consid-
ered dummy strategies and their comparable impact, we
conclude that link-based dummies are a simple and low-
cost, yet effective option for mixes to support anonymity
levels when there are sudden dips in user traffic.

7 Related work
Since Chaum’s seminal work on untraceable email in
1981 [6], there has been a great amount of research re-
lated to mixnets, both in design [7, 8, 23, 30, 31, 34–
36, 42, 44] as in evaluation and optimization [10, 12, 22,
38, 40, 43, 46, 50, 51]. We highlight in this section the
most relevant prior work in terms of mixnet parameter
optimization.

Rebollo-Monedero et al. [46] provide a method for
optimizing the threshold and pool parameters of in-
dividual batch-based mixes. Their optimization prob-
lem is similar to ours: given a traffic volume and la-
tency constraint, what are the optimal parameters that
maximize entropy-based anonymity? Their anonymity
system model is however vastly simpler than ours:
where we consider full mixnets that may be par-
tially compromised, they restrict themselves to a sin-
gle (trusted) mix. In terms of optimization methods,
their simpler model allows for multiobjective optimiza-
tion of entropy-based anonymity, while we have to re-
sort to empirical analysis to compare configurations
and find optimal parameters that maximize average
(entropy-based) anonymity while meeting worst-case
anonymity constraints. In another result on mixing algo-
rithm optimization but this time concerning individual
continuous-time mixes [31], Danezis [12] showed that for
a given mean latency exponentially-distributed delays
provide optimal anonymity, thanks to the memory-less
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properties of the exponential distribution. Prior results
on mixnet topology optimization [21] are taken into con-
sideration in our choice of focusing on layered networks.
To the best of our knowledge, our work is the first to
tackle mixnet size optimization.

Proposed systems that are reliant on dummy traffic,
such as Loopix [44] and Vuvuzela [30], leave the tuning
of parameters for the dummy traffic strategies as out of
scope. In terms of dummy traffic optimization, Oya et
al. [38] consider long-term disclosure attacks [17], which
exploit persistent communication patterns to infer com-
munication profiles over time, and propose dummy traf-
fic strategies for networks of pool mixes. Their method,
based on solving a least squares problem, optimizes the
amount of dummies needed to achieve a desired level of
protection against these long-term disclosure attacks.
Our model does not make assumptions about repeated
user behaviour, focusing instead on the anonymity of-
fered by the mixnet to individual messages. Given spec-
ified models for user recipient selection, the methods of
Oya et al. may be applied to the mixnet configuration
resulting from our methods to further mitigate long-
term attacks.

Finally, a first version of the MiXiM simulator that
we use in our evaluations was first presented in [2]. The
contribution in [2] is the evaluation of different mixing
strategies and network connectivity topologies, which
shows that Poisson mixing and stratified topologies pro-
vide better anonymity than pool mixing and topologies
such as XRD [34]. We build on those results by consid-
ering the strategy and topology identified as providing
the best anonymity properties, and proceeding to pa-
rameter optimization within the resulting design space.

8 Conclusion
Given deployment constraints on end-to-end latency,
traffic load, and adversarial compromise, we propose a
method to systematically optimize mixnet parameters,
taking into account worst-case anonymity thresholds
while maximizing average anonymity. To our knowl-
edge, this problem had not been addressed as prior work
on mixnet design [30, 34, 44] typically leaves network
parametrization as out of scope. A real world mixnet
deployment can use our methodology to select system
parameter values to maximize anonymity for the bulk
of messages in the assumed conditions. We note that
the results omit corner cases, e.g., due to bootstrapping
effects, as they ignore transitory initialization phases

to focus on the steady state. A systematic study of
anonymity considering fine-grained effects of, e.g., pos-
sible mixes geolocations and resulting distribution of
propagation delays, is beyond out the scope of this work,
which makes some simplifications in order to enable de-
cisions on mixnet parameters such as the network width
and number of layers.

Our method includes (i) an analytical framework
to compute the rate of fully corrupted paths for a
level of adversarial compromise, which defines worst-
case anonymity; (ii) an empirical method for selecting
the network width and number of layers to maximize
average anonymity, and (iii) an evaluation of the effec-
tiveness of mix-based dummy traffic strategies to sup-
port anonymity levels in low-traffic scenarios. Further-
more, we study the effect of parallel message processing
by multi-core mixes and the effect of variable inter-mix
propagation latency, concluding that real world effects
make message tracing by adversaries more challenging,
with simulations providing a lower anonymity bound.
We compare uniform routing policies to biased capacity-
based routing, and show that biased routing allows ad-
versaries to arbitrarily increase their rate of worst-case
compromise besides diminishing average anonymity.

Our results show that the optimal number of mixnet
layers L depends on the combination of adversarial com-
promise and end-to-end latency. Tighter latency con-
straints lower L, while higher adversarial compromise
increases L. We note that L remains small (maximum
six layers) in all considered scenarios, due to the harm-
ful effect of thinning traffic per mix when layers are
added as end-to-end latency remains constrained. In
terms of network width, narrower networks are better
towards adversaries that compromise a fraction of the
network, while slightly wider networks become optimal
when adversaries are limited in the number of nodes
they can compromise. Finally, we address the challenge
of low traffic in a large (oversized) network. We evalu-
ate two simple mix-based dummy traffic strategies and
find that, considering global network adversaries that
compromise 10% of the mixnet or less, inexpensive link-
based dummies significantly improve anonymity up to
the same level as if the network size had been opti-
mized for a low traffic volume. If adversarial control of
the mixnet is expected to be between 20% and 30%, the
more computationally expensive partial-route dummies
offer more robust protection.
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A Notation
Table 1 summarizes our notation.

B Imbalanced layers
In this section we develop an analysis analogous to the
one in Section 3.1 for the case of layered mixnets with
imbalanced layers, i.e., mixnets where layers have vari-
able width. This is the case if the algorithm assigns
nodes to layers independently for each node, e.g., de-
riving the layer from the node’s public key and a public
random beacon [20]. We represent layer widths with a
vector (w1, w2, ..., wL), where wi is the width of layer
i. Since the choice of layer is made independently per
node, the assignment is modeled by a multinomial dis-
tribution with N trials, L categories and uniform prob-
ability 1

L over the categories. The probability of having
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Notation Description
N Total number of nodes
L Number of layers
W Width of the network

Wmin Minimum width of the network
b Fraction of adversarial nodes ( B

N
)

De2e Average end-to-end latency
µ Average per-mix delay
τ Link propagation time
δ Per-mix processing time
λU Rate of user-generated traffic
λM Rate of mix-generated dummy traffic
A Number of honest nodes
ai Number of honest nodes in layer i
B Number of corrupted nodes
bj Number of corrupted nodes in layer j
F Event of fully compromised route
αF Fraction of fully compromised routes
β Maximum tolerated αF
Tv Valid topology
Te Topology with at least one empty layer
Topt Optimal adversarial topology
mi i−th message
mt Target message

PrL[mi = mt] Probability that output mi is the target
PrMix[mt] Probability that mt is in the mix

Table 1. Notation parameters.

a layer size distribution (w1, w2, ..., wL) is subject to the
constraint that

∑L
i=1 wi = N and given by:

Pr(w1, w2, ..., wL) = N !∏L
i=1 wi!

( 1
L

)N (18)

We consider that only mixnet topologies with at
least one node per layer are considered valid, i.e., we
require that ∀i wi > 0, to ensure that messages always
go through L mixes. If a topology selection results in a
mixnet where wi = 0 for any layer i, the selection is dis-
carded and the assignment is re-sampled with updated
randomness.

We consider that theN nodes are split into A honest
nodes and B malicious nodes, N = A+B, with distribu-
tion over the layers given by vectors A = {a1, a2, .., aL}
and B = {b1, b2, .., bL}, where wi = ai + bi. The fraction
of compromised routes αF is computed with Eq. (1),
subject to the constraints expressed in Eq. (2), Eq. (3),
and Eq. (5). The difference in node assignment how-
ever does invalidate the constraint in Eq. (4), which is
instead substituted by:

∀i, ai + bi > 0 (19)

Given a valid mixnet topology Tv = (A,B), the frac-
tion Pr(F|Tv) is computed with Eq. (6). We now derive

the distribution Pr(Tv) of valid topologies Tv = (A,B),
defined by the number of honest and malicious nodes
in each layer, A = {a1, a2, .., aL} and B = {b1, b2, .., bL},
subject to the already mentioned constraints.

In imbalanced networks each node’s layer assign-
ment is done independently, and thus the probability
Pr(A,B) of a topology (A,B) can be computed as the
probability of two independent assignments A and B,
i.e., Pr(A,B) = Pr(A) Pr(B). Pr(A) and Pr(B) are each
described by a multinomial:

Pr(A = {a1, a2, .., aL}) = A!∏L
i=1 ai!

( 1
L

)
∑L

i=1
ai (20)

Pr(A = {a1, a2, .., aL}) = A!
LA
∏L
i=1 ai!

(21)

Pr(B = {b1, b2, . . . , bL}) = B!
LB ·

∏L
i=1 bi!

(22)

We recall that topologies with empty layers are dis-
carded. We define Te as the set of topologies with at
least one empty layer, i.e., topologies that meet the con-
straints in Eq. (2), Eq. (3), and Eq. (5), but violate the
constraint in Eq. (19) for at least one layer. We define a
normalization factor Z that accounts for the aggregate
probability of choosing a topology that is discarded due
to empty layers:

Z = A!B!
LN

∑
(A,B)∈Te

(
L∏
j=1

aj !
L∏
k=1

bk!)−1 (23)

The probability of selecting a valid topology Tv =
(A,B) that meets all constraints is re-normalized con-
sidering (1−Z), to account for discarded topologies Te:

Pr(A,B) = A!B!
(1− Z)LN

∑
(A,B)∈Tv

(
L∏
j=1

aj !
L∏
k=1

bk!)−1 (24)

Putting everything together we obtain:

αF = A!B!
(1− Z)LN

∑
(A,B)∈Tv

L∏
i=1

bi
ai + bi

(
L∏
j=1

aj !
L∏
k=1

bk!)−1

(25)
The results for αF in this case are nearly identical

to those obtained for balanced networks and shown in
Figure 3, meaning that the expected fraction of fully
corrupt paths is the same regardless of whether layers
are balanced or imbalanced. Furthermore, in networks
of a hundred nodes the variance is so low that αF can
be safely approximated by (BN )L.
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As side observation, note that the optimal topol-
ogy for the adversary in imbalanced networks is a cor-
ner case where all mixnet layers but one have a sin-
gle node, which happens to be adversarial, with a lone
layer containing all the rest of nodes. The fraction of
compromise in this case would be B−(L−1)

N−(L−1) . Such sce-
narios are rare but possible in toy-sized networks but
their likelihood quickly becomes negligible for any real-
istic network sizes. Large networks have overwhelming
probability of being close to balanced for the same rea-
son that casting a fair die many times yields roughly
the same counts for each side, with relative variance
only affecting small sample sizes.

We finally note that imbalanced layers do not
present any advantage over balanced layers, and as dis-
advantage they typically incur in a small loss of over-
all mixnet throughput, which is bounded by the layer
with the least capacity. Furthermore, particularly in
small networks, imbalanced layers present worst-cases
that provide more advantage to the adversary than the
worst-case of balanced networks. Therefore, we argue
that network topologies with balanced layers should be
preferred when designing a mixnet, as they minimize
capacity waste caused by imbalances in the sizes of dif-
ferent layers and avoid scenarios that could give outsize
advantage to the adversary.

C Optimization results with high
rates of adversarial corruption

In this section we expand on the results presented in
Section 6 with scenarios where the adversary corrupts a
higher percentage of nodes b = 0.2 and b = 0.3.

C.1 Number of layers L

First we examine results for selecting the optimal num-
ber of layers L with a high corruption rate b. In terms
of worst-case anonymity, the same threshold β = 0.001
imposes a higher L than in the cases with lower b shown
in Section 6.1: while L ≥ 1 was enough for b = 0 and
L ≥ 3 for b = 0.1, b = 0.2 raises the minimum required
layers to L ≥ 5 and b = 0.3 to L ≥ 6. Increasing the
worst-case tolerance to β = 0.01 (on average one mes-
sage out of 100 has a fully compromised route) allows
for configurations where L ≥ 3 for b = 0.2 and L ≥ 4 for
b = 0.3.

We then examine average anonymity in these sce-
narios, showing the results for b = 0.2 and b = 0.3 in
Figure 10. As we can see in the figure, higher corrup-
tion rates b increase the optimal L for a given end-to-end
latency De2e. For example, for De2e = 5s and De2e = 2s,
the optimal L increases from L = 4 for b = 0.2 to L = 5
for b = 0.3; while, as shown in Figure 7, b = 0 had the
optimum at L = 2 and b = 0.1 at L = 3. Increasing the
number of mixnet layers beyond the optimal L makes
the average anonymity, up to the point where it drops
to zero because all available latency budget is spent on
propagation delays. For the more constraining latency
De2e = 0.25s, increasing the corruption rate to b = 0.3
makes L = 3 become the optimum instead of L = 2,
which is the optimum for lower rates of corruption.

Combining worst-case anonymity constraints and
average anonymity optima for the different scenarios,
we conclude that for β = 0.001 the minimum layers re-
quired by the worst-case dominate, determining that the
number of layers should be L = 5 for b = 0.2 and L = 6
for b = 0.3. This choice is the same for all De2e ≥ 0.5s,
while no solution exists for De2e = 0.25s that can satisfy
both anonymity and latency constraints. Considering a
more relaxed worst-case anonymity constraint β = 0.01
for b = 0.2 would lead to selecting the L that maximizes
average anonymity, which is L = 3 for De2e ≤ 0.5s and
L = 4 for larger De2e. In the case of b = 0.3, the choices
would be L = 4 for De2e = 0.5s and De2e = 1s, and
L = 5 for larger De2e; while again no solution exists for
De2e = 0.25s that satisfies both worst-case anonymity
and latency constraints.

C.2 Mixnet width W

We now examine the effects of mixnet width W with in-
creasing percentages b of adversarial node corruption.
As mentioned in Section 6.2, a fixed b and L deter-
mine the worst-case anonymity rate as αF = bL, re-
gardless of the mixnet width W . We thus examine av-
erage anonymity in scenarios with higher values of b,
and show the results in Figure 11. As expected, an in-
creased b lowers the average anonymity for any width
W , and the decline of average anonymity caused by traf-
fic thinning with larger W is slightly faster for higher
b. Overall, the decline in average anonymity is notice-
able but moderate: between one and two bits of decline
when the mixnet width W is increased by an order of
magnitude from W = 10 to W = 100.
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(a) Average entropy for b = 0.2 (b) Average entropy for b = 0.3

Fig. 10. Mean Entropy wrt number of layers L for various De2e, with W = 10 and λU = 5000.

Fig. 11. Mean entropy as a function of the mixnet width W for
various levels of corruption b (L = 3, λU = 5000, De2e = 1s)

C.3 Effectiveness of dummy strategies

Finally, we examine the effectiveness of partial-route
and link-based dummy strategies when there is very low
traffic from users (λU = 100m/s) in a mixnet dimen-
sioned for higher traffic loads (width W = 50), in the
presence of adversaries that corrupt b = 0.2 and b = 0.3
of the mixnet. Our results, shown in Figure 12, illustrate
that high levels of mixnet corruption diminish the effect
of dummies (compared to the results for lower b shown
in Figure 9) and in particular of link-based dummies —
many of which are now identified and discarded by the
large number of adversarial nodes. When b = 0.3, even
high levels of link-based dummies result in anonymity
below 4 bits; while for b = 0.2 the anonymity set triples
(1.4 bit increase), reaching an average entropy of 5 bits.

Fig. 12. Average anonymity in low-traffic conditions λU = 100
m/s with link-based and partial-route dummy strategies towards
adversaries corrupting b = 0.2 and b = 0.3 of a mixnet with
L = 3, W = 50, and De2e = 1s.

Partial-link dummies fare moderately better in this
challenging adversarial scenario with low traffic and
high level of compromise. When b = 0.2, partial-route
dummies can increase anonymity up to 6 bits, a 16-fold
increase in anonymity set size compared to the 2 bits ob-
tained when not using dummies. In the case of b = 0.3
however, even high levels of partial-route dummies re-
sult in a mean entropy of 4.5 bits, corresponding to a
perfect indistinguishability set of about twenty other
users, which may be too small to provide meaningful
protection.

We conclude from these results that the more expen-
sive partial-route dummies should be preferred in de-
ployment scenarios where high levels of node corruption
are expected. On the other hand, in scenarios mainly
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concerned with global network adversaries, where the
degree of mixnet corruption is expected to remain be-
low 10%, link-based dummies should be preferred as
they provide practically the same level of protection as
partial-route dummies for a fraction of the cost.
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