
Proceedings on Privacy Enhancing Technologies ; 2022 (3):582–605

Debajyoti Das*, Easwar Vivek Mangipudi*, and Aniket Kate

OrgAn: Organizational Anonymity with Low
Latency
Abstract: There is a growing demand for network-level
anonymity for delegates at global organizations such
as the UN and Red Cross. Numerous anonymous com-
munication (AC) systems have been proposed over the
last few decades to provide anonymity over the inter-
net; however, they introduce high latency overhead, pro-
vide weaker anonymity guarantees, or are difficult to
deploy at the organizational networks. Recently, the
PriFi system introduced a client/relay/server model
that suitably utilizes the organizational network topol-
ogy and proposes a low-latency, strong-anonymity AC
protocol. Using an efficient lattice-based (almost) key-
homomorphic pseudorandom function and Netwon’s
power sums, we present a novel AC protocol OrgAn
in this client/relay/server model that provides strong
anonymity against a global adversary controlling the
majority of the network. OrgAn’s cryptographic de-
sign allows it to overcome several major problems with
any realistic PriFi instantiation: (a) unlike PriFi, Or-
gAn avoids frequent, interactive, slot-agreement proto-
col among the servers; (b) a PriFi relay has to receive
frequent communication from the servers, which can not
only become a latency bottleneck but also reveal the ac-
cess pattern to the servers and increases the chance of
server collusion/coercion, while OrgAn servers are ab-
sent from any real-time process. We demonstrate how
to make this public-key cryptographic solution scale
equally well as the symmetric-cryptographic PriFi with
practical pre-computation and storage requirements.
Through a prototype implementation, we show that Or-
gAn provides similar throughput and end-to-end latency
guarantees as PriFi, while still discounting the setup
challenges in PriFi.

Keywords: privacy, anonymity, protocol

DOI 10.56553/popets-2022-0087
Received 2021-11-30; revised 2022-03-15; accepted 2022-03-16.

*Corresponding Author: Debajyoti Das: imec-
COSIC, KU Leuven, Leuven, Belgium, E-mail: debajy-
oti.das@esat.kuleuven.be,
*Corresponding Author: Easwar Vivek Mangipudi:
Department of Computer Science, Purdue University, West
Lafayette, USA, E-mail: emangipu@purdue.edu,

1 Introduction
In an influential work, Le Blond et al. [34] recognize
an urgent need for traffic-analysis-resistant meta-data
hiding (anonymous) communication at multinational
organizations such as the International Committee of
the Red Cross (ICRC). The study finds that sensitive
projects such as humanitarian activities at these orga-
nizations can be highly susceptible to subpoenas and
powerful state-sponsored network eavesdroppers, there
is a clear demand for anonymity for intra-organization
communication and their interactions with the global
services. As a recent US national Intelligence Coun-
cil global trends report [38] indicates we are moving
towards a more contested world post-pandemic, and
anonymity needs at the international organizations [43]
are bound to grow.

Among different anonymous communication (AC)
protocols, dining-cryptographers network (DC-net) [13]
and its successors [3, 5, 10, 16, 17, 26, 29, 35, 41, 47–
50] are suitable for this purpose, for their high traffic-
analysis resistance while maintaining low latency over-
head. Tor [22, 23] and mixing network-based proto-
cols [12, 14, 18, 30–33, 45, 46] choose a tradeoff between
low latency and stronger anonymity [19]; and they are
not suitable for organizational networks as they route
all the traffic over the Internet outside the network. The
latter not only increases the attack surface and makes
the communication traffic more susceptible to traffic
analysis but also introduces latency overhead.

Nevertheless, most standard DC-net designs have
two major overheads: (i) First, all the users need to run
a key agreement protocol among themselves to agree
on shared secret keys; such an agreement protocol is
not scalable as it comes with high communication over-
head and has to be repeated often towards stopping
linkability/co-relations across multiple rounds. (ii) Sec-
ond, it requires all the users to participate in a slot
agreement protocol before every round; otherwise, two

Aniket Kate: Department of Computer Science, Purdue Uni-
versity, West Lafayette, USA, E-mail: aniket@purdue.edu

OrgAn 583

or more messages may collide as only one user is sup-
posed to send a message in any given round.

With the above organizational anonymity problem
in mind, PriFi [8] introduces a novel client/relay/server
model that avoids the key agreement overhead — a set
of few servers (we call them setup servers) help the
clients establish shared secrets among themselves. The
actual anonymous communication happens through an-
other relay node and the servers only need to push
messages to this relay node. As its key features, PriFi
removes all server-to-server communications from the
latency-critical path. As demonstrated by Barman et
al. [8], the client/relay/server model is well-suited for
organizational anonymity; however, we observe three
key problems with the current cryptographic design1:
(i) PriFi continues with the one user per slot model
from Dissent [16] and its successors [50], and a PriFi in-
stantiation has to choose between running a regular slot
selection protocol (where the servers run expensive ver-
ifiable shuffle and communicate with all the clients) and
message linkability across different rounds. (ii) While
the servers do not talk to each other in the online phase,
they still need to be online and communicate with the
relay node. This can allow any server to predict the typi-
cal PriFi usage pattern at the organization. (iii) Finally,
every server and the relay has to know and interact with
each other, which may facilitate coercion and collusion
(possibly even in the future).

1.1 Our Contribution

We present OrgAn, a new AC protocol using almost
key-homomorphic pseudorandom functions (PRF) and
Newton’s power sums in the client/relay/server model.
Similar to other recent DC-net based protocols, our pro-
tocol provides strong anonymity guarantees with resis-
tance against intersection attacks and active attacks un-
der Discrete Log (DL) and Ring Learning-with-rounding
(R-LWR) assumptions.

Importantly, OrgAn resolves the above-mentioned
three problems with the PriFi design. The use of addi-
tive key-homomorphic PRF allows OrgAn to avoid the
overheads of server-computed slot selection as messages
from all clients are processed together using Newton’s
power sums. As the generated output is a perfect shuf-
fling of the input messages, OrgAn also ensures that a

1 For reference, we add a short description of PriFi in Ap-
pendix B.

client’s messages are not linkable across two different
protocol runs even without rerunning the setup. OrgAn
servers do not talk to each other or the relay node dur-
ing the setup, and OrgAn servers are omitted from the
online phase; thus, we call them setup servers. In fact,
the setup servers and the relay nodes do not even need
to be aware of each others’ presence, which can be par-
ticularly useful against coercion and collusion.

While providing the above features using a pub-
lic key cryptographic primitive (i.e., key-homomorphic
PRF), OrgAn also maintains latency overhead in mil-
liseconds using storage vs. computation tradeoff associ-
ated with the R-LWR setting. Using a prototype im-
plementation, we show that OrgAn achieves reason-
able round-trip-time (RTT) of 46 milliseconds for a sys-
tem of 100 clients when communicating to the outside
world compared to a typical RTT of 18 milliseconds.
Our evaluation demonstrates that OrgAn can even scale
for latency-sensitive and throughput demanding appli-
cations — it can support up to 550 Kbps throughput
for every client in an organization with 100 clients. We
also compare the performance of OrgAn with the exist-
ing state-of-art (PriFi) and show that performance-wise
OrgAn is not very different from PriFi, despite solving
the issues mentioned above.

2 Overview

2.1 Setup and Communication Model

Consider an organizational network with N clients
u1, . . . , uN. They wish to access intra-organizational ser-
vices and connect to services outside the organiza-
tional network without revealing which client is access-
ing which service.

There exists a relay R that acts as a gateway be-
tween the organizational network and the outside world.
It allows the clients of the OrgAn protocol to trans-
mit/receive messages to/from the outside would and
intra-organization services but does not act as a trusted
third party in the anonymization process. We assume
that the relay has high availability and high computa-
tion power.

Additionally, there is a set of K servers G1, . . . , GK,
we call them setup servers. These setup servers help the
clients in the setup or key agreement process but do not
participate in the anonymization process. These servers
are logical entities and can be run by anyone (volunteers,
paid services) inside or outside the organization, even

OrgAn 584

Fig. 1. System overview of OrgAn, where a set of non-interacting
users wants to access local services and the Internet through a
relay server but without revealing who is accessing what. A group
of setup servers help them establish DC-net keys so that the users
can run a DC-net protocol using Newton’s power-sum method
utilizing the relay as a bulletin-board, but without trusting the
relay.

by the clients. We do not require the setup servers and
the relay to communicate with each other during the
setup phase or protocol run — they do not even need
to know each other. The clients can mutually agree on
the set of setup servers, ensuring that for each client
there is at least one setup server that they trust. We do
not even require the setup servers to be online except
for the setup phase. We only focus on the anonymity
of outgoing traffic. We consider the solution provided
by PriFi for incoming traffic adequate and can easily
fit into our system; hence, we do not consider incoming
traffic for the rest of the paper.

2.2 Threat Model

We consider a probabilistic polynomial time (PPT) ad-
versary A who can observe all network traffic. Addi-
tionally, the adversary can compromise up to (N − 2)
clients and (K − 1) setup servers. Even the relay can
be under adversarial control, but we do not consider
denial-of-service (DoS) attacks from the relay, because
the clients can easily identify if the availability of the
relay is compromised — and the organization does not
want to openly show that they are against the privacy
of their members. However, the relay may launch other
active attacks as long as it can not be detected/blamed
by the honest clients.

We allow the adversary to launch active attacks
from inside the organizational network. For simplicity
of description, we do not consider active attacks from
outside of the local network — such attacks can be easily
handled by proper ingress filtering by the relay; other-
wise, the relay itself will compromise its availability.

2.3 Goals

Anonymity. We want our protocol to achieve strong
sender anonymity for the outgoing traffic, i.e., the abil-
ity of the adversary to figure out which user has sent
a specific message should at most be negligibly better
than random guessing, even if all but two clients and all
but one setup server are compromised.
Accountability. In our protocol, we want the honest
clients to be able to detect the scenario where some
malicious client(s) or the relay tries to disrupt the pro-
tocol by sending incorrect/malformed messages. In such
an event, the disruptive party should be identified with
significant probability, and no honest party should be
misidentified as a malicious party.
Low Latency. The system should have low latency
overhead to support latency-sensitive applications.
Scalability. We want OrgAn to support small to
medium organizations (i.e., up to few hundred clients).
Non-goals. Similar to other DC-net based protocols [8,
16, 17, 41, 50], our protocol does not consider an adver-
sary whose sole purpose is to launch DoS attacks. In
fact, this remains a challenging issue for all AC systems
in general.

Similar to other DC-net protocols [5, 8, 16, 17, 50],
even OrgAn does not provide a solution for reliable
packet delivery. If packet loss occurs between the user
and the relay, the receiving end can request the packet
again after a timeout.

Moreover, as with other DC-net based protocols [8,
16, 41], it is out of scope to consider clients joining or
leaving the network between two setups.

2.4 Protocol Idea

Our protocol design is based on the idea that each client
ui has an individual secret ri — here

∑
i ri is known to

everyone, but the individual ri values with the honest
clients are not known. The clients achieve that using a
setup phase, with the help of a few setup servers. If there
is at least one honest setup server, the setup guarantees

OrgAn 585

can be achieved using an additive secret sharing scheme
between the setup servers and the clients.

In our protocol design, we use an almost key-
homomorphic PRF [9] F that satisfies F(k, d) =
F(k1, d) + F(k2, d) + e with bounded elements in the
error vector e and k = k1 +k2. In a round d, each client
ui uses an element of F (ri, d)t as the mask for their
DC-net cipher that they send to the relay for a slot t.
Since the relay knows

∑
i ri but not the individual ri

values associated with the honest clients, it can decrypt
the message for slot t only after receiving the DC-net
ciphers from all the clients for that slot by computing
F
(∑

i ri, d
)
t
. We use some extra bits to eliminate the

error e so the relay can retrieve the message correctly.
The main rationale behind using an almost

key-homomorphic PRF instead of a perfectly key-
homomorphic PRF [6] is that the latter is computa-
tionally expensive. Using a lattice-based additive al-
most key-homomorphic PRF we improve the perfor-
mance drastically (cf. Section 8) as compared to the
(perfectly key-homomorphic) PRF.
Base Protocol. We solve the slot agreement problem
generally faced by DC-net based protocols by construct-
ing power-sums of messages similar to Dicemix [41].
However, we do it (significantly) more efficiently than
Dicemix by exploiting the client/relay/server network
model and the (almost) key homomorphic property of
F . We describe our protocol in Section 4. However, there
is one crucial problem with the power-sum equation sys-
tem — with a large number of clients, solving the equa-
tion system becomes the bottleneck of the whole sys-
tem. Additionally, for each IP packet (e.g., of 512 bytes
length), the relay should be able to link all the frag-
ments, considering each round allows each client to send
226 bits (we call them fragments, the limitation comes
from the computational limitation on group algebraic
operations on a large group).
Bulk Protocol. We design a Bulk protocol inspired by
the design of Dissent [16] to solve the above two prob-
lems. First, OrgAn uses the power-sum equation system
in one round to generate a permutation for the clients.
In the following round, the clients use that permutation
(slot agreement) to run a typical DC-net. The clients
still generate the masks for the ciphertexts using F . The
bulk protocol provides unlinkability for IP packets, but
not the fragments of a single IP packet (by design).

2.5 What We Achieve

In our design, we solve two latency-critical problems
inherent in most DC-net designs: (i) We get rid of
the slot agreement overhead (that is present also in
PriFi) by using the Dicemix-like power-sum equation
system [41]; (ii) We avoid the requirement for regu-
lar key-agreement in other DC-net designs, using key-
homomorphic PRFs. Even though we use public-key
cryptographic constructions to solve those, we demon-
strate that parties can push most computation-heavy
tasks to the pre-processing phase. By getting rid of these
overheads, we achieve a round-trip-time (RTT) of 46
milliseconds for a system of 100 clients when communi-
cating to the outside world compared to a typical RTT
of 18 milliseconds. We demonstrate that OrgAn can
scale for latency-sensitive and throughput demanding
applications by utilizing several hours of pre-processing
per day.

We formally show that OrgAn provides strong
sender anonymity against global passive adversaries (in
Section 6.2). We also prove the security of our protocol
against relevant active attacks (in Section 6.3) — we
show that honest clients can detect such active attacks
with overwhelming probability and identify a malicious
party with significant probability.

2.6 Comparison with Relevant Protocols

Onion routing systems such as the Tor network [22, 23]
and typical deployment of mixnet designs [12, 14, 18,
30–33, 45, 46] are not suitable for the organizational
network or the LAN setting under consideration here
as they route all the traffic over the Internet outside
the network and can introduce high latency overhead.
Although mixnets conceptually can be deployed inside
the organizational network for intra-organization com-
munications, the deployment overhead becomes really
high (because of the number of mix servers required)
to provide strong anonymity guarantees. Moreover, Das
et al. [20] shows that protocols inspired from DC-nets,
with co-ordination among the users, can achieve better
anonymity compared to other techniques when low la-
tency is required. With low latency and resistance to
traffic-correlation attacks in mind, this work focuses on
the DC-net based AC protocols.

As illustrated in Fig. 2, we divide the DC-net based
systems into three protocol architectures: point-to-point
(P2P) DC-nets, client-server MPC, and client-relay-
server aggregation. In the following, we compare our

OrgAn 586

Internet

Interaction
among users

(a) In the original DC-net [13, 26], Dis-
sent [16], Dicemix [41] and similar proto-
cols, clients interact with each others over
point-to-point links to achieve anonymous
broadcast among themselves.

(b) In server-aided model of [3, 5, 17, 35, 50]
and others, each client only communicates
with a set of servers, which interact with each
other (performing a multi-party computation)
towards realizing anonymous broadcast for the
clients.

(c) In the client/relay/server architecture of PriFi [8]
and this work, the online phase does not involve any
communication between the clients and the servers; in
this work, we demonstrate that the servers also do not
need to communicate among themselves. Based on the
network setting, the relay node may or may not know the
servers

Fig. 2. Illustrative Examples for Different Architectures for DC-net Inspired Protocols. The Internet cloud in these examples can be
conveniently replaced by any bulletin board or broadcast channel.

protocol OrgAn with prominent DC-net based solutions
across these architectures.
P2P DC-nets. In P2P DC-net protocols [16, 26, 41],
the clients perform the anonymous broadcast them-
selves without involving any external computational
server. These designs incur significant overhead (com-
putation, as well as bandwidth) for key agreement and
slot agreement. For example, DiceMix [41] takes several
seconds to complete a protocol run for a small number
of clients. OrgAn can be considered as an overhaul of
DiceMix [41], where we remove the interaction among
clients by utilizing the client/relay/server model.
Client-server DC-nets. P2P DC-nets do not scale
well as the numbers of clients increase. Client-server
DC-net protocols [3, 5, 15, 17, 24, 35, 50] aim at making
these protocol scale by shifting the DC-net (or similar
computations) to the servers as MPC. The assumptions
on the servers range from two-servers only, three-servers
only, the any-trust assumption to a 3/4 honest majority
assumption, and correspondingly these protocols offer
different guarantees in terms of the robustness, fairness
and censorship-resistance. Nevertheless, all these proto-
cols still require quadratic computation (in the number
of clients) and may not be able to manage overall la-
tency overhead of less than a second. Moreover, from
the organizational network perspective, the regular in-
teraction between the servers makes them vulnerable to
collusion in a geo-politically diverse setting.
Client/Relay/Server Model. PriFi [8] introduces
what we call client/relay/server model that utilizes a
relay server to avoid major latency overheads, while

achieving anonymity in an organizational network. How-
ever, the packets from the same user are linkable in
between two setup runs in PriFi — if that needs to
be avoided, the expensive setup needs to be run af-
ter every round. Thus, PriFi achieves high through-
put with compromised anonymity guaratees, or strong
anonymity with less throughput. Our protocol OrgAn
provides stronger anonymity guarantees by achieving
unlinkability among the packets from the same user
without compromising the throughput.

Although both PriFi and OrgAn depend on a group
of setup servers to generate shared secrets among the
users — OrgAn does not require any involvement from
those servers during the protocol run; thus, reducing the
chance of coercion among them or with the relay.

3 Preliminaries

Power-sum Equations and Solution[27, 41]. Con-
sider the following system of equations:

E(1) = x1 + x2 + · · ·+ xN ∈ Zp

· · ·
E(N) = xN

1 + xN
2 + · · ·+ xN

N ∈ Zp

with each xi ∈ Zp. This equation system can be solved
using Newton’s identities [27, 41]. Mathematically we
denote the function as SolveEqn(E(1), . . . , E(N)) that
takes such an equation system as input, and outputs
an unordered set of N elements {x1, x2, . . . , xN}, if the

OrgAn 587

equation system is solvable. In the base protocol phase,
each xi is the input of client ui; the equation system
is computed and solved by the relay R to find an un-
ordered set of client messages.
R-LWR Assumption. Below we define the Ring
Learning-with-rounding (R-LWR) problem. It is as-
sumed that the R-LWR problem is difficult to solve by
a computationally bounded adversary.

Definition 1 (R-LWR [7]). Let the Ring-LWR distribu-
tion Ds to be over Rv × Rq, v > q obtained by choos-
ing a ← Rv uniformly at random for some s ∈ Rv and
outputting (a,b) = (a, ba · scq). The decisional R-LWR
problem R-LWRu,v,q consists of distinguishing samples
(ai,bi) from uniform and independently drawn samples
(ai,ui) ∈ Rv ×Rq.

Then, R-LWR assumption states that the advan-
tage of an adversary A in solving the decisional R-
LWR problem AdvRLWR

u,v,q (A) = |Pr[A(a, ba · scq) = 1] −
Pr[A(a,u) = 1]| is negligible, with the probabilities taken
over a ∼ U(Rv), s ∼ U(Rv), and u ∼ U(Rq).

Almost Key-homomorphic Pseudorandom Func-
tion. A key-homomorphic pseudo random function fam-
ily (PRF) [9] is a PRF which is homomorphic in the
key-input of the function. Our protocol uses the lat-
tice based pseudorandom function family [9] F(k, d) =
bk · H(d)cq ∈ Rq, for k,H(d) ∈ Rv, d ∈ {0, 1}∗. Rq
and Rv are polynomial rings; each element of the ring
is a polynomial of degree less than u with integer co-
efficients, represented as a vector of u elements in Zq
and Zv. When the elements are polynomials (·) in-
dicates the product of two such polynomial ring ele-
ments. F is computationally indistinguishable from a
random function family, and almost key-homomorphic,
i.e., F(k, d) = F(k1, d) +F(k2, d) + ε where ε ∈ Rv with
each coefficient of ε ∈ {0, 1}. The security of the PRF
considered here is based on the Ring-LWR assumption.

For a ∈ Zv, the rounding-down function is defined
as bacq = ba · qv c ∈ Zq. Rounding down a vector involves
rounding down each element of the vector.
Eliminating the Error. While the employed PRF
introduces an error, we use a suitable scaling of mes-
sages to eliminate the error while computing the equa-
tion system. For example, let k = k1 + k2. Consider
two clients with messages x1, x2 ∈ Zp. To compute
x1 + x2 at the relay, the two clients forward c1 =
κ ·x1 +F(k1, d)t and c2 = κ ·x2 +F(k2, d)t for a certain
d, t and suitable positive integer κ. The relay computes
c = c1 +c2−F(k, d)t = κx1 +κx2 +e. It computes c

κ and

rounds the value to the nearest integer to obtain x1+x2.
Here, F(k, d)t is the tth element of the vector F(k, d).
We refer to Section 4.2 for details on the elimination of
the introduced error.

Additionally, we use a digital signature scheme [42]
that is existentially unforgeable under chosen-message
attacks [39]. Let (S,V) be the signature scheme — given
a private-public key pair (p, P), σ = Sp(x) denotes the
signature of message x with the key p, and using the
function VP (x, σ) anyone can verify the signature.

4 Core Protocol
In this section, we present the core OrgAn protocol, and
in Section 5 we extend our protocol to defend against
active attacks. As mentioned in Section 2.1, our sys-
tem consists of the following set of parties: (i) a set of
N clients denoted as u1, . . . , uN that (or some of them)
want to communicate with the outside world; (ii) a set
of K setup servers denoted as G1, . . . , GK that reside out-
side the organizational network; (iii) one relay server R
that acts as a gateway. We assume that all the proto-
col parties in our system have access to a public key
infrastructure (PKI), where each party X has a long-
term private-public key pair (pX , PX). We summarize
the notations in Table 1.

Our protocol first runs a one-time setup phase, and
then starts running the protocol. In our protocol, the
setup phase is run only once and never again.

4.1 Setup Phase

Each setup server Gj splits a publicly known constant s
into N secret shares {r1j , . . . , rNj} such that s, rij ∈ Zu

v
and

∑
i rij = s. It distributes the shares among the

clients, where each client ui receives the share rij . Note
here, all the setup servers use the same s value.That is
a global parameter of the protocol; however, the shares
for the clients generated by each honest setup server
are independent of other servers and unknown to other
servers. We assume that the setup servers communicate
with the clients using some authenticated and confiden-
tial channel (for example, using TLS [25, 40]). After re-
ceiving one share from each setup server, each client ui
has the following secrets: {ri1, . . . , ri,K}; rij ∈ Zu

v . Each
client ui computes: ri =

∑m
j=1 rij ∈ Zuv . We present the

pseudo-code for the setup run by the setup servers and
the clients in Figure 3.

OrgAn 588

Table 1. Protocol and system parameters for OrgAn

U Set of all N users; N = |U |
I Set of all K setup servers; K = |I|

Gj The j-th setup server
R The relay node
η The security parameter

a
$← [b, c] Draw uniformly at random from an integer range [b, c]

Zp,Zq,Zv Groups of prime orders p, q, v resp.
bxe Nearest Integer of x

x1||x2 String x1 is appended with string x2
H(·) Hash function used in the PRF that maps strings

of arbitrary length to a element in ring Rv
H(·) Cryptographic hash function that maps

{0, 1}∗ to {0, 1}η

F(k, t)i ith element of the PRF obtained from key k for slot t

s ∈ Zuv ; a global system-parameter

ServerSetup (setup server Gj , set
U = {u1, . . . , uN}) :

{r1j , . . . , rNj} = split s into N shares
Send rij to user ui over TLS for each i ∈ {1, . . . ,N}

ClientSetup (user ui, set I = {G1, . . . , GK}) :

ri1, . . . , riK = Wait for shares from each Gj ∈ I
ri =

∑K
j=1 rij

Send “Setup completed" to the relay R

RelaySetup() :

Initiate ServerSetup(Gj ,U) for each Gj ∈ I
Initiate ClientSetup(ui, I) for each ui ∈ U
Wait for "Setup completed" from each ui ∈ U

Fig. 3. Setup protocol in OrgAn

4.2 Base Protocol

Our protocol can be divided into several rounds; in one
round each client ui can send one message xi. In every
round, the relay R maintains N slots to receive N equa-
tions. The relay retrieves the N messages from N clients
by solving those equations. For a round d, the protocol
is run in the following steps:
Client Ciphertext Generation. Each client ui with
a message xi ∈ Zp computes the following, for each slot
t in a round d:

xti ∈ Zp

pi(t) = F (ri, d)t ∈ Zq q > p

ci(t) = κ · xti + pi(t) ∈ Zq κ > 2N

Client ui then sends the ordered set {ci(1), . . . , ci(N)}
tagged with the round number d to the relay.

s ∈ Zuv : a global system-parameter
T : number of slots to be used in the current round

RelayProtocol(round d):
P1, . . . , PT = −F(K · s, d)
for i ∈ {1, . . . ,N} do

(di, ci(1), · · · , ci(T)) = Wait for message from ui
for t ∈ {1, . . . , T} do
Pt = Pt + ci(t) mod q

if (d%2 = 1) // Base round, T = N // then
E1, . . . , EN = bP1/κe mod p, . . . , bPN/κe mod p
(x1, t1) . . . , (xN, tN) = SolveEqn(E1, . . . , EN)
Store (t1, . . . , tN); Broadcast (x1, t1) . . . , (xN, tN)

else
// Bulk round, T = t1 + . . . tN //
t = 0; x1, · · · , xt = bP1/κe mod p, · · · , bPt/κe
mod p
for i ∈ {1, . . . ,N} do

packeti = xt+1|| · · · ||xt+ti ; t = t+ ti
Send packet1, . . . , packetN to internet
Broadcast (packet1, . . . , packetN)

ClientProtocol(client ui, packet M , round d) :
if (d%2 = 1) // Base round, T = N // then
νi = number of fragments required to send packet
M

xi = pick a random number uniformly at random
for each j ∈ {1, . . . , T} do
ci(j) = GenCipher((xi||νi), d, j)

Send (d, ci(1), · · · , ci(N)) to relay R
(xπ1 , t1), · · · , (xπN , tN) = wait for response from R

if !∃(xπj , tj) : (xπj , tj) = (xi, νi) then
Run Blame protocol

else
T = t1 + · · ·+ tj−1, T = t1 + · · ·+ tN

else
// Bulk round, T = t1 + . . . tN //
xi1, · · · , xiν = Split packet M into νi fragments
for each t ∈ {1, . . . , T} do

if T < j ≤ T + ν then
ci(t) = GenCipher(xi,t−T, d, t) // Send
packet //

else
ci(t) = GenCipher(0, d, t) // Send zeros //

Send (d, ci(1), · · · , ci(T)) to R
D1, . . . , DN = wait for response from R

if !∃Dj : Dj = M then Run Blame protocol

GenCipher(message x, round d, slot t) :
if (d%2 = 1) then y1 = xt mod p; y2 = κ · y1 mod q

else y2 = κ · x mod q
c = y2 + F(ri, d)t mod q; return c

Fig. 4. Protocol run in OrgAn. The texts in // – // blocks de-
note comments, and this color relates to defenses against dis-
ruption that we describe in Section 5. The exact details of those
defenses are skipped here.

OrgAn 589

Note that xti is computed as a group element in Zp,
however for computing κ · xti, it is treated as integer as
long as κ · xti < q. We discuss shortly the exact relation
between p, q and κ for which the equation system holds.
Slot Value Reveal. For a slot t, the relay R collects
the ciphertexts c1(t), . . . , cN(t) from all the clients and
computes:

P (t) =c1(t) + · · ·+ cN(t)−F(K · s, d)t ∈ Zq

=(κ · (xt1 + xt2 + · · ·+ xtN) + e) ∈ Zq

After dividing P (t) by κ and rounding to the nearest
integer, the relay gets:

E(t) = bP (t)/κe mod p = xt1 + xt2 + · · ·+ xtN ∈ Zp

It is important to note that E(t) is in Zp. The structure
of E(t) remains unharmed as long as q > pκN > 2pN2.
We discuss the appropriate choices of p and q for sat-
isfactory performance in Section 7. Once all the slot
values from all the clients are received, the relay has
E(1), . . . , E(N). The relay can solve the above equa-
tion system to retrieve x1, x2, . . . , xN (without know-
ing which message belongs to which client) using
SolveEqn(E(1), . . . , E(N)). Once the individual values
x1, x2, . . . , xN are retrieved, the relay can forward them
to the outside world. We present the pseudocode for the
protocol in Figure 4. The setup servers do not take part
during the protocol run at all.

4.3 Scaling with Bulk Protocol

The protocol described in Section 4.2 (what we call
Base protocol) is a perfectly fine protocol to commu-
nicate to the outside world, except it does not scale
well with the number of clients. If the number of clients
increases, solving the equation system becomes a bot-
tleneck. Also, in order to send a single IP packet (typi-
cally 512 Bytes) using our Base protocol the client needs
to break the packet into multiple fragments and send
them over multiple rounds — and that adds a compu-
tational/management overhead. So, we present a Bulk
protocol that minimizes the above two problems. Our
Bulk protocol draws its inspiration from the Bulk proto-
col in Dissent [16]. Each client participates in one round
of Base protocol and one round of Bulk protocol to send
one IP packet.
Client Permutation Generation with Base Pro-
tocol. Each client picks a random number xi ∈ Zp and
uses one round of Base protocol to broadcast (xi, νi)
to all the users, where νi is the number of fragments

required to send the IP packet the client wants to
send. When the relay broadcasts the output set of pairs
(xi, νi) it generates a random permutation Ψ of those
pairs. Each client i checks the position Ψ(i) of their own
input in the output permutation. The client ui sends
νi consecutive fragments in the immediate next Bulk
round, starting from the slot

∑Ψ(i)−1
j=1 νΨ(j) + 1. The

Bulk round will have a total of T =
∑N
i=1 νi slots.

Client Ciphertext Generation in Bulk Round.
Each client ui splits the IP packet into νi fragments
xi1, . . . , xi,νi . For each slot t in the Bulk round, the client
computes:

Ti =
Ψ(i)−1∑
j=1

νΨ(j) pi(t) = F (ri, d)t

ci(t) =

{
pi(t) t ≤ Ti or t > Ti + νi

κ · xi,j + pi(t) t = Ti + j, 0 < j ≤ νi

ui then sends the ordered set {ci(1), . . . , ci(T)} tagged
with the round number d to the relay R.
Message Reveal. Similar to the Base protocol, for
every slot t the relay R collects the ciphertexts
c1(t), . . . , cN(t) from all the users and computes the fol-
lowing:

P (t) =c1(t) + · · ·+ cN(t)−F(K · s, d)t

The relay can reveal the corresponding slot value by
computing bP (t)/κe mod p. The relay retrieves the
whole IP packets by bitwise concatenating the slot val-
ues of the associated slots. Then the relay sends the
retrieved IP packets to the outside world.
Multiple Rounds. The value of F (ri, d) can be com-
puted for arbitrarily large value of d. This means the
protocol can be run for a large number of rounds with-
out the need to rerun the setup. Additionally, the relay
does not need to receive ciphertexts for different rounds
in the correct sequence, the relay can map them cor-
rectly using the round tag and slot id associated with
each ciphertext. Although the round number d can be
arbitrarily large in F (ri, d), for forward secrecy we rec-
ommend running the setup once every few days. The
relay can invoke this procedure at regular intervals. If
the relay does not run the setup regularly as expected,
the clients will suspect the relay’s malicious intentions.

4.4 Performance Improvement with
Pre-processed PRF Values

Much of the computation overhead on the client dur-
ing the protocol run can be reduced using some pre-

OrgAn 590

processing. The pre-processing can happen in the fol-
lowing two steps:
Pre-processing Hash Computation. Recall that we
use a lattice based PRF of the form F(ri, d) = bri ·
H(d)cq. The part H(d) is entirely independent of any
secret values associated with the client, and the input
to H gradually increases with the round number. There-
fore, for a large integer T, the hash values for the range
of input values [1,T] can be pre-processed and provided
to the clients as part of the installation. The clients only
need to rerun the setup when those hash values are ex-
hausted, and with the new set of secrets, they can start
reusing the hash values. This eliminates the hash com-
putation overhead from the client altogether.
Pre-processing Overall PRF Computation. Ad-
ditionally, we assume that the clients have a prepro-
cessing time everyday before they start using the sys-
tem — using the already available hash values, the
clients can preprocess the PRF computation for several
rounds (or for the whole day). With the preprocessed
pi(t) = F (ri, d)t values, each client needs to perform
only one scalar multiplication and one addition to com-
pute ci(t) = κ · xi,j + pi(t) for every round.

5 Handling Disruption
We now describe how OrgAn can detect and de-
fend against a compromised or malfunctioning par-
ticipants that might disrupt the protocol by send-
ing wrong/malformed ciphertexts. As suggested in Sec-
tion 2.2, we do not consider active attacks from outside
the organizational network.

5.1 Disruption Detection

To detect a disruption we modify our protocol for the
relay R to broadcast a response message with the val-
ues x1, . . . , xN at the end of each round. Each client ui
checks if her xi exists in the response message. If xi
cannot be found, the client can initiate the Blame pro-
tocol for a disrupted round d by broadcasting the tu-
ple (d,F (ri, d) , xi). Note that the disruption detection
technique depends on the relay delivering the same re-
sponse message to all clients. If the relay does not do
that, the technique mentioned in Section 5.4 defends
against that.

A client ui cannot find xi in the response message
means the relay has retrieved at least one wrong mes-

sage. It is possible in three ways: (1) the relay has
done the computations wrong or intentionally modi-
fied the messages, (2) some malicious client has sent
a bad ciphertext, (3) Some malicious setup server has
distributed wrong shares. If the relay did not act mali-
ciously, it is its responsibility to find the culprit.

5.2 Blame Protocol

The Blame protocol for a round is invoked by at least
one client, and then it is run by the relay R. For the
Blame protocol to work correctly, we need to slightly
modify the setup phase as well as the protocol run as
described below.
Modifications in the Setup Phase. In the setup
phase, now the setup servers need to generate addi-
tional information along with ri,j values to verify the
correctness of the PRF computation. Let the secret
shared by Gj to client ui be rij = {αij1, . . . , αiju}
such that each αij1, . . . , αiju ∈ Zv and let all the setup
servers and the relay mutually agree on g,h of order
τ > qv. Then each guard server Gj computes Γrij ={

gαij1hβij1 , gαij2hβij1 , . . . , gαijuhβiju
}
with blinding fac-

tors β(·)
$←− Zv. The setup server also computes k` such

that for each `,
∑N
i=1 αij` = s` + k` · v mod τ and a

range proof πk,` proving 0 < k` < N. Since we use a non-
standard order v, we use commitments on a standard
elliptic curve of higher order τ and use suitable verifica-
tion procedure (c.f. Section 5.3). Gj sends a signature
σij = SpGj (ui,Γrij , πk,`) along with the values rij , πk,`
to the client ui.

Once the client ui receives the tuple (rij , σij , πk,`),
ui computes Γrij verifies the signature σij . If those ver-
ifications are successful, ui forwards (Γrij , σij , πk,`) to
the relay R. Note that the relay receives redundant πk,`
from each client. The relay additionally verifies the fol-
lowing two conditions:
– for each ` ∈ {1, 2, . . . , u} if ΠN

i=1gαij`hβij` = gs`hs
′
` ·

(g−vk`h−vk
′
`) holds, where s = {s1, s2, . . . , su}; it also

verifies πk,`. The quantities s′, k′` are defined analo-
gously from the blinding factors β(·).

– if each σij is a valid signature of (ui,Γrij) generated
by the setup server Gj .
The above steps in the setup phase ensure that each

setup server has generated and distributed the ri,j val-
ues correctly. Therefore, during the Blame protocol run,
the relay or the clients will not require interaction with
the setup servers.

OrgAn 591

Modifications in the Protocol Run. During the
protocol run, each client ui sends all the ciphertext
values {ci(1), . . . , ci(N)} along with a signature σi =
Spui ((d, ci(1), . . . , ci(N))), for round number d. The relay
verifies the signature and stores for future use.

Our protocol handles the Blame scenario slightly
differently when a Base round is disrupted vs. when a
Bulk round is disrupted. If a Base round is disrupted
since no actual information is transmitted, the clients
can reveal the F (ri, d) and xi values — then they can
just rerun the Base round and use the new slot agree-
ment for the next Bulk round. However, if a Bulk round
is disrupted, the clients cannot reveal the F (ri, d) and
xi values. In that case, the protocol is designed to leak
only 1-bit without deanonymizing the client.
When a Base Round Is Disrupted. A client can
invoke the Blame protocol for a Base round d by broad-
casting the tuple (d,F (ri, d) , xi) and xi corresponding
to round d. Once Blame is invoked, the relay asks all
the clients to send their F (ri, d) and xi values. Addi-
tionally, each client ui needs to send a non-interactive
zero-knowledge proof (NIZKP) λi of correct evaluation
of the function F . If a Base round is disrupted F (ri, d),
xi and λi values are sent for all the slots in that round,
however for a Bulk round, it is sufficient to verify only
the disrupted slot. We provide the detailed structure
and the verification method of λi values in Section 5.3.
A non-compliant client will be blamed by the relay.

Once all the values are received, the relay recom-
putes the ci(t) values with the newly sent values of
F (ri, d) and xi, and verify that they are consistent with
the previously sent values. Additionally, the relay veri-
fies the correctness of F (ri, d)t values using λi values.
The client who sent a wrong ci(t) or λi will be blamed
and excluded from the protocol. If the Blame has been
raised wrongly, the relay can prove that by broadcasting
the F (ri, d) and xi values it received from all clients.

If at least one slot is disrupted and no client is found
guilty (all clients have run the protocol correctly), that
means the shares rij distributed by the setup servers to
the clients were not correct, or the relay is the disruptor.
However, if it is the first case, the relay should have
flagged that during the verifications in the setup phase,
and hence, the relay is blamed.
When a Bulk Round Is Disrupted. The clients can-
not reveal the F (ri, d) and xi values if a Bulk round is
disrupted. In that case, we modify the protocol to leak
only 1-bit without deanonymizing the client.

For the Blame protocol to work for Bulk rounds,
we further modify our Bulk protocol to include an ad-

ditional flag bit that tells the relay to run the Blame
protocol for the last Bulk round — a client can initi-
ate the Blame protocol anonymously by setting the flag
bit to 1. As part of the content of the message in Bulk
protocol, instead of a random number, the client sends
the slot index and bit index for the slot that he wants
to open. Similar to PriFi, the clients in OrgAn invoke
the Blame protocol for a bit position where the original
value is 0 (if the original message bit is 1 for a client, that
trivially reveals that the slot belongs to the client). This
allows the clients to invoke the Blame protocol without
revealing their identities if a Bulk round is disrupted.
Additionally, since the Blame protocol is invoked with-
out revealing the client’s identity, the client also needs
to include a proof to prove that the disrupted slot was
actually owned by her — we describe the proof below.
It is important to note here, in this version of the Blame
protocol the preceding Base round is not opened.

For the client to be able to prove the ownership of
a slot without revealing the identity, we make a minor
modification to our Base protocol — instead of pub-
lishing a random number x during the Base round, the
client publishes the hash H1(D,x). Here D is the re-
sponse message sent by the relay in the last Bulk round,
and H1(·) is a cryptography secure hash function that
maps {0, 1}∗ to {0, 1}ηp . If the Bulk round is disrupted,
the client can publish x along with the slot index and
bit index to prove that the slot was owned by her with-
out revealing her own identity. The security level of this
technique depends on the value of ηp — that determines
the probability of the adversary finding a collision. How-
ever, the adversary needs to find a collision before the
next round to use it against an honest client.

Suppose, the Blame protocol is invoked for bit posi-
tion ` of slot index t. In this version of Blame protocol,
a client does not send the xi and F (ri, d)t values to the
relay; instead sends the `-th bit of F (ri, d)t and a tuple
(gψ1hψ

′
1 , gψ2hψ

′
2) where ψ1 is the first (`−1) bits and ψ2

is the last (q − `) bits of F (ri, d)t. ψ′1, ψ′2 are the corre-
sponding parts of the blinding factor. Additionally, the
client sends λi, a non-interactive zero knowledge range
proof for correct PRF evaluation (refer to Section 5.3 for
more details). This allows the client to reveal the `-th
bit of F (ri, d)t without revealing the value, and allows
the relay to verify that the bit is indeed the `-th bit of
correct PRF value. If a client fails to provide the above
values, the relay blames that client as the culprit. If no
client is detected as the culprit, by default, the relay is
blamed. However, if the Blame has been raised wrongly,
the relay can prove its innocence by broadcasting the
values it has received from all the clients.

OrgAn 592

5.3 Verifiability of PRF

Recall that the PRF values were generated by first
performing ring product as element-wise multiplica-
tion of the NTT transform of k and H(·), and then
applying inverse NTT transform on the output from
the first step. More specifically, let the NTT trans-
forms of ri be r̂i = {αi1, αi2, . . . , αiu}. and of H(·) be
Ĥ = {h1, h2, . . . , hu}; also let Li = {`i1, `i2, · · · , `iu} de-
note the element-wise product of Ĥ, r̂i. Then we have,
`ik = αik · hk for k ≤ u. Let the Inverse NTT of Li
is denoted by Wi = {wi1, wi2, · · · , wiu}. Then we have:
wik = u−1∑u

j=1 `ijΩ
−k(j−1) mod v, where Ω is the u-th

primitive root of unity.
The final PRF output set is obtained as bWicq =

{bwi1cq, bwi2cq, · · · , bwiucq} = {zi1, zi2, · · · , ziu}. There-
fore, the following holds for each index k < u: vzik +
eik = qwik for some 0 < eik < v.

Below we describe the steps that enable the relay to
verify the correctness of the PRF computations during
the Blame protocol run:
Additional Steps during Setup Phase. Let all
setup servers and the relay mutually agree on gen-
erator g, h of a multiplicative group G of order
τ > qv. Each setup server Gj computes ρrij ={

gαij1hβij1 , gαij2hβij2 , . . . , gαijuhβiju
}
for β(·)

$←− Zv and
a signature σij = SpGj (ui, ρrij), and sends them to client
ui. The client verifies the signature and the computation
of ρrij , and forwards them to the relay. After receiving
the ρrij values from each client, the relay verifies the
signatures as well.
Client Side Computation. During the blame pro-
tocol, a client computes eik and range proofs [11]
πe,i,k, πk,i,k verifying 0 < eik < v, 0 < kik < min(τ, uv2),
where wik+kikv = u−1∑u

j=1 `ij ·Ω
−k(j−1) mod τ . Then

the client sends as a NIZKP for correct PRF computa-
tion, λ = (geikhe

′
ik , πe,i,k, πk,i,k) to the relay, without

revealing eik. Here, e′ik is defined and computed analo-
gously to eik with the corresponding blinding factors.
Relay Side Computation. The relay R can compute
the values

{
ggαi1hβi1 ,αi2hβi2 , . . . , gαiuhβiu

}
using the val-

ues it received during the setup phase. Using this, the
relay can compute:

gwikhw
′
ik = g−vkikh−vk

′
ik

u∏
j=1

(gαijhβij)hj ·Ω
−k(j−1)·u−1

for k ≤ u. Note here, v,Ω, hj are public information, and
k′ik is the blinding factor for kik.

To verify that a PRF value zik is correct, the relay
needs to verify gvzikhvz

′
ik · geikhe

′
ik = gqwikhqw

′
ik . Here,

z′ik, w
′
ik, e

′
ik are defined analogously to zik, wik, eik with

the corresponding blinding factors.
Note that the relay can compute gqzikhqz

′
ik =(

gψ1hψ
′
1

)2`
· gψ2hψ

′
2 , corresponding to the Blame for a

Bulk round. Additionally, the relay needs to verify the
range proofs πe,i.k and πk,i,k.

5.4 Equivocation Protection

With our key-homomorphic PRF based construction,
we achieve protection against equivocation almost for
free. We include a summary of history till round (d− 1)
as part of the key of the PRF function in round d: pi(t) =
F (h(d− 1) · ri, d)t ∈ Zq where h(d− 1) is computed lo-
cally by each client as h(d−1) = H(h(d−2), D(d−1)) for
the response message D(d−1) sent by the relay in round
(d−1). H(·) is a cryptographically secure hash function
that maps {0, 1}∗ to {0, 1}η for the security parameter
η. Note that the multiplication between h(d− 1) and ri
is a scalar multiplication since h(d−1) is a scalar value.

Then the relay reveals the slot value for a slot t in
the round d from the ciphertexts c1(t), . . . , cN(t) using,

P (t) = c1(t) + · · ·+ cN(t)−F(h(d− 1) · K · s, d)t

With this minor modification, the relay will be unable
to retrieve all future messages if it transmits different
values for D(d) to different clients in any round.

6 Security Analysis
In this section, we argue the anonymity properties of
the protocol. Here we present the security theorems
and their implications, and postpone the proofs to Ap-
pendix C. The security definition of PRFs is also pre-
sented in Appendix C.

6.1 Anonymity Definition

We focus on sender anonymity for our protocol. We for-
mally define anonymity based on AnoA [36] framework
as an indistinguishability-based interactive game be-
tween a challenger (running the protocol) and a PPT ad-
versary. The goal of the adversary is to find out which of
the two adversarially-chosen senders has sent a message
to a specific recipient (sender anonymity). More for-
mally, the adversary can send polynomial number of in-
put messages of the form (Input, u,R,m), then one chal-

OrgAn 593

Upon message (Input, u, R,m):

RunProtocol(u,R,m)

Upon message (Chall, u0, u1, R0, R1,m0,m1):

Compute (u∗, R∗)← α(u0, u1, R0, R1, b)
RunProtocol(u∗, R∗,m0)

RunProtocol(u,R,m):

Run Π on r = (u,R,m) and forward all messages
that are sent by Π to the adversary A and send all
messages by the adversary to Π.

αSA(u0, u1, R0, R1, b) = (ub, R0)

Fig. 5. Adaptive AnoA Challenger Ch(Π, α, b) [36]

lenge message (Chall, u0, u1, R0, R1,m0,m1), and tries
to guess a challenge bit b of the challenger in the game.

Definition 2 ((α, δ)-IND-ANO). A protocol Π is (α, δ)-
IND-ANO for the security parameter η, an anonymity
function α and a distinguishing factor δ(·) ≥ 0, if for
all PPT machines A,
Pr [0 = 〈A|Ch(Π, α, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, α, 1)〉] + δ(η).

Definition 3 (Sender anonymity). A protocol Π pro-
vides δ-sender anonymity if it is (αSA, δ)-IND-ANO for
αSA as defined in Figure 5.

6.2 Anonymity Analysis

Theorem 1 (Sender Anonymity of Base Protocol).
Assuming F() is a computationally secure pseudoran-
dom function, the Base protocol of OrgAn provides
sender anonymity as defined in Definition 3 with negli-
gible δ against any global passive adversary A, as long
as at least two clients and one setup server are honest.

The above theorem shows that the Base protocol of Or-
gAn provides sender anonymity with negligible adver-
sarial advantage when it runs without any disruption.
Now we extend the argument for Bulk protocol.

Theorem 2 (Sender Anonymity of OrgAn). Assum-
ing F() is a computationally secure pseudorandom
function, OrgAn provides sender anonymity (when Bulk
protocol is employed) as defined in Definition 3 with
negligible δ against any global passive adversary A, as
long as at least two clients and one setup server are
honest.

Note that we are considering a whole IP packet as the
message in our anonymity game. Therefore the chal-
lenge message in the anonymity game can be of vary-
ing length. The above theorem considers both Base and
Bulk rounds, and OrgAn provides anonymity with neg-
ligible δ as long as the PRF F is secure, given that the
protocol is run without any disruption.

6.3 Security against Active Attacks

When a malicious client tries to disrupt the protocol
by sending a malformed message, we want the honest
clients to be able to detect that with overwhelming prob-
ability and be able to identify and punish the culprit.
But first, we want to show that the relay cannot launch
equivocation attacks, i.e., all honest clients receive the
same response message after a round.

Lemma 1. Assuming F is a secure PRF as well as (al-
most) key homomorphic with a bounded error e, and H
is a collision-resistant hash function, if the relay sends
two different output messages Di and Dj (Di 6= Dj) to
any two honest clients ui and uj in a round d, the relay
lose the ability to run any later rounds with overwhelm-
ing probability.

Corollary 1. Assuming F is a secure PRF as well as
(almost) key homomorphic with a bounded error e, and
H is a collision-resistant hash function, only with neg-
ligible probability, the adversarial relay can disrupt the
message xi of an honest client ui in round d without
getting detected or losing the ability to run later rounds.

If the Blame protocol is invoked, it is desired that the
culprit is identified correctly with overwhelming proba-
bility and no honest client can be blamed wrongly for
the disruption.

Theorem 3. Assuming λi proves correct computation
of F(ri, t) for a client ui with overwhelming probability
and S() is cryptographically secure signature scheme, if
the Blame protocol is run for a disrupted round d, with
overwhelming probability at least one disruptive party is
identified, and an honest party is not (mis-)identified as
a disruptor.

Unlike the Base protocol, the xi and F(ri, t) values are
not opened if a Bulk round is disrupted. Therefore, we
additionally want that for a disrupted slot ` in a Bulk
round only the client owning that slot can launch the
Blame protocol.

OrgAn 594

Lemma 2. Assuming H1 is a collision resistant hash
function, and the computation power of the adversary
is limited by T hash computations between two consecu-
tive Base rounds where T is polynomial in ηp, the Blame
protocol in disrupted Bulk round d can be invoked by a
malicious client u∗ for a slot ` which is not owned by u∗

only with a probability negligible in ηp.

The above lemma is important to ensure that a mali-
cious client cannot launch the Blame protocol for an
arbitrary slot just to break anonymity of a Bulk round.
Recall that, when a Base round is disrupted, the xi and
PRF values are anyway opened during the Blame phase.
And therefore, anonymity is trivially broken for a dis-
rupted Base round when the xi and PRF values are
opened. To solve that, OrgAn reruns the Base round and
uses the new slot agreement for the next Bulk round.
Hence, we do not want a disrupted Base round to influ-
ence anonymity for other rounds.

Theorem 4. Assuming F is a secure pseudorandom
function, and further assuming that at least one of the
setup nodes is honest, the Blame protocol for a Base
round d does not break anonymity for any other round
d′ 6= d.

Recall that this leakage is not there where a Bulk round
is disrupted. Because when client chooses to invoke the
Blame protocol, only the bit position is opened where
the original bit value was 0. Therefore, anonymity of
the client is protected, and Blame is invoked with prob-
ability almost 1

2 in case of a disruption. According to
Theorem 3, the disruptor is identified with overwhelm-
ing probability when Blame is invoked.

7 Implementation
We have developed a proof-of-concept implementation2

of OrgAn in Rust. We use the Flint2 [1] library for solv-
ing powersum equations. Below we discuss the consid-
erations that we make for our implementation.
Parallelization of Slot Message Computations.
The existence of ‘slot’ is only virtual and all the mes-
sages of all the slots per round are computed and for-
warded to the relay together by the client.

2 https://github.com/zhtluo/organ

Preprocessing. We assume that the hash values are
available to the clients as a part of the installation. As
we already mentioned earlier, we assume that the clients
have a preprocessing time every day before they start
using the system; using the available hash values, the
clients preprocess the expensive part of PRF computa-
tion: f = ri · H(). During the protocol run, to compute
a PRF value a client only needs to compute the multi-
plication between f and h(), where h() is the summary
of the history and thus cannot be preprocessed.
Fragmentation and Defragmentation of Packets.
The clients transmit ηp bits of data per slot in a Bulk
round; the typical Ethernet IP packet (with a Maximum
Transmission Unit (MTU) of 1500 bytes) is broken down
into multiple fragments of ηp bits each and forwarded
to the relay in multiple slots. After computing all the
messages, the relay node identifies the fragments of each
client, forms the full IP packets by combining the frag-
ments, and forwards it to the outside network.
Parallelization of Base and Bulk Rounds. The
Base and Bulk rounds are not required to be run sequen-
tially, instead, they can be run on independent parallel
threads by the relay, with the only requirement that
a Base round corresponding to a Bulk round has run
before the Bulk round. For this performance optimiza-
tion, the protocol requires one minor modification —
the computation of PRFs in a Base round only includes
the history h() of previous Base rounds; however, the
Bulk rounds still consider the history of both Base and
Bulk rounds. In terms of equivocation protection the
only difference now is that, if the (adversarial) relay
equivocates in a given Bulk round, he will be caught in
the next Bulk round instead of the immediate next Base
round.
System Parameters. The values of (p, q, v, u) are
chosen such that the PRF construction offers at-least
128 bits of security estimated using the lwe-estimator
[2, 4]. (p, q, v) are of bit-lengths (ηp, ηq, ηv) respectively.
For the base round, each client chooses a 64 bit random
value for slot selection (64 bit hash output of random
corresponding value from previous round); hence we use
ηp = 64. In the bulk round, the clients forward 226 bits
of data in each slot, with ηp = 226. The corresponding
parameters for base and bulk rounds are:

– Base: (ηp, ηq, ηv, u) = (64, 84, 112, 2048)
– Bulk: (ηp, ηq, ηv, u) = (226, 256, 293, 8192)
The modulus v of the ring used for the base and bulk

protocols are (57×296 +1) and (7×2290 +1) respectively
such that v mod 2u = 1. For error elimination in the
PRF computation, we use κ = 1000.

OrgAn 595

Note that, even though our choice of ηp = 64 for
Base rounds restricts the security of the hash function
H1 to maximum 64 bits, for all other cryptographic con-
structions we choose at least 128-bit security. we find
this choice of ηp to be satisfactory as the adversary has
to find a pre-image before the next Base round to use
that against an honest client.

8 Performance Evaluation

8.1 Microbenchmarks

Here we evaluate the overheads of different steps for the
clients and the relay individually using our prototype
implementation. All the measurements are average of 10
runs of the same experiment, unless otherwise specified.

8.1.1 Overhead for the Clients

Preprocessing Overhead for Clients. We evaluate
the preprocessing overhead for clients on an 16-virtual
core AWS EC2 c4.4xlarge instance. Each PRF (pre-
)computation corresponding to a base round takes 0.5
milliseconds; and for a bulk round, it takes 5 millisec-
onds — the difference arising from the orders of the
ring elements 2048 and 8192. A total of 5.5 milliseconds
of preprocessing for one set of base and bulk rounds
of protocol allowing to forward 8192×226

100 bits for each
client in a 100 client system — that would amount to
∼ 39.6 minutes of preprocessing for 1 GB of anonymous
communication for each client. For 12 hours of prepro-
cessing per day, our current implementation can support
18.1GB of anonymous communication data per client, in
a 100 client system. We want to note that the prepro-
cessing overhead can be further reduced with an optimal
implementation with improved parallelism.
Real-time Overhead for Clients. The real-time
overhead for clients only involves additions and multi-
plications and does not involve any costly computations.
The total computation for a client in a base round, as
well as bulk round, takes less than half a millisecond (for
a 100 client system). The base round involves a few hun-
dred additions and multiplications for each client. For a
bulk round, the client only needs one scalar multiplica-
tion per slot, one addition (of the message), in addition
to the history computation. The history is computed
only once for each round.

8.1.2 Overhead for Relay to Solve Equations System

We use an Amazon AWS EC2 c5.24xlarge instance, with
96 virtual cores to run this benchmark for the relay.
In every Base round the relay needs to solve the equa-
tions system with N equations where N is the number
of clients. We choose ηp = 64 bits as the message size
for each message in Base rounds.

Fig. 6a shows the time taken by the relay to solve
one equation system using a single thread for different
number of clients for the chosen ηp. Each equation sys-
tem corresponds to one base protocol round which is
used to send one IP packet for each client in the bulk
protocol round. For 100 clients, the relay solves ∼ 550
equation systems per second (using multi-threading)
and hence can support ∼ 550 packets per client per
second. Fig. 6b shows the number of equation systems
solved per second by a multi-threaded relay node. For
a packet size µ of 1 KB, this corresponds to a through-
put of 550 KBps and 225 KBps if the average packet
size is 512 bytes. With increasing clients in the system,
the time taken to solve the equations system increases
rapidly, reducing the number of total equation systems
solved and the throughput.

50 100 150 200
20
40
60
80

100

Number of clients

Ti
m

e
(m

ill
ise

co
nd

s)

ηp = 64

(a) Time taken (y-axis) by a single-
threaded relay node to solve the
equation system for the different
number of clients (x-axis).

50 100 150 200102.4

102.6

102.8

103

Number of clients

T

ηp = 64

(b) Number of equation systems
(T) solved per second (y-axis) by
a multi-threaded relay for different
number of clients (x-axis).

Fig. 6. Time taken for solving a single equation system and num-
ber of such equation systems solved by the relay in the base
round with message length ηp = 64. The values show mean of
100 runs of the protocol.

8.2 End-to-end Latency Evaluation

Experimental Setup. We use an AWS EC2
c5.24xlarge instance acting as the relay and ten EC2
c4.4xlarge instances simulating all the clients, each in-
stance simulating multiple clients. We run the real-time
phase of both OrgAn and PriFi in the same setup (us-
ing a simplified Rust implementation of PriFi). In our

OrgAn 596

Table 2. Client-relay-client round trip time (RTT) for the slot
selection using the base protocol phase in OrgAn.

Nodes 50 100 150 200
RTT (msec) 37 56 84 116

50 100 150 200
20

40

60

80

100

Number of clients

RT
T

in
m
ill
is
ec
on

ds

OrgAn-NP-1KB
OrgAn-56B
PriFi*-56B
OrgAn-1KB
PriFi*-1KB

Fig. 7. Round trip time (RTT) to ping an external server
google.com by forwarding 56 byte and 1KB message using the
bulk protocol of OrgAn and PriFi* (that excludes the cost of
setup and equivocation protection from PriFi). The suffix in the
legend indicates the packet size used. OrgAn-NP is OrgAn with
no pre-processing.

experiments, we ignore the overhead of setup runs3 as
well as the costs of equivocation protection in PriFi. In
OrgAn, similar to the clients, the relay also has precom-
puted hash values and preprocesses the expensive part
of the PRF computation.
Round-trip-time (RTT) of Base Round. In Table 2
we show the round trip time (RTT), the time from send-
ing a message to receiving the response message from
the relay, in the Base protocol of OrgAn. The time is
computed from the last client who sends the message to
the time the response message is received from the relay.
For a 100 client system, the base protocol introduces a
delay of less than 60 milliseconds.
End-to-end Latency. We consider that the Base and
Bulk rounds of OrgAn are run in parallel threads as
mentioned in Section 7. Fig. 7 shows the round trip time
(RTT) of Bulk rounds of OrgAn while pinging an exter-
nal server (the IP address google.com); we compare the
RTT of Bulk rounds in OrgAn with PriFi. Barman et
al. [8] already show that PriFi outperforms other pro-
tocols with significant margins, and therefore, it is suf-
ficient to compare our performance with only PriFi.

3 To allow 1 GB of data for a client, assuming an average IP
packet size of 1KB, the setup in PriFi needs to be run ∼ 106

times, and an equal number of verifiable shuffle among the guard
nodes in PriFi to achieve unlinkability for each IP packet.

We measure the round-trip time of the ping experi-
enced by the last client thread that sends the message to
the relay. For PriFi we assume that the PRG values from
the guard nodes for each slot are received by the relay
before the round starts. In a 100 client system, PriFi has
as RTT of 24 milliseconds and OrgAn has 27 millisec-
onds when the packets sent by all the clients are small
(56 Bytes); when the packet sent by each client is of size
1 KB the RTT becomes 29 and 46 milliseconds respec-
tively. While OrgAn introduces a (slightly) higher end-
to-end latency than PriFi, as discussed earlier, it comes
with all the suggested advantages including packet-level
unlinkability. We note that the performance of OrgAn
can be significantly improved with a better implemen-
tation that can optimally parallelize the computations
including group operations.
Throughput Comparison. We compare the through-
put of OrgAn with PriFi in Fig. 8. We use an AWS
EC2 c5.24xlarge instance acting as the relay and ten
EC2 c4.4xlarge instances simulating all the clients, each
instance launching multiple clients.

For PriFi, similar to OrgAn we consider 1KB mes-
sages. In a round, each client uses one slot for its mes-
sages, thus the total number of slots in a round is the
number of clients. To compute the throughput, we com-
pute the total time taken by the clients to forward 100
such messages (rounds) to the relay. To achieve the
packet level of anonymity as OrgAn, PriFi needs to run
a setup phase for each round of communication by the
clients. Fig. 8 shows the throughput achieved by our
implementation of PriFi without setup. To estimate the
time taken to run the setup phase of PriFi, we use a pub-
licly available implementation [21] of Neff’s verifiable
shuffle protocol [37]. Each such verifiable shuffle, includ-
ing shuffle and its verification take ∼ 0.432 seconds for
100 values on an AWS EC2 c4.4xlarge server machine.
Considering 10 servers for each verifiable shuffle proto-
col would lead to 4.3 seconds of setup time per round
for the PriFi protocol. Since the time taken for setup
is much higher compared to the client message genera-
tion, the latency is dominated by the setup time reduc-
ing the throughput. In Fig. 8, PriFi* is the through-
put of the system without the setup phase. PriFi**
is the estimated throughput of PriFi with setup phase
for each packet (1KB) using a verifiable shuffle with 10
guard servers. Fig. 8 also shows the throughput of Or-
gAn with and without pre-processing (shown as OrgAn-
NP). Since the processing and network delays domi-
nated when running sequentially on a single thread, pre-
processing the PRF values offered only minor improve-

OrgAn 597

ment in the throughput. PriFi** shows that for the same
(packet) level of anonymity, OrgAn outperforms PriFi.
Communication and Computation Costs. In both
OrgAn and PriFi all the clients forward values for each
slot in the bulk rounds. Considering a data size of 1KB,
each client forwards 1KB of message data in PriFi,
wherein OrgAn, each client forwards a total of 1.13KB
of data. This is because, to forward a data size of 226
bits in each slot, the client masks with a pseudo-random
value of 256 bits in OrgAn whereas, in PriFi, it is just
XORed with a pseudo-random value retaining the bit-
length. In OrgAn, the relay collects all the slot messages
from the clients and performs group addition and scal-
ing; in PriFi all the slot messages are XORed.

50 100 150 200
0

5

10

15

Number of clients

T
hr
ou

gh
pu

t
in

K
B
ps OrgAn

OrgAn-NP
PriFi*
PriFi**

Fig. 8. Throughput comparison between OrgAn and PriFi systems
for sequentially running 100 1KB message rounds. PriFi* is PriFi
protocol without the setup phase. PriFi** is PriFi assuming 10
servers are running the shuffle protocol (setup) for each round.
OrgAn-NP is OrgAn with no pre-processing.

Storage Overhead for Hash Data. We assume that
the hash values required for the PRF computations are
already available to the clients (as part of the installa-
tion). We discuss the exact overheads in Appendix A.

9 Client Churn
If a client is unavailable during a round, the shares from
that client will not be available and the relay will be
unable to retrieve the message. This client churn issue
is a challenge for most DC-net inspired protocols, es-
pecially in types (a) and (c) in Fig. 2. For OrgAn, if
such a situation occurs the setup can be run again with
the new set of clients; however, all the advantages from
the precomputations will be lost in that case. To avoid
such problems, we assume that the clients are run on
office desktops (considering an office setting) that are
less likely to go offline. We welcome the community for

a robust solution for the client churn problem in DC-net
inspired systems.

Additionally, if we assume that the setup servers
can be contacted (even though they are not involved in
the usual protocol runs), they can collectively provide
the F (ri, d)t values for an unavailable client i for the
upcoming rounds. That provides an interesting possi-
bility to mitigate the client churn problem for OrgAn
as well as PriFi. However, the system needs to agree
that a client is indeed unavailable as otherwise a mali-
cious relay may deanonymize the client by claiming its
unavailability to the setup servers — we leave the exact
solution to that problem for future work.

10 Conclusion
In this paper, we have presented a new AC protocol
OrgAn to provide strong anonymity guarantees in an
organizational network. Our protocol solved a crucial
bottleneck in the state-of-art PriFi – PriFi had to choose
between regularly running the setup phase involving ex-
pensive verifiable shuffle among the setup servers and
linkability among IP packets between two setup runs.
Although we have used public-key cryptography in our
design, we demonstrated that OrgAn is still very prac-
tical with the help of some preprocessing and storage
requirements. Moreover, OrgAn has removed the depen-
dency on setup servers during the real-time phase com-
pletely. Further, if the application scenario demands, the
clients can take up the roles of the setup servers during
the setup phase, thus, completely eliminating the need
for any external servers. Conceptually, we could have
used our Base protocol to just solve the slot selection in
PriFi, instead of using our Bulk protocol. However, such
a scheme will still be dependent on the setup servers in
the real-time phase.

By eliminating the requirement of any setup phases
(for key agreement or slot agreement) before every
round, and dependency on setup servers, OrgAn shows
a practical way of instantiating non-interactive anony-
mous routers [44] — the relay acts as the untrusted
router, and the clients can mix their messages using that
router. We leave the exact formalism for future work.

We do not solve the problem of client churn
where some clients in the system are suddenly ab-
sent/unavailable; it remains an open problem for all
DC-net inspired protocols.

OrgAn 598

Acknowledgement

We thank Zhongtang Luo for his help with running
the experiments. We thank Bryan Ford and Ludovic
Barman for discussions during the early phase of the
project, and the anonymous reviewers and Tim Ruffling
for the insightful feedback. The work has been partially
supported by the National Science Foundation (NSF)
under grant CNS-1846316, by the Research Council KU
Leuven under the grant C24/18/049, by CyberSecurity
Research Flanders with reference number VR20192203,
and by DARPA FA8750-19-C-0502. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the authors and do not nec-
essarily reflect the views of any of the funders. Most of
the work was completed when Debajyoti was a student
at Purdue University. Both the corresponding authors
(Debajyoti and Easwar) have contributed equally to the
paper and have been ordered alphabetically.

References
[1] FLINT: Fast Library for Number Theory, . https://www.

flintlib.org/.
[2] LWE Estimator, . https://bitbucket.org/malb/lwe-

estimator/src/master/.
[3] I. Abraham, B. Pinkas, and A. Yanai, Blinder – scal-

able, robust anonymous committed broadcast, in Proceed-
ings of the 2020 ACM SIGSAC CCS, 2020, p. 1233–1252.

[4] M. R. Albrecht, R. Player, and S. Scott, On the
concrete hardness of learning with errors, Journal of Mathe-
matical Cryptology, 9 (2015), pp. 169–203.

[5] N. Alexopoulos, A. Kiayias, R. Talviste, and
T. Zacharias, MCMix: Anonymous Messaging via Se-
cure Multiparty Computation, in Proceedings of the 26th
USENIX Security Symposium, 2017, pp. 1217–1234.

[6] A. Banerjee and C. Peikert, New and improved key-
homomorphic pseudorandom functions, in Advances in Cryp-
tology – CRYPTO 2014, 2014.

[7] A. Banerjee, C. Peikert, and A. Rosen, Pseudorandom
functions and lattices, in Proceedings of the 31st Annual
International Conference on Theory and Applications of
Cryptographic Techniques, EUROCRYPT’12, 2012, pp. 719–
737.

[8] L. Barman, I. Dacosta, M. Zamani, E. Zhai,
A. Pyrgelis, B. Ford, J. Feigenbaum, and J. Hubaux,
Prifi: Low-latency anonymity for organizational networks,
Proc. Priv. Enhancing Technol., 2020 (2020), pp. 24–47.

[9] D. Boneh, K. Lewi, H. Montgomery, and A. Raghu-
nathan, Key homomorphic prfs and their applications, in
Advances in Cryptology – CRYPTO 2013, 2013.

[10] J. Bos and B. den Boer, Detection of disrupters in the dc
protocol, in Advances in Cryptology — EUROCRYPT ’89,
J.-J. Quisquater and J. Vandewalle, eds., 1990, pp. 320–327.

[11] B. Bünz, J. Bootle, D. Boneh, A. Poelstra,
P. Wuille, and G. Maxwell, Bulletproofs: Short proofs
for confidential transactions and more, in 2018 IEEE Sym-
posium on Security and Privacy (SP), IEEE, 2018, pp. 315–
334.

[12] D. Chaum, Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms, Communications of the ACM, 4
(1981), pp. 84–88.

[13] D. Chaum, The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability, Journal of Cryp-
tology, 1 (1988), pp. 65–75.

[14] D. Chaum, D. Das, F. Javani, A. Kate, A. Krasnova,
J. de Ruiter, and A. T. Sherman, cmix: Mixing with
minimal real-time asymmetric cryptographic operations, in
ACNS, 2017.

[15] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, Ri-
poste: An anonymous messaging system handling millions
of users, in IEEE Symposium on Security and Privacy, 2015,
pp. 321–338.

[16] H. Corrigan-Gibbs and B. Ford, Dissent: Accountable
Anonymous Group Messaging, in Proc. ACM SIGSAC CCS,
2010, pp. 340–350.

[17] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford,
Proactively Accountable Anonymous Messaging in Verdict,
in Proc. 22nd USENIX Security Symposium, 2013, pp. 147–
162.

[18] G. Danezis, R. Dingledine, and N. Mathewson,
Mixminion: design of a type iii anonymous remailer pro-
tocol, in 2003 Symposium on Security and Privacy, 2003.,
2003, pp. 2–15.

[19] D. Das, S. Meiser, E. Mohammadi, and A. Kate,
Anonymity trilemma: Strong anonymity, low bandwidth
overhead, low latency - choose two, in 2018 IEEE Sympo-
sium on Security and Privacy (SP), 2018, pp. 108–126.

[20] D. Das, S. Meiser, E. Mohammadi, and A. Kate, Com-
prehensive anonymity trilemma: User coordination is not
enough, Proceedings on Privacy Enhancing Technologies,
2020 (2020), pp. 356–383.

[21] DEDIS, DEDIS Advanced Crypto Library for Go.
https://github.com/dedis/kyber/tree/master/shuffle. 2019.

[22] R. Dingledine and N. Mathewson, Tor Protocol Speci-
fication. https://gitweb.torproject.org/torspec.git?a=blob_
plain;hb=HEAD;f=tor-spec.txt. Accessed Nov 2011.

[23] R. Dingledine, N. Mathewson, and P. Syverson, Tor:
The second-generation onion router, in Proceedings of the
13th USENIX Security Symposium, 2004, p. 21.

[24] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and
D. Boneh, Express: Lowering the cost of metadata-hiding
communication with cryptographic privacy, in 30th USENIX
Security Symposium, M. Bailey and R. Greenstadt, eds.,
2021, pp. 1775–1792.

[25] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi,
and J. Schwenk, Universally composable security analysis
of tls, in Provable Security, J. Baek, F. Bao, K. Chen, and
X. Lai, eds., 2008, pp. 313–327.

[26] P. Golle and A. Juels, Dining cryptographers revisited,
in Proc. of Eurocrypt 2004, 2004.

[27] H. W. Gould, The girard-waring power sum formulas for
symmetric functions, and fibonacci sequences, Fibonacci
Quarterly, 37 (1999), pp. 135–140. https://www.fq.math.

https://www.flintlib.org/
https://www.flintlib.org/
https://bitbucket.org/malb/lwe-estimator/src/master/
https://bitbucket.org/malb/lwe-estimator/src/master/
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://www.fq.math.ca/Issues/37-2.pdf

OrgAn 599

ca/Issues/37-2.pdf.
[28] J. Katz and Y. Lindell, Introduction to modern cryptog-

raphy, CRC press, 2020.
[29] A. Krasnova, M. Neikes, and P. Schwabe, Foot-

print scheduling for dining-cryptographer networks, in FC,
J. Grossklags and B. Preneel, eds., 2016, pp. 385–402.

[30] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and
B. Ford, Atom: Horizontally scaling strong anonymity,
in Proceedings of the 26th SOSP, 2017, p. 406–422.

[31] D. Lazar, Y. Gilad, and N. Zeldovich, Karaoke: Dis-
tributed private messaging immune to passive traffic analy-
sis, in 13th USENIX OSDI), 2018, pp. 711–725.

[32] S. Le Blond, D. Choffnes, W. Caldwell, P. Dr-
uschel, and N. Merritt, Herd: A Scalable, Traffic Analy-
sis Resistant Anonymity Network for VoIP Systems, in Proc.
ACM SIGCOMM 2015, 2015, pp. 639–652.

[33] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel,
H. Ballani, and P. Francis, Towards Efficient Traffic-
analysis Resistant Anonymity Networks, in Proc. ACM SIG-
COMM 2013, 2013, pp. 303–314.

[34] S. Le Blond, A. Cuevas, J. R. Troncoso-Pastoriza,
P. Jovanovic, B. Ford, and J.-P. Hubaux, On enforcing
the digital immunity of a large humanitarian organization, in
2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 424–440.

[35] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind,
A. Kate, and A. Miller, Honeybadgermpc and Asyn-
chromix: Practical asynchronous mpc and its application
to anonymous communication, in Proceedings of the 2019
ACM SIGSAC CCS, 2019, pp. 887–903.

[36] M. Backes, A. Kate, P. Manoharan, S. Meiser, and
E. Mohammadi, AnoA: A Framework For Analyzing Anony-
mous Communication Protocols, Journal of Privacy and
Confidentiality (JPC), 7(2) (2016).

[37] C. A. Neff, A verifiable secret shuffle and its application to
e-voting, ACM CCS, 2001, p. 116–125.

[38] U. Office of the Director of National Intelli-
gence (ODNI), Global trends 2040, 2021.

[39] D. Pointcheval and J. Stern, Security arguments for
digital signatures and blind signatures, Journal of Cryptol-
ogy, 13 (2001).

[40] RFC 8446, The Transport Layer Security (TLS) Protocol
Version 1.3. https://tools.ietf.org/html/rfc8446. Accessed
April 2021.

[41] T. Ruffing, P. Moreno-Sanchez, and A. Kate, P2P
Mixing and Unlinkable Bitcoin Transactions, in Proc. 25th
NDSS, 2017.

[42] C. P. Schnorr, Efficient identification and signatures for
smart cards, in Advances in Cryptology — CRYPTO’ 89
Proceedings, G. Brassard, ed., 1990, pp. 239–252.

[43] C. R. Scott and S. A. Rains, Anonymous communica-
tion in organizations: Assessing use and appropriateness,
Management Communication Quarterly, 19 (2005), pp. 157–
197.

[44] E. Shi and K. Wu, Non-interactive anonymous router,
in Advances in Cryptology - EUROCRYPT 2021, 2021,
pp. 489–520.

[45] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and
N. Zeldovich, Stadium: A distributed metadata-private
messaging system, in Proceedings of ACM SOSP, 10 2017,

pp. 423–440.
[46] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zel-

dovich, Vuvuzela: Scalable private messaging resistant to
traffic analysis, in Proc. 25th ACM SOSP, 2015.

[47] L. von Ahn, A. Bortz, and N. J. Hopper, K-anonymous
message transmission, in Proceedings of the 10th ACM
SIGSAC CCS, 2003, p. 122–130.

[48] M. Waidner, Unconditional sender and recipient untrace-
ability in spite of active attacks, in Advances in Cryptology
— EUROCRYPT ’89, 1990, pp. 302–319.

[49] M. Waidner and B. Pfitzmann, The dining cryptogra-
phers in the disco: Unconditional sender and recipient un-
traceability with computationally secure serviceability, in Ad-
vances in Cryptology — EUROCRYPT ’89, 1990, pp. 690–
690.

[50] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford,
and A. Johnson, Dissent in Numbers: Making Strong
Anonymity Scale, in 10th USENIX OSDI’12, 2012, pp. 179–
182.

A Application Considerations

A.1 Storage Overhead for Hash Data

We assume that the hash values required for the PRF
computations are already available to the clients (as
part of the installation). The amount of hash data used
is 112×2048 bits for one base round and 293×8192 bits
for one bulk round. With one base round and one bulk
round each client can transmit one IP packet. There-
fore, if a storage of 10 GB is allocated for hash data,
each client can transmit 1010×8

(112×2048)+(293×8192) u 30422
IP packets anonymously. Assuming an average size of
1 KB per IP packet, this would correspond to ∼ 29.72
MB of anonymous data for each client. This is for a
single set of shares from the setup servers. During the
setup phase, the setup servers forward multiple secret
sharings of the vector s instead of a single set of shares
to the clients. If they forward 34 such sharings amount-
ing to 9.72 MB of shares per server (and 18.95 MB of
proof of correct secret sharing), each client can transmit
1 GB of data anonymously. When the allocated budget
of anonymous communication is exhausted, the client
triggers a setup for re-sharing by the setup servers; the
stored hash data is reused after every setup phase.

A.2 Problem of Enumerating All Clients

The protocol described in Section 4 requires the setup
servers to know all the clients in the system to be able to

https://www.fq.math.ca/Issues/37-2.pdf

OrgAn 600

share the rij values. However, even if each setup server
does not know all the clients, the system will still work.
A setup server can split s only among the clients it
knows. As long as the relay knows the total number
K of setup servers, the relay can retrieve the messages
correctly because

∑
i,j rij = K · s still holds. As long

as each client receives a secret share from at least one
server it trusts, the security guarantees also remain the
same.

A.3 Supporting Lightweight Clients

If client churn is not a concern (e.g., a meeting scenario
where all the clients remain online throughout the whole
meeting or mixing Bitcoin scenario), we can run the pro-
tocol on mobile and other lightweight devices. We can
do that by offloading the preprocessing onto a desktop
machine — during non-working hours that machine can
preprocess and store the data in a removable storage
(e.g., micro-SD cards can store up to 128 GB of data).
At the beginning of the meeting, the removable storage
can be put into the mobile device and the mobile device
can now use the preprocessed data to run the protocol.

A.4 Application Scenarios

ICRC Scenario. In Section 1, we discuss a strong
need for traffic-analysis-resistant anonymous communi-
cation for delegates at multinational organizations such
as ICRC. Similar to PriFi, OrgAn can also be deployed
in such a scenario. However, OrgAn has a major advan-
tage over PriFi — when each delegation brings their own
local trusted server, the communication between the re-
lay and the servers can become a bottleneck in the case
of PriFi as the relay needs to receive ciphertexts from
each of the servers for every round. Such a bottleneck
is not present in OrgAn since the servers and the re-
lay do not communicate with each other. Moreover, the
servers in OrgAn are logical entities and can be run by
the clients, removing the requirement of having external
servers completely.

In the above scenario, the clients can use our proto-
col to anonymously access different kinds of applications
like browsing, DNS queries, calls etc.
VPN. Two separate organizational networks can set
up a site-to-site virtual private network (VPN) between
them by utilizing the OrgAn setup. client A of organi-
zation X can communicate to client B of organization
Y without revealing who is talking to whom. Similarly,

a remote access VPN can also be implemented using
OrgAn.
Mixing Bitcoin Transactions. The Base protocol of
OrgAn can be used for mixing Bitcoin transactions ex-
actly in the same way as Dicemix [41]. Since OrgAn
eliminates the necessity to run a key agreement for ev-
ery round, OrgAn will yield a much faster transaction
mixing protocol. As future work, we plan to integrate
OrgAn into CoinShuffle++ protocol [41].

A.5 OrgAn as Non-Interactive Anonymous
Router (NIAS)

By eliminating the requirement of any setup phases (for
key agreement or slot agreement) before every round,
and since the setup servers do not take part at all during
the online phase of the protocol, OrgAn shows a prac-
tical way of instantiating non-interactive anonymous
routers [44]. In this case, the relay acts as the untrusted
router, and the clients can mix their messages using that
router. We leave the exact formalism for future work.

B Short Description of PriFi
PriFi utilizes the client/relay/server model to solve
the bottleneck of running key-agreement protocol be-
fore every round of DC-net-based protocols. In this
client/relay/server model, PriFi protocol has three sets
of entities: 1. clients u1, . . . , uN that want to commu-
nicate anonymously to outside services, 2. some servers
G1, . . . , GK (or ‘guardnodes’ as they call them) that help
in the anonymization process, 3. and a relay or gateway
server R. PriFi has a Setup phase when the clients and
the guardnodes establish some shared secrets among
themselves; and agree on a permutation of slots where
each client knows only its own slot. Using the shared
secrets, the clients (and servers) can generate keys for
several Anonymize rounds. The clients can transmit ac-
tual data in those rounds. However, if the clients want
to agree on a new permutation of slots, they need to
re-run the setup phase.
Setup Phase. Each client ui generates a pair of
ephemeral private-public keypair pi, Pi. Then each client
ui runs an authenticated Diffie-Hellman key exchange
using the ephemeral keypair with each server Gj to
agree on a shared secret rij . Additionally, the servers
run a verifiable shuffle algorithm to generate a permuted
output of the public keys π = {P̃α1 , P̃α2 , . . . , P̃αN} —

OrgAn 601

where P̃αi = c · Pi for a permutation α and some con-
stant c; and therefore, only a client with private key
pi can recognize the pseudonym key in π that corre-
sponds to Pi. The shuffled output π is made public by
the servers.
Anonymize Phase. For round k ∈ {1, . . . ,N},
each client ui generates the DC-net mask as Xi =
⊕K
j=0PRG(rij). If client ui is supposed to send their

message in round k (based on the permutation π), ui
sends the ciphertext ci = mi ⊕Xi to the relay R, oth-
erwise ui sends ci = Xi. Each server Gj generates their
ciphertext as Yj = ⊕N

i=0PRG(rij) and sends it to the
relay.

After receiving all the N + K ciphertexts, the relays
XORs them together to retrieve mk corresponding to
the round k. The servers can send their ciphertexts to
the relay ahead of time to avoid any delay because of the
servers. It is assumed that mk is a full IP packet or part
of an IP packet (albeit null sourced) so that the relay
can buffer it and send it to the appropriate destination.
When the relay receives a response dk corresponding to
a message mk, the relay encrypts dk with the public key
P̃k and broadcasts that to all the clients.

Handling Disruption

PriFi uses a hash-based disruption detection mecha-
nism. The relay sends the hash of an upstream message
with the downstream traffic. The sender can detect an
incorrect hash and invoke the Blame protocol as de-
scribed below.
Blame Protocol. The basic PriFi protocol is modified
to include an additional bit in the upstream messages;
by setting the bit to 1, a client can invoke the Blame pro-
tocol. Additionally, the client includes the disrupted bit
position ` and a non-interactive zero-knowledge proof
(NIZKP) of knowledge of the key p̃k corresponding to
P̃k of slot k. Therefore, only the owner of slot k can
invoke Blame if slot k is disrupted.

Once the relay receives that information the re-
lay broadcasts them. Each client and guard verifies the
NIZKP, and if the verification is successful reveals the
`-th bit of PRG(rij) for slot k using a non-anonymous
signed message. The relay verifies the signature and
checks that the values shared by the clients (and servers)
are consistent with the ci values (and Yj values). If a
mismatch is detected then that party is identified as
the disrupting party. If no mismatch is detected, the
relay compares the PRG(rij)` value sent by the client

and PRG(rij)` by the server, for each pair of client and
server. If a mismatch is detected there, the client needs
to prove that the rij value was indeed sent by the server
during the setup phase, and the server needs to prove
that the rij value it sent was generated correctly. Who-
ever fails to provide the proof is considered as the dis-
rupting party. Note that, in the last step (and only if the
Blame protocol reaches this step), the rij value between
the conflicting client and server is opened.
Equivocation Protection. PriFi achieves defense
against equivocation attacks from the relay by utiliz-
ing the history of downstream messages. Each client ui
keeps a personal copy of the history hi. Each upstream
message is symmetrically encrypted with a fresh key γ
and γ is sent to the relay blinded by a function of the
history hi. The relay can unblind γ and decrypt the
message only if all the clients have the same copy of
the history. If the relay sends two different downstream
messages to two different clients, the relay will not be
able to decrypt messages in any subsequent rounds.

C Postponed Proofs

C.1 Security Definition for PRFs

We borrow the security definition for PRFs from exist-
ing literature [28] and use it in our security arguments.

Let Rand(D,O) denotes the set of all functions with
domain D and range O. We consider a distinguisher
A that tries to distinguish if a function g has been
picked randomly from a given function family F or from
Rand(D,O), when A is given oracle access to g. We write
A (g) to denote that A is given oracle access to g. We
define the following security game:

Definition 4. Let F : K × D → O be a family of ef-
ficient functions, and let A be an algorithm that takes
an oracle for a function to return a bit b. Consider the
following two experiments:

ExptPRF (A)

K← K

b = A (FK)

Exptg(A)

g ← Rand(D,O)

b = A (g)

The adversarial advantage of A is defined as
AdvF (A) = Pr [ExptPRF (A)]− Pr

[
Exptg(A)

]
.

If we use F in a protocol that requires that the security
can be broken with at most negligible probability for
a security parameter η, we also want AdvF (A) to be

OrgAn 602

negligible in η. Therefore, we use the following security
definition for pseudorandom functions:

Definition 5. F is a secure pseudorandom function
family if, for all probabilistic polynomial time algorithms
A, the adversarial advantage AdvF (A) in the security
game defined in Definition 4 is bounded by a negligible
quantity in the security parameter η.

C.2 Anonymity Proofs

Theorem 1 (Sender Anonymity of Base Proto-
col). Assuming F() is a computationally secure pseu-
dorandom function, the protocol Base protocol of OrgAn
provides sender anonymity as defined in Definition 3
with negligible δ against any global passive adversary A,
as long as at least two users and one setup server are
honest.

Proof of Theorem 1. Without loss of generality, let us
assume that users u1 and u2 are honest and their mes-
sage in a given round is x1 and x2 respectively. Let us
also assume that only one setup server G1 is honest.
Now we prove security in two parts:

1. First, we use a modified version OrgAn∗ of the
protocol OrgAn and show that the adversary has a neg-
ligible advantage against OrgAn∗. In OrgAn∗, the user
u1 uses a random function Frand(·) instead of F (r1, ·)
as the masks to compute the ciphertexts; and the user
u2 uses F (r1 + r2, ·)−Frand(·).

2. Next we show that, if an adversary Aanon wins
the game against OrgAn in the anonymity game, we can
construct an adversary APRF that can win the PRF
game.

As our first step, we consider the anonymity game
with the protocol OrgAn∗. In OrgAn∗, all the protocol
parties except u1, u2 and G1 behave exactly the same as
OrgAn. However, in the hypothetical protocol OrgAn∗

we assume that u1 and u2 collude in the following way:
for a given slot t the user u1 uses Frand(t) as the mask to
compute ciphertext c1(t) = κxt1 +Frand(t), and the user
u2 compute ciphertext c2(t) = κxt2 + F (r1 + r2, d)t −
Frand(t). For the time being, let us consider only one
round and we will extend the argument for multiple
rounds shortly.

In this hypothetical protocol OrgAn∗, we can as-
sume that the users u1 and u2 can exchange information
about r1, r2 and Frand() with each other.

Claim 1. The protocol OrgAn∗ provides sender
anonymity with δ = 0 against any global passive ad-
versary A, for a one-round protocol run.

Proof of Claim. Since Frand() is a random function, the
value Frand(t) can be thought of as being chosen at
random. Let, f1 = Frand(1) and f2 = F (r1 + r2, d)t −
Frand(1). Then the adversary A has the following set of
equations for slot 1 with x1, x2, f1, f2 as unknowns (we
skip the group notations for simplicity),
1. x1 + x2 = a1
2. κx1 + f1 = a2
3. f2 + κx2 = a3
4. f1 + f2 = a4
and the adversary knows 〈x1, x2〉 = 〈b1, b2〉 or 〈b2, b1〉,
for some observer values of a1, a2, a3, a4, b1, b2. Note that
the above equation system has a rank of at most 3; both
〈b1, b2〉 or 〈b2, b1〉 will yield valid values of f1 and f2.
Therefore, slot 1 does not reveal anything about who
sent x1 or x2.

Since Frand is a random function, Frand(t) is unre-
lated from Frand(t′) for any t′ 6= t. And hence, a similar
argument can be extended for any other slot t′ as well,
independent of slot t. Since the overall equation system
to retrieve all the messages in a round is an identity, the
adversary has δ = 0 advantage in the sender anonymity
game against the protocol OrgAn∗ for a one-round pro-
tocol run. �

Now let us consider the scenario when the protocol
OrgAn∗ is run for many rounds. For every round d

and slot t, the user u1 can use (dN + t) as the input
to the random function Frand(). In that case, the in-
put to Frand() is never repeated, and OrgAn∗ provides
sender anonymity with δ = 0 even for a multi-round
protocol run. We skip the formal claim statement and
proof here, since they are similar to that of Claim 1.

Now that we have proved δ-sender anonymity for
OrgAn∗ with δ = 0, we proceed to the next step to prove
the anonymity of OrgAn. We show that if there exists
an adversary Aanon that breaks sender anonymity for
protocol OrgAn, we can construct an adversary APRF
that breaks the security assumption on pseudorandom
function F .

Claim 2. If there exists a PPT adversary Aanon with
an adversarial advantage δ against the protocol OrgAn
in the sender anonymity game defined in Definition 3,
there exist an adversary APRF that can distinguish be-
tween F and Frand with probability at least δ in the PRF
game defined in Definition 4.

OrgAn 603

Proof of Claim.We start with the construction ofAPRF :
Our adversary APRF of the PRF game will run the
whole sender anonymity game as the challenger, except
one setup server G1 (as per our threat model, at least
one setup server is honest, and without loss of generality
we assume that to be G1).

The key K for the PRF game is decided based
on the random number r11 picked by G1. We pick,
K =

∑
j r1j = r1 such that r1 = K. Since G1 as an

independent honest party that does not collude with
APRF or Aanon4, APRF does not know r11 or K.
APRF runs each round of the sender anonymity

game in the following way: for each slot value t APRF
queries the PRF game with input value t and receives a
value ft. APRF asks the user u1 in the sender anonymity
game to use ft to compute c1(t) = κxti + ft. Similarly,
APRF asks u2 to use c2(t) = κxti + F (r1 + r2, d)t − ft.
APRF runs the sender anonymity game until Aanon
halts. APRF returns 1 if and only if Aanon wins the
sender anonymity game.

When ft is an output of Frand() the adversary
APRF is effectively running OrgAn∗, however, when
ft = F(K, d)t it is running OrgAn. If Aanon has an
advantage of δ in the sender anonymity game against
OrgAn, there would be a difference of at least δ in the
probability APRF outputs 1 when ft is the output of
Frand() vs when it is the output of F(), �

Following the above claim, if the adversarial advantage
of Aanon is non-negligible against OrgAn, so is the ad-
versarial advantage of APRF in the PRF game — which
contradicts the assumption that F is a secure pseudo-
random function.

Theorem 2 (Sender Anonymity of OrgAn). As-
suming F() is a computationally secure pseudorandom
function, the protocol OrgAn provides sender anonymity
(when Bulk protocol is employed) as defined in Defini-
tion 3 with negligible δ against any global passive ad-
versary A, as long as at least two users and one setup
server are honest.

Proof Sketch for Theorem 2. We use a similar tech-
nique as the proof of Theorem 1 to prove this theo-
rem: First, we use a modified version OrgAn∗ of the
protocol OrgAn that employs Bulk protocol and show
that the adversary has a negligible advantage against

4 More formally G1 can modeled similar to hybrid functional-
ities in UC framework, and then the security game can be de-
fined in that hybrid functionality setting. We skip the rigorous
formalization in this paper.

OrgAn∗. Similar to the proof of Theorem 1, the user
u1 in OrgAn∗ uses a random function Frand(t) instead
of F (r1, d)t as the masks to compute the ciphertexts,
and the user u2 uses F (r1 + r2, d)t−Frand(t). Next, we
show that if an adversary Aanon wins the game against
OrgAn in the anonymity game, we can construct an ad-
versary APRF that can win the PRF game.

Claim 3. The protocol OrgAn∗ provides sender
anonymity with δ = 0 against any global passive ad-
versary A.

The proof of this claim is similar to the argument of
Claim 1 and its extension for multiple rounds, except,
in every even round (bulk) round the clients use group
addition instead of powersum equation system. For ev-
ery slot t, the adversary can see

∑
i xi where every xi

are the values sent by users ui. Since u1 and u2 use the
masks Frand(t) and F (r1 + r2, t) − Frand(t), the prop-
erty of Frand ensures that the adversary does not know
if u1 or u2 is the actual sender for slot t.

It is crucial to notice that the Base round before a
Bulk round reveals which slots are related, however, all
those slots are used to send a single message. Therefore,
that is not an actual leak and does not break anonymity.

Now that we have proved sender anonymity for
OrgAn∗ with δ = 0, we can prove anonymity for OrgAn
exactly in the same way as in the proof of Theorem 1.
We show that if there exists an adversary Aanon that
breaks sender anonymity for protocol OrgAn, we can
construct an adversary APRF that break the security
assumption on the PRF F .

Claim 4. If there exists a PPT adversary Aanon with
an adversarial advantage δ against the protocol OrgAn
in the sender anonymity game defined in Definition 3,
there exist an adversary APRF that can distinguish be-
tween F and Frand with probability at least δ in the PRF
game defined in Definition 4.

We construct APRF and set up the anonymity game
exactly in the same way as the proof of Theorem 1.
If the adversarial advantage of Aanon is non-negligible
against OrgAn, so is the adversarial advantage of APRF
in the PRF game — which contradicts the assumption
that F is a secure PRF.

C.3 Integrity Proofs

Lemma 1. Assuming F is a secure PRF as well as (al-
most) key homomorphic with a bounded error e, and H
is a collision resistant hash function, if the relay sends

OrgAn 604

two different output messages Di and Dj (Di 6= Dj) to
any two honest clients ui and uj in a round d, the relay
lose the ability to run any later rounds with overwhelm-
ing probability.

Proof Sketch for Lemma 1. The retrieval of the mes-
sages depends on the (almost) homomorphic property
of the PRF F . Suppose hi = H(Di) and hj = H(Dj);
by collision resistance property hi 6= hj when Di 6= Dj .
clients ui and uj uses the keys hi·ri and hj ·rj as the keys
to the PRF F . If the relay wants to be able to decrypt
messages in the next round, the relay should be able to
(1) solve (hi ·ri+hj ·rj) from ri+rj without knowing the
individual values of ri and rj , (2) OR, somehow guess
the value of F(K · s + (hi− 1) · ri + (hj − 1) · rj , d) within
the error bound of N · e (there are total N additions).
The first part cannot be solved; if the relay can achieve
the second part, using that knowledge we can construct
an adversary APRF that wins the PRF game.

Theorem 3. Assuming λi proves correct computation
of F(ri, t) for a client ui with overwhelming probability
and S() is cryptographically secure signature scheme, if
the Blame protocol is run for a disrupted round d, with
overwhelming probability at least one disruptive entity is
identified, and an honest entity is not (mis-)identified as
a disruptor.

Proof Sketch for Theorem 3. A round is disrupted in
the following three possible scenarios or a combination
of them:
1. at least one client has used bad F (ri, dN + t) values,
2. at least one setup node has distributed bad ri,j val-

ues,
3. the relay just decided to corrupt the output set.
At least one client has used bad F (ri, dN + t) val-
ues. During the Blame protocol corresponding to a Base
round, each client sends their xi and F (ri, d)t values us-
ing a direct channel, along with the proof λi of correct
computation of the PRF. And the relay recompute the
ci values using the newly received values. Unless λi is
broken, the client cannot send a wrong F (ri, d)t during
value opening. The client cannot send wrong xi value
because that will yield overall wrong ci computation.

In case a Bulk round is disrupted, if the `-th bit of a
slot is disrupted, the client sends the `-th bit of F (ri, d)t
and a tuple (gψ1hψ

′
1 , gψ2hψ

′
2) where ψ1 is the first (`−1)

bits and ψ2 is the last (q−`) bits of F (ri, d)t. Using those
values and λi, the relay verifies the correct computation
of PRF. Similar to the previous case, unless λi is broken,
the client cannot send wrong values.

Given the security of signing S(), the relay cannot
forge a signature for an honest client, and hence, cannot
blame an honest client unless the signature verification
or λi verification fails. Even if the relay wants to collude
with the malicious clients, it has to blame at least one
such client; otherwise, the relay is blamed by default.
At least one setup node has distributed bad ri,j
values. In that case, the relay was supposed to verify
the following two things during the setup phase:
– for each ` ∈ {1, 2, . . . , u} if ΠN

i=1gαij`hβij` = gs`hs
′
` ·

(g−vk`h−vk
′
`) holds, where s = {s1, s2, . . . , su}; it also

verifies πk,`. The quantities s′, k′` are defined analo-
gously from the blinding factors β(·).

– if each σij is a valid signature of (ui,Γrij) generated
by the setup server Gj .

Since, the signature is cryptographically secure, the
clients could not have modified the values on the way.
Which means the relay was colluding with the corrupted
setup node if it did not flag a failure in verification.
Therefore, such an incident gets detected during the
setup phase, or the relay is blamed.
The relay just decided to corrupt the output set.
If the relay just corrupts the output set, because of
the signature verification and λi verification the relay
cannot blame an honest client. The relay cannot blame
a setup node either because of the reasons mentioned
above. Hence, the adversarial relay can either blame
one of the clients controlled by the adversary, or take
the blame for the disruption.

Lemma 2. Assuming H1 is a collision resistant hash
function, and the computation power of the adversary
is limited by T hash computations between two consecu-
tive Base rounds where T is polynomial in ηp, the Blame
protocol in disrupted Bulk round d can be invoked by a
malicious client u∗ for a slot ` which is not owned by u∗

only with a probability negligible in ηp.

Proof Sketch for Lemma 2. The proof directly trans-
lates from the security of the hash function H1. Each
client clienti publishes H1(D,x) in the base round where
x is randomly picked, and D is the response message of
the last Bulk round.

To launch the Blame protocol for a Bulk round for
a slot ` that does not belong to the client client∗, the
malicious client has to find an x∗ such that H1(D,x) =
H1(D,x∗) with the computation limit T —which breaks
the collision resistant property of H1. Since the range of
H1 is only ηp, the security of H1 is limited by ηp.

OrgAn 605

Theorem 4. Assuming F is a secure pseudorandom
function, and further assuming that at least one of the
setup nodes is honest, the Blame protocol in round d does
not break anonymity for any other round d′ 6= d.

Proof of Theorem 4. We want to prove the above the-
orem using contradiction. For contradiction, let us as-
sume that there exist an adversaryAanon that can break
the anonymity of OrgAn for some round d′ 6= d, given
that the Blame protocol is run in round d; d and d′ can
be any arbitrary positive integers chosen by Aanon, but
less than a finite value T .5

Here we use a construction similar to the proof of
Theorem 2, and construct an adversary APRF using
Aanon. To reiterate the key features of APRF : our PRF
adversary APRF will run the whole sender anonymity
game as the challenger, except one honest setup node
Gj . We force Gj to use an r1j such that r1 = K, where
K is the chosen key for the PRF game. For each slot
value t < T , APRF queries the PRF game with input
value t and receives a value ft, APRF asks the client
u1 in the sender anonymity game to use ft to compute
c1(t) = κxti + ft. Similarly, the client u2 uses c2(t) =
κxti + F (r1 + r2, d)t − ft.

One key factor in this game is that APRF lets the
adversary Aanon adaptively choose a round d when the
protocol OrgAn will be disrupted, and a round d′ when
the challenge message will be sent. In all other rounds
including round d, Aanon is allowed to send input mes-
sages to the protocol.

According to Theorem 2, the adversarial advantage
of Aanon is negligible without any disruption in round
d′. Our PRF adversary APRF returns 1 if and only if
Aanon wins the game, otherwise returns 0. Using a sim-
ilar line of argument as in the proof of Theorem 2, if
Aanon has an non-negligible advantage of δ in the sender
anonymity game against OrgAn, there would be a dif-
ference of at least δ in the probability APRF outputs 1
when ft is the output of Frand() vs when it is the output
of F(), hence contradicting the security property of the
PRF.

5 Consider T as the computational bound of Aanon. For a PPT
adversary T is polynomially large in the security parameter η

	OrgAn: Organizational Anonymity with Low Latency
	1 Introduction
	1.1 Our Contribution

	2 Overview
	2.1 Setup and Communication Model
	2.2 Threat Model
	2.3 Goals
	2.4 Protocol Idea
	2.5 What We Achieve
	2.6 Comparison with Relevant Protocols

	3 Preliminaries
	4 Core Protocol
	4.1 Setup Phase
	4.2 Base Protocol
	4.3 Scaling with Bulk Protocol
	4.4 Performance Improvement with Pre-processed PRF Values

	5 Handling Disruption
	5.1 Disruption Detection
	5.2 Blame Protocol
	5.3 Verifiability of PRF
	5.4 Equivocation Protection

	6 Security Analysis
	6.1 Anonymity Definition
	6.2 Anonymity Analysis
	6.3 Security against Active Attacks

	7 Implementation
	8 Performance Evaluation
	8.1 Microbenchmarks
	8.1.1 Overhead for the Clients
	8.1.2 Overhead for Relay to Solve Equations System

	8.2 End-to-end Latency Evaluation

	9 Client Churn
	10 Conclusion
	A Application Considerations
	A.1 Storage Overhead for Hash Data
	A.2 Problem of Enumerating All Clients
	A.3 Supporting Lightweight Clients
	A.4 Application Scenarios
	A.5 OrgAn as Non-Interactive Anonymous Router (NIAS)

	B Short Description of PriFi
	C Postponed Proofs
	C.1 Security Definition for PRFs
	C.2 Anonymity Proofs
	C.3 Integrity Proofs

