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Leveraging strategic connection
migration-powered traffic splitting for privacy
Abstract: Network-level adversaries have developed in-
creasingly sophisticated techniques to surveil and con-
trol users’ network traffic. In this paper, we exploit
our observation that many encrypted protocol connec-
tions are no longer tied to device IP address (e.g., the
connection migration feature in QUIC, or IP roaming
in WireGuard and Mosh), due to the need for perfor-
mance in a mobile-first world. We design and imple-
ment a novel framework, Connection Migration Pow-
ered Splitting (CoMPS), that utilizes these performance
features for enhancing user privacy. With CoMPS, we
can split traffic mid-session across network paths and
heterogeneous network protocols. Such traffic splitting
mitigates the ability of a network-level adversary to per-
form traffic analysis attacks by limiting the amount of
traffic they can observe. We use CoMPS to construct
a website fingerprinting defense that is resilient against
traffic analysis attacks by a powerful adaptive adversary
in the open-world setting. We evaluate our system us-
ing both simulated splitting data and real-world traffic
that is actively split using CoMPS. In our real-world
experiments, CoMPS reduces the precision and recall of
VarCNN to 29.9% and 36.7% respectively in the open-
world setting with 100 monitored classes. CoMPS is not
only immediately deployable with any unaltered server
that supports connection migration, but also incurs lit-
tle overhead, decreasing throughput by only 5-20%.
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1 Introduction
An individual’s privacy today is closely tied to their net-
work traffic. Malicious actors may devote vast resources
to install network-control devices, either for commercial
gain or to exert other forms of control.

The use of encrypted VPNs and Tor [10, 11] for
both privacy and censorship circumvention has sky-
rocketed in recent years as individuals counteract these
trends. However, extensive research into traffic analy-
sis techniques show that website fingerprinting is fea-
sible. Researchers have shown that encrypted Tor or
VPN traffic can be fingerprinted, as each website ex-
hibits unique packet-size and timing patterns that can
be learned [14, 17, 48, 53].

Many recent state-of-the-art defenses against web-
site fingerprinting have shifted from obfuscating traffic
to limiting the amount of information that the adver-
sary can use to label a particular flow. Works like Traf-
ficSliver [26], which performs Tor-specific network-level
splitting, and HyWF [18], which leverages multipath
TCP, have demonstrated that splitting traffic across
different network paths to limit the amount of infor-
mation available to any network adversary is successful
at thwarting many state-of-the-art website fingerprint-
ing attacks. However, both these techniques face deploy-
ment challenges as they are specific to a particular proxy
implementation or multipath TCP.

In this paper, we exploit the observation that in or-
der to improve performance on mobile clients, a grow-
ing number of encrypted protocols are no longer de-
pendent on IP addresses and ports as identifiers, as in
TCP. This feature is present in QUIC, WireGuard, and
Mosh [11, 21, 55]. This capability to switch network ad-
dresses is referred to as connection migration in QUIC,
and IP roaming in WireGuard and Mosh.

We present a general framework that is deployable
with any service supporting connection migration to foil
powerful adversaries performing traffic analysis, surveil-
lance, and selective censorship. Our system exploits con-
nection migration features to support mid-session traffic
splitting across heterogeneous paths and protocols.

Our Connection Migration Powered Split-
ting (CoMPS) framework is extremely flexible, as it
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enables clients to send packets over any network path
or protocol available to the client 1. For instance, a
multihomed device can utilize any of the network paths
available to it. If the device has VPNs or proxies con-
figured, the client can utilize those as separate CoMPS
paths as well, so long as the original packet is delivered
to the intended destination server and port. Previous
traffic-splitting work has been limited to a particular
protocol (such as Tor or multipath TCP), or limited
to one network path with a co-operating router de-
ployed [16, 18, 26].

We demonstrate the resilience of website finger-
printing defenses constructed with CoMPS. We evaluate
CoMPS as a website fingerprinting defense using both
simulations over a dataset of QUIC website traces tun-
neled through WireGuard and a real-world dataset of
around 30,000 QUIC website traces tunneled through
WireGuard, split across CoMPS. In our real-world split-
ting experiment, our results show that CoMPS is highly
effective in providing resilience against state-of-the-art
website fingerprinting attacks.

We show that CoMPS is also practical to deploy
because of its low performance and implementation
overhead. We successfully deploy CoMPS for unaltered
QUIC, WireGuard, and Mosh servers, and demonstrate
that the throughput impact for an effective splitting
schedule is only around 5-6% for WireGuard servers,
around 10-20% for QUIC servers, and around 4-5% for
Mosh servers.

Beyond website fingerprinting — our primary focus
in this work — we also discuss how CoMPS can enable
a novel keyword-censorship circumvention method: the
user can identify sensitive traffic (for instance, DNS re-
quests, or a handshake containing the TLS SNI) to send
over a high-latency path offered by a censorship circum-
vention mechanism, and migrate to the regular network
path for the remainder of the session. We encourage
the community to explore other privacy use cases of
CoMPS, and we will open source our framework to fa-
cilitate this.

2 Background
We provide an overview of website fingerprinting, traffic
splitting as a website fingerprinting defense, as well as
connection migration and IP roaming.

1 https://github.com/inspire-group/comps

2.1 Website fingerprinting

Website fingerprinting is a network traffic analysis at-
tack aimed at determining which website a client is vis-
iting from a stream of encrypted packets [48, 53].

The attacker has the capability to eavesdrop packets
sent on the network. When a client encrypts and proxies
their web traffic through VPN or Tor, the network ad-
versary can only observe the resulting encrypted traffic
to the tunneling service. Since they cannot decrypt the
traffic nor observe the destination IP, the goal of the
network adversary is to determine which website the
client is visiting based solely on network metadata such
as packet sizes and timing.

Many website fingerprinting attacks utilize features
hand-crafted from packet size and timing data [7, 19, 37,
38, 41, 53]. Random forest classifiers trained on these
hand-crafted features can achieve a high accuracy on
many website fingerprinting problems [17]. However, in
recent years, the field has moved towards more powerful
classifiers that can automate feature engineering using
neural network architectures [4, 36, 48, 49].

2.2 Traffic splitting as a website
fingerprinting defense

Many website fingerprinting defenses other than traffic
splitting involve the obfuscation of feature-rich meta-
data in encrypted web traces [5, 6, 14, 24, 54]. For
instance, Tor cells are padded to a fixed size for this
purpose [10]. Despite the data overhead, this removes
packet size information that a website fingerprinting ad-
versary could otherwise use. Many other defenses also
involve obfuscating packet timing, either by injecting
“dummy” packets or intentionally delaying packet de-
livery [14, 24]. The focus of this paper is on traffic split-
ting, which is an alternative or additional measure to
obfuscation, and is built upon recent works that aim
to reduce information that an attacker with a limited
network perspective can learn [16, 18, 26]. We exam-
ine recent website fingerprinting defenses built on traffic
splitting and emphasize their limitations in comparison
to CoMPS. We summarize these differences in Table 1.

TrafficSliver. Previous work has explored splitting
traffic across Tor circuits for improving Tor network
performance [2, 46, 57]. Since then, others have pro-
posed splitting traffic across Tor circuits for privacy,
to defend against website fingerprinting by guard node
operators [26, 40, 56]. In this model, the adversary ei-
ther observes a single network path or operates a sin-
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Multiple paths Requires client ISP support Protocol deployment
TrafficSliver-Net Yes No None (Modified Tor)
HyWF Yes No Low (Multipath TCP)
MIMIQ No Yes High (QUIC)
CoMPS Yes No High (Connection migration support)

Table 1. Comparison of different traffic splitting systems for website fingerprinting resilience. MIMIQ’s splitting occurs over a singular
network path, meaning an adversary can see all client traffic, even if each subtrace is associated with a different IP address. MIMIQ
also requires client ISP support. For other prior work, the protocol that performs the traffic merging is either custom (as in Traffic-
Sliver) or not widely supported (as in Multipath TCP).

gle guard node. We spotlight De la Cadena et al.’s pro-
posed system, TrafficSliver, due to its extensive web-
site fingerprinting evaluation. TrafficSliver, like other
Tor circuit splitting proposals, relies on a change to the
Tor protocol that allows the middle Tor node to merge
traffic [26, 40]. Recent work has since built on these
proposals, including creation of prototypes and further
evaluation of their efficacy as website fingerprinting de-
fenses [29, 42]. De la Cadena et al. also proposed split-
ting at the application layer, sending different HTTP
requests down different Tor circuits, thus obviating the
need to alter the Tor protocol to merge traffic at the
middle node. However, the authors concluded that this
latter method is not as resilient against website finger-
printing attacks [26].

Leveraging protocols with native support for con-
nection migration, CoMPS could perform this splitting
without the need to alter Tor to merge traffic at the
middle node. However, the connection migration proto-
cols we examine rely on UDP, while the Tor protocol is
tightly coupled with TCP connection state [51]. If Tor
builds out support for tunneling UDP, CoMPS could
split across Tor circuits as well.

HyWF. Henri et al. propose a traffic fingerprinting de-
fense that sends packets down different networks via
Multipath TCP [18]. In this model, each adversary can
only observe a single network path. Henri et al. also find
that given the relatively low overhead of this method, it
can be easily combined with other website fingerprinting
defenses such as WTF-PAD and Walkie Talkie to fur-
ther decrease website fingerprinting accuracy [24, 54].
We describe how CoMPS can easily replicate HyWF de-
fenses without multipath TCP services in Section 3.4.3.
This is especially useful as some popular middleboxes
interfere with multipath TCP usage in practice [31].

MIMIQ. Govil et al. propose MIMIQ, where a router
or ISP performs a form of traffic splitting on behalf of
clients [16]. The network device rebinds different IP ad-
dresses to a client throughout its connection. Unlike the

previously discussed systems, MIMIQ traffic occurs over
the same network path. Though MIMIQ investigates the
capability of QUIC connection migration for privacy, its
deployability is limited as the network device next to
the client must cooperate. Since MIMIQ does not lever-
age multiple paths, it is also more vulnerable to flow
correlation. Lastly, MIMIQ encodes a client identifier
(although it can be somewhat obfuscated) in the IP ad-
dress. The attacker could discern the mapping scheme
used by MIMIQ to assign clients to IP addresses.

By contrast, CoMPS utilizes other standard ways
clients change or hide their IP address, such as using
VPN or other anonymizing pathways, without needing
to rely on a trusted network or closely deployed on-path
ISP. In addition, CoMPS supports splitting across dif-
ferent network paths, while all MIMIQ traffic traverses
the same path. CoMPS also supports other protocols
that support IP roaming such as WireGuard or Mosh.

2.3 Connection migration and IP roaming

For better mobility support, modern encrypted com-
munication protocols may utilize a connection identi-
fier that is distinct from IP addresses to identify the
corresponding party. Examples include QUIC, Wire-
Guard, and Mosh [11, 21, 55]. In this section, we dis-
cuss mobility-related features in these three protocols,
namely connection migration in QUIC, and IP roaming
in WireGuard and Mosh.

Connection migration in QUIC. QUIC is a UDP-
based secure transport protocol that allows for multi-
plexing of application layer data streams. It was primar-
ily designed to significantly improve HTTP performance
in modern traffic patterns [27]. The next-generation web
protocol HTTP/3 will only support QUIC as a network-
layer transport and not TCP [20]. The QUIC transport
also mandates encryption [21].

Many large services and CDN providers like Google,
Facebook, Akamai, and Cloudflare support QUIC. The
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browsers Edge, Chrome, and Firefox all support upgrad-
ing connections to QUIC. In 2018, QUIC accounted for
up to 9% of Internet traffic, though this figure varied by
vantage point [43]. In 2021, Cloudflare reported 13% of
the traffic it observes occurs over HTTP/3 (and thus,
QUIC) [39]. We expect this number to continue increas-
ing, especially once HTTP/3 becomes an RFC and as
QUIC and HTTP/3 libraries stabilize [20].

QUIC uses a set of connection identifiers to uniquely
identify an active connection across network changes.
The foremost goal of this design choice is to provide
smooth and fast migration when a device moves be-
tween different networks (such as from cellular to WiFi).
Each QUIC connection usually has multiple valid con-
nection IDs, which are communicated to the other end-
point through the encrypted tunnel once the connection
is established. To reduce correlation between different
traffic flows, QUIC necessitates the use of different con-
nection IDs per each new network path [21].

When a QUIC client detects a network change, it
first performs a round-trip path validation to ensure the
server is still reachable from the client. Neither party can
exchange data packets until path validation has com-
pleted. After 2-way reachability has been established via
path validation, servers may allow clients to freely mi-
grate between paths that have been recently validated.
Each time the connection is migrated onto the new net-
work, congestion control parameters are reset. QUIC
clients can also initiate connection migrations for other
reasons, including network performance (if they sense
degradation on one particular network path).

IP roaming in WireGuard and Mosh. Other UDP-
based encrypted protocols like WireGuard and Mosh
support IP roaming, which has similar properties to con-
nection migration [11, 55].

WireGuard is a popular and flexible VPN proto-
col that has been incorporated into the Linux 5.6 ker-
nel and backported into most major Linux distribu-
tions [45]. WireGuard is also the underlying protocol
driving many commercial VPNs, including Mozilla VPN
as well as Cloudflare’s Warp VPN [25, 33]. WireGuard
performs some amount of congestion control per net-
work path [11].

Mosh is a remote terminal application similar to
SSH that is intended for use by mobile clients [55].
Mosh is more resilient to network congestion, network
drops, and network changes than SSH [55]. Mosh is not
built for high-volume transport, and generally adapts
its frame-rate (and thus the amount of information it
transmits) to network conditions [55].

Unlike QUIC’s connection migration, endpoints
that support IP roaming are not expected to keep state
about whether particular network paths have previously
established 2-way reachability (via path validation) and
do not explicitly reset congestion control parameters
each time a packet is received on a new path. In IP roam-
ing, as long as an endpoint of the connection receives a
valid, decryptable packet with a valid sequence number,
that endpoint will accept the packet. WireGuard end-
points are manually configured with their peers’ public
keys, and in the case of Mosh, this key is established at
the beginning of the session, bootstrapped over SSH.

3 CoMPS: System design and
implementation

With any service that supports IP roaming or connec-
tion migration, as long as each packet sent by the same
client is received by the intended host, the packet can
be delivered by any means, including different network
paths on multihomed devices, encrypted VPNs, or other
proxies. With this primitive, we can construct a frame-
work to arbitrarily split ongoing sessions to any end-
point (e.g., QUIC, Mosh, or WireGuard servers) that
supports connection migration or IP roaming.

Currently, many network-control devices rely heav-
ily on the source and destination IP address and port to
identify TCP sessions. In general, CoMPS enables users
to split a continuous session across different IP addresses
and ports, thus breaking this assumption. In the web-
site fingerprinting context, we instantiate CoMPS to foil
network adversaries attempting to fingerprint traffic by
limiting the amount of information they observe about
a single session. This works against even powerful and
adaptive adversaries.

In this section, we discuss the overall system de-
sign for CoMPS and its core components that allow it
to flexibly instantiate various types of network defenses.
We detail how CoMPS can be used to construct systems
that can support a broad range of use cases against dif-
ferent adversaries.

3.1 Design goals and adversary model

The primary design goal for a CoMPS deployment is
to perform traffic splitting of a communication session.
CoMPS aims to achieve this functionality via client-
side software: (1) without requiring any modification
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CoMPS client CoMPS server

Packets sent Packets received

Path 1

Path 3

Path 2

Fig. 1. A path scheduler on the client sends packets down differ-
ent CoMPS paths, which can encapsulate regular network paths
as well as tunneling protocols or other forms of packet delivery.

to servers, (2) without requiring any support from the
client ISP, and (3) performing traffic splitting using
widely-deployed protocols. Furthermore, CoMPS is de-
signed to enable traffic splitting across multiple net-
work paths and tunneling protocols, which can support
a range of use cases including website fingerprinting re-
silience and censorship circumvention.

Although precise attacker capabilities may vary de-
pending on the use case, the CoMPS framework gen-
erally focuses on a passive network-level adversary that
performs traffic analysis of network traffic. Furthermore,
the adversary is assumed to be limited in their per-
spective and can only observe traffic on one network
path. A global adversary who sees all (or most) net-
work paths is not considered. We also make no privacy
claims in scenarios where an adversary observes multiple
network paths and correlates traffic to the same client.
CoMPS focuses on the context of an honest client, and
attacks that compromise client-side software are also out
of scope. Finally, we assume that network traces are en-
tirely encrypted (including DNS and SNI), consistent
with prior work [50].

3.2 Components of CoMPS

In any CoMPS system, the client and server communi-
cate over a protocol that supports connection migration
or IP roaming. From there, the primary parameters that
we can elect for our system are (1) the end server proto-
col, (2) different paths and protocols through which to
deliver packets, and (3) the path scheduling algorithm
that performs mid-session splitting and elects which
path to send each packet across.

(1) Connection migration-supporting server pro-
tocol. CoMPS is deployable to any server supporting
connection migration. In this paper, we examine QUIC,
WireGuard, and Mosh. To differentiate between the
three protocols, we refer to systems that connect to
each as CoMPS-over-QUIC, CoMPS-over-WireGuard,
and CoMPS-over-Mosh, respectively.

(2) Heterogeneous paths and tunneling proto-
cols. As demonstrated in Figure 1, a CoMPS path can
be a regular network path, or a tunneled or proxy-
ing network protocol, like any VPN protocol, encrypted
proxy, or SSH. The only requirement is that the packets
from the client arrive at the same server through this
path. The clients can choose, according to their own
capability and limitations, how many and what type
of CoMPS paths to select. For instance, a multihomed
client can choose to send traffic over diverse network
routing paths. A non-multihomed client can elect to use
different VPN protocols or encrypted tunneling proto-
cols, so long as the packet arrives at the intended host. 2

Choice of network paths can be limited by the device
network (if the device is not multihomed), but choosing
network tunnels is only limited by the preliminary effort
to set up and maintain proxy or VPN servers.

(3) Path scheduler. The path scheduler runs on the
client device and provides a virtual network interface to
the client program. The scheduler then routes packets
down different network paths according to a predeter-
mined path scheduling protocol. We consider two cate-
gories of path scheduling techniques: consistent split-
ting and context-dependent splitting. Consistent
splitting is a regular and ongoing path-switching sched-
ule; for instance, continuously switching paths after a set
number of packets or milliseconds. Context-dependent
splitting is more reactive, and is an occasional path-
switch triggered by a particular network event.

The three types of consistent splitting we highlight
in this paper are round robin, uniform random, and
weighted random. Round robin deterministically alter-
nates sending series of packets down each path. The uni-
form random scheduler chooses each path uniformly at
random, over which to send each series of packets. The
weighted random scheduler chooses a random weighted
probability distribution for every connection. During
traffic splitting, the scheduler samples each path from
this probability distribution.

A context-dependent splitting technique we examine
is a path scheduler that prefers to send handshake pack-
ets to a proxy over an encrypted connection, and other
packets over a regular connection. This example involves
only one path switch, and the splitting is dependent on
a particular context in the connection.

2 A protocol choice can include different instances of existing
protocols with different configuration options that affect the
traffic shape, e.g., WireGuard connections with varying maxi-
mum transmission unit (MTU) sizes.



Leveraging strategic connection migration-powered traffic splitting for privacy 503

AS1

AS2

AS1
AS1

AS2

(a) Leveraging multiple paths. (b) Leveraging multiple protocols on one path. (c) Leveraging multiple protocols on multiple paths.

Fig. 2. Demonstration of CoMPS path components. In our threat model, we assume each adversary is limited to a single network posi-
tion. We distinguish splitting between different network paths for multihomed devices as well as enabling splitting via different network
protocols, via heterogeneous VPN or other encrypted tunnel protocols.

(a) Context-dependent splitting (b) Consistent splitting

Fig. 3. Demonstrating the difference between consistent and
context-dependent splitting. In context-dependent splitting, the
path switch may happen a constant number of times. In con-
sistent splitting, the number of path changes is a function of
the session length. In this example, we demonstrate round-robin
switching, a straightforward consistent splitting strategy.

3.3 Concrete use cases and
traffic-splitting strategies

In this paper, we primarily implement and evaluate
CoMPS instantiations and path-scheduling techniques
for the concrete use case of defending against website
fingerprinting. We also propose a CoMPS technique to
perform low-latency censorship circumvention.

CoMPS as a fingerprinting defense. Recall that we
describe website fingerprinting in Section 2. For this use
case, our threat model consists of an adaptive adversary
who can observe encrypted traffic on ONE of the paths
between the client and tunneling service, or between
the client and server. From this perspective, they at-
tempt to determine what websites the client is visiting.
They know which strategy the client is employing, and
train their models with traffic that is defended using the
same strategy.

CoMPS can replicate network topologies present in
previous work on traffic splitting for website fingerprint-
ing that utilize consistent path scheduling (constant and
ongoing path switching), in addition to supporting a
broader range of protocols. In this work, we will also
implement instantiations using QUIC, WireGuard, and
Mosh clients utilizing a consistent path-switching strat-
egy, and evaluate their resilience against fingerprinting
attacks and performance overhead.

Fig. 4. Using CoMPS-over-QUIC to circumvent naive handshake-
based censorship of TLS (with QUIC as the transport layer) con-
nections with negligible overhead.

Circumventing handshake censorship. As encryp-
tion for both web and DNS connections has is slowly be-
coming the norm, ISPs increasingly use the unencrypted
Server Name Indication (SNI) in the TLS handshake to
identify connections to throttle or block [8]. However,
many reliable censorship circumvention transports (e.g.,
VPN, Tor, and Tor pluggable transports) are relatively
high-latency, when compared to a native network con-
nection.

Since TLS is integrated into QUIC, QUIC con-
nections will also be susceptible to SNI-based censor-
ship [21]. We design a simple CoMPS topology to mit-
igate SNI-based connection identification with minimal
overhead. We instantiate CoMPS with two paths: a reg-
ular, non-VPN network path, and separate encrypted,
VPN path (for instance, a WireGuard VPN). We em-
ploy the following context-dependent path scheduling
strategy: the path scheduler sends any handshake pack-
ets over the VPN path. Once the handshake is complete,
the session is migrated to the non-VPN path. The over-
head of this technique is a single connection migration.

We illustrate this use case in Figure 4. The de-
sign is similar to the concurrently developed BlindTLS,
which uses TLS session resumption to switch network
paths [47]. Unlike BlindTLS, which focuses on TLS 1.2,
our approach is independent of TLS protocol and works
with TLS 1.3 [47].
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3.4 Various CoMPS topologies for website
fingerprinting defense

In this section, we describe the specific CoMPS instan-
tiations we evaluate in the paper: traffic splitting to any
WireGuard VPN in Section 3.4.1, and traffic splitting
to a QUIC server via WireGuard VPNs in Section 3.4.2.
In Section 3.4.3, we also show that the CoMPS frame-
work subsumes existing traffic splitting designs, as well
as provides for new types of traffic splitting systems with
differing security properties.

3.4.1 Multihoming to a WireGuard server

CoMPS can enable arbitrary traffic splitting across net-
work paths to any unaltered WireGuard VPN server.
This enables the client to perform splitting with arbi-
trary network TCP and UDP network traffic that is tun-
neled through WireGuard. Here, we instantiate CoMPS
via the topology illustrated in Figure 2(a) to connect to
a regular WireGuard VPN. In this scenario, our client
is multihomed, and there is a passive adversary present
on one of the upstream ISPs.

We evaluate the resilience of split WireGuard traf-
fic on website fingerprinting attacks with both simu-
lated and real data, as well as the overhead of perform-
ing splitting against a WireGuard server. The same ap-
proach can also be applied to Mosh.

3.4.2 Traffic splitting to a QUIC server via VPNs

CoMPS enables arbitrary traffic splitting across network
paths to unaltered QUIC servers. However, to hide the
handshake data (which, at the moment, reveals the des-
tination server name), it is necessary to send this traffic
through an encrypted tunnel. In this case, we instanti-
ate CoMPS with the topology in Figure 2(b) to connect
to any QUIC server. In this scenario, the client does
not need to be multihomed, in which case we consider
an adversary that can only observe encrypted traffic on
one of the paths between the client and VPN proxy. This
defends against fingerprinting by ISPs further upstream
from the user.

We examine the effect of splitting QUIC-over-
WireGuard traffic on website fingerprinting attacks. We
also evaluate the overhead of splitting against a QUIC
server that supports connection migration.

3.4.3 Other CoMPS topologies

While we discuss the following extensions here for com-
pleteness, their evaluation is not our primary focus.
Prior work has demonstrated the viability of these con-
cepts [16, 18, 26] and the CoMPS framework is able to
realize their benefits in practice.

Multihoming to a Tor bridge. If a device is mul-
tihomed, CoMPS can also replicate the splitting tech-
niques and defense topology presented in HyWF [18].
To achieve this, we instantiate CoMPS via the topology
illustrated in Figure 2(a) to connect to any Tor bridge
that supports connection migration. Unlike HyWF, dif-
ferent CoMPS instantiations can work without multi-
path TCP services, and also support heterogeneous pro-
tocols in addition to multiple network paths.

Rotating source ports to foil naive network-
control devices. MIMIQ proposes a system where
an on-path network switch re-addresses traffic from a
large pre-allocated pool of IP addresses available to the
switch. This prevents a network adversary from naively
correlating traffic across different IP addresses to the
same connection [16]. Since CoMPS does not presup-
pose the existence of a friendly network switch that has
access to a pool of IP addresses for address-masking, it
cannot construct paths from new IP addresses.

We propose MIMIQ-lite, a CoMPS instantiation
where the client continually rotates its (IP, port) tu-
ple by binding to new local source ports over which to
send data. Although the split traffic may be correlatable
via the IP address, in practice, network-control devices
are heavily reliant on the (IP, port) tuple for connec-
tion identification. This would introduce some difficulty
for existing (non-adaptive) adversaries/tools to corre-
late traffic occurring over constantly changing ports,
even if the traffic does not utilize different IP addresses.

Traffic splitting leveraging heterogeneous proto-
cols. Unlike previous work in this area, CoMPS also
supports a potential strategy and topology where the
client can switch between differing tunneling protocols
(like WireGuard or OpenVPN) within a single session.
This technique can also be combined with the tech-
niques above — that is, switching between source ports
or network paths, to construct an even more resilient
defense against network adversaries. Here, we can in-
stantiate CoMPS with the topology in Figure 2(b) or
2(c), depending on whether the client is multihomed, to
connect to any connection migration-supporting server.

The use of heterogeneous protocols can make it
more challenging for the attacker to correlate flows from
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the same connection. Even an attacker who can moni-
tor all the paths (which is not the primary attack model
considered in this work) may not know for sure if they
are produced by CoMPS’s splitting or just two con-
current connections. If the adversary samples incorrect
flows or omits relevant flows, this may cause additional
false positives or false negatives. This technique is likely
resilient against a naive (non-adaptive) attacker (i.e. one
using a classifier, which is not trained on data split over
heterogeneous protocols). Prior work on transfer learn-
ing between classifiers trained on different encrypted
protocols has found that they generally perform quite
poorly when applied to previously unseen encrypted
protocols, even if the same data is being tunneled [50].

While these last few CoMPS instantiations can raise
the bar against non-adaptive adversaries, our primary
evaluation focuses on splitting to WireGuard and QUIC
servers, as described in Sections 3.4.1 and 3.4.2, which
we show are resilient against website fingerprinting by
an adaptive adversary.

3.5 Implementation and deployment

We now describe the CoMPS deployment we use for per-
formance experiments as well as data collection for sub-
sequent evaluation as a website fingerprinting defense.
We implement traffic splitting to a WireGuard server,
as described in Section 3.4.1 and demonstrated in Fig-
ure 5(a). We also implement splitting traffic to a QUIC
server, as described in Section 3.4.2 and demonstrated in
Figure 5(b). Finally, we implement splitting to a Mosh
server to show that CoMPS can also work with other
protocols that support connection migration.

Our client machine is located in New Jersey, al-
though we run the real-world data collection from a
virtual private server in Digital Ocean’s NYC region.
Depending on which instantiation of CoMPS a client
deploys, they may need to first pre-allocate a number of
encrypted tunnels, as in Figure 2(b) or Figure 2(c). In
our experiment, we utilize WireGuard as our encrypted
tunnel, deploying 2–3 VPN proxies for each network in
addition to the server we are splitting traffic to. Our ap-
proach is compatible with any encrypted proxy, but we
use WireGuard in our experiments. Depending on the
experiment, these WireGuard proxies can either be lo-
cal to the container, orchestrated via Docker Compose,
or remote hosts, orchestrated via Ansible [1, 32].

Emulating a Multihomed Setup.We emulated mul-
tihoming for client devices in our experiments by provid-
ing each device a number of virtual network interfaces.

(a) CoMPS-over-WireGuard
VPN 1

VPN 2

QUIC serverQUIC
client

Client

Path
scheduler

wg1

wg2

VPN Traffic
Quic conn

(b) CoMPS-over-QUIC
Client

Path
scheduler

eth0

eth1

Mosh server

Mosh client

Mosh traffic

Mosh traffic

(c) CoMPS-over-Mosh

Fig. 5. Experimental setups for CoMPS with WireGuard, QUIC,
and Mosh. Each path is abstracted to the client as a virtual net-
work interface, to mimic how a client might intentionally swap
between physical interfaces.

In practice, a user with a multihomed device would not
need to do this.

We use Ansible and Docker Compose to orchestrate
and manage multiple Docker containers on virtual pri-
vate servers hosted on Digital Ocean [1, 32]. We use
WireGuard to provide virtual network interfaces be-
tween containers on separate hosts. The arrows to the
WireGuard VPN in Figure 5(a), and the arrows to the
Mosh server in Figure 5(c) roughly correspond to Wire-
Guard proxies in our test setup. The code is hosted at
https://github.com/inspire-group/comps.

Implementing the path scheduler on the client.
Since each path is abstracted to the client as a virtual
network interface, we run a process on the client side
that continually changes the default network interface
via ip route, based on a pre-determined path selection
strategy. The path scheduler is thus not on-path for the
packets, though it can passively observe them via packet
capture. We focus here on consistent-splitting strategies
for our website fingerprinting defense evaluation.
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CoMPS-over-WireGuard. We instantiate CoMPS
with n = 3 network paths in New York City, connect-
ing to a WireGuard server in San Francisco. The Wire-
Guard client can communicate with the WireGuard
server over any of these paths. By attaching a con-
tainer to the same network namespace as the Wire-
Guard client, any and all traffic from that container
is routed through this CoMPS instantiation. The traf-
fic is encrypted to the WireGuard server (travelling via
one of the n paths), and then forwarded to the intended
destination. We use Selenium to orchestrate a Chrome
browser to fetch various web sites over this network.

CoMPS-over-QUIC. For this experiment, we instan-
tiate CoMPS with several VPN proxies in New York
City. This approach is compatible with any VPN proto-
col, but we use WireGuard VPNs here. In this case, we
do not need a multihomed client. Since WireGuard VPN
provides a virtual interface, it works well with the path
scheduler. The QUIC client shares a network namespace
with the WireGuard client which is able to send traffic
through any of its peers. The QUIC client is then able
to split traffic between remote WireGuard instances. It
can also successfully fetch any remote QUIC resource
so long as the underlying QUIC server implementation
supports connection migration.

For our client, we used a forked version of
Chromium’s simple QUIC client to perform connec-
tion migration [16], since their test client did not sup-
port connection migration. At this time, Chromium’s
QUIC libraries do support connection migration, al-
though whether it is used actively by the browser varies
depending on client support [15, 34]. Generally, servers
that utilize Google’s QUIC libraries also support con-
nection migration. Although connection migration is
specified in the RFC, many other implementations of
QUIC do not yet support it at this time. Large com-
panies like Cloudflare and Facebook have already an-
nounced their intention to implement server-side con-
nection migration [13, 22].

CoMPS-over-Mosh. For Mosh, we implemented a
simple test deployment. We instantiated CoMPS with 3
network paths, emulating a multihomed client. We ran
an unaltered Mosh remote server located in New York
City against which to test our setup, and on the client
device, we installed and ran an unaltered Mosh client.

4 Evaluation methodology
We evaluate how the CoMPS deployments detailed in
Section 3 perform under the conditions of an adaptive
adversary performing website fingerprinting. In addi-
tion, we evaluate the relative overhead introduced by
both QUIC connection migration and Mosh/WireGuard
IP roaming.

4.1 Threat model and defense evaluation

We measure CoMPS against a fully adaptive adversary
(i.e. trained on data that is split using the same al-
gorithm) using a neural network-based classifier in the
open-world setting, as described below.

The open-world setting. The study of website fin-
gerprinting attacks (i.e. classifiers) and website finger-
printing defenses are designed to perform under ei-
ther the open-world model or the closed-world model.
In the closed-world model, the classification task is a
multi-label classification problem where the classifier is
trained on a set of n web pages, and must label any
future trace seen as one of these n web pages. In the
open-world model, the classifier is trained on a set of n
monitored web pages, as well as some large number of
unlabelled unmonitored web pages. The classifier must
first determine whether a trace belongs to the monitored
set, and then label it. In this work, we use a train/test
split of 9:1. We prefer evaluations under the open-world
model as it describes an adversary who may encounter
traffic belonging to new, unknown, or uninteresting web
pages, which more realistically emulates the real-world
traffic classification task.

Metrics. In the open-world model, the attacker must
perform two classification tasks: first, a binary classifi-
cation task to determine whether the trace belongs to a
page in the monitored set, and if it is, they must perform
an additional multi-class classification task to determine
which of the monitored websites the trace belongs to.
Metrics for evaluations in the open-world model tend to
differ from the closed-world model (a standard multi-
class classification task) due to this added complexity.
For instance, an accuracy metric that only describes the
ratio of correctly labelled traces to incorrectly labelled
traces, even if weighted per-class, is not as useful since
it does not distinguish between the different types of
mistakes that such a classifier can make.

We use the open-world evaluation metrics provided
by Wang et al. [52], which are more representative of



Leveraging strategic connection migration-powered traffic splitting for privacy 507

classifier performance. A true positive is when the clas-
sifier correctly labels a monitored trace. A wrong posi-
tive is when the classifier labels a monitored trace as a
different monitored trace. A false positive is when the
classifier labels a unmonitored trace as an monitored
one. Recall is the rate of labelling a monitored trace as
the correct monitored web page, and is equivalent to the
true positive rate.

Instead of regular precision, we utilize r-precision,
presented by Wang et. al to more accurately capture the
ratio of true positives to total positives [52]. r-precision
scales the false positive rate by the natural base rate of
unmonitored to monitored traces in the real world. It is
defined as

πr = TPR
TPR + WPR + r · FPR

where r is the expected base rate of unmonitored to
monitored web page visits in the real world. As in Wang
et. al’s work [52], we use r = 20 in our evaluation.

We also utilize the F1 score, a more balanced de-
piction of classifier accuracy in the open-world setting.
F1 is the harmonic mean of the r-precision and recall
scores, calculated as

F1 = 2 · πr · recall
πr + recall

Classifiers using neural networks. We evaluate
CoMPS against state-of-the-art classifiers built on neu-
ral network architectures: Deep Fingerprinting, p-FP,
and VarCNN [4, 36, 48]. Rather than using manually-
extracted features, these classifiers borrow techniques
from deep learning in computer vision by using convo-
lutional neural networks to learn features from the raw
packet traces. We elect to use these classifiers to evalu-
ate our splitting defense due to their high classification
precision and recall (even against several state-of-the-
art defenses) [4, 36, 48].

Limitations of the open-world model. As explored
in prior work, there are some practical limitations to the
standard academic study of website fingerprinting [23].
For instance, website fingerprinting experiments gen-
erally assign labels to individual traces of automated
browsers visiting the homepages of static websites. This
hardly maps onto real client web-browsing behavior,
where individuals load dynamic streams of content,
many pages at a time, and will visit pages other than
the homepages of websites.

We inherit these practical limitations in our evalua-
tion. However, due to the expanding capabilities of com-
modity enterprise middleboxes and the growing will-

ingness of state-backed network adversaries to perform
more expensive forms of blocking, modelling powerful
adversaries helps test the theoretical bounds of our
defenses, so users can escape the proverbial “cat-and-
mouse” game of network privacy and surveillance.

4.2 Evaluation of simulated traffic
splitting

Collecting a real-world dataset of traffic splitting for
each possible design and parameter choice in our split-
ting strategy is an expansive task. We thus first sought
to determine the effect of path-switching strategy pa-
rameters on our classifier performance via simulated
traffic splitting experiments.

Using an existing dataset of QUIC-over-WireGuard
traffic traces for open-world evaluation [50], we simulate
a variety of splitting strategies across various parameter
changes (number of paths, frequency of path switching,
and path-switching strategy) while fixing the other pa-
rameters. This simulates the type of traffic an adversary
might see in both the QUIC experimental setup (which
splits QUIC traffic over different WireGuard proxies) as
well as the WireGuard experimental setup (which splits
any WireGuard traffic over different network paths). By
simulating the splitting, evaluating each set of param-
eters, and determining the ideal parameter choices for
CoMPS, we can then perform real-world traffic splitting
and data collection in Section 4.3.

4.2.1 Path-switching parameters

Number of paths. This is the number of CoMPS paths
available to the client. Intuitively, splitting traffic across
more paths means each potential adversary receives less
information about the full network trace. However, re-
alistically a user may not have many paths available to
them, although this may change in the future. In our
experiment, we vary the number of paths from 2 to 5.

Frequency of path-switching. This variable repre-
sents how often the scheduler must pick a new path. A
higher switching frequency implies there are more varia-
tions to how a particular trace may be sliced. The most
important tradeoff is that the performance may heavily
degrade at high frequencies of path switching by con-
fusing the protocol’s congestion control algorithms. We
evaluate performance at similar path-switching frequen-
cies that are evaluated for resilience here. For the simu-
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lated data experiments, we primarily use packet-based
evaluation (i.e. switching on the order of packets).

Path selection strategy.At each path-switching junc-
tion, the scheduler must decide which path to send the
next batch of packets. A simple strategy would be to
deterministically round-robin between each path. We
also evaluate a uniform random path selection strat-
egy, where the path scheduler selects one of the paths
uniformly at random. Lastly, we evaluate a weighted
random path selection strategy, where the probability
distribution between paths is (1) non-uniform, and (2)
newly chosen for each connection. For each connection,
we sample the path probabilities from a Dirichlet dis-
tribution, a splitting technique previously proposed for
splitting Tor traffic by De la Cadena et al. [26]

4.2.2 Simulating traffic splitting on a dataset

We use the WireGuard dataset collated by Smith et
al. [50], which contains both TCP and QUIC traces.
Results on this dataset extend to both CoMPS-over-
WireGuard and CoMPS-over-QUIC, as it provides
traces of QUIC website traffic collected through Wire-
Guard VPNs. In total, there are 48,546 QUIC traces.
The monitored set contains 100 domains, and the un-
monitored set contains 16,182 traces. Monitored do-
mains were sampled 100 times, and unmonitored do-
mains were sampled 3 times [50].

When we simulate splitting for each trace, we break
it into subtraces according to the number of CoMPS
paths. Each subtrace is then considered as a separate
trace in the training and test data.

4.2.3 Combining CoMPS with other website
fingerprinting defenses

CoMPS, like other traffic-splitting techniques, can (and
should) be combined with any website fingerprinting de-
fense that utilizes obfuscation as its primary tactic. We
test combining CoMPS with WTF-PAD, another low-
latency website fingerprinting defense [24]. WTF-PAD
is a natural fit since its primary mode of operation is to
fill in packet timing gaps, caused by CoMPS-like traffic
splitting techniques.

Monitored Unmonitored
URLs 100 4,828
Fetches per URL 50 1
# Paths 3 2-3
Total traces 15,000 14,484

Monitored Unmonitored
URLs 100 16,182
Fetches per URL 100 3
Total traces 10,000 48,546

Table 2. Trace distribution for (Upper) our real-world dataset
collected using CoMPS (split across 3 network paths), and
(Lower) the QUIC-specific dataset from Smith et al. [50].

4.3 Evaluation and data collection of
traffic splitting in the real world

We evaluate CoMPS on real-world data by collecting
traces of network traffic split using our experimental
setup described in Section 3. We perform a website fin-
gerprinting attack evaluation to show that CoMPS pro-
vides effective resilience in real-world settings. Similar
to the simulated experiments, our real-world data col-
lection is evaluated under the open-world model with a
fully adaptive adversary.

Using our WireGuard experimental setup depicted
in Figure 5(b), we collect a dataset of website traces
as a passive network adversary with a limited vantage
point might observe them over this CoMPS instantia-
tion. The data collection setup uses 3 different network
paths. The path scheduler performs the weighted ran-
dom strategy and switches every 100ms across 3 paths,
which fits our desired performance constraints. We dis-
cuss the results from these initial experiments in Sec-
tions 5 and 6. The dataset can be downloaded from
https://github.com/m0namon/comps.

We collect the traces of the top 10,000 websites ac-
cording to Tranco, Majestic, and Alexa datasets. We
combine and de-duplicate these domains, and select
the domains that provide QUIC support. This process
yielded 4,928 domains that could successfully load over
HTTP/3. We select 100 at random to be our monitored
dataset, and use the remaining 4,828 websites as un-
monitored traces. We fetch each monitored website 50
times, and each unmonitored website once. Since each
fetch is split across 3 paths, each fetch produces three
separate traces. This dataset is summarized in Table 2.

To collect a website trace, we use Selenium to instru-
ment a Chrome browser to fetch the home page. In the
meantime, several tcpdump processes capture the pack-
ets sent over each individual network interface. Each of
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Fig. 6. r-Precision v/s Recall curves from the simulated splitting
experiments. On the left, we use packet-based splitting at a fre-
quency of 50 packets. On the right, we use time-based splitting
at a frequency of 100ms. We evaluate simulated CoMPS against
Deep Fingerprinting, VarCNN, and p-FP. For both experiments,
we use the weighted random strategy across 3 paths.

these traces (over different network or WireGuard inter-
faces) are labelled as separate traces of that particular
website. These traces are then converted into a vector of
packet timing and sizes, which can then be consumed by
website fingerprinting classifiers. As our threat model
includes an adversary who observes one network path
between the client and server, network traces from each
link are treated as separate traces in the training stage.
Recall that since CoMPS does not employ Tor, packet
sizes are also visible to adversaries.

4.4 Performance and overhead evaluation

We describe our methods for evaluating the perfor-
mance overhead for CoMPS over QUIC, WireGuard,
and Mosh.

We expect QUIC to incur higher overheads than
WireGuard and Mosh due to its use of path validation
and the resetting of congestion control parameters when
switching to new paths [21]. The use of single-path con-
gestion control algorithms for multi-path network traffic
may also affect all three deployments to varying degrees.
We use the experimental setup described in Section 3 to
evaluate the practical overhead of all three protocols.

In all setups, we use 2 paths and the weighted ran-
dom path scheduler. For QUIC and WireGuard we re-
peatedly fetch a remote resource until 1 GB of data is
transferred. For Mosh, we repeatedly cat a 10MB file
on a remote server. While each operation is running,
the path scheduler is alternating the network path at a
variable rate. Each experiment is repeated 10 times.

r-Precision Recall F1

DF no defense 0.708 0.993 0.827
defended 0.416 0.329 0.367

p-FP(C) no defense 0.827 0.801 0.814
defended 0.415 0.007 0.014

VarCNN no defense 0.939 0.953 0.946
defended 0.462 0.061 0.107

Table 3. Comparison of r-precision, recall, and F1 on simulated
splitting data across different classifiers. In this experiment, we
use the weighted random strategy across 3 paths and a switching
frequency of 50 packets.

5 Resilience against website
fingerprinting attacks

In this section, we discuss our evaluations of CoMPS as a
website fingerprinting defense, using simulated splitting
as well as real-world splitting.

5.1 Evaluation of WireGuard traffic
splitting via simulated dataset

In the experiments discussed here, we used a path sched-
uler using the weighted random strategy, switching every
50 packets, across 3 paths. In Section 5.1.1, we vary each
of these parameters individually.

CoMPS is effective against Deep Fingerprinting,
p-FP, and VarCNN. As shown in Figure 6 and Ta-
ble 3, CoMPS performs well against multiple state-of-
the-art website fingerprinting classifiers, significantly re-
ducing both precision and recall compared to the base-
line scenario. It performed especially well against the p-
FP model, taking r-precision and recall down to 41.5%
and 0.7% in the simulated splitting experiment from
Table 3. The VarCNN classifier also achieved low recall,
with precision and recall of 46.2% and 6.1%, and Deep
Fingerprinting performed the best, at 41.6% and 32.9%
precision and recall.

Combining CoMPS with WTF-PAD lowers web-
site fingerprinting attack performance signifi-
cantly. In Figure 7(d), we demonstrate the effects of
combining our best performing strategy with WTF-
PAD. As also shown in Table 4, combining WTF-PAD
with CoMPS decreases classifier r-precision to 13.5%
and recall to 30.8% on a simulated dataset. We thus
show that not only is traffic splitting via CoMPS an ef-
fective defense against a powerful and adaptive website
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(a) Varying strategy (b) Varying switching frequency (c) Varying number of paths (d) Combining defenses

Fig. 7. r-Precision v/s Recall curves for the parameter experiments performed on simulated dataset. Our default setup used the
weighted random strategy, a path switching frequency of 50 packets, and three paths. (a) varies the switching strategy, (b) varies the
switching frequency, and (c) varies the number of paths. (d) combines CoMPS best performing strategy with WTF-PAD. CoMPS is
evaluated against the Deep Fingerprinting classifier [48].

r-Precision Recall F1

No Defense 0.708 0.993 0.827
WTF-PAD 0.348 0.957 0.510
CoMPS 0.416 0.329 0.367
WTF-PAD + CoMPS 0.135 0.308 0.187

Table 4. Comparison of r-precision, recall, and F1 across different
defenses. The path scheduler used the weighted random strategy
across 3 paths with a switching frequency of 50 packets. These
were evaluated with the Deep Fingerprinting classifier [48].

fingerprinting adversary for WireGuard traffic, it can
also be combined with other zero-latency website fin-
gerprinting defenses to provide even stronger resilience.

5.1.1 Evaluating CoMPS parameters

This section refers to results in Figure 7 and Table 5,
where we examine the impact of different parameters on
CoMPS’s resilience against website fingerprinting. Our
default setup used the (1) weighted random strategy,
(2) a path switching frequency of 50 packets, and (3)
three paths. For each experiment, we varied one of these
parameters. Since Deep Fingerprinting performed the
best in our experiment in Figure 6, we use that classifier
for our evaluations here.

The weighted random strategy performs the
best compared to the other path-scheduling
strategies, as shown in Figure 7(a). The determin-
istic round-robin strategy provides weaker resilience in
comparison. Randomly choosing paths (as in the uni-
form random strategy) improves the resilience, as the
sampling pattern is no longer deterministic and thus

Strategy Batch Size Paths r-Precision Recall F1

No Defense 0.708 0.993 0.827
RR 50 3 0.743 0.774 0.758
UR 50 3 0.492 0.447 0.468
WR 50 3 0.416 0.329 0.367
WR 50 2 0.582 0.511 0.544
WR 50 5 0.523 0.246 0.334
WR 200 3 0.681 0.477 0.561
WR 100 3 0.509 0.412 0.455

Table 5. Comparison of r-precision, recall, and F1 across varying
of path-switching strategies, path-switching frequencies, and path
numbers. The Round Robin (RR) strategy round-robins between
the paths in a consistent order. The Uniform Random (UR) strat-
egy chooses a path uniformly at random. The Weighted Ran-
dom (WR) strategy samples the paths from a new non-uniform
probability distribution for every connection. These were evalu-
ated with the Deep Fingerprinting classifier [48].

more difficult for the attacker to learn. Finally, we
find that the weighted random strategy of choosing a
new random distribution per-trace outperforms choos-
ing paths uniformly at random.

Higher path-switching frequencies improve re-
silience against website fingerprinting attacks, as
shown in Figure 7(b). A higher path-switching fre-
quency increases the number of possible ways CoMPS
can split and sample the traffic, as there are more deci-
sion junctures throughout the packet trace. Many web-
site traces are shorter than 1,000 packets; so a 200-
packet switching frequency may only imply a few path
switches during the connection.

Increasing number of paths improves resilience
against website fingerprinting attacks. Increasing
the number of paths reduces the success of website
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fingerprinting classifiers, producing significant privacy
gains even with just 2-3 paths. The experiment shown
in Figure 7(c) was performed using the weighted random
strategy. While increasing the number of paths to 5 pro-
vides further gains in privacy, this design choice may not
be practical for regular users, who are unlikely to have
access to 5 separate network paths, even in the future.
Since we want our system to be deployable, we primarily
performed evaluations with 3 paths rather than 5.

Splitting on time-based boundaries achieves

similar results to packet-based boundaries. To
address the discrepancy between the time-based and
packet-based boundaries used for the real-world and
simulated experiments, respectively, we demonstrate
that simulated splitting at an equivalent packet fre-
quency (100ms and 50 packets) with the same weighted
random strategy yields similar results, with the full PR
curve illustrated in Figure 6. With the DF classifier,
splitting at 100ms with weighted random yields 28.1%
r-precision 25.1% recall, respectively. This is very close
to the performance of the classifier when trained on data
that is split via the 50-packet boundary, which achieved
41.6% r-precision and 32.9% recall, respectively.

5.2 Evaluation of WireGuard traffic
splitting in the real world

Our real world experiment confirms CoMPS ’
ability to mitigate website fingerprinting. We
evaluate Deep Fingerprinting (DF), p-FP, and VarCNN
on the real-world dataset split over CoMPS using the
weighted random strategy, split across 3 paths, and a
path-switching frequency of 100ms. This experiment
was performed by switching at millisecond boundaries
rather than a fixed number of packets due to the sim-
plicity of the former implementation. Surprisingly, Var-
CNN performed better on the real-world dataset than
on our dataset from simulated splitting, and Deep Fin-
gerprinting performed worse on the real dataset. This
might be partly due to VarCNN’s design focus for low-
data scenarios, as our real-world dataset is smaller than
the simulated one.

The differences show the importance of experiment-
ing with multiple classifiers, and the collection of real-
world data. Deep Fingerprinting achieved r-precision
and recall of 12.4% and 34.9%, the p-FP model achieved
r-precision and recall of 12.6% and 12.1%, and the Var-
CNN model performed the best, with an r-precision and
recall of 29.9% and 36.7% respectively.

r-Precision Recall F1

DF 0.124 0.349 0.183
p-FP(C) 0.126 0.121 0.123
VarCNN 0.299 0.367 0.329

Table 6. Comparison of r-precision, recall, and F1 across real-
world splitting data across different classifiers. Dataset collection
is described in Section 4.3.

6 Overhead of traffic splitting
We now summarize our results from performance ex-
periments with CoMPS. Recall that the performance
experiments were performed by time-based boundaries
rather than packet-based boundaries due to the simplic-
ity of the implementation.

In our real-world data, the average throughput
is approximately 500 packets/second. The 50 packet
switching frequency from our simulated analysis in Sec-
tion 5.1 is thus approximately equivalent to 100ms path
switching frequency for the real-world experiments. Our
simulated results in Figure 6 generally show that time-
based splitting at a frequency of 100ms achieves similar
resilience against state-of-the-art neural networks to the
equivalent packet-based splitting (every 50 packets).

CoMPS-over-WireGuard has low through-
put overhead, with as little as 5–10% overhead
at reasonable switching frequencies, as shown
in figure 8(a). CoMPS-over-WireGuard, the system
we use to perform our real-world website fingerprint-
ing evaluation, has quite low overhead at the 100ms
switching frequency. We show that similar switching fre-
quencies also provide reasonable resilience in our privacy
evaluation in Section 5. Using faster switching frequen-
cies (less than 40ms) leads to a reduction in throughput,
and only offers marginal gains in our privacy evaluation.

CoMPS-over-QUIC has a 10–25% through-
put overhead at switching frequencies that pro-
vide resilience against website fingerprinting, as
shown in Figure 8(b) and (c). The larger amount
of overhead from QUIC path migration is primarily
due to path validations. If path validations are cached,
the performance impact would decrease for reasonable
switching frequencies. At frequencies faster than switch-
ing every 30ms, the repeated need for path validation
caused too many retransmission timeouts. To mitigate
these performance effects, we encourage QUIC services
to cache path validations.

CoMPS-over-Mosh has very little deteriora-
tion in performance overhead relative to switch-
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(a) CoMPS-over-WireGuard (b) CoMPS-over-QUIC (d) CoMPS-over-Mosh

Fig. 8. Comparison of impact on throughput vs path-switching frequency for CoMPS-over-WireGuard, CoMPS-over-QUIC, and
CoMPS-over-Mosh (left-to-right). The red line is the average baseline throughput without path switching. The path scheduler ran-
domly selects one of three paths at the specified frequency.

ing frequency, as shown in Figure 8(d). Even at
the unreasonably fast 10ms switching period, the av-
erage throughput overhead is less than 5%. The low
performance impact relative to QUIC or WireGuard is
because Mosh generally does not transmit high-volume
traffic, even if the remote terminal is updating quickly.
Mosh adapts the frame rate of screen updates according
to the expected connection RTT [55].

Mosh and WireGuard performance are less
affected by traffic splitting than QUIC. Across
Figure 8, we can compare how QUIC performance de-
grades more dramatically at higher frequencies, while
WireGuard and Mosh performance is less impacted. We
hypothesize that this is due to the congestion control
window being reset on every path switch for QUIC. The
connection fails to exit the slow-start phase of the con-
nection, leading to a drop-off in performance when the
switching occurs too often. Nevertheless, at reasonable
switching frequencies, the overhead is as little as 4-6%
for both WireGuard and Mosh and 10-20% for QUIC.
For comparison, experiments on TrafficSliver estimate a
20% throughput overhead and WTF-PAD incurs a 60%
bandwidth overhead [24, 26].

7 Conclusion and future work

CoMPS is practical and effective to deploy as
a website fingerprinting defense. CoMPS exploits
various protocols’ native capabilities for IP roaming and
connection migration for network privacy. We success-
fully implement CoMPS networks using QUIC, Wire-
Guard, and Mosh; three protocols that support con-
nection migration-like capabilities. We show that it is
practical to constantly perform traffic splitting, and it
introduces relatively low overhead. With a WireGuard-
based CoMPS defense, we can split any network traf-

fic to the WireGuard VPN. In addition, QUIC (and
its connection migration capability) is continually gain-
ing adoption. As Internet protocols develop to adapt to
clients with dynamic IP addresses, CoMPS-like split-
ting to servers will become even more feasible. In addi-
tion to its practicality, we also demonstrate that CoMPS
enhances resilience against fingerprinting attacks, even
against powerful adaptive adversaries.

7.1 Future work

Due to the flexibility of CoMPS, there is much room for
further research in evaluating different ways to leverage
connection migration for privacy.

Testing CoMPS for censorship circumvention.
We implement a simple prototype of our censorship cir-
cumvention use case (Section 3) using a QUIC-based
CoMPS defense, which efficiently elides naive handshake
censorship by sending handshake packets through an en-
crypted tunnel outside the censor’s jurisdiction before
migrating onto the regular network path. However, we
did not thoroughly investigate the effectiveness of this
technique in this work.

Evaluating the tradeoff between traffic privacy
and traffic visibility. By splitting traffic across differ-
ent network paths, CoMPS (and other traffic-splitting
systems) potentially expose portions of traffic to more
network adversaries. Although each individual adver-
sary may be able to learn less information about client
traffic, the traffic is more likely to encounter more ad-
versaries if it is split on multiple paths. This is in some
ways similar to the trade-off that Tor users make when
selecting the number of guard relays. This tradeoff has
been examined in the Tor context [2, 9].

Evaluating splitting across heterogeneous proto-
cols. We did not fully explore the potential use of split-
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ting a single traffic stream across heterogeneous proto-
cols as a traffic analysis defense, which has never been
explored in literature before, but is a possibility with
CoMPS. Prior work has found that website fingerprint-
ing models trained on TCP-over-WireGuard traffic do
not transfer well to QUIC-over-WireGuard traffic, and
vice versa [50]. When splitting traffic across different
encrypted tunneling protocols, we can raise the bar for
adversaries by forcing them to account for multiple pro-
tocols in their models since fingerprinting models do not
transfer well across protocols.

Using Tor circuits as CoMPS paths. One avenue
for future work is to examine the possibility of using
Tor circuits as CoMPS paths. Unfortunately, Tor can-
not tunnel UDP traffic natively as Tor’s session model
is currently tightly coupled with TCP [51]. Thus, Tor
cannot provide support for protocols like QUIC with-
out an additional proxy, or a large engineering effort on
the part of the Tor Project.

Many Tor developers and researchers have investi-
gated adopting a UDP-based transport such as QUIC
as a session-layer for Tor [3, 12, 28, 35, 44]. Mathew-
son and Perry have also examined how switching to a
UDP-based transport might affect their current security
model [30]. If Tor adopts a more flexible session layer,
tunneling UDP packets could be possible. In the future,
we would like to explore the implications of UDP-based
(QUIC, for instance) traffic splitting over Tor for both
censorship circumvention and resistance against traf-
fic fingerprinting by a guard node. Given similar prior
work examining traffic splitting over Tor for privacy, it
is likely that CoMPS would perform well [26, 40, 56].

In summary, as surveillance of users’ network com-
munications continues to become more prevalent and
sophisticated, CoMPS offers a powerful new framework
for resisting traffic analysis.
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